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Abstract 

In recent years, with increased urbanization and vehicle ownership, congestion levels 

have been increasing in urban areas although new infrastructure is being developed to meet the 

increasing demand. An understanding of bus service reliability is necessary to develop strategies 

that help transit agencies provide better services. In addition, a reliable and accurate vehicle 

arrival prediction system can help in making public transportation more attractive. This study 

first aims to quantify and determine temporal and weather related bus arrival time variability in 

Edmonton. A multinomial logit model is developed and estimated, which relates early, late and 

on-time bus arrivals to weather, temporal and operating characteristics. The model results show 

that the probability of on-time failures increases during PM peak periods, as buses progress 

further along their routes and under adverse weather conditions. Secondly, a proposed bus 

tracing algorithm and bus arrival time prediction algorithm are then applied to predict bus travel 

time using Global Positioning System (GPS) data and Vehicle Detect System (VDS) data, also, a 

regression model based on the factors found from the multinomial logit model is applied as a 

comparison. A case study is conducted on one selected bus routes in Edmonton, to evaluate the 

performance of the proposed algorithm in terms of prediction accuracy. The results indicate that 

the proposed algorithm is capable of achieving satisfactory accuracy in predicting bus arrival 

time. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

In recent years, congestion has become a big problem and deteriorated the quality of life 

of people in many developed and developing countries. This is mainly due to many factors, 

especially the increasing number of vehicle ownerships. In the developed countries such as 

United States, a report from the ICF Consulting found that, in 2003, about 76% of Americans 

chose privately owned vehicles for their commute to work (Consulting 2003), and around 79.5% 

of them drive alone when commuting (McKenzie and Rapino 2009). Same trend in the 

developing countries, a report from the Beijing Transportation Research Center found that 34% 

of those living in Beijing chose their privately owned vehicles for commuting in 2010 (Beijing 

Transportation Research Center 2010). As a result, the high percentage of using privately owned 

vehicles will increase congestion. While congestion will lead to many problems such as increase 

in energy consumption, air pollution and travel time. In order to relieve congestion, different 

approaches have been adopted in both demand side and supply side. The approaches in demand 

side mainly focus on a more efficiently way to use the existing system. The approaches in supply 

sides mainly concentrate on infrastructure expansion. However, the approaches in supply sides 

such as infrastructure expansion cannot meet the vehicle population growth rate, and hence, 

more solutions in demand side need to be explored. In this regard, Intelligent Transportation 

Systems (ITS) is considered as a good demand side approach which involves many functional 

areas, including Advanced Public Transportation Systems (APTS). 

Public transit has been recognized as the key to developing the future environmentally 

conscious and sustainable transportation system. A report from the Texas Transportation Institute 
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indicated that the public transit saved 27% for travel delay in 2003, which is equal to more than 

1.1 billion hours of travel time (Texas Transportation Institute 2005). Therefore, it is of critical 

importance to improve the efficiency of Transit Service Reliability (TSR). While TSR can be 

affected by many factors, such as traffic conditions, signal delay at traffic lights, road geometry, 

uncertain passenger demand, driver behavior, vehicle accidents, bus stop locations and weather. 

By investigating and quantifying the impacts of TSR, transit operators can prioritize measures or 

investments that tackle the main sources of unreliable transit service, and propose appropriate 

strategies to improve TSR (Crout 2007). For individuals, bus arrival time is more concern for 

them. The provision of accurate bus arrival time prediction is important to attract additional 

ridership and increase the satisfaction of transit users (Hensher, Stopher, and Bullock 2003; 

Murray and Wu 2003). 

In recent years, many transit agencies have used a range of advanced technologies to 

collect amounts of multi-source data, such as Automatic Passenger Counters (APC) data, 

Automatic Vehicle Location (AVL) data, General Transit Feed Specification (GTFS) data, 

weather data and smart bus GPS data. With advances in information technologies in ITS, the 

availability of public transit data has been increasing in the past decades, which has gradually 

shifted the public transit system into a data-rich environment, and makes it realizable to do 

further TSR analysis and predict bus arrival time more preciously.  

1.2 Problem Statement 

TSR may be affected by a number of internal and external factors, such as passenger 

demand and its distribution along the route, traffic conditions (recurrent traffic congestion and 

non-recurrent incidences), driving habits, weather conditions, transit operations as well as 
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network design. If the impacts of TSR can be investigated and quantified, transit operators can 

prioritize measures or investments that tackle the main sources of unreliable transit service, and 

propose appropriate strategies to improve TSR (Crout 2007). In addition, providing accurate 

information about bus arrival time to passengers is an attractive popular application. It will be 

useful to passengers to reduce the waiting time at bus stops or to make reasonable travel 

arrangements before making a trip. However, for this to be effective, the information provided to 

passengers should be reliable and accurate. 

With advances in new technology systems and data integration initiatives, public transit 

agencies are gaining increasing amounts of multi-source data, such as APC, AVL, smart cards, 

weather information and collision data. These rich data sources have the potential to generate 

much more and better information about the transit system and customers for decision making, 

such as much more and better information to analysis the factors affecting the bus on-time 

reliability and improve the bus arrival time prediction. However, one sufficient condition is to 

understand how to derive value from these data. Nowadays, one typical case is that big data are 

available but have not yet been harnessed by users and operators. In addition, those multi-source 

data are maintained by different branches with diversity of formats, and the transit data is 

location sensitive, so in order to use those multi-source data, the data integration is needed as 

well as the transit data need to be projected onto the underlying transit network. Before, lots of 

bus on-time reliability analyzes are only based on one dimension data source, while with the 

achieving of multi-source data, this problem can be extended by using those integrated multi-

source data. Furthermore, nowadays, lots of transportation agencies have installed GPS sensors 

in buses, so the real time bus GPS data can be integrated with those multi-source data to improve 

the bus arrival time prediction. 
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1.3 Research Scope 

Using the Edmonton Transit System (ETS) as a case study, this study aims to investigate the 

use of multiple data sources to quantify bus on-time performance and predict bus arrival time. 

There are three specific goals of this thesis: 

a) Extract the transit related information from APC data, GTFS data, and smart bus GPS 

data as well as integrate the extracted transit data with the road network. 

b) Analyze the impacts of weather, temporal and operating characteristics affecting bus on-

time reliability and predict the bus arrival time based on those factors.  

c) Develop a bus arrival time prediction model to predict the bus arrival time based on the 

smart bus real-time GPS data and loop detector data. 

1.4 Structure of Thesis 

The structure for this thesis is as follows: 

Chapter 1 introduces the background of TSR and bus arrival time prediction as well as 

the problem statement and the research scopes. 

Chapter 2 is the literature review chapter, which discusses about the works that have been 

done in past few years for the evaluation of factors affecting bus on-time performance and the 

bus arrival time prediction. 

Chapter 3 introduces the data preprocessing of multiple data sources for the evaluation of 

factors affecting bus on-time performance and the bus arrival time prediction. 

Chapter 4 describes the evaluation of factors affecting bus on-time performance using 

multi-source data. 
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Chapter 5 describes the bus arrival time prediction based on the real-time GPS and loop 

detector data and the bus arrival time prediction based on the factors affecting bus on-time 

performance found in chapter 4. 

Chapter 6 presents the conclusion and provides suggestions for the future works. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Transit Service Reliability 

TSR is a key performance index to evaluate service quality, as it is a vital issue affecting 

transit’s status as a desired alternative to private transportation (Arhin and PTOE 2013; J., Liu, 

and Yang 2014). In 2003, ICF Consulting present a report that around 76% of Americans chose 

privately owned vehicles for their commute to work (Consulting 2003), and 79.5% of them drive 

alone when commuting(McKenzie and Rapino 2009). Also, Beijing Transportation Research 

Center found that 34% of those living in Beijing chose their privately owned vehicles for 

commuting in 2010 (Beijing Transportation Research Center 2010). As a result, the high 

possibility of using privately owned vehicles will increase air pollution, energy consumption and 

congestion. While, public transit is an effective measure to avoid such results, for example, a 

report from the Texas Transportation Institute indicated that the public transit saved 27% for 

travel delay in 2003, which is equal to more than 1.1 billion hours of travel time (Texas 

Transportation Institute 2005). Therefore, it is of critical importance to improve the efficiency of 

TSR. 

Typically, TSR is usually measured in terms of schedule adherence, running times, 

headways, and passenger waiting times (Boilé 2001; Herbert S. Levinson 2005). Schedule 

adherence is calculated as actual departure time minus scheduled departure time, and is 

consistently ranked as one of the major concerns of passengers, especially for low frequency 

routes. Passengers will arrive at their destinations late due to the poor schedule adherence, and 

this can finally cause customer satisfaction issues  (Cham 2006). While on-time performance is a 

common way to measure schedule adherence, and it is defined as the percentages of buses that 
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depart from a location with a time window in advance (Kittelson & Associates 2013). The 

standard of ‘on time’ is defined as a bus departures or arrives no more than one minute early and 

five minutes late by most of transit agencies (Bates 1986). Another measure of TSR is headway, 

which is calculated as actual headway minus scheduled headway, and is more focus on spacing 

between buses. If the headway value is negative, it means a bus is falling behind its leader and 

vice versa. The negative of headway value will cause additional delay, and result as more 

waiting time and more passenger loads (Cham 2006). Running time is also an important measure 

of TSR, which is calculated as actual running time minus scheduled running time. Running time 

is more focus on link level, and if the value of running time is positive, it means that a bus takes 

more time to traverse that link (Herbert S. Levinson 2005).  

2.2 Transit Schedule Adherence Analysis 

The on-time performance can be affected by a number of factors, such as passenger 

demand and its distribution along the route, traffic conditions (recurrent traffic  congestion and 

non-recurrent incidences), driving habits, weather conditions, transit operations as well as 

network design (Sterman and Schofer 1976; Kjmpel 2001). The literature review is conducted in 

terms of weather factors, temporal factors and operational factors.  

2.2.1 Weather Factors 

Weather condition is one of the most important factors that are highly associated with bus 

on-time performance. Mesbah et al. investigated the effect of seasonal variation of daylight hours 

on the reliability of public transport service. A linear regression model was developed to regress 

tram travel time on schedule travel time, time difference between 5:00 am to sunrise and time 

difference between 5:00 to trip start time. Results indicated that daylight start time has a small 
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but statistically significant effect on service travel time (Mesbah, Currie, and Prohens 2014). In 

addition, they investigated the effect of weather conditions on the travel time reliability of fifteen 

randomly selected Melbourne streetcar (tram) routes. Ordinary least square regression analysis 

was conducted to regress travel time on various weather effects. The results indicated that only 

precipitation and air temperature are significant in their effect on tram travel time (Mesbah, Lin, 

and Currie 2015). Levinson and Cham found that the inclement weather can cause slower driving 

speeds, and the bus travel time will be extended (H S Levinson 1991; Cham 2006). Also, 

Tétreault et al., El-Geneidy et al. and Diab et al. found that weather has a significant impact on 

both bus dwell time and bus travel time (Tétreault and El-Geneidy 2010; E. I. Diab and El-

Geneidy 2012; A.M. El-Geneidy, Horning, and Krizek 2011). 

2.2.2 Operational Factors 

Travel distance is one of the most important internal factors that are highly associated 

with bus on-time performance. Chen et al. investigated the bus service reliability in Beijing, 

China, and found a high correlation between service reliability and route length, headway, 

distance from the stop to the origin terminal, and the provision of exclusive bus lanes (Chen et al. 

2009). Furthermore, the study from Van Oort et al. has a clear indication that shorter routes tend 

to be more reliable (Van Oort and Nes 2009). 

A few studies have investigated the impact of signalized intersections on bus travel time. 

The work from El-Geneidy et al. found that bus travel time is extended with an average of 26 

seconds by each intersection and each stop sign adds an average of 16 seconds to bus travel time 

(Ahmed M El-Geneidy, Hourdos, and Horning 2009). For the other study areas, Abkowitz et al., 

McKnight et al., and Albright et al. found that bus travel time is extended with an average of 8, 

11 and 10 seconds by each intersection, respectively (Abkowitz and Engelstein 1984; McKnight 
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et al. 2004; Albright and Figliozzi 2012). Furthermore, the work of Figliozzi et al. shows that 

passing through, turning left and turning right at an intersection contributes additional 5, 20 and 

38 seconds to bus travel time (Figliozzi and Feng 2012). 

The number and spacing of bus stops also has an impact on bus on-time performance. 

Strathman et al., Tétreault et al., Diab et al. and Slavin et al. found that each additional bus stop 

contributes 5 to 26 seconds to bus travel time by using the actual number of stops in a trip as a 

variable (Strathman et al. 2002; Tétreault and El-Geneidy 2010; E. I. Diab and El-Geneidy 2012; 

Slavin et al. 2013). The studies from McKnight et al., EI-Geneidy et al. and El-Geneidy et al. 

shows that each additional bus stop gives rise to an average of 5 to 13 seconds increase for bus 

travel time by using the number of scheduled bus stops as the variable (Ahmed M El-Geneidy, 

Hourdos, and Horning 2009; McKnight et al. 2004; A.M. El-Geneidy, Horning, and Krizek 

2011). Also, El-Geneidy et al. found that the percentage of scheduled bus stops has a positive 

and significant impact on bus travel time (A.M. El-Geneidy and Surprenant-Legault 2010). 

Bus departure delay is analyzed as an internal factor for bus on-time performance by 

many studies. Strathman et al., El-Geneidy et al. and Figliozziet al. found that bus departure 

delay has a negative impact on bus travel time (Figliozzi and Feng 2012; Strathman et al. 2002; 

A.M. El-Geneidy and Surprenant-Legault 2010). 

Other internal factors were also found to have significant impacts on bus travel time. For 

example, bus stop location type also has a significant impact on bus travel time. Albright et al. 

found that, compared to far-side stops, near-side bus stops can decrease an average of 3.7 

seconds in travel time(Albright and Figliozzi 2012). Some studies found that bus route type and 

bus vehicle type also have a significant impact on bus travel time (Figliozzi and Feng 2012; 

Strathman et al. 2002; Dueker et al. 2004). 
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Other external factors were also found to have significant impacts on bus travel time. For 

example, passenger boarding and alighting activities also have an impact on bus dwell times at 

bus stops and bus travel time. The work of Abkowitz et al. was among the earliest studies on 

running time variation, and they found that each passenger boarding and alighting activity 

contributes 6 and 4 seconds to bus travel time, respectively (Abkowitz and Engelstein 1984). 

However, the number of bus stops was not included in this study. By adding the number of bus 

stops, Bertini et al., Dueker et al., Figliozzi et al. and Slavin et al. found that each passenger 

boarding activity contributes 3.4 to 3.7 seconds to bus travel time, and each passenger alighting 

activity contributes 0.4 to 1.5 seconds to bus travel time (Figliozzi and Feng 2012; Slavin et al. 

2013; Bertini and El-Geneidy 2004; Dueker et al. 2004). 

2.2.3 Temporal Factors 

Traffic congestion is one of the most important external factors that are highly associated 

with bus on-time performance. Studies from Levinson et al., Guertset al., Cham and Xuan et al. 

indicated that traffic congestion is one of the leading causes for bus delays (H S Levinson 1991; 

Guerts, Schaufeli, and Buunk 1993; Cham 2006; Xuan, Argote, and Daganzo 2011). 

For those internal factors and external factors, some researchers have investigated the 

effects of different service improvement strategies on service reliability. El-Geneidy conducted a 

series of visual and analytical analyses to identify causes of decline in reliability levels. Results 

showed that schedule revisions were needed to improve run time and schedule adherence, and 

stop consolidation were needed to decrease variability of service through concentrating 

passenger demand along a fewer number of stops (A.M. El-Geneidy, Horning, and Krizek 2011). 

Diab et al. examined the impacts of various improvement strategies, implemented along one 

heavily utilized bus route, on running time deviation from schedule, variation in running time, 
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and variation in running time deviation from schedules. They found that: (a) the introduction of a 

smart card fare collection system increased bus running time and service variation; (b) 

articulated buses, limited-stop bus service and reserved bus lanes had mixed effects on variation 

in comparison to the running time changes; and (c) TSP did not show an impact on variations (E. 

Diab and El-Geneidy 2013). 

2.3 Bus Arrival Time Prediction 

Providing transit users with reliable and accurate travel information can enhance TSR 

(Vanajakshi, Subramanian, and Sivanandan 2009). While, bus arrival time information is the 

most preferred information by transit users. The provision of bus arrival time information to 

passengers accurately is vital. It will be useful to passengers to reduce the waiting time at bus 

stops or to make reasonable travel arrangements before making a trip, thus, more people can be 

attracted to use public transport (Jeong and Rilett 2004). In order to provide bus arrival time 

accurately and timely, a variety of bus arrival time prediction models have been developed over 

the years. The most widely used bus arrival time prediction models can be classified into four 

categories as below. 

2.3.1 Historical Data Based Models 

The simplest way to predict bus arrival time is the historical data-based average 

prediction model. It predicts the bus arrival time from the historical bus travel time of previous 

journeys with an assumption that the current traffic condition remain stationary. So the result of 

this model can be reliable only when the traffic condition is relatively stable (Jeong and Rilett 

2004). 
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2.3.2 Regression Models 

Regression models are one kind of classical statistical analysis. With a linear function 

formed by a set of independent variables, it usually can be used to predict and correlate a 

dependent variable. Frechette et al. proposed a Bayesian regression analysis to estimate vehicular 

travel times between links in CBD locations using data collected by a video camera. Volume of 

through way, left and right turning vehicles, number of signalized intersections, percentage of 

stopped vehicles on each link, and the percentage of heavy vehicles were used as independent 

variables. The results were quite appreciable but the data extraction from the video camera 

would be a difficult process (Frechette and Khan 1998). The study from Patnaik et al. used 

number of stops, number of boarding and alighting passengers, distance, dwell times and weather 

descriptors as independent variables with a multivariate linear regression model to estimate bus 

arrival time between time-points along a bus route. The data used in this study were obtained 

from the APC system installed on buses, and they found that the models they used could be 

applied to estimate bus arrival time at downstream stops (Patnaik, Chien, and Bladihas. 2004). 

However, variables in transportation systems are highly correlated, so the applicability of 

regression models is limited (Chien, Ding, and Wei. 2002). 

2.3.3 Kalman Filtering Models 

Kalman filters have also been used for bus arrival time prediction. Bae et al. proposed a 

Kalman filter model to estimate arterial travel time for buses using AVL data, and a bus arrival 

time prediction model was developed based on the dynamics of both single and multiple stops. 

They also considered time varying passenger boarding and alighting rates as one input for the 

model (Bae and Kachroo 1995). The study from Wall et al. used both AVL data and historical 

data to estimate bus arrival time in Seattle. Two components are involved in their algorithm: 
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tracking component and prediction component. They used a Kalman filter model to track a 

vehicle location as well as a statistical estimations technique for the prediction component. The 

result indicated that the bus arrival time prediction rate is around 78% (Wall and Dailey 1999). 

Also, Shalaby et al. used both AVL data and APC data with the Kalman filtering technique to 

predict bus travel time, and the result indicated that this model can predict bus arrival times up to 

an hour in advance (Shalaby and Farhan 2003). 

2.3.4 Artificial Neural Network Models 

Artificial Neural Networks (ANN) is an effective countermeasure to deal with complex 

relationships between predictors that can arise within large amounts of data, process non-linear 

relationships between predictors, and process complex and noise data (Jeong and Rilett 2004). 

Gurmu et al. only used the GPS data as the input for their dynamic bus arrival time prediction 

ANN model. The results indicated that this model can provide accurate prediction of bus arrival 

time as a given downstream bus stop, and compared with other historical bus arrival time 

prediction models, both the prediction accuracy and robustness were outperformed (Gurmu and 

Fan 2014). 

2.4 Summary of Literature Review 

In this chapter, the definition and measures of TSR, the previous transit schedule 

adherence analysis and the methods of bus arrival time prediction are reviewed. 

There are a number of internal and external factors affecting the bus on-time reliability, 

like passenger demand and its distribution along the route, traffic conditions (recurrent traffic  

congestion and non-recurrent incidences), driving habits, weather conditions, transit operations 

as well as network design (Sterman and Schofer 1976; Kjmpel 2001). However, as most 
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researches only focus on one kind of factors, the comparison among different kinds of factors 

affecting the on-time performance is missed. Also, most previous researches focused on two 

categories: on time or not on time, and for this kind of requirement, the binominal logit model is 

suitable. However, in this study, three discrete categories are used: on time, early, and late, 

which means there are more than two discrete outcomes, therefore, a multinomial logit model is 

chosen. 

For the bus arrival time prediction problem, a lot of methods can be classified as the 

empirical analysis, like the historical data based models (Jeong and Rilett 2004), the regression 

models (Frechette and Khan 1998), the Kalman filtering models (Bae and Kachroo 1995) and the 

ANN models (Jeong and Rilett 2004). However, the empirical analysis has some shortages. For 

example, the historical data based models are only reliable only when the traffic pattern in the 

area of interest is relatively stable. The regression models are reliable only when such equations 

can be established, which may not be possible for many application environments where many of 

the system variables are typically correlated. The ANN models are more like a black box, and the 

mechanism of analysis is hidden, which is hard to express the result. Ideally, the empirical 

models use the historical data to train the models, and then use the trained models to predict. 

However, with advances in information technologies in ITS, the availability of public transit data 

has been increasing in the past decades, which has gradually shifted the public transit system into 

a data-rich environment. Furthermore, most of them are generated in real time, so bus arrival 

time prediction problem can be solved by some analytical models with these real time transit 

data instead of the historical data. 

Now, a range of widespread applications of AVL, APC, smart bus and other intelligent 

transportation systems have been integrated into the ETS, which can provide multi-source data 
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for transit system monitoring and improvement. However, to date, there is little effort to employ 

the collected data in evaluating bus on-time performance and bus arrival time prediction in 

Edmonton. The intention of this study is to further extend these studies by using a large scale 

multi-source data to assess the bus on-time performance and predict bus arrival time based on the 

real-time GPS and VDS data. 

  



16 

 

CHAPTER 3 DATA PREPROCESSING 

3.1 Test Site Description 

Edmonton is the most northerly city in North America with a metropolitan population of 

over one million as well as the capital of the Canadian province of Alberta. The ETS is the 

public transit agency which is operated by the City of Edmonton and provides several kinds of 

transit services, such as the Light Rail Train (LRT) services, regular buses services and door-to-

door Disabled Adult Transit Service (DATS). Figure 1 shows the service day map of the ETS, 

and as of 2015, the ETS has 209 bus routes and 6803 bus stops. The ETS services an area size of 

700 sq. km and area population of 817,498. Service is provided between 5 AM to 2 AM, and 

incorporates morning and afternoon peak service, off-peak service throughout weekdays, 

evening and late nights, and service throughout weekend and holiday operating periods. With 

this kind of multiple transit services, suburban feeders can run to a transit center and then 

transfer to a base route/LRT to the city center or the university, also some feeder routes provide 

direct express service to and from the city center. 
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Figure 1 Service Day Map of ETS (City of Edmonton 2015d) 

3.2 Data Description 

Currently, a range of widespread applications of AVL, APC and other intelligent 

transportation systems have been integrated in the ETS and five kinds of data will be used in this 



18 

 

study: VDS data, APC data, General Transit Feed Specification (GTFS) data, weather data and 

road network Geographic Information System (GIS) data. 

3.2.1 APC Data 

APC System is used by a lot of transportation agencies to collect the number of boarding 

and alighting passengers for a bus at each stop (Furth et al. 2006). Figure 2 is a snapshot of the 

APC data management system used in ETS. Reports of link travel time and on time performance 

by signup were extracted for analyses in this thesis. As shown in Figure 3, the APC system has 

been implemented in ETS to obtain bus occupancy along with other information such as date and 

time, calendar event, route number, run number, bus type, bus stop, location type, scheduled time 

of arrival, recorded time of arrival, recorded time of departure, adherence error and depart load. 

 

Figure 2 APC System 

 



19 

 

 

Figure 3 Samples of APC Data 

 

3.2.2 Weather Data 

The weather data is achieved from Environment Canada (Environment Canada 2015). It 

provides an online access to the historical hourly and daily archived weather data at various 

weather stations across Canada. As shown in Figure 4 and Figure 5, typical observations made at 

each station include air temperature, dew point temperature, relative humidity, precipitation type, 

visibility, and wind speed, all on an hourly basis with the exception of the precipitation intensity 

and snow on ground, which are available in daily totals. The reported hourly weather phenomena 

in winter include snow, snow grains, clear, cloudy, ice crystals, ice pellets, ice pellet showers, 

snow showers, snow pellets, fog, ice fog, blowing snow, freezing fog, and other. 

 

Figure 4 Samples of Hourly Weather Data 
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Figure 5 Samples of Daily Weather Data 

 

3.2.3 GTFS Data 

GTFS is short for General Transit Feed Specification, which is a format definition for 

public transportation schedules and corresponding geographic information (Google Inc. 2015b). 

There are two kinds of GTFS feeds: static and dynamic. The static GTFS feeds include the 

transit information like trips, stops, routes and other schedule transit data. Currently, the City of 

Edmonton uses three kinds of static GTFS feeds: bus stop GTFS feed, bus schedule GTFS feed 

and bus trip GTFS feed. As shown in Figure 6, the bus stop GTFS feed includes bus stop ID, bus 

stop name, latitude and longitude. Figure 7 is the samples of bus route GTFS feed, and the bus 

route GTFS feed includes bus route ID and bus route name. As shown in Figure 8, the bus trip 

GTFS feed has bus route ID, bus service ID and bus trip ID. 
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Figure 6 Samples of Bus Stop GTFS Feed (City of Edmonton 2015b) 

 

 

Figure 7 Samples of Bus Route GTFS Feed (City of Edmonton 2015a) 

 

 

Figure 8 Samples of Bus Trip GTFS Feed (City of Edmonton 2015c) 

 

The dynamic GTFS feed is also called GTFS-realtime feed. GTFS-realtime is an 

extension to GTFS, and it is used for many transportation agencies as a feed specification to 

update transit’s real-time information. The GTFS-realtime specification categorizes three types 

of transit real-time information: (1) trip updates, (2) service alerts and (3) vehicle positions 
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(Google Inc. 2015a). The smart bus GPS data is stored in the data structure of vehicle positions, 

and the GPS location for each smart bus will be recorded per cycle period. Also, the trip ID, the 

timestamp and the bus label will be stored. Currently, the City of Edmonton has equipped smart 

bus technology on 25 bus routes as of October 2015, and this GTFS-realtime standard has been 

used to publish the smart bus real time data since July 2015 (City of Edmonton 2015g). As 

shown in Figure 9, two kinds of data are published now: (1) Real time vehicle position data and 

(2) Real time trip update data. The real time vehicle position data stores the bus’s real time 

position data per 30 seconds, like the trip ID, vehicle ID, latitude, longitude, speed and 

timestamp. For the real time trip update data, it records the bus’s real time departure time and 

arrival time for each bus stop.  

 

Figure 9 The Real Time Bus Data of Edmonton (City of Edmonton 2015e) 

 

3.2.4 VDS Data 

VDS use loop detectors installed on the road to collect the traffic data. The collected data 

includes the traffic volume, traffic occupancy and traffic speed. As shown in Figure 10, for each 

lane, the corresponding loop detector detects the data including timestamp, loop detector ID, lane 

ID, volume, occupancy and speed per cycle period. 
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Figure 10 Samples of VDS Data 

 

As shown in Figure 11, there are 44 loop detectors installed in the citywide now. Each 

loop detector records the traffic information per 20 seconds, including the volume, speed, 

occupancy, loop detector ID and timestamp as showed in Figure 10. 

 

Figure 11 Loop Detector Locations in Edmonton 

 



24 

 

3.2.5 Road Network Data 

The last dataset is the road network GIS shape file, which records the entire road 

segment’s location for the whole road network. As shown in Figure 12, the GIS information 

stored in the road network shape file contains road segment ID, street name, start intersecting 

road name, end intersecting road name, street direction, road segment length and road coordinate. 

Using the road network as the base map, the VDS data, APC data and smart bus GPS data can be 

mapped on the map. 

 

Figure 12 Samples of Road Network GIS Data 
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3.3 Data Integration 

An integrated data is critical for both evaluation of factors affecting bus on-time 

performance and bus arrival time prediction. As the evaluation of factors affecting bus on-time 

performance is based on bus stop level and bus arrival time prediction focuses on route level, the 

corresponding integrated data should be extracted by different location condition and time 

condition as well as the analysis result can be visualized on the road network. The process of 

data integration is divided into three parts: (a) Spatial data representation, (b) Uniform Location 

Reference System (LRS) establishment, (c) Topology relationship establishment. 

3.3.1 Spatial Data Representation 

The first procedure is the spatial data representation process, which is the foundation in 

location storage. Before a location can be used to tackle real world transportation problems, data 

must be properly represented in a uniform spatial schema. So the data representation task is 

going to map each transportation element (including loop detectors, bus stops, smart bus GPS 

points and road network) into a uniform schema of GIS identification. Two kinds of abstraction 

type are defined for this uniform schema of GIS identification: 

 Point transportation element 

 Polyline transportation element 

Following this classification rule, each loop detector, bus stop, and smart bus GPS point 

are classified into the type of point transportation element. For the road network, because it is the 

base spatial map for the other data, both the road segments and the intersections in the road 

network need to be classified as well, and each road segment is abstracted as a polyline 

transportation element as well as each intersection is abstracted as a point transportation element. 
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3.3.2 Uniform LRS Establishment 

The second process is to establish a uniform LRS for those data. LRS existed long before 

GIS and computers and it is defined as a system of determining the position of an entity relative 

to other entities to some external frame of reference. With the LRS data model, location meaning 

can be reflected. There are two kinds of LRS models, one is each transportation element refers to 

a reference object (an intersection or a road segment) in the road network, and the other one is 

that each kind of transportation element use their individual geographic coordinate system. In 

this study, the second kind of LRS data model is chosen, and the reason is that the location 

information of loop detector data, GTFS data, smart bus GPS data and road network GIS data are 

composed of a pair of latitude and longitude.  

3.3.3 Topology Relationship Establishment 

The third process of data integration is the topology relationships establishment. As the 

evaluation of factors affecting bus on-time performance is focus on stop level and bus arrival 

time prediction focuses on route level, the integrated data extraction should depend upon 

network connectivity. The basic elements of GIS points and lines can be thought of as having 

topology, or defined geometric locations and relationships that represent whether and how the 

data are connected, so the topology and connectivity of linear features provide the mechanism 

for representing transportation networks and performing related analysis functions. As the road 

network is the base spatial map for the other data, the topology relationships establishment is 

actually going to map each fixed location data (loop detectors, bus stops) and moving location 

data (bus real time GPS point) on the road network. In this study, the topology relationships can 

be divided into four sub-topologies: 

 Tie each bus stop to a road segment. 
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 Tie each loop detector to a road segment. 

 Tie each smart bus GPS point to a road segment. 

 Tie each intersection to its connected road segment. 

The mechanism in setting topology relationships is distance calculation. While after the 

procedure one and procedure two, all the loop detector points, bus stops, smart bus GPS points, 

intersection points and road segments have been mapped in a uniform schema with their 

corresponding 2-D coordinates. Therefore, the distance calculation among them can be realized 

easily. 

For the topology between bus stops and road segments, the processing steps for each bus 

stop are: 

1. For all the road segments in the road network, calculate all the distances between this bus 

stop and them. 

2. Order the road segments by the calculated distance from small to large. And choose the 

smallest one as the road segment for this bus stop. 

And the processing to tie each loop detector to a road segment is same as above. 

For the topology between intersections and road segments, each road segment is 

connected with two intersections by direction, one is the start intersection, and the other is the 

end intersection. However, each intersection can be either start intersection or end intersection 

for different road segments. As the point coordinate of each intersection is included as either the 

first point coordinate or the last point coordinate of the polyline coordinate of different road 

segments, the processing steps to establish topologies between one intersection and its 

corresponding road segments are: 



28 

 

1. For all the road segments in the road network, calculate all the distances between this 

intersection and them. 

2. After step 1, filter the road segments with calculated distance value of 0.   

3. For each road segment in step 2, if the ‘main road name’ and ‘start intersecting road 

name’ of that road segment is same as the ‘intersection name’ of this intersection, then 

this intersection is the start intersection of that road segment. Otherwise, this intersection 

is the end intersection of that road segment. 

For each bus route, it has a sequence of bus stops between the start bus stop to the end bus 

stop, and each bus stop has been mapped on a road segment described above, so each bus route 

can be connected with a sequence of road segments. The processing to tie each bus GPS point to 

a road segment is same as the processing to tie each loop detector to a road except that only the 

road segments included in its route are needed.  

Therefore, as shown in Figure 13, after these three procedures above, each loop detector, 

bus stop, smart bus GPS point, bus route, intersection and road segment have been abstracted 

into their corresponding GIS object with a location coordinate in a uniform LRS, and the 

topology among them is set as well. As the weather data is city wide, the connection between 

weather data and other data is through timestamp. 
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Figure 13 Entity-Relationship of Data Integration 

  



30 

 

CHAPTER 4 EVALUATION OF FACTORS 

AFFECTING BUS ON-TIME PERFORMANCE 

4.1 Introduction 

An understanding of bus service reliability is necessary to develop strategies that help 

transit agencies provide better services. Edmonton is the most northerly city in North America 

with a metropolitan population of over one million, where winter lasts from November to March, 

and varies greatly in length and severity. Adverse weather conditions have an impact on 

frequency, travel time and headway regularity. However, to date there is little effort to employ 

the multi-source data in evaluating bus on-time performance in Edmonton. Using the ETS as a 

case study, this chapter aims to investigate the use of multiple data sources to quantify and 

determine temporal and weather related bus on-time performance in Edmonton. 

APC data, weather data and GTFS data are used for the input of this analysis. With the 

data integration, each APC data record can be extracted with the weather and GTFS data, and 

about 0.5 million valid records covering the period from 2011 to 2014 are extracted. For each 

extracted integrated record, it contains the following information: date and time, calendar event, 

route number, run number, bus type, bus stop, location type, scheduled time of arrival, recorded 

time of arrival, recorded time of departure, adherence error, depart load, air temperature, dew 

point temperature, relative humidity, precipitation type, visibility, wind speed, precipitation 

intensity, snow on ground, weather condition, X-coordinate, and Y-coordinate. 

4.2 Methodology 
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In this study, a multinomial logit model is conducted to quantify risk factors influencing 

bus on-time performance.  

Three discrete categories are used in this study: on time, early, and late. Since the three 

possible discrete outcomes have a natural ordering, an ordered probability model is most 

convenient in this study. Suppose that 𝑃𝑛𝑖  and 𝑈𝑛𝑖  refer to the probability of bus n being of 

schedule adherence i and a linear function that determines the on-time performance, respectively. 

The probability of the nth bus having a schedule adherence level i is given by 

𝑃𝑛𝑖 = 𝑃(𝑈𝑛𝑖 ≥ 𝑈𝑛𝑖′), ∀𝑖
′ ∈ 𝐼, 𝑖′ ≠ 𝑖 (1) 

where I denotes a set of all possible, mutually exclusive levels. In this context, the 𝑈𝑛𝑖 function 

can be defined as 

𝑈𝑛𝑖 = 𝛽𝑖𝑥𝑛 + 𝜀𝑛𝑖 (2) 

where 𝛽𝑖  denotes a vector of estimable parameters, 𝑥𝑛  denotes a vector of the observable 

characteristics that determines severity and 𝜀𝑛𝑖  denotes an unobservable random error. If 𝜀𝑛𝑖 

assumed to have generalized extreme value distribution, the multinomial logit model can be 

derived as follows: 

𝑃𝑛𝑖 = 
𝑒𝛽𝑖𝑥𝑛

∑ 𝑒
𝛽
𝑖′
𝑥𝑛

∀𝑖′∈𝐼

 (3) 

Given Eq. (3), the coefficient values in vector 𝛽  can be estimated using standard 

maximum likelihood methods. Then, the I−1 log-odd ratios of the outcomes become 

ln(
𝑃𝑛𝑖

𝑃𝑛𝑙
) =  𝛽𝑖𝑥𝑛 − 𝛽𝑙𝑥𝑛 = (𝛽𝑖 − 𝛽𝑙)𝑥𝑛, 𝑖 = 1, … , 𝐼 − 1 (3) 

The change in probability in each factor should also be computed to properly examine 

marginal effects. In this study, the independent variables are coded as 0 and 1 indicator values. 

Therefore, the probability relative to any of the observed variables cannot be differentiated to 
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compute a standard elasticity. In this sense, the direct pseudo-elasticity of the probability, namely 

the percentage change in probability when an indicator variable is changed from 0 to 1, can be 

determined as 

𝐸𝑥𝑛𝑘
𝑃𝑛𝑖 = 

𝑃𝑛𝑖[𝑔𝑖𝑣𝑒𝑛 𝑥𝑛𝑘=1]− 𝑃𝑛𝑖[𝑔𝑖𝑣𝑒𝑛 𝑥𝑛𝑘=0]

𝑃𝑛𝑖[𝑔𝑖𝑣𝑒𝑛 𝑥𝑛𝑘=0]
 (4) 

where the kth indicator variable for a bus n, 𝑥𝑛𝑘 is shifted. The direct pseudo-elasticity for the 

multinomial model can be briefly defined by inserting Eq. (3) into Eq. (4). 

𝐸𝑥𝑛𝑘
𝑃𝑛𝑖 = (𝑒𝛽𝑖𝑘

∑𝑒
𝛽
𝑖′
𝑥𝑛

∑𝑒
∆(𝛽

𝑖′
𝑥𝑛)
− 1) × 100 (5) 

where I is the set of possible outcomes, ∆(𝛽𝑖′𝑥𝑛) is the value with 𝑥𝑛𝑘 set to 1 and 𝛽𝑖′𝑥𝑛 is the 

value with 𝑥𝑛𝑘 to 0. 

The likelihood ratio test can be applied to test if schedule adherence model is 

significantly different among potential risk factors. The test statistic is given by 

𝑋2 = −2[𝐿𝐿(𝛽𝑇) − ∑ 𝐿𝐿(𝛽𝑔)𝐺 ] (6) 

where 𝐿𝐿(𝛽𝑇) is the model’s log likelihood at the convergence of the model estimated on all risk 

factors being tested, 𝐿𝐿(𝛽𝑔) is the log likelihood at the convergence of the model estimated on 

the subset schedule adherence group g and G is the set of all groups. This likelihood ratio test 

statistic is 𝜒2  distributed with degrees of freedom equal to the summation of coefficients 

estimated in the subset data models less the number of coefficients estimated in the total data 

model. 

4.3 Results and Discussions 
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4.3.1 Temporal Analysis 

Buses are considered to be on time when they arrive no more than three minutes earlier or 

five minutes later than the scheduled arrival times at each bus stop. The temporal variation of bus 

on-time performance is evaluated by calculating the percentage of on-time arrivals (POA) and 

the standard deviation of arrival time variance (SDV). As a first step to investigate the temporal 

variation of bus on-time performance, the POA and SDV for each hourly period for all days of the 

week are extracted for clear weather conditions. Figure 14 and Figure 15 show the POA and SDV for 

all hourly intervals and all days of the week under the clear weather condition. The POA during the 

weekday and PM commuting periods is lower. Periods around midnight on Saturday and Sunday 

have relatively lower POA compared to weekday nights. This is an expected result considering the 

higher traffic on weekend nights mainly due to night-out activities. The highest POA is recorded 

during early morning hours. The lowest POA is observed during PM peak hours and midday on 

weekdays. Among weekend days, Saturday has lower POA compared to Sunday. 

SDV follows more or less the same trend as POA. The higher variations are generally 

observed in the same days and periods that have lower POA. There is a sharp increase is observed 

after 8 AM. During PM peaks, the reverse situation is observed. SDV values generally start 

decreasing after 6 PM whereas POA values sustain high values until 7 PM. These periods can 

generally be viewed as the traffic congestion build-up and dissipation periods. Hence, SDV reaches 

its highest value after congestion is fully built up and does not start decreasing until the maximum 

congestion dissipates.  
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Figure 14 Visualization of POA under Clear Weather 

 

 

Figure 15 Visualization of SDV under Clear Weather 

 

4.3.2 Impact of Weather 

Figure 16 to Figure 21 show the POA and SDV for all hourly intervals under three weather 

conditions. During the weekday, adverse weather conditions decrease the POA and increase the SDV. 
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POA decreases for almost all time periods. The change of POA is much higher in the day time and 

early evening, from 8 AM to 9 PM. The change of SDV is mainly in the positive direction under 

snow weather condition, which means adverse weather results in lower bus on-time reliability. The 

change of SDV is much higher during the AM and PM peak periods. The severity of snow conditions 

affects the magnitude of change in POA and SDV. The decrease of POA under heavy snow condition 

is a little higher than it under moderate snow condition. However, the decrease of SDV due to the 

severity of snow conditions has different trend: moderate snow results in higher change in the 

afternoon and early evening, while heavy snow results in higher change in the morning and noon. 

Saturday and Sunday follow more or less the same trend as weekday. First, the snow weather 

condition decrease the POA, but the magnitude of change is smaller than it in the weekday. Second, 

the POA does not decrease significantly in the peak periods, compared with the POA change in the 

peak periods of weekday. Third, the change of SDV has different trends in the weekend, as the 

change of SDV is sometimes in the negative direction under snow weather conditions. 

 

Figure 16 Visualization of POA on Weekday 
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Figure 17 Visualization of SDV on Weekday 

 

 

Figure 18 Visualization of POA on Saturday 
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Figure 19 Visualization of SDV on Saturday 

 

 

Figure 20 Visualization of POA on Sunday 
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Figure 21 Visualization of SDV on Sunday 

 

4.3.3 Multinomial Logit Analysis 

4.3.3.1 On-time Performance Model 

The multinomial logit model is implemented to relate the three alternative arrival 

outcomes to the set of contributing underlying factors. The model is specified on the left-hand 

side as the log of the relative probabilities of pairs of alternative outcomes. In the present 

application, with three alternative outcomes, three pair combinations are addressed (on-

time/early, on-time/late, and early/late) resulting in three equations. The general specification of 

the on-time performance model is as follows: 

log(Pi Pj⁄ ) = f(Count,Wkdy, AMP, PMP,Msw,Hsw, Lvy, Hdwy, Rlh) (7) 

Where 

 log(𝑃𝑖 𝑃𝑗⁄ ) = the log of the relative probabilities of alternative outcomes i and j; 
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Count = the position of the sampled time point in the sequence of time points on the bus 

route; 

Wkdy = a dummy variable equaling 1 for weekdays, 0 otherwise; 

AMP = a dummy variable equaling 1 for AM peak inbound trips, 0 otherwise; 

PMP = a dummy variable equaling 1 for PM peak outbound trips, 0 otherwise; 

Msw =  a dummy variable equaling 1 for moderate snow condition, 0 otherwise; 

Hsw = a dummy variable equaling 1 for heavy snow condition, 0 otherwise; 

Lvy = a dummy variable equaling 1 for low visibility condition, 0 otherwise; 

Hdwy = the scheduled headway (in minutes); 

Rlh = the route length (in kilometers) 

The position of the time point on the route, represented by the variable “Count,” may also 

be important. Delays or early arrivals in the initial part of the route can contribute to poor on-

time performance later in the route, particularly if holding/control actions are not taken. 

Given greater variation of internal and external performance-affecting conditions during 

the week, one would expect greater difficulty in maintaining on-time service on weekdays. This 

hypothesis is addressed by including a weekday dummy variable. Dummy variables for AM peak 

(7:00 am-8:59 am) inbound and PM peak (4:00 pm-5:59 pm) outbound trips are also included to 

assess on-time performance in the situations when ridership levels are highest and traffic and 

operating conditions pose the greatest challenge to maintaining scheduled service.  

As Edmonton suffers from unfavorable winter weather conditions usually from 

November to March, weather characteristics are considered a prominent factor on bus on-time 

performance. Three weather characteristics are under consideration: low visibility, moderate 

snow and heavy snow. Rain conditions are not included in this study due to their low rate of 
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occurrence in Edmonton, resulting in relatively lower record sample size. Several relevant 

categories are merged. 80% of all snowy days are considered as heavy, and 20% of all snowy 

days are considered as moderate. 

As previously discussed, both short and long headways may negatively affect on-time 

performance. We thus include both the linear and quadratic forms of this variable in the model. 

4.3.3.2 Results Analysis 

The sample observation are 1677 bus arrivals at time points encountered in 200 bus trips 

on 59 routes in Edmonton. Of the total arrivals, 1370 (81.7%) fell within the on-time range, 

while 97 observations (5.8%) arrived early and 210 (12.5%) arrived late. The distribution 

appears to be log normal. 

The estimated bus on-time performance model is presented in Table 1. The first two 

columns of coefficients in the table pertain to the estimated equations for the probabilities of on-

time arrival in relation to the alternatives of arriving early and late, respectively. The final 

column pertains to the equation estimating the relative probabilities of early and late arrivals. Put 

another way, the first two columns’ coefficients test for the previously defined condition 

establishing the existence of a controllable source of poor on-time performance, while the last 

column’s coefficients test for the directional condition. 

Regarding the temporal factors, in the afternoon period the likelihood of both early and 

late arrivals increased, without a clear tendency toward either type of failure. This outcome was 

consistent with the finding in Figure 15 that maximum SDV occurred during the PM peak. In the 

morning period the likelihood of early arrival increased and the likelihood of late arrival 

decreased, which means on-time performance actually was better during the AM peak period. 

Day of week was also estimated to affect on-time performance. In the weekend the likelihood of 
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early arrival increased and the likelihood of late arrival decreased. The on-time performance 

actually improved during the weekend. 

Regarding the weather factors, under the moderate snow condition, the likelihood of late 

arrivals increased significantly, with a clear tendency toward arrival late failure. The estimates 

for the visibility variable indicated that late arrivals become more likely with lower visibility. 

Regarding the operating factors, a long route resulted in increases in the likelihood of 

both early and late arrivals. The estimates of stop count indicated that the probability of late 

arrivals tended to increase as buses progress toward a route’s terminal point. 

Regarding the overall performance of the on-time model, there is a substantial increase in 

the log likelihood function over its null value, and the corresponding value of likelihood ratio 

statistic (2194) easily exceeds the critical 𝜒2 value of 54 (0.001 level, 26 d.f.). The likelihood 

ratio index, a loosely interpretable indicator of goodness of fit (whose value ranges from 0 to l), 

is 0.64. 

Table 1 Multinomial Logit Model for Bus On-time Performance (Asymptotic t values in parentheses) 

Variables log(𝐏𝟐/𝐏𝟎) log(𝐏𝟐/𝐏𝟏) 

Intercept 3.35 

(4.96) 

7.23 

(8.37) 

AM Peak -0.30 

(-2.62) 

1.40 

(3.01) 

PM Peak -0.83 

(-4.48) 

-1.75 

(-6.95) 

Weekend -0.43 

(-2.91) 

0.98 

(3.19) 

Moderate Snow 1.27 

(4.07) 

-2.07 

(-5.89) 

Temperature -0.02 

(-0.195) 

-0.09 

(-0.77) 

Visibility 0.07 

(2.36) 

-0.31 

(-2.92) 

Route Length -0.10 

(-2.81) 

-0.20 

(-2.98) 

Stop Count 0.08 

(2.66) 

-0.20 

(-2.82) 
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Log-likelihood Function (0): - 1705.0 

Log-likelihood Function (p): -607.9 

Likelihood Ratio Statistic: 2194.2 

Likelihood Ratio Index: 0.64 

n: 1677 

Alternative 0 = early, alternative 1 = late, alternative 2 = on time. 

Significant at the .001 level. 
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CHAPTER 5 BUS ARRIVAL TIME 

PREDICTION 

5.1 Introduction 

Providing transit users with reliable and accurate travel information can enhance TSR 

(Vanajakshi, Subramanian, and Sivanandan 2009). While, bus arrival time information is the 

most preferred information by transit users. The provision of bus arrival time information to 

passengers accurately is vital. It will be useful to passengers to reduce the waiting time at bus 

stops or to make reasonable travel arrangements before making a trip, thus, more people can be 

attracted to use public transport (Jeong and Rilett 2004). As Edmonton has an adverse weather 

conditions from November to March, an accurate bus arrival time prediction is extremely 

important. 

For the bus arrival time prediction problem, a lot of previous researches focuses on 

empirical analysis, like the historical data based models, the regression models, the Kalman 

filtering models and the ANN models. However, the empirical analysis has some shortages. For 

example, the historical data based models are reliable only when the traffic pattern in the area of 

interest is relatively stable. The regression models are reliable only when such equations can be 

established, which may not be possible for many application environments where many of the 

system variables are typically correlated. The ANN models are more like a black box, and the 

mechanism of analysis is hidden, which is hard to express the result. Ideally, the empirical 

models use the historical data to train the models, and then use the trained models to predict. 

However, with advances in information technologies in ITS, the availability of public transit data 

has been increasing in the past decades, which has gradually shifted the public transit system into 
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a data-rich environment, furthermore, most of them are generated in real time, so bus arrival time 

prediction problem can be solved by some analytical models with these real time transit data 

instead of the historical data. 

Nowadays, a range of transportation agents have installed GPS sensors on the buses to 

monitor the buses in real time, and one of the universal real time transit data standard provided 

by the Google is called GTFS-realtime (Google Inc. 2015a). Following this standard, the agents 

can provide the public lots of transit data in real time. And with the real time transit data and loop 

detector data, this chapter aims to propose a bus trajectory reconstructive model to predict the 

bus arrival time based on the integrated multi-source data and evaluate the result. 

5.2 Methodology 

5.2.1 Real-Time Bus Tracing 

 In order to reconstruct the trajectory of a moving bus in real time, the vehicle position 

stored in each GPS record needs to be projected on the transit network and the road network. As 

shown in Figure 22, the first step is to filter the needed GPS record with an input trip ID, which 

is recorded in the bus trip ID schedule file. Furthermore, each bus has a unique trip ID for each 

trip in one day. After the step one, the corresponding latitude and longitude for that vehicle 

position can be achieved. Due to the GPS location data has some kind of random error, in most 

times, the achieved latitude and longitude cannot be mapped on the road network correctly. 

Therefore, the next step is to calibrate the GPS location information onto the route network and 

road network. As talked in the chapter 3, for each route, its route network has been maintained in 

a GIS environment with the road network. The bus route is composed of a sequence of road 

segments, and each pair of latitude and longitude in the GPS location data should be mapped on 
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one road segment of the route network. The mapping mechanism is same as talked in the chapter 

3, and by calculating the distance to all the road segments in the route network, the shortest one 

is chosen to be the road segment for this GPS point. Therefore, by mapping this GPS point on the 

road network, the distance from this GPS point to the next bus stop and the distance from this 

GPS point to the next downstream loop detector can be determined. 

Receive the GPS 
data

Check the trip 
ID

Find out the 
expected route bus

Bus Trip 
ID 

schedule 
file

Project the GPS 
point on one 
road segment

Road 
Network 

GIS shape 
file

Route 
network

Get the latitude 
and longitude

Get the road 
segment

Yes

 

Figure 22 The Workflow of Real-Time Bus Tracing 
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 Using the real-time bus tracing method, each real-time bus GPS point can be visualized 

as shown in Figure 23. 

 

Figure 23 Result Sample of Real-Time Bus Tracing 

 

5.2.2 Real-Time Bus Trajectory Reconstruction 

 A vehicle trajectory can be thought as a sequence of adjacent sections and by calculating 

the time and distance of each section, then the whole trajectory can be found. A study from Van 

et al. forms an algorithm to estimate section level travel time by using the dual loop detectors. In 

their algorithm, each section is defined as a road segment between the upstream loop detector 

and the downstream loop detector, and the speed is linearly changed in the section from the 

speed recorded in the upstream loop detector to the speed recorded in the downstream loop 

detector (Lint and Zijpp 2003). However, this model performs poorly when the bus speed 

changes frequently or the speed of change between dual loop detectors cannot well simulate the 

bus speed in that section. As a result, considering the real-time bus GPS data, this paper 

proposed a modified model based on Van’ model to predict the bus arrival time. As shown in 

Figure 24, the proposed algorithm is divided into three main parts: (1) Cycle synchronization, (2) 

Check the exit-point and (3) Travel distance calculation. 
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Figure 24 The Workflow of Real-Time Bus Trajectory Reconstruction 

 

Firstly, as the record update cycle for GPS data and loop detector data are not same, the 

timestamp synchronize process is needed. p is defined as the time period that both the GPS data 

and loop detector are in the same cycle, if either one turns to be the next cycle, the time period 

will be defined as p+1. Following the piece-wise linear speed-based (PLSB) model, the speed 

𝑣𝑘(𝑡) of a bus k in one section is given by: 

𝑣𝑘(t) =  V(g, p) + 
𝑥𝑘(𝑡)− 𝑥𝑔

𝑥𝑑− 𝑥𝑔
 × (V(d, p) −  V(g, p)) (8) 

where 𝑉(g, p) denotes the bus speed from the real time GPS point g during time period p, V(d, p) 

denotes the speed recorded in the downstream loop detector d during time period p, 𝑥𝑔 denotes 
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the location of the real time GPS point g, 𝑥𝑑  denotes the location of the downstream loop 

detector d. 𝑥𝑘(𝑡) is the trajectory of bus k as function of time, and it can be given by: 

𝑥𝑘(t) = 𝑥𝑘𝑖𝑝
𝐸 + (

V(g,p)×(𝑥𝑑− 𝑥𝑔)

V(d,p)− V(g,p)
+ 𝑥𝑘𝑖𝑝

𝐸 − 𝑥𝑢)  × (𝑒
V(d,p)− V(g,p)

𝑥𝑑− 𝑥𝑔
 ×(𝑡−𝑡𝑘𝑖𝑝

𝐸 )
− 1)  (9) 

where 𝑥𝑘𝑖𝑝
𝐸  denotes the entry location of a bus k in section i during time period p, 𝑡𝑘𝑖𝑝

𝐸  denotes 

the entry time of a bus k in section i during time period p, 𝑥𝑢  denotes the location of the 

upstream loop detector u. 

Based on the Eq. (9), the whole path-level trajectory can be reconstructed. As the path is 

composed of a sequence of sections, the process of checking whether the bus k has exit the 

section k in time period p is needed. If the condition below matched: 

𝑥𝑘𝑖𝑝
𝐸 + (

V(g,p)×(𝑥𝑑− 𝑥𝑔)

V(d,p)− V(g,p)
+ 𝑥𝑘𝑖𝑝

𝐸 − 𝑥𝑢) × (𝑒
V(d,p)− V(g,p)

𝑥𝑑− 𝑥𝑔
 ×(𝑝−𝑡𝑘𝑖𝑝

𝐸 )
− 1) > 𝑥𝑑   (10) 

the exit location 𝑥𝑘𝑖𝑝
𝑄

 and time 𝑡𝑘𝑖𝑝
𝑄

 of bus k in section i during time period p is given by: 

{
 

 𝑥𝑘𝑖𝑝
𝑄 = 𝑥𝑑

𝑡𝑘𝑖𝑝
𝑄 = 𝑡𝑘𝑖𝑝

𝐸 + 
𝑥𝑑− 𝑥𝑔

V(d,p)− V(g,p)
× ln(

(𝑥𝑑− 𝑥𝑔)×V(g,p)

V(d,p)− V(g,p)
 + 𝑥𝑑 − 𝑥𝑢

(𝑥𝑑− 𝑥𝑔)×V(g,p)

V(d,p)− V(g,p)
 + 𝑥𝑘𝑖𝑝

𝐸 − 𝑥𝑢

)
 (11) 

Otherwise, the exit location and time of bus k in section i during time period p is given by: 

{
𝑥𝑘𝑖𝑝
𝑄 = 𝑥𝑘𝑖𝑝

𝐸 + (
(𝑥𝑑− 𝑥𝑔)×V(g,p)

V(d,p)− V(g,p)
+ 𝑥𝑘𝑖𝑝

𝐸 − 𝑥𝑢) × (𝑒
V(d,p)− V(g,p)

𝑥𝑑− 𝑥𝑔
×(𝑝−𝑡𝑘𝑖𝑝

𝐸 )
− 1)

𝑡𝑘𝑖𝑝
𝑄 =  𝑝

 (12) 

5.2.3 Regression Model 

The independent variables selected to develop path-based travel time estimation models 

were the findings from Chapter 4. Given the above, the general model used to estimate bus travel 

(and therefore arrival) time from time point i to all downstream time points j is formulated as: 
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𝑇𝑖 = 𝑏0 + 𝑏1𝑑𝑖,𝑗 + 𝑏2𝑀𝑝 + 𝑏3𝐴𝑝 + 𝑏4𝑊𝑑 + 𝑏5𝑆𝑛 + 𝑏6𝑉𝑖 + 𝑏7𝑅𝐿 + 𝑏8𝑅𝐶 + 𝜀𝑖 (13) 

Where 𝑇𝑖 is the estimated travel time from time point i to all downstream time points, 𝑑𝑖,𝑗 is the 

distance between time point i and time point j, 𝑀𝑝 is a binary variable that indicates morning 

peak, 𝐴𝑝 is a binary variable that indicates afternoon peak, 𝑊𝑑 is a binary variable that indicates 

weekend, 𝑆𝑛 is a binary variable that indicates moderate snow, 𝑉𝑖 is the visibility, 𝑅𝐿 is the route 

length, 𝑅𝐶 is the route count, 𝑏0 is the intercept of the travel time estimation model, 𝑏𝑘 are the 

parameters for variables, from 1 to 8, i is the index of origin time points, j is the index of 

destination time points. 𝜀𝑖  is a random error. It is assumed that 𝐸(𝜀𝑖) = 0, 𝑉𝑎𝑟(𝜀𝑖) =

𝜎2, 𝐶𝑜𝑣(𝜀𝑖, 𝜀𝑗) = 0 ∀𝑖 ≠ 𝑗. 

Given the origin time point and time period, the proposed model can estimate the 

required time to travel the path to every downstream time point and thereby the vehicle arrival 

time at that time point. All time periods are assigned a value of 1 if present (if the trip started in 

that time period), and 0 otherwise. Regressions were run both with and without intercepts. All 

variable notations and their associated coefficients are the same for both types of regression 

models. The only difference is that models having no intercepts would have their 𝑏0 values equal 

to zero. 

5.3 Results and Discussions 

5.3.1 Studied Route 

The Route 33 is chosen as the studied route. It is one of the smart bus routes in ETS, and 

runs between the West Edmonton Mall Transit Center and the Meadows Transit Center. Figure 

25 illustrates the map of the Route 33. 
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Figure 25 The Map of the Route 33 (City of Edmonton 2015f) 

 

The total length of this route is about 44.5 KM, 25 KM from the Meadows Transit Center 

to the West Edmonton Mall Transit Center and 19.5 KM from the West Edmonton Mall Transit 

Center to the Meadows Transit Center. There are 85 stops along the whole route. 37 stops among 

them are from the Meadows Transit Center to the West Edmonton Mall and 48 stops among 

them are from the West Edmonton Mall Transit Center to the Meadows Transit Center.  

The route section between the bus stop ‘122 Street & 48 Avenue’ to the bus stop ‘159 

Street & Whitemud Drive’ is used for the study segment. The total length for this route section is 

around 7220 meters and the schedule travel time is around 12 minutes. As shown in Figure 26, 

there are three bus stops along this route section, and the bus arrival time prediction focuses on 

the time arriving the bus stop ‘159 Street & Whitemud Drive’ from the bus stop ‘122 Street & 48 

Avenue’. As shown in Figure 27, there are 10 loop detectors installed along this route section, 
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their loop detector IDs are 1018, 1026, 1038, 1040, 1030, 1032, 1035, 1036, 1016, and 1045, 

respectively. 

 

Figure 26 The Study Segment of the Route 33 

 

 

Figure 27 Loop Detector Locations along the Study Segment 

 

5.3.2 Travel Time Analysis 

Dec 2
nd

 to Dec 4
th

 is chosen as the study period. For each day, only 9 trips departure from 

the bus stop ‘122 Street & 48 Avenue’ at 6:23 AM, 6:53 AM, 7:23 AM, 7:53 AM, 8:23 AM, 
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4:24 PM, 4:54 PM, 5:24 PM, 5:54 PM  are selected because the bus will go to the Riverbend 

community during the other time period, and there are no loop detectors installed in that area. 

The loop detector data is recorded every 20 seconds for each lane, including the volume, speed, 

occupancy, loop detector ID and timestamp. The smart bus data can be divided into two types, 

one is the real time vehicle position data, and it records each bus’s real time location data per 30 

seconds as below: 

<trip> 

<tripId>10086861</tripId> 

<latitude>53.570408</latitude> 

<longitude>113.468445</longitude> 

<timeStamp>1448673683</timeStamp> 

<speed>60</speed> 

<vehicleLabel>4386</vehicleLabel> 

</trip> 

The other one is the trip update data, which records the bus’s departure time and arrival 

time for each bus stop as below: 

<trip> 

<tripId>10100278</tripId> 

<startDate>20151127</startDate> 

<startTime>18:14:00</startTime> 

<routeId>33</routeId> 

<stopTimeUpdate> 

<stopSequence>1</stopSequence> 
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<arrivalTime>1448673360</arrivalTime> 

<depatureTime>1448673368</depatureTime> 

<stopId>5001<stopId> 

</stopTimeUpdate> 

… 

<stopTimeUpdate> 

<stopSequence>48</stopSequence> 

<arrivalTime>1448676000</arrivalTime> 

<depatureTime>1448676010</depatureTime> 

<stopId>3713<stopId> 

</stopTimeUpdate> 

<vehicleId>2252</vehicleId> 

<vehicleLabel>4620</vehicleLabel> 

</trip> 

However, due to some sensor errors or data transmission errors, the real time GPS data or 

trip update data can be missed for some trips, such as the data of 6:53 AM, 7:53 AM, 8:23 AM 

and 4:24 PM on Dec 2
nd

, the data of 4:24 PM on Dec 3
rd

 and the data of 4:54 PM on Dec 4
th

 are 

missed.  

Figure 28 shows that the average travel time per trip in these three days are similar and 

they are 526, 599, and 608 seconds, respectively. The travel time ranges for all trips in these 

three days are different, especially between Dec 2
nd

, Dec 3
rd

 and Dec 4
th

.   
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Figure 28 Box Plot of Travel Time from Dec 2
nd

 to Dec 4
th

 

 

As shown in Figure 29, the reason that the travel time ranges of Dec 4
th

 is bigger than the 

other days is that Dec 4
th

 is Friday, and there is usually a heavy traffic congestion during the PM 

peak hours of Friday. While for the AM periods in these three days, the average travel time is 

similar, they are 638, 535, and 581 seconds, respectively and the average time for PM periods 

from Dec 2
nd

 to Dec 4
th

 are 572, 519 and 1545 seconds, respectively. 

  

Figure 29 Box Plot of AM/PM Travel Time from Dec 2
nd

 to Dec 4
th
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5.3.3 Bus Arrival Time Prediction 

5.3.3.1 Results based on GPS Data 

Using the bus arrival time prediction model, the bus trajectories can be reconstructed, 

then the arrival time from the bus stop ‘122 Street & 48 Avenue’ to the bus stop ‘159 Street & 

Whitemud Drive’ can be figured out through the reconstructed trajectories. As shown in Figure 

30, the predicted and the GPS trajectories of all trips on Dec 2
nd

 are plotted, and it shows a 

satisfactory agreement between the predicted and the GPS trajectories. In the figure, there is a 

horizontal line around 3000 meters for each trajectory, which means the bus stop ‘Whitemud 

Drive NB & 53 Avenue’, and because this bust stop is a time point bus stop, each bus needs to 

wait until the schedule departure time. The schedule travel time from the departure time of bus 

stop ‘122 Street & 48 Avenue’ to the departure time of bus stop ‘Whitemud Drive NB & 53 

Avenue’ is 6 minutes. However, as shown in Figure 30, many buses don’t follow this rule, and 

this is related to the driver behavior. Also, buses will accelerate from the departure bus stop and 

decelerate to the arrival bus stop, in this study, the acceleration rate is calculated from the 

historical data from Dec 2
nd

 to Dec 4
th

, and the estimated acceleration rate is 2.5 𝑚/𝑠2. For the 

deceleration process, it is assumed that each bus will start to decelerate 50 meters to the bus stop 

in this study. The result of the reference arrival time and the predicted arrival time at bus stop 

‘159 Street & Whitemud Drive’ is showed in Table 3. 

Table 2 Arrival Time Result on Dec 2
nd

 

Departure time Reference travel time (s) Predicted travel time (s) 

6:22:02 608 593 

7:22:31 669 677 

16:53:01 633 644 

17:26:05 511 533 

17:54:35 544 559 
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Figure 30 Prediction Trajectories vs Reference Trajectories on Dec 2
nd

 

 

Figure 31 shows the predicted and the reference trajectories of all trips on Dec 3
rd

, it also 

presents a satisfactory agreement between the predicted and the reference trajectories. The result 

of the reference arrival time and the predicted arrival time at bus stop ‘159 Street & Whitemud 

Drive’ is showed in Table 4. 

Table 3 Arrival Time Result on Dec 3
rd

 

Departure time Reference travel time (s) Predicted travel time (s) 

6:22:36 600 613 

7:54:54 484 481 

7:25:40 535 552 

7:57:55 441 459 

8:25:32 563 574 

16:55:03 450 460 

17:26:31 517 539 
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17:53:44 588 584 

 

 

Figure 31 Prediction Trajectories vs Reference Trajectories on Dec 3
rd

 

 

Figure 32 shows the predicted and the reference trajectories of all trips on Dec 4
th

. As 

mentioned above, there is a heavy congestion in the PM periods on Dec 4
th

, and the trajectories 

in AM periods are steeper than in PM periods. The result of the reference arrival time and the 

predicted arrival time at bus stop ‘159 Street & Whitemud Drive’ is showed in Table 5. 

Table 4 Arrival Time Result on Dec 4
th

 

Departure time Reference travel time (s) Predicted travel time (s) 

6:29:27 581 592 

6:52:27 593 613 

7:28:01 606 590 

7:52:49 519 538 

8:53:57 479 500 

16:32:07 1381 1369 

17:29:01 1928 1912 

17:56:02 1710 1736 
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Figure 32 Prediction Trajectories vs Reference Trajectories on Dec 4
th

 

 

To validate the proposed algorithm and to evaluate the agreements between the predicted 

bus arrival time and the actual bus arrival time quantitatively, two evaluation measures are used: 

(1) mean absolute percentage error (MAPE) and root mean squared Error (RMSE). MAPE and 

RMSE are calculated by the following two equations: 

𝑀𝐴𝑃𝐸 = 
1

𝑘
 ∑

|𝑡𝑖− 𝑡𝑎|

𝑡𝑎

𝑘
𝑖 × 100% (14) 
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𝑅𝑀𝑆𝐸 = √
1

𝑘
∑ (𝑡𝑖 − 𝑡𝑎)2
𝑘
𝑖  (15) 

where 𝑡𝑖 denotes the predicted bus arrival time, 𝑡𝑎 denotes the actual bus arrival time and k is the 

number of predictions. 

 Table 6 shows the goodness of fit of the proposed algorithm. The table shows that the 

proposed algorithm could successfully estimate the vehicle trajectories and predict the bus arrival 

time. 

Table 5 Goodness of Fit Statistics 

 MAPE (%) RMSE (s) 

Three days 2.41 16 

Dec 2
nd

 2.45 15 

Dec 3
rd

 2.39 14 

Dec 4
th

 2.40 18 

Under congestion 1.07 19 

Not under congestion 2.63 15 

 

5.3.3.2 Results based on Regression Model 

The plot of actual versus estimated bus travel time is presented in Figure 33. It 

substantiates visually the linear relationship of the dependent variable with all independent 

variables that are used in the models. The overall model statistics are shown in Table 7. 
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Figure 33 Estimated Versus Actual Travel Time 

 

Table 6 Statistics of Bus Travel Time Estimation Models 

Parameters b0 b1 b2 b3 b4 b5 b6 b7 b8 

Value 1.11 2.61 -0.87 3.56 -1.05 2.57 0.57 1.23 1.67 

R-Sq: 0.96; RMSE: 18s; p value: <0.0001  

 

5.3.3.3 Results Comparison 

 The MAPE was used as the measure of effectiveness in this paper. Table 8 shows the 

average MAPE for the two models. It is hypothesized that the congestion reduces the variability 

in travel times and this makes the models more accurate for this time period. The use of real-time 

schedule adherence data for the GPS data-based model did significantly improve the results. For 

this test bed the GPS data-based model gave superior results, in terms of MAPE, in comparison 

with the multi-linear regression results. 

Table 7 Average MAPE of the Prediction Models 

  MAPE (%) 

Under congestion GPS data-based model 1.07 

Regression model 1.09 

Not under congestion GPS data-based model 2.63 

Regression model 3.25 
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CHAPTER 6 CONLUSIONS 

6.1 Research Summary  

The improvement of the efficiency of Transit Service Reliability (TSR) is critical to 

attract additional ridership and increase the satisfaction of public transit, which is the key to 

developing the future environmentally conscious and sustainable transportation system. The 

availability of amounts of multi-source data has gradually shifted the public transit system into a 

data-rich environment, and makes it realizable to do further TSR analysis and predict bus arrival 

time more preciously.  

Five kinds of data were used in this study: VDS data, APC data, General Transit Feed 

Specification (GTFS) data, weather data and road network Geographic Information System (GIS) 

data. As those multi-source data were maintained by different branches with diversity of formats, 

a data integration process was implemented in terms of three parts: (a) spatial data representation, 

(b) Uniform Location Reference System (LRS) establishment, (c) topology relationship 

establishment. Thereafter, each loop detector, bus stop, smart bus GPS point, bus route, 

intersection and road segment had been abstracted into their corresponding GIS object with a 

location coordinate in a uniform LRS, and the topology among them was set as well. 

An understanding of bus service reliability was necessary to develop strategies that help 

transit agencies provide better services. This study identified and quantified the temporal 

characteristics, weather characteristics and operating characteristics affecting bus arrival time 

variability. For the temporal characteristics, the result showed that the likelihood of both early 

and late arrivals increased in the afternoon period, whereas in the morning period the likelihood 

of early arrival increased and the likelihood of late arrival decreased. In the weekend, the 
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likelihood of early arrival increased and the likelihood of late arrival decreased. For the weather 

characteristics, the result showed that the likelihood of late arrivals increased significantly under 

the moderate snow condition. Moreover, late arrivals become more likely with lower visibility. 

For the operating characteristics, the result showed that a long route resulted in increases in the 

likelihood of both early and late arrivals. The probability of late arrivals tended to increase as 

buses progress toward a route’s terminal point.  

Bus arrival time information was useful for passengers to reduce the waiting time at bus 

stops or to make reasonable travel arrangements before making a trip. This study proposed a bus 

trajectory reconstructive model to predict the bus arrival time using GPS data and VDS data. 

After projecting the stored GPS records on the transit network and the road network, the bus 

trajectory was reconstructed following three steps: cycle synchronization, checking the exit-point, 

and travel distance calculation. In addition, regression model based on the factors found in the 

first part of this study was applied as a comparison. The results indicated that the proposed 

algorithm was capable of achieving satisfactory accuracy in predicting bus arrival time. The use 

of real-time schedule adherence data for the GPS data-based model did significantly improve the 

results. For this test bed the GPS data-based model gave superior results, in terms of MAPE, in 

comparison with the multi-linear regression results. 

6.2 Future Work 

While the results are encouraging, there are still a number of endeavors that should be 

made to enhance both the depth and width of the proposed work.  

First, it is hypothesized that if real-time accident and incident information is available, 

arrival time predictions will be improved. As the applications of connected vehicle technology 
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and social media are developing quickly, this will not be an impediment in the near future. In 

addition, Due to the incomplete of the APC data, only some parts of the APC data are selected in 

the evaluation of factors affecting bus on-time performance. In the future, when the APC data is 

complete and without error, more factors from the APC data can be added to do further analysis, 

like the onboarding and alighting numbers, etc. 

More experiments are needed to evaluate the model performance thoroughly. This study 

only predicted the bus arrival time at time-point bus stops and assumed the drivers always 

following the time-point schedule. However, randomness and driver behavior factor should be 

taken into account to estimate the bus dwell time. Therefore, the model can be extended to 

predict the bus arrival time along a whole bus route.  

Future research could be developed in how bus schedules can be further optimized to be 

robust knowing that the snow weather effects exist. For example, a dynamic timetable has 

substantial potential to improve TSR during adverse weather conditions.  
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