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Abstract

The process of spoken word recognition has been an important topic in the field of

psycholinguistics for decades. Numerous models have been created, many of which

received their own computational implementation. However, large-scale simulations

using these models performed on the same dataset by an independent researcher

are rare at best. In the present dissertation, three models of spoken word recognition

(TRACE, DIANA, and the discriminative lexicon approach) are tested in their ability

to simulate the spoken word recognition process as captured by the auditory lexical

decision task. The simulated data comes from the Massive Auditory Lexical Deci-

sion project, a large-scale study that enables us to estimate model performance on

thousands of English words and compare it with performance of hundreds of human

listeners. The main goals of the present work are threefold. The first goal is to assess

models’ performance in simulating the auditory lexical decision task. The second goal

is to learn about the process of spoken word recognition through differences in models

and model setups. The third goal is to provide suggestions for model improvement or

future model development. The dissertation begins by outlining the history of devel-

opment and the current state of computational models of spoken word recognition,

motivating the conducted research. The central part of the dissertation is split into

three separate sections. The first section describes the TRACE model in more de-

tail and the simulations of MALD data performed using TRACE’s re-implementations

called jTRACE and TISK. The second section describes an implementation of an end-

to-end model of spoken word recognition called DIANA and simulations performed

using that model. The third section presents the simulations performed using the
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discriminative lexicon approach to spoken word recognition. Each of these sections

includes a separate discussion of the results, focusing predominantly on the model in

question. A joint conclusion brings together the findings from these three separate

studies and also includes a suggestion to creating a hybrid model using strong aspects

of the tested computational models of spoken word recognition.
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Chapter 1

Introduction

Human communication using spoken words can be said to have been “solved”, but not

“explained”. Numerous technical solutions enable high-performing automatic speech

recognition, yet our understanding of how the process of spoken word recognition

(SWR; ‘spoken word recognition’ and ‘SWR’ are used interchangeably throughout

the text) unfolds still harbors many unknowns or, at the very least, uncertainties.

The process of recognizing even isolated spoken words has proven to be complex

and special even in comparison to reading. Given the number of factors and moving

parameters playing a role in the process of SWR, researchers interested in explaining

SWR have made use of computers and technology. However, instead of merely trying

to produce an output matching human performance, they attempted to do so while

exerting strict control over the computational process. In the case of this cognitive

computational modelling, the ultimate goal is to create a computational model with

an architecture that is a plausible representation of what might happen when a human

listener hears and understands a word. Knowledge of human physiology and cognition

as well as the results from behavioral experiments in which real listeners perform

various tasks are invaluable in navigating the meanders of decision-making involved

in the creation of a computational model of SWR. At the same time, behavioral data

are the best tests that we can put before a model — the model needs to perform

similarly to the human listener in numerous and varied tasks.
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The present dissertation is one such test. Three models of spoken word recogni-

tion are tested for their ability to match human performance in the auditory lexical

decision task, i.e., the task in which listeners decide whether an isolated signal is a

word existing in their language or not. The purpose of this investigation is to tell us

more about both the models of spoken word recognition we employ and the process

of spoken word recognition itself. In the remainder of the introduction, I first present

a brief overview of models of spoken word recognition. I then focus on the goals of

the present dissertation, describing its layout in more detail. The following Chapters

present a series of simulations performed with other researchers using an assorted

selection of models of SWR and the discussions of obtained results.

1.1 Overview of models of spoken word recognition

The early models of spoken word recognition introduced principles that still hold for

many current models. These models are often referred to as “first-generation” models

of SWR. The logogen model (Morton, 1969) introduced the logogen as a stored unit of

meaning that accepts information and then responds when sufficient information has

been gathered. In other words, when enough supporting evidence has been collected,

a word is provided as a response. Research conducted as part of the frequency ordered

bin search model investigations (Forster & Bednall, 1976) stressed the importance of

word frequency and also set the focus on the process of searching for the right item

from a set of candidates. Additional aspects of the process of SWR that these studies

touched on include, e.g., morphological aspects of storing units of meaning (Taft &

Forster, 1975). These models were in time replaced and are not used in present-day

simulations, not least because they assumed lexical access was the same for written

and auditory stimuli. Still, the metaphor of word activation and search — the notion

that a signal stretch “activates” a number of candidates based on their matching

characteristics during the search of the lexicon — still serves as a baseline for most

models of spoken word recognition.
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The introduction of the “second-generation models” marked the beginning of a

proliferation in the number and variety of models of spoken word recognition. Each

of the models was special in its own way and introduced features that were not

considered in other models, often making direct model comparison very difficult. The

most influential models from this period, which are also still relevant in the literature,

were the Cohort model (Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh,

1978, note that the Cohort model never received a computational implementation),

the TRACE model (McClelland & Elman, 1986), and the mathematical model called

Neighborhood Activation Model (NAM; Luce, 1986; Luce & Pisoni, 1998). All three

models were subsequently adapted or improved, as Cohort II was developed (Marslen-

Wilson, 1987, see, e.g., ), TRACE was moved to a Java platform and re-implemented

as jTRACE (Strauss et al., 2007), and NAM gained a connectionist instantiation

in the form of PARSYN (Luce et al., 2000). Since then, many more models were

developed, most notable of which is the Shortlist model (Norris, 1994), and to it

connected Merge (Norris et al., 2000b). These models were updated as well in the

form of Shortlist B and Merge B (Norris & McQueen, 2008). Additionally, the Time-

Invariant String Kernel model (TISK; Hannagan et al., 2013; You & Magnuson, 2018)

was recently developed as a reimplementation of TRACE that changes some of the

architecture but retains similar performance.

Despite the general agreement with regard to the activation-competition metaphor

in these notable models, the specifics of the process also raised many points of dis-

agreement (see Weber & Scharenborg, 2012, for an extended discussion). The models

differ in the assumed input units (e.g., whether they are phonemes or subphonemic

features), the number of prelexical abstract layers and their characteristics, the pos-

sibility of information flow from higher to lower levels (that is, feedback from higher

levels affecting what is recognized in lower levels), existence of competitor inhibition,

and others. I will use another big point of contention — the selection and retention of

candidates during the activation-competition process — to illustrate these differences.
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Cohort assumes that after some initial information is made available (matching the

first couple of phonemes of input), a cohort of competitors would be retained as all the

other competitors that do not have the same starting phonemes are excluded from fur-

ther activation and competition, with this shedding of candidates continuing as more

information becomes available during the unfolding of the signal. In TRACE, close

candidates are all words that share the first two phonemes with the target word (co-

horts), all words that share the final two phonemes with the target word (rhymes),

and all the words that are fully embedded in the target word (embeddings). The

Neighborhood Activation Model (NAM) captures phonological neighbors, which are

usually operationalized as all words that are one phoneme edit away from the target

word (e.g., neighbors of /bit/ are /pit/, /big/, /bAt/, and /sit/). In Shortlist, a

smaller set of 30 most viable candidates is observed at each time step as the signal

unfolds, and only those items are considered. Still, two important characteristics are

also shared between these models (albeit with slight differences). All of these models

use some form of an abstract, prelexical unit as input to the model. Additionally, all

of these models represent the mental lexicon as an unconnected list of units (words)

that are essentially strings of sublexical units (phonemes).

An important addition in some of the most recent models was inclusion of ac-

tual sound signal as input to the model. The central benefit of such models is

that they capture the vast variability present in the speech signal and take into ac-

count fine-phonetic detail. The Speech-based Model (SpeM; Scharenborg et al., 2005)

used acoustic models that are developed in automatic speech recognition to recognize

phonemes present in the signal and, subsequently, calculate most likely lexical paths

and word activation. SpeM’s successor Fine-Tracker (Scharenborg, 2008, 2009) oper-

ated in a similar fashion, but extracted prelexical units were articulatory-acoustic fea-

tures, not phonemes. The representation at the lexical level was necessarily changed

as well, and each word was represented by articulatory-acoustic feature vectors. The

most recent addition to this type of model is DIANA (ten Bosch, Boves, & Ernestus,
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2015). DIANA also uses automatic speech recognition techniques to create acous-

tic models. These are applied to the acoustic signal to derive estimates of segment

(phoneme) activation and word activation. Importantly, DIANA is one of the only

models of SWR to explicitly define a decision component. This allows DIANA to

state whether the input matches a word in the mental lexicon (well enough) or not,

which word is the winning candidate, and also estimate the time when the decision

is made, making it an end-to-end model of SWR.

Besides the previously described models of spoken word recognition which are re-

ferred to as abstract models, exemplar or episodic models were also created. The

principal difference between the two is that episodic models do not postulate the

existence of one abstract representation for each stored unit. Instead, such models

assume that the storage features multiple representations, each related to some pre-

vious occurrence (example or episode) of that unit being encountered. The process

of SWR would then aim to “land” somewhere in the vicinity of a group of exemplars

of essentially the same unit of meaning. Similarly, prelexical levels also need not in-

clude abstract units, as an exemplar model should incorporate idiosyncratic aspects

of speech. A prime example of an episodic model is presented by Goldinger (1998) in

a series of word-shadowing experiments followed by computational simulations using

the Minerva2 model (Goldinger, 1998; Hitzman, 1986). Although the question of

representation of lexical and prelexical units as abstract or episodic is central to the

theory of SWR and yet unresolved, episodic models are far less prevalent than ab-

stract models of SWR and their number is smaller. These models are not featured in

the present dissertation. For additional information about episodic models of SWR,

see Scharenborg and Boves (2010) and Weber and Scharenborg (2012).

Lastly, yet another separate group of models is often referred to as the learning

models (see Magnuson et al., 2012). Learning models are most often connection-

ist models using networks trained to make connections between input and outcome,

changing the way they perform with additional training material. Major representa-

5



tives of such models are Simple recurrent networks (Elman, 1990), the Distributed

Cohort Model (Gaskell & Marslen-Wilson, 1997), the PK99 (Plaut & Kello, 1999),

and the Adaptive Resonance Theory, with ARTword in particular (Grossberg & My-

ers, 2000). The most recent addition to this set of models of SWR is the discriminative

lexicon approach (Baayen, Chuang, Shafaei-Bajestan, et al., 2019). The discrimina-

tive lexicon is an extension of the naive discriminative learning approach which was

used to model various language phenomena (see, e.g., Baayen et al., 2011; Milin,

Divjak, et al., 2017; Milin, Feldman, et al., 2017; Ramscar et al., 2014). The authors

have also made a point of using the acoustic signal to create more realistic input for

the model (see Arnold et al., 2017).

1.2 The present dissertation

With such an abundance of models of spoken word recognition (and there are oth-

ers not mentioned in the previous section) impartial testing is necessary for their

fair assessment and guided further development. However, although often discussed,

models of SWR are rarely implemented by those that did not create them — except

if these are not creators of their own model of SWR comparing the models. When

independent researchers do use models of SWR, the simulations are mostly designed

to support a conducted behavioral experiment or to generate hypotheses for a be-

havioral experiment, rather than to assess model performance. Although this kind of

research is exactly the reason why models of SWR are developed, it uses models of

SWR as a tool and/or as a theoretical framework, not as the focus of investigation.

Additionally, models of spoken word recognition are rarely tested on large and

varying datasets. The testing (with notable exceptions) is ordinarily performed on

small datasets or even minimal, toy problems. The reason for this is that toy prob-

lems and proofs of concept are computationally feasible and more easily presented and

replicated. In other cases, the computational model is developed on a larger dataset,

but never re-implemented or tested on another similar set of data. This is because
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large datasets are rare, and there rarely exists another large dataset with similar fea-

tures. The vast majority of reports referencing models of spoken word recognition do

not actually implement the computational model. Instead, they develop predictions

or discuss the results of empirical investigation based on previously performed and

reported computational simulations, or speculate as to how the model would perform

in the context of that study.

Using small datasets and toy simulations is also in collision with simulating par-

ticipant performance in tasks where effects necessarily span hundreds of stimuli and

the set of plausible competitors (i.e., the size of the mental lexicon) is not explicitly

limited. An example of such a task is the auditory lexical decision task (see, e.g.,

Goldinger, 1996). The task for the participant in the auditory lexical decision task

is to decide whether the brief speech signal they just heard is a word of the language

in question or not. Usually half of such stimuli are actual words, while the other half

merely sound like they could be words in the given language, but actually have no

assigned meaning. These stimuli are called pseudowords. Participants are ordinarily

instructed to perform as quickly and as accurately as possible, and measures obtained

from this task include participant response latency and accuracy. Although computa-

tional models of SWR did attempt to simulate particular phenomena captured using

the auditory lexical decision task, such as the effects of subcategorical mismatch de-

scribed by Marslen-Wilson and Warren (1994), to the best of my knowledge, the only

computational model of SWR that tried to match participant response latency and

accuracy from a behavioral dataset of responses in the auditory lexical decision task

is DIANA (see, e.g., ten Bosch, Boves, Tucker, et al., 2015). However, a model of

spoken word recognition should be able to simulate a large variety of experimental

tasks investigating spoken word recognition, including the auditory lexical decision

task — such simulations are necessary if we wish to claim that the model matches

the processes occurring in a listener when they are presented with auditory stimuli

and in order to make predictions about new experiments.
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Although these issues (lack of third party testing of model performance, using large

datasets instead of small toy problems, and simulating a task such as the auditory

lexical decision task which cannot be easily framed in a small sample simulation)

are only prevalent in the field and not present in every model and every simulation

performed, very few (if any) models have avoided all three of them simultaneously.

From this stem three closely related goals of the present dissertation. The first goal

is to test a number of models of SWR in their success in simulating the auditory

lexical decision task. The central question is whether models of SWR can capture

the process as it unfolds in the human listener. Furthermore, by comparing ease of

use and estimate-to-data fit we can drive forward the discussion on model adequacy

and ultimately make an informed decision about which (type of) model and structure

should be favored. Note that in some cases it may be clear how a certain model of

SWR can be improved upon even before any simulations are performed. The first

goal, however, is not to reach peak performance by altering the models — the goal is

rather to subject them to impartial testing in their current state.

The second goal is to use the simulations to draw conclusions about the spoken word

recognition process as captured by the auditory lexical decision task. By switching

models or model parameters, we are also changing our assumptions about the process

of spoken word recognition. Therefore, some of the questions which will be discussed

are how input should be presented and processed, what the nature of the abstract

sub-word units is (if they exist), how competition unfolds, how and when does the

model (or human) reach their decision that a stimulus is a word or a pseudoword,

and how the storage of units of meaning (the mental lexicon) should be organized.

The third goal of this dissertation is different for each particular model used and ties

to their particular characteristics. We can use the results of the simulations to provide

suggestions for improvements and further model development. These suggestions,

however, remain informed by certain characteristics of other models of spoken word

recognition. I also hope that the presented research will prompt future studies to use
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large datasets and set them as targets for the computational simulation instead of

using toy problems and proofs of concept.

The present simulations are conducted as part of the ongoing Massive Auditory

Lexical Decision project (MALD; Tucker et al., 2019). MALD includes datasets with

a large number of responses from numerous participants to a large number of English

words. The advantage of using data from a large-scale study in comparison to a

smaller, target auditory lexical decision experiment lies in the generalizibilty of the

findings as any patterns captured in a dataset are in part due to idiosyncrasies present

in the participant or stimulus sample. Given that models of spoken word recognition

aim to match general regularities in the process, having a larger set of words and

human listeners set as a benchmark for the model makes the simulation outcomes

more reliable.

Two MALD datasets are used in the current dissertation. The first one is MALD1,

i.e., the first published MALD dataset. MALD1 tested 231 monolingual native Cana-

dian English listeners (180 female, 51 male, aged 17 to 29) as they responded to

approximately 26,000 English words. The participants were allowed to participate in

up to three sessions, never listening to the same items. A single session contained

400 words and 400 pseudowords. The total number of recorded MALD sessions was

284, and the total number of recorded participant responses was 227,179. The second

dataset we refer to as MALD_semrich (for ‘semantic richness’). The database was

created as a replication of the Goh et al. (2016) study. In this case, 27 participants

were presented with a single list of 442 MALD nouns and 442 randomly selected

MALD pseudowords. MALD_semrich has a smaller pool of words, but offers signif-

icantly stronger item power in comparison to MALD1. Both of these datasets are

described in more detail in the central part of this dissertation.

The models of spoken word recognition, as we have seen, are both numerous and

varied. Since a single dissertation cannot implement all of them, the models tested

in the present dissertation were selected to cover a variety of model characteristics.
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The selected models are implementations of the TRACE model, DIANA, and the

discriminative lexicon approach. TRACE was selected as a representative of the

second-generation models of spoken word recognition. TRACE is a textbook model

(see, e.g., Traxler & Gernsbacher, 2006) that was at the center of many discussions

about the process of spoken word recognition. The model continues to be relevant

today (see Chawla & Chillcock, 2019), in part due to its reimplementation jTRACE,

and it is certainly one of the most cited models of spoken word recognition (if not

the most cited). Simulations are performed using jTRACE and TISK. DIANA was

selected as a representative of models that take a step further from the somewhat

older models by featuring input based on the actual acoustic signal. DIANA also

defines a decision component that provides an explicit estimate of when the model

recognized the input as a certain word. It is also interesting to note that, in the-

ory, DIANA’s candidate selection during the competition process matches that of the

Cohort model (Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978), pro-

viding a complement to TRACE. The discriminative lexicon was selected primarily

because it represents a new and different approach to simulating spoken word recog-

nition. As will be described in more detail in Chapter 4, this approach does not share

the same background as most abstract models of SWR. Furthermore, unlike most

models of SWR, the discriminative lexicon offers a semantically rich, interconnected

representation of meaning storage as a replacement for the standard representation

of the mental lexicon.

Availability and convenience also had a role in model selection. For example,

TRACE was selected over Shortlist B because it had a developed software with a

user manual (Strauss et al., 2007), whereas Shortlist B has no user-friendly code and

is restricted to the Dutch language. PARSYN and Cohort also do not have an instanti-

ation that enable ready third-party use. DIANA shares many traits with Fine-Tracker

and SpeM, but was selected because it was more recently used to simulate the auditory

lexical decision task from another large project, BALDEY (Ernestus & Cutler, 2015),
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and has even previously been applied to a pilot MALD dataset (ten Bosch, Boves,

Tucker, et al., 2015). Both the Distributed Cohort Model and the discriminative lexi-

con approach offer a learning perspective to the process of spoken word recognition as

well as a semantically organized mental lexicon. The discriminative lexicon approach,

however, is a more recent development and has been implemented through available

R packages (R Core Team, 2018), making its implementation significantly easier.

The selection of the models is therefore not reflective of their quality or importance

only. Although I also kept in mind (potential) model impact, aiming to assess some

of the most influential models, there are many other notable models that could have

been used instead of the three models that have been selected. Indeed, I hope other

models will be implemented to simulate larger sets of auditory lexical decision data

in the future.

Three separate chapters present the simulations conducted with the selected mod-

els of spoken word recognition. The chapters are intended to be accessible as separate

research articles, so there is some inevitable overlap in the information they include.

This overlap mostly considers broad overviews or comments on computational mod-

els of spoken word recognition and the Massive Auditory Lexical Decision project.

Barring these similarities, each chapter focuses on a different model — introducing

in more detail (j)TRACE and TISK in Chapter 2, DIANA in Chapter 3, and the

discriminative lexicon in Chapter 4. The central part of the articles, as well as the

dissertation as a whole, are the simulations performed using these models. Each

article also includes its own discussion of the simulation results, focusing on the im-

plemented model.

The last chapter is a joint discussion of the simulations performed. In it, the

findings from the three central chapters are combined to offer general conclusions

about the process of spoken word recognition as captured by the lexical decision task,

as well as suggestions for future development of models of spoken word recognition.

Additionally, I offer a broad description (a sketch) for a hybrid model of spoken
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word recognition that brings together features from models tested in the current

dissertation.
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Chapter 2

jTRACE and TISK

Chapter 2 has been published as:

Nenadić, F. & Tucker, B. V. (2020). Computational modelling of an auditory lex-

ical decision experiment using jTRACE and TISK. Language, Cognition and Neuro-

science. Advance online publication. https://doi.org/10.1080/23273798.2020.1764600.

We thank Matthew C. Kelley for programming assistance and fruitful discussions

regarding the paper topic. We thank Julien Mayor for sharing his simulation material

and insights. We thank one anonymous reviewer and James McQueen for their helpful

comments that improved the quality of this work.

2.1 Introduction

When someone calls your name or shouts a warning, you, as the listener, recognize the

message in less than a second, duration of the acoustic signal included. This remark-

able process of spoken word recognition has been an important topic of investigation

within the field of psycholinguistics and numerous explanations of how it unfolds have

been offered. Most current models of spoken word recognition adopt the metaphor

of word activation — the notion that a signal stretch “activates” items in the lexicon

based on their matching characteristics — from the so-called first-generation models,

such as the logogen model (Morton, 1969) or the frequency ordered bin search model

(Forster & Bednall, 1976; Taft & Forster, 1975). As the signal incrementally unfolds

13



in time, the items compete in their activation, until finally a winner is selected.

In the past three decades, models of spoken word recognition have become increas-

ingly detailed and complex. This increase in complexity has likely been enabled by the

concurrent development of accessible computational power. In other words, models

of spoken word recognition are now predominantly computational, rather than purely

verbal models. However, computational models that allow simulation ordinarily re-

ceived their most thorough testing in the very process of their creation, even though

model testing is crucial to improve them and to generate hypotheses for behavioral

experiments or corpus investigations. Furthermore, performing computational simu-

lations may lead to simulation outcomes that were not intuitively expected based on

the verbal theory and the computational setup (see Magnuson et al., 2012). Nonethe-

less, reports on large scale computational simulations are rare because (1) they were

computationally demanding (as they still are today), (2) models usually lacked an

approachable interface (many still do today), and (3) the data from behavioral ex-

periments was limited in size and variety.

In this paper, we simulate human performance in the auditory lexical decision

task using a computational model of spoken word recognition. We use the TRACE

II model of spoken word recognition (in the remainder of the text referred to as

TRACE; McClelland & Elman, 1986), or more precisely, its Java reimplementation

called jTRACE (Strauss et al., 2007) and the more recently developed TISK model

(Hannagan et al., 2013; You & Magnuson, 2018) which is quite similar to the TRACE

model. Both instantiations have a relatively accessible interface allowing for indepen-

dent, third-party use. We compare model performance to the data collected in a

large scale behavioral study called the Massive Auditory Lexical Decision (MALD)

project (Tucker et al., 2019). To the best of our knowledge, these are the first simu-

lations, and certainly of this scale, to test the performance of jTRACE and TISK in

estimating how long the selection of the correct word should take depending on the

activation-competition process. To that end, we link two hypotheses: (1) participant
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response latency in an auditory lexical decision task is taken as an indication of the

time it takes for the process of selecting the winning candidate to completed, and (2)

activation-competition models of SWR assume that a winning candidate should be se-

lected from a group of competitors once its activation level is in some way significantly

higher than the activation levels of other competitors. In other words, in the present

paper we test whether jTRACE and TISK activation-competition patterns and iso-

lation of a winning candidate are predictive of the assumed activation-competition

process occurring in the listener when they perform an auditory lexical decision task.

2.1.1 The TRACE model

The TRACE model of spoken word recognition was developed by McClelland and

Elman (1986). TRACE accepts mock-speech input as a string of phonemes. Each

phoneme in the language is described in terms of its values on seven acoustic pseud-

ofeatures (such as voiced, vocalic, or burst), forming the feature level of the model.

As the signal unfolds in discrete time slices, pseudofeature values are registered at

each time slice, forming a spatial trace of activation. Based on the pseudofeature val-

ues registered at the feature level, phoneme units at the phoneme level are activated

and compete, forming a trace of their own. By default, every phoneme takes up 12

time slices. At the same time (or more precisely, space), activation at the word level

is contingent on the activation of phoneme units. Finally, traces of word activations

are formed across the time slices. During the activation-competition process, even

competitors that did not match the beginning of the target word are considered (e.g.,

both cabin and handle are competitors to candle), which is in contrast with another

notable model, COHORT (Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh,

1978). Every unit on the phoneme and the word level is duplicated many times in

order to account for the incremental characteristic of the mock-speech input. Besides

excitatory connections between the lower and the upper levels (and similar top-down

connections which are by default excluded), TRACE also includes lateral inhibition

15



on all levels.

The TRACE model has been used to simulate a variety of experimental findings

since it was first introduced, including the original publication (McClelland & El-

man, 1986). Notable independent simulations include, for example, reports on lexical

segmentation simulations (Frauenfelder & Peeters, 1990) and the impact competitors

have on the recognition point, i.e., the time slice in which the word is recognized

(Frauenfelder & Peeters, 1998). However, these initial simulations were performed on

a small number of example items as proofs of concept. Since then, the model was used

to simulate other language phenomena, and is probably best known for successfully

simulating eye-movement data from experiments utilizing the visual world paradigm

task (e.g., Allopenna et al., 1998; Dahan, Magnuson, & Tanenhaus, 2001; Dahan,

Magnuson, Tanenhaus, & Hogan, 2001).

The model was not without criticism. For example, certain authors argued against

conceptual solutions used by TRACE, such as the existence of feedback, i.e., top-

down effects between the word and the phoneme level (Marslen-Wilson & Warren,

1994; Norris et al., 2000b), or at least reported findings that the model does not

fully account for (see, e.g., Chan & Vitevitch, 2009; Frauenfelder & Content, 2000;

Gaskell et al., 2008; McMurray et al., 2009; Smith et al., 2017). The biggest issue

with TRACE, however, is simply how computationally unfeasible it is due to its

complex architecture, an issue stressed by the creators of Shortlist (Norris, 1994).

Duplicating units to capture their order in “time” creates a very complex network

which has difficulties supporting more than a highly limited set of phonemes and

words. Even so, “the original TRACE model, with 14 phonemes and 212 words would

require 15,000 units and 45 million connections” (Hannagan et al., 2013, pp. 4), and

the model is unable to successfully handle lexicons containing more than 1,000 words.

Regardless of its limitations, TRACE is a powerful tool, and it is still one of the

most developed models of spoken word recognition. In the past three decades, the

model has remained influential. It is without exception described in overviews of
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models of spoken word recognition (see, e.g., Jusczyk & Luce, 2002; Magnuson et

al., 2012; McQueen, 2007; Protopapas, 1999; Scharenborg & Boves, 2010; Vitevitch

et al., 2018; Weber & Scharenborg, 2012) and is widely used to contextualize or

explain experimental findings. Still, the vast majority of hundreds of publications

referencing TRACE only briefly mention the model: as of 2011 less than 40 papers

report an actual simulation (Chawla & Chillcock, 2019). Most simulations in fact

appeared once the model became more accessible as it received its computational

implementation in Java (Strauss et al., 2007). This instantiation is named jTRACE

and it maintained near-identical performance to the original. Easier use also allowed

researchers to even expand some of its options, such as by including a larger set of

phonemes (Mayor & Plunkett, 2014) or Mandarin tone (Shuai & Malins, 2017).

2.1.2 The TISK model

The Time-Invariant String Kernel (TISK) model was introduced by Hannagan et al.

(2013). The model was designed to correspond to TRACE and be able to match its

performance, but with one important change — whereas TRACE solves the issue of

the signal being incremental in time by creating time-specific duplicates of phoneme

and word nodes (effectively translating time into space), TISK uses time-invariant

nodes which are essentially combinations of two phones (diphones). This change

allows TISK to sidestep the already noted inefficiency of TRACE caused by a huge

number of connections needed for realistic phoneme inventories and lexicon sizes (see

McClelland & Elman, 1986; Norris, 1994; Strauss et al., 2007).

With TISK, input units are directly translated into temporally-ordered phonemes

which are then mapped to atemporal single phones and all possible diphone combi-

nations given the input string. For example, the word “bit” creates the phoneme level

b - i - t which activates atemporal phones /b/, /i/, and /t/, but also diphone combi-

nations /bi/, /bt/, /it/, /ti/, /tb/, /ib/. This means that certain words, for example

“dog” and “god”, activate exactly the same diphones. In order to avoid such overlap,
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the model gives higher weights to diphone combinations that match input order, so

diphone /do/ would receive higher activation in the word “dog” than in “god”, and

/sn/ would receive higher activation in the word “snap” versus the word “naps” (for

more detail see Hannagan et al., 2013). Phones and diphones then activate atemporal

unique lexical units (words). Lateral inhibition is present at the phone/diphone and

at the word level.

Initial testing of TISK was performed using the same 14 phonemes and the 212-

word lexicon (called slex ) from TRACE and jTRACE. Besides successfully simulating

visual world paradigm data, the authors also simulated and compared free single

word recognition in the two models. Three criteria for winner selection were used:

(1) absolute activation threshold, where the winner is the first word to reach certain

activation level (You & Magnuson, 2018, report that the value used in the simulation

was .75), (2) relative activation threshold, where the winner is the first word to have

an activation higher by .05 than the runner-up, and (3) a time-dependent criterion, in

which the winner is the first word that had the highest activation for 10 consecutive

cycles. The authors found that both jTRACE and TISK had accuracy rates higher

than 95% in free word recognition, except for TISK with the absolute activation

threshold criterion, which was accurate in 88% of words. Additionally, the correlations

between the time cycle in which the winner was selected were moderate to high for

the two models, being .68, .83, and .88 for each criterion respectively. In short,

TISK performs quite similarly to jTRACE in some key simulations. Unfortunately,

simulation estimates were not compared to actual participant responses.

You and Magnuson (2018) implemented TISK in Python 3, offering detailed guide-

lines to its use. To the best of our knowledge and up until the time this paper has

been finalized, TISK has only been implemented once, even if many more mentions

of the new model have been made. Magnuson and You (2018) showed that top-

down effects can also be implemented in TISK and expanded the parameter set to

include word-to-phoneme weights. The simulations were performed using the same

18



lexicons adopted from TRACE and jTRACE, and the authors found patterns that

they claimed match the findings of previous empirical studies. Furthermore, the au-

thors introduced changes to the parameter set values that did not significantly affect

the relationship between jTRACE and TISK simulations.

2.1.3 The present study

One of the staple experimental tasks used to investigate spoken word recognition

is the auditory lexical decision task. This task is a straightforward way to assess

whether a certain stimulus or participant characteristic plays a role in the process of

spoken word recognition by observing whether it is predictive of response accuracy

and latency. Findings from experiments using the auditory lexical decision task have

been used for decades to drive the discussion about the spoken word recognition

process (for an overview including earlier studies see Goldinger, 1996), and the task,

although sometimes augmented by including, e.g., noise, context, or additional online

measures, continues to be used (e.g., Balling & Baayen, 2008; Goldstein & Vitevitch,

2017; Sauval et al., 2018; Ventura et al., 2004).

Recently, researchers started to more directly address an issue present in the pro-

cess of item selection in psycholinguistic studies. Since stimuli for the lexical decision

(and many other) tasks are selected from the population of words (or other items) in

a language, no control over their characteristics can be imposed — effectively making

many psycholinguistic studies quasi-experiments. Ordinarily, this forced researchers

to carefully select items so that they are equal in a large number of relevant charac-

teristics and different only in the characteristic under investigation. This procedure

made the item sets small and potentially special in comparison to the breadth and

variability found in the language from which these items were hand-picked. Further

limitations were created by the attention span of an average participant (limited ses-

sion time) and the sheer number of available participants. Auditory lexical decision

studies were not exempt.
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Although there is no way to exert strict control over natural language, another

option is to collect data from a large number of participants responding to a large

number of stimuli, with few restrictions in participant and stimulus sampling. This so-

called megastudy approach allows for more comfort when generalizing the findings,

statistical control of relevant variables, and impartial testing of findings obtained

through targeted experiments (Balota et al., 2012; Keuleers & Balota, 2015; Kuper-

man, 2015). Megastudies collecting data from lexical decision tasks now exist for

both visual (e.g., Balota et al., 2007; Ferrand et al., 2010; Keuleers et al., 2012) and

auditory modalities (e.g., Ernestus & Cutler, 2015; Ferrand et al., 2018; Tucker et al.,

2019). Megastudies have another useful purpose: they are well-suited to be used as

benchmarks for computational models, since they represent an impartial dataset of

participant behavior that is also large enough to include much more variety than a

targeted experiment.

We have seen that TRACE has extensively been used to simulate certain findings

from psycholinguistic experiments, such as the time-course of word activation in the

visual world paradigm experiments (e.g., Allopenna et al., 1998; Dahan, Magnuson, &

Tanenhaus, 2001; Dahan, Magnuson, Tanenhaus, & Hogan, 2001). However, TRACE

simulations that directly compare model estimates to participant response accuracy

and response latency to particular words in the auditory lexical decision task are

rare. McClelland and Elman (1986) show the time course of word recognition on

the example of a single word “product”, with a small, unrealistic number of com-

petitors (“produce” being the closest competitor and “products” not being included).

Other than this, we found only two targeted simulations in which TRACE output

was compared to actual behavioral data from a lexical decision task. Chan and Vite-

vitch (2009) only mention jTRACE simulations in the discussion section to convey

that using the model on a small number of items does not distinguish between two

particular groups of word stimuli while participants in a behavioral experiment do.

Marslen-Wilson and Warren (1994) used a lexical decision task alongside two other
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tasks to investigate whether subcategorical mismatches affect spoken word recognition

in spliced stimuli. The authors also presented TRACE simulations complementing

their behavioral experiments. Due to limitations imposed by the phonemes described

in TRACE, the lexical decision simulations were performed on 5 sets of words and

5 sets of pseudowords only (a total of 30 different items). Their results showed that

the unfolding of TRACE activations (i.e., response probabilities) did not match the

patterns in responses to three different types of spliced words used in the lexical de-

cision study. The purpose of the simulation was to investigate patterns of activations

of specific kinds of word/pseudoword splices, averaging across conditions. A decision

criterion for the word/pseudoword decision was never defined. Another interesting

finding was that in the case of spliced pseudowords where the first part of the pseu-

doword was taken from an actual word, TRACE continued to highly activate that

word, which would potentially lead to a high number of false positive responses.

The literature seems to favor the visual-world paradigm over other experimental

paradigms, such as the auditory lexical decision task. One reason for favoring the

visual world paradigm over the auditory lexical decision task might be that in the

visual world paradigm the participants choose their response from one of a few options,

allowing the simulation lexicon to be limited only to the presented options. Similarly,

in the simulation reported by Marslen-Wilson and Warren (1994), the focus was

on observing differences between three stimulus (splice) types of the same word; by

design, only the activation of a single word candidate was considered for each item.

This in turn does not require large lexicons or complete phoneme sets in computational

simulations, neither of which could be supported by (j)TRACE. Contrary to that, a

stimulus presented in an auditory lexical decision experiment can be any word (or even

a pseudoword!) of the language, and the competition processes includes all plausible

candidates at any given point in time as the acoustic signal unfolds. Ultimately, the

lack of simulations that allow for realistic unrestricted competition, and furthermore

the lack of direct comparison with actual participant data, means that it has not
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been reported in the literature how well TRACE and its instantiations can match

the competition process occurring when actual human listeners perform the task. For

comparison, simulations using lexicons of more than 20,000 words have been reported

for other notable models of SWR, such as Shortlist A and B (Norris & McQueen,

2008; Norris et al., 1995) or DIANA (ten Bosch, Boves, & Ernestus, 2015). We

believe that simulations using large (realistic) lexicons are extremely important in

the investigation of spoken word recognition.

In this report, we present a series of simulations of participant performance in an

auditory lexical decision task using jTRACE and TISK. To the best of our knowl-

edge, these are the first such simulations using large lexicons in these two prominent

models. Estimates generated by jTRACE and TISK should simulate the activation-

competition process and therefore be predictive of participant response latency. The

main goal of the study is to learn about the process of spoken word recognition and to

inform TRACE/TISK and other models of spoken word recognition by observing how

these models perform when used to simulate a large scale auditory lexical decision

study.

In the first simulation, we attempt to replicate the basic finding from Hannagan et

al. (2013) that jTRACE and TISK are successful and provide similar estimates in free

word recognition when the default dictionary of 212 words (slex ) is used. We augment

this replication by comparing model estimates to actual behavioral data. In the second

simulation, we use a different set of 442 words for which we have a larger number

of participant responses, making the central tendency estimates for human responses

more reliable. An increase in the number of words and their variety also expanded

the phoneme set beyond the 14 default phonemes described in TRACE’s slex. We

investigate how jTRACE and TISK perform with a larger phoneme inventory, while

still being confined to a relatively small word set. In the third simulation, we put

word competition under stricter scrutiny. The default dictionaries do not include

a large number of close competitors for every target. Therefore, we preselect close
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competitors and create separate lexicons for every target to observe close competition.

Finally, in the fourth simulation we test model performance when an input string (a

pseudoword) is not present in its lexicon. A general discussion brings together the

findings from these simulations and offers suggestions as to what a contemporary

model of spoken word recognition should be able to do.

All of the data from behavioral experiments, materials (lexicons) used for simu-

lations, simulation scripts for jTRACE and TISK, and R scripts used for data prepara-

tion and analysis are available as supplementary material at https://doi.org/10.7939/r3-

52m3-a502.

2.2 Behavioral experiments

The data used in our simulations comes from the Massive Auditory Lexical Decision

(MALD) project. MALD is described in Tucker et al. (2019), including detailed

information about the participants, stimuli and their recording procedure, and the

experimental procedure. Here, we only provide the most important information.

Besides the main dataset described below, we also use the data from a branch of the

project which was created to replicate and extend the findings from the Goh et al.

(2016) study. The full datasets are also available at this link: mald.artsrn.ualberta.ca.

2.2.1 MALD1 experiment

The MALD project includes responses by many participants to many auditory record-

ings of actual English words and phonotactically licit pseudowords. We use data from

the MALD1 database, which includes responses from native monolingual English lis-

teners only.

Sample

The MALD1 participants were 231 monolingual English listeners recruited from the

University of Alberta (180 females, 51 males; age M = 20.11, SD = 2.39). The
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participants received partial course credit for participation in the experiment.

Stimuli

Stimuli were recordings made by one 28-year-old male speaker of Western Canadian

English. A total 26,800 words and 9,600 pseudowords were split into 67 word and 24

pseudoword sets each containing 400 unique items. Each word set was then paired

with two different pseudoword sets to create a total of 134 experimental lists contain-

ing 800 items (400 words + 400 pseudowords each).

Procedure

The experiment was conducted in sound-attenuated booths equipped with a computer

monitor, headphones, and a button box. The participants were presented with stimuli

using the E-Prime experimental software (Schneider et al., 2012). Each stimulus was

preceded by a 500 ms fixation cross. The task for the participants was to decide

whether the stimulus they heard was a word of English or not by pressing one of two

designated buttons on the button box. The participants made the “word” response

with their dominant hand and the “non-word” response with their non-dominant

hand. Responses could be made during stimulus presentation, which would interrupt

it and the experiment would proceed to the next fixation cross and stimulus. The

participants had three seconds to respond and if no response was registered in this

time the experiment would proceed to the next fixation cross and stimulus. Stimulus

order was randomized per participant.

Each participant completed a single experimental list during the session. However,

the participants could return for up to three sessions, each time responding to a new

experimental list which did not contain word and pseudoword sets they have already

encountered. A total of 284 sessions (experimental lists) were completed.

Currently, the MALD1 dataset includes responses from well over 200 participants.

However, since each participant responds to a smaller subset of a large number of
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words, the number of responses to a particular word rarely exceeds five. When only

correct responses are taken into consideration, estimates of a general tendency (mean)

of participant response latencies become less reliable.

2.2.2 MALD_semrich experiment

In contrast to the MALD1 dataset, MALD_semrich dataset, collected to replicate the

Goh et al. (2016) study, offers responses from 27 participants to all the stimuli in the

experiment. This allows for greater reliability of mean response latency estimation,

but still uses a large-enough set of 442 English nouns and 442 MALD pseudowords,

enabling calculations of correlation between behavioral tendencies in responses and

model estimates. Logged frequency distribution from the Corpus of Contemporary

American English (COCA; Davies, 2009) in the two word sets (slex and MALD_-

semrich) had a similar, near-normal distribution, although the mean logged frequency

in the MALD_semrich set was slightly lower than in slex words.

Sample

Twenty-seven monolingual native speakers of Canadian English (15 females, 12 males;

age M = 20.67, SD = 2.79) participated in the experiment. The participants were stu-

dents at the University of Alberta and received partial course credit for participating

in the experiment.

Stimuli

Stimuli were word and pseudoword recordings created as part of the MALD project

(Tucker et al., 2019) described above. Out of 468 nouns used in Goh et al. (2016)

study, 442 were available within MALD stimuli. We randomly selected 442 MALD

pseudoword recordings to complement the word stimuli.
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Procedure

The same procedure was followed as for the MALD1 experiment. The only differences

were that the list included 884 items in total, instead of 800, and that the participants

completed only this list in a single session.

2.3 Central tendencies in participant response laten-
cies

A computational model of spoken word recognition simulating an auditory lexical

decision experiment is attempting to predict per-item general tendencies in partici-

pant responses, i.e., resemble an average performance on a certain item. There are

many ways in which an “average performance” could be calculated, but also a number

of factors that affect participant responses which are not necessarily considered in

the computational model. We decided to represent general tendencies in behavioral

data in three ways, each of which takes into account an additional source of variation

in participant response latency — potentially assisting the model in making better

predictions.

First, we use the most simple measure of mean logged response latency per item.

Only correct responses are included in the calculation and the response latencies are

logged to approximate a normal distribution. This measure removes some of the

individual variation between participants and also some random variation between

particular responses, giving a more general estimate of how much time it takes to

recognize a certain item. In the remainder of the text, we will refer to this measure

as mRT .

Second, we take into account the so-called “local effects” by de-trending participant

responses (ten Bosch et al., 2018). Local effects encompass variation that happens

due to the participant’s state, rather than their longer-lasting characteristics. Some

of these effects include fatigue, attention fluctuation, but also the aftereffects of being
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exposed to the previous experimental stimuli. These effects have traditionally been

taken into account by including the response latency to the previous stimulus as a

predictor of the current response latency. More recently, researchers rely on novel

statistical techniques, such as calculating and accounting for autocorrelation when

using generalized additive mixed modelling (see, e.g., Baayen et al., 2017).

A model of spoken word recognition is not susceptible to local effects in the manner

a participant would be, as a model does not get tired, learn, strategize, or have its

mind wander. For example, Mirman et al. (2008) had to specifically label a two-level

attention manipulation in order to simulate an ambiguous phoneme identification ex-

periment that was investigating attention effects. When there is no clear manipulation

of attention, TRACE and other computational models of spoken word recognition are

unable to account for it, and that variation becomes strictly noise.

In this study, we follow the procedure from ten Bosch et al. (2018), who proposed

a method of accounting for local effects by de-trending the data ordered by trial.

Taking the logged response latencies, the calculation estimates the optimal number

of previous responses (trials) that should be considered when estimating the “true”

latency of the current trial response (Equation 2.1). The “predicted” reaction time

(predRT ) represents a weighted average of a number of previous stimuli. A parameter

α determines the number of previous stimuli that have an impact on the predicted

reaction time. If α = 1 then only the first preceding response latency is used, and

smaller fractions of 1 indicate a larger number of previous stimuli being taken into

account. Finally, the de-trended response latency (dRT ) for a particular response r is

calculated as the difference between the predicted (predRTr) and the recorded (RTr)

response latency.

predRT1 = RT1

∀r > 1 : predRTr = α ·RTr−1 + (1− α) · predRTr−1

dRTr = RTr − predRTr

(2.1)
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The optimal value of parameter α is selected by estimating average pairwise correla-

tions of participant response latencies to the same stimuli. Since de-trending removes

some of the variation due to, for example, attention loss or fatigue, correlations be-

tween participant responses should increase after the procedure has been applied. In

other words, the de-trending procedure eliminates some of the variation stemming

from the fact that participants tend to respond with similar speed to consecutive

trials. The highest average correlations between participant response latencies were

r = .19 in MALD1 and r = .23 in MALD_semrich for α = .1, indicating that re-

sponses to ten previous stimuli should be taken into account. We used this value to

calculate mean de-trended response latencies to particular stimuli, and we refer to

this measure as dRT .

Third, a number of item characteristics have been shown to predict participant

response latencies in auditory lexical decision tasks. Effects of some of those predictors

can be expected to emerge independently in an incremental activation-competition

model given the lexicon of competitors. Such predictors are, for example, phonological

neighborhood density, uniqueness point, or the number of phonemes or syllables (word

length/duration). Others, however, probably would not — the number of morphemes

a word has, its frequency (if not included in the model), and a host of other semantic

variables are not included in the simulation, but shape participant responses. Not

considering their values makes it more difficult for the computational model of spoken

word recognition to match participant performance.

Therefore, we also created statistical linear models to predict dRT . We include

jTRACE/TISK estimates as predictors and observe whether their addition increases

the linear model fit. In the case of MALD1, the only variable that was considered

alongside jTRACE/TISK estimates was logged frequency from COCA (Davies, 2009).

The number of morphemes was not included as nearly all slex words are monomor-

phemic. The effects of phonological neighborhood density, phonological uniqueness

point, and word “length” variables (number of syllables, number of phonemes, and
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the duration of the stimulus in milliseconds) are expected to emerge from the com-

petition process. However, since jTRACE and TISK are supposed to simulate the

activation-competition process, not just word length, we also tested whether their

estimates contribute more to predicting dRT than a simple length variable does. We

chose the variable number of phonemes for this purpose, as all phonemes in jTRACE

are of equal “duration” in terms of time-slices, and since the phoneme is the basic

unit used in TISK.

In the case of MALD_semrich, the model also included the number of morphemes

and three semantic richness variables that are significant predictors of response latency

to these items (see Goh et al., 2016): concreteness (Brysbaert et al., 2014), valence

(Warriner et al., 2013), and the number of semantic features (McRae et al., 2005).

These variables were not considered in MALD1 as they are only available for a limited

number of MALD words, but for all MALD_semrich words.

To summarize, we estimated how well jTRACE/TISK estimates match participant

responses in three ways: (1) by comparing them to mRT , which is the mean logged

response latency for each item, (2) by comparing them to dRT , which is the mean

de-trended logged response latency for each item, and (3) by observing whether a

jTRACE/TISK estimate is predictive of dRT alongside other important predictors

in a statistical linear model. To check whether using data from both MALD1 and

MALD_semrich is warranted, we correlated mRT and dRT estimates for the 442

words appearing in both sets. In the case of mRT , the correlation was r = .47, while

in the case of dRT it was expectedly higher and equaled r = .55. In both cases,

the correlation was only moderate, meaning that the central tendency estimates were

somewhat different in the two data sets.

2.4 Simulation 1

In the first simulation we wanted to replicate the findings from Hannagan et al.

(2013) regarding the successfulness and performance similarity of jTRACE and TISK
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in spoken word recognition. Crucially, we expand the simulation by also comparing

estimates obtained from the two models to participant response latencies from the

MALD1 dataset.

2.4.1 Simulation setup

jTRACE setup

Hannagan et al. (2013) and You and Magnuson (2018) did not report the parameter

values used in their simulations comparing jTRACE and TISK. In Simulation 1, we

used four different sets of parameters for jTRACE. These four sets of parameters were

selected by observing the default values of jTRACE parameters, the values reported

in the original TRACE paper (McClelland & Elman, 1986), and also the parameter

values from a simulation provided in the jTRACE gallery called “word recognition”.

The parameters recorded in these sources varied in two regards. First, the alignment

was set to either “specified” with the time slice equal to 4 or to “MAX-ADHOC”.

Details about the two alignments can be found in an appendix to the jTRACE user

manual. Second, the value of the resting word activation (rest.w) was set to either

-.01 or -.1. Table 2.1 shows the values of these two parameters in the four jTRACE

parameter sets we created. All other parameters were set to their default jTRACE

values and are available in our supplementary material. Our decision was further

supported by the simulations conducted by Magnuson, Mirman, Luthra, et al. (2018),

where the authors claim that the parameters used are robust, and also by a comment

made by Strauss et al. (2007, pp. 4) stating that “in most simulations, most or all

parameters are left at their default values”.

The default phoneme set of 14 phonemes and the default lexicon of 212 words

(slex ) were used in the current simulation. The 212 words were both the target words

and the lexicon of competitors considered for each word. After consulting the results

figures from the original simulations, the number of cycles for simulating each word

was set to 100. We extracted activation values for the top 20 competitors at every
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Table 2.1: The variation in the four jTRACE parameter sets used. All other param-
eter values were set to jTRACE default values.

Parameter set alignment rest.w

jTRACE-A specified -.01

jTRACE-B specified -.1

jTRACE-C MAX-ADHOC -.01

jTRACE-D MAX-ADHOC -.1

time cycle, and then calculated what the winning word should be. Since TRACE has

no built-in moment of recognition (Strauss et al., 2007), we used the same criteria

as Hannagan et al. (2013): (1) absolute criterion that selects the first word to reach

activation level .75, (2) relative criterion that selects the first leading candidate to

have an activation level higher than the runner-up by .05, and (3) time-dependent

criterion that selects the first word to have the highest activation for 10 consecutive

cycles as the winner. For all three criteria we noted the time slice in which the winning

candidate was selected.

TISK setup

The TISK simulation also used the default dictionary of 212 words called slex and

the 14 phonemes that occur in it. The same criteria for selecting the winner as in the

jTRACE simulation were used. The simulation parameters were taken from three

sources. The first set of parameter values (TISK-A) came from the example code

provided by You and Magnuson (2018). The second and third sets were retrieved

from Magnuson and You (2018), and we used both the set without feedback (TISK-

B) and with feedback included (TISK-C). The exact values of these parameters are

given in Table 2.2.
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Table 2.2: The three parameter sets used for TISK simulations.

Parameter Set A Set B Set C

step 10 10 10

nPhone threshold 0.91 0.91 0.91

phoneme decay 0.001 0.01 0.001

diphone decay 0.001 0.01 0.1

single phone decay 0.001 0.01 0.1

word decay 0.01 0.05 0.05

input to phoneme weight 1.0 1.0 1.0

phoneme to phone weight 0.1 0.1 0.1

diphone to word weight 0.05 0.05 0.05

single phone to word weight 0.01 0.01 0.01

word to word weight -0.005 -0.05 -0.010

word to diphone activation feedback 0 0 0.1

word to single phone activation feedback 0 0 0.1

word to diphone inhibition feedback 0 0 -0.05

word to single phone inhibition feedback 0 0 -0.05

RT comparison

Model estimates of the time cycle when the winner should be selected were compared

to mRT , dRT , and used as predictors in the previously described statistical linear

models. Out of 212 slex pronunciations, 189 were recorded in MALD so although

the simulations included the entirety of slex, our response latency comparison was

restricted to these 189 words. We also noted that there is a number of phonemic

homophones in the MALD stimuli that are present in slex. Words such as “ark”

and “arc” or “troop” and “troupe” have the same pronunciation as recorded in the

CMU dictionary which we used for pronunciation referencing (Weide, 2005). Since

we cannot know which homophone was intended to be a part of slex, and since we

do not want to assume that the MALD audio recordings for these homophones are
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identical, we simply picked the word with higher frequency in COCA (Davies, 2009)

when comparing MALD data to simulation estimates.

To reiterate, we used jTRACE with four parameter sets (A, B, C, and D) and TISK

with three parameter sets (A, B, and C). In all cases, we used three decision criteria

(the absolute, relative, and time-dependent criterion). The estimates generated in

these simulations were compared to general tendencies in MALD1 data represented

by mRT , dRT , and also in a statistical linear model.

2.4.2 Results

We first performed a visual inspection of model performance by creating activation-

competition plots for both jTRACE and TISK simulations. Figure 2.1 shows example

plots generated based on jTRACE and TISK activations in time. As can be seen,

the simulations adequately matched the predictions shared by TRACE and most

contemporary models of spoken word recognition — a number of competitors rise in

activation (y-axis) as more of the signal is presented (x-axis). After a while, most

competitors will decrease in activation and a small group will continue to rise. In

the example we provide, the black line represents the target word “shield”, and it is

apparent that it stands out in comparison to other competitors in later time cycles.

We did not name each competitor in Figure 2.1, but in all simulations the competitors

that received higher activations seemed sensible. In the case of jTRACE, they were

words like “she”, “sheet”, “sheep”, and “dull” (there are no words other than “shield”

ending with /ld/ in slex, so there were no rhyme competitors available). In TISK

simulations, high activation is also reached by, e.g., “lid” and “blood”, since a match

in unordered diphone combinations is important in gaining activation in this model.

Another detail noticeable in Figure 2.1 is that even though the target word has the

highest activation, it does not reach the threshold of .75 except when TISK-A was

used. Indeed, free word recognition accuracy across models and model parameters was

low when the absolute criterion accuracy was used. For jTRACE, the accuracy was
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Figure 2.1: An example of the competition process in the jTRACE and TISK models
based on activation values for the word “shield” given in black and 19 closest competi-
tors given in gray. Activation is given on the y-axis, and the time cycle is given on
the x-axis. Parameter sets used are given as titles for each plot. The silence phoneme
as a word competitor in jTRACE is presented with a dotted black line.
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only 10% for parameter sets B and D, and 12% for parameter sets A and C, regardless

of the alignment used. For TISK-A accuracy was 86%, but for TISK-B and TISK-C

none of the words in the lexicon were correctly recognized. Most often it was the case

that the activation level of .75 was never reached by any of the competitors (see the

bottom right plot in Figure 2.1), as higher activation levels under those settings can

only be obtained with longer words. Therefore, we lowered the absolute criterion to

.4, enabling nearly all of the words to reach this activation level and increasing word

recognition accuracy (see below).

Additionally, jTRACE has an entry in the lexicon for silence, and this competitor

would often qualify as the winner when the relative and the time-dependent criteria

are used — before any other word could become the leading candidate. This was

often the case when the MAX-ADHOC alignment was used, as can be seen in the top

right plot in Figure 2.1, for jTRACE-D. Besides the target word given in black, the

silence is represented by a dotted black line. It is visible that silence is the leading

candidate between cycles 10 and 40, and by more than .05 activation value, qualifying

it as the winner using both the relative and the time-dependent criterion. Therefore,

we further adjusted our criteria to simply ignore the silence as a potential winner

(although we kept it as a competitor and calculated its activation level).

Table 2.3 shows accuracies for different combinations of models, parameter sets,

and decision criteria when simulations are run with the changes noted above. We see

that the absolute criterion achieved high accuracies with the change in the jTRACE

model. With TISK, accuracies improved, but were still not very high, so perhaps a

further reduction in the threshold may be required. The other two criteria performed

very well, except when the specified alignment was used in jTRACE (parameter sets

A and B).

Correlations between response latency estimates in simulations were likewise varied,

ranging from no correlation to r = 1. High correlations were noted between estimates

generated by the same model (jTRACE or TISK) and, in the case of jTRACE, using
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Table 2.3: Free word recognition accuracies of slex words present in MALD1 for the
different parameter sets and winner selection criteria used in the two models.

Model Parameter set
Criterion accuracy(%)

absolute relative time-dependent

jTRACE

A 95 82 64

B 92 94 76

C 97 98 99

D 92 99 99

TISK

A 79 97 99

B 42 97 99

C 61 97 98

the same alignment (especially between parameter sets C and D). Correlations be-

tween jTRACE and TISK estimates were the highest when jTRACE-A and B were

used with the relative and the time-dependent criteria. In that case, certain high

correlations were between approximately r = .7 and r = .85, depending on the TISK

parameter set. The calculated correlations are too numerous for all of them to be

presented here, but are available in the supplementary material.

The correlation between any of the model estimates and participant responses is

much lower. When mRT is used, the correlation ranges between r = −.07 and r = .09.

With dRT, we see some small improvement as all of the correlations increase slightly

and three of the model estimates have a correlation above the .1 value (Figure 2.2).

jTRACE-C with the time-dependent criterion and TISK-A with the relative criterion

used have a correlation of r = .1 with dRT. TISK-B with the absolute criterion used

has the highest correlation with dRT (r = .17), but it should be noted that this setup

has a low accuracy rate in free word recognition.

Finally, we fitted separate linear models with dRT as the dependent variable and

each of the model estimates as the predictor. We included logged frequency as a

predictor, as our simulations did not take it into account. None of the model estimates
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Figure 2.2: The highest correlations between participant performance and computa-
tional model estimates of the time cycle when the winner should be selected recorded
in Simulation 1. The time cycle when the model selected the winning word is given
on the x-axis, and dRT is given on the y-axis.
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were significant predictors of dRT. We also noted that in these models the effect of

word logged frequency was often non-significant as well. The models are available in

our supplementary material.

2.4.3 Discussion

The initial simulation provided us with important information about implementing

jTRACE and TISK to model responses to words in an auditory lexical decision task.

The basic expectations of model performance were met as the activation-competition

plots exhibited all of the expected properties of the activation-competition process,

with most competitors decreasing in activation, and a singular winner emerging from

a smaller group of more persistent competitors later on. Furthermore, we achieved

acceptable and even very high accuracy in free word recognition for some of the

parameter settings that we used, although we must have had certain parameters

different to the simulation reported in Hannagan et al. (2013) and You and Magnuson

(2018), given that we had to, for example, reduce the absolute criterion threshold. We

also noted a high correlation between jTRACE and TISK estimates in at least some

of the setups we used. Together, these results seemed encouraging as we successfully

matched previous model simulations.

However, the computational model estimates for the most part failed to match

participant performance in the auditory lexical decision task. There were no notable

correlations between any of the computational model estimates and mean logged par-

ticipant response latency per word, de-trended or not. Linear models with frequency

included as a predictor showed that the computational model estimates are not sig-

nificant predictors of participant response latency. Apparently, the model failed to

capture and match the same difficulties participants have when responding to words

in the experiment.

At the same time, we saw that word frequency also failed to predict de-trended

response latencies, even though its effects are well-documented. Given these results,
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we wanted to compare model estimates to a larger set of more reliable estimates of

central tendencies in participant responses. A set of only 189 words, some of which

are excluded when the model selects the wrong winner, may be a poor benchmark for

the computational model. Furthermore, these 189 words were not all responded to

by the same participants, introducing between-participant variability in the central

tendency estimate.

2.5 Simulation 2

Simulation 1 showed that the even though the high performance and similarities

between jTRACE and TISK were somewhat replicated, the computational model

estimates did not correlate with general tendencies in participant responses from the

MALD1 dataset. However, MALD1 includes only a small number of responses per

item, and it could be that the calculated general tendencies were less reliable due to

between-participant variability. In Simulation 2 we provide a similarly small dataset

of words to which we have more than a few participant responses per item. We used

MALD_semrich which provides us with up to 27 responses for each of the 442 nouns

in the stimulus set.

Importantly, MALD_semrich also includes words containing phonemes other than

the original 14 phonemes in the TRACE model. Such a list of words forced us to

expand the phoneme set for both models, and allowed us to inspect the performance

of jTRACE/TISK under these new conditions. Although jTRACE and TISK seem

to perform similarly in Simulation 1, we decided to continue using both models in

Simulation 2 as they do not represent their input in the same manner. jTRACE uses

pseudofeatures and TISK uses phonemes, so the inclusion of additional phonemes

may influence the performance of these two computational models differently.
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2.5.1 Simulation setup

jTRACE setup

The target words and the lexicon of competitors were replaced in comparison to Sim-

ulation 1. Instead of using slex, we use the 442 MALD_semrich words as target words

and as lexicons of competitors. The computational model parameter sets and decision

criteria were the same as those used in Simulation 1. Given our initial observations of

the absolute criterion threshold being too high and the silence sometimes emerging as

the winner, we again reduced the absolute criterion value to .4 and excluded silence

as the potential winner in jTRACE.

An important issue that arose in Simulation 2 was how to represent the set of

phonemes that are not described in the default phoneme set available in jTRACE.

Both the original TRACE model and jTRACE have only 14 phonemes and the silent

phoneme described in terms of their seven pseudofeature values. Mayor and Plunkett

(2014) expanded this set to include additional phonemes of English and we adopted

their phoneme pseudofeature values for our simulations. The only exceptions were

diphthongs, affricates, and the r-colored vowel which cannot be represented directly in

the TRACE model. The reason for this is that pseudofeatures used in TRACE must

have constant values assigned throughout the phoneme duration. In turn, diphthongs,

affricates, and the r-colored vowel require for certain characteristics (such as burst

or diffuseness for affricates) to change as the phoneme unfolds in time. We decided

to represent these phonemes the same way Mayor and Plunkett (2014) did — as

combinations of two phonemes with their duration reduced to six time slices, i.e., half

of the standard phoneme duration (see Table 1). We hoped that this setup would at

least to a degree maintain the relationship between particular speech sounds and their

acoustic (pseudo)features. With the new phonemes included, we could now represent

all 39 phonemes occurring in the CMU dictionary (Weide, 2005) and therefore in

MALD as well. The symbols used to represent all new phonemes and pseudofeature
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values assigned to them can be found in our supplementary material.

Table 2.4: Affricates, diphthongs, and the r-colored vowel as operationalized in
jTRACE. The duration of component phonemes was halved.

ARPAbet IPA Components

CH Ù t+S

JH Ã d+Z

AW aU a+U

AY aI a+I

EY eI e+I

OW oU O+U

OY OI O+I

ER Ç e+r

TISK setup

The same parameter sets and decision criteria were used as in Simulation 1. In the case

of TISK, any singular symbol present in the lexicon is considered a separate phoneme.

We therefore simply used 1-letter ARPAbet notation for the TISK simulations. Since

MALD_semrich includes words longer than the longest word in slex, the number of

time cycles used in TISK simulations was not limited to 100. Instead, this parameter

was left blank, which by default automatically sets it to fit the longest competing

word.

RT comparison

Model estimates of the time cycle when the winner should be selected were again

compared to mRT , dRT , and used as predictors in the previously described statis-

tical linear models. However, in contrast to Simulation 1, in Simulation 2 we used

behavioral data from the MALD_semrich dataset, rather than from MALD1 dataset.

All other aspects of this analysis were identical to those from Simulation 1.
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2.5.2 Results

Table 2.5 shows the accuracies in free word recognition for all model parameters and

decision criteria used. jTRACE accuracies are all lower than in Simulation 1, while

TISK accuracies are all higher than in Simulation 1.

Table 2.5: Free word recognition accuracies of MALD_semrich words for the different
parameter sets and winner selection criteria used in the two models.

Model Parameter set
Criterion accuracy(%)

absolute relative time-dependent

jTRACE

A 77 72 51

B 77 82 68

C 79 70 52

D 83 83 65

TISK

A 82 100 99

B 74 100 100

C 90 99 100

We first examined the potential causes for jTRACE to perform worse. The ex-

planation that the lexicon now includes a larger number of words and phonemes did

not seem sufficient, as TISK performed better using the same lexicon. The actual

cause of lower accuracy in jTRACE simulations were probably diphthongs, affricates,

and the r-colored vowel. The average accuracy across all parameter sets and decision

criteria was 86% for the words that do not contain these phonemes, and only 55%

for the words that do contain them. This discrepancy is sufficient to lower overall

accuracies significantly because as many as 46% of MALD_semrich words contain at

least one of these phonemes. Affricates, diphthongs, and the r-colored vowel are even

more frequent in the CMU dictionary, as at least one of these speech sounds is found

in as many as 53% of approximately 116 thousand unique pronunciations.

In TISK, all phonemes are represented merely as symbols, so it is not surprising
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that accuracy remained high even for words containing phonemes jTRACE struggled

with. What is interesting, however, is that we see a further increase in accuracy in

comparison to model performance when slex was used, even though the sheer number

of words and the number of phonemes in the lexicon increased. Although strange at

first, this result makes sense when we count the number of close competitors each of

the words had in slex versus in the MALD_semrich dataset. Using a TISK command,

we extracted the number of cohort competitors and rhymes, i.e., items that share the

first two or the last two speech sounds with the target, and the number of words in

the lexicon that are embedded in their entirety in the target word. On average, slex

words have seven such close competitors, as the authors designed slex to include at

least some level of competition. When the MALD_semrich words (which were not

designed to investigate competition) are used, the average number of close competitors

is less than three, making for easier competition.

This is exemplified in the activation-competition process for the word “cherry”

(Figure 2.3). We see that when jTRACE-A is used all words have very low activations

(best competitors were “tent”, “telephone”, “toy”, “pear”, “hair”, and only towards the

last of the 20 were “chair” and “cherry”). When jTRACE-C was used, we see a winner

emerge other than the word “cherry”, and it was an unlikely winner “stereo”. The lower

two plots show that TISK had no issue assigning high activation to some competitors,

and they were the winning target word “cherry”, “chair”, and “cheese”.

Estimates generated by jTRACE mostly correlated well with each other, and the

correlation between TISK estimates were even higher than in Simulation 1 (all higher

than r = .8 and often close to r = 1, except for the absolute criterion in TISK-C,

which acted differently in comparison to other setups). However, correlations between

estimates coming from the two models further show the discrepancies in jTRACE and

TISK simulations. The highest correlations were again obtained when the relative

and the time-dependent criterion were used with any jTRACE parameter set. The

values of notable correlations ranged between approximately r = .4 and r = .65,
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Figure 2.3: An example of the competition process in the jTRACE and TISK models
when MALD_semrich words are used. The figure presents activation values for the
word “cherry” given in black and 19 closest competitors given in gray. Activation is
given on the y-axis, and the time cycle is given on the x-axis. Parameter sets used
are given as titles for each plot.
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depending on the particular setup. Other correlations were lower, and sometimes

even non-existent.

The correlations between mRT and dRT on one side and computational model

estimates on the other did not differ much. They also increased in comparison to

Simulation 1, ranging from r = −.08 and r = .2. Ten correlation coefficients were

higher than r = .1, whereas in Simulation 1 only three setups had such a high

value. The highest correlations were recorded using the relative criterion in TISK-

A and TISK-B (for detailed information regarding correlations, please consult the

supplementary material).

We then fitted a statistical linear model with dRT as the dependent variable and

frequency, concreteness, valence, and number of semantic features as predictors. All

of these variables acted as significant predictors of dRT, with the semantic predictors

contributing approximately 6% to the variance explained. Then we created separate

linear models in which we added one of the jTRACE/TISK computational model

estimates. In the case of jTRACE, none of the computational model estimates were

significant predictors of dRT. In the case of TISK, all of them were, again except

when the absolute criterion was used in TISK-C. The linear model summary for the

time-dependent criterion using TISK-C is given in Table 2.6 as an example.

However, once we introduced the number of phonemes into the linear models al-

ready containing the predictors mentioned previously and TISK model estimate, the

number of phonemes was a significant predictor of dRT and the effects of TISK model

estimates ceased to be significant. TISK estimates of the time cycle when the win-

ner should be selected correlated highly with the number of phonemes in the word

(excluding the absolute criterion in TISK-C), ranging from r = .77 to r = .83.

2.5.3 Discussion

The second simulation presented a much richer environment for jTRACE and TISK

simulations. We used a novel set of words in the lexicon, expanded the phoneme set,
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Table 2.6: Summary of a linear model predicting dRT with a number of standard
predictors and TISK-C estimates of the cycle when the winner is selected using a
time-dependent criterion.

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.500 0.118 4.233 2.88e-05

Frequency -1.66e-06 4.15e-07 -4.012 7.22e-05

Concreteness -0.109 0.025 -4.411 1.33e-05

Valence -0.013 0.005 -2.426 0.016

N semantic features -0.005 0.001 -3.285 0.001

time-dependent TISK-C 0.001 2.96E-04 3.044 0.002

Multiple R-squared: 0.17, Adjusted R-Squared: 0.16

F-statistic: 16.31 on 5 and 390 df, p-value: 1.287e-14

provided more reliable estimates of central tendencies in participant responses, and in-

troduced the number of morphemes and semantic richness measures as additional pre-

dictors of participant response latency alongside frequency and computational model

estimates.

jTRACE did not fare well under these new conditions. Free word recognition ac-

curacies were lower than in the first simulation and estimates obtained from correctly

recognized words did not predict participant response latencies. jTRACE also de-

viated from TISK model estimates, with the correlations between the two models

being noticeably lower. A large portion of errors occurred for words that include

affricates, diphthongs, and the r-colored vowel. We see no fitting way of representing

these phonemes in jTRACE under its current framework. At the same time, approxi-

mately half of English words contain them. Simply put, it does not seem possible for

jTRACE to correctly represent word competition when the lexicon is not limited to a

small set of preselected word candidates containing only certain phonemes, while the

auditory lexical decision task (and many other tasks and everyday scenarios) does

not incur such preselecting.
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Unlike jTRACE, TISK performed better in free word recognition than in the first

simulation, even with a larger lexicon and more phonemes. This is likely due to

fewer close competitors present in the MALD_semrich lexicon than in slex. We also

registered very high correlations between TISK estimates, indicating that changes in

parameter values do not affect winner selection under the selection criteria used.

However, we do notice that once again the absolute criterion was a poorer approach

to selecting the winning candidate — a certain activation level may never be reached

for very short words, and for longer words there is a risk that a plausible candidate

may reach the threshold before the target word has made itself distinct. This finding

supports a general notion that the overall activation level is not sufficient for selecting

a candidate as the winner. Rather, the selection should favor a relative approach,

either in terms of relative difference between the winner and the runner-up, or in terms

of a candidate leading in activation for long enough. Another potential approach not

utilized in our simulations would rely on entropy of top candidates’ activation levels,

where the winner is selected if the entropy is low.

TISK estimates also correlated with mRT and dRT better than in Simulation 1.

This result may be attributed to a more reliable estimate of participant response

latencies than when MALD1 data was used, but also may be due to the reduced

number of close competitors considered or due to a larger, new set of words being

used. Crucially, TISK estimates seemed predictive of participant response latencies,

but only until the number of phonemes a word has was introduced into the linear

models. It is entirely expected for the TISK model estimates to be related to length

characteristics of words such as duration or the number of syllables, and especially the

number of phonemes, as the phoneme is the basic unit used in TISK. Still, TISK is an

activation-competition model, and it should also be expected that it offers more than

what a simple number of phonemes in a word tells us when estimating the process of

activation and competition.

We saw that accuracy in TISK increased, while the generated model estimates did

47



not reflect competition, but rather the number of phonemes in a word. Both of these

findings may be reflecting of low ecological validity of the competitor set used, as the

number of close competitors per word in the MALD_semrich set is very small. Using

a larger set of close competitors for every word may allow us to assess free word

recognition accuracy in TISK in the more realistic circumstances of difficult, close

competition. A more ecologically valid competition could also allow TISK to better

represent the activation-competition process in the human listener, which in turn

could yield computational estimates that are more in line with participant response

latencies.

2.6 Simulation 3

In Simulation 3 we attempted to represent a more ecologically plausible competition

scenario. Previous simulations had limited lexicons and the target words only com-

peted against other words in those lexicons. The results of Simulation 2 showed that

a larger number of close competitors may influence free word recognition accuracy.

More importantly, computational model estimates did not predict general tendencies

in participant response latency well — the contribution of the computational model

estimates, where significant, could be completely replaced with the sheer number of

phonemes in the word. Such poor performance in predicting human response latencies

may also have been caused by lax competition. Therefore, the main goals of Simula-

tion 3 were to provide a challenging word set for the computational model to better

test its accuracy, and to allow the model to calculate estimates from a dataset that

better represents actual competition, in turn potentially making it a better predictor

of participant response latencies.

2.6.1 Simulation setup

Our initial intention was to use both jTRACE and TISK with a variety of estab-

lished parameter value sets to simulate the activation-competition process in all 26,800
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MALD1 words. However, given the outcomes of Simulation 1 and 2, in Simulation 3

we only used TISK, not jTRACE, and focused solely on MALD_semrich words. The

main reason for using only TISK is that jTRACE was unable to correctly recognize

many words in Simulation 2 due to poor representation of diphthongs, affricates, and

the r-colored vowel. There was no reason to assume jTRACE would perform better

with closer competition than it did using only MALD_semrich words as competitors.

Additionally, we have seen in Simulation 1 that jTRACE and TISK produce compara-

ble estimates, and this was demonstrated by the authors of TISK as well (Magnuson,

Mirman, Luthra, et al., 2018), so we assumed that results obtained in TISK should

translate well to jTRACE should it be able to represent these phonemes.

TISK setup

TISK has been tested on lexicons of up to 20 thousand words and the processing time

per word remained very short, being less than a second (You & Magnuson, 2018).

However, the CMU dictionary contains a bit over 116 thousand unique pronunciations

and our computer was unable to successfully initialize a TISK model when all of them

were included. Instead, we used the same TISK command mentioned in Simulation

2 to extract close competitors from the CMU dictionary according to the TRACE

model (cohorts, rhymes, and embeddings, that is, items that share the first two or

the last two speech sounds with the target, and the number of words in the lexicon

that are embedded in their entirety in the target word) for each of the 442 MALD_-

semrich words. In other words, each MALD_semrich word had its own unique lexicon

— the only words in the lexicon for each input word were the close competitors of

that word. We then created separate TISK models for each of the target words and

its close competitors using the same three TISK parameter sets (A, B, and C).

As in the previous simulations, we extracted the winning candidate and the time

cycle in which the winner was detected using three decision criteria (absolute, rela-

tive, and time-dependent). However, since we saw in Simulation 1 that the absolute
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criterion set at 0.75 was too high for most words to reach, we were concerned that

the model may perform poorly not due to close competition, but due to the wrong

decision threshold being used. To circumvent that potential issue, we calculated the

time-cycle when the winner should be selected using ten different decision thresholds

for each of the three decision criteria. In the case of the absolute criterion, the thresh-

olds used ranged from .3 to .75, increasing by .05; relative criterion thresholds ranged

from .01 to .19, increasing by .02; time-dependent criterion thresholds ranged from 6

to 24, increasing by 2 as well.

Exploration of competitor structure effects

If close competition impedes word recognition in TISK, an additional question of

interest arises concerning the number and the structure of close competitors needed for

the model to make a mistake. To test this, we also conducted separate toy simulations

on three arbitrarily selected words (“sofa”, “belt”, and “clarinet”). We observed how

the activation-competition process and winner selection change as the number of

close competitors increases and as the considered competitors are closer competitors

to the target word. Regarding competitor “closeness”, neither jTRACE nor TISK,

to the best of our knowledge, have a definition of which competitor is “closer” to the

target (all cohorts, rhymes, and embeddings are treated equally, as close competitors).

Therefore, we estimated how close of a competitor a certain word is to the target word

based on how highly the competitor was activated at word offset when all of the close

competitors were included. We then created three subsets of the close competitor

lists for “sofa”, “belt”, and “clarinet” based on these simulations. The first subset

included the 200 least activated close competitors (i.e., contained a high number of

competitors, but no closest competitors). The second subset included the 20 most

activated close competitors (i.e., contained a low number of competitors but all of

them were top competitors to the target word). The third subset included the 20

least activated competitors (i.e., contained a low number of the least activated close
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competitors to the target word). In other words, in this part of Simulation 3 we

coarsely vary and explore the effects of the number and the closeness of a word’s close

competitors on word recognition accuracy.

RT comparison

The same approach as in Simulation 2 was used.

2.6.2 Results

After creating custom competitor lists for each word, free word recognition accuracy

dropped severely (Figure 2.4). Changing the decision criteria thresholds, for the most

part, did not improve model accuracy. Absolute decision criterion remained the least

successful of the three decision criteria, never reaching 30% accuracy in any of the

parameter sets and thresholds used. Higher threshold values further decreased ac-

curacy. Relative decision criterion threshold increase likewise only decreased model

accuracy, and highest accuracies were recorded when a difference between the leading

candidate and the runner-up was merely .01. Finally, changing the decision thresh-

old for the time-dependent criterion yielded no differences in free word recognition

accuracy, indicating that if the correct word becomes the leading candidate, it will

remain the winner indefinitely.

We then investigated why the word recognition accuracy using TISK dropped so

significantly in comparison to the perfect or near-perfect accuracy rates recorded

in certain Simulation 2 setups. The number of close competitors per target word

increased dramatically in comparison to previous simulations, as can be seen in Fig-

ure 2.5a, ranging from 17 (for the word “owl”) to 2,243 (“deer”). The average number

of close competitors was 605, which is close to a hundred times more than in slex.

In total, as many as 83,122 (71%) out of the 116,726 unique pronunciations in the

CMU dictionary acted as a close competitor to at least one of the 442 MALD_sem-

rich words. Furthermore, the number of competitors was significantly lower in those
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Figure 2.4: TISK model accuracies in free word recognition per decision criterion
(separate figures) and parameter set (separate lines) used. The percent of correctly
recognized words is given on the y-axis, while the decision threshold is given on the
x-axis.
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words that were correctly recognized by the model, regardless of the decision criterion

or the parameter set used. As an example, Figure 2.5b shows a box-plot when the

time-dependent criterion with the decision threshold of 10 was used in TISK-B.

However, Figure 2.5b also shows that certain words with more than 500 close

competitors are still recognized correctly by the model, while others with few com-

petitors, like the word “owl” with only 17, were not. Figure 2.5c indicates that the

model struggled to correctly recognize shorter words, which have a higher probability

of (full) phoneme overlap with other English words. Therefore, we wanted to explicitly

test whether it is the number of close competitors, or their composition, that causes

inaccuracies in selecting the winning candidate in TISK. We present the activation

plots for the word “belt” as an example (Figure 2.6). When only a small number of

very close competitors are included in the model, even though the target word “belt”

wins according to the relative and the time-dependent criterion, overall activations

remain very low for all competitors (Figure 2.6b). A similar pattern was observed

for “clarinet” (although with a bit higher and less equal activation values) and “sofa”.

On the other hand, a model created using only the worst close competitors shows a

pattern of activation that better resembles the expected ideal, while still allowing the

target words to be selected as winners (Figure 2.6c). Increasing the number of close

competitors to 200 leads to another flatlining of activations — even if the close com-

petitors are not the best possible competitors to the target word, their number can

weigh down the activation for all considered words (Figure 2.6d). (It should be noted

that it is entirely possible to have a large competitor pool that is very dissimilar to

the target word, as in Simulations 1 and 2, in which case the activations are shaped

as expected). Again, “clarinet” and “sofa” show similar activation patterns.

Next we tested whether the change in the competitor list also affected the time

cycle when the winner is selected by comparing model estimates to those obtained

in Simulation 2. In all setups, the time cycle when the winner is selected increased

between simulations, with the increase being minimally 17 time cycles for TISK-A
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Figure 2.5: Figure (a) is the histogram of the number of close competitors (cohorts,
rhymes, and embeddings) extracted from the CMU dictionary for the 442 MALD_-
semrich words, with many words having hundreds of close competitors. Bottom
figures show that the model more often correctly selected the target word as the winner
when there were fewer close competitors (b) and when the number of phonemes in
the target word was smaller (c). The accuracies were taken from the simulation using
TISK-B parameter set and the time-dependent criterion with the threshold equaling
10.
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Figure 2.6: An example of the competition process for the target word “belt” in the
TISK-B model when different close competitors are included. Activation is given on
the y-axis, and the time cycle is given on the x-axis. The target word is given in black
and other competitors are given in gray. The upper left figure labeled “All competi-
tors” presents activation values for all 750 close competitors to the target word “belt”,
with no particular peaking competitor. Upper right figure labeled “Top 20 competi-
tors” shows activations from a model which only included the top 19 competitors to
the target word and the target word, again with very low activation values. The bot-
tom left figure labeled “Bottom 20 competitors” shows the activation values from a
model which only included the bottom (worst) 19 competitors to the target word and
the target word, showing expected activation patterns and a clear win from the target
word. The bottom right figure labeled “Bottom 200 competitors” similarly included
bottom (worst) 199 competitors to the target word “belt” and the target word, and
in this case there are again no distinct peaking words, similarly to the figure in the
upper left corner when all competitors were used.
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when the relative decision criterion is used, and maximally 30 time cycles with TISK-

B when the time-dependent criterion is used. Importantly, not only did the time

cycle simply increase, it also changed differently for different words. The correlations

between the time cycles when the winner is selected for the same setups in Simulations

2 and 3 ranged from r = .28 (absolute criterion in TISK-A) and r = .61 (relative

criterion in TISK-B).

Finally, we observed how model estimates from Simulation 3 correlate with partic-

ipant response latency. We only considered those setups that had an accuracy rate of

at least 20%. The results showed that the two setups that correlated the highest with

participant responses were TISK-B with the relative decision criterion threshold set at

.03 and TISK-B with the time-dependent criterion threshold set at 24. The accuracy

rates for these two setups were 27% and 30%, respectively, and they correlated with

dRT somewhat higher than what we observed in Simulation 2 — r = .27 and r = .26

(Figure 2.7). Unfortunately, as in Simulation 2, both of these model estimates only

act as significant predictors of dRT in a statistical linear model until the number of

phonemes in the word is introduced as a predictor.

2.6.3 Discussion

The goal of Simulation 3 was to provide the TISK model with a plausible competition

scenario, both to test its accuracy, and to allow it to better match participant perfor-

mance. We created separate lexicons of close competitors for every MALD_semrich

word and found that English words have many close competitors, far more than the

instantiations of TRACE usually account for. With such an increase in the number of

close competitors in the lexicon, word recognition accuracy drops significantly, mak-

ing the model practically unable to successfully recognize the input, regardless of the

decision criterion and threshold.

The decline in accuracy is not caused solely by the number of competitors, as we

have seen that the model is successful with, for example, the 442-word MALD_sem-
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Figure 2.7: The highest correlations between participant performance and computa-
tional model estimates of the time cycle when the winner should be selected recorded
in Simulation 3. The time cycle when the model selected the winning word is given
on the x-axis, and dRT is given on the y-axis.

rich lexicon in Simulation 2, and also with certain words that have many competitors

in Simulation 3. Additionally, the result that shorter words are more difficult to be

correctly recognized implies that the potential for greater overlap with other words in

the lexicon may impede the selection of the target word as the winner. Our targeted

simulations showed that even if the correct word is selected as the winner using the

relative and the time-dependent criterion, the activation-competition ceases to resem-

ble its standard depictions when a small number of close competitors are selected.

On the other hand, 200 competitors, even if they are the least close of the close com-

petitors, altered the activation-competition process in our example words. It seems

that both the number and the composition of the close competitors (and especially a

combination of the two) may provide insurmountable challenges to the model under

the current setup.

Changing the list of competitors for every word affected not just model accuracy,

but the time cycle in which the winner is selected. Closer competition forced the

model to select the winning word later than in Simulation 2 regardless of the setup.
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This is not surprising, as the decision criteria require one word (the target word) to

make itself distinct from other competitors, and that is more difficult if multiple words

share many of the phonemes with the target word. Furthermore, the increase was

different for different words, and the correlations between Simulation 2 and Simulation

3 estimates were rarely strong.

This change in model estimates did not translate into much better correlation

with participant response latency. Although the correlation between model estimates

and dRT somewhat increased, it remained of a low degree. Most importantly, as in

Simulation 2, model estimates were unable to predict participant response latency

better than the number of phonemes in the word. In other words, we see a clear

impact of realistic, close competition on free word recognition accuracy in TISK and

on the model estimates of when the winner should be selected. However, these model

estimates, when the correct word is selected, remain mostly related to the number

of phonemes in the word, and do not seem to be able to predict how long the word

recognition process should be in the human listener.

2.7 Simulation 4

In Simulation 4 we investigate how TISK performs when presented with a word that

is not present in the lexicon, that is, when the model is presented with a pseudoword.

The decision criteria employed by a model of SWR may be successful in picking a

certain target word as the winner, but at the same time may lead to many pseudowords

being wrongly recognized as existing words. Previous simulations have shown that

TISK performs very well in free word recognition, regardless of the phonemes used,

when the competitor set does not include too many close competitors to the target

word (i.e., in Simulation 2). We once again give the model its best chance at high

performance, and observe whether the decision criteria can discard pseudowords as not

present in the lexicon under those same, lax competition conditions used in Simulation

2.
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2.7.1 Simulation setup

Simulation 4 is effectively a repetition of simulations performed using TISK described

in Simulation 2, but instead of MALD_semrich words, we presented the model with

MALD_semrich pseudowords. The lexicon of competitors was still the same set of 442

MALD_semrich words and we used the same parameter sets and the same decision

criteria as in Simulation 2.

In Simulation 4, we did not estimate the time cycle when the decision should be

made that the input is a pseudoword. The reason for this was simply because there

are no guidelines made by either TRACE or TISK stating how this decision should

be made. Therefore, we also made no comparisons between TISK model estimates

and participant response latencies to pseudowords in MALD_semrich. The purpose

of Simulation 4 was to test whether using the decision criteria that yielded high word

recognition accuracy would also cause the model to incorrectly flag pseudoword input

as a word.

To make the simulation as comparable to Simulation 2 as possible, we excluded

all pseudowords that were longer than the longest MALD_semrich word. We also

excluded all the pseudowords that contained phonemes that were not present in the

word list. The total number of retained pseudowords was 416.

2.7.2 Results

MALD_semrich words had on average three close competitors (cohorts, rhymes, and

embeddings) present within the other 442 words; MALD_semrich pseudowords on

average had 2.56 close competitors within those words. Among these, 101 (24%)

pseudowords had no close competitors. In other words, it seemed that it should be

fairly easy for TISK to recognize that the input does not match any of the words

present in the lexicon.

The results presented in Table 2.7 show that the relative and the time-dependent

criterion perform poorly regardless of the parameter set used. When parameter sets
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B and C are used with the relative decision criterion we do see a bit of an increase

in the number of cases when no word has been selected as the winner, but 4 out of 5

pseudowords still activate a word in the lexicon highly enough for the input signal to

be recognized as that word. The best results are obtained using the absolute criterion

and parameter sets B and C. The accuracy obtained in these conditions (88 and 93%)

might even match participant performance in the auditory lexical decision task fairly

well.

Table 2.7: Accuracy in discarding MALD_semrich pseudowords when MALD_words
are used as the lexicon of competitors for different parameter sets and decision criteria
in TISK.

Model Parameter set
Criterion accuracy(%)

absolute relative time-dependent

TISK

A 1 3 0

B 88 16 0

C 93 19 0

2.7.3 Discussion

Simulation 2 showed that, with lax competition, using TISK parameter set C and the

standard decision criteria leads to very high free word recognition. In Simulation 4,

we used the same parameter sets and decision criteria and presented TISK with pseu-

doword input. Our results show that the current setup would lead to an unacceptably

large number of mistakes when the relative and the time-dependent decision criteria

are used. These errors happen even in those pseudowords that have practically no

close competitors in the lexicon that could confuse the model. The absolute criterion

performed significantly better (at least when parameter sets B and C were employed).

However, previous simulations have shown that the absolute criterion performs the

worst in free word recognition with word input, while also being highly dependent

on word length and the number of time cycles in the simulation. We discuss these
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findings in more detail in the following section.

2.8 General discussion

In the first simulation, we showed that both jTRACE and TISK perform with high ac-

curacy in free word recognition when the default lexicon of 212 words and 14 phonemes

is used. The two models also performed quite similarly, especially in certain setups.

However, the model estimates did not correlate well with participant response latency.

In the second simulation, we expanded the phoneme set to 39 phonemes. jTRACE

was unable to successfully represent diphthongs, affricates, and the r-colored vowel

(as combinations of two shorter phonemes), and word recognition accuracies dropped

significantly. In contrast, word recognition in TISK was even higher than in the first

simulation. The correlations between TISK estimates when the winner should be

selected and participant response latency increased slightly. Still, TISK model esti-

mates could completely be replaced by the number of phonemes in the word when

predicting response latency. In the third simulation, using TISK only, words competed

only against their close competitors. Word recognition accuracies decreased severely

and TISK model estimates could again be replaced by the number of phonemes in

the word when predicting participant response latency. In the fourth simulation, we

show that the decision criteria which yielded very high free word recognition results

in Simulation 2 also lead to a large number of false positive responses when TISK

is presented with a pseudoword. In short, we found that jTRACE simulations were

impeded by poor phoneme representation, that TISK simulations were impeded by

close competition, and that neither model provided estimates of when the winning

word should be selected that contributed to better prediction of participant response

latency, regardless of the setup used. Furthermore, it seems that the decision criteria

are not fitting for making a lexical decision task, that is, choosing whether the input

signal is present in the lexicon or not. Although we were relatively unsuccessful in

simulating participant performance in the auditory lexical decision task, the simula-
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tions presented in this paper provided several important insights into the direction

in which contemporary models of spoken word recognition should develop, as well as

some hypotheses about the spoken word recognition process.

The fact that jTRACE and TISK estimates did not predict participant response

latency in our simulations is not an immediate proof of model failure. Magnuson et al.

(2012) discuss heuristics for model evaluation, differentiating between issues with the

linking hypothesis, parameters used, model implementation, and the theory itself. We

believe that the computational model and the participants were presented with similar

tasks and, as much as possible for these two computational models, similar input, i.e.,

that the time cycle in which a winner is selected based on the activation-competition

process in jTRACE and TISK should roughly correspond to the average time it takes

participants to respond to the word stimulus in the auditory lexical decision task,

especially if word characteristics such as frequency or concreteness are accounted for.

However, we must also address model implementation and the parameter sets used

before assessing the theories behind jTRACE and TISK.

A model of spoken word recognition should be able to represent as much of the

variability present in the actual acoustic speech signals as possible. Not only does this

allow the model to simulate more of the speech perception phenomena, it also makes

it more plausible as it is presented with the same information a human listener is

presented with. The best way to achieve this is to use the acoustic signal as input for

the model. In jTRACE (TRACE II), the signal is instead represented using a number

of acoustic pseudofeatures, and their values define the phoneme set. Although this

solution is well-founded and allowed the model to be used in simulations that propelled

the field forward, three decades since the model was created and more than a decade

since jTRACE was developed as its reimplementation, arguably the biggest issue with

using jTRACE is its input representation (i.e., input implementation).

Limits imposed on the lexicon size can be remedied by creating subsets of close

competitors, as we did using TISK. A limitation in the set of phonemes that can be
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represented in the model, however, is not as easily sidestepped. In jTRACE, every

occurrence of a phoneme is necessarily equal to every other occurrence of that same

phoneme. Phoneme overlap introduced to account for coarticulation slightly alters the

signal depending on the preceding and the following phoneme, but it is not uncommon

for a phoneme to find itself in the same immediate environment in multiple words,

and, regardless, the central part of the phoneme as represented in jTRACE always

remains the same. This makes jTRACE unable to account for the fine changes in

the acoustic characteristics of speech sounds that affect spoken word recognition (e.g.,

Andruski et al., 1994; Salverda et al., 2003), and makes the model miss the variability

created by various other speaker and contextual factors, phenomena that Fine-Tracker

(Scharenborg, 2008, 2009) was specifically developed to simulate. Certain targeted

phoneme changes can be made in jTRACE explicitly, but these are made for the

purposes of simulating effects on the phoneme level, and cannot reasonably be a part

of a large-scale simulation at the word level. Therefore, some of the important topics

of investigation in the field of spoken word recognition, such as representing reduction

in speech (Ernestus & Warner, 2011; Ernestus & Baayen, 2007; Tucker, 2011; Tucker

& Ernestus, 2016) or accounting for other fine variation in the acoustic signal remain

outside the realm of abilities of jTRACE, as they can only be presented via coarse

changes in pseudofeature values or phoneme splicing.

Additionally, all of the phonemes are practically steady-state phonemes in jTRACE.

The pseudofeature values do rise at the beginning and decrease towards the end of

a phoneme’s presentation, but this change is a fixed value, and the number of time

cycles assigned to ramping on and ramping off are necessarily identical for all pseud-

ofeatures. Besides this representation not fitting the reality of the acoustic signal,

as, for example, even monophthongs often have a degree of formant value change

throughout their production (Hillenbrand, 2013; Hillenbrand et al., 1995; Nearey &

Assmann, 1986), it also disables the model from representing diphthongs or affricates,

which are defined by the change in their acoustic (pseudo)features as they unfold. The
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solution we adopted, the one also used by Mayor and Plunkett (2014), was to create

phonemes of half duration and put them together, e.g., create /Ù/ by combining /t/

and /S/. This solution is not perfect and, more importantly, it does not seem to

allow jTRACE to correctly recognize the target word in our simulations. There may

be other solutions. One is, of course, to develop a system in which pseudofeature

values rise and fall independently from one another as the phoneme unfolds. An-

other solution would be to treat a phoneme in jTRACE as internally a-temporal. For

example, /Ù/ would have a relatively high value for both burst and frication at the

same time, and these values would ramp on and ramp off together, even though the

“burst” part of /Ù/ happens before the “frication” part. Regardless of the approach

taken, jTRACE needs to be able to represent all of the speech sounds in a language

or it can only be used to run simulations on limited toy word sets. If this limitation

is not also present in the experimental task (as it can be, for example, in the visual

world paradigm), any comparison between model estimates and experiment data can

only be conceptual, not direct.

TISK does not have this problem as all of the phonemes of English (or any other

language) can be represented in it. Our simulations have shown that there is no

decrease in word recognition accuracy between TISK Simulation 1 and Simulation

2, even though the number of phonemes increased from 14 to 39. TISK does this

by assuming that the phoneme recognition process is already complete, and uses

phoneme strings as input. This approach does come at a cost, and we are unsure

whether disposing with acoustic pseudofeatures is a step in the right direction. All

of the acoustic variability within speech sounds (phonemes) is obliterated with this

approach. This approach, however, conflicts with studies which show the importance

of sub-phonemic differences (e.g., Andruski et al., 1994; Marslen-Wilson & Warren,

1994) and prosodic cues (e.g., Kemps et al., 2005; Salverda et al., 2003) for speech

recognition. Furthermore, the competition process treats all phonemes as equally

probable competitors, as in the Neighborhood Activation Model (Luce & Pisoni,
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1998), making /sæt/ an equal competitor to /bæt/ as /pæt/, even though /bæt/

and /pæt/ should sound much more similar. Finally, the process which leads to a

successful recognition of constituent speech sounds in a word is by no means trivial

or easily solved for, and therefore needs to be explained.

Fine-Tracker (Scharenborg, 2008, 2009), SpeM’s (Scharenborg et al., 2005) more

contemporary successor, already uses the acoustic signal as input. The most recent

additions to the group of models that simulate spoken word recognition, DIANA (ten

Bosch, Boves, & Ernestus, 2015) and the discriminative lexicon model based on linear

discriminative learning (Baayen, Chuang, Shafaei-Bajestan, et al., 2019), do the same.

The authors of jTRACE and TISK themselves notice the issue of the field not moving

away from what was intended to be a temporary solution, i.e., using pseudofeatures

or phonemes as intermediary layers and assuming these were already successfully

recognized, and have already started developing their own solution (EARSHOT) that

also relies on actual acoustics (Magnuson, You, et al., 2018).

Combining TISK with a system that recognizes phonemes from the acoustic signal,

as in DIANA or Fine-Tracker, could greatly enrich the model and perhaps make its

estimates more similar to participant responses. Pilot simulations using DIANA with

MALD data indicate that the model can be quite successful in recognizing novel

speech input (Nenadić et al., 2018). The highest accuracy DIANA attained in free

word recognition was approximately 95% with a lexicon of competitors of close to

25,000 words (ten Bosch, Boves, & Ernestus, 2015). Additionally, in comparison to

jTRACE and TISK, DIANA shows significantly higher correlations to participant

behavior in the auditory lexical decision and word repetition tasks, ranging from

r = .4 to r = .76 (Nenadić et al., 2018; ten Bosch, Boves, Tucker, et al., 2015; ten

Bosch et al., 2014; ten Bosch, Boves, & Ernestus, 2015). However, we are currently

investigating the contribution of signal duration to this correlation (similarly to how

the number of phonemes highly corresponds to TISK estimates).

A model of spoken word recognition should attempt to provide a representation of
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the structure of the mental lexicon. There is now a growing body of research showing

that semantic variables play a role even in isolated spoken word recognition (Goh

et al., 2016; Sajin & Connine, 2014; Tucker et al., 2019). We noted the same albeit

modest contribution in the statistical models predicting MALD response latency in

this study. However, the mental lexicon is ordinarily presented as a simple list of

unconnected units in models of SWR — “lexical access” is treated separately from

“meaning access” (Gaskell & Marslen-Wilson, 2002). Currently, jTRACE and TISK

can at best include top-down frequency effects to modulate activation.

Rare exceptions to this sort of representation of the mental lexicon are the Dis-

tributed Cohort Model (DCM; Gaskell & Marslen-Wilson, 1997) and an approach to

modeling spoken word recognition based on discriminative learning (Baayen, Chuang,

Shafaei-Bajestan, et al., 2019). DCM and the discriminative lexicon describe units

in the lexicon as semantic vectors. In these models, the semantic vectors can be

correlated, allowing maps of meaning to be formed. In turn, the competition pro-

cess and final competitor activations are in part shaped by item characteristics other

than frequency. Including a well-developed representation of the mental lexicon is

not a primary concern for jTRACE and TISK, but it will be beneficial to future

development of models of SWR.

A model of spoken word recognition should provide guidelines to model param-

eter values. We already mentioned in the introduction and when describing the

simulation setup that the parameters in jTRACE and TISK are rarely changed and

considered robust. We could only add another comment that the parameters are in

“delicate equilibrium” and that their change may unpredictably affect the outcome

of the simulation, recounted by the authors of jTRACE (Strauss et al., 2007, pp.

30). Therefore, in all our simulations, we relied on suggested (established and used)

parameter sets for both jTRACE and TISK. Our results show that, in general and

regardless of the setup, within-model estimates of when the winner should be selected

tend to be high, and word recognition accuracies tend to be comparable. For exam-
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ple, nearly all TISK setups in Simulation 2 produce very similar results (even if the

activation-competition process, when plotted, does not look the same). This lead us

to think that perhaps altering TISK parameter values does not greatly impact the

qualitative result (selection of the winning word); the parameter values may indeed

be very robust. However, certain setups sometimes performed strikingly worse. For

example, TISK-B with the absolute criterion in Simulation 2 and jTRACE-A with

the time-dependent criterion in Simulation 1 had notably lower accuracies then other

parameter sets with the same decision criterion used, indicating that some changes

may greatly impact the results.

At this point, we can only state that the ordinarily used jTRACE and TISK param-

eter sets are not successful in simulating the auditory lexical decision task. Indeed,

Magnuson et al. (2012) mention that the necessity to change model parameters for

every simulation can be used as an argument against a model. However, it stands to

reason that different parameter sets may be required for simulating different exper-

imental tasks — similarly to how participants (probably) adopt different strategies

when confronted with different experimental tasks. Since this is the first time, to the

best of our knowledge, that simulations of the auditory lexical decision task were per-

formed by comparing model estimates of the time cycle when the winner is selected

to participant responses, it may simply be that different, new parameter values are

required.

Therefore, the parameter space of jTRACE and TISK still needs to be further

explored. We did not test all possible (plausible) parameter values, and there may

yet be a setup that will lead to both higher word recognition accuracy and perhaps

better correlation with participant response latency. jTRACE and TISK have a large

number of parameters, and each can be fine-tuned using value continua. This makes

the number of parameter value combinations exceedingly, unfeasibly large to be tack-

led using some sort of a hypothesis-driven manual system — considering possible

combinations even when we wish to test merely five different values for each parame-
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ter would require thousands of simulations. (We attempted various informed manual

searches, not reported in this paper, in order to improve the activation-competition

process as visible in the figures and word recognition accuracy, but we were unsuc-

cessful.) We believe that contemporary computational power and machine learning

approaches may allow researchers to test the full breadth of parameter combinations

in search for the optimal solution. Only then would we be able to state with some

certainty whether jTRACE and TISK can produce estimates that match participant

response latency in the auditory lexical decision task, and then further investigate

whether that parameter set can be successfully applied to other comparable datasets

without significant changes.

A model of spoken word recognition should incorporate a decision component.

DIANA (ten Bosch, Boves, & Ernestus, 2015) is a good example of an end-to-end

model of spoken word recognition, as the model defines the decision-making process

as well, allowing the researchers to explicitly test whether that aspect of the model is

fitting experimental data. Currently, jTRACE and TISK have no built-in function or

recommendation as to how the winning word should be selected. In our simulations,

we used the three decision criteria used by the developers of jTRACE and TISK to

compare the two models (Hannagan et al., 2013), and we even tried modifying the

decision thresholds. However, there are many other ways in which the winner could

have been selected — and none of these choices, including the ones we used, can be

said to be an integral part of jTRACE or TISK. Our simulations have shown that the

relative and the time-dependent criterion seem to be better than the absolute criterion

in selecting the target word as the winner. This is an important finding, as it seems

that the sheer activation level should not be sufficient in spoken word recognition;

words and competing candidates differ in their length (number of phonemes) and the

density of the competitor pool, and some reach activation levels others do not. In

other words, it seems that the decision should be made on the principle that a certain

word is simply the best candidate there is (for long enough), regardless of the level
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of activation generally registered for different words.

However, relative approaches come with a risk. In the auditory lexical decision task,

participants are presented with both words and pseudowords. A decision process that

correctly selects the target word as the best (winning) competitor from a group of

competitors may still select a certain word as the winner even if the input is not in

the lexicon (a pseudoword). Simulations with pseudowords act as another test for the

decision criterion employed — if a decision criterion recognizes words successfully,

but at the same time leads to a word being selected as the winner even though the

input is not present in the lexicon, then the decision process needs to be altered. This

concern was well represented in our results from Simulation 4: the absolute criterion

performed fairly well in lax competition, while the relative and the time-dependent

criteria yielded an unacceptably large number of false positive responses.

One option to circumvent the issue of a word being selected with pseudoword input

could be to combine decision criteria and select a competitor as the winning word

only if it is the best candidate for sufficiently long, but has also reached an absolute

activation level that marks it as “sufficiently word-like”. Another option is to treat the

“word/not word” and “which word?” as two separate decisions (as is currently done in

DIANA): perhaps the decision when the leading candidate should be selected as the

winning candidate is not necessarily the same decision as the one stating whether the

input is present in the lexicon or not. With the decision criteria used in our report,

it remains unclear when the “not a word” decision should be made if no candidates

ever reach the threshold, as should happen if the input is not a word in the lexicon.

A model of spoken word recognition should be easily accessible and allow even

users with lower proficiency in programming to conduct simulations. Assessing model

performance and further model development fully depend on conducting simulations

and matching the findings with data from behavioral experiments. A model that

is accessible to the wider research public can be tested on numerous and varying

datasets, where simulations can be replicated. Furthermore, the model can then
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be tested in its ability to match findings from a wide variety of experimental tasks

investigating spoken word recognition, subject to the interest of a particular research

group. As we have seen, a certain model with certain parameters may be successful

in simulating data from one task, with the same model and setup failing to match

participant data from another task.

The jTRACE reimplementation of the TRACE II model allowed many researchers

to conduct their own simulations, leading to a significant increase in the number of

studies that report computational simulations (Chawla & Chillcock, 2019). Choosing

jTRACE and TISK for our simulations was in part governed by the fact that there are

not many models of spoken word recognition that a researcher can independently delve

into, without the assistance of the developer. However, as the authors of jTRACE

note, we still found using jTRACE scripts to be “unfortunately cumbersome” (You

& Magnuson, 2018, pp. 876), and its graphic user interface to have numerous errors.

In turn, TISK is arguably the most approachable model of spoken word recognition

at this time. We have tested and confirmed the claim made by the authors that

a user with some experience using platforms such as R (R Core Team, 2018) can

successfully navigate TISK simulations in Python, even if they have no experience

with that programming language (You & Magnuson, 2018). There are certain features

which would be useful to have as part of the standard TISK code, but an advanced (or

a persistent) user can expand the code on their own for other purposes. This makes

jTRACE and TISK, with their faults, invaluable assets to the field of computational

modelling of spoken word recognition.

Finally, it may be that no changes in the model implementation or parameter

values would yield high word recognition accuracy and results that fit participant

responses. In our attempts to simulate the auditory lexical decision task, the most

striking observation was how close the competition between words actually was. The

number of very similar competitors that are extracted for every target word using the

criteria from notable models such as TRACE (McClelland & Elman, 1986), COHORT
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(Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978), or NAM/PARSYN

(Luce, 1986; Luce et al., 2000; Luce & Pisoni, 1998) seems to be creating extensive

subsets.

COHORT reduces the list of competitors after the initial two or three phonemes and

keeps excluding competitors upon mismatch but see COHORT II, where slight initial

mismatch is allowed; Marslen-Wilson (1987), Marslen-Wilson et al. (1988). However,

it may be that the cohort size is unfeasibly large at the very beginning of reducing

the list. The mean number of close competitors extracted from the CMU dictionary

using the TISK command for the 442 MALD_semrich words is approximately 650,

and ranges between 17 and 2,243 close competitors per target word. In comparison,

mean number of phonological neighbors (including all the words that are one phoneme

edit away from the target word, also based on the CMU dictionary) in all MALD

words is only 13, and ranges between 0 and 240 phonological neighbors. Using only

NAM neighbors as competitors may therefore benefit model accuracy, and perhaps

even the correlation to participant response latency. On the other hand, phonological

neighborhoods may be quite extensive in highly inflective languages like Finnish.

Certain suggestions were already made to remedy the issue of competition includ-

ing too many words. In Shortlist A and B (Norris, 1994; Norris & McQueen, 2008)

a smaller number of candidates is selected at each time step and they are the only

ones considered in the competition process. In Shortlist B, simulations include over

20,000 competitors to every word, while the focus remains on the small number of

“shortlisted” closest competitors only. TISK can also accommodate large lexicons,

but still not the entirety of the CMU dictionary, at least with our computational

resources. Since we wanted to investigate close competition, in Simulation 3 we man-

ually preselected the lexicon of only close competitors from the CMU dictionary for

every target word, effectively “shortlisting” candidates following TRACE’s approach

to what should comprise close competitors. The results of the simulation showed

that the activation-competition process ceases to resemble the expected distribution
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when only 20 of the closest competitors are used in the TISK lexicon. Therefore,

an application of a manual “shortlisting” solution based on TRACE categorization of

close competitors in TISK would still require additional parameter changes to those

currently employed in order to obtain acceptable results.

The finding that having 20 closest competitors in the lexicon of competitors pre-

vents TISK from properly performing may have implications to other models of SWR

as well. Both Shortlist B and DIANA (ten Bosch, Boves, & Ernestus, 2015), similarly

to TISK, allow for large lexicons of 20 to 30 thousand words to be employed. How-

ever, we have seen that having a sizable lexicon of 20 or 30 thousand words does not

guarantee that all (or most) of the close competitors to the target word are included

— 71% of 116 thousand CMU words were a close competitor to at least one of only

442 MALD_semrich words. This indicates that some close competitors would be

missing if 20 or 30 thousand word lexicons are used (note: based on TRACE criteria

of what comprises close competitors). Ideally, in models of SWR there would be no

need to preselect competitors or to create “shortlists” of competitors, but it seems

that technical limitations and computational feasibility would likely force researchers

to make certain assumptions and adapt their lexicons, at least for now. Furthermore,

the question of competitor selection is at the core of many models of SWR. Future

simulations should compare multiple competitor selection approaches (e.g., TRACE

vs. COHORT vs. Shortlist vs. NAM, etc.) and increase the number of close competi-

tors for every word based on these criteria. It would be very interesting to see how

not just large, but also close competition affects model performance in cases of Short-

list B and DIANA, as we have seen it have substantial impact on TISK performance

under the current parameter setups used.

Another approach is to assume that the decision is only made once the entirety of

the signal is present, which is in line with behavioral data — especially in the case

of the auditory lexical decision task (Ernestus & Cutler, 2015; Tucker et al., 2019),

where a presumed “word” stimulus could become a pseudoword at any point and less
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than 3% of all responses are made before signal offset. If we take into account some

time for the response to be made — e.g., 200 ms, which is the amount assumed by

DIANA (ten Bosch, Boves, & Ernestus, 2015) — 20% of all responses to words are

made before this time elapses in the MALD1 dataset. Perhaps the “entire signal”

should instead refer to the uniqueness point of the word, and we find in MALD1 that

practically no responses are made before the temporal uniqueness point of the word,

even when 200 ms are added to represent time needed for executing the response.

Although additional investigation is needed to better describe the cause for early

responses and what is considered “sufficient information” (e.g., the entire signal or the

uniqueness point), it is apparent that certain models of SWR are shifting their focus

from the early activation-competition process towards the word offset. The current

implementation of the discriminative lexicon (Baayen, Chuang, Shafaei-Bajestan, et

al., 2019) abandons the incremental aspect of the process of spoken word recognition.

In DIANA (ten Bosch, Boves, & Ernestus, 2015) the simulations include estimates

for the time it takes to make the decision which word is the winning word after the

signal offset, as it is assumed that in many cases the decision cannot be made until

that point. However, we have seen that the solution that disregards the temporality

(incrementality) of the signal in TISK, at least with the current simulation setup, was

not successful in simulating MALD data.

Yet another possibility is for the listener (and therefore the model) to consider

larger chunks of the continuous acoustic signal (more than what would correspond

to, e.g., the first two phonemes in the TRACE model). This would reduce the number

of plausible competitors, and the model could assess whether a winning word is found,

again, at larger time steps than those currently employed. Once it is clear that the

signal is complete (i.e., past the signal offset), the decision-making process would

pick the best match from the list of remaining (hopefully few) competitors. In other

words, the incrementality of the process of spoken word recognition is maintained,

but the estimates of competitor activation are based on longer (larger) chunks of the
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acoustic signal. In a way, TISK already does this by taking into account all of the

possible diphone combinations in the word. We also see this inclination in certain

learning models of SWR (see Magnuson et al., 2012). Adaptive Resonance Theory

(ART; Goldinger & Azuma, 2003; Grossberg et al., 1997; Grossberg & Myers, 2000)

stores chunks that can be phonemes, syllables, or even entire words if they co-occurred

often enough in the learning process. In the discriminative lexicon approach, (Baayen,

Chuang, Shafaei-Bajestan, et al., 2019) the acoustic input is represented using the

so-called frequency band summary features (Arnold et al., 2017) that are calculated

for larger portions of the acoustic signal of a word, e.g., in two or three chunks for a

three-syllable word.

Many more simulations, alongside behavioral study findings, are required to test

these assumptions and solutions. It is clear that the field of computational modelling

of spoken word recognition cannot advance without actual simulations that will adapt

model parameters and the models themselves, which in turn is fully dependent on the

models being accessible. The most pressing changes that need to be made, especially

considering jTRACE and TISK, would include using actual acoustic signal as input, a

detailed investigation of how parameter values and decision criteria impact simulation

outcomes, and simulations of various experimental tasks and datasets.
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Chapter 3

DIANA

Chapter 3 was completed with help from Louis ten Bosch, the author of DIANA, and

has been submitted as:

Nenadić, F., ten Bosch, L., & Tucker, B. V. (2020). Computational modelling

of an auditory lexical decision experiment using DIANA. Manuscript submitted for

publication.

We also thank Terrance M. Nearey and Matthew C. Kelley for their help in shaping

this study.

3.1 Introduction

The question of how a listener understands the meaning of what is being said is central

to the field of speech perception and spoken word recognition. Isolating characteristics

of the speech signal that act as reliable cues of its content has proven difficult due to

lack of invariance, leading to a long debate and numerous explanations of how this

process unfolds. Still, most models of spoken word recognition (SWR) sidestep the

problem of analyzing the acoustic speech signal and “instead use an artificial, often-

hand crafted, idealised discrete (prelexical) representation of the acoustic signal as

input” (Scharenborg & Boves, 2010, pp. 144).

The main reason for eschewing the acoustic signal were technical limitations that

all first and second-generation models of SWR faced, not lack of understanding of
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its importance. Topics ranging from acoustic-phonetic invariance to prosodic cues

were central in the development of the Lexical Access From Spectra (LAFS) model

proposed by Klatt (1979). The acoustic-phonetic representation in bottom-up ap-

proaches to SWR is also discussed by Pisoni and Luce (1987) as they overview what

are mostly considered first-generation models of SWR, but also the Cohort model

(Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978) and TRACE (Mc-

Clelland & Elman, 1986). Where the more recent, second generation models of SWR

are concerned, TRACE I is built around the acoustic signal being used as input, but

TRACE II, the model that was actually implemented, employed acoustic pseudofea-

tures instead (McClelland & Elman, 1986; Strauss et al., 2007). Similarly, Shortlist

(Norris, 1994) used phoneme strings as input, but Shortlist-B (Norris & McQueen,

2008) made a step towards representing their variability better by using sequences

of phoneme probabilities calculated over time slices, which were obtained from a di-

phone gating study with human listeners. One consequence of using pseudo-acoustic

input is difficulty of establishing a direct comparison between model output and hu-

man performance; that is, forming what Magnuson et al. (2012) refer to as a linking

hypothesis. Very few models of SWR offer a clear-cut estimate of when the model

recognized the input as a certain word.

However, although many of the technical limitations have since been alleviated,

most models of SWR continue to settle for pseudo-acoustic input. Even the more

recently developed Time-Invariant String Kernel model (TISK; Hannagan et al.,

2013; You & Magnuson, 2018) uses phonemes as input, assuming that the process of

phoneme recognition had already been successfully completed. Notable exceptions to

this trend are SpeM and Fine-Tracker (Scharenborg, 2008, 2009; Scharenborg et al.,

2005) and the discriminative lexicon approach to spoken word recognition (Baayen,

Chuang, Shafaei-Bajestan, et al., 2019). Fine-Tracker maps the acoustic signal to

a set of articulatory features, and it is capable of simulating durational and fine-

phonetic detail effects captured in behavioral experiments (see, e.g., Andruski et al.,
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1994; Salverda et al., 2003). The discriminative lexicon approach extracts frequency

band summary features (Arnold et al., 2017) which are strings describing a partic-

ular frequency band of a temporal chunk of the signal in terms of its initial, final,

median, and maximum amplitude. Both approaches are promising, but may require

additional fine-tuning, as is the case with Fine-Tracker (see Scharenborg & Merkx,

2018), or additional testing, in case of frequency band summary features.

To the best of our knowledge, the only other model to also implement acoustic

signal as input is DIANA (ten Bosch, Boves, & Ernestus, 2015). Similarly to other

notable models of SWR, DIANA is an activation and competition model. The cur-

rent setup uses speech corpora to develop acoustic models, which are then used to

calculate phone activations in novel acoustic signals presented to DIANA. What sets

DIANA apart even in comparison to models like Fine-Tracker and the discriminative

lexicon approach is that it acts as an end-to-end model of SWR. Models of SWR

generally do not include a decision rule of when the target word should be selected;

DIANA, in turn, allows for generating estimates of response latencies and simulates

word/pseudoword decisions that can be directly compared to those obtained in be-

havioral experiments.

In the present paper, we first give a more detailed description of DIANA and

previous simulations performed using this model. We then motivate the present

simulations, presenting the goal of the current study. The central part of the paper

describes the simulations we performed and discusses the findings to both develop

DIANA and further scrutinize the process of spoken word recognition.

3.1.1 DIANA

A coarse visual representation of DIANA’s components and parameters is given in

Figure 3.1 (adapted from ten Bosch, Boves, Tucker, et al., 2015). The model takes

the speech signal as input and uses existing automatic speech recognition acoustic

models (described in detail in later sections) to activate subword units, which are
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phones in the current setup, and words in the mental lexicon represented as phone

strings. The model can also weigh the activations using top-down information such

as word frequency. The impact of top-down information is controlled by changing the

parameter γ. Besides the activation component, DIANA also includes a decision and

an execution component.

The decision component operates in parallel with the activation component, re-

assessing whether a winner can be found at each time step. As words in the lexicon

gain activation, they compete without lateral inhibition until a winner is selected

based on the difference in activation between the leading candidate and the runner-

up. This difference is determined by an adjustable threshold θwc. If no winner is clear

before signal offset, parameter β determines the added time required to make a de-

cision depending on remaining competition. DIANA also makes a word/pseudoword

decision by examining whether word activation is similar enough to the string of

phones that the model activates independently of the lexicon. If a string of phones

not present in the mental lexicon (i.e., a possible pseudoword that happens not to be

a lexical item) is activated much better than any phone string that is present in the

mental lexicon (i.e., any word), then the input signal is categorized as a pseudoword.

The difference in activation required to make a “pseudoword” decision is governed by

an adjustable threshold θlb.

Finally, the third major component of the model is the execution component. The

execution happens after the decision has been made and represents the time taken to

actually respond (e.g., press a button). Usually, this time is set to 200 ms in DIANA.

This estimate of the execution time is based on existing measures of response times

in different tasks (see Kosinski, 2008, for a review). Note, however, that increasing

or reducing the execution time is a linear transformation that would not impact the

correlation between model estimates and some existing behavioral measure. The more

important question is whether an approximation that is a fixed number can represent

the variability in human reaction time well — not all humans react equally fast. Since
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the intent of the model is to represent general tendencies in human behavior and since

it is unclear how a distribution of execution times can be modeled, we employ the

standard approach and use a fixed number. We provide more technical detail about

the current implementation of DIANA when we describe the setup of our simulations.

ACTIVATION 

DECISION EXECUTION 

LEXICON 
ACOUSTIC 
MODELS 

θlb 

β 

γ 

time 

θwc 

response latency 

Figure 3.1: DIANA takes acoustic signal as input and has three components (acti-
vation, decision, and execution). Word activation depends on the input signal, the
acoustic models, and the impact of top-down information adjustable by changing the
parameter γ. The decision component is affected by two thresholds (θwc for the deci-
sion that a word wins in comparison to all other word competitors and θlb for the word
vs. pseudoword decision). If no decision is made prior to signal offset, parameter β
determines the added decision time. The execution component represents the time
needed to execute the decision.

DIANA was predominantly used to simulate the process of isolated spoken word

recognition in word repetition and auditory lexical decision tasks (but see ten Bosch,

Giezenaar, et al., 2016, for a simulation of L2 listener errors in comprehension of

reduced word forms in a sentence dictation task). These simulations were performed

almost exclusively in Dutch. The first such instance (ten Bosch et al., 2013) modeled

auditory lexical decision responses to 613 disyllabic monomorphemic Dutch words

made by 20 participants. The model showed comparable error rates to human par-

ticipants as its accuracy was 96% for the “word” (participant average: 94%) and 93%
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for the “not a word” (participant average: 95%) response. Model estimates of when

the decision should be made also correlated quite well with tendencies in participant

response latency. The average correlation between the model estimate and human

participant performance was r = .47. In comparison, the correlations in response la-

tencies between any two participants never exceeded r = .30. Although these results

imply that DIANA is able to simulate general tendencies in participant responses,

low correlations between participants themselves raise additional questions.

In a subsequent report describing a simulation of participant performance in a

word repetition task using the same stimuli, ten Bosch et al. (2014) explain the lack

of between-participant correlation by using the notion of “local speed effects” (Ernes-

tus & Baayen, 2007). Local speed effects explain the tendency of response latencies

to a certain stimulus to correlate with response latencies to a number of previous

stimuli. It is assumed that these correlations are a product of, for example, learning,

fatigue, or shifts in attention. Since the variation induced by these factors can be

treated as noise in comparison to long term effects such as general cognitive abilities,

their effect should be attenuated, especially considering that a computational model

of SWR is not susceptible to similar effects. Therefore, ten Bosch et al. (2014) took

into account response latencies to five preceding stimuli when estimating the “true”

response latency to a stimulus, similarly to taking into account previous RT in sta-

tistical modelling (see also ten Bosch et al., 2018). The number of relevant preceding

stimuli was selected to achieve maximum participant-to-participant correlation in re-

sponse latency. The correlation between participants and the correlation of DIANA

to the average participant response latency both increased after the local speed effects

have been attenuated, with the latter being r = .41.

The same procedure that removed local speed effects was used in a later study

(ten Bosch, Boves, & Ernestus, 2015) that again simulated participant responses to

613 Dutch words in the word repetition task. This time, however, different model

parameters were also varied, showing that word frequency plays an important role in
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approximating participant response latencies, that the model should not just take the

word with the highest activation score as the winner but should add extra choice time

if there is a close competitor at word offset, and that a word should in general have

a substantial advantage to be selected as the winner. Applying these rules increased

the average correlation between DIANA’s estimates and actual participant response

latencies to r = .76.

DIANA was also implemented outside of Dutch, albeit only once (ten Bosch, Boves,

Tucker, et al., 2015). The dataset included responses from 10 to 12 native and non-

native speakers of English to 1,200 words. The results of the simulation still showed

satisfactory performance of DIANA, with the correlation between model estimates

and average participant response latency in an auditory lexical decision task being r =

.45. In general, it seems that DIANA achieved higher correlations with participant

performance when simulating word repetition than auditory lexical decision data.

3.1.2 The present study

One of many advantages of studies with very large item and/or participant sam-

ple sizes, often called megastudies (see Balota et al., 2012), is that they enable

testing how well model estimates correspond to human performance by providing

a behavioral database for comparison. The results of these comparisons are neces-

sary for further model development. An extensive overview of existing megastud-

ies is given in Keuleers and Balota (2015), while a more recent list is available at

http://crr.ugent.be/archives/2141.

Most large studies investigate responses to visually presented, written stimuli. The

number of existing databases and their sizes are smaller for the auditory domain. Still,

such databases are instrumental in the development of many models of SWR. One of

the first larger databases was created by Luce and Pisoni (1998) and the data gathered

in this study was used in the development of the Neighborhood Activation Model (see

also Luce, 1986). Another example is the study conducted by Smits et al. (2003), as
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the collected data was used in the development of Shortlist-B Norris and McQueen,

2008. Biggest Auditory Lexical Decision Experiment Yet (BALDEY; Ernestus &

Cutler, 2015) collected responses to 5,541 Dutch content words and pseudowords

from 20 young native Dutch speakers and was instrumental in testing DIANA (ten

Bosch, Boves, & Ernestus, 2016; ten Bosch, Boves, & Ernestus, 2015).

Massive Auditory Lexical Decision (MALD; Tucker et al., 2019) is a still ongoing

project designed to provide an even larger database of responses to isolated words

presented in the auditory modality, with the goal of complementing the existing

databases in the visual domain such as the English Lexicon Project (Balota et al.,

2007). One of the purposes of building a large database of MALD responses is to

test existing computational models of SWR. The goal of the present study is to

implement DIANA in English and test how well it matches participant performance

in an auditory lexical decision task using MALD data. Although correspondence

to actual participant behavior is only one of the criteria for estimating adequacy of

models of SWR (see Scharenborg & Boves, 2010, for an extended discussion), an

acceptable fit is still necessary for a model to be considered credible.

DIANA aims to be a language-independent model of SWR and in our simulations

we want to investigate the challenges of implementing DIANA for the first time.

Therefore, although DIANA was already tested in English on a smaller scale (ten

Bosch, Boves, Tucker, et al., 2015), we develop new acoustic models, completing the

entire process a researcher in any language would have to undertake to implement

DIANA for their own purposes. Once the models are created, we test DIANA’s per-

formance in recognizing words in novel speech signals by calculating between-word

competition as a function of time, and, most importantly, by simulating the lexical

decision task. Crucially, we compare model estimates to actual participant perfor-

mance in MALD on a large scale and test model adequacy in that way. Original data

accompanied with DIANA and statistical analysis scripts are available as supplemen-

tary material at https://doi.org/10.7939/r3-jdpa-dn72.
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3.2 Behavioral experiment

As we noted in the introduction, we compare DIANA model estimates to human

performance in the Massive Auditory Lexical Decision (MALD) project database

(Tucker et al., 2019). We use the first version of the dataset (MALD1) available at

mald.artsrn.ualberta.ca. In the present paper, we provide only the necessary infor-

mation about the MALD experiment and the word and pseudoword recordings. More

details about the stimuli and procedure are available in Tucker et al. (2019).

3.2.1 Sample

The MALD1 dataset includes responses from 231 native monolingual English listeners

(180 females, 51 males; age M = 20.11, SD = 2.39). All participants were recruited

from the University of Alberta, receiving partial course credit for their participation.

3.2.2 Stimuli

Stimuli recordings were made by one 28-year-old male speaker of western Canadian

English. The speaker was recorded reading isolated words and pseudowords on a

computer monitor. He was instructed to produce the words written in their standard

spelling as naturally as possible. Pseudowords were presented in their IPA phonemic

transcription and the speaker was instructed to read them as if they were words. All

word and pseudoword recordings are available as separate wave files and have been

aligned using the Penn Forced Aligner (Yuan & Liberman, 2008).

The recording procedure and post-processing of the stimuli yielded 26,800 words

and 9,600 pseudowords used in the experiment. The words were split into 67 sets,

and the pseudowords were split into 24 sets. Each word and pseudoword set contains

400 unique items. A total of 134 pairings of one word and one pseudoword set were

made (i.e., each word list was paired separately with two different pseudoword lists),

creating 134 balanced 800-item lists used in the behavioral experiment.

The simulations described in the following sections have many steps and there was
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small word/pseudoword loss between these steps for various reasons. In the interest of

clarity and brevity, we do not document all of these losses in the paper because they

are minor and because we always maintain a high standard of hundreds or thousands

of items used. We do provide the exact number of items used for critical simulations

and comparisons to MALD data. Detailed information about the simulation process,

including item loss, can be found in our supplementary materials.

3.2.3 Procedure

The participants were seated in a sound-attenuated booth for the experiment. A

single 800-item list of stimuli was presented using the E-Prime experimental software

(Schneider et al., 2012). Stimuli order was randomized. After a visual fixation cross

lasting 500 ms, a word or a pseudoword was presented over headphones and the task

for the participants was to decide whether the signal was a word of English or not

by pressing the “yes” or “no” button on the button box. Responding during stimulus

presentation would interrupt it and the experiment would proceed to the next trial.

If no response was made within three seconds, the following trial was presented. The

participants had the option of returning for another session and a new experimental

list up to three times. Some participants therefore completed more than one list (but

never the same word or pseudoword set), and a total of 284 responses to experimental

lists were recorded.

3.3 Simulation 1 – Acoustic models

The first goal of Simulation 1 was to follow the process of setting up DIANA from

scratch. We developed our own acoustic models and compared their performance with

the performance of existing acoustic models for English in a free word recognition test.

We do not compare model estimates to participant data in this simulation.
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3.3.1 Simulation setup

Acoustic models can be trained using careful (read) speech corpora such as TIMIT

(Garofolo et al., 1993) or LibriSpeech (Panayotov et al., 2015), which was used in the

development of Montreal Forced Aligner (McAuliffe et al., 2017). Acoustic models

can be also trained using spontaneous speech corpora such as SCOTUS (Yuan &

Liberman, 2008), which was used in the development of FAVE (Rosenfelder et al.,

2014). We used two unpublished spontaneous speech corpora as a baseline for cre-

ating acoustic models. The Western Canadian English spontaneous speech corpus

(WCE) contains telephone call recordings made by 11 speakers, while the Corpus

of Spontaneous Multimodal Interactive Language (CoSMIL) contains conversation

recordings of 8 pairs of speakers. We decided to use WCE and CoSMIL to train

acoustic models for three reasons. First, many languages do not have extensive sup-

port in terms of previously available speech corpora. By using our own corpora, we

show that an independent researcher could create a spontaneous speech corpus for

their language of interest and use it to create acoustic models for DIANA. Second,

the speakers in WCE and CoSMIL speak the western Canadian variety of English,

same as the MALD speaker. Third, human listeners are more often exposed to spon-

taneous, conversational speech than to careful enunciations. It is best when a model

of SWR can be presented with the same input as the human listener; in our study

both are presented with MALD items in the test phase. However, we also wanted to

represent the kind of “practice” human listeners receive as faithfully as possible, so

we used spontaneous speech in the training phase.

In our implementation of DIANA, similar to previous implementations, we trained

the acoustic models using automatic speech recognition training in the Hidden Markov

Model Toolkit (HTK; Young et al., 2006). WCE and CoSMIL recordings were sepa-

rated into brief speech intervals, and we further split the longer transcribed intervals

to create speech chunks shorter than 10 seconds. We excluded speech chunks that en-
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tirely consisted of silent pauses, laughter, or other non-speech noise. In total, just over

nine hours of speech were isolated and split into 20,086 speech chunks each shorter

than 10 seconds. We downsampled the speech chunks to 16 kHz, and excluded 31

speech chunks due to potential sound clipping.

The first step in the training procedure takes the speech chunk input and cre-

ates estimates for all transcribed units (in this case, phones) as three-state hidden

Markov models (HMMs), while the acoustic characteristics of phones are represented

by Gaussian mixture models (GMMs). Speech chunks from conversational speech

often included two or more connected words. Therefore, we expanded the acoustic

models to also include estimates for short pauses in speech, that is, we created the

so-called “sp models”.

Increasing the number of GMMs per state may reliably reduce error rate in word

recognition (Vertanen, 2006), so in the second step of creating the acoustic models

we increased the number of GMMs per HMM state from 1 to 2, then 4, 8, 16, and

finally to the usually recommended 32 GMMs. The currently employed monophone

system assumes that phones are context independent. In reality, they are not, so with

larger training material triphone models can be created to take into account phonetic

context. One drawback of such an approach is that it is even more substantially

based on automatic speech recognition, and thereby less likely to serve as a genuine

proxy with regard to the representation of human processing. We kept our models

simple due to our limited training material, but also because HTK is just a technical

mechanism to bridge audio on the one hand and activations of words as items in a

dictionary on the other.

The third and final step in creating the acoustic models was speaker adaptation.

In this step, recordings from the MALD speaker (the speaker that the model will

be tested on) are introduced to realign acoustic model estimates. Using a portion of

speakers’ recordings for training purposes limits the amount of material remaining

for the test phase. Considering that the amount of material from the same speaker
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used in a behavioral experiment may be small to begin with, we wanted to test how

much material is required to create adequate acoustic models. Starting with the “sp

model” described above, we created separate speaker-adapted models differing in the

number of MALD word recordings used for adaptation. Pseudoword recordings were

not used in training. The smallest adaptation set included only three MALD word

lists with a total of 1,200 words. Larger adaptation sets were created in increments of

three (6 lists, 9 lists, 12 lists, etc.) up to 45 MALD word lists with a total of 18,000

words. Each list includes approximately just under 4 minutes of speech.

We compared speaker-adapted models in their ability to recognize the input signal

from a list of competitors comprised of all 26,000 MALD words. We used 6 MALD lists

(46 to 51) as test material. In the current implementation of DIANA, the activation

component analyzes the acoustic input by converting it into MFCC vectors, while

the acoustic characteristics of every phone in the lexicon, as we stated above, are

represented by GMMs specifying the distribution of MFCC vectors for the three

states in a hidden Markov model that each phone has. The matching is performed

using a Bayesian framework and calculated for every ten milliseconds of input, as per

the HTK default settings. Since the goal was to assess the quality of the acoustic

models, activation values were not weighted by word frequency (γ = 0). Furthermore,

we did not use the decision component of DIANA; we simply observed whether the

correct word has the highest activation value. We also compared our acoustic models

based on spontaneous speech corpora with FAVE acoustic models (Rosenfelder et al.,

2014), likewise adapted for the MALD speaker.

Finally, we created n-best lists to show the top competitors and their activations at

word offset. These lists allow us to see whether the competitors considered alongside

the word with top activation are sensible, and also inspect the cases in which the wrong

winner is selected. We created 20-best lists, that is, observed top 20 competitors

for every target word. The choice of the number of competitors was arbitrary and

made to ascertain that no important competitors will be omitted, but also to allow
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feasible computation and data manipulation. The number of retained candidates is

comparable to those used in established measures such as orthographic Levenshtein

distance 20 and phonological Levenshtein distance 20 (OLD20 and PLD20; Yap &

Balota, 2009; Yarkoni et al., 2008).

3.3.2 Results

Free word recognition accuracy

Free word recognition results are presented in Figure 3.2. We can see that free word

recognition accuracy is relatively low when models unadapted to the MALD speaker

are used. In this initial step, the FAVE model performs slightly better than our own

model (although the line fit is favoring our model, the actual accuracy presented

by separate dots shows higher FAVE accuracy). Adapting the acoustic models on

more MALD words leads to a large improvement in free word recognition at first,

but this effect is reduced for adaptations performed on more than 9 MALD word

lists. Acoustic models created based on WCE and CoSMIL slightly outperform the

FAVE acoustic model after speaker adaptation. This difference also becomes smaller

as more words are added and disappears when the adaptation is performed on 40

MALD word lists or more. Free word recognition accuracy never reaches 90%. As

another point of comparison, the acoustic models used by ten Bosch, Boves, Tucker,

et al. (2015) in the pilot DIANA simulations of MALD data had an accuracy of 82%

when 500 words were tested with a lexicon of 36,000 word competitors.

We selected the model adapted on 30 MALD word lists, henceforth referred to as

AM30, for all subsequent simulations. The difference in average accuracy between

AM30 and the acoustic model adapted on 45 MALD lists is only 1%. The model

adapted on 33 MALD lists is the first model where we see a slight decline rather

than an increase in free word recognition accuracy, indicating that any additional

realigning may be volatile. The model still offers a bit more (1.4%) than the model

adapted on 15 MALD word lists, as well as a smaller difference in accuracy across

88



Figure 3.2: Accuracy in free word recognition of 2,403 MALD words. Average accu-
racy per list (46 to 51) is presented by separate points. The number of MALD word
lists used for speaker adaptation is given on the x-axis. Models based on WCE and
CoSMIL are given in dark gray, while the models adapted from the FAVE acoustic
model are given in light gray.

the six test lists. Choosing AM30 as the model to be used leaves 37 MALD word lists

available for testing purposes.

Inspecting top competitors and incorrectly recognized words

We also used AM30 to extract 20-best competitors for the target words in the six

MALD test lists. We noted sensible competitors in all cases, regardless of whether

the correct word was selected as the winner or not. Table 3.1 shows the top four

competitors for target words tales and proceed. For the first word, the string of phones

was correctly recognized although the target word shares the same activation level

as its heterographic homophone tails. The correct word was selected as the winner

because it appears earlier in an alphabetized list of words. (Note that weighing

activation using word frequency would change activation values of the homophones

so the more frequent homophone would be selected as the winner; regardless, in
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later simulations we treat a win by any of the homophones to the target word as

correct.) High activations of rhyme competitors pales and hails indicate that the

model is considering candidates with initial phone mismatches. The word proceed was

incorrectly recognized as precede by a very small difference in activation, indicating

that small differences in vowel characteristics may be difficult for the model to tease

apart. Other close competitors include words that have the same lemma as the target

word.

Table 3.1: Activation of top four competitors at word offset for two example words.
Higher values indicate higher activation (e.g., -100 is better than -200). Activation
level is also dependent on signal length, with longer words reaching lower negatives
than shorter words. For the word tales the correct phone string was detected and
selected as the winner. For the word proceed, precede was incorrectly detected as the
winner, with the target word being a close second.

Target word Competitor Activation

TALES -2,861

TALES TAILS -2,861

(correct winner) PALES -2,870

HAILS -2,880

PRECEDE -5,093

PROCEED PROCEED -5.095

(incorrect winner) PROCEEDS -5,148

PROCEEDED -5,153

Out of 2,403 words considered, only 14 were not one of the top 20 competitors

for their signal: bow, curb, dear, tongues, desirous, boors, brazier, juggle, bairn, beer,

betrothed, croquette, mowing, and priority. We found no errors in the recordings of

these words, and no commonalities between them. The 20 closest competitors for

these words were still sensible. In all other cases, even when the correct word is not

selected as the winner, it is at least a close competitor. In 59% of the remaining cases

the correct word is the runner-up and in 88% it is within the top five competitors.
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A closer (manual) inspection of errors showed that some of them were made because

there is a heterographic homophone among the competitors, such as in urns and

earns or genes and jeans. Other errors mainly occur due to uncertainty whether

there should be an initial stop or not (e.g., breast winning instead of arrest and aiding

winning instead of bathing), due to omitting the final stop (individualize instead of

individualized), or due to the wrong vowel being activated (cake instead of kick).

Complete information on 20-best lists can be found in our supplementary material.

3.3.3 Discussion

Setting up the HTK acoustic models required for DIANA simulations was relatively

successful. It seems that approximately nine hours of transcribed and labeled sponta-

neous speech is sufficient to create acoustic models that will, after speaker adaptation,

perform on par with certain existing acoustic models. Where speaker adaptation it-

self is concerned, we selected the model trained on 30 MALD word lists (AM30), that

is, we used slightly less than two hours of careful speech from the MALD speaker.

It also seems that similar results in free word recognition can be obtained with the

equivalent of 40 minutes of speech (approximately 10 MALD word lists).

Free word recognition never reached 90% which is a result that could be improved.

However, the competition process included 26,000 competitors for every word and

even when a mistake was made the target word was often among the closest competi-

tors. Therefore, we decided to use AM30 in subsequent DIANA simulations of the

auditory lexical decision task and simply exclude cases in which the model is making

a mistake.

3.4 Simulation 2 – Lexical decision

When simulating the auditory lexical decision task, DIANA treats the task as two

distinct decisions — (1) the decision of whether a signal is a word or a pseudoword

and (2) the decision of which word is the winning candidate and when it is selected
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as the winner. In Simulation 2, we use DIANA to simulate the first decision: whether

a signal is a word or a pseudoword. We also compare DIANA errors to MALD1

participant errors.

3.4.1 Simulation setup

DIANA decides whether a signal is a word or a pseudoword by comparing the best

possible activation of a word competitor present in the mental lexicon to the best

possible activation achieved if any phone sequence is allowed. We will refer to the

first activation as word activation and to the second as free phone activation. Word

activation is the same activation presented in free word recognition in Simulation

1. In free phone activation, the language model does not include a mental lexicon

(i.e., a list of word competitors). Instead, it only contains phones, and, optionally,

probabilities of moving from one phone to the other. In our simulation, we treated

all possible phone transitions as equally probable.

Word activation can never exceed free phone activation because words form a

subset of the set of all word-like, phonotactically licensed phone sequences. Free

phone activation adjusts itself as best it can to the audio signal and generates a string

of phones; the activation of a phone string already present in the lexicon (i.e., word

activation) can at best perfectly match free phone activation. Sometimes, however,

the signal does not have a perfect match with any of the words in the lexicon and

the activation pattern is coerced to adapt to an existing entry it fits best, leading

to imperfect matching and therefore lower word activation levels. The larger the

difference in word activation and free phone activation, the less the signal resembles

the given word. Finally, it is also possible for free phone activation and word activation

to match very well, even though the wrong word has the highest activation and is

winning instead of the target word.

When a pseudoword is presented to the model, free phone activation should deviate

significantly from word activation for any word in the mental lexicon, simply because
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phone strings comprising pseudowords are not present in the mental lexicon. DIANA

differentiates between word and pseudoword signals using the extent to which free

phone activation matches the activation of a word candidate from the mental lexicon

— words should have similar free phone and word activations, while pseudowords

should have much higher activation of a free phone string than any word activation.

This should yield two distinct distributions of differences between free phone and

word activation, forming a group in which the difference is 0 or close to 0 (words)

and a group in which the difference is larger (pseudowords).

Ideally, there would be no overlap between these two groups of stimuli, allowing the

model to perfectly distinguish between them. However, this would require acoustic

models that perform perfectly, in addition to all word and pseudoword recordings

having very careful enunciation of every phone in the word that align well with the

acoustic model. Instead, DIANA employs a threshold θlb that specifies the difference

between free phone activation and word activation that is small enough for a signal

to be considered a word. This threshold is adjustable and we investigate what value

leads to best accuracies in word and pseudoword classifications. At the same time,

we are careful to select a “strategy” for the model that will at least to a degree match

participant word vs. pseudoword response rates.

Besides calculating free phone activation and introducing pseudowords, we made

additional changes in comparison to Simulation 1. We performed the simulation on all

MALD words from lists 31 to 67 (i.e., all lists that were not used in adapting the model

AM30, a total of 14,800 words) and on all MALD pseudowords. Instead of using all of

the MALD words as the lexicon of competitors, we created separate lexicons for every

word and pseudoword. Since DIANA endorses a Cohort-like competition (Marslen-

Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978), the lexicon included all short

words (three phones or fewer) and all words that share the first three phones with

the target word. The competitors were selected from the CMU dictionary (Weide,

2005). This procedure yielded lexicons of approximately 25 thousand words mostly
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comprised of words with three phones or fewer. In other words, the intention was to

limit the competitor list under the assumption that the first three phones would be

correctly recognized as the signal unfolds, but expand the number of close competitors

by including more similarly-sounding words.

We noticed in Simulation 1 that sometimes the wrong word is selected as the win-

ner because the target word had a heterographic homophone in the lexicon (as in the

urns vs. earns example mentioned previously). Using the entire CMU dictionary to

create separate lexicons of competitors for each target word introduced many such

heterographic homophones. To avoid this issue, we treated all cases in which a ho-

mophone of the target word was selected as the winner to be accurate, given that

homophones have identical activations in DIANA and that in an auditory task where

single words are recognized both are technically correct.

The activation scores for words were still left unaffected by word frequency weighted

by the parameter γ. The decision whether a signal is a word or a pseudoword compares

the activation of a single top word candidate and the best free phone activation,

meaning that relative positioning of word competitors is insignificant. Furthermore,

participants in an auditory lexical decision experiment quickly learn that the number

of words is roughly equal to the number of pseudowords: any given signal has an

equal chance of being a word or a pseudoword and these prior probabilities cancel

each other out.

3.4.2 Results

Differences in word activation and free phone activation for words and
pseudowords

For word recordings, the maximum difference between word and free phone activations

was 371.87, recorded for the word depopulation. Mean difference in activation was

29.64, while the median was 16.93. A total of 3,303 words (22.26%) had the activation

difference of 0, meaning that free phone activation perfectly matched word activation.
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For pseudoword recordings, the differences between word and free phone activations

were expectedly higher. The highest difference was 1,482.45 and it was recorded for

the pseudoword /EkmIsieIskl@ôoUsiz/ which the model fitted as Izzy’s — competitors

with more than three phones beginning with /Ekm/ were rare and not similar to

this pseudoword. The mean difference in activations for pseudoword recordings was

222.34 and the median was 184.38. Still, 337 pseudowords (3.5%) had the activation

difference value of 0, meaning that the model incorrectly interpreted them in a way

that perfectly matched with a word in the lexicon.

Figure 3.3 shows the distribution of word and free phone activation differences for

word and pseudoword recordings. We set the x-axis limit to activation difference

of 500 to make the distribution in the lower values more visible, but the long tail of

differences continues for pseudoword recordings up to 1,482.45. In the case of words, as

the activation difference increases, the number of words with that difference between

word and free phone activation decreases; most words tend to have a small difference

between word and free phone activation. For pseudowords, this trend can also be

noted, but with a much smaller slope, as the distribution is, especially towards the

lower hundreds, nearly uniform.

Adjusting the ratio of “word” vs. “pseudoword” responses and inspecting
DIANA’s accuracy in lexical decision

We then examined the ratio of “word” vs. “pseudoword” responses and model accu-

racy in predicting whether the input signal is a word or a pseudoword as a function

of θlb. To make a balanced list of words and pseudowords for our computational sim-

ulation, we randomly selected a subset of words that matched the number of MALD

pseudowords retained at this point in the simulation process (9,591). The activation

difference was equal in words that were selected and words that were not selected

for the subset, confirmed by a Wilcoxon rank sum test with continuity correction

(W = 25096000, p = .87). We varied θlb in increments of 10, starting from 0, mean-
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Figure 3.3: Histogram of differences in word activation and free phone activation for
MALD words (lists 31 to 67) given in dark gray and MALD pseudowords given in
light gray. The x-axis is limited to activation difference of 500, but the same trend
continues to the maximum activation difference recorded which is 1,482.45.

ing that only a perfect match between word activation and free phone activation

yields a “word” response, and ending with 200, leaving out only 66 words (0.004%)

with an activation difference higher than this number.

The percent of “word” responses increases as the θlb increases. When θlb is 0 only

13.01% of the stimuli are selected as real words. With θlb of 150 the percent of “word”

responses in all stimuli rises to 70.44%. Figure 3.4a shows this relationship and also

includes three points of special interest on the curve. These points mark the quartiles

of the percent of “word” responses in all experimental sessions in MALD1. The middle

half of MALD1 sessions (the interquartile range) are found between points Q1 (48.12%

“word” responses) and Q3 (54.83% “word” responses). These results indicate that in

most sessions MALD1 participants had a fairly balanced response regime, making

roughly an equal number of “word” vs. “pseudoword” responses. Since DIANA aims

to simulate general tendencies in participant behavior, it seems that θlb should be set
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in the range between approximately 50 and 70. This threshold is dependent on the

choice of features (in our case, MFCCs), the quality of the speech recordings, and the

speaker — θlb needs to be adjusted for each new experiment.

DIANA’s accuracy in classifying words versus pseudowords is also dependent on

θlb. As the threshold rises, so does the percent of word signals correctly recognized

as words. At the same time, the number of false alarms increases, as more and more

pseudowords are mistakenly taken for words. Figure 3.4b shows how accuracy for

words and pseudowords changes as a function of θlb and again includes quartiles from

MALD1 sessions for comparison. We see that in our current setup DIANA inevitably

performs worse than an average MALD1 participant, as it cannot have a performance

higher than the value of Q1 for both words and pseudowords. Since the focus of our

simulations were responses to words and since we wanted to match the participants’

balanced response regime, we settled for θlb value of 70. With this threshold value

the model made 55.65% of “word” responses and had an accuracy of 87.92% when

responding to words and 76.44% when responding to pseudowords.

Figure 3.4: Figure (a) presents the relationship between threshold θlb and the percent
of “word” responses DIANA makes. Points Q1, Q2, and Q3 are added for comparison
and represent quartiles of the percent of “word” responses in MALD1 sessions. Figure
(b) shows DIANA’s accuracy in lexical decision for words and pseudowords as a
function of threshold θlb. Points Q1, Q2, and Q3 connected to word and pseudoword
curves represent quartiles from MALD1 session data.
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Cross-tabulation of lexical decision and winner selection accuracy at word offset

showed that 78.46% of word items were both selected as a word by the lexical decision

process and the right competitor won at signal offset. In 10.57% of the cases, the cor-

rect word was the winner based on word activation, but the word activation was still

smaller than free phone activation by more than 70, so these signals were incorrectly

flagged as pseudowords. In 9.45% of the cases, the signal was accurately selected

as a word (the difference between word and free phone activation was less than 70),

but the wrong word had the highest activation at word offset. Only 1.52% of word

recordings were both mistakenly marked as pseudowords and the wrong word had the

highest activation at word offset. Words tend to be misinterpreted as another word

rather than a pseudoword if they are shorter in duration (Welch’s unequal variances

t-test: t(2736.2) = −47.62, p < .001) and have fewer phones (Welch’s unequal variances

t-test: t(2471.3) = −56.18, p < .001), as these words have more close competitors.

Inspecting the relationship between lexical decision accuracy and stimulus
duration

As noted in Simulation 1, longer recordings reach lower negative activation values.

One concern that we had is whether higher differences between word activation and

free phone activation would simply be a product of longer signals and a higher oppor-

tunity of mismatch between the two. Figure 3.5 shows that this is indeed the case, but

mostly for pseudowords (r = .76), not words (r = .33). Words of any length can have

an activation difference of less than θlb = 70 and therefore be recognized as a word by

DIANA. Only 8.16% of pseudowords split into more than 50 frames (approximately

520 ms in duration or longer) are incorrectly recognized as words, and this percent

drops further to only 0.58% for pseudowords with more than 70 frames (720 ms).

We do not see such a strong correlation between duration and accuracy in MALD1

participants. There is no correlation between word duration and the proportion of

correct responses to that word (r = .03). For pseudowords, the correlation between
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Figure 3.5: The relationship between the number of frames (duration) of a stimulus
and the difference between word and free phone activation for that stimulus presented
separately for words and pseudowords. The black dashed lines marks the selected
difference value of θlb = 70. The eventual score a hypothesis (phone string) receives is
based on the summation of local scores that are associated to individual MFCC frames
— in principle, the longer the stimulus, the larger the deviations will be between the
scores of competing candidates.

pseudoword recording duration and the proportion of correct responses to that pseu-

doword is much lower than the one recorded in DIANA (being r = .27 in MALD1

data). The relationship between the proportion of correct responses to words and

the activation difference in DIANA is also practically non-existent (r = −.08), but

pseudowords with higher activation differences are also recognized as pseudowords by

participants more often (r = .29).

3.4.3 Discussion

The goal of Simulation 2 was to test DIANA’s approach to modeling lexical decision,

that is, the word/pseudoword decision all human participants make in an auditory

lexical decision experiment. Specifically, we wanted to establish the best value of the

threshold θlb which determines whether a stimulus will be recognized as a word by
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DIANA. We found that the approach can distinguish between the two types of stimuli

fairly well, although the model in our current setup does perform somewhat worse

than an average MALD1 participant. It is important to note that DIANA’s response

accuracy could be increased by selecting an unrealistic response strategy — in our

case, by increasing the number of “word” responses the model makes. However, this

is a poor approach if the goal of the simulation is matching participant behavior. The

goal of cognitive simulation is to explain a process such as spoken word recognition

in humans using plausible solutions, not to maximize model performance.

The reasons for making mistakes are only partly shared between DIANA and hu-

man participants. Both can “mishear” the signal, taking a pseudoword for a word, a

word for a pseudoword, or mistaking the word for some other word. However, partic-

ipants also make mistakes because they do not know a word, whereas DIANA has all

the MALD/CMU words stored in its lexicon. Additionally, a human participant can

simply lose attention and press the wrong button (ten Bosch et al., 2019), whereas

DIANA always performs on the same level. In the current simulation, DIANA’s per-

formance fully depends on the quality of the acoustic models, the characteristics of the

incoming novel acoustic signal, and the available competitors in the mental lexicon.

In the case of pseudowords, we note a trend in which longer pseudowords are more

accurately categorized by DIANA. We explain this finding in terms of cumulative

activation and lexicon structure. There are more opportunities for longer pseudowords

to mismatch with an existing word. Additionally, the number of plausible word

candidates is smaller for longer pseudowords and with that so are the odds of the

pseudoword signal being mistakenly taken for an existing word. Still, due to imperfect

acoustic models, we see that certain short pseudowords are mistaken for words using

the threshold θlb = 70.

Although a similar relationship between pseudoword duration and accuracy exists

in the MALD1 data, it is much less pronounced. But why are not MALD1 participants

benefiting (as much) from more opportunities for mismatch and fewer plausible word
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candidates when listening to longer pseudowords? We argue that, unlike our current

DIANA setup, MALD1 participants are aware of the morphological and even seman-

tic characteristics of pseudowords, making certain long pseudowords more word-like

to a human listener. MALD pseudowords were created from actual words of English

by replacing a third of their subsyllabic constituents with another phonotactically

licit and probable segment, yielding pseudowords with some apparent morphological

complexity (Tucker et al., 2019). One example is the pseudoword /EnspeIzd/ that was

correctly classified in only 36% of occurrences in MALD1 sessions. Morphologically,

this word may resemble a combination of en plus spaced (although we do note that

the final sounds are voiced in the pseudoword), as in, for example, encircled. Another

example is the pseudoword /trænzvAômIN/. Although there are differences in compar-

ison to existing words such as transforming, or a potential “word” transwarming, the

prefix trans and the suffix ing in conjunction with the central part of the word that

sounds like existing words are likely the reason why this pseudoword was correctly

responded to in only 27% of its MALD1 trials. DIANA is not sensitive to this kind

of similarity and the top word competitor to /EnspeIzd/ is the word inspires, while

the top competitor for the pseudoword /trænzvAômIN/ is tensiometer. Furthermore,

recent research shows that processing written pseudowords is not free of frequency or

semantic effects (Cassani et al., 2020; Hendrix & Sun, 2020), as pseudowords do not

necessarily have a frequency of 0, and as form-meaning patterns learned from words

can extend to pseudoword processing.

Where words are concerned, although we changed the lexicon of competitors, tai-

loring them for every target stimulus, word recognition accuracy remained as high as

in Simulation 1. However, in a portion of cases a pseudoword has higher activation

than the target word. Additionally, among correct lexical decisions there are cases

in which the wrong word had the highest activation. Both of these kinds of errors in

DIANA’s word recognition stem from the same root cause — relatively low activa-

tion of the target word. Since the goal of our simulations is to give DIANA its best
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possible chance at simulating the process of spoken word recognition, we will only use

those words in which both the target word is activated the highest and the signal is

correctly classified as a word in the following simulation of response latency.

3.5 Simulation 3 – Response latency

The goal of Simulation 3 was to test how well DIANA’s estimates of when a word is

recognized and selected as the winner match general tendencies in participant response

latency from MALD1 data.

3.5.1 Simulation setup

In Simulation 3, we only considered the 11,592 words that were both correctly recog-

nized at word offset and treated as words (not pseudowords) by DIANA in Simulation

2. We used the same lexicons of competitors as in Simulation 2. However, in Simu-

lation 3 we calculated word competitor activation using a gating procedure. We split

all word recordings into 20 ms frames. Model estimates were made upon addition of

every new frame. Since the process is computationally demanding and since the initial

stages of word competition are uninformative, we only observed the activation of top

20 competitors in the last 300 ms of the sound signal. In effect, the gating procedure

allows us to estimate competitor activation and observe the activation-competition

process as the signal unfolds. Additionally, DIANA’s decision component can make

a decision at every selected point in time during the signal presentation.

The activation at the final phase of the gating procedure (word offset) is identical to

the activation used in the lexical decision simulation from Simulation 2. We already

determined the value of the lexical decision threshold θlb based on the difference in

free phone and word activation when the entirety of the signal was available to the

model. The majority of responses in auditory lexical decision experiments are made

after signal offset, and our reasoning was that one viable strategy for the listener

would be to make the best possible decisions when all of the information is available.
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Additionally, varying all parameters in DIANA at the same time would create too

many combinations for feasible computation and analysis of results, so we determined

θlb independently from γ, θwc, and β.

We followed similar reasoning when determining plausible values for parameter γ

that controls the contribution of top-down (frequency) effects; the value of γ needs

to be determined experimentally because it depends on the type of word material

used. Since we only selected words that were correctly recognized in Simulation 2,

accuracy in selecting the right word at word offset is 100% with no contribution of

word frequency. However, modifying acoustic activation using word frequency may

change the order of top competitors if a runner-up has a much higher frequency than

the top competitor and a high weight is assigned to the top-down effect, that is,

a high γ is used. As shown in Equation 3.1, a competitor’s total activation (TA)

was calculated as a sum of its acoustic activation from the acoustic model (AM)

and logged frequency count (f) from the Corpus of Contemporary American English

(COCA; Davies, 2009) weighted by parameter γ.

TA = AM + γ ∗ log(f) (3.1)

We assessed which values of parameter γ are acceptable as weights for logged

frequency so that word recognition accuracy is not severely reduced. The word recog-

nition process in the auditory lexical decision task is primarily guided by acoustic

information, not prior probabilities or context; as Norris and McQueen (2008, pp.

371) state: “Once the perceptual evidence becomes completely unambiguous, fre-

quency should never override it”. In effect, we opted for an approach that increases

the difference between the top competitor and other competitors if the top competitor

is a high frequency word, and reduces this difference if the top competitor is a low

frequency word, but ultimately does not determine which word is heard. This should

yield results in which high frequency words are isolated and recognized sooner, while

low frequency words are more difficult to isolate and are recognized later. It should
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also be stressed that the word frequency effect in the current setup is further limited

because it only modifies the activations of up to the top 20 acoustic competitors.

The decision of which word is the winning candidate in DIANA is regulated by a

threshold θwc determining the required difference in activation between the leading

candidate and the runner-up. Since there are many heterographic homophones in the

dictionary that will have identical activation (e.g., tails and tales), we only considered

non-homophone competitors when we determined the difference between the leading

candidate and the runner-up. We calculated this difference at every step in the gating

procedure. When determining the range of acceptable values for threshold θwc, we

again used MALD1 responses as a benchmark. Increasing θwc increases the required

difference between the top competitor and the runner-up for a winner to be selected,

and therefore increases the number of word signals which do not have a clear winner

before word offset. A very low value of θwc will in turn yield many winners before word

offset — which can also lead to many wrong competitors being selected as winners

based on early activation. We decided to adjust the value of θwc so that the percent

of words that win before word offset is roughly equal to the percent of word responses

that happen before word offset in MALD1 data. When determining this percent for

MALD1, we added 200 ms to word duration to take into account the time required

to execute the response, as assumed by DIANA.

We only selected words that were correctly recognized at signal offset in Simulation

2 to be used in Simulation 3. However, a wrong word may be the leading candidate

prior to signal offset, especially considering that top-down information now affected

competitor activation. Therefore, we also tested which word is the leading candidate

at the time frame when the winner is selected.

When a winner is selected prior to word offset, DIANA takes the time at which

it was selected and adds the aforementioned 200 ms for execution. In the case when

the required difference between the top-competitor and the runner-up (controlled by

threshold θwc) is not attained at stimulus offset, a controllable parameter β estimates
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the added time for the final winner decision. The time needed to decide on the final

winner depends on the number of remaining plausible competitors, that is, all the

words with an activation difference of less than θwc from the top competitor. How-

ever, when simulating the lexical decision task, DIANA assumes that the listener is

at this stage also considering viable phone strings which are not present in the mental

lexicon. In other words, pseudowords are also competing with real words, increasing

the perplexity of the decision at signal offset. Unlike for highly activated word com-

petitors, we cannot obtain the activation values for all potential pseudowords. The

number of pseudoword competitors at word offset is approximated by raising 3 to

the power of the number of phones of the target word. This is a crude estimation in

itself that also assumes that these non-word competitors are still plausible competi-

tors at stimulus offset. The formula for estimating choice reaction time then follows

the Hick-Hyman law (Hick, 1952; Hyman, 1953) by calculating the logarithm of the

total number of remaining word and pseudoword competitors weighted by parameter

β (Equation 3.2). Choice reaction time is finally added to the total duration of the

signal, in addition to the 200 ms required for execution.

RTchoice = β ∗ log(Nwords + 3Npseudowords) (3.2)

With acceptable ranges for parameter γ and threshold θwc determined, we adjusted

the value of parameter β to maximize the match in mean response latency between

DIANA and MALD1. We then observed the correlation between logged DIANA’s re-

sponse latency estimates per word calculated using the selected values of γ, θwc, and

β and mean logged MALD1 response latency per word. We followed the procedure

from ten Bosch et al. (2018) to de-trend MALD1 response latencies, limiting the de-

gree of local speed effects (Ernestus & Baayen, 2007). Maximum between-participant

correlation on the entirety of MALD1 data (r = .19) was achieved when ten previous

responses were taken into account to determine the “true” current response latency.

The code for MALD1 data de-trending is available alongside all other data and scripts
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in our supplementary material.

3.5.2 Results

Frequency effects and word recognition accuracy

We first tested how word recognition accuracy at signal offset changes when top-down

frequency effects are introduced to the model. We tested γ values from 0 (no frequency

effect) to 20, in steps of 2. With γ = 20, word recognition accuracy dropped to 90%,

meaning that in 10% of the cases a more frequent competitor won instead of the less

frequent target word. Word recognition accuracy decreased by approximately 0.5%

at each step of γ increase. We decided to allow less than 5% error rate at word offset

due to frequency effects and only considered values of parameter γ up to 10 in our

comparisons to participant response latency.

Adjusting the required difference between top competitor and runner-up
activation

We then assessed plausible ranges for threshold θwc by comparing the percent of

decisions made before word offset in DIANA and MALD1. The correlation between

the percent of responses made before word offset and the percent of correct lexical

decisions was very low in MALD1 sessions (r = −.10). In our simulations, we only

considered words correctly recognized by DIANA and compared their estimates to

response latency in correct trials from MALD1. Therefore, we decided to only observe

the percent of correct responses made before word offset per MALD1 session.

Figure 3.6 shows how the number of winner selections that happen before word

offset decreases as the required difference in activation between the top competitor and

the runner-up (θwc) increases. This relationship is nearly identical for all considered

levels of γ (0 to 10). MALD1 data includes a wide distribution of percents of responses

made before word offset when 200 ms are deducted from the response latency to

account for execution time. This indicates a wide range of participant strategies:

while some opt to make practically no (correct) responses before they heard the
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entirety of the signal, certain other participants make up to 80% of their responses at

least slightly before the signal ended. A portion of this variability may be attributed to

simple differences in speed, as it is probable that not all participants take exactly 200

ms to execute a response to every stimulus. The mean percent of correct responses

made before word offset in MALD1 sessions was 26%, while the median was 24%.

Since our goal was to match general tendencies in participant performance, it would

be reasonable to opt for θwc values that would yield 16% (Q1) to 35% (Q3) of responses

made before word offset. As can be seen in Figure 3.6, θwc values between 150 and

220 fit that range.

Figure 3.6: DIANA’s percent of decisions made prior to word offset as a function of
threshold θwc. Separate lines are drawn for different parameter γ values (0 to 10), and
these do not seem to affect the results. Points Q1, Q2, and Q3 represent quartiles
from MALD1 session data.

However, making a decision prior to word offset also introduces the risk of choosing

the wrong word as the winner: at some point during the activation-competition pro-

cess, a candidate may get highly activated and win, even though the remainder of the

signal would reduce its activation. (Remember that we previously excluded all the
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words that were incorrectly recognized in Simulation 2 due to imperfect alignment of

acoustic models and word recordings, so all words are correctly recognized at word

offset.) Therefore, we tested how accuracy in selecting the right word as the winner

changes as a function of θwc. Figure 3.7 shows that the number of wrong selections

for responses prior to word offset decreases as θwc increases. When the model is more

conservative in selecting the winning word and fewer words are recognized before word

offset, there is less of a chance that the wrong word will be selected as the winner.

Frequency again plays only a minor role, especially in the more favored, higher values

of θwc. The vertical dashed lines in Figure 3.7 represent the margins within which the

average MALD1 session operates (16 and 35% of word responses before signal offset).

According to DIANA, that would indicate that for 10 to 15% of the responses before

word offset the participants actually heard the wrong word. We cannot know whether

this is true as the standard auditory lexical decision task (unlike, e.g., word repetition

task) does not require the participant to state which word they heard. Additionally,

this is not entirely implausible: considering the number of word stimuli in a MALD

session, this would mean that around 10 to 15 word responses were actually made

prematurely, thinking of a different word than the one presented. We also found that

target words for which DIANA selects the winner before word offset have relatively

earlier phonological uniqueness points (when the total number of phones in the word

are taken into account), confirmed by a Wilcoxon rank sum test with continuity cor-

rection (W = 21033820, p < .001). This finding indicated that the selection of words

for which a response was made before offset by DIANA is plausible.

We decided to be more conservative and consider θwc values between 200 and

400 for estimating response latency in DIANA, primarily to decrease the number

of wrong word recognitions. This range of θwc values yields a percent of responses

made before word offset that is not out of range of MALD1 sessions. We excluded

very early DIANA estimates of a word winning (before 420 ms pass with 200 ms for

response included) as unrealistic. We also excluded words that were RT outliers in
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Figure 3.7: DIANA’s percent of accurate responses prior to word offset as a function
of threshold θwc. Separate lines are drawn for different parameter γ values (0 to 10),
and these do not seem to affect the results, especially in higher values of θwc. The two
vertical dashed lines delineate the value range of θwc that yields a percent of responses
made before offset equal to the values between the first and third quartile in MALD1
session data.

MALD1 data. The final number of words used to correlate DIANA’s response latency

estimates with response latency from MALD1 data was 11,488. DIANA estimates

of when the target word should be selected were compared to de-trended MALD1

data from sessions 31 to 67. We used γ values of 0 to 10 in steps of 2 and θwc values

between 200 and 400 in steps of 20. If the decision was made prior to word offset, we

took the time when the slice ends and added 200ms to account for execution time.

In all other cases, we adjusted the value of β to maximize the similarity of estimated

response latency between the model and behavioral data.

Adjusting the calculation of decision time past word offset and predicting
MALD dRT using DIANA estimates

To adjust plausible levels of β, we assessed the final response latency estimate in

milliseconds provided by DIANA and observed whether this duration fits within the
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general time frame of responses in MALD1. Figure 3.8 shows how the average response

latency estimate by DIANA changes as a function of β (ranging from 0 to 100 in

steps of 10) for different levels of θwc. Word frequency effect controlled by γ is not

presented as it had little impact on the overall trends. We see that the estimated RT

increases as β increases, which is expected given that β governs how much additional

time will be spent on each remaining competitor past word offset. Different lines

represent different values of threshold θwc. DIANA’s estimated RT also increases as

θwc increases because more words are not responded to until word offset and have

choice reaction time added to their estimate. The dashed line represents the mean

MALD1 response latency for the 11,488 MALD1 words (949 ms). Similarly, the

mean RT of correct response to word stimuli calculated per MALD1 session is 941

ms. Therefore, a plausible value of parameter β ranges between 25 and 37.

Figure 3.8: DIANA’s estimated RT as a function of parameter β for different values
of θwc. The horizontal dashed line is set at 949 ms and is equal to the mean MALD1
RT for the same 11,488 words considered by DIANA.

However, for the range of β values between 25 and 37 we noticed that the corre-

lation between logged DIANA’s estimated RT and participant de-trended RT (dRT)
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decreases as β increases. We decided to use a broader range of β values to better

explore this trend. Figure 3.9 represents the change in the correlation between DI-

ANA and MALD1 response latency for values of β ranging from -50 to 100 in steps

of 10. Different lines stand for different θwc values (different γ values were again not

considered as word frequency had a very small effect on the overall results). The

highest correlation between logged DIANA’s estimates and MALD1 dRT was r = .43

and it was obtained in negative values of β, specifically, for any value of γ (0 to 10),

θwc of 400, and β of -10. In other words, the best result was obtained when RT was

subtracted from word offset rather than added to it. When no choice reaction time

was added to word duration and execution time (β = 0), the recorded correlation

between DIANA’s estimated response latency and MALD1 data was only slightly

smaller (r = .42).

Figure 3.9: Correlation between DIANA estimates and MALD1 dRT as a function
of parameter β for different values of θwc when both words and pseudowords are
considered as plausible competitors at word offset.
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3.5.3 Discussion

The goal of Simulation 3 was to simulate participant response latency when respond-

ing to words in the auditory lexical decision task. We used words that were correctly

recognized in Simulation 2 and adjusted the values of parameters γ and β and thresh-

old θwc to calculate DIANA estimates of participant response latency. Crucially, we

developed parameter and threshold values that lead to plausible model behavior by

comparing model performance to human performance.

Our results show relatively negligible effects of word frequency on simulation out-

come. High values of γ, which would increase the impact word frequency has on

final DIANA estimates, lead to a large number of wrong words winning instead of

the target word. To prevent this kind of “hallucination”, low values of γ need to be

used. Furthermore, once the ranges of θwc and β values are adjusted and their values

are varied within those ranges, the variation of γ within its acceptable range has a

very small relative impact. In other words, DIANA estimates of participant response

latency in the current setup perform best when they are almost exclusively based on

bottom-up, acoustic information.

Varying the threshold θwc leads to conceptually similar results. Although MALD1

participants seem to be making at least a portion of their correct word responses

before the end of the signal (when 200 ms is calculated as execution time), DIANA

favors a very conservative approach in which the response is made after the entirety

of the signal has already been presented. A lower threshold leads to an increased

percent of wrong word selections prior to word offset, where some of the decisions are

made implausibly early. Additionally, all correlations of MALD1 participant response

latency with DIANA estimates favored the highest θwc we used (400), which indicates

that virtually all DIANA’s decisions should be made only after the entirety of the

word signal had been presented to the model.

DIANA also includes a parameter β which weighs the formula accounting for choice
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reaction time — once the signal has reached its end, the model calculates added time

needed to make a decision between the remaining plausible candidates. DIANA

assumes that in the lexical decision task (but not word repetition task) the set of

plausible candidates at word offset includes the remaining word competitors whose

activation is within the threshold θwc from the activation of the leading candidate.

The correlations obtained with MALD1 response latency were moderate, reaching

the value of r = .43. Although this correlation with participant data is not by any

means low, the contribution of choice reaction time to the overall correlation between

model estimates and MALD1 data was very modest. More importantly, the highest

correlation between DIANA’s estimates of response latency and MALD1 response

latency was registered when using negative values of β. DIANA’s assumptions is

that an increase in the number of remaining competitors should lead to longer choice

reaction times. Instead, given that negative β values were optimal, a higher number

of remaining competitors was connected to shorter response latency. Furthermore,

negative values of β lead to removing time from the total duration of the signal in

order to estimate the duration of the decision process after that signal had already

completed. It is clear that such a procedure is in collision with the physical reality in

which human listeners operate.

Simulating MALD1 response latency data shows a shortcoming of DIANA in the

sense that the transformation from choice entropy to choice response time is not

precise enough. This could indicate that either Hick-Hyman’s law is not applicable in

its full form, or that the computation of the entropy is not precise enough — e.g., due

to the quite rough estimation of the number of pseudoword competitors at stimulus

offset. We offer a more thorough discussion of the theoretical implications of these

findings in the following section.
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3.6 General discussion

In this study, we used DIANA (ten Bosch, Boves, & Ernestus, 2015) to simulate

participant performance in an auditory lexical decision task. In three simulations,

we (1) created new acoustic models for western Canadian English, (2) simulated the

lexical, that is, word/pseudoword decision, and (3) correlated DIANA’s estimates of

when the winning word is selected with general tendencies in participant responses

from the MALD project (Tucker et al., 2019). The results of these simulations can

be used to guide future development of models of spoken word recognition including

DIANA and, at the same time, inform the theory regarding the process of spoken

word recognition.

In Simulation 1, we show that setting up DIANA in a new language is possible

even without existing acoustic models: we used our own, relatively small, in-house

spontaneous speech corpora to make new acoustic models. This process is labor-

intensive, as it requires recording and annotating a speech corpus, training acoustic

models, and recording enough additional material by the speaker whose recordings are

used in experiments to adapt these acoustic models. It would be time-consuming for

an independent researcher to take DIANA as an off-the-shelf model even with existing

acoustic models, given that speaker adaptation must be performed regardless. We

provide the acoustic models we developed and adapted for the MALD speaker as

part of our supplementary materials. These adapted acoustic models should allow

researchers to perform DIANA simulations using MALD recordings as material.

DIANA is not isolated with regards to model setup complexity. SpeM and Fine-

Tracker (Scharenborg, 2008; Scharenborg et al., 2005) require similar preparatory

work. Shortlist B (Norris & McQueen, 2008) depends on a large database of responses

to gated diphones, which is likely the reason this model has only been implemented in

Dutch. For comparison, using instantiations of the TRACE model, jTRACE (Strauss

et al., 2007) and TISK (You & Magnuson, 2018), requires installations that can
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be completed in a matter of hours. However, the additional work yields a crucial

advantage: DIANA deals with actual acoustic input (but see Norris & McQueen,

2008, for criticism of SWR models based on automatic speech recognition).

One consequence of a good representation of the variability in the acoustic signal is

that DIANA performs well in free word recognition. Accuracy in selecting the correct

word as the winner from a corpus of approximately 26,000 words was slightly under

90%. This level of word recognition accuracy is much higher than those we obtained

using TISK, where lexicons with close competition never yielded word recognition

accuracy higher than approximately 30% (Nenadić & Tucker, 2020, but note that

the competitor structure was different in TISK simulations). Additionally, DIANA

seems to perform better in free word recognition than Shortlist A and SpeM, as these

models never exceeded 75% recognition accuracy although the lexicon of competitors

was smaller than in our simulations see Scharenborg et al., 2005. Word recognition

accuracy using the discriminative lexicon approach yielded accuracy of up to 25%.

This simulations analyzed word recordings isolated from spontaneous speech and hu-

man participants generally did not perform better on the same material (Arnold et

al., 2017). Lastly, our acoustic models work on par with the FAVE acoustic mod-

els (Rosenfelder et al., 2014). Even higher accuracy may be obtained with improved

base acoustic models or extended model adaptation. A high standard of model perfor-

mance in terms of input (free word) recognition is crucial for simulations that involve

large word sets — that is, for any simulation that aims to be more than a proof of

concept using a toy example.

Another important advantage of using acoustic signal as input is that competitor

activation is dependent on the characteristics of the sound signal, not on precon-

ceptions about which words should sound similar (see, e.g., Hawkins, 2003, for an

extended discussion). For example, TRACE (McClelland & Elman, 1986; Strauss

et al., 2007) relies on acoustic pseudofeatures to determine phoneme identity. These

pseudofeatures always have the same values for a particular phoneme, meaning that
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every occurrence of a phoneme is always the same (barring some pseudofeature over-

lap of neighboring phonemes that accounts for coarticulation). DIANA, in turn, can

analyze any number of unique recordings of the same word, each time generating a

different activation-competition pattern. Besides providing much better estimates of

what words the signal actually resembles most, this also allows researchers to explore

and simulate phenomena that were not part of our simulation, such as subphonemic,

acoustic effects (e.g., Andruski et al., 1994; Marslen-Wilson & Warren, 1994), effects

of prosody (e.g., Kemps et al., 2005; Salverda et al., 2003), or effects related to pro-

cessing reduced variants of a word (Ernestus & Warner, 2011; Ernestus & Baayen,

2007; Tucker, 2011; Tucker & Ernestus, 2016).

As the signal unfolds in time, activations of different word competitors rise and

fall. A highly activated candidate at an early point in the signal may lose activation

later, as more suitable candidates gain prominence. However, even towards the end

of a signal, many competitors had high activation despite initial mismatch with the

target word. Exploring the list of top competitors in Simulation 1 provides us with an

example for this phenomenon: pales and hails are the highest activated competitors

for the recording of word tales. This model performance is in line with human per-

formance. A recent MEG experiment supports the claim that subsequent contextual

information influences the perception of preceding segments as subphonemic detail is

preserved in the auditory cortex and reanalyzed as additional signal becomes avail-

able (Gwilliams et al., 2018). Models of SWR in general attempt to include this kind

of flexibility in word recognition and not discard a competitor based on differences in

early phonemes, as was done in the original Cohort model (Marslen-Wilson & Tyler,

1980; Marslen-Wilson & Welsh, 1978). Cohort II (Marslen-Wilson, 1987; Marslen-

Wilson et al., 1988) was specifically adapted to be able to recognize the correct word

despite initial mismatch (see also Weber & Scharenborg, 2012). TRACE (McClelland

& Elman, 1986) also retains competitors even if there is some initial mismatch, as

besides cohorts (words sharing the first two phonemes with the target word), the
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model also considers rhymes (words sharing the last two phonemes with the target

word) and embeddings (words that are fully embedded in the target word) to be close

competitors to a target word. The authors of Shortlist B (Norris & McQueen, 2008)

also make a point of that model successfully recognizing words despite some (initial)

mismatch with the target.

Although DIANA’s current implementation in HTK allows creation of large lexi-

cons including as many as 36,000 words, this implementation still cannot deal with

lexicons the size of, e.g., the entire CMU dictionary (approximately 135,000 words).

Therefore, the initial set of plausible competitors needed to be decided by the re-

searcher. DIANA endorses a Cohort-like competition so in our subsequent simula-

tions (Simulations 2 and 3) we created separate lexicons to include all words with

up to three phones and all words that share the first three phones with the target

word. The assumption behind this procedure was that DIANA will resolve initial

inconsistencies for longer words and that only the closest of competitors will matter

towards word offset. If the acoustic models and the enunciations of every segment in

MALD recordings were perfect, this would indeed be the case, but we have seen that

DIANA made mistakes in recognizing the correct word due to, i.a., initial stop elision.

Therefore, this approach seems to be faulty as it uses initial mismatch to disqualify

words that could have won instead of the target word. Additionally, even if the model

successfully resolves initial inconsistencies, that does not mean that competitors with

initial mismatch are not some of the closest competitors to the target word. As stated

above, one such example is pales being one of the closest competitors for the record-

ing of word tales. By pre-excluding competitors based on initial phone mismatch we

inevitably affected both the potential winner of the activation-competition process

and the structure of close competitors (which may be relevant for response latency

estimation).

Then how do we select which competitors should be included in the limited lexicon

of competitors created for every target word? Of course, competitor selection also
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depends on the task the model of SWR is simulating. A clear example is the visual

world paradigm where the lexicon may be limited to include only the competitors

that are visually presented on the screen (see, e.g., Allopenna et al., 1998). In many

other tasks, such as the word repetition or the auditory lexical decision task (and

in everyday communication), any word in the lexicon could be activated if fitting

acoustic signal is presented. If we continue to think of close competitors to words in

terms of the phonemes they share, using competitor selection criteria from TRACE

(McClelland & Elman, 1986) seems like a better approach. We already described

above that competitors in TRACE include cohorts, rhymes, and embeddings to the

target word. Note that this approach encompasses word neighbors from NAM (Luce

& Pisoni, 1998) and word cohorts from the Cohort model (Marslen-Wilson & Welsh,

1978).

Still, it is possible (although not too probable) for a word competitor to be highly

activated and not belong to any of these three groups of TRACE competitors, espe-

cially prior to word offset. This issue may be solved through brute force, that is, by

the sheer size of the lexicon that the current implementation of DIANA can handle.

The number of TRACE close competitors extracted from the CMU dictionary for

442 English words ranges from 17 to 2,243, with the average of 605 close competi-

tors (Nenadić & Tucker, 2020). DIANA, in turn, can handle quite sizable lexicons.

Therefore, we propose using the competitor selection approach from TRACE but also

capitalizing on DIANA’s capacity for large lexicons by selecting 30,000 words that

have the lowest edit distances from the target word. This approach is yet to be tested,

but all cohorts, rhymes, and embeddings should be present in these 30,000 selected

competitors — in fact, it should be true that most of the words that are not within

30,000 most similar competitors to the target word (based on phonemic transcription)

are indeed not very similar to the target word. One downside of that approach is that

it is more computationally demanding than building smaller lexicons.

However, relying on categories such as the phoneme, as we have previously noted,
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misses a lot of variability present in the fine-phonetic detail and stemming from

reduction or other pronunciation variants in words. Ideally, the close competitors

would be determined using similarity in the acoustic signal, rather than generalized

categories such as phonemes. For example, with our MALD word set, we could

calculate acoustic distances between word recordings and use those to form sets of

competitors for each word (Kelley, 2018). An even better alternative would be to

calculate acoustic distances between many recordings of many words — although this

would require a very large (truly, representative) set of word recordings — and use

those as a benchmark.

We also note that the necessity of preselecting competitors in a model of SWR has

been at least as much a question of its technical implementation as it has been of

its theory. If a model always considers all the options stored in the mental lexicon,

there would be no need to determine whether it, for example, calculates activation for

rhymes to the target word or not (even more so since the model cannot know what

word the signal is supposed to represent beforehand). Design choices such as the

one whether there is lateral inhibition between candidates would still be important,

but there would be no need to discard a candidate during the activation-competition

process, and especially no need to prevent a word candidate from competing before

the activation-competition process has even started. Our implementation of DIANA

relied on HTK and the lexicon limitations we had were a matter of technique: the

model could be implemented using, for example, KALDI (Povey et al., 2011), allowing

for better performance and a much more fine-grained view of unfolding activations.

The lexicon size could also be dramatically increased to hundreds of thousands of

words, removing the issue of candidate pre-selection. Technical limitations and novel

advances will certainly continue to shape models of SWR and in part determine which

questions regarding their architecture are considered relevant.

DIANA’s lexical decision accuracy was also fairly high. The model uses a simple

but powerful solution of comparing the best possible activation of a word in the
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mental lexicon with the best possible activation of any phone string. The activation

of a word signal should remain high even if it is coerced to fit an existing string of

phones (i.e., a word in the lexicon), while the activation of a pseudoword signal should

be much lower if it is forced to match a string of phones that it does not correspond

to. There may be one objection to the current approach. Inevitably, DIANA and

the human participant have different causes of errors, both in free word recognition

and lexical decision. For the computational model, the only cause of error is a poor

match between the acoustic signal and the existing acoustic models, leading to a

misinterpretation of the input. Listener errors may have other causes besides issues

in interpreting the acoustic signal. For example, a human may not have the target

word stored in their mental lexicon (i.e., the person may not know a word), may not

be able to retrieve the target word at that particular time, or may miss portions of

the signal or press the wrong button.

This leads to two specific issues. The first issue is that pseudoword accuracy highly

depends on signal length. We will address this finding in more detail below, when

we consider the representation of the mental lexicon in DIANA. The second issue is

that word frequency does not affect the outcome of the lexical decision, while MALD1

and other lexical decision data generally show that word frequency predicts response

accuracy. As we said above, some of the correlation between accuracy and word

frequency in behavioral experiments is certainly due to the fact that lower frequency

words are known by fewer participants. Additionally, perhaps signals of low frequency

words require a higher threshold of attention due to less practice with that signal; it

is easier to get confused and make a mistake for a word one does know if that word is

encountered rarely. Given high-performing acoustic models, future simulations could

include a parameter that would estimate the probability of a word being responded to

as a pseudoword based on that word’s frequency (or other characteristics that prove

relevant). Generally, however, we do not want the model to purposely “throw away”

data, so the goal is to get lexical decision accuracy to be as high as possible.
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The central aim of our simulations was to simulate the time needed to make a

response from the onset of the signal. Effect of word frequency, regularly registered

in statistical analyses of behavioral responses, was found to be negligible. Higher

values of γ that would increase the impact frequency has on activation could not be

used as they would lead to a large number of incorrect words winning simply due to

their higher frequency. It is important to note that the current implementation of the

frequency effect in DIANA is not as straightforward as it may appear. In statistical

modelling of auditory lexical decision data, word frequency is ordinarily included as

a predictor of response latency to that word. In DIANA, the effect of word frequency

is not as direct. Instead, the impact of frequency is best described as an interaction

between a word’s frequency and the frequency of its close acoustic competitors. If

a high frequency target word has a high frequency competitor, then the activation

difference between the two will remain dependent on acoustic activation alone and

the winner may be selected rather late. In contrast, a high frequency target word that

has no high frequency competitors will become the sole plausible competitor much

sooner. Statistical analyses of participant responses should investigate whether this

sort of frequency relationship between top acoustic competitors is a better predictor

of human response latency than using solely the frequency of the target word.

Another reason for low impact of word frequency is due to the model estimating

that the optimal strategy is to wait until word offset. This behavior is unsurprising

in an auditory lexical decision task, as a signal can become a pseudoword at any

point before signal offset. At that point, the number of pseudoword competitors

far outweighs the number of word competitors, making the values of θwc and γ less

important for final response latency estimation. If it is confirmed that direct impact

of word frequency is a better predictor of participant response latency than taking

into account the relationship between frequency values of the target word and its

close competitors, and if we consider response after word offset to be optimal, than

perhaps word frequency should not affect its acoustic activation levels. Instead, we
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would argue for word frequency being included in the choice reaction time formula

and used to facilitate sifting through remaining candidates in search for the target

word. In such a setup, a high frequency word would stand out from its other plausible

acoustic competitors better than a low frequency word when the acoustic signal before

word offset was insufficient to make an early decision.

Once signal offset is reached, DIANA assumes that the task is to choose the correct

winner from the number of remaining competitors, with the decision being weighed

by parameter β. The list of competitors includes all words that have their activation

within the value of θwc in comparison to the top competitors and all potential pseu-

dowords. The number of pseudowords is approximated by raising 3 to the power of

the number of phones in the signal word. A six-phone word would therefore have as

many as 729 potential pseudoword competitors at word offset, and a word with seven

phones would have 2,187. It is clear that when using this estimation pseudoword

competitors far outnumber remaining plausible word competitors. In effect, the num-

ber of plausible word competitors and the distribution of their activations become

insignificant in comparison. In turn, this means that the more phones a word has the

longer choice reaction time will be for that word (as more potential pseudoword com-

petitors are registered at word offset). In contrast, MALD1 data shows that longer

words are responded to faster when response latency is calculated from word offset,

that is, from the point when the signal of the word has ended. Simply put, while

DIANA assumes that the time needed to select the winner will be longer in longer

words due to many pseudoword competitors remaining at word offset, behavioral data

shows an opposite trend in which participants respond faster to longer words relative

to word offset.

In line with participant data, we found that optimal values of parameter β control-

ling for choice response time are negative, indicating that time should be deducted

from word offset rather than added to it, and deducted more for longer words. Even

with such a setup that would make the raw response latency estimates much shorter
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than those observed in the behavioral experiment, the added benefit of choice response

time to the correlation with MALD data is very limited. The highest correlation be-

tween DIANA response latency estimate and mean de-trended logged participant

response latency was r = .43. Although this correlation is moderate and higher than

any correlation we managed to obtain using TISK and jTRACE (we never exceeded

r = .2 using these models; Nenadić & Tucker, 2020), it is almost exclusively due

to the fact that DIANA and the human participants were presented with the same

sound recordings. The correlation when β is set to 0, that is, when no choice response

time is added and word duration alone is used, was nearly as high (r = .42). These

results indicate that a different way of representing the decision process is needed.

The main issue seems to lie in the way choice response latency is calculated, especially

with regards to estimating the number of plausible pseudoword competitors at word

offset in longer words. A possible improvement for DIANA would be to adapt the

current estimations of pseudoword competitors at stimulus offset, as the estimations

are likely too high. The current number of pseudoword competitors is based on the

full phonetic length, but perhaps only the most recent changes (those made towards

signal end) matter — as all earlier ones are already knocked out as implausible.

It is also clear that many words have heterographic homophones in the CMU dic-

tionary. These words have identical acoustic activation, although their activation

may change after frequency effects controlled by parameter γ are introduced. Our

approach was to simply treat any win by a homophone of the target word as correct.

This is in line with the general status in the auditory lexical decision task as par-

ticipants cannot know which exact meaning of the word was intended, nor can the

researcher analyzing the data know which meaning the participant thought of when

responding to a word stimulus. Still, this approach ignores an important characteris-

tic of words — their plurality of meaning and contexts in which they are used, which

ties directly to our interpretation of how the mental lexicon is organized and accessed.

Currently, DIANA represents the mental lexicon as a list of unconnected strings
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of phones (words), focusing on form alone. Under this setup, recognizing a word is

in no way affected by the word’s meaning beyond its frequency of occurrence. It is

unclear how the model should treat word frequency of heterographic homophones.

Would these words have a joint, sum frequency? Would only the most frequent

word be considered? Or are these words separate lexical entries, each with their own

frequency, the way they were represented in our simulations? Additionally, effects

of word meaning in spoken word recognition extend beyond frequency of occurrence.

We have seen in Simulation 2 that a representation of the mental lexicon that stores

information on form and frequency alone leads to lexical decisions to pseudowords

being mostly guided by direct acoustic mismatch, making long pseudowords very

easy to discard for DIANA. Human participants, however, do not have this sort of

certainty when responding to long pseudowords, given that these pseudowords share,

for example, morphological characteristics with existing English words.

We argue that not just DIANA, but any model of SWR would benefit from a

representation of the mental lexicon that does not consider word form (and frequency)

only, especially given mounting recent findings that semantic characteristics of words

are predictive of participant performance even when context is very scarce, such as

in the auditory lexical decision task (Goh et al., 2016; Tucker et al., 2019). Certain

models of SWR attempt to expand on the representation of the mental lexicon. The

Distributed Cohort Model (Gaskell & Marslen-Wilson, 1997, 1999, 2002) and the

discriminative lexicon approach (Baayen, Chuang, Shafaei-Bajestan, et al., 2019)

represent units in the mental lexicon as semantic vectors. These vectors are correlated,

creating a network of word meaning. Similar solutions could be implemented in

DIANA in the future.

Another important aspect of simulating the auditory lexical decision task is esti-

mating the time when the model (and therefore the human listener) should make a

“pseudoword” decision. In Simulation 2, we do not estimate the time point when the

“pseudoword” decision is made and we make no comparisons between general tenden-
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cies in pseudoword response latency in MALD1 data and a model estimate. Given DI-

ANA’s architecture, two different options for simulating pseudoword response latency

seem plausible. First, the decision could be made as soon as the difference between

free phone activation and word activation exceeds the value of θlb. This estimation

regime would lead to many pseudoword decisions happening before pseudoword sig-

nal offset. However, responses to pseudowords tend to be slower than responses to

word stimuli and this was true in MALD1 data as well (Tucker et al., 2019). Given

that “word” decisions mostly happen after word offset (both in participant data and

optimal model setups), this approach would likely lead to poor results.

For this reason we favor the second option in which pseudoword decisions are al-

ways made after signal offset, when it becomes clear that the signal will not match

any word after all. At this point, an elegant solution would be to calculate the added

choice reaction time using the same formula as in words, if that formula yields longer

response latency estimates for pseudowords than for words. An exception to this rule

could be speech signals that break the phonotactic rules of the language — nonwords

(cf. Ziegler et al., 1997). In the case that the signal is a nonword, an early decision

may be warranted, though these do not occur in MALD. One possibility would be

to treat nonwords the same as pseudowords, expecting choice reaction time to be

shorter because the number of plausible word competitors remaining at signal off-

set is minimal if not zero. Another possibility would be to have two thresholds of

difference between free phone activation and word activation. The first threshold is

θlb and it would still determine whether the signal is a word or not at signal offset.

The second threshold would be higher than θlb and when met it would discard the

signal as nonsense (i.e., a nonword) even if the signal is not yet completed. Future

simulations are needed to empirically test these solutions by comparing DIANA sim-

ulations to existing participant responses to phonotactically licit (pseudoword) and

illicit (nonword) speech signals not present in the mental lexicon. MALD data could

not be used in this case as MALD, alongside words, only contains phonotactically
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licit pseudowords.

Despite many challenges that the current implementation of DIANA faces, we

believe that this model may be the most promising model of spoken word recognition

yet. The primary reason for this is that DIANA successfully uses the acoustic signal

as input and has no binding limitations in terms of language it can be used for (as

long as acoustic models exist or can be created), lexicon size that can be implemented,

or behavioral tasks that it can or cannot be used to simulate. All of the very pressing

issues that we discuss are best viewed as venues for model improvement, rather than

be considered crippling to the model. The development of the field of spoken word

recognition depends on its models being tested against various behavioral data and

improved based on the findings. We argue that the primary frontier for current models

of spoken word recognition is to simulate spoken word recognition phenomena using

realistic conditions (e.g., realistic input and realistic competitor sets) and be adaptable

enough to simulate data from a plethora of different behavioral tasks. In our view,

DIANA has the potential to do both.
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Chapter 4

Discriminative Lexicon

Chapter 4 was completed with help from a part of the team developing the discrim-

inative lexicon: Elnaz Shafaei-Bajestan, Yu-Ying Chuang, and R. Harald Baayen.

Additional support was received from Petar Milin.

We also thank Terrance M. Nearey, Matthew C. Kelley, and Ryan Podlubny for

fruitful discussions about the discriminative lexicon.

4.1 Introduction

Spoken word recognition has been an important topic of investigation within the field

of psycholinguistics for decades and numerous explanations of how this process unfolds

have been offered. Some good overviews of models of spoken word recognition are

given in Protopapas (1999), McQueen (2007), Scharenborg and Boves (2010), Weber

and Scharenborg (2012), and Magnuson et al. (2012). Although there are notable

differences between them, a common thread connecting virtually all contemporary

models is the activation-competition metaphor — with the input presented to the

model, various units (e.g., features, phonemes, and words) are activated and compete

to be selected as the winner.

In this study, we test a new computational model called the discriminative lexicon

(Baayen, Chuang, Shafaei-Bajestan, et al., 2019). Specifically, we test its ability to

simulate the process of spoken word recognition in the auditory lexical decision task.
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What sets the discriminative lexicon apart from other notable models of spoken word

recognition is that it does not stem from the activation-competition tradition of the

first-generation models such as the logogen model (Morton, 1969) or the frequency

ordered bin search model (Forster & Bednall, 1976; Taft & Forster, 1975). Instead,

the discriminative lexicon is grounded in a learning rule independently proposed by

Rescorla and Wagner (1972) and Widrow and Hoff (1960). The discriminative lexicon

was designed to use shallow and wide linear networks with no hidden layers or layers of

abstract representations (such as phonemes or morphemes) to map the input directly

onto meaning. The model is therefore conceptually far removed from most notable

second-generation models of spoken word recognition such as TRACE (McClelland &

Elman, 1986) or Shortlist (Norris, 1994; Norris & McQueen, 2008). At the same time,

the discriminative lexicon, as will be clear when we describe its architecture in more

detail, shares many traits with connectionist models present in the field. Crucially,

the discriminative lexicon allows the user to calculate matches between the input and

potential outcomes and to select the winning outcome.

At first, the Naive Discriminative Learning (NDL) approach was used to model

findings from studies investigating reading. Within this approach the so-called naive

discriminative reader model was developed and it simulated reading performance

with special focus on morphological processing (see Baayen et al., 2011). However,

NDL was also successfully implemented in simulating a wide range of other language

and psycholinguistic phenomena (see, e.g., Baayen, 2010, 2011; Baayen et al., 2013;

Baayen, Milin, & Ramscar, 2016; Baayen, Shaoul, et al., 2016; Milin et al., 2009;

Ramscar et al., 2014; Tomaschek et al., 2019). These simulations include predicting

responses in the visual lexical decision task (Milin, Feldman, et al., 2017). More

recently, Baayen, Chuang, Shafaei-Bajestan, et al. (2019) replaced NDL with Linear

Discriminative Learning (LDL) in which the outcomes (e.g., stored units of meaning;

in most models of spoken word recognition, these would be words stored in the mental

lexicon) do not have to be binary — with the binary indicator stating whether a
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particular outcome was present/predicted or not — and therefore orthogonal. In

LDL, outcomes can be numbers and can be correlated, making an interconnected

semantic vector space. LDL, which we describe in more detail later, is the basis of

the discriminative lexicon, which in turn represents a unified model of processing and

production of written and spoken language.

4.1.1 The discriminative lexicon and spoken word recognition

The foundation of using discriminative learning to represent spoken word recognition

is presented in Baayen, Shaoul, et al. (2016). These initial NDL simulations primarily

served as a proof of concept that triphones (or any such larger units) would perform

better than a single phoneme layer, while also matching various findings from exper-

imental studies that argue in favor of the phoneme’s existence. The model was at

this time still using phoneme strings to represent units of meaning, forming a list

of unconnected items. Although the authors do assume that the process of spoken

word recognition unfolds in time, the simulations, except for marking phoneme order

within triphones, was atemporal.

However, the theoretical assumptions behind the discriminative lexicon were quite

distinct to these initial simulations. In stark contrast to most (abstract) models of

spoken word recognition which form a mental lexicon as a list of isolated abstract

units (words), the discriminative lexicon instead stores lexical dimensions which are

connected in a system of world knowledge — lexomes. In this regard, the discrimina-

tive lexicon is reminiscent of the semantic element of the Distributed Cohort Model

(Gaskell & Marslen-Wilson, 1997, 2002) which included binary semantic features to

represent the positioning of an element in a semantic space (albeit these elements

were still words). The discriminative lexicon currently represents a lexome’s position

in its semantic space in terms of lexome co-occurrence in a language corpus. This

procedure is again similar to the one employed by Gaskell and Marslen-Wilson (1999)

when they performed actual computational simulations with the Distributed Cohort
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Model; semantic features were abandoned because they were difficult to select and

define. The key difference is that the discriminative lexicon, besides simply being

larger than the attempt of Gaskell and Marslen-Wilson (1999), is built on the basis of

discriminative learning, with a network learning whether certain lexomes occur and,

importantly, do not occur together. The learning is performed using information from

the TASA corpus (Ivens & Koslin, 1991; Landauer et al., 1998). An additional char-

acteristic of lexomes is that they are assumed to be continually shaped and changed

by the flow of experience, as the network itself would also change shape with more

of the TASA sentences being presented to the learning algorithm. Finally, lexomes

serve as discriminative units of meaning, so besides content and function words they

can also be, for example, markings of tense or number, or anything else that creates

lexicalized contrast.

As noted above, Baayen, Shaoul, et al. (2016) also posited that adequate recog-

nition of lexomes can be obtained in a model without feature, phoneme, morpheme,

etc., layers or any other intermediary abstract layers that are present in most models

of spoken word recognition (cf. Luce, 1986; Luce & Pisoni, 1998; Marslen-Wilson &

Tyler, 1980; Marslen-Wilson & Welsh, 1978; McClelland & Elman, 1986; Norris &

McQueen, 2008; Taft & Forster, 1975). Instead, the discriminative lexicon assumes a

direct connection between sound and meaning and uses a wide yet shallow network

implementing a relatively simple biologically plausible learning algorithm (Rescorla

& Wagner, 1972) to learn the connections between acoustic cues and lexomes. There-

fore, the model has no hidden layers that act as a black box, as do certain models of

spoken word recognition see, e.g., Elman, 2004; Gaskell and Marslen-Wilson, 1997;

Scharenborg, 2009, and deep learning approaches in general.

Attempts following the Baayen, Shaoul, et al. (2016) study made changes in the

modelling procedure that aimed at better representation of these core principles of

the discriminative lexicon. Arnold et al. (2017) made the first step by using cues

developed from the actual acoustic signal instead of triphones. Using acoustic input
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is a trait shared by only a few models of spoken word recognition, such as Fine-Tracker

(Scharenborg, 2008, 2009) and DIANA (ten Bosch, Boves, & Ernestus, 2015). Arnold

et al. (2017) trained a model on 20 hours of speech from 13 female speakers using

the aforementioned Rescorla-Wagner learning algorithm (Rescorla & Wagner, 1972).

In this modelling procedure, the cues used were newly developed Frequency Band

Summary Features (FBSFs). FBSFs are unique identifiers (opaque to the learning

algorithm) that describe a time-chunk of a word in terms of its minimum, maximum,

median, first, and last pseudo-intensity value for 21 mel-frequency spectrum bands

into which the sound is split. The model remained unconcerned with the incremental

aspect of the spoken word recognition process, as all of these features were presented

to the model at the same time. In addition, the authors conducted a behavioral

experiment in which listeners responded to words sampled from the same speech

corpus used for training. The results showed that the model was accurate in selecting

the right lexome in 20 to 25% percent of the cases. Even though this accuracy rate

may seem low, the selection was made among thousands of competitors, and the

model still performed better than at least some of the human participants, whose

maximum individual accuracy was just a bit above 40%. This also indicates that

recognizing words isolated from spontaneous speech is not an easy task for a human

listener, and it was likely made even more difficult by the fact that almost half of the

words used in the experiment were function words.

In a simulation with even more challenging material, Shafaei-Bajestan and Baayen

(2018) trained and tested a model on the spontaneous and noisy speech from TV

broadcasts. As could be expected, model accuracy was lower than in Arnold et al.

(2017) with word recognition accuracy never exceeding 14%. However, the model still

outperformed the Mozilla DeepSpeech speech-to-text engine (Mozilla Organization,

2013) to which it was compared. No human responses were collected as part of that

investigation.

The second major step towards better representing the principles of the discrim-
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inative lexicon was introduced in Baayen, Chuang, Shafaei-Bajestan, et al. (2019).

The authors tackled the same dataset as Shafaei-Bajestan and Baayen (2018), but in-

stead of NDL they used the newly-developed Linear Discriminative Learning (LDL).

The principal change was that instead of having strings of phonemes representing the

units of meaning, each unit (lexome) was represented in terms of its semantic vector

space. The same Rescorla-Wagner equations were used to generate connections be-

tween a target word and other words that occurred frequently enough in the TASA

corpus (Ivens & Koslin, 1991; Landauer et al., 1998) within the same sentence as

the target word. At the same time, morphological characteristics were also registered

as lexomes (e.g., pl for plural forms or past for past tense verbs). In other words,

a matrix was created in which every lexome was described in terms of its learned

connection to other lexomes. Therefore, instead of matching to a binary outcome,

the model attempted to connect the (lack of) occurrence of a particular FBSF to a

vector of a lexome’s semantic space. In this setup, model accuracy for more than 130

thousand words from a spontaneous speech corpus was 33%.

The discriminative lexicon approach was implemented once more for spoken word

recognition, this time to model responses to pseudowords from the Massive Auditory

Lexical Decision project (Tucker et al., 2019). Chuang et al. (2020) showed that model

estimates are predictive of response latency to pseudowords. Importantly, the model

was augmented again to re-introduce a triphone layer as an indirect route connecting

FSBFs and semantic vectors, as this was observed to improve model performance in

the visual modality (Baayen, Chuang, Shafaei-Bajestan, et al., 2019). Therefore, the

current setup of the part of the discriminative lexicon model dealing with spoken word

recognition includes FBSFs derived from the acoustic signal as input and represents

stored units of meaning in terms of a semantic vector space. Between the two are a

direct connection and also an indirect route bridging input and the semantic space

using smaller bundles of speech operationalized in terms of triphones.
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4.1.2 The present study

One of the central drives for this study stems from the observation that although

models of spoken word recognition are usually developed based on relatively rich

empirical datasets, many of them have rarely been tested outside of the process in

which they were created (in part due to inaccessible programming). When they have,

the testing, with notable exceptions, was ordinarily performed on small datasets or

even toy problems. Given that the discriminative lexicon approach seems to offer a

promising yet simple way of explaining how listeners make connections between the

speech sounds they hear and meanings they form, we wish to further test it on an

independent dataset of audio recordings and participant responses. To that end, we

use word stimuli from the Massive Auditory Lexical Decision project MALD; Tucker

et al., 2019 to perform an LDL simulation and compare model estimates to actual

participant performance in MALD behavioral experiments.

The MALD1 dataset includes recordings of more than 26 thousand words and re-

sponses from over 250 participants in an auditory lexical decision task, offering a large

source of information both for model creation and comparison to actual participant

behavior. More importantly, testing performance using MALD provides a new chal-

lenge for the discriminative lexicon approach. Previous simulations show that the

discriminative lexicon approach performs on par with human participants and bet-

ter than certain speech-to-text models with words sampled from spontaneous speech

recordings (Arnold et al., 2017; Shafaei-Bajestan & Baayen, 2018). However, model

performance was not yet compared to participant responses to carefully produced

words recorded in a laboratory setting. As could be expected, participant response

accuracy to MALD words far exceeds that from the Arnold et al. (2017) study, be-

ing 90% on average (Tucker et al., 2019). It is an empirical question whether an

LDL-trained model can at least somewhat keep up with such an increase in accuracy.

On the other hand, there are circumstances to the specific setup we employ that
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may help the model achieve greater accuracy than its earlier implementations. We

train the model specifically on the recordings made by the MALD speaker, so between-

speaker variability is not an issue. All the recordings were made in a laboratory

setting, and the speech is much more careful than the conversational speech used

in previous simulations, significantly reducing the noise in the signal. Every word

is only represented by a single rendition, removing within-word variability, whereas

both Arnold et al. (2017) and Shafaei-Bajestan and Baayen (2018) dealt with multiple

recordings of words from multiple speakers in spontaneous, noisy speech recordings.

This last characteristic is also a limitation of our study — the model is trained and

tested on the same material, as we do not have more than one recording for every

MALD word. Our stance is that this simulation is still a good investigation of the

potential the discriminative lexicon approach has: before facing the model with a more

daunting task of being trained on certain material and tested on another (perhaps of

mixed speakers as well), we want to see whether linear discriminative learning is at

all capable of learning the connections between input and outcome in a closed set of

careful speech.

There are two additional questions of interest aside from model accuracy in word

recognition. First, we want to inspect whether the model isolates plausible candidates

as highly “activated”. In other words, disregarding whether the actual target was the

winner, we still may wonder whether the candidates that were in close consideration

are sensible. Second, we want to use the information gained from the model to predict

participant response latency in the auditory lexical decision task, i.e., test whether or

not model estimates are at least to a degree reflective of the organization of meaning

in humans and the process of accessing units of meaning.

4.2 Behavioral experiment

Discriminative lexicon model estimates are compared to participant responses from

the Massive Auditory Lexical Decision (MALD) project. In this study, we use the
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MALD1 dataset, which is available online at <mald.artsrn.ualberta.ca> and de-

scribed in detail in Tucker et al. (2019).

4.2.1 Sample

The MALD1 dataset includes responses from 231 monolingual English listeners. All

participants were recruited from the University of Alberta (180 females, 51 males; age

M = 20.11, SD = 2.39) and were awarded partial course credit for participation.

4.2.2 Stimuli

MALD stimuli were presented in separate experimental lists. Each list contained 800

stimuli, combining one of 67 sets of 400 words and one of 24 sets of 400 pseudowords.

Each of the 67 word sets was coupled with two different pseudoword sets to create

the total number of 134 experimental lists. Selection of words that can be a part

of MALD was not restrictive. For example, the database included various parts of

speech, even function words and interjections. The final selection includes participant

responses to 26,793 words with up to nine syllables, 17 phones, and 6 morphemes. All

stimuli were recorded by a 28-year-old male speaker of Western Canadian English.

The recordings are available online in wave format accompanied with Praat text grids

(Boersma & Weenink, 2011) as part of the MALD dataset.

4.2.3 Procedure

The experiment was built using the E-Prime experimental software (Schneider et al.,

2012). The task for the participants was to listen to the stimulus presented over the

headphones and make a lexical decision. They used their dominant hand to make

a “word” response, and their non-dominant hand to make a “pseudoword” response.

Each stimulus was preceded by a fixation cross lasting 500 ms, and the participants

had up to 3000 ms to respond before the experiment would proceed to the following

stimulus. The same participant could complete up to three separate experimental
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lists (with different word and pseudoword sets) and the total number of recorded

sessions was 284.

4.3 Simulation setup

The simulations were performed in the R statistical environment (R Core Team, 2018),

using packages WpmWithLdl (Baayen, Chuang, & Heitmeier, 2019), tuneR (Ligges

et al., 2018), seewave (Sueur et al., 2008), and AcousticNDLCodeR (Arnold, 2018).

Where possible, we followed the same procedures as the ones described in Baayen,

Chuang, Shafaei-Bajestan, et al. (2019) and (Chuang et al., 2020). The code used is

available as part of our supplementary material at: https://doi.org/10.7939/r3-8qvn-

em70.

4.3.1 Cue and outcome matrices

Not all of the words recorded in the MALD project were frequent enough in the

TASA corpus to have their semantic vectors calculated, as the minimum frequency

required was 8. The final number of MALD words used in all analyses was 19,410.

A total of 8,606 unique triphones were registered within these words. We generated

Frequency Band Summary Features (FBSFs) developed by Arnold et al. (2017) for

the selected MALD word recordings. FBSFs represent a particular recording in terms

of sound intensity level broken into frequency bands. First, a word recording is split

into one or more temporal chunks. The chunk borders are set at minima of the

Hilbert-transformed envelope for that particular sound file. Note that a word may

be split in the middle of what would otherwise be considered a single segment, such

as a phone or syllable. Then, in non-overlapping 5 ms windows, power spectra are

registered and mapped onto 21 mel-frequency bands. Intensity within each band is

represented as a discrete variable with five levels and further simplified by registering

only the initial, final, minimum, maximum, and median intensity within the given mel-

frequency band. To summarize, a word recording is described using strings containing
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information about the principal discretized intensities within 21 mel-frequency bands

for each of its temporal chunks. For example, one of the generated FBSFs for the

MALD recording of the word zucchini was band1-start1-median2-min1-max4-end2-

part1. This particular FBSF describes the intensities in the first mel-frequency band

of the first part (chunk) of the word recording and we see that the initial intensity

in that part of the audio signal is 1, median intensity is 2, minimum intensity is 1,

maximum intensity is 4, and final intensity is 2. If a word has only one chunk, the

number of FBSFs used to summarize its acoustic signal is 21, that is, equal to the

number of mel-frequency bands. The recording of zucchini was split into two chunks,

so it is described in 42 FBSFs.

We then created the cue (C) and the outcome (S) matrices. The C matrix serves

as the input for the model and marks for every MALD recording whether it contains

a particular FBSF (noted as 1) or not (0). The S matrix describes lexomes in terms

of their semantic vector space — it effectively serves as the representation of stored

units of meaning, i.e., what would ordinarily be referred to as a mental lexicon.

We used the same semantic vector values calculated based on co-occurrence within

sentences of the TASA corpus (Ivens & Koslin, 1991; Landauer et al., 1998) as the

ones used in Baayen, Chuang, Shafaei-Bajestan, et al. (2019). It is important to

note that semantic vectors for inflected words are created by adding the semantic

vectors of word stem and affix. Since some of the considered 19,410 MALD words

also have a degree of inflection, we took into account number (i.e., whether a word can

be interpreted as a plural form), comparison (comparative and superlative),

tense (continuous, past, and perfective), and whether a verb is in third person

(person3) when generating semantic vectors. For example, the word abandoning is

a sum of semantic vectors for the stem abandon and the continuous tense affix ing.

Some of the retained 19,410 MALD words could be decomposed in different ways,

that is, the same MALD word can have different meanings depending on the context

in which it is used. Therefore, some MALD words are represented by multiple rows in
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the S matrix. For example, the word confused is represented by three separate entries:

one for the adjective confused, and two for the perfective and past verb forms of

confuse. The total number of rows (lexomes) in matrix S was 22,075. Since matrices

C and S need to have the same number of rows, matrix C was expanded to include

multiple instances of the same set of FBSFs where a certain MALD word yielded

more than one lexome entry in matrix S. For example, confused was represented in

three rows in both matrices C and S.

The columns of matrix S are lexomes as well, including word stems (e.g., magnet)

but also characteristics that lead to a lexical contrast, even broader than the ones we

used to decompose MALD words. Examples include lexical characteristics of words

that mark whether they denote future, whether they are a patient in the sentence,

whether the number is ordinal and so on. Not all of the columns in matrix S are

equally good at distinguishing between different rows of matrix S (i.e., the 22,075

MALD lexomes). We therefore reduced the outcome matrix to include only the 5,030

columns that had the highest variance, meaning that they change their value the

most for different lexomes presented in rows (see Baayen, Chuang, Shafaei-Bajestan,

et al., 2019). Each of the 22,075 MALD lexomes was described in terms of a semantic

vector space operationalized as their relation to 5,030 S-matrix columns that seemed

to discriminate between them the best.

4.3.2 Learning through linear mappings

With matrices C and S ready, the spoken word recognition process can be simulated

using linear mappings. Linear mappings are used as a computationally convenient al-

ternative to the discriminative learning rules — they replace the need to incrementally

develop the model and provide an output matching the one that could be obtained

with many learning events see Baayen, Chuang, Shafaei-Bajestan, et al., 2019; Chuang

et al., 2020; Milin, Feldman, et al., 2017, for additional detail. Figure 4.1 presents the

portion of the discriminative lexicon model explaining and simulating spoken word

138



recognition. This figure is an adaptation of an existing figure depicting the entirety

of the discriminative lexicon approach that also includes speech production, reading,

and writing presented in Baayen, Chuang, Shafaei-Bajestan, et al. (2019). In the

upper, direct route, matrices C and S are connected via a transformation matrix F.

Matrix F transforms matrix C into matrix S so that CF = S. To that end, the

generalized inverse of matrix C is created (C−) so that F = C−S. Effectively, rows

of matrix F are FBSFs, while columns, as in matrix S, are the 5,030 semantic vectors

from the TASA corpus. Using the obtained F matrix and a set of cues given in the

C matrix, we can generate model estimates Ŝ and compare these values with the

original matrix S. Note that unlike in matrix S, all instances of the same lexome (e.g.,

confused) will have the same estimated semantic vector.

/ F /

/ K / / H /

auditory cues (FBSFs)
in MALD lexomes

- C -

semantic vectors (TASA)
of MALD lexomes

- S -

abstract units (triphones)
in MALD lexomes

- T -

Figure 4.1: The discriminative lexicon approach to spoken word recognition. Figure
adapted from Figure 11 in Baayen, Chuang, Shafaei-Bajestan, et al. (2019).

We calculated the correlation between semantic vectors from the original S matrix

and the obtained values in Ŝ to examine model predictions. For each lexome, a

winner is selected from matrix S for having the highest correlation with that particular

lexome’s row in matrix Ŝ. Ideally, each row (lexome) in the estimated matrix Ŝ will

correlate the highest with that same lexome’s row in matrix S, leading to a perfect

match and 100% accuracy. A model cannot perform perfectly, however, and we

inspect potential causes for model errors as part of our analysis. The current approach
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also allows us to observe the top candidates for every input, again by observing the

strength of correlation between the target row in matrix Ŝ and rows in matrix S.

We observed the top 20 correlations between each estimated and actual semantic

vector values to see whether or not plausible candidates are extracted, regardless if

the correct lexome was selected as the winner or not. We compared the set of top 20

“activated” candidates to the sets of top 20 closest semantic vectors in matrix S and

top 20 lexomes with the highest number of shared FBSFs for every target lexome.

Note that these sets of 20 lexomes always include the target lexome as well, technically

making the set contain the target lexome plus 19 other close lexomes.

In the lower, indirect route, matrices C and S are bridged by matrix T. Instead of

FBSFs used in matrix C, matrix T has 8,606 triphones as its columns. The procedure

is otherwise the same as in the direct route. A transformation matrix K connects

matrices C and T and is calculated as K = C−T . The rows of matrix K are FBSFs

and the columns are the triphones. Using the calculated transformation matrix K, we

can create an estimated matrix T̂, that is, generate predictions about which triphones

are present in each MALD word signal based on FBSFs. The second step in the

indirect route is governed by transformation matrix H which connects matrices T̂

and S so that H = T−S. The rows of matrix H are the triphones, while columns (as

in matrix S) are the 5,030 semantic vectors from the TASA corpus. Although this

time we are predicting the semantic vectors from triphones, not FBSFs, a matrix Ŝ

can be generated for the indirect route as well. Winner selection is then performed in

the same manner as in the direct route — by comparing the strength of correlation

between semantic vectors in matrices S and Ŝ.

4.3.3 Predicting response latency

Besides observing model accuracy in the two routes, we also wanted to predict partici-

pant response latency in MALD1 data. In this part of the analysis, we only considered

correctly recognized lexomes. We used three measures derived from the correspon-
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dence between matrices Ŝ and S as indicators of how “accessible” the semantic vector

was for the model. The first estimation is the strength of correlation between the

lexome’s semantic vector in matrices Ŝ and S. If the estimated semantic vector better

matches the observed semantic vector, the time for the process to ascertain lexome

identity should be shorter. We refer to this measure as CorStr, short for correlation

strength. However, sometimes the semantic vectors of other lexomes can also be plau-

sible candidates for the winner and delay the decision due to higher uncertainty. The

second measure takes this into account by calculating the difference in correlation

strength between the winning lexome and the second best candidate. We call this

measure CorDiff, short for correlation difference. The last, third measure aims to

take into account more than just the second most plausible candidate. We calculated

Shannon entropy of the 20 highest correlations for every lexome as a representation

of “competitor” density. We refer to this estimate as CorEnt, standing for correlation

entropy.

The three measures derived from the simulation process — CorStr, CorDiff, and

CorEnt — were included as predictors to participant response latency in multiple

linear regression models. As the discriminative lexicon approach is currently atem-

poral and does not directly register frequency of occurrence, we also included MALD

word recording duration and logged COCA word frequency increased by 1 (Davies,

2009) as predictors in these models. Other phonemic, morphological, and semantic

predictors that have proven relevant in statistical analyses of auditory lexical decision

task data were not included. We assumed that, at least in part, FBSFs capture rele-

vant acoustic characteristics of the recordings and that the structure of the S matrix

captures the morphological and semantic characteristics of lexomes.

The dependent variable in this statistical model is mean logged response latency

to each of the MALD1 word recordings. Before the response latencies were averaged,

a de-trending procedure was applied to account for the so-called “local effects” that

impact response latency (ten Bosch et al., 2018). Local effects include getting tired
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and having one’s mind wander. These factors impact consecutive responses to groups

of stimuli in human participants, whereas the computational model always performs

on the same level. The de-trending procedure described in ten Bosch et al. (2018)

entails adjusting the response latency based on the response latency to a number of

preceding stimuli, which is not unlike the well-established approach of taking into

account the preceding response latency when analyzing response latency data. The

number of preceding stimuli that are considered is set to maximize average pairwise

correlations between participant response latencies to the same stimuli. In the case of

MALD1 data, this number was 10. We will refer to this estimated response latency

as dRT. A more detailed description of MALD1 data de-trending is given in Nenadić

and Tucker (2020).

4.4 Results

The results section is split into three subsections: we first describe word chunking and

generated FBSFs, then we investigate the direct route results, and finally we present

the results obtained through the indirect route of the modelling procedure.

4.4.1 Chunks and FBSFs

Descriptive statistics for chunks and the relationship between the number
of chunks and other measures of word length

We first explored word recording chunking, necessary for describing a word signal

in terms of FBSFs. MALD words were split in up to 9 chunks. More than 98% of

word recordings were split into 2, 3, or 4 chunks, or were considered to be a single

chunk in their entirety (Figure 4.2a). In order to offer a comparison of the chunking

process to ordinarily used measures of word length or complexity, we also correlated

the number of chunks in a word with number of phonemes, number of syllables, and

number of morphemes. We observed a moderate correlation between the number

of chunks and number of phonemes a word has (r = .66), followed closely by the
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correlation with word duration (r = .63), and number of syllables (r = .57). A low

correlation was observed between the number of chunks and number of morphemes

in a word (r = .27). Despite the number of chunks and word duration in milliseconds

being moderately correlated, it is visible in Figure 4.2b that words longer than 800 ms

were sometimes considered to have a single chunk, while words shorter than 500 ms

were sometimes split into 4 or 5 chunks. Similarly, there is no direct correspondence

between the number of chunks in a word and the number of phonemes, triphones, or

syllables it has.

Figure 4.2: Figure (a) is the histogram of the number of chunks present in MALD
word recordings. Most words are split into four or fewer chunks. Figure (b) presents
a scatter-plot of how the number of chunks (x-axis) changes as MALD word recording
duration in milliseconds (y-axis) changes.

Descriptive statistics for FBSFs

The distribution of the extracted FBSFs was even more skewed towards lower values

than the number of chunks in MALD word recordings. A total of 26,336 unique

FBSFs were registered. The most frequent FBSF was band18-start1-median2-min1-

max3-end2-part1 and it occurred in 2,303 MALD word recordings. However, most

FBSFs occur rarely. The mean number of occurrences was 35 and the median was
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4. As many as 7,409 FBSFs (28.13%) occurred only once (Figure 4.3a). FBSFs that

occur only once are found in 4,050 MALD words. Accordingly, certain MALD words

have more than one FBSF that does not occur in any other MALD word. This is

likely because the chunk (part) number is embedded in the FBSF, so words with a

large number of chunks have a higher chance of not sharing some of their FBSFs with

any other word.

The number of FBSFs exceeds the number of MALD word recordings. Therefore,

we tested whether or not this number of FBSFs would likely continue to grow if

additional word recordings were to be included. We created 8 subsamples of MALD

words using a stepwise procedure. We started with 1,000 MALD words and then

added 3,000 new words at each step, up to a total of 19,000 MALD words. We

observed how the number of unique FBSFs increases as the number of considered

MALD word recordings increases. We then repeated this process 99 more times,

randomly selecting new subsets of MALD words in each iteration. Figure 4.3b presents

these 100 observations. It appears that the number of unique FBSFs does not reach

a plateau before 19,000 MALD word recordings are considered — adding additional

novel words would likely introduce new FBSFs.

The relationship between the number of shared FBSFs and word-form
similarity

Since FBSFs are representations of the acoustic signal, we investigated whether sim-

ilarly sounding words share more FBSFs. We arbitrarily selected groups of arguably

similarly sounding words and counted the number of FBSFs they share with one an-

other. We also noted the MALD word with which each of these target words shares

the most FBSFs. Table 4.1 presents an example set of five similarly sounding words

and shows how many FBSFs these words share. Additionally, the table shows the

maximum number of shared FBSFs each of these five words has with any other word

in the MALD lexicon. We can see that the number of shared FBSFs between simi-
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Figure 4.3: Figure (a) is a histogram of FBSFs found in MALD word recordings. Most
FBSFs occur very rarely so this histogram shows only the frequency of occurrence of
up to 100. A long tail continues to the maximum number of repetitions observed for
any FBSF (2,303). Figure (b) shows how the number of unique FBSFs increases as
the number of MALD word recordings increases. These estimates are based on 100
samplings of MALD words.

larly sounding words is rather small, especially in comparison to the number of FBSFs

they have (given in the diagonal). Furthermore, these words apparently share many

more FBSFs with some seemingly acoustically unrelated words. Similar trends were

observed in multiple subsets of similarly sounding words.

In addition, a more detailed investigation of how FBSFs capture acoustic similar-

ity between MALD words was performed by correlating the number of shared FBSFs

with a recently developed measure of acoustic distance between MALD word record-

ings (for detail, see Kelley, 2018). The acoustic distance measure is a replacement for

measures such as phonological neighborhood density and it takes into account fine

phonetic detail rather than differences in assumed abstract sub-word units when es-

timating word recording similarity. Acoustic distance is also a more fitting match to

the FBSFs, since FBSFs are likewise based on the acoustic signal and do not rely on

a predetermined abstract unit such as the phoneme. This correlation was calculated

separately for every word. As can be seen in Figure 4.4, the correlation tended to be
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Table 4.1: Number of shared FBSFs for a small set of five similarly sounding words.
The diagonal represents the total number of FBSFs in the word. This number divided
by 21 is also the number of chunks into which the word recording is split. The bottom
part of the table shows the maximum number of FBSFs each of the target words shares
with any MALD word and names that word.

comprehend comprehensive compression compressor comprise

comprehend 63 2 2 1 1

comprehensive 2 63 2 3 0

compression 2 2 84 6 0

compressor 1 3 6 63 1

comprise 1 0 0 1 42

max shared 17 14 18 11 12

word unbecoming unavoidable ammunition aggressiveness metropolis

very weak. There is some tendency for a negative correlation to be registered, which

is expected, as higher acoustic distance should mean fewer shared FBSFs. However,

this correlation never exceeds r = −.02.

Comparing the number of shared FBSFs could only be performed between record-

ings of different words, as each word is represented by a single audio recording in

MALD. However, we also wanted to test whether different recordings of the same

word share many FBSFs. To test this, we randomly sampled five words (deemed, flow-

ering, tabby, warship, and presentation) and invited the same speaker that recorded

the original MALD stimuli to record four new renditions of each of these words. Word

order was randomized (the randomization process had the same word be produced

twice in a row only once) and an additional four words were included at the beginning

and end of the list as fillers. We found that the number of chunks into which these

word recordings were split was inconsistent in all words except the word deemed. We

also found that the recordings of the same word shared but a small number of FBSFs

with one another. The highest number of shared FBSFs was 19, but in the case of two

renditions of the word presentation which were split into 4 chunks, meaning they had
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Figure 4.4: Histogram of correlations between the number of shared FBSFs and
acoustic distance calculated for every word recording.

84 FBSFs each. In relative terms, the highest number of shared FBSFs was recorded

for the word tabby, where three renditions that only had a single chunk shared 10

out of 21 FBSFs. Additionally, it was not unusual for a certain word recording to

share more FBSFs with a recording of some other word in this small set than any

other recording of the same word. For example, two renditions of deemed had more

in common with one of the renditions of tabby than with other renditions of deemed.

Table 4.2: Number of shared FBSFs in four recordings of the same five words. The
word is given in the first column. The number of chunks its renditions were split into
is given the second column. The third column has the mean number of shared FBSFs
between the four renditions of the word. The fourth column notes the maximum
number of shared FBSFs between any two renditions of the word.

Word Number of chunks Mean shared FBSFs Max shared FBSFs

deemed 1 6.5 9 (43%)

flowering 1 or 2 1.67 5 (24%)

tabby 1 or 2 4.67 10 (48%)

warship 2, 3, or 4 2 8 (10%)

presentation 3 or 4 11.17 19 (40%)
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4.4.2 Direct route

Model accuracy and the relative contribution FBSFs have to model accu-
racy

Model accuracy in mapping the set of FBSFs onto the right unit (lexome) in the dis-

criminative lexicon was 92% when the direct route was used. Not all FBSFs contribute

equally to this accuracy, as can be seen by observing the values in the transformation

matrix F. These values can be either positive or negative, but in either case their

absolute value is an indicator of FBSF importance. We measured the maximum and

the mean absolute value per FBSF in matrix F as indicators of cue importance. A

scatter-plot combining these two estimates is given in Figure 4.5a. Most FBSFs that

are highly important for a single column in matrix S also tend to be more important

on average (r = .83). Importantly, however, many FBSFs arguably contribute little

to model success — the gray dotted square in the bottom-left part of Figure 4.5a

delineates an area in which 49% of FBSFs reside. Low-frequency FBSFs seem to

carry higher weights in matrix F, as evidenced in both Figure 4.5b and Figure 4.5c.

However, there are low-frequency FBSFs that also do not have substantial weight;

occurring rarely seems to be only one of the requirements for an FBSF to have a

large impact as a cue. The other factors are likely related to (1) whether or not such

a rare FBSF is paired up with another rare FBSF in recordings in which it is found

and (2) whether the word recording in which the FBSF is found has a semantic vector

similar to semantic vectors of many other lexomes. High-frequency FBSFs have low

values in matrix F.

Inspection of incorrectly recognized lexomes

Most of the incorrect responses (83%) happen in lexomes whose recordings where split

into a single chunk. The remaining incorrect responses are registered in recordings

split into two chunks (17%), with a handful of cases in lexomes represented by record-

ings split into three (9 cases) or four (2 cases) chunks. The model selects the correct
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Figure 4.5: Figure (a) is a scatter-plot showing the maximum absolute value for an
FBSF by its mean absolute value in matrix F. The dotted gray line delineates a
square area in which 49% of FBSFs are placed. Figure (b) shows the relationship
between the frequency of occurrence of an FBSF (x-axis) and its maximum absolute
value in matrix F (y-axis). Figure (c) shows the relationship between the frequency
of occurrence of an FBSF (x-axis) and its mean absolute value in matrix F (y-axis).
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lexome as the winner in only 49% of the cases if the input for that lexome is in the

form of a single chunk. Accuracy is 97% if the input for a lexome has two chunks and

even higher if a recording was split into more than two chunks. Additionally, a lexome

will more likely be recognized correctly if it is represented by FBSFs that are on aver-

age less frequent (Wilcoxon rank sum test with continuity correction W = 29737476,

p < .01) or if the minimum frequency of its FBSFs is lower (W = 30210026, p < .01).

In other words, having a large number of chunks increases the chance of having rare

or even unique FBSFs (as an FBSF carries the chunk number as part of its identity),

whereas low frequency FBSFs are related to higher chance of correct recognition. All

words that have unique FBSFs were correctly recognized.

In comparison, having a semantic vector that is very similar to another semantic

vector does not negatively impact the chances of a lexome to be correctly recognized.

Correlation with the nearest semantic neighbor in matrix S was actually higher in

the set of lexomes that were correctly recognized (W = 13727174, p < .01). Note,

however, that the overall accuracy of the model still depends on the relatively complex

interplay between, on the one hand, the distribution of FBSFs in the target lexome

and other lexomes, and, on the other hand, on the semantic vectors of the target

lexome and its close neighbors. This makes a straightforward prediction of which

items will be difficult for the model to correctly recognize difficult. Still, the items

that the computational simulation struggled with and provided the wrong answer to

were also on average more difficult for the human listener. Mean accuracy for the

items that were correctly recognized in the simulation was 94% in the MALD1 dataset,

while the mean accuracy for the set of items that the model incorrectly recognized

was 89% (W = 15646348, p < .01).

Inspection of top candidates to each target lexome

Besides selecting the correct lexome as the winner, the model should also consider

plausible candidates in addition to the target. We observed which lexomes in S matrix
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were top candidates to be selected as the winner for every semantic vector obtained in

matrix Ŝ. Top candidates are generally connected through their similar semantic vec-

tors in matrix S, not similarity in their acoustics (i.e., shared FBSFs). For example,

the semantic vector in matrix Ŝ for lexome warship correlated the highest with the

semantic vector in matrix S for that same lexome, indicating that the model chose

the correct lexome as the winner. Other semantic vectors in matrix S to which the

semantic vector for warship in matrix Ŝ correlated highly were warships, naval, fleet,

troop, and so on. These top candidates were at the same time semantically most

correlated to warship in matrix S. The same was observed in the case of lexome pre-

sentation which was also correctly recognized by the model. The semantic vector for

this lexome in matrix S is most closely related to semantic vectors of lexomes such as

presentations, critique, communicative, discussion, and customer ; these same seman-

tic vectors were also most highly correlated with the semantic vector for presentation

in matrix Ŝ.

This relationship between top candidates and lexomes with semantic vectors clos-

est to the target lexome is not maintained in every case. Figure 4.6a shows that there

are cases in which not all of the top 20 semantic neighbors are also the top 20 candi-

dates, but also cases in which only the target word was within the top 20 candidates,

although it was still selected as the winner. Figure 4.6b shows that when an incorrect

response is made, most often none of the semantic neighbors are included in the top

20 candidates.

In comparison, sharing a high number of FBSFs was not sufficient for a lexome to be

a close candidate to the target lexome. For example, words with which warship shares

most of its FBSFs are snip, worship, frantic, and inescapable; presentation shares most

FBSFs with recordings of organizations, rehabilitations, urbanization, and stimulate.

None of these options were close candidates to these two target lexomes and this trend

is visible in all lexomes. When correct decisions are observed, the mean number of

top 20 candidates that are also within the 20 lexomes that share most FBSFs with
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Figure 4.6: Figure (a) is a histogram representing the number of semantic neighbors
(i.e., 19 lexomes in S matrix whose semantic vectors correlate the highest with the
semantic vector of the target lexome plus the target lexome) that are also within the
top 20 candidates for the target lexome, observing correct responses only. Figure (b)
is the same histogram generated for incorrect responses. Note that the number of
incorrect cases is much smaller so that the y-axes are not the same in the two figures.

the target lexome was 1.1 and the maximum was 7. Remember that if the answer is

correct, one of these lexomes must be the target lexome — and in 91% of the cases

it is the only one. This result does not change even in incorrect responses, where we

have seen that semantic neighbors are not as prominent within the top 20 candidates,

making more room for other lexomes. When the incorrect winner was selected, the

mean number of close candidates that were also among the top 20 lexomes that share

most FBSFs with the target lexome was 0.61, while the maximum was 4.

Predicting MALD dRT using model estimates

Finally, we used the semantic vectors obtained in matrix Ŝ to predict mean logged de-

trended response latency (dRT) in MALD1 data. All three multiple linear regression

models showed the expected facilitatory effect of frequency and inhibitory effect of

word duration. The model including CorStr showed an overall significant effect of

the three predictors (F (3, 17724) = 1654, p < .001, R2 = .22), but the effect of
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the critical predictor CorStr was not significant (β = −0.01, p = .12). The second

model was also significant (F (3, 17724) = 1666, p < .001, R2 = .22) and included a

significant effect of CorDiff (β = 0.04, p < .001). Higher CorDiff was associated with

longer response latency. The third multiple regression model was significant as well

(F (3, 17724) = 1669, p < .001, R2 = .22), while the effect of CorEnt was facilitatory

(β = −0.04, p < .001). We note that the contribution of the two critical predictors

that were significant is modest in comparison to the effects recorded by frequency and

duration, which were approximately four and ten times larger, respectively.

4.4.3 Indirect route

Model accuracy with focus on triphone recognition and the relative con-
tribution triphones have to model accuracy in lexome recognition

Indirect route accuracy was significantly lower in comparison to the direct route

(57%). Again the group of items that was recognized correctly also had higher mean

accuracy in MALD1 data (t(17443) = −9.00, p < .001). This difference was smaller

in the indirect route than in the direct route; the mean MALD1 accuracy for the items

that were correctly recognized in the indirect route was once more over 94%, but the

mean accuracy for items that were not recognized by the model was approaching 93%.

The bulk of the reduction in recognition accuracy in the indirect route does not

seem to happen at the step between the C matrix and the T matrix. The T matrix

registers whether a triphone is present in a particular MALD word or not (1 or

0). Although most of the estimates obtained in T̂ were very close to 1 or 0, they

are not integers. Therefore, we approximated which triphones are detected in T̂

by treating all generated estimates higher than 0.5 as 1 and all lower as 0. After

applying this procedure, we noted a perfect match between estimated and observed

triphones in 90% of the cases. Not all of FBSFs were contributing equally to this

accuracy level — we noted identical patterns in the transformation matrix K as in

the previously described transformation matrix F. To repeat, most FBSFs have small
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weights and high weights are by rule registered in low-frequency FBSFs. Additional

figures showing this trend for matrix K are available in our supplementary materials.

At this stage, the computational model attempts to learn the connection between

triphones present in the signal and the semantic vectors stored in matrix S. A total

of 8,606 different triphones were recorded and their distribution, shown in Figure 4.7,

is not unlike the distribution of FBSFs. The most frequent triphone /iN#/, where #

stands for the end of the word, occurred 1,184 times. The mean number of occurrences

of a triphone was 14.4 and the median, as in FBSFs, was 4. Our of 8,606 triphones

recorded, 2,036 (23.66%) occurred only once, which is a slightly smaller percent than

in FBSFs. Unlike in the case of FBSFs, unique triphones are found in a relatively

small set of 1,667 words.

Figure 4.7: Histogram of the triphones recorded in MALD words. Most triphones
occur very rarely so this histogram shows only the frequency of occurrence of up to
100. A long tail continues to the maximum number of repetitions observed for any
triphone (1,814).

Transformation matrix H connects the triphone layer to the S matrix. We again

assessed the contribution of each cue (in this case, triphone) by measuring its max-

imum and mean value in matrix H. The correlation of the two measures was lower

than in matrix F, estimated at r = .45 (Figure 4.8a). Additionally, although the
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maximum weight remained high for low-frequency triphones (Figure 4.8b), the mean

weight was not negligible for high-frequency triphones (Figure 4.8c). We take this

result as an indication that the model cannot rely on a small number of very distinct

cues alone in order to successfully generate model estimates.

Figure 4.8: Figure (a) is a scatter-plot showing the maximum absolute value for a
triphone by its mean absolute value in matrix H. Figure (b) shows the relationship
between the frequency of occurrence of a triphone (x-axis) and its maximum absolute
value in matrix H (y-axis). Figure (c) shows the relationship between the frequency
of occurrence of a triphone (x-axis) and its mean absolute value in matrix H (y-axis).
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Inspection of incorrectly recognized lexomes

For the most part, incorrect answers in the direct route remained incorrect in the

indirect route as well (92%). The mistakes made in the indirect route are, unlike

in the direct route, more evenly distributed across lexomes with different numbers

of chunks. Error rates for lexomes with 1 to 6 chunks were 59, 36, 40, 45, 55, and

67%, respectively. The one lexome with seven chunks was recognized correctly, and

the one lexome with nine chunks was recognized incorrectly. This lack of correlation

between the number of chunks and recognition accuracy in the indirect route is likely

a consequence of the cues used — the frequency of an FBSF largely depends on the

chunk it is from, whereas the number of chunks has a much smaller impact on the

frequency of the triphones present in a lexome.

In the indirect route, accuracy seems to depend on triphone frequency. Having

a lower mean frequency of triphones is beneficial (t(20817) = 8.75, p < .001). The

group of lexomes that was correctly recognized had a mean triphone frequency of 132,

whereas the group of lexomes that were incorrectly recognized had a mean triphone

frequency of 144. However, having at least one very low frequency triphone seems

to be even more important (t(14161) = 42.13, p < .001). The minimum triphone

frequency in the group of correctly recognized lexomes was 9, whereas it was 17 in

the group of incorrectly recognized lexomes. We also recorded larger closeness of the

nearest semantic neighbor for lexomes that were correctly recognized versus those that

were not (t(18145) = −44.79, p < .001), just like in the direct route. The correlation

between the target lexome’s semantic vector and its nearest semantic neighbor’s se-

mantic vector was .71 in correctly recognized lexomes and .54 in incorrectly recognized

lexomes.

Inspection of top candidates to each target lexome

Accuracy decreased in the indirect route, but even when the correct lexome is selected

as the winner, the top candidates that are isolated do not always match those from
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the direct route. Whereas most top candidates in the direct route’s correct recogni-

tions were also the top semantic neighbors to a lexome in matrix S, we see a much

less skewed distribution in the indirect route (Figure 4.9a). In many cases, not all

of the top semantic neighbors are also highly activated in the simulation, meaning

that the obtained matrix Ŝ does not match matrix S so well. In incorrect responses

(Figure 4.9b), the results remained the same as most often none of the semantic

neighbors are included in the top 20 candidates. Another result that remained the

same is that top candidates were again not isolated based on their similarity with the

target lexome in the cues (triphones) they share.

Figure 4.9: Figure (a) is a histogram representing the number of semantic neighbors
(i.e., 19 lexomes in S matrix whose semantic vectors correlate the highest with the
semantic vector of the target lexome plus the target lexome) that are also within the
top 20 candidates for the target lexome, observing correct responses only. Figure (b)
is the same histogram generated for incorrect responses. Note that the values on the
y-axis are different for the two figures.

Predicting MALD dRT using model estimates

Lastly, we used CorStr, CorDiff, and CorEnt calculated from the correlations between

the matrix Ŝ obtained in the indirect route and matrix S to predict dRT. Again

all three multiple linear regression models showed the expected facilitatory effect of
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frequency and inhibitory effect of word duration, as well as more humble effects of the

estimates obtained from the computational simulation. The multiple linear regression

model that included CorDiff was significant (F (3, 10489) = 969, p < .001, R2 = .22),

with a significant effect of the critical predictor (β = 0.02, p = .038). CorEnt also

had a significant effect (β = −0.03, p < .001) in its own linear regression model

(F (3, 10489) = 971.9, p < .001, R2 = .22). Unlike in the direct route, in the indirect

route CorStr was also a significant predictor of response latency (β = −0.03, p < .001)

in the multiple linear regression that included this predictor (F (3, 10489) = 973.3,

p < .001, R2 = .22).

4.5 Discussion

The goal of the present study was to implement the discriminative lexicon approach

(Baayen, Chuang, Shafaei-Bajestan, et al., 2019) and to simulate participant behavior

in the Massive Auditory Lexical Decision project (Tucker et al., 2019). This is the

first implementation of the discriminative lexicon that compares model performance

to a large set of lexical decisions made as a response to a large set of words produced

in isolation (but see Chuang et al., 2020, for a simulation focusing on MALD pseu-

dowords). The results in the direct route showed a lexome recognition accuracy that

was similar to the percent of correct responses made by MALD participants in the

MALD1 dataset. In other words, the computational model seemed capable of learn-

ing direct connections between a set of features describing the acoustic signal and

semantic vectors of lexomes using a wide and shallow network with no hidden layers.

Moreover, lexomes which were recognized incorrectly were associated with words with

higher error rates in MALD1 data and measures extracted from model output were

predictive of participant response latency. These results indicate that the modelling

procedure partly mimics the difficulties faced by human listeners when responding

to auditory stimuli. This is yet another implementation of the discriminative lexicon

that shows high model performance, either in comparison to human listeners or other
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computational solutions.

Although we consider the simulations to be successful, a concern for the discrimi-

native lexicon approach to simulating spoken word recognition seems to be its input

representation. The model does make an important step towards using actual acous-

tic signal as input by creating a measure that aims to be faithful to the human hearing

system and the auditory cortex (see Arnold et al., 2017; Baayen, Chuang, Shafaei-

Bajestan, et al., 2019). However, the chunking process produces an outcome in which

most word recordings are split into up to four chunks and many are treated as one

single chunk. In turn, this means that the FBSFs often cover a very lengthy period

of time. During this time, many important changes in the amplitude of a frequency

band could be happening and the chunking process would engulf them (i.e, multiple

segments) into a single chunk, while the only information retained would be the ini-

tial, final, median, minimum, and maximum intensity. Simply put, two very different

stretches of acoustic signal recorded within a mel-frequency band of a chunk could

have the same or very similar FBSF assigned to describe them.

At the same time, even a small change in the acoustic signal means that an entirely

different FBSF should be assigned. Two signals that only differ in their initial (start)

amplitude value by one degree would be represented by two different FBSFs. The

learning algorithm does not have the information that certain FBSFs are more similar

to others, as these are the smallest, indivisible, opaque units; all FBSFs are equally

distant from one another. Since FBSFs capture multiple levels of multiple estimates

of amplitude, the number of possible different FBSFs for any given chunk is measured

in tens of thousands, making FBSFs very recording-specific and unable to relate

to generalizable characteristics of the acoustic signal. The consequences of these

characteristics of input representation were visible in our results: FBSFs were very

numerous and therefore often of low frequency of occurrence, introduction of new

recordings kept introducing new FBSFs, there was little similarity in FBSFs used

to describe acoustically related words, repeated recording did not produce reliable
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FBSFs for the same word, and low-frequency FBSF were instrumental in correct

lexome recognition as they were rare if not unique cues.

The importance of distributional characteristics of the cues is evidenced in the

current simulation as well. In the first step of the indirect route, FBSFs were con-

nected to a set of triphones present in lexomes. Recognition accuracy at this stage

was comparable to the one found in the direct route. Accuracy in lexome recognition

dropped significantly in the second step of the indirect route, when a set of triphones

was connected to the semantic vectors. In comparison to FBSFs, there is a signifi-

cantly smaller overall number of different triphones, there are slightly fewer unique

triphones, unique triphones are found in a smaller set of lexomes, and each lexome

is represented by a smaller set of triphones than FBSFs. Together, this means that

there is a higher chance that cues will overlap for different lexomes, making lexome

recognition much more difficult. We also note that most lexomes that were recognized

incorrectly in the direct route are also recognized incorrectly in the indirect route,

meaning that this portion of the simulation process cannot act as a “safety net” for

incorrect recognitions in the direct route.

The specific benefit of including the indirect route should be more carefully exam-

ined in future simulations. However, we see three ways in which the issues we had

with implementing FBSFs can be addressed. The first is to notice that these issues

may be a consequence of the particular setup employed in the current simulation.

The discriminative lexicon assumes that the connections between input and meaning

are learned after a large number of events. In our case, the set of events was lim-

ited as every lexome was only presented once and therefore represented by a single

set of FBSFs. Our small additional analysis of five MALD words being produced

four times (tabby, flowering, presentation, deemed, and warship) did show that there

is significant variability in the FBSFs extracted for different renditions of the same

word, which is somewhat concerning, but it is still an open question whether or not

numerous repetitions of the same word would ultimately yield some sort of a “central
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tendency” in FBSFs extracted for a particular word. With a larger number of record-

ings, perhaps similarities could even be found between groups of similarly sounding

words. This is an empirical question that could be the focus of future research. The

drawback of this solution, of course, is that it requires very large datasets, limiting

the number and variety of simulations that can be performed.

The second option is to adapt FBSFs. In our view, such an adaptation should aim

to reduce the number of potential FBSFs, as that should increase the possibility of

overlap between similarly sounding words or different recordings of the same word.

In turn, this would make the representation of the acoustic signal more generalizable

and less recording-specific. Another potential step would be to make the duration of a

single chunk smaller, as a lot of important information may be lost with an overly long

chunk. A special concern are word recordings that are represented by a single chunk.

The signal could still be split into mel-frequency bands, to match the assumptions of

how acoustic signal is analyzed in the cochlea. For example, the chunking procedure

could be replaced by relatively lengthy moving windows with moderate overlap, and

a single amplitude value could be recorded for that stretch. The new string would

contain information about the window, the mel-frequency band, and the amplitude

recorded (e.g., window1-band1-amp3 ). If 30 ms windows with 15 ms overlap are

chosen, a 600 ms signal would have 40 windows with 21 bands and 5 amplitude

levels, making for a total of only 3,000 different strings. Whatever the adaptation,

it would have to be empirically tested to see whether it actually outperforms FBSFs

while also being faithful to the theory at the core of the discriminative lexicon.

The third option is to replace FBSFs with another, more generalizable representa-

tion of the acoustic signal. Both DIANA (ten Bosch, Boves, & Ernestus, 2015) and

Fine-Tracker (Scharenborg, 2009; Scharenborg & Boves, 2010) have had some suc-

cess using mel-frequency cepstral coefficients, in effect outsourcing the analysis of the

acoustic input to an automatic speech recognition system. A similar matrix to matrix

C could be devised in which FBSFs are replaced with units extracted from the auto-
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matic speech recognition software, where a 1 would be assigned to a certain number of

most highly activated units. These units would not have to correspond to phonemes,

as they currently do in DIANA. (These units could correspond to triphones, however,

replacing the first part of the indirect route.) Instead, the recognition process could

be designed to create its own set of units based on the acoustic data. Although there

are a number of decisions a user can make to control the creation of such acoustic

models, the obvious downside to this approach is that it largely relinquishes control

over the process of analyzing the acoustic signal, potentially making this aspect of

the model incomparable to the process occurring in human listeners. The goal behind

creation of FBSFs was exactly opposite.

Arguably the most significant contribution of the discriminative lexicon approach

to the field of spoken word recognition is the representation of the discriminative

lexicon itself. Most models of spoken word recognition end their process at what

is usually referred to as “lexical access”, that is, recognition of the input in terms

of units of form stored in the mental lexicon see, e.g., Gaskell and Marslen-Wilson,

2002; Weber and Scharenborg, 2012. These units are usually not connected in any

way except in the units of form that they share, making the mental lexicon a list of

unconnected strings. However, the goal of listening to words is understanding their

meaning and form recognition is often impossible to tease apart from the meaning

it carries. Furthermore, the mental lexicon should be organized in a manner that

testifies to the history of its use, making it adapted to the requirements and outcomes

of previous access. Recent behavioral studies also show that semantic richness effects

can be captured even in isolated word recognition using the auditory lexical decision

task (Goh et al., 2016; Tucker et al., 2019).

The current simulation is yet another argument in favor of including a semantic

element to models of spoken word recognition. Measures derived from “activation”

estimates, that is, correlations between rows of the obtained matrix Ŝ and matrix

S, were predictive of response latency. Interestingly, these results do not follow the
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usual notion that more competition and closer competition means longer decision

time (although this notion is preserved in the finding that lexomes represented by

less frequent cues, i.e., that compete with fewer other lexomes, are recognized cor-

rectly more often). We found that the smaller the difference in activation between the

top candidate and the runner-up, the shorter the response latency. Similarly, shorter

response latency was associated with higher entropy in the activations of the top 20

candidates. We interpret these results by noting that top candidates in correctly

recognized lexomes are usually the top semantic neighbors of the target lexome. As

we stated before, this is unsurprising as the goal of the simulation is to replicate the

semantic vectors stored in matrix S. In incorrectly recognized lexomes, the candidates

are usually not semantic neighbors. Therefore, the final output of the model is closer

to a spread of semantic activations given the correctly recognized lexome, rather than

a set of close competitors. Participant response latency is then predicted primarily

by the characteristics of the semantic neighborhood of a lexome (with higher seman-

tic neighborhood density being beneficial), rather than competition between formal

characteristics of lexomes.

There are two additional important aspects of the auditory lexical decision task

that the current architecture of the discriminative lexicon does not support. First, the

auditory lexical decision task presents participants with both words and pseudowords.

We do not present simulations investigating how the discriminative lexicon predicts

response latency to pseudowords, as these simulations were the focus of extensive

and detailed simulation performed by Chuang et al. (2020). However, one of the

crucial elements of the lexical decision task is the very lexical decision, that is, the

listener’s decision whether the input signal represents a lexical item (word, lexome)

in the given language or not. The discriminative lexicon currently does not include

a decision component that would categorize the input as fitting a certain existing

lexome or not, the way DIANA does for words (ten Bosch, Boves, & Ernestus, 2015).

We also note that the discriminative lexicon is not an exception in this regard, as
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most models of spoken word recognition do not have an explicit decision rule for

making a lexical decision. For example, TRACE does not have a built-in moment of

recognition (Strauss et al., 2007), so Hannagan et al. (2013) had to devise their own

solution that seemed appropriate for estimating the time cycle in which the model

recognizes the signal as a certain word. The decision component is necessary to fully

simulate participant behavior in the auditory lexical decision task, while models of

spoken word recognition need to be able to simulate a variety of different experimental

tasks in order to properly assess their performance and make them comparable to one

another.

Second, the current implementation of the discriminative lexicon approach to mod-

elling spoken word recognition is atemporal. This directly relates to our previous

point as it means that the model currently cannot simulate some of the phenomena

that have been of central interest to the field of spoken word recognition and litmus

tests for model performance. Notable examples include subphonemic effects captured

by using sound splicing (Marslen-Wilson Warren 1994), mismatch effects see, e.g.,

Marslen-Wilson and Zwitserlood, 1989; McQueen, 2007, and the time-course of spo-

ken word recognition as investigated using the visual world paradigm e.g., Allopenna

et al., 1998; Dahan, Magnuson, Tanenhaus, and Hogan, 2001. One way in which

the signal can be incrementally presented to the model is by using temporal chunks

into which the word is split. Instead of having FBSFs from all chunks of a word in a

single row of matrix C, we could represent each word in multiple rows. FBSFs of one

additional chunk could be added with each new row, with semantic vectors effectively

being estimated after each chunk. This approach, however, does not offer much detail.

We have seen that most MALD word recordings were split into four chunks or fewer,

while many were parsed into a single chunk in their entirety. Additionally, there is

a risk that additional repetition of FBSFs belonging to the early chunks (especially

the first one) would further reduce model accuracy. Therefore, an alternative to the

current input may be necessary. We have already discussed the topic of the input
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representation in the discriminative lexicon approach and there is, at this point, no

one clear direction in which it may develop. It seems that including some option to

make the input incrementally presented to the model would be useful in expanding

the set of experimental tasks that the model can simulate.

Finally, it is only fair to once more point out that the computational model used in

the current study was trained and tested on the same set of data. Although the results

are promising and some important insight into how the model could be improved were

gained, additional simulations that would use an expanded set of recordings (part of

which can be used for training and part for testing) are necessary. Future iterations

of the MALD project will include recordings of two additional speakers besides the

speaker whose recordings were used in the MALD1 sessions. It would be interesting

to see the extent of speaker variability as captured by FBSFs (or whatever other input

representation) and whether the model is capable or learning from recordings of one

speaker and perform well when tested using the recordings of another speaker. The

Auditory English Lexicon Project (Goh et al., 2020) may be another good choice, as

it includes recordings of six speakers from three dialects of English producing isolated

words. The learning models (or transformation matrices) could also be trained on

spontaneous speech corpora and then applied to one of these large auditory lexical

decision task databases, even though the circumstances in which these recordings

were made would not be the same. Whatever the direction of future investigation,

simulations are necessary for any further model development and, at the same time,

development of the theory explaining the process of spoken word recognition. This

holds not only for the discriminative lexicon approach, but also for other models

of spoken word recognition, very few of which have been tested in their ability to

simulate human performance in the auditory lexical decision task on larger sets of

data.
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Chapter 5

General Discussion and Conclusion

The bulk of the discussion of simulation results is found in the separate discussions

present in each central Chapter of the present dissertation. In this final Chapter,

I first give an overview of the results of the three separate studies and provide a

comparison of model performance. I then focus on what the findings in these studies,

taken together, bring to our understanding of the process of spoken word recognition

as captured by the auditory lexical decision task and how this process of SWR is

implemented in the tested models. The final portion of this Chapter is reserved for a

sketch for a new hybrid model of spoken word recognition, combining features from

two models of spoken word recognition.

5.1 Overview of simulation results

The first goal of the dissertation was to perform computational simulations of the

auditory lexical decision task and compare model adequacy in matching the process

as it unfolds in the human listener. The three models we employed do not seem

to perform very well when simulating the auditory lexical decision task and I will

summarize the issues noted when implementing them. TRACE’s (McClelland &

Elman, 1986) reimplementations jTRACE (Strauss et al., 2007) and TISK (Hannagan

et al., 2013; You & Magnuson, 2018) arguably performed the worst. The current

setup of jTRACE does not allow for a proper representation of certain phonemes
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of English, specifically affricates and the r-colored vowel, as phonemes that have

dynamic, changing characteristics. Our solution that included merging two shorter

versions of existing phonemes (previously used by Mayor & Plunkett, 2014) lead to a

very significant decrease in phoneme and hence word recognition accuracy in jTRACE.

I argue that there is still a possibility to define these phonemes as “steady-state”

(similarly to how TRACE does not represent diphthongs as vowels with dynamic

formants). For example, the diffuseness and the burst pseudofeatures could have

high values at the same time in an affricate. Although suboptimal, this solution

might yield higher recognition accuracy and allow jTRACE to cross the hurdle of

having low phoneme and word recognition accuracy when all phonemes of English

are included.

However, what lays on the other side of that hurdle could likely be bleak. Ulti-

mately, TISK and jTRACE perform quite similarly (Hannagan et al., 2013) and TISK

sidesteps the issue of phoneme recognition altogether. Still, we have seen that TISK

recognition accuracy plummeted with any form of close competition. Furthermore,

in correctly recognized words, estimates of response latency were not predictive of

human response latency, or at least not any more predictive than using a simple mea-

sure of the number of phonemes in a word. The decision criteria had an additional

flaw: applying them on pseudoword input (i.e., on a phoneme string not present in

the lexicon) did not disqualify the input as a pseudoword, instead generating a large

number of false positives. The decision criteria we used were created to perform

model-to-model (jTRACE to TISK) comparisons, and, as far as I know, were never

used to make model-to-human comparisons.

DIANA (ten Bosch, Boves, & Ernestus, 2015) is a model that was developed with

auditory lexical decision and word repetition tasks in mind. The model was also

previously tested on human data from those experimental tasks. However, the simu-

lations we performed had their issues. One difficulty with applying DIANA is that it

seems unlikely that a researcher could use it “off the shelf”, as jTRACE and TISK, or
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even the discriminative lexicon. DIANA requires acoustic models that are adapted

to the speaker, that is, approximately at least forty minutes of transcribed recording

to adapt an existing acoustic model. Additionally, the simulation process we used

requires an at least somewhat skilled user of the Hidden Markov Toolkit (Young et

al., 2006). This obstacle is not insurmountable, and we also offer our own acoustic

models that have been adapted to the MALD speaker to those researchers that would

use MALD stimuli in their experiments as well.

A more important concern is that DIANA’s current setup showed best performance

when the decision component of the model was effectively neutralized. The highest

correlation between model estimates and participant response latency estimates was

obtained when the model estimate was essentially equal to the duration of the word

recording. In a way, this result is reminiscent of the TISK simulation result — whereas

the contribution of TISK to predicting human response latency could be reduced to

the number of phonemes in a word, the contribution of DIANA could be reduced

to recording length. This result shows that the decision process taking place as the

signal unfolds and, importantly, after the signal has ended needs to be changed in

future simulations using DIANA.

The discriminative lexicon approach (Baayen, Chuang, Shafaei-Bajestan, et al.,

2019), with its current architecture, does not estimate response latency. Instead,

we used measures obtained from model output that relate to candidate density (or

closeness) as predictors of human response latency. Of course, a procedure could be

devised similar to the one used in DIANA: the model could assume that all responses

are made after signal offset and then add an estimate of decision time past signal

offset to the duration of the signal. The duration of the signal would need to be

stored outside of the cue matrix. However, I am uncertain how the decision time

should be estimated in the discriminative lexicon approach. Candidate set density,

that is, the closeness of semantic neighbors, had a negative correlation with human

response latency, as more competitors meant shorter response latency. In DIANA and
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in most approaches to modelling SWR more candidates mean more time needed to

select the correct winner due to higher competition or uncertainty. Adding negative

time to signal duration to account for the opposite trend noted in the discriminative

lexicon would not yield realistic estimates of response latency, making them shorter

than the duration of the signal. This question of the missing decision component

is closely related to the characteristic of the model being atemporal and should be

addressed in future model development.

The direction of the correlation between response latency and the closeness of can-

didates is opposite to the one expected at least partly because candidate “activation”

in the discriminative lexicon reflects the structure of the outcome matrix (the lexicon

itself). To repeat, TISK yields response latency estimates dependent on the number

of phonemes, DIANA on signal duration, while the discriminative lexicon’s estimates

seem to relate to what we may call semantic neighborhood density (i.e., similarity in

semantic vectors between the target lexome and close candidates in the S matrix). At

the same time, the candidates extracted in the discriminative lexicon simulation do

not seem to reflect similarities in input (the acoustic signal). It seems to me that, in a

successful simulation, the outcome matrix aiming to match the S matrix should never

inherit similarities in the acoustic characteristics present in the C matrix, as that is

not the goal of the simulation process. Therefore, I am uncertain what kind of input

could be used in the discriminative lexicon approach that would retain acoustic sim-

ilarity in simulation outcomes. Our analysis of the characteristics of frequency-band

summary features (Arnold et al., 2017) also showed that they are very recording-

specific, which also means that they are not similar for similar sounds. The first step

in further development of the discriminative lexicon’s approach to simulating SWR

should still be making significant changes in the input representation.

With these limitations in mind, I turn to the successes of the present series of sim-

ulations. In my opinion, of the three models used, DIANA seems best fit to simulate

the process of spoken word recognition as captured by the auditory lexical decision
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task. The model is fairly accurate in selecting the correct word from thousands of

competitors using actual acoustic signal as input even with in-house acoustic mod-

els like the ones we created, which may be unprecedented in models of spoken word

recognition. The model is also relatively successful in distinguishing between words

and pseudowords. The correlation between model estimates and human responses is

the highest in DIANA, even if only because the model “listens” to the same acoustic

signal as the human listener and does not lose count of its duration. Crucially, the

model is built so that it can explicitly perform the three required tasks — it defines

how it selects whether the input signal is a word or not, which word it is, and when

the decision is made. The decision element of the model is necessary for calculating

model estimates and I do not see it as an inherent part of other models of SWR; it

is certainly not a core element of TRACE or the discriminative lexicon. In the case

of DIANA, the decision process is assumed to be different for the auditory lexical

decision task versus the word repetition task (which we did not investigate in the

present dissertation), and it can be adapted to fit the task at hand. Although addi-

tional work may be needed to define the decision process or at least adjust parameter

values, as we have seen that the current setup does not fit MALD data well, DIANA

is an important step forward and a good starting point for future simulations.

The discriminative lexicon approach also showed high recognition accuracy, even

higher than DIANA, and in line with human accuracy. The current setup does so

without necessitating any sort of prelexical abstract units, given that the indirect

triphone route seemed to perform worse than the direct route. Furthermore, esti-

mates derived from the simulations were predictive of human response latency in the

MALD1 dataset — estimates that seem to mostly be related to distributional seman-

tics of lexomes. As we have stated in Chapter 4, our simulations are yet another

confirmation that the discriminative lexicon approach merits further testing and de-

velopment. Importantly, this model puts under question the somewhat ingrained

ideas about the necessity of prelexical abstract units and the mental lexicon being
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represented as a list of unconnected items.

Lastly, there does not seem to be much favorable to be said about the mostly

unsuccessful simulations conducted using jTRACE and TISK. However, I wish to

stress one important thing about using jTRACE and especially TISK to simulate the

auditory lexical decision task: of the three models employed in the present dissertation

(but also certain other models that I have investigated), jTRACE and TISK have

proven to be the easiest to set up and use. I will say more about this towards the

end of the following section.

5.2 Implications for the theory of spoken word recog-
nition

The second major goal of the dissertation was to learn more about the process of

spoken word recognition by simulating this process as captured by the auditory lexical

decision task using a set of computational models. This goal was only partly met.

The present simulations scarcely provide researchers in the field with novel important

aspects to be aware of in the process of spoken word recognition; rather, they point

to how the known important aspects of the process are technically implemented (or

omitted) in the tested models. In other words, it seems that the majority of issues

noted in the present series of computational simulations were not related to the theory

behind the employed models of SWR, but to the technical implementations (or lack

thereof) of crucial elements in any model of SWR.

In this section, I return to these important elements — input representation, ab-

stract units, competition, and the representation of the mental lexicon (i.e., storage)

— to discuss how they are implemented in the tested models. Further, I discuss

how these elements should be treated in models of SWR, basing my arguments with

regards to the implementations in the tested models and their performance. Still,

the implications to our understanding of the process of spoken word recognition and

to how we operationalize this process in computational simulations that I present
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in this section should be taken with some reservation for two reasons. First, these

conclusions are based on simulations of a single experimental task (the auditory lex-

ical decision task) and they may not extend equally to all other tasks or situations

that require the human listener to recognize spoken words. Second, the conclusions

drawn here are partly speculative and require further testing because of the various

technical limitations or other hindrances we faced using the three models of spoken

word recognition.

Models of SWR need to abandon pseudo-acoustic input, as it does not properly

represent the variability present in the speech signal. At the same time, we cannot

assume that the process of analyzing the acoustic signal is trivial or somehow already

solved, as is done in TISK. Using higher level abstract prelexical units that are as-

sumed to be already recognized is not fitting because in that case the model does not

prove that those units can be extracted without error from the acoustic signal, nor

that those abstract units could not be replaced by some other, better abstract repre-

sentation of the acoustic signal. Putting input representation under careful scrutiny

through new challenges may reveal that it is not fitting. We have seen in the case of

jTRACE that expanding the phoneme set impeded recognition even though pseudo-

acoustic features were used. We have also shown that not all representations of the

acoustic signal do it justice by noting issues with frequency-band summary features

(Arnold et al., 2017).

The need to use better input representation (i.e., one based on the acoustic signal)

has been acknowledged for more than thirty years at the point when the present

dissertation is written. What changed is that we now have models that make valid

attempts at deriving input from the acoustic signal, like DIANA, the discriminative

lexicon, or Fine-Tracker (Scharenborg, 2008, 2009; Scharenborg & Merkx, 2018). Both

the successes and the failures of such attempts provide important information about

how the acoustic signal should be treated to derive model input from it. Given that

DIANA and the discriminative lexicon both had to offer more than instantiations of
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TRACE in the present dissertation, I see no reason why a contemporary model of

spoken word recognition would not be expected to provide a solution that is based

on analysis of the acoustic signal.

Another important question in the field of SWR is the number and nature of

abstract sublexical units. The three models we employed all use progressively fewer

layers of abstract sublexical units and larger units. jTRACE uses pseudofeatures from

which it derives phonemes, TISK uses already recognized phonemes as input, DIANA

calculates phoneme activation directly from the speech signal, and the discriminative

lexicon has a direct route that connects frequency-band summary features (that is,

acoustics) directly to units of meaning (lexomes) without any prelexical layers. Even

in the indirect route, the discriminative lexicon uses a larger abstract unit, triphones.

Our results indicate that multiple abstract layers may not be needed, as both DIANA

and the discriminative lexicon approach perform fairly well without them, and at

the same time better than jTRACE. Furthermore, DIANA’s accuracy would likely

be higher if triphones were used instead of the flat monophone acoustic models we

created (see Young et al., 2006).

However, it is difficult to make claims about which approach is better. Other

model characteristics between TRACE instantiations, DIANA, and the discrimina-

tive lexicon were also different. In order to test what kind of abstract prelexical

units are needed (if any), other model characteristics need to be kept constant, or

at least systematically varied to cover major possible combinations/interactions of

model characteristics. DIANA could be a good model to test such assumptions on,

as it could replace phonemes with triphones, syllables, or any other abstract prelexi-

cal unit. DIANA could also use an option to have the automatic speech recognition

process extract its own categories based on the speech signal, rather than extract im-

posed man-made sublexical units. Regardless whether DIANA is used as the frame-

work model to test these assumptions, future studies and simulations are necessary to

investigate whether larger, chunked abstract sublexical units should be favored over
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multiple layers of sublexical units increasing in size and whether the answer to this

question is task-dependent.

The question of how competitors are selected and removed from contention as the

process of spoken word recognition unfolds was one of the central points of discussion

in second-generation models of SWR. This issue was solved differently in TRACE,

(Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978), Neighborhood Ac-

tivation Model (NAM; Luce, 1986; Luce & Pisoni, 1998), and Shortlist A and B

(Norris, 1994; Norris & McQueen, 2008). Based on the simulation results in DIANA,

it seems that it is better not to entirely remove candidates at the first point when

they show mismatch with the input. In the initial simulations where we adapted

acoustic models we saw close competitors that had initial mismatch with the target

word. As DIANA follows a Cohort-like competition, such candidates were excluded

from shorter lexicons created for every target word in later DIANA simulations; we

already discussed in Chapter 3 that this may have had some impact on the simula-

tion results. Therefore, it seems that the candidate retention process should be rather

TRACE-like than Cohort-like, as rhymes (in TRACE terms) to the target word are

often retained as closest competitors in DIANA if they are not previously excluded.

Although likely an improvement, even the TRACE approach determines similarity

between candidates based on similarities in the abstract units they contain. It would

be better yet to estimate candidate similarity based on acoustic signal similarity

(Kelley, 2018), as it is imaginable to have two words that do not share their first

nor last phonemes while still being acoustically similar. For example, the difference

between /pAp/ and /bAb/ is only in the voicing of the bilabial stops. Neither TRACE

nor NAM would consider these two words to be close candidates to one another, but

renditions of these words may be acoustically quite similar (or treated as a viable

candidate by the human listener). With high variability present in different renditions

of the same word, it is also possible to have a certain recording be more ambiguous

than another recording of the same word. Preselections made based on similarities of
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abstract units between words do not take into account this variability.

Furthermore, as discussed in Chapter 3, the issue of candidate retention or prese-

lection may be a thing of the past, present only because of the technical limitations

that disallow the entire lexicon participating in the activation-competition process.

DIANA and the discriminative lexicon approach (and possibly TISK) have the poten-

tial to include the entire lexicon in every simulation and estimate candidate activation

based on similarities between the acoustic input and, currently, phonemes present in

words stored in the mental lexicon. The optimal approach seems to be for the model

to define how the activation is calculated and have candidate plausibility or promi-

nence be estimated as a direct consequence of that decision, without necessitating

candidate preselection.

The representation of the mental lexicon is quite reduced in most models of SWR.

The units in the mental lexicon are most often unconnected strings of phonemes. Our

simulation using the discriminative lexicon and behavioral studies (e.g., Goh et al.,

2016) clearly show that there is something to the organization of the mental lexicon or

the characteristics of its units that plays a role in the process of SWR even when the

task is to recognize isolated items, as it is in the auditory lexical decision task. These

simulation and experimental results seem to counter an approach that is entirely feed-

forward (see, e.g., Norris et al., 2000a) and that entirely disregards the structure of

the mental lexicon and how that structure shapes accessing units stored within. As

mentioned in Chapter 4, it is of course clear that with a perfectly unambiguous signal

and a model that always performs on the same level there would be no need for any

other information for correct recognition. However, it is also clear that the goal of

cognitive simulation is not to solve the spoken word recognition problem, but to solve

it the way a human does. Humans listen for meaning and have adapted to do so in an

often noisy environment. We necessarily generate predictions based on our previous

experiences, as that facilitates signal disambiguation and allows a fast reaction when

needed — depending on the (supposed) content of the message. This characteristic
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of human behavior is now more readily being recognized as an important element of

spoken word recognition (see, e.g., Norris et al., 2016), but how we could simulate

this prediction process and create an interwoven, meaning-rich representation of the

mental lexicon remains an interesting and open question. I think that the semantic

vector approach somewhat shared between the Distributed Cohort Model (Gaskell

& Marslen-Wilson, 1997) and the discriminative lexicon is a good place to start,

although this solution would likely not be able to capture effects that are difficult to

extract from distributional characteristics of words, such as the recorded effect word

valence has on participant response latency in the auditory lexical decision task (see

Goh et al., 2016; Tucker et al., 2019).

As I mentioned previously, it is crucial to note that models of spoken word recog-

nition can only simulate the process of spoken word recognition as captured by a

certain experimental task. Humans adapt their strategies when performing different

tasks, and the model needs to be able to match them. DIANA explicitly defines

the decision process and makes it different for the auditory lexical decision versus

the word repetition task (the latter was not investigated in the present dissertation).

The simulations of the process of spoken word recognition should likely be different

if the task for the participant is to, for example, make a lexical decision, perform

a phoneme monitoring task (see, e.g., Connine & Titone, 1996), or participate in

the visual world paradigm experiment (see, e.g., Allopenna et al., 1998). A model

of spoken word recognition needs to be adaptable and applicable to many different

experimental tasks. If a model can only simulate a smaller subset of experimental

tasks that does not overlap with the simulations performed with another model, the

two models would be very difficult to compare — a model cannot be considered an

improvement in comparison to another model if they simply model a different set of

experimental tasks or findings (Coltheart et al., 2010).

There is one more point that I want to make although it does not concern any

of the important elements of models of SWR (input, abstract layers, competition,
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and the representation of the mental lexicon) that I discussed in the present section:

The series of simulations performed also made clear that the models of spoken word

recognition are very inaccessible. Although this issue is not directly related to our

conception of spoken word recognition and the theories, computational models, and

hypotheses we form, it is without a doubt having a direct impact on the research

we perform and disseminate. It seemed to me that implementing DIANA and the

discriminative lexicon without aid from their creators would be close to impossible,

as no freely available code (before what we offer in this dissertation) was available

and previous publications (understandably) do not offer all the details. Additionally,

many decisions that needed to be made in the simulation process are not explicitly

codified and are in the hands of the researcher performing the simulation. In those

cases the opinions and advice from model creators were very important. Model flex-

ibility expressed through many simulation choices is, of course, necessary, but so are

guidelines, manuals, tutorials, and sample code.

The lack of manuals or guidelines is not unexpected in DIANA and the discrimina-

tive lexicon approach, as both models are recent developments that are yet to receive

additional publications and user support. However, there are numerous models of

SWR that have been prominent for years, if not decades, that are still quite inacces-

sible. The only models I consider fairly well-documented are jTRACE (with all the

faults the scripting environment and the GUI have) and especially TISK. Model ac-

cessibility is, in my opinion, one of the biggest contributions jTRACE and TISK offer

to the field of computational modelling of spoken word recognition. These two models

show that models of SWR can and should be more than dense under-commented code

available per request with a warning that some things may not work properly.

The development of scientific fields depends on accessible knowledge and replica-

ble procedures. Experimental psychology (and psycholinguistics) was made easy and

widespread with experiment-building software. Even undergraduate students in some

of their higher-level courses can be expected to create their own experiments. A study
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that cannot show what stimuli and experimental procedures it used (without a good

reason) would likely be considered unacceptable for journal publication. Psychology

of individual differences as a paradigm of personality psychology partly owes its dom-

inance to computers and software that can easily analyze patterns in hundreds of

thousands of questionnaire responses in minutes or hours. Factor analyses were once

performed by the select few researchers that had the skills and the computational

power (and the time) to do so, yet now they are a part of the standard basic training

in statistics in social sciences. The field would not have developed as much if ap-

plying its procedures took weeks or months. The significance of software like Praat

(Boersma & Weenink, 2011) for the field of phonetics can hardly be overstated, even

with scripting difficulties encountered with some more advanced options. One may

argue that computational models are not the same as experimental, statistical, or

sound-analysis software, and that is somewhat true. In that case, I suggest we take

the example of life sciences, where one can find a curated database of hundreds of

mathematical and computational models that has been active for fifteen years (see

Malik-Sheriff et al., 2020).

Most publications that regard models of SWR do not actually implement them,

and I believe that this is largely because the time required to understand, set up, and

then adapt a model of SWR to a particular research experiment or question is simply

too long. This significantly impedes the process of model testing, scrutinizing, and,

consequently, model development. Furthermore, this limits the number and variety

of experimental tasks and datasets considered for model simulation, as the models

mostly remain confined within a select few groups of researchers. In my opinion, this

issue is so important that if we envision a “third generation” of models of SWR, they

should not be marked by their implementation of the actual acoustic signal as input,

better representation of the mental lexicon that takes into account word meaning,

nor their ability to perform large-scale simulations with tens of thousands of words

in the mental lexicon. Instead, they should be marked by their accessibility and
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applicability to a large number of different experimental tasks by different research

groups which would enable their continuous and gradual testing and improvement.

5.3 GRAFT: A sketch for a hybrid model of SWR

The third goal of the dissertation was to provide suggestions for improvements and

further model development. This goal was in part met in the central Chapters of

the dissertation, as we discussed each of the implemented models separately. Here,

I present a sketch for a hybrid model of spoken word recognition that is a direct

result of the investigations performed using TRACE instantiations, DIANA, and the

discriminative lexicon. The following ideas were developed together with Petar Milin

and Benjamin V. Tucker.

In many cases, computational models of spoken word recognition have been devel-

oped as a response to a characteristic of a previous model that was either compu-

tationally unfeasible or unable to simulate certain findings from experimental stud-

ies (see, e.g., Magnuson et al., 2012; McQueen, 2007; Protopapas, 1999; Weber &

Scharenborg, 2012). At the same time, the newly developed model was often rad-

ically different to the predecessor it criticised, making direct comparison between

models difficult; a difficulty that affected the current dissertation as well. We argue

for a different approach called the nested incremental approach, succinctly discussed

by Coltheart et al. (2010). Instead of developing a new model altogether, we would

attempt to create a combination of two existing models of SWR. When constructing

this grafted model (hence, GRAFT), our focus is placed on getting the most out of

two arguably irremovable elements of any model of SWR (alongside the algorithm

connecting them) — the representation of the input signal and the representation of

stored meaning.

We notice two tendencies in models of SWR. First, although the goal of human

speech perception is to understand the meaning of what is being said, most models

of SWR are designed to simulate the process taking the listener from the input —
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in everyday speech this is the acoustic signal — to the form of the word stored in

the mental lexicon (we use the terms ‘word’ for a unit of meaning and the term

‘mental lexicon’ for the storage and organization of units of meaning for simplicity,

although any other assumed units of meaning and conceptualizations of storage could

be used). The goal of such a computational model is therefore not to access the

meaning behind the word, but rather the face of its form. The textbook statement

(see Traxler & Gernsbacher, 2006, pp. 97) that “most models of lexical access do not

actually deal with activation of meaning” (Gaskell & Marslen-Wilson, 2002, pp. 261)

remains unfortunately true, despite occasional efforts to change this. The mental

lexicon is usually presented as an unconnected list of words which are in turn strings

of phonemes. This is the case in TRACE (McClelland & Elman, 1986; Strauss et

al., 2007), TISK (Hannagan et al., 2013; You & Magnuson, 2018), Cohort (Marslen-

Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978), Shortlist A and B (Norris,

1994; Norris & McQueen, 2008), NAM/PARSYN (Luce, 1986; Luce et al., 2000;

Luce & Pisoni, 1998), and the current implementation of DIANA (ten Bosch, Boves,

& Ernestus, 2015). Fine-Tracker (Scharenborg, 2008; Scharenborg & Boves, 2010),

for example, describes words using articulatory-acoustic feature vectors, but these

vectors are generated as representations of phonemes contained in the word, and,

more importantly, the words in the lexicon remain unconnected with regards to their

meaning. Certain models, like DIANA or TRACE, do allow for a weight representing

word frequency to be applied to the activation levels that are based on the input.

However, a frequency weight still does not make the mental lexicon interconnected,

as it only places certain words metaphorically higher in the imaginary bin from which

they are taken, regardless of their meaning. Other models, following the same notion

that lexical access is form access, postulate that the process of spoken word recognition

is entirely feed-forward, which in turn obscures the need for a realistic representation

of meaning storage (see Norris & McQueen, 2008; Norris et al., 2000a, 2000b). In

effect, competition between words and word recognition in most models of SWR is
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driven primarily if not exclusively by the similarity in the representation of a words’

(pseudo-)acoustic representation.

One exception to this conceptualization is the Distributed Cohort Model (DCM;

Gaskell & Marslen-Wilson, 1997, 2002). In DCM, the organization of words in the

mental lexicon is dependent both on their phonological features and semantic features.

Initially, as a proof of concept, the semantic features were represented by eleven

arbitrarily chosen (or more precisely, random) binary vectors. In their subsequent

simulations, Gaskell and Marslen-Wilson (1999) replace the idea of binary semantic

feature vectors as they are difficult to choose/define and use word co-occurrence

statistics instead. Word activation in the DCM is therefore a product of both its

phonological and meaning characteristics. As we have seen in the present dissertation,

a similar approach is used in a more recent addition to the group of models that

simulate SWR, the discriminative lexicon (Baayen, Chuang, Shafaei-Bajestan, et al.,

2019).

Second, although models of SWR seem to focus on the input-to-form process, very

few of the models use actual acoustic signal to create the input. This is primarily a

consequence of technological limitations present at the time when these models were

created. Pseudo-acoustic input was implemented mostly as a temporary stand-in

until better representation can be obtained (see, e.g., McClelland & Elman, 1986;

Scharenborg & Boves, 2010; Weber & Scharenborg, 2012). The models often use

strings of phonemes as input, as in TISK (Hannagan et al., 2013; You & Magnuson,

2018) or Shorlist A and B (Norris, 1994; Norris & McQueen, 2008), or perhaps some

form of phonetic/phonological pseudofeatures as in TRACE (McClelland & Elman,

1986) and the DCM (Gaskell & Marslen-Wilson, 1997).

Besides the aforementioned FBSFs implemented in the discriminative lexicon, one

exception to this tendency is Fine-Tracker, a model that was specifically designed to

deal with acoustic input and fine-phonetic detail (Scharenborg, 2008; Scharenborg &

Boves, 2010). In Fine-Tracker, time steps in the acoustic signal are converted into
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vector representations of articulatory-acoustic features. Subsequently, these feature

vectors are input for another module that connects them to words in the lexicon that

are also represented in vectors of articulatory-acoustic features. Although promising,

Fine-Tracker’s performance may still need to be honed, as the model still performed

somewhat worse than the human listener in more recent tests where new and improved

articulatory-acoustic representations were used (see Scharenborg & Merkx, 2018). We

have implemented a more recent addition to the group of models of SWR that use

actual acoustic input, DIANA (ten Bosch, Boves, & Ernestus, 2015), described and

tested in the Chapter 3 of the present dissertation.

The fact that the correct form, i.e., a word can be accessed solely based on the

(pseudo-)acoustic input, with the mental lexicon being organized as a list, does not

mean that this is what happens when a human listener tries to understand spoken

words. Frequency effects are well-documented and are also recorded in the most

recent large auditory lexical decision experiments (Goh et al., 2020; Tucker et al.,

2019). There is evidence that other meaning-related, semantic richness predictors,

also help predict the time it takes a listener to process isolated spoken words (Goh

et al., 2020; Goh et al., 2016; Tucker et al., 2019). Similarly, the fact that certain

models can select the proper target based on pseudo-acoustic input or a phoneme

string does not mean that fine acoustic detail does not affect the human listener.

Findings showing the importance of subphonemic differences (Salverda et al., 2003)

and prosodic cues (Andruski et al., 1994; Kemps et al., 2005) in fact propelled the

creation of Fine-Tracker as a model using actual acoustic signal as input (Scharenborg,

2008).

Our intention is to combine elements of DIANA and the discriminative lexicon

approach. We take ‘the best of both worlds’ to create a combination that better rep-

resents both the fine detail of the acoustic signal in the process of form recognition,

and conceptualizes what is usually referred to as the mental lexicon as an intercon-

nected network of meaning. This new structure would use word activations as they are
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generated in DIANA. At every time step, however, it would weigh these activations

using various estimates derived from the discriminative lexicon matrix representing

stored units of meaning. The goal of this simulation would be to test whether com-

putational model estimates generated in this fashion can outperform the standard

DIANA and discriminative lexicon implementations in predicting participant pro-

cessing (response) time in an auditory lexical decision task, again using MALD as the

benchmark (Tucker et al., 2019). If the test is successful, this study would lend fur-

ther support to the necessity of properly representing the acoustic signal and fleshing

out the mental lexicon as more than a list of unconnected items in models of SWR.

In effect, we are hoping to enhance the weak sides of DIANA (the representation of

the mental lexicon) and the discriminative lexicon approach (the representation of

the acoustic signal). Additionally, it is important to make the model implementation

accessible. A model cannot be used nor properly scrutinized by the community of

researchers if its implementation is not well-documented and relatively easy to set

up. Ideally, the implementation of GRAFT would learn from TISK and feature a

package in Python, or use a set of packages in R like those developed for easier use

of the discriminative lexicon approach.
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