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Abstract 

Objective: The overall aim of the current dissertation was to examine how and why some older 

adults maintain their cognitive performance for long periods of time, despite the presence of 

physical adversity factors known to be associated with the deterioration of cognitive function. 

We examined this general question in three longitudinal studies, organized into chapters. In 

Chapter Two, we examined the effect of frailty on three domains of cognitive performance and 

change (i.e., memory, speed, and executive function (EF)), as stratified by sex and 

Apolipoprotein E (APOE). In Chapter Three, we tested cognitive resilience to frailty across the 

three cognitive domains. Additionally, we investigated predictive factors that distinguish 

individuals with resilience to frailty from those without resilience. In Chapter Four, we 

investigated cognitive resilience to low mobility across the three cognitive domains. We also 

tested a set of predictive factors for distinguishing individuals with resilience to low mobility 

from those without resilience.  

Overall Method: For the three chapters, we assembled a sample of non-demented, community- 

dwelling, older adults (n = 632, M age = 71, age range = 53 – 95) from the Victoria Longitudinal 

Study (VLS). From this source sample we drew slightly different study samples for each chapter. 

In Chapter Two, we used latent growth modeling to establish the effect of frailty on cognitive 

performance and change as well as moderation analyses to establish the effects of APOE and sex 

on frailty-cognition relationships. For Chapter Three, we used two data-driven technologies, 

latent class growth analyses (LCGA) and random forest analyses (RFA), to (a) establish classes 

of relatively high and low frailty, (b) establish subclasses of resilience and non-resilience to 

frailty, and (c) identify salient predictors discriminating between the resilient and non-resilient 
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classes. For Chapter Four, we used the same analytic technologies to test a similar set of research 

goals with respect to another physical health adversity, viz, low mobility.  

Results: We summarize the results separately for each chapter. Chapter Two. First, frailty levels 

predicted speed and EF performance and differential memory change trajectories. Second, 

change in frailty predicted rate of speed and EF decline. Third, sex moderation analyses showed 

that females were selectively sensitive to the effects of (a) frailty on memory change, and (b) 

changing frailty on speed slopes. Additionally, the effect of frailty on EF trajectories was 

stronger for males than females. Fourth, APOE genetic risk carriers were selectively sensitive to 

the effects of frailty on the rate of memory decline. Chapter Three. First, we differentiated 

between individuals with frailty from those who were non-frail, based on the LCGA with an 

algorithm of level and slope. Second, using the frail class, we used the same analytics to 

establish subclasses of cognitively resilient and non-resilient individuals, separately for memory, 

speed, and EF domains. Third, we used RFA to determine the best predictors discriminating the 

resilient from non-resilient subclasses in each of the three cognitive domains. The following 

predictors discriminated memory resilience to frailty: high education, female sex, being married, 

high cognitive activity, and alcohol use. Three factors distinguished EF resilience to frailty: 

younger age, high education, and high cognitive activity. Additionally, one factor discriminated 

between resilient and non-resilient subclasses, high cognitive activity. Chapter Four. First, we 

differentiated between individuals with low mobility from those with high mobility, based on the 

LCGA with an algorithm of level and slope. Second, using the class with low mobility, we 

established subclasses of cognitively resilient and non-resilient individuals in each of the 

cognitive domains. Third, the following factors differentiated between cognitively resilient and 

non-resilient older adults. For memory resilience to low mobility, high education, alcohol use, 
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high cognitive activity, high physical activity, no depressive symptoms, high peak flow, and 

APOE non-risk status discriminated resilient from non-resilient subclasses. For speed resilience 

to low mobility, younger age, high education, high social activity, high peak flow, and high 

subjective health discriminated between resilient and non-resilient subclasses. For EF resilience 

to low mobility, younger age, high cognitive activity, high social activity, high volunteer activity, 

and low pulse pressure (PP) discriminated between resilient and non-resilient subclasses. 

Discussion: Frailty and mobility present typical adversities to aging adults. In Chapter Two, we 

showed that higher frailty was associated with worse cognitive performance and change, and this 

relationship differed according to sex and APOE genetic risk status. In Chapter Three, we 

empirically characterized cognitive resilience to frailty, and established factors that predicted 

resilience. In Chapter Four, we empirically characterized cognitive resilience to low mobility and 

established factors predictive of resilience to low mobility. For older adults, developing cognitive 

resilience despite the presence of physical health adversity offers great potential for AD risk 

reduction targets. Regarding frailty resilience, such potential modifiable targets include high 

cognitive activity and high education. Regarding mobility resilience, such potential modifiable 

targets include high education, high cognitive activity, high social activity, high peak flow, and 

younger age. Pinpointing and increasing conditions that are protective to cognitive functioning 

(and contribute to sustained cognitive resilience) has enormous potential to delay the onset of 

cognitive decline and dementia, despite the common aging adversities of frailty and mobility 

decrements. 
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Chapter One: Conceptual Framework 

The purpose of this conceptual framework is to identify and integrate the key theoretical 

underpinnings, methodological approaches, and empirical bases of the programmatic set of 

studies assembled for this dissertation. This framework links diverse, yet interconnected, areas 

within the overarching discipline of cognitive aging, providing the foundation which guides and 

informs this dissertation research. Accordingly, section one summarizes the urgent problem of 

brain aging and dementia from a population perspective and links it to the approach followed in 

the present research. The second section presents a comprehensive review of the key literature, 

major findings, and methodological considerations of empirical evidence pertinent to the 

emerging area of cognitive resilience. The third section integrates the topics covered in the 

review in order to summarize the three longitudinal studies, providing a roadmap of the research 

goals and implications of each study. The fourth section presents the significance of this 

comprehensive research.  

Section One: Rationale and Goals of the Project 

 Population aging is one of the most momentous transformations of the 21st century, with 

vast economic, health, and social ramifications (United Nations, 2015). Human longevity has 

increased globally over the past 50 years, with life expectancy reaching a world-wide average of 

70 years (Jin, Simpkins, Ji, Leis, & Stambler, 2015). As the ‘greying of the population’ 

increases, disease and mortality patterns are shifting worldwide as well (Beard et al., 2016). 

There are currently 50 million people living with dementia worldwide, and within the next 30 

years this number is projected to reach 152 million (World Health Organization, 2018). 

Alzheimer’s disease (AD) is the most common form of dementia and is now the fifth leading 

cause of death worldwide. This is a striking shift, as AD did not rank within the top ten causes of 
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death only a decade ago (World Health Organization, 2018). Economically, the total global 

societal cost of caring for individuals with dementia was $818 billion (USD) in 2015, and the 

cost is projected to double within the next decade (World Health Organization, 2018). This 

economic burden will continue to increase rapidly unless there are significant reductions in the 

number of dementia cases (Alzheimer Society of Canada, 2015). Notably, even delaying the 

onset of dementia by five years would drastically reduce the prevalence of dementia and alleviate 

this substantial economic burden (Fratiglioni & Wang, 2007). Unfortunately, there are no 

disease-modifying treatments; psychopharmacological approaches have proven unsuccessful 

despite the time, money, and effort invested (Cummings, Lee, Ritter, & Zhong, 2018).  

 Population aging, the subsequent increase in dementia, and the lack of a pharmaceutical 

solution has prompted focus on AD prevention and early diagnosis. Fortunately, AD has a long 

prodromal phase which presents an extended period of brain aging where cognitive trajectories 

may be malleable to intervention (Isaacson et al., 2018; McFall, McDermott, & Dixon, 2019; 

Sheng, Huang, & Han, 2018; Wilson, Leurgans, Boyle, & Bennett, 2011). Accordingly, 

prevention methods aimed at maintaining brain and cognitive health and delaying dementia in a 

non-demented population have come to the forefront of aging research (Anstey, Ee, 

Eramudugolla, Jagger, & Peters, 2019; Brayne & Richard, 2019; Deckers et al., 2019; Heffernan 

et al., 2019; Sexton & Yaffe, 2019). To advance prevention approaches, many studies have 

focused on identifying factors within normal aging which either confer protection against or 

increase risk for AD across several domains (e.g., lifestyle, genetic, biological, health). To date, 

secondary prevention methods (such as interventions) may focus on risk-reduction, enhancing 

protection, or a combination of both strategies to slow or halt the progress of cognitive decline 

for those at risk of developing dementia. For example, a recent randomized control trial (RCT) 
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examined the cognitive effect of a multi-domain intervention for older adults at risk of 

developing dementia, prior to the onset of any neurodegenerative diagnosis. The intervention 

focused on enhancing protection by improving diet and increasing participation in cognitive, 

social, and physical activity, while also reducing AD risk factors (i.e., poor vascular health; 

Ngandu et al., 2015). Their novel results indicated that those who participated in the intervention 

had greater improvement in scores on a neuropsychological test battery than those in the control 

group. These results indicate that focusing on increasing protective factors and reducing 

dementia-related risk factors is a reasonable target for supporting cognitive and brain health.  

Although intervention approaches aimed at enhancing protection may be effective, risk-

reduction may not always be a feasible target as not all risk factors can be altered or modified. 

For example, biological (i.e., sex) and genetic (i.e., Apolipoprotein ɛ4; APOE ɛ4) risk factors are 

not modifiable, and therefore play a different role within a risk-reduction approach. Specifically, 

as powerful but non-modifiable risk factors for cognitive decline and impairment, they are often 

included as predictors and moderators in research designs. Additionally, some risk factors may 

be indicators of complex pathophysiological processes of decline already established in the 

individual (e.g., increasing frailty or declining mobility levels), which are not easily amenable. 

To add further complexity, non-modifiable risk factors also influence the extent to which 

protective factors act on cognitive performance and decline. For example, APOE genetic risk 

status has been found to influence the effect that physical activity has on cognitive function 

(Jensen et al., 2019; Thibeau, McFall, Wiebe, Camicioli, & Dixon, 2017).  

Considering these complexities, a shift toward a salutogenic model for brain and 

cognitive health may be warranted. A salutogenic orientation, when applied to cognitive aging, 

assumes that each individual is characterized by risk factors for cognitive decline, but focuses 
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instead on the ‘general resistance resources’ that explain the movement towards or maintenance 

of cognitive health (Antonovsky, 1996). A salutogenic model of cognitive aging encompasses 

multidimensional approaches to creating conditions for promoting and optimizing cognitive 

health, prior to the onset of AD. Current examples of approaches embodying the salutogenic 

orientation to cognitive aging include the examination of reserve, healthy or successful brain 

aging, and the emerging concept of resilience. This dissertation will focus on the latter of the 

three.  

Resilience in aging has been defined as the ability to maintain or regain sustained levels 

of functioning despite adversity (Baltes, 1987; Dixon & Lachman, 2019; Wagnild & Collins, 

2009). While there is a lack of a common definition when applied to cognitive aging, resilience 

may be conceptualized as the ability to maintain cognitive function over time, despite the 

presence of risk factors that are detrimental to brain function and health (Anstey & Dixon, in 

press). A resilience framework focuses on increasing other facets of health that confer resilience 

even when risk factors for cognitive decline are present. Accordingly, developing resilience may 

be very accessible to older adults, regardless of the presence of risk factors or physical health 

adversities which confer high risk for cognitive decline (Anstey & Dixon, in press). Notably, two 

recent studies have examined factors that are predictive of cognitive resilience to genetic risk for 

AD. The results from both studies indicated several factors from lifestyle, psychosocial, health, 

and demographic domains foster cognitive resilience to AD genetic risk (Kaup et al., 2015; 

McDermott, McFall, Andrews, Anstey, & Dixon, 2017). Similar factors conferring resilience in 

both studies included higher education and higher cognitive activity. Upon consideration, it is 

important to examine whether factors that increase cognitive resilience are dependent on the 

adversity being examined. For example, while education and cognitive activity are predictors of 
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resilience to AD genetic risk, it is unknown whether these factors are predictors of resilience to 

adversities with more complex physiological underpinnings, such as frailty and mobility 

impairment. Conceptually, it is possible that the adaptations required to achieve cognitive 

resilience in the face of physical health adversities may be distinct from the factors that confer 

resilience to genetic risk.   

This dissertation uses the salutogenic approach to examine cognitive resilience despite 

the presence of significant physical health deficits in a non-demented population. The general 

aim of this dissertation is to examine how and why some older adults maintain their cognitive 

health and performance for long periods of time, even though they have significant physical 

health adversities known to be associated with the deterioration of cognitive function. This aim is 

systematically operationalized through three longitudinal studies which are organized into 

chapters that provide the context and framework for examining cognitive resilience to frailty and 

(separately) mobility impairment. Chapter Two will establish frailty as a risk factor to cognitive 

performance and longitudinal trajectories across three cognitive domains: namely, memory, 

speed, and executive function (EF). An important feature is that the relationship between frailty 

and cognition is examined through stratification of individuals by previously established AD risk 

factors (i.e., APOE ɛ4 genetic status and female sex). This moderation analysis allows the 

cognitive trajectories to be compared between risk and non-risk groups, depicting differing 

cognitive trajectories according to multiple levels of AD risk. Chapter Three builds upon Chapter 

Two by examining cognitive resilience to frailty across the same three cognitive domains. In this 

chapter we will identify individuals who have higher levels of frailty and classify them into those 

who are resilient (or not) in that they maintain cognitive function over time despite this adversity. 

Subsequently, we also examine whether there are predictive factors unique to the resilient group. 
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A central feature of this chapter is the identification of a set of factors that confer protection 

against the negative effect that frailty has on cognitive performance. Chapter Four applies the 

same theoretical and statistical framework to a separate and distinct physical health adversity 

known to have a detrimental effect on cognition (i.e., low mobility). In this chapter, we will 

identify older adults with low mobility levels who are nevertheless resilient in that they are able 

to maintain their performance in (separately) three domains of cognition despite the adversity. As 

in Chapter Three, the next step will be to identify factors that are predictive of cognitive 

resilience to low mobility.  

The latter two chapters include parallel components of resilience prediction. As in 

previous research (Kaup et al. 2015; McDermott et al., 2017), machine learning technology is 

used for the prediction analyses. McDermott and colleagues (2017) included a panel of 22 

predictors from five domains (i.e., demographic, functional, health, mobility, and lifestyle 

domains). Kaup and colleagues (2015) included a similar set of predictors from demographic, 

health, and lifestyle domains. Following these approaches, a set of predictors were selected and 

used to compare common factors that determine resilience in each of the domains of cognition, 

across both common physical health adversities. Specifically, we included all but two of the 

predictors (i.e., head injury and statin use) that McDermott and colleagues (2017) used in their 

research (see Table 1-1). Additionally, we added two genetic factors associated with cognitive 

aging and resilience, namely APOE and Brain-Derived Neurotrophic Factor (BDNF). We also 

note that several of the predictors that Kaup and colleagues (2015) used in their research were 

not available in the Victoria Longtudinal Study (VLS; e.g., sleep time, financial status, literacy 

level) so we were not able to consider them for inclusion in our research. Therefore, in total we 

considered 22 initial predictors from four risk domains: demographic, lifestyle, genetic, and 
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functional health (see Table 1-1 for a comparison of the predictors used in this dissertation, Kaup 

et al., 2015, and McDermott et al., 2017). Specifically, demographic factors were each 

participant’s (a) age in years, (b) marital status, (c) education (total years) (d) sex (male or 

female), (e) living status, and (f) pet ownership. Lifestyle factors are (a) everyday novel 

cognitive activity, (b) social activity, (c) volunteer activity, (d) physical activity, (e) alcohol use, 

and (f) smoking. Genetic factors are risk or non-risk status for the following genes (a) APOE and 

(b) BDNF. Functional health factors are (a) pulse pressure (PP), (b) body mass index (BMI), (c) 

diabetes, (d) peak flow, (e) grip strength, (f) anti-inflammatory medication, (g) depression, and 

(h) subjective health. Once these predictors were established, an important consideration was the 

identification of predictors which are also components of the frailty index. Upon review of this 

consideration, we were not able to use 9 of the 22 factors in Chapter Three, which examines 

cognitive resilience to frailty. Specifically, the factors that were also components of the frailty 

index (and therefore could not be considered as predictors of frailty resilience) were eight factors 

within the functional health domain and physical activity from the lifestyle domain. The 13 

‘core’ predictors used in Chapters Three and Four and the ‘additional’ physical health factors 

included on Chapter Four are listed in Table 1-2. Notably, the inclusion of all 22 original factors 

in Chapter Four offers the opportunity to test predictors of resilience to declining mobility which 

may not be available to individuals with an overall accumulation of health deficits. For example, 

cognitive resilience may be fostered by maintaining grip strength or higher peak flow for an 

individual with low mobility, whereas it is likely a highly frail individual would have already 

experienced a decline in grip strength and respiratory function. As such, while there may be 

common predictors of resilience for both groups, a highly frail individual may experience added 
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barriers to engaging in modification of health factors, providing a necessity for precision targets 

to increase resilience in this subpopulation.  

Overall, when taken together, the three chapters included in this dissertation will (a) 

establish the risk of frailty to cognitive performance, (b) determine whether individuals can 

maintain cognitive performance despite declines in physical health (i.e., frailty and mobility), 

and (c) identify both common and distinct factors which foster cognitive resilience in older 

adults with either frailty or low mobility. Notably, cognitive resilience to AD risk may be an 

indicator of healthy brain aging (Dixon & Lachman, 2019). Systematically detecting and 

identifying individuals who are cognitively resilient and examining these unique trajectories over 

time allows researchers a promising opportunity to define, describe, and explain this emerging 

and potentially powerful construct. In addition, identifying a core set of factors that predict 

resilience allows several opportunities for key comparisons to be made and tested across 

adversities associated with cognitive decline, impairment, and AD. For example, subsequent 

research could examine whether the same core set of predictors fosters cognitive resilience to 

other adversities, such as diabetes or high blood pressure. Accordingly, identifying common 

predictors of cognitive resilience to AD risk has the potential for generalized recommendations 

to be made for promoting brain and cognitive health for older adults. Moreover, detecting unique 

factors that are predictive of resilience to specific types of AD risk fosters an opportunity for 

precision intervention for older adults (Dixon & Lachman, 2019). In sum, cognitive resilience 

offers a lens of substantial potential from which to examine healthy brain and cognitive aging, as 

it may occur in the context of common aging-related adversities.  

Section Two: Key Literatures Informing Dissertation 

Cognitive Aging Theories and Approaches 
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The field of cognitive aging refers to an area of research concerned with developmental 

changes across domains of cognitive function throughout the lifespan, especially adulthood and 

aging. As this field includes a wide collection of research on human cognitive behaviour from 

individuals over the age of 25, it is imperative to explicitly define overarching themes and 

theoretical approaches that inform this dissertation (Salthouse, 1991). Three longstanding, 

overarching themes within the science of cognitive aging are of particular importance and 

underlie the selection of the theoretical framework adopted in this dissertation (Dixon, 2011). 

Specifically, the core concepts used to steer the selection of theoretical approaches are (a) 

complexity (i.e., the disposition to examine complex processes), (b) aging change (i.e., the 

importance of viewing cognitive change as development across the life course), and (c) 

differential change (i.e., multidirectional changes in aging are characterized by individual 

differences and variability) (Dixon, 2011).  

The longstanding theme of complexity in cognitive aging dictates that the theoretical 

framework for research must take into account the occurrence of multiple facets, levels, 

influences, directions, processes, predictors, precursors, trajectories, outcomes, contexts, and 

patterns of developmental changes that occur in aging (Baltes, Lindenberger, & Staudinger, 

2006; Dixon, 2011; Hofer & Piccinin, 2010). Additionally, any aging change in cognition is a 

result of processes that unfold over decades, and requires longitudinal tracking, data, and 

methodology (Baltes et al., 2006; Baltes, Staudinger, & Lindenberger, 1999; Dixon, 2011; Hofer 

& Piccinin, 2010). Furthermore, a core task of the field is to characterize the differences seen 

between individuals, as well as the substantial variability within individuals over the course of 

adulthood. Although there are normative changes that take place across the lifespan, one must 

recognize and account for the vast diversity and difference with respect to age-related changes in 
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cognitive performance, change, rate of change, and final cognitive status (Dixon, 2011; Hertzog, 

2008). Taken together, cognitive aging herein is operationally defined as a multidimensional, 

multidirectional process with considerable diversity and heterogeneity in the timing, trajectories, 

and etiologies over the lifecourse (Baltes et al., 2006; Dixon, 2000). Additionally, the attention 

of this empirical examination will be non-demented cognitive aging, primarily in the latter part 

of the lifespan.  

The aforementioned themes provide the foundation for the selection of theoretical 

approaches informing this dissertation: (a) the individual differences perspective, (b) resilient 

brain aging, and (c) the cognitive health and environment life course model (CHELM; Anstey, 

2014; Greenwood & Parasuraman, 2010; Hertzog, 2008; Lövdén, Bäckman, Lindenberger, 

Schaefer, & Schmiedek, 2010; Negash, Wilson, et al., 2013; Willis, Schaie, & Martin, 2009). 

Collectively, these theoretical approaches and the CHELM provide the organization and 

direction that guide the research questions, statistical methodology, and interpretation of the 

research results.  

Individual Differences Perspective. Viewing cognitive aging from the perspective of 

individual differences indicates that cognition changes in complex ways across and within 

individuals (Hertzog, 2008). According to this perspective, the critical information concerning 

cognitive changes with aging remains within the vast variability between and within individual 

performance. This perspective is informed by the initial focus on age differences in mean 

cognitive performance, building a more refined perspective of a very complex phenomena by 

isolating individual differences in cognitive change (Hertzog, 1985). Over the past few decades, 

research has shown that several adults have higher cognitive capacity and maintain their 

cognition for a long period, whilst others experience lower cognitive ability with varying rates of 
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decline across the last part of their lifespan. Applied to this dissertation research, this discovery 

has two main methodological implications. First, the issue of research design must be addressed. 

Cross-sectional research, while informative, does not allow for the observation of individual 

changes over time. This information is only offered through repeated measurements of the same 

individual across many years (i.e., longitudinal assessment). Second, an individual differences 

perspective requires use of methodology capable of identifying change and variation in change in 

cognitive performance as well as stability. Additionally, age-related changes in cognition vary 

between different cognitive functions (i.e., memory, EF, and speed) even for the same individual 

(Blazer, Yaffe, & Karlawish, 2015; Blazer, Yaffe, & Liverman, 2015). An individual differences 

perspective highlights the necessity to examine the multidimensionality of cognitive 

performance, due to the individual variability in performance and change within cognitive 

domains. Therefore, individual differences in cognitive aging are best studied with change-

oriented research designs, using statistical methodologies which can quantify changes in a mean 

group level as well as individual differences across multiple cognitive domains. As such, the 

research in this dissertation utilizes a longitudinal design and modern statistical analysis 

procedures, such as structural equation modeling, growth mixture modeling, and Random Forest 

Analysis (RFA). 

Resilient Brain Aging. An important concept in neuroscience and cognitive aging 

scholarship has been that neural resources may be used or developed to overcome age-related 

decline (Park & Bischof, 2013). The brain may be the most resilient organ in the human body, 

due to its capacity for neuroplasticity through synaptogenesis, neurogenesis, and angiogenesis. 

Resilient brain aging may have roots in positive psychology, and when paired with the concept 

of intra-individual neuroplasticity, highlights a capacity for human thriving despite adversity or 
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disease (Baltes, 1997; Seligman & Csikszentmihalyi, 2000). In the context of cognitive aging, 

resilient brain aging may be exemplified by an individual who maintains their cognitive 

performance over time despite detrimental influences on brain health, structure, or function. 

Examining brain resilience calls attention to an intricate network of interacting environmental, 

social, biological, psychological factors across lifespan development (Lavretsky, 2014). We 

know these factors may operate to influence brain and cognitive health in a variety of ways: 

independently, interactively, synergistically, antagonistically, or differentially (Montaine et al., 

2019).  

It is now well known that brain structure and function are strongly associated with 

cognitive function (Borelli et al., 2018; Duda & Sweet, 2020; Fan et al., 2019). For example, 

neuropathological biomarkers, such as amyloid deposition and cortical atrophy, have been 

strongly associated with cognitive decline and AD (Fan et al., 2018; Hohman et al., 2017; Jansen 

et al., 2018). However, little is known why some individuals with high neuropathological burden 

remain cognitively unimpaired (Corrada, Berlau, & Kawas, 2012; Negash et al., 2013; Wallace, 

Theou, Rockwood, & Andrew, 2018). Subsequently, an emerging goal of human aging research 

has been to understand the concept of brain resilience as a defence that may lead to optimal 

cognitive function despite adversity, such as high AD-related neuropathology (Negash et al., 

2013). For example, Negash and colleagues (2013) quantified AD resilience as the discordance 

between neuropathology and global cognitive function. Their results also identified several 

factors that were associated with resilience, including higher education, higher reading level, and 

cognitive activity in early life. Moreover, they found that age, and APOE risk status was 

associated with lower AD resilience. More recently, Aiello Bowles and colleagues (2019) 

examined cognitive resilience to AD neuropathology in 591 deceased individuals who had 
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complete autopsy data. They operationally defined cognitive resilience as having intermediate or 

high neuropathological burden yet no clinical dementia diagnosis and a score of over 86 on a 

Cognitive Abilities Screening Instrument within two years of death. Additionally, they compared 

factors predictive of resilience between those defined as resilient and non-resilient. Their results 

indicated that higher education, higher brain weight at autopsy, hippocampal sclerosis, absence 

of Braak stage five or six and microinfarcts were all associated with resilience. Taken together, 

these results indicate that various factors may influence the maintenance of cognitive function in 

late-life and contribute to cognitive resilience to AD neuropathology. 

Notably, the concept of resilient brain aging brings adversity directly into the equation 

through the underlying assumption that everyone has an accumulated profile of risk factors 

detrimental to brain health (Anstey et al., 2019; Lavretsky, 2014; Livingston et al., 2017). Hence, 

the theory of resilient brain aging uses a salutogenic orientation to focus scholarly inquiry on the 

facets that foster brain and cognitive neuroplasticity, despite the array of risk-profiles that may 

be present. It is important to note that the specificity of the risk profile may be unique to each 

individual. Therefore, the emerging literature must examine brain resilience to the range of 

factors known to pose a threat to brain and cognitive health. This dissertation utilizes a resilient 

brain aging approach to operationally define and examine cognitive resilience as maintenance of 

cognitive performance despite the presence of two specific physical health adversities, frailty and 

low mobility. The newly generated information will contribute to the emerging body of research 

necessary to understand the complex relationships between brain resilience and AD risk.  

Cognitive Health and Environment Life Course Model (CHELM). The CHELM has 

produced a framework for understanding the complexities which yield the wide variability of 

cognitive trajectories (Anstey, 2014). This model arises in response to research that has 
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identified several influences from a variety of domains that affect brain and cognitive health. 

While much of the research links these influencing factors to dementia independently (Dekhtyar, 

Wang, Fratiglioni, & Herlitz, 2016; Nagai, Hoshide, & Kario, 2010; Ott et al., 1998; Singh-

Manoux et al., 2018), we now know that these factors co-occur and interact with one another 

(Morris, D'Este, Sargent-Cox, & Anstey, 2016; Shaaban, Jia, Chang, & Ganguli, 2019; Wagner 

et al., 2018). The CHELM provides the theoretical framework which incorporates the 

empirically identified factors along with possible avenues of interaction and influence, producing 

the range of cognitive trajectories seen in older adulthood. Key aspects of the CHELM relevant 

to this dissertation are noted here. First, the CHELM identifies that particular factors confer 

protection (are risk-reducing) yet act in combination with risk-enhancing factors (Anstey, 2014; 

Livingston et al., 2017). Second, the CHELM model identifies that influencing factors may be 

amenable to change or modification (such as cognitive activity level) or may be static, 

unchangeable influences (such as sex or genetics). Third, the CHELM suggests that adoption of 

the lifespan perspective is essential in cognitive aging research, as longitudinal follow-up is 

necessary to describe and differentiate the various cognitive phenotypes in later adulthood 

(Anstey, 2014), prior to the onset of neurodegenerative diseases. Therefore, the proposed studies 

in this dissertation examine a combination of modifiable and non-modifiable factors as they 

influence various cognitive domains over several years, prior to the onset of neurodegenerative 

conditions.   

Three Cognitive Domains Relevant to Aging 

The three main major cognitive domains affected by aging are episodic memory, speed, 

and EF (Buckner, 2004; Dixon et al., 2007). Notably, there is no fixed pattern for age-related 

cognitive change, as normative age-related changes occur differentially across cognitive domains 
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(Small, Dixon, & McArdle, 2011). This next section discusses three age-sensitive cognitive 

domains: memory, speed, and EF.  

Memory. A fundamental change in cognition that occurs with advancing age is a decline 

in the ability to encode, store, and retrieve personally relevant events situated in time and place 

(i.e., episodic memory; Klaming, Annese, Veltman, & Comijs, 2017; Tromp, Dufour, Lithfous, 

Pebayle, & Després, 2015). Memory is primarily dependent on a vast network of brain regions 

that are very sensitive to age-related changes (i.e., the medial temporal lobe (particularly the 

hippocampus), prefrontal cortex, and posterior cortical regions; Rugg & Vilberg, 2013; Tromp et 

al., 2015; Wang & Cabeza, 2016). As such, episodic memory is thought to be the one of the most 

age-sensitive systems, with older adults experiencing declines (on average) around age 60-70 

years of age (Dixon, Small, MacDonald, & McArdle, 2012; Nyberg, 2017). However, just as 

age-related structural brain changes are not uniform across individuals, there is substantial 

variability in memory trajectories among older adults (Dixon et al., 2012; Glisky, 2007). Some 

older adults may experience stable memory performance with very little decline, some may 

experience typical age-related decline, while still others may experience accelerated memory 

decline associated with preclinical and clinical AD (Josefsson, de Luna, Pudas, Nilsson, & 

Nyberg, 2012; L. Nyberg, 2017; Nyberg, Lövdén, Riklund, Lindenberger, & Bäckman, 2012). 

For example, a 15-year longitudinal study by Josefsson and colleagues (2012) showed 

substantial variability within memory trajectories of healthy (non-demented at baseline) older 

adults from the Betula project. Their results indicated that almost 20% of participants maintained 

high memory performance, over two-thirds experienced typical memory decline, and 13% 

declined faster than their age-matched peers. Moreover, a longitudinal examination of memory 

trajectories by McFall and colleagues (2019; see also Dixon et al., 2012) indicated that the 
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patterns of change for non-demented older adults are markedly diverse, reflecting highly variable 

individual trajectories across time, even when stratified by age into Young-Old and Old-Old 

adults. In this recent research, memory trajectory analyses differentiated three subclasses of 

memory trajectories based on performance and change. These three subclasses were Stable 

Memory Aging (SMA) which was characterized by above average level and sustained memory 

slope, Normal Memory Aging (NMA) which was characterized by an average level of 

performance and a moderately declining slope, and Declining Memory Aging (DMA) which was 

characterized by a lower-than-average performance and a substantial decline in memory over 

time. In their research, the variability in memory trajectories for non-demented older adults was 

explained by various combinations of risk and protective factors. For example, they 

differentiated the relative importance of seventeen predictors in discriminating the three memory 

classes. The 17 predictors considered in their research were from four domains (i.e., 

demographic, functional health, lifestyle and psychological) and included age, education, living 

status, sex, PP, peak expiratory flow, grip strength, BMI, heart rate, subjective health, depressive 

symptoms, timed walk, timed turn, cognitive activity, social activity, physical activity, and self 

maintenance activity. Indeed, the predictors of stable memory aging were different than those 

predicting declining memory aging. For example, female sex, higher education, higher cognitive 

and social activity were all predictors of SMA in both age strata, while the only common 

predictor of DMA in both age groups was lower participation in novel cognitive activities. In 

comparison with the present research, 13 of the 17 predictors McFall and colleagues included in 

their study overlap with predictors included in this dissertation (see Table 1-3). Additionally, 

three of the remaining predictors used by McFall and colleagues were used in the present 

research as components in the frailty index (namely timed walk, timed turn, and resting heart 
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rate; see Table 2-3 for the frailty index). General self-maintenance activity (which includes doing 

housework, preparing meals, taking care of a pet, shopping for food, shopping at a mall or 

downtown, and taking care of a family member) was not included in this dissertation as a 

predictor of cognitive resilience. However, we included pet ownership as a predictor of cognitive 

resilience and included measures of ability to do chores and get around town in the frailty index.  

Correspondingly, other literature has confirmed that health factors such as obesity and 

hypertension, lifestyle factors such as physical and cognitive activity, and biological factors such 

as genetics, sex, and age influence individual memory trajectories in non-demented older adults 

(Elias, Goodell, & Dore, 2012; Hayes et al., 2015; Loprinzi & Frith, 2018; McFall, Wiebe, et al., 

2015; Nyberg, Bäckman, Erngrund, Olofsson, & Nilsson, 1996; Olaya, Bobak, Haro, & 

Demakakos, 2017; Subramaniapillai et al., 2019). Additionally, memory may be also affected by 

age-related decline in other cognitive domains, such as speed or EF, due to declines in functional 

connectivity of multiple cortical networks (Shaw, Schultz, Sperling, & Hedden, 2015). 

 Speed. Speed of processing is perhaps one of the most basic facets of cognitive function 

and highly sensitive to age-related changes (Verhaeghen, 2013). In fact, the slowing of 

processing speed commonly occurs in older adults and influences the loss of cognitive function 

across other domains (Eckert, Keren, Roberts, Calhoun, & Harris, 2010; Harada, Natelson Love, 

& Triebel, 2013; Hertzog et al., 2003; Salthouse, 1996). Speed of processing involves 

coordinated activity across many neural networks. Therefore, normal age-related brain changes 

may have a cumulative effect which results in slowed speed across many tasks (Eckert, 2011; 

Eckert et al., 2010). For example, age-related loss of white matter integrity and myelination, as 

well as age-related reductions in hippocampal, prefrontal, and gray matter volume have all been 

linked to the slowing of processing speed (Chopra et al., 2018; Hong et al., 2015; Lu, Lee, et al., 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  18

  

 

2011; Lu et al., 2013; Papp et al., 2014; Rosano et al., 2011). Normal age-related declines in 

speed begin as early as midlife and continue throughout the lifespan (Salthouse, 2009). Despite 

the generality of speed decline associated with normal or typical aging, there is substantial 

variability within speed performance and the rate of speed decline. For example, individuals 

within a non-demented population were shown to exhibit a wide range of speed performance and 

variability in speed decline over a nine-year period (McFall, Wiebe, Vergote, Anstey, & Dixon, 

2015). Notably, speed may also be an indicator of preclinical cognitive decline (Bäckman, Jones, 

Berger, Laukka, & Small, 2005), and has also been reported to predict differences in mild 

cognitive impairment and the risk of AD (Christensen et al., 2005; Gorus, De Raedt, Lambert, 

Lemper, & Mets, 2008; Salthouse, 1996). Additionally, cognitive training focused on processing 

speed has been found to reduce the risk of dementia for non-demented, healthy older adults 

(Edwards et al., 2017). Taken together, processing speed is one of the most age-sensitive 

cognitive functions, considered to be one of the hallmarks of cognitive aging, and therefore a key 

cognitive domain for inclusion in this dissertation research. 

Executive Function. EF encompasses higher-level cognitive processes required to make 

and execute plans, solve problems, set goals, shift between stimulus and response, and inhibit 

responses (e.g., Luszcz, 2012; West, 1996). EFs are thought to be among the most age-sensitive 

cognitive functions (de Frias, Dixon, & Strauss, 2009; Glisky, 2007; McFall et al., 2013; Raz, 

Dahle, Rodrigue, Kennedy, & Land, 2011) due to significant age-related neurodegeneration 

occurring in the prefrontal cortices (Raz & Rodrigue, 2006). Additionally, brain connectivity has 

also been found to be associated with EF (Bennett & Madden, 2014). For example, lower default 

mode network connectivity is associated with lowered performance on EF tasks in older adults 

(Andrews-Hanna et al., 2007; Damoiseaux et al., 2007). Similarly, longitudinal structural and 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  19

  

 

functional changes in brain connectivity have been associated with reductions in EF, with 

structural connectivity predicting age-related decline (Storsve, Grydeland, Sneve, Walhovd, & 

Fjell, 2016). Moreover, executive dysfunction is evident in normal aging, mild cognitive 

impairment, and in all stages of AD (Baudic et al., 2006; Harada et al., 2013; Swanberg, 

Tractenberg, Mohs, Thal, & Cummings, 2004). In fact, it was recommended that EF be 

examined over several measurements or timepoints in individuals with mild cognitive 

impairment due to AD, as deficits are commonly seen prior to AD clinical diagnosis (Albert et 

al., 2011). Specific to the variability in EF performance in normally aging populations, studies 

have found that non-demented older adults exhibit significant heterogeneity (Goh, An, & 

Resnick, 2012) in level of performance and rate of EF decline (McFall et al., 2013; Thibeau, 

McFall, Wiebe, Anstey, & Dixon, 2016). This variability in EF level and change can be 

attributed to a host of factors, including Type 2 diabetes, BMI, genetic influences, physical 

activity, frailty, and mobility impairment (Gross et al., 2016; Gunstad et al., 2007; McFall et al., 

2013; McGough et al., 2011; Saxby, Harrington, McKeith, Wesnes, & Ford, 2003; Thibeau et 

al., 2016; Yeung, Fischer, & Dixon, 2009). 

Physical Frailty as Predictor of Cognitive Trajectories in Aging  

Frailty is a heightened state of physical and health vulnerability, characterized by 

declines in physiological function across multiple systems (Chen, Mao, & Leng, 2014; Mitnitski, 

Fallah, Rockwood, & Rockwood, 2011). Prevalence rates of physical frailty vary dependent 

upon measurement instrument, geographical region, and age. Recent estimates suggest frailty 

rates of around 4% for older adults aged 50 – 54 but can range between 5 – 20% for those 65 

years of age and older, depending on the population examined (Beard et al., 2016; Santos-

Eggimann, Cuénoud, Spagnoli, & Junod, 2009). In Canada, prevalence rates of physical frailty in 
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community-dwelling adults between the ages of 54 and 74 is around 16%, rising to 52% at the 

age of 85 (Hoover, Rotermann, Sanmartin, & Bernier, 2013). Higher physical frailty has been 

associated with adverse health outcomes, such as falls, hospitalization, disability, as well as 

higher mortality risk (Blodgett, Theou, Mitnitski, Howlett, & Rockwood, 2019; Clegg, Young, 

Iliffe, Rikkert, & Rockwood, 2013; Hoogendijk et al., 2017). Higher physical frailty is also 

associated with adverse cognitive outcomes such as cognitive decline, mild cognitive 

impairment, and AD (Boyle, Buchman, Wilson, Leurgans, & Bennett, 2010; Buchman, Boyle, 

Wilson, Tang, & Bennett, 2007; Kojima, Iliffe, & Walters, 2017; Rockwood et al., 2017).  

There are two main methods of measuring frailty in the literature: (a) the phenotypic model, and 

(b) the accumulation of deficits model. Each model has benefits and drawbacks in clinical 

practice and research. The phenotype model evaluates the presence or absence of five criteria: 

unintentional weight loss, exhaustion, weakness, slow gait, and low physical activity (Fried et 

al., 2001). According to this model, the presence of one or two of the criteria indicates a ‘pre-

frail’ condition, and the presence of three or more indicates frailty. This model offers an 

advantage to clinicians, as each of the frailty components is easy to measure within a single 

clinical appointment (Cesari, Gambassi, Abellan van Kan, & Vellas, 2014). While this tool may 

offer a method for immediate stratification of individuals (Canevelli, Cesari, & van Kan, 2015), 

the predictive value, comprehensiveness, and clinical usefulness may be limited due to the small 

number of components (Cesari et al., 2014; Muscedere et al., 2016; Rockwood, Andrew, & 

Mitnitski, 2007).  

The accumulation of deficits model is a comprehensive measure represented as a frailty 

index. The index is formed by the ratio of health deficits present in an individual to the total 

number of potential deficits measured (Rockwood & Mitnitski, 2007). Frailty indices have been 
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examined with anywhere between 20 – 70 items, but robust risk estimates have been found when 

30 or more items are considered (Cesari et al., 2014; Mitnitski, Graham, Mogilner, & Rockwood, 

2002; Mitnitski, Mogilner, & Rockwood, 2001). Notably, the deficits measured are not fixed; 

therefore, indices can include different sets of variables which represent the phenomena of 

frailty, and still produce similar relationship estimates across frailty indices ranging from 

between zero and one (Searle, Mitnitski, Gahbauer, Gill, & Rockwood, 2008). While the 

continuous frailty index measure is not meant for describing separate and distinct categories of 

frailty, generally accepted cut-off points indicating varying levels of frailty have been identified 

in the literature. Specifically, FI scores of 0.00 – 0.12 indicate fit individuals, 0.12 – 0.24 are 

considered mildly frail or pre-frail, 0.25 – 0.36 are considered moderately frail, and scores over 

0.36 are considered severely frail (Ambiàs-Novellas et al., 2018; Lansbury et al., 2017; Stow et 

al., 2018). Moreover, cut-off scores of 0.20 and 0.25 have been used to differentiate pre-frail 

from frail individuals (Dent, Kowal, & Hoogendijk, 2016; Searle et al., 2008). A score between 

0.60 and 0.70 has been found to be the upper limit which indicates the addition of another health 

deficit would likely result in mortality (Rockwood & Mitnitski, 2006, 2011). As the calculation 

of a frailty index requires measurement of multiple deficits, this approach entails a 

comprehensive assessment and may present barriers for ease of use in a clinical setting (Cesari et 

al., 2014; Rockwood et al., 2005). However, the information needed for the frailty index may 

already be present in health records (Rockwood & Mitnitski, 2007). Additionally, the benefits 

offered from the ability to (a) obtain a continuous measure of frailty, (b) depict health trajectories 

across time, and (c) have better predictive value from a higher number of deficits (compared with 

the phenotype model) may outweigh any additional time investment necessary to establish the 
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initial frailty score (Cesari et al., 2014; Pérez-Zepeda, Cesari, & García-Peña, 2016; Shi et al., 

2018). 

In the current research, we use the frailty index (see Table 2-3) for four main reasons: (a) 

the frailty index shows greater predictive value than the frailty phenotype model for populations 

in community settings (Theou et al., 2015), (b) it is considered one of the most robust frailty 

assessment tools (Dent, Kowal, & Hoogendijk, 2016), (c) it is unidimensional and has high 

construct validity (Widagdo, Pratt, Russell, & Roughead, 2016), and (d) the total frailty index 

score (more than individual  health deficits) has been found to be a more sensitive predictive of 

adverse outcomes (Rockwood & Mitnitski, 2007).  

Cognitive deficits are often considered as a part of frailty indices; however, frailty and 

cognitive decline are two distinct constructs that may co-occur and interact in old age 

(Robertson, Savva, & Kenny, 2013). Most of the cognition-frailty literature examines declines in 

global cognition, but recently frailty has been associated with specific cognitive declines in EF 

and speed (Armstrong, Mitnitski, Launer, White, & Rockwood, 2013; Langlois et al., 2012; 

Mitnitski et al., 2011; Rolfson et al., 2013). Additionally, frailty increases risk of adverse brain 

and cognitive outcomes, including decline and dementia (Beard et al., 2016; Kojima, Taniguchi, 

Iliffe, & Walters, 2016; Song, Mitnitski, & Rockwood, 2011). For example, pre-frail and frail 

individuals in the English Longitudinal Study of Ageing had a higher risk of developing 

dementia than non-frail individuals (Rogers, Steptoe, & Cadar, 2017). Recently, Wallace and 

colleagues (2019) found that frailty moderated the relationship between AD pathology and 

expression. Specifically, individuals with low frailty were able to tolerate AD pathology, 

whereas highly frail individuals were more likely to have more AD pathology and clinical 
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expression as AD. Taken together, the evidence indicates a strong link between frailty and 

cognitive decline and impairment.  

Mobility as Predictor of Cognitive Trajectories in Aging 

Mobility is a key component of functional health for older adults, strongly linked to 

independence and quality of life (Davis et al., 2015; World Health Organization, 2015). Mobility 

disability, one of the most common disabilities for older adults, represents a functional state 

whereby walking speed and balance are impaired, causing difficulties with everyday activities 

(Satariano et al., 2014; World Health Organization, 2015). This disability results from age-

related deterioration in several physiological systems, including the central nervous system, 

skeletal muscles, joints, and sensory systems (Ferrucci et al., 2016). Prevalence rates of mobility 

impairment in adults over the age of 65 vary depending on the population examined (Courtney-

Long et al., 2015; He & Larsen, 2014). In Canada, 20% of those aged 65 and over have mobility 

impairments that affect their day to day lives (Bizier, Fawcett, & Gilbert, 2016). Age-related 

mobility impairment has been associated with an increased risk of disability, social isolation, 

increased risk of falls, loss of independence, institutionalization, and mortality (Ferrucci et al., 

2016; Mänty et al., 2010; Newman et al., 2006; Rosso, Taylor, Tabb, & Michael, 2013; Webber, 

Porter, & Menec, 2010). Additionally, mobility impairment has a strong link to cognition and has 

been associated with cognitive decline, impairment, and dementia (Borges, Radanovic, & 

Forlenza, 2018; Montero-Odasso et al., 2015).  

Mobility has been closely related to cognition across several domains including memory, 

speed, and EF (Berryman et al., 2013; Christensen, Mackinnon, Korten, & Jorm, 2001; 

Desjardins-Crépeau et al., 2014; Doi et al., 2014; Eeles & Choy, 2015; Verghese, Wang, Lipton, 

Holtzer, & Xue, 2007). Notably, age-related mobility decline accelerates between the ages of 60 
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and 70, with a wide range of heterogeneity between individuals, and differing trajectories 

between males and females (Ferrucci et al., 2016). Age-related decline occurs in multiple 

systems and brain regions (i.e., central nervous system, neuromotor responses, prefrontal cortex, 

and visuospatial brain regions) that contribute to mobility (Eeles & Choy, 2015). In addition to 

the motor cortex and the cerebellum, the prefrontal cortex is involved in the planning and 

execution of mobility, indicating that brain regions for cognitive function and mobility are 

overlapping. In fact, a common mechanism is postulated to be the cause of co-occurring mobility 

and cognitive decline (Hausdorff & Buchman, 2013; Montero-Odasso, Verghese, Beauchet, & 

Hausdorff, 2012).  

Decline in gait speed precedes cognitive decline in healthy older adults and has been 

associated with EF decline irrespective of cognitive impairment (Callisaya et al., 2015; 

Camicioli, Howieson, Oken, Sexton, & Kaye, 1998; Ojagbemi et al., 2015). Furthermore, the 

slowing of gait speed has been found several years prior to the onset of neurocognitive disorders 

and incident dementia (Camicioli et al., 1998; Dumurgier et al., 2016; Kuate-Tegueu et al., 2017; 

Ojagbemi et al., 2015; Parodi et al., 2018). In a recent meta-analysis of longitudinal studies, slow 

baseline gait speed was found to predict cognitive decline and dementia, indicating that physical 

impairment is a core factor in cognitive decline (Kikkert, Vuillerme, van Campen, Hortobágyi, & 

Lamoth, 2016).  

 Frailty and mobility have been identified as distinct but related constructs. Mobility 

impairment occurs at a high level of frailty and is one of multiple factors that are included in 

frailty measures. However, mobility impairment is not enough to identify frail individuals 

(Davis, Rockwood, Mitnitski, & Rockwood, 2011; Eeles & Choy, 2015). Additionally, mobility 

has been identified as a predictor of incident frailty as well as frailty transition states; better 
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mobility is associated with stability or improvement in frailty status (Fallah et al., 2011; 

Rothman, Leo-Summers, & Gill, 2008). Notably, it is possible that not all mobility-impaired or 

frail individuals experience cognitive decline or dementia, indicating some individuals may be 

resilient to the effects of these physical health adversities on cognition. An emerging area of 

research, cognitive resilience, seeks to understand preservation of cognitive performance and 

capacity despite risk profiles for decline and impairment. 

Cognitive Resilience: An Indicator of Healthy Brain Aging?  

Resilience is a concept long applied in psychology, indicating an ability to adapt and 

maintain well-being in the face of adversity (Anstey & Dixon, in press). Resilient aging is 

thought to be examined from a salutogenic approach (a health promotion approach) rather than 

focusing on the pathology of aging and neurodegenerative diseases. A salutogenic approach 

offers avenues to examine antecedents or predictors of resilience in older adults along a 

continuum of health and wellness (Hicks & Conner, 2014).  

The concept of resilient aging has been examined in a variety of different ways, 

conceptualizing many facets of human existence and experience, such as emotional and 

psychological resilience. For example, psychological resilience in aging has been quantified by 

characteristics such as emotional regulation, self-efficacy, greater social support, low 

neuroticism, greater life satisfaction, higher use of proactive coping strategies, a high use of 

humour, and a growth mindset (Fontes & Neri, 2015). Recently, the concept of resilient aging 

has been conceptualized through biological attributes. For example, physical resilience has been 

defined as a “characteristic at the whole person level which determines the individual’s ability to 

resist functional decline or recover physical health following a stressor” (p. 493) and has been 

indicated as an integral part of successful aging (Whitson et al., 2016).  
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When applied to cognitive aging, the emerging construct of resilience can be defined as 

an ability to maintain cognitive function despite the presence of adversities significantly 

associated with decline, impairment, and dementia. Such adversities come from a variety of 

domains including genetic, functional health, lifestyle, biological, and sociodemographic. Recent 

research has examined cognitive resilience to certain risk factors, such as APOE ɛ4 genetic risk, 

and AD neuropathology (Arnold et al., 2013; Kaup et al., 2015). This emerging research 

highlights a unique and measurable concept – cognitive resilience, which suggests that even with 

major risk profiles for the neurodegenerative disease, some individuals may be relatively spared 

from cognitive impairment (Kaup et al., 2015; McDermott et al., 2017).  

Examining cognitive resilience to adversities associated with cognitive decline, 

impairment, and dementia fosters the opportunity to identify potential predictive profiles of 

resilient and non-resilient individuals. For example, Kaup and colleagues (2015) examined 

cognitive resilience to APOE genetic risk as stratified by race. Resilience was classified as 

relatively stable MMSE scores across a timespan of eleven years despite APOE risk (ɛ4+) status. 

Their results indicated that cognitive resilience was predicted by differing factors for black and 

white older adults. Specifically, for black older adults, resilience was predicted by a high literacy 

level, high education, female sex, and an absence of diabetes. In contrast, for white older adults, 

cognitive resilience was predicted by having no negative life events, a high literacy level, older 

age, high education, and time spent reading.  

McDermott and colleagues (2017) found that predictors of memory resilience to APOE 

genetic risk differed for men and women. While there were similar predictors for both males and 

females, several predictors were unique to women (e.g., PP, volunteering, subjective health). 

Therefore, resilience may be a relational construct, in that it may vary according to the 
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constellation of individual factors (e.g., sex) or resources available (e.g., subjective health). 

Additionally, the resources (or protective factors) available may vary within an individual across 

time (Staudinger & Greve, 2016). This is important for research in brain and cognitive aging 

because, from a lifespan developmental perspective, a basic tenet of human aging is 

modifiability (Staudinger & Greve, 2016). Understanding the circumstances that provide the best 

context for modifying resilience could provide insight for exogenous conditions aimed at risk-

reduction and maintenance of cognitive function (Staudinger & Greve, 2016). Simply, the more 

we understand about the developmental conditions which underlie a resilient response, the more 

effective interventions may be at protecting cognitive health in the face of vulnerability 

(Lavretsky, 2014; Staudinger & Greve, 2016). 

Potential Predictors of Cognitive Resilience to Frailty and Mobility Risk 

As previously established, several lifestyle, demographic, and genetic factors may 

contribute (either positively or negatively) to cognitive resilience (Kaup et al., 2015; McDermott 

et al., 2017). The following paragraphs discuss the major risk and protective factors proposed for 

examination in Chapters Three and Four of this dissertation research. All of these factors have 

been previously associated with cognitive impairment, decline, and dementia. These factors may 

be modifiable or non-modifiable, and some factors are conversely related. For example, social 

engagement is protective, while social isolation is a risk factor (Dixon & Lachman, 2019). 

Informed by recent VLS research (i.e., McDermott et al., 2017; McFall et al., 2019), 13 core 

(common across Chapters Three and Four) and nine additional factors (unique to Chapter Four) 

have been chosen for examination as potential predictors of cognitive resilience (see Tables 1-1 

and 1-3 for a comparison of the predictors across studies). These 22 factors have been clustered 

into four broad domains: demographic, health (including functional health), lifestyle, and genetic 
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(see Table 1-2; McDermott et al., 2017; McFall et al., 2019). The 13 core predictors used in both 

Chapters Three and Four are age, sex, marital status, living status, pet ownership, education, 

social activity, cognitive activity, volunteer activity, alcohol use, smoking, APOE and BDNF 

genetic status. The additional factors unique to Chapter Four are physical activity, BMI, diabetes, 

peak flow, grip strength, depressive symptoms, subjective health, anti-inflammatory medication, 

and PP (see Table 1-2).  

Demographic factors. Several demographic factors have been associated with 

differential trajectories of cognitive aging, including age, sex, education, marital status, living 

status, and pet ownership. 

Age. The ‘greying of the population’ is a worldwide phenomenon that will continue for 

several decades. In Canada, by 2021, the number of adults over the age of 65 will outnumber 

children under the age of 14 (Statistics Canada, 2015). Higher age has been associated with 

lower cognitive performance and steeper decline in non-demented older adults across several 

domains (Hoogendam, Hofman, van der Geest, van der Lugt, & Ikram, 2014; McCarrey, An, 

Kitner-Triolo, Ferrucci, & Resnick, 2016). Although cognitive impairment and dementia are not 

normal conditions of aging, increasing age is the foremost risk factor for AD. In fact, the risk for 

AD doubles every five years after the age of 65 (Alzheimer’s Society, 2010).  

Sex. Sex differences have been noted in non-demented cognitive performance and 

cognitive trajectories across several studies (McCarrey et al., 2016; Munro et al., 2012). For 

example, males have been found to outperform females on baseline measures of visuospatial 

ability, but females were found to outperform males on baseline memory, EF, perceptuomotor 

speed, and language tasks (McCarrey et al., 2016). Regarding clinical status, females are at a 

higher risk for developing non-amnestic mild cognitive impairment and AD (Au, Dale-McGrath, 
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& Tierney, 2017; Riedel, Thompson, & Brinton, 2016). Specifically, the prevalence of AD is 

higher for females, the clinical manifestation and progression of the disease differs for males and 

females, and females have lower cognitive performance than men in similar stages of AD (Laws, 

Irvine, & Gale, 2016; Pike, 2017).  

Education. Education is known to influence cognitive decline, impairment, and AD.  

Higher education confers protection, while lower education is a risk factor for developing 

impairment and dementia (Sattler, Toro, Schönknecht, & Schröder, 2012). For example, recently 

higher education has been associated with higher rates of cognitive function and slower rates of 

cognitive decline in a cohort of older Danish adults without cognitive impairment at baseline 

(Foverskov et al., 2018). This beneficial cognitive effect may occur through increasing cognitive 

reserve, which reduces risk of clinical impairment (Lenehan, Summers, Saunders, Summers, & 

Vickers, 2015; Thow et al., 2017). In fact, higher educational attainment has been associated 

with decreased risk of AD across several studies, including a recent meta-analysis (Meng & 

D’Arcy, 2012; Xu et al., 2015).  

Other factors that have been found to confer protection against cognitive decline include 

being married, living with someone, and owning pets (Enders-Slegers & Hediger, 2019; Kotwal, 

Kim, Waite, & Dale, 2016; Mousavi-Nasab, Kormi-Nouri, Sundström & Nilsson, 2012). For 

example, being married has been found to be positively associated with memory performance 

and memory decline (Mousavi-Nasab et al., 2012). In contrast, being single has been associated 

with a higher risk of cognitive decline and impairment across several samples (Feng et al., 2014; 

Wu, Lan, Chen, Chiu, & Lan, 2011). Living status has been found to be linked to cognitive, 

social, and health factors. For example, living alone has been found to increase the risk for 

dementia and negative health outcomes such as poor functional health, and multiple falls 
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(Fratiglioni, Wang, Ericsson, Maytan, & Winblad, 2000; Kharicha et al., 2007). Additionally, 

older males living alone experienced a more rapid cognitive decline than their married 

counterparts (van Gelder et al., 2006). Pet ownership and human-animal interaction have been 

found to be related to several positive health factors, such as increased physical activity, social 

activity, cognitive function, psychological health, and decreased loneliness (Friedmann et al., 

2020; Knight & Edwards, 2008; Matchock, 2015; Toohey, McCormack, Doyle-Baker, Adams, & 

Rock, 2013). Additionally, human-animal interaction has been found to increase MMSE scores 

in older adults with dementia (Moretti et al., 2011). Therefore, pet ownership may provide an 

avenue for cognitive protection and fostering cognitive resilience.  

Genetic Factors. Genetic factors contribute to the interindividual variability of cognitive 

aging, possibly accounting for up to 60% of the variability in general cognitive function in later 

life (Harris & Deary, 2011; Laukka et al., 2013). Notably, the influence of genetics on cognitive 

function increases across the lifespan and differs according to clinical status (Pedersen & 

Gerritsen, 2015; Plomin & Deary, 2014). While many genetic variants have been associated with 

cognitive decline and impairment, two genetic factors (i.e., APOE, rs7412 and rs429358; BDNF, 

rs6265) have been selected for this dissertation because of their previous associations with 

frailty, mobility, and cognitive function (Barha, Best, Liu-Ambrose, & Rosano, 2018; Thibeau et 

al., 2016; Thibeau et al., 2017).  

Apolipoprotein. APOE is a lipoprotein involved in lipid metabolism and transportation. 

The APOE gene has three allelic variations, ε2, ε3 and ε4, yielding six possible genotypes: ε2ε2, 

ε2ε3, ε2ε4, ε3ε3, ε3ε4 and ε4ε4 (Lahiri, Sambamurti, & Bennett, 2004). APOE has been 

associated with multiple trajectories and clinical outcomes of aging, including normative 

cognitive decline, MCI, and AD (Brainerd, Reyna, Petersen, Smith, & Taub, 2011; Small, 
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Rosnick, Fratiglioni, & Backman, 2004; Wisdom, Callahan, & Hawkins, 2011). The risk for AD 

increases according to the APOE genotype, such that APOE ε2 may be relatively protective, ε3 is 

neutral (neither risk increasing nor protective), and ε4 increases the risk substantially (Corder et 

al., 1993; Lahiri et al., 2004). Regarding cognitive performance, ɛ4 carriers have been shown to 

perform significantly worse than ε4 non-carriers on measures of cognitive functioning, including 

memory, speed, and EF (Wisdom et al., 2011). APOE ɛ4 has been classified as a “frailty gene” 

due to its association with differential mortality in older adults (Gerdes, Jeune, Ranberg, Nybo, 

& Vaupel, 2000). APOE ɛ4 has also been associated with more rapid decline in gait speed, and 

less cognitive resilience to AD neuropathology (Buchman et al., 2009; Negash, Xie, et al., 2013).  

Brain-Derived Neurotrophic Factor. BDNF is highly expressed in the nervous system 

and is involved in several brain functions including neuronal growth, differentiation, repair and 

survival (Bathina & Das, 2015). A substitution of valine by methionine at codon 66 (the Met 

allele) in the single nucleotide polymorphism of the BDNF gene (rs6265) has been linked to 

disrupted neuronal processing, resulting in a decreased availability of BDNF (Egan et al., 2003). 

Additionally, low levels of brain and plasma BDNF expression and circulation have been linked 

to functional impairment, frailty, cognitive decline, MCI, and AD pathology (Buchman et al., 

2016; Erickson, Miller, & Roecklein, 2012; Inglés et al., 2016; Navarro-Martínez et al., 2015; 

Shimada et al., 2014). Conversely, high levels of BDNF in plasma have been linked to a lowered 

risk for MCI and AD (Lau, Ludin, Rajab, & Shahar, 2017; Weinstein et al., 2014). Notably, 

BDNF has recently been identified as a potential neural mediator of resilience, through its role of 

facilitating adaptive neuroplasticity (Karatsoreos & McEwen, 2013; Rothman & Mattson, 2013). 

However, the association between the BDNF Val66Met polymorphism and cognitive function is 

unclear, as several studies have conflicting results. A recent review by Toh and colleagues 
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(2018) examined the association between the Val66Met polymorphism and cognitive function 

across several cognitive domains in both clinical and non-clinical status populations. Their 

review indicated that although several studies have consistently indicated an association between 

the BDNF gene and cognitive function, these studies indicated positive associations for differing 

alleles. For example, several studies found positive effects on cognition for Val/Val carriers, 

while others found similar effects for Met carriers. They concluded the positive effect of the Met 

allele had not be consistently established and may occur only in tandem with certain disease 

states in which BDNF expression and circulation is affected (Toh, Ng, Tan, Tan, & Chan, 2018). 

Taken together, the influence of BDNF on cognition or on cognitive resilience might be more 

apparent when certain physiological disease states or deficits are present, such as frailty or low 

mobility.  

Lifestyle factors. Lifestyle factors influencing cognitive function in aging include social 

activity, cognitive activity, physical activity, volunteer activity, alcohol use, and smoking 

(Anstey, 2014; Marioni et al., 2015; Middleton, Barnes, Lui, & Yaffe, 2010). In fact, a 

randomized control trial indicated that higher levels of social, cognitive, and physical activity 

were associated with higher cognitive performance on a neuropsychological test battery, and 

with higher performance in EF and speed domains of cognition (Ngandu et al., 2015). 

Social Activity. Social activity is a core component of successful aging and has been 

found to be strongly associated with quality of life, physical health, cognitive performance, and 

reduced risk of cognitive decline (Cherry et al., 2013; Douglas, Georgiou, & Westbrook, 2017; 

Hajek et al., 2017; Tomioka, Kurumatani, & Hosoi, 2016; Weber, 2016). In contrast, social 

isolation has been identified as a major risk factor for poor health, reduced sense of well-being, 

higher mortality rates, increased risk for vascular diseases, cognitive decline, and dementia 
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(Courtin & Knapp, 2017; Friedler, Crapser, & McCullough, 2015; Holt-Lunstad, Smith, & 

Layton, 2010). For example, a recent review of longitudinal studies indicated that social isolation 

is associated with higher risk of dementia (Kuiper et al., 2015).  

Notably, the risk of social isolation increases as functional status decreases. For example, 

the slowing of gait speed has been associated with an increase in social isolation, and increased 

scores on a frailty index have been associated with decreased social engagement in Canadian 

older adults (Andrew & Keefe, 2014; Shankar, McMunn, Demakakos, Hamer, & Steptoe, 2017; 

Warren, Ganley, & Pohl, 2016). As such, high social engagement may foster cognitive resilience 

in individuals who are frail or have low mobility.  

Cognitive Activity. Cognitive training and several types of cognitive activity have been 

found to be associated with cognitive performance in non-clinical and clinical populations 

(Bherer, 2015; Hertzog, Kramer, Wilson, & Lindenberger, 2008; Hyer et al., 2016; Lampit, 

Valenzuela, & Gates, 2015; Park & Bischof, 2013). For example, a recent review has found that 

cognitive training improves domain-related cognitive performance in non-demented older adults 

(Butler et al., 2018). In 2016, Hyer and colleagues reported that two computer-based programs 

targeting working memory improved performance for individuals with MCI. Additionally, 

individuals with early-stage AD have been shown to benefit from a cognitive training task 

(Cavallo, Zanalda, Johnston, Bonansea, & Angilletta, 2016). These cognitive benefits may 

remain domain-specific with little transfer to general cognitive function (Sala & Gobet, 2019), 

but have been shown to be relatively stable for prolonged periods in multiple studies (Cavallo et 

al., 2016; Dahlin, Nyberg, Bäckman, & Neely, 2008; Park & Bischof, 2013).  

Cognitive interventions have been associated with improvements in mobility and 

cognitive-related outcomes (Marusic, Verghese, & Mahoney, 2018; Ross, Sprague, Phillips, 
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O’Connor, & Dodson, 2016; Smith-Ray et al., 2013; Verghese, Mahoney, Ambrose, Wang, & 

Holtzer, 2010). Additionally, Ng and colleagues (2015) found that a cognitive intervention 

reversed frailty scores. Moreover, it has been recommended that cognitive assessments be used 

when assessing risk of adverse outcomes for frail adults, as cognitive impairment in the presence 

of frailty indicates higher risk for adverse outcomes. Taken together, high cognitive activity 

could be a potential predictor of cognitive resilience in older adults who are frail or mobility 

impaired.  

Physical Activity. Physical activity is defined as any skeletal muscle movement that 

results in energy expenditure (Caspersen, Powell, & Christenson, 1985). Physical activity 

encompasses a broad range of activities, (e.g., walking, aerobic exercise) and can range from 

light to vigorous intensity. While moderate to vigorous intensity exercise is known to be 

cognitively beneficial (Erickson, Hillman, & Kramer, 2015), increasing evidence supports 

everyday or leisure physical activity as a more accessible avenue for influencing brain and 

cognitive health for older adults (Thibeau et al., 2016; Thibeau et al., 2017; Willey et al., 2016). 

For example, in a sample of non-demented older adults, higher levels of everyday physical 

activity were found to be associated with better EF performance, and less EF decline over time 

(Thibeau et al., 2016). Moreover, Willey and colleagues (2016) indicated that low levels of low-

intensity physical activity were associated with cognitive decline across EF, memory, and speed 

domains in non-demented older adults. Regarding cognitive impairment, greater levels of daily 

physical activity have been associated with a decreased risk of Mild Cognitive Impairment 

(MCI), and AD (Covell et al., 2015).  

Notably, while some individuals who are frail may also have low levels of physical 

activity, there is a substantial amount of variability in activity level (Huisingh-Scheetz et al., 
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2018). Additionally, leisure physical activity interventions may improve health status of 

mobility-impaired older adults (Crawford, Hollingsworth, Morgan, & Gray, 2008). A recent 

review indicated that physical activity has been found to consistently improve cognitive 

performance in older frail adults (Landi et al., 2010). Moreover, poor physical function 

(including mobility) and physical inactivity are predictors of faster rates of cognitive decline 

(Zaninotto, Batty, Allerhand, & Deary, 2018). Taken together, it is possible that physical activity 

may be a predictor of cognitive resilience to frailty and low mobility. 

Volunteer Activity. Volunteering is a promising lifestyle activity thought to have 

beneficial effects on cognitive function for older adults (Guiney & Machado, 2018; Proulx, Curl, 

& Ermer, 2018). Volunteering has been found to be beneficial to working memory and speed 

(Proulx et al., 2018), and mitigate cognitive decline and risk for impairment (Gupta, 2018; 

Infurna, Okun, & Grimm, 2016). A recent review has suggested that this benefit may come from 

increases to physical and social activity, and cognitive stimulation which could have a positive 

influence on neurological and mental health (Guiney & Machado, 2018).   

 Alcohol Use. Alcohol consumption is widespread in Canada. Recent surveys have  

indicated that 77% of people over the age of 18 have consumed alcohol within the past year 

(Statistics Canada, 2017). Studies examining the association between cognitive function and 

alcohol use have mixed results. The majority of studies suggest an inverted u-shaped relationship 

between alcohol consumption and cognitive function. These findings indicate that low and 

moderate use is associated with protective effects against cognitive decline, yet heavy drinking is 

associated with higher risk of cognitive decline and dementia (Anstey, Mack, & Cherbuin, 2009; 

Carrigan & Barkus, 2016; Piumatti, Moore, Berridge, Sakar, & Gallacher, 2018; Sachdeva, 

Chandra, Choudhary, Dayal, & Anand, 2016). However, recent studies have suggested the 
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protective effect could be due to confounding factors such as socioeconomic status, education, or 

abstainer bias (Hassing, 2018; Topiwala et al., 2017; Topiwala & Edmeier, 2018). Adding to this 

complexity, alcohol use was a significant predictor of resilience to CLU genetic risk for females 

(McDermott et al., 2017), indicating the effect of alcohol on cognitive function may depend on 

other factors, such as risk for AD. Considering this evidence, alcohol use (yes or no) was 

included as a predictor of resilience to frailty in the present reserach.  

 Smoking. Cigarette smoking increases the risk for major diseases such as coronary heart 

disease, lung cancer, and stroke, and is the leading preventable cause of death in Canada (Center 

for Disease Control and Prevention, 2013; Rhem, Baliunas, Brochu, & Fischer, 2006). Smoking 

has been linked to cognitive impairment and decline (Okusaga et al., 2013). In fact, smoking has 

recently been linked to long-term deficits in EF and memory, and current smoking increases the 

risk for EF impairment when compared to former smokers (Amini, Sahil, & Ganai, 2020). 

Smoking has also been associated with deficits in processing speed and global cognitive function 

for females (Zaninotto, Batty, Allerhand, & Deary, 2018).  

Health factors. Health factors (including health conditions and markers of functional 

health) contribute substantially to the variability in cognitive trajectories (Institute of Medicine, 

2015). While many disease states and functional health biomarkers have been associated with 

cognitive decline and impairment, nine factors (i.e., diabetes, depressive symptoms, subjective 

health, anti-inflammatory medication use, peak flow, grip strength, BMI, and PP) have been 

selected for consideration in the fourth chapter of this dissertation because of their previous 

associations with cognitive resilience, mobility, and/or cognitive performance across the three 

domains (Caballero, McFall, Wiebe & Dixon, 2020; McDermott et al., 2017; McFall et al., 

2019).  
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Diabetes. Type 2 diabetes has been established as a major risk factor for cognitive 

decline and dementia (Livingston et al., 2017; Livingston et al., 2020). Recently, diabetes has 

been associated with decline in verbal memory and fluency in non-demented older adults over a 

period of five years (Callisaya et al., 2018). Furthermore, diabetes has been linked to lower EF 

performance, lower global cognition scores, lower episodic memory performance, slower 

processing speed, and lower verbal abilities in older adults of various cognitive status (Marseglia 

et al., 2017; Palta et al., 2017; Sadanand, Balachandar, & Bharath, 2016). Mechanistically, 

diabetes may contribute to cognitive decline through cortical atrophy, increased accumulation of 

beta-amyloid, structural damage such as white matter hyperintensities, and functional 

impairment of brain cells and nerves (Lee et al., 2018; Mankovsky, Zherdova, van den Derg, 

Biessels, & Bresser, 2018; Moran, Beare, Wang, Callisaya, & Srikanth, 2019).  

Peak Expiratory Flow. Pulmonary function declines with age and is often measured by 

either a peak flow meter or a spirometer, which assess parametric indicators of lung function. 

Peak expiratory flow has been associated with a variety of outcomes for older adults, including 

lower mobility (walking speed), lower quality of life, higher rates of functional disability, 

hospitalization, and mortality (Finkel, Bravell, & Pedersen, 2020; Roberts & Mapel, 2012; 

Trevisan et al., 2020). It is thought that inadequate oxygenation may cause brain atrophy and 

structural changes which affect cognitive performance (Ferreira, Tanaka, Santos-Galduróz, & 

Galduróz, 2015). While a number of studies have suggested a link between pulmonary and 

cognitive function, a recent systematic review of longitudinal studies has found inconsistency in 

the relationship between pulmonary function and cognitive performance in older adults, 

highlighting the need for further rigorous longitudinal research (Duggan et al., 2020).  
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Grip Strength. Hand grip strength is a measure of overall body strength (Neumann, 

Kwisda, Krettek, & Gaulke, 2017; Wearing, Konings, Stokes, & de Bruin, 2018). Grip strength 

is an age-dependent process, thought to be a marker of biological vitality, and has significant 

associations with cognitive performance (Zammit et al., 2018). In fact, a recent study by 

Sternӓng and colleagues (2016) found longitudinal relationships between grip strength and 

verbal abilities, processing speed, memory, and spatial abilities. Additionally, higher hand grip 

strength is associated with lower risk for cognitive decline and impairment (McGrath et al., 

2020). Furthermore, McDermott and colleagues (2017) found that grip strength was a predictor 

of memory resilience in non-demented older adults.  

BMI. Higher BMI in mid-life has been identified as one of the top risk factors for 

cognitive decline and impairment (Anstey et al., 2011; Livingston et al., 2017). The relationship 

is complex, however, with some studies showing that elevated BMI in late life is linked to 

decreased risk for cognitive impairment (Emmerzaal, Kiliaan, & Gustafson, 2015). Specifically, 

Bohn and colleagues (2020) found that elevated BMI was associated with less cognitive decline 

in the domains of EF, memory, and neurocognitive speed for non-demented, community-

dwelling older females. In contrast, Caballero and colleagues (2020) found that lower BMI was 

an important predictor of membership in a class of individuals characterized by high-and-stable 

EF performance over time compared with a class of individuals with lower performance and 

declining EF. Therefore, there is a need to clarify the conditions under which BMI influences 

cognitive trajectories in later life. Recently, BMI has been investigated in relation to cognitive 

resilience. Specifically, McDermott and colleagues (2017) found that lower BMI was a predictor 

of memory resilience to AD genetic risk, but only for female carriers. Taken together, current 
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evidence suggests that the relationship between BMI, cognition, resilience, and aging is complex 

and needs further examination. 

Pulse Pressure. Pulse pressure (PP), a proxy measure of arterial stiffness, is measured as 

the difference between systolic minus diastolic blood pressure (McFall et al., 2015). PP increases 

with age (Raz et al., 2011), and elevated PP is associated with a compromised blood brain 

barrier, neuroinflammation, and neurodegeneration (Levin, Carnegie, & Celermajer, 2020). 

Notably, PP has been associated with many cognitive outcomes, including cognitive stability, 

cognitive decline, and AD neuropathology (Caballero, McFall, Wiebe, & Dixon, 2020; Hughes 

et al., 2013; McFall et al., 2015; Sha, Cheng, & Yan, 2018). For example, when distinguishing 

between subclasses of individuals based on EF performance and change, Caballero and 

colleagues (2020) found that lower PP was a predictor of membership in the highest level and 

stable EF performance class, indicating that individuals with lower PP had high EF levels and 

stable EF performance over time. However, the relationships between PP and cognition may be 

dependent on other factors, such as a lower initial systolic blood pressure, genetic status, or 

biological sex (McDade et al., 2016; McDermott et al., 2017; Nation et al., 2016). For example, 

relative to cognitive resilience, McDermott and colleagues (2017) found that PP was an 

important and genetically robust predictor of memory resilience for older non-demented females, 

but not for males. Therefore, PP may be uniquely predictive of cognitive resilience and could be 

dependent on the adversity or the cognitive domain examined.  

Depressive Symptoms. Depression is a common mental health condition affecting 2 – 

15% of older adults (Beekman, Copeland, & Prince, 1999; Kok & Reynolds, 2017). Late-life 

depression has been associated with impaired social functioning, poor medical outcomes, 

increased risk of mortality, and faster cognitive decline (Donovan et al., 2017; Gallo et al., 2013; 
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Ganguli, Dodge, & Mulsant, 2002). A systematic review and meta-analysis indicated that 

depressed individuals had impairments in cognitive domains of EF, memory, and attention 

(Rock, Roiser, Reidel, & Blackwell, 2013). Additionally, high and increasing depressive 

symptoms are linked to a higher risk for dementia (Kaup, Byers, & Falvey, 2016). Depression 

has also been found to have a bidirectional relationship with frailty, as frail individuals are more 

likely to have higher depressive symptoms than non-frail individuals (Soysal et al., 2017). 

Additionally, the absence of depressive symptoms has been found to be a predictor of cognitive 

resilience to AD genetic risk (McDermott et al., 2017). Therefore, the presence of depressive 

symptoms (yes or no) has been included as a predictor of resilience.  

Subjective Health. Healthy aging may be operationalized through self-rated health 

measures, which have been consistently associated with activities of daily living and disability 

(Fiacco, Mernone, & Ehlert, 2020; Fong & Kok, 2020). According to research, there is a 

disconnect between objective health status and subjective reports or self-rated health. 

Specifically, older adults report high levels of health despite clinical health status or number of 

chronic conditions (Idler & Benyamini, 1997; Tkatch et al., 2017). Taking this discrepancy into 

consideration, self-perception of health may be an indicator of resilience. In fact, subjective 

health was found to be a predictor of resilience to genetic risk for AD (McDermott et al., 2017). 

Therefore, subjective health is included as a potential predictor of cognitive resilience.  

Anti-Inflammatory Medication. Anti-inflammatory medications (i.e., members of a drug 

class that reduces pain, decreases fever, and decreases inflammation) are the most prescribed 

medication for pain management in older adults (Abdulla et al., 2013). While associated with 

several adverse health events (e.g., gastrointestinal issues, cardiovascular issues, and bleeding 

complications), beneficial effects of use have been found on cognitive function and reducing the 
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risk of dementia (Nevado-Holgado et al., 2016; Pilotto et al., 2003; Szekely et al., 2008; 

Wongrakpanich, Wongrakpanich, Melhado, & Rangaswami, 2018; Zandi et al., 2002; Zhang et 

al., 2018). Additionally, McDermott and colleagues (2017) found that anti-inflammatory 

medication was predictive of resilience to AD genetic risk for females, therefore, it was also 

included in the present research.  

In summary, 13 core predictors will be used in Chapters Three and Four. Specifically, 

these 13 predictors are from three domains (i.e., genetic, demographic, and lifestyle) and include 

APOE genetic status, BDNF genetic status, sex, age, education, marital status, living status, pet 

ownership, alcohol use, smoking, cognitive activity, volunteer activity, and social activity. 

Additionally, nine predictive factors are considered for inclusion in the cognitive resilience to 

mobility chapter physical activity, depressive symptoms, anti-inflammatory medication use, self-

rated overall health, diabetes, BMI, PP, peak expiratory flow, and grip strength. These additional 

factors are already included in the frailty index and therefore are not being considered for 

inclusion as separate variables in Chapter Three.  

Section Three: Thematic Integration in Three Proposed Studies 

Three Programmatic Studies: Goals and Procedures 

The overall goal of this dissertation is to augment and inform the emerging frailty, 

mobility, and cognitive resilience literature via three novel and significant studies. Participants 

for these studies came from the Victoria Longitudinal Study (VLS). the VLS is a large-scale, 

longitudinal examination of aging that has been well-described elsewhere (Dixon & deFrias, 

2004). The samples used for these studies are described in each chapter.  

Chapter Two: The first longitudinal study is entitled “Frailty Effects on Non-Demented 

Cognitive Trajectories are Moderated by Sex and Alzheimer’s Genetic Risk.” This chapter has 
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recently been published in a peer-reviewed journal and is summarized here (Thibeau, 

McDermott, McFall, Rockwood, & Dixon, 2019). The full version including references appears 

in Appendix A. It establishes the effects of frailty on cognitive performance (level) and change 

(slope) in three cognitive domains and examines moderation of these frailty-cognition 

associations by two major risk factors associated with AD (i.e., sex and APOE genetic risk). 

Specifically, this chapter examines the relationships of both level (at a statistical centering age) 

and slope (longitudinal change) between frailty and three cognitive domains: (a) episodic 

memory, (b) neurocognitive speed, and (c) EF as moderated by two non-modifiable risk factors 

for AD (i.e., sex and APOE genetic risk). For Chapter Two, a three-wave dataset was assembled 

from the Victoria Longitudinal Study (VLS), covering a 40-year age span (53–95). After 

exclusionary criteria were applied, the participant sample was comprised of non-demented 

community-dwelling older adults who had provided biofluid for genotyping between 2009 and 

2011 (n = 632). Structural equation modeling was used to investigate three research goals. 

Specifically, confirmatory factor analysis, longitudinal measurement invariance, latent growth 

modeling, and moderation analysis were conducted using Mplus 7 (Muthén & Muthén, 1998).  

The aim of Research Goal One (RG1) was to examine how frailty (level or change) 

affected the level and change in the three latent cognitive variables. The aim of Research Goal 

Two (RG2) was to examine whether APOE (risk, non-risk) moderated the level and longitudinal 

frailty-cognition relationships. Finally, the aim of Research Goal Three (RG3) was to examine 

whether sex moderated the level and longitudinal frailty-cognition relationships.  

Four main results were produced. First, frailty levels predicted speed and EF performance 

(level) and differential memory change slopes. Second, change in frailty predicted the rate of 

decline for both speed and EF. Third, the sex moderation analyses indicated that females were 
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sensitive to: (a) frailty effects on memory change and (b) frailty change effects on speed change. 

In contrast, the frailty effects on EF change were stronger in males. Fourth, the genetic 

moderation analyses showed that APOE risk (e4+) carriers were selectively susceptible to frailty 

effects on memory change. This chapter provides a novel contribution as it presented evidence of 

how frailty in older adults affected performance and change across three age-sensitive domains 

of cognition. Additionally, it was among the first to contribute information of how these frailty-

cognition relationships are modified by two non-modifiable AD biomarkers. Moreover, these 

novel results provide the groundwork for study two.     

Chapter Three: The second longitudinal study is entitled “Cognitive Resilience to 

Frailty: Definition and Determinants of Protective Profiles”. The overall purpose of this chapter 

is two-fold. First, cognitive resilience to frailty will be characterized across three age-sensitive 

domains of cognition, namely memory, speed, and EF. Second, differences in predictors of 

frailty-resilient cognitive trajectories will be examined, and predictors of resilience will be 

compared across the included cognitive domains. More specifically, utilizing the same 

longitudinal dataset as in Chapter Two, these aims will be achieved through three Research 

Goals (RGs).  

Research Goals and Proposed Procedures: Research Goal One (RG1) will examine 

frailty trajectory classification using the entire sample. Specifically, Latent Class Growth 

Analysis (LCGA) will be used to classify participants into frailty trajectory classes based on 

level and slope of individualized frailty trajectories (Hayden et al., 2011; Jung & Wickrama, 

2008; Nylund, Asparouhov, & Muthen, 2007; Pietrzak et al., 2015; Thibeau et al., 2019). While 

one to three-class models will be tested (Grimm, Ram, & Estabrook, 2016), it is expected that a 

two-class model will be the best fit for the data. The expected two-class model will identify two 
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frailty trajectory classes: one with higher (worse) frailty, characterized by higher frailty level and 

a steeper increase in frailty, and another with lower (better) frailty, characterized by lower frailty 

level and more gradual increase in frailty or a relatively stable frailty trajectory (no frailty 

change).  

Research Goal Two (RG2) will examine cognitive resilience trajectory classification 

using the class of higher (worse) frailty established in RG1, separately for all three cognitive 

domains, using LCGA. Similarly, to McDermott and colleagues (2017), two subclasses must be 

identified using LCGA. A subclass of resilient individuals will be characterized by higher 

cognitive performance and stable cognitive trajectories, and a subclass of non-resilient 

individuals will be characterized by lower cognitive performance and steeper cognitive decline. 

For example, LCGA will be used to test one-three class memory models and assess model fit 

using only the individuals classified as having higher (worse) frailty. This procedure will be 

repeated for speed, and EF. It is expected that a two-class model will fit the data best for each of 

the cognitive domains, classifying resilient individuals with relatively higher cognitive 

performance and little cognitive change from non-resilient individuals with relatively lower 

cognitive performance and steeper decline over time.  

Research Goal Three (RG3) will establish predictors of cognitive resilience and non-

resilience to frailty. For RG3, Random Forest Analyses (RFA) will be used to identify salient 

predictors of cognitive resilience and non-resilience from genetic, lifestyle, and demographic 

domains. Specifically, the thirteen predictors tested will be age, education, sex, marital status, 

living status, pet ownership, APOE and BDNF risk status, social activity, cognitive activity, 

volunteer activity, smoking, and alcohol use. These thirteen predictors are not included in the 

comprehensive 50-item frailty index, and so are able to be included as predictors of cognitive 
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resilience to frailty. It is expected that predictors such as education, age, cognitive activity, and 

sex will discriminate between resilient and non-resilient groups.  

Finally, the last step in this proposed research is the interpretation of the results. 

Specifically, the predictor profiles of resilient and non-resilient individuals will be compared 

across cognitive domains. It is expected that age, sex, APOE non-risk, and education will be 

robust predictors of resilience across all three cognitive domains, but that other predictors of 

resilience will differ based on cognitive domains. For example, BDNF may be predictive of EF 

resilience to frailty but not memory resilience, based on previous associations with EF (Thibeau 

et al., 2016).  

Significance. This chapter will provide two novel contributions. First, it will define and 

establish cognitive resilience in the light of frailty. Second, it will identify set of factors which 

contribute to the development or maintenance of resilience in aging and compare these predictive 

factors across all three domains of cognitive function. This research contributes to the field of 

cognitive aging in several ways. Resilience is a multidimensional phenomenon, arising from the 

combination or interaction of several protective resources and risk factors. First, this chapter 

aims to quantify the discordance between frailty and high cognitive function, by characterizing 

and defining cognitive resilience to frailty. Second, this chapter aims to identify factors which 

foster cognitive resilience to frailty. Identifying and understanding underlying predictors of 

cognitive resilience in the face of physical health adversity may allow future research a basis for 

comparison and examination of cognitive resilience to other types of adversity. As there is now 

established empirical evidence behind risk factors for dementia (Dixon & Lachman, 2019; 

Livingston et al., 2017), it is conceivable that this research may add to the establishment of 

similar evidence for factors that promote cognitive resilience. Third, increasing cognitive 
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resilience, considering the multi-dimensional health challenges faced by older adults, offers an 

opportunity for multifactorial intervention and assistance for this particularly vulnerable 

population.  

Chapter Three. Building on the framework provided by the previous chapters, Chapter 

Four will be entitled “Cognitive Resilience: The Crossroads of Low Mobility and High 

Cognitive Performance”. The overall purpose of this chapter is to establish whether individuals 

can maintain cognitive function despite low and declining mobility (gait, balance) performance. 

Additionally, it will examine differences in salient predictors of cognitive resilience to low 

mobility, identifying factors that differentiate resilient from non-resilient participants. Using the 

same longitudinal dataset as used in the previous two chapters, three RGs will allow systematic 

investigation of cognitive resilience to low mobility. 

Research Goals and Proposed Procedures. In this chapter, mobility (gait and balance) 

will be measured by two VLS tasks, timed walk and timed turn. Gait is measured as a timed walk 

(in s) over a distance of 20 feet. Balance is measured as timed turn (in s), i.e., how fast a person 

could make a complete circle from a standing position. A composite mobility score was formed 

with unit weighted z-scores of the two indicators, in which higher scores will indicate better 

mobility performance (Buchman et al., 2007; Swank, Almutairi, & Medley, 2017). Foundational 

analyses will establish a mobility growth model and examine mobility trajectory classification. 

Specifically, latent growth modeling will be used to test variability in intra-individual patterns of 

change over time for mobility. Growth models will be tested in this order: (a) a fixed intercept 

model, which assumed no inter- or intra-individual variation, (b) a random intercept model, 

which modeled inter-individual variability in overall level but no intra-individual change, (c) a 

random intercept fixed slope model, which allowed inter-individual variability in level but 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  47

  

 

assumes all individuals exhibited the same rate of change, and (d) a random intercept, random 

slope model which allowed inter-individual variability in level and change. Second,  

 Research Goal One (RG1) will examine mobility trajectory classification. Specifically, LCGA 

will be used to classify participants into mobility trajectory classes based on level and slope of 

the mobility growth model established in the foundational analyses. While one- to three-class 

models will be tested, it is expected that two classes of mobility will provide the best fitting 

model. The expected two-class model will distinguish a higher (better) performing mobility class 

and a lower (worse) performing mobility class. It is expected that the higher mobility class will 

be characterized by relatively higher mobility performance and relatively stable trajectories over 

time, and the lower mobility class will be characterized by relatively lower level of mobility and 

steeper decline over time.  

Research Goal Two (RG2) will examine cognitive resilience trajectory classification 

using the lower mobility subclass established in RG1, separately for all three cognitive domains. 

Specifically, using a similar procedure to Chapter Three, LCGA will be applied to trajectory data 

for each cognitive measure within the lower mobility subclass to identify resilient and non-

resilient subclasses. The resilient subclass will be comprised of individuals with lower overall 

mobility and higher cognitive performance (are in the higher performing classes for each of the 

cognitive domains). The non-resilient subclass will be comprised of those who are in the lower 

mobility class and have lower cognitive performance. This resilience and non-resilience 

classification will be performed for all three cognitive domains. For each domain, one- to three-

class models will be tested, but it is expected that a two-class model will provide the best fit for 

the data.   
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Research Goal Three (RG3) will establish predictors of cognitive resilience and non-

resilience to lower mobility. For RG3, Random Forest Analyses (RFA) will be used to identify 

salient risk and biomarker predictors that differentiate between resilient and non-resilient 

subclasses. As in Chapter Three, the core set of 13 predictors will be tested. These core 13 

predictors are age, education, sex, marital status, living status, pet ownership, APOE, BDNF 

genetic risk status, social activity, cognitive activity, volunteer activity, alcohol use, and 

smoking. Additionally, an additional nine factors will be tested. Specifically, these additional 

predictors are physical activity, BMI, PP, peak expiratory flow, grip strength, diabetes, 

depressive symptoms, subjective health, and anti-inflammatory medication. It is expected that 

several factors will predict memory resilience to low mobility: younger age, APOE non-risk 

genetic status, BDNF non-risk status, female sex, high education, and high cognitive activity.  

Finally, the last step in this research is the interpretation of the results. Similar to Chapter 

Three, the biomarker predictors of resilient and non-resilient classes will be compared and 

contrasted for generalizability across cognitive domains for mobility. It is expected that several 

predictors of resilience to lower mobility will be robust across all three cognitive domains.  

Significance. This chapter will offer the opportunity to identify predictors of resilience 

despite another commonly occurring physical deficit for older adults (lower mobility). 

Identifying predictors of cognitive resilience and comparing them across multiple types of 

adversities associated with cognitive decline allows for the possible identification of a core set of 

common factors. This is conceptually similar to research over the past decade that has identified 

modifiable risk factors that contribute to dementia (Livingston et al., 2017) and therefore allowed 

for generalized recommendations to be made to reduce dementia risk. If we are able to establish 

a core set of common factors that foster resilience, we may identify opportunities for older adults 
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to enhance their cognitive performance and maintain their cognition over a long period of time. 

If not, we will identify resilience predictors that are specific to different cognitive domains. 

Summary of Three Chapters: The three chapters included in this dissertation are united 

by their responsiveness to the global issue of population aging. With the expansion of the aging 

population, and with the expected continuing rise in dementia prevalence, research on risk and 

protective factors for brain and cognitive aging is imperative. The present chapters investigate 

the theme of resilience across three domains of cognitive change in the context of two 

compelling sources of exacerbated cognitive decline (frailty, mobility deficits). They are framed 

by a developmental lifespan perspective, taking a longitudinal approach to examining dementia 

prevention from the salutogenic orientation of cognitive resilience. Utilizing a core dataset 

comprised of non-demented older adults and modern statistical procedures, cognitive resilience 

is defined and established relative to two major predictors of cognitive decline, impairment, and 

dementia. These three chapters are programmatic in that they take a systematic, step-by-step 

approach to developing an understanding of the dynamics and predictors of cognitive resilience 

across three key age-sensitive cognitive domains. They differ in that Chapter Two establishes the 

cognitive influence of a major AD risk factor, while Chapters Three and Four establish the 

emerging complex construct of cognitive resilience. Together, they offer a significant 

contribution to the emerging field of resilience in aging.   

Section Four: Significance 

Resilience is commonly defined as the ability to avoid negative outcomes despite the 

presence of significant risk factors (Staudinger & Greve, 2016) and adversity (Anstey & Dixon, 

in press). It is related to, but different from, concepts such as cognitively successful or 

exceptional aging, including super brain aging (Dixon & Lachman, 2019). The concept of 
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resilience has specific application to AD risk-reduction; cognitive resilience is the ability to 

maintain relatively high levels of cognitive performance despite harboring a major adversity 

associated with cognitive decline, impairment, or dementia. Whilst an important psychological 

phenomenon, the concept of cognitive resilience also provides considerable benefit for older 

adults. Identifying and stabilizing, or even increasing conditions that are protective to cognitive 

functioning has enormous potential for delaying the onset of dementia. This in turn may have 

substantial economic and psychosocial impact for society, families, caregivers, and individuals.  

Notably, emerging empirical evidence on cognitive resilience has the potential to provide 

the foundation for proposing dementia prevention interventions. Although a relatively new field 

of research, current literature in this area has already identified a couple of common factors of 

cognitive resilience to AD risk, including high education and cognitive activity (Kaup et al., 

2015; McDermott et al., 2017). However, it is important to note the developmental phenomena 

of cognitive resilience may result from various unique combinations or constellations of 

risk/protective factors (Staudinger & Greve, 2016). Therefore, resilience profiles or 

constellations may have common components which could be generalizable to older adults and 

be comprised of specific factors unique to the individual. As such, deep examination of cognitive 

resilience across a variety of adversities may inform both generalized and precision interventions 

targeted to build resilience in subpopulations of older adults with high risk for AD. Precision 

medicine is an emerging approach which takes into account each individual’s genetic, 

environmental, lifestyle, and psychosocial characteristics (Reitz, 2016). Precision medicine aims 

to make disease prevention more effective by understanding the likelihood of an individual to 

respond to a specific therapeutic approach (Reitz, 2016). Therefore, when this approach is 

applied to the area of cognitive resilience, individuals with differing AD risk factors may all be 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  51

  

 

advised to increase cognitive activity yet have other precision recommendations unique to their 

presenting risk constellation. While these types of interventions remain to be developed and 

examined, this dissertation research identifies key factors that influence AD resilience, furthering 

our understanding of this important phenomenon. In addition to conceptualizing, defining, and 

supplementing the emerging research on cognitive resilience, this dissertation may provide future 

opportunities for older adults to intervene in their cognitive development, adapting effective 

strategies for building their capacity to offset decline and impairment.   
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Table 1-1 

Comparison of Predictors Used in Recent Resilience Studies 

 

Cognitive Activity* Kaup et al., 2015 Thibeau Dissertation

Age* Age* Age

Education* Education* Education

Marital Status* Marital Status Marital Status

Living Status* Living Status Living Status

Pet Ownership* Pet Ownership

Sex* Sex

Higher Financial Status

Literacy Level*

PP* PP

PEF* PEF

Grip Strength Grip Strength

BMI Obesity (BMI over 30) BMI

Hypertension

Subjective Health* Subjective Health

Depressive Symptoms* Depression Depressive Symptoms

Diabetes Diabetes* Diabetes

Anti-inflammatory Meds* Anti-inflammatory Meds

Statin Use

Head Injury

Sleep Time

Myocardial Infarction

High Cholesterol 

Stroke

High Inflammation Level

No Negative Life Events (past year)*

Timed Turn*

Timed Walk*

Alcohol Use* Alcohol Use Alcohol Use

Physical Activity Physical Activity Physical Activity

Cognitive Activity* Cognitive Activity

Social Visits* Visits Family or Friends Social Activity

Volunteer Frequency* Volunteer Activity Volunteer Avtivity

Smoking (excluded in final) Smoking Smoking (excluded in final)

Time Spent Reading*

APOE

BDNF

Lifestyle

Genetic

Demographic

Functional/Health

Mobility
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Note. PP = pulse pressure; PEF = peak expiratory flow; BMI = body mass index; APOE = 

Apolipoprotein E; BDNF = Brain Derived Neurotrophic Factor.  

*  indicates significant predictors of resilience (Kaup et al., 2015; McDermott et al., 2017) 
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Table 1-2 

List of Predictors of Resilience Used in the Present Dissertation 

Domain Predictor Core or Additional 

 Age Core 

 Sex Core 

Demographic Education Core 

 Marital Status Core 

 Living Status Core 

 Pet Ownership Core 

 

Genetic 

APOE Core 

BDNF Core 

 Social Activity Core 

Lifestyle Cognitive Activity Core 

 Volunteer Activity Core 

 Smoking Core 

 Alcohol Use Core 

 Physical Activity Additional 

 Diabetes Additional 

 Grip Strength Additional 

Functional Health Peak Flow Additional 

 BMI Additional 

 Pulse Pressure Additional 

 Anti-Inflammatory Medication Additional 
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 Depressive Symptoms Additional 

 Subjective Health Additional 

 

Note. APOE = Apolipoprotein E; BDNF = Brain Derived Neurotrophic Factor; BMI = Body 

Mass Index. The core predictors are included in both Chapters Three and Four, and the 

additional predictors are included only in Chapter Four.  
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Table 1-3 

Comparison of Predictors in this Dissertation with McFall and Colleagues (2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. PP = pulse pressure; PEF = peak expiratory flow; BMI = Body Mass Index; APOE = 

Apolipoprotein E; BDNF = Brain Derived Neurotrophic Factor 

  

Thibeau Dissertation McFall et al., 2019 

Age Age 

Education Education 

Marital Status   

Living Status Living Status 

Pet Ownership   

Sex Sex 

PP PP 

PEF PEF 

Grip Strength Grip Strength 

BMI BMI 

  Heart Rate 

Subjective Health Subjective Health 

Depressive Symptoms Depressive Symptoms 

Diabetes   

Anti-inflammatory Meds   

  Timed Turn 

  Timed Walk 

Alcohol Use   

Physical Activity Physical Activity 

Cognitive Activity Cognitive Activity 

Social Activity Social Activity 

Volunteer Activity   

Smoking    

  

Self-Maintenance 

Activity 

APOE   

BDNF   
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Chapter Two: Frailty Effects on Non-Demented Cognitive Trajectories are Moderated by 

Sex and Genetic Risk 

 Age-related frailty reflects cumulative multisystem physiological and health decline 

(Mitnitski et al., 2001). Frailty increases risk of adverse brain and cognitive outcomes, including 

differential decline and dementia (Rogers et al., 2017; Song et al., 2011). Recently, 

understanding frailty and its impact has become a priority in clinical and research settings (Lim, 

Canevelli, & Cesari, 2018). Currently, there are two main methods of frailty measurement: (a) a 

phenotype model and (b) an accumulation of deficits (frailty index) model. The phenotype model 

defines frailty as the presence of three of five criteria: unintentional weight loss, exhaustion, 

weakness, slow gait, and low physical activity (Fried et al., 2001). A frailty index is formed by 

the ratio of health deficits present in an individual to the total number of potential deficits 

measured (Rockwood & Mitnitski, 2007b). In the current research, we use the Frailty Index (FI) 

for four main reasons: (a) the FI shows greater predictive value than other frailty measures for 

populations in community settings (Theou et al., 2015), (b) it is considered one of the most 

robust frailty assessment tools (Dent et al., 2016), (c) it is unidimensional and has high 

constructive validity (Widagdo et al., 2016), and (d) the total FI score (more than individual  

health deficits) has been found to be more predictive of adverse outcomes (Rockwood & 

Mitnitski, 2007).  

 Cognitive variables are often included in frailty indices. However, frailty and cognitive 

impairment may be distinct concepts that co-occur or interact in a cycle of age-related decline 

(Robertson et al., 2013). In fact, Armstrong and colleagues (2016) examined the association 

between a frailty index and global cognition. Their results indicated that higher (worse) frailty 

was associated with worse cognition at baseline and a faster rate of cognitive decline (Armstrong 
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et al., 2016). Notably, longitudinal relationships between frailty indices and specific cognitive 

domains are few. One study by Rolfson and colleagues (2013) indicated that over a three-year 

period, worse frailty index scores were associated with reduced neurocognitive speed 

performance. We expand and contribute to this area of research by examining the longitudinal 

relationships between a physical frailty index and three distinct cognitive domains, namely, 

memory, speed, and EF. However, as both cognitive aging and the accumulation of health 

deficits involve many complex, heterogeneous, interacting factors and processes (Anstey, 2014; 

Lim et al., 2018), the relationship between frailty and cognitive decline may be further 

influenced by other risk factors for AD, such as sex or APOE genetic risk.  

 Apolipoprotein E (APOE) has three major isoforms (ɛ2, ɛ3, and ɛ4), with the ɛ4 

increasing the risk of cognitive decline and AD in a dose-dependent fashion (Liu, Kanekiyo, Xu, 

& Bu, 2013). The isoforms differentially regulate systems involved in AD pathology including 

(a) amyloid beta aggregation and clearance, (b) neuroinflammation, (c) lipid transport, and (d) 

glucose metabolism (Bennet et al., 2007; Liu et al., 2013). On its own, the ɛ4 allele is an 

established risk factor for cognitive decline in normal aging, mild cognitive impairment, and AD 

(Liu et al., 2013; Schiepers et al., 2012). Additionally, the ɛ4 allele has been considered a “frailty 

allele” and has been included as an indicator of frailty in some frailty indexes (Mitnitski et al., 

2015). An independent association between APOE and frailty has not been demonstrated 

(Rockwood, Nassar, & Mitnitski, 2008); therefore, APOE may operate by way of interaction or 

moderation when considered in relation to cognition. In fact, APOE has been found to exert 

moderating effects on the relationship between single health factors (i.e., vascular health and PP) 

and cognitive change with aging (McFall, Sapkota, McDermott, & Dixon, 2016; McFall, Wiebe, 
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et al., 2015). As such, it is possible that APOE may moderate the effect of frailty on cognitive 

performance and change.  

 Sex differences in frailty have garnered a great deal of attention in the literature. Results 

of a recent meta-analysis showed that females had higher frailty index scores than males at all 

ages but a lower mortality rate at any given level of frailty or age, indicating that frailty is more 

lethal in males than females (Gordon et al., 2017). Additionally, sex differences in level and 

change trajectories are evident across many cognitive domains, with females demonstrating 

generally higher levels of performance and greater resilience to age-related cognitive decline 

than men (McCarrey et al., 2016). Notably, females are disproportionately affected by AD in 

severity, progression, and prevalence (Mazure & Swendsen, 2016) and female carriers of the 

APOE ɛ4 risk allele are at a higher risk for AD than male carriers (Altmann, Tian, Henderson, & 

Greicius, 2014). Moreover, females with APOE ɛ4 and higher levels of beta-amyloid burden 

experienced faster rates of cognitive decline than their male counterparts (Buckley et al., 2018). 

Taken together, sex may also influence the relationship between age-related cognitive 

performance and decline and frailty.   

Research Goals 

 The overall purpose of this study was to examine relationships of both level (at a 

statistical centering age) and slope (longitudinal change) between frailty and three cognitive 

domains: (a) episodic memory, (b) neurocognitive speed, and (c) EF as moderated by two non-

modifiable risk factors for AD (i.e., sex and APOE genetic risk). We assembled a 3-wave dataset, 

covering a 40-year age span (53 – 95) and used structural equation modeling to investigate three 

Research Goals (RG). For RG1 we examined how frailty (level or change) affected level and 

change in the three latent cognitive variables. For RG2 we examined whether APOE (risk, non-
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risk) moderated the level and longitudinal frailty-cognition relationships. For RG3 we examined 

whether sex moderated the level and longitudinal frailty-cognition relationships.  

Methods 

Participants 

 Participants were community-dwelling older adult volunteers of the VLS. The VLS is a 

Canadian, large-scale, long-term investigation of neurocognitive aging, impairment, and 

dementia as influenced by genetic, biomedical, biological, health, lifestyle, and other factors 

(Dixon & de Frias, 2004). Three main sequential samples (initially aged 53-95 years) are 

followed at about 4-year intervals (M = 4.4-year interval). All participants provided written 

informed consent and all data collection procedures were in full and certified compliance 

(annually) with Health Research Ethics Board at the University of Alberta. As the focus of this 

study was to examine change in cognition as moderated by a genetic variant, participants were 

limited to a source subsample who had provided biofluid for genotyping between 2009 and 2011 

(n = 695). This source subsample consisted of current subsets of three equivalent sequential 

cohorts, with present data collection occurring in the 2001 – 2015 period. The VLS cohorts were 

from Sample 1 (waves 6, 7, and 8), Sample 2 (waves 4 and 5), and Sample 3 (waves 1, 2, and 3). 

The total individualized duration is up to nine years (McFall et al., 2014). The wave-to-wave 

retention rates by sample ranged from 77% to 90% (see Table 2-1 for attrition rates). We note 

that those who did not return for a third wave of data collection (n = 44) had higher levels of 

frailty and lower cognitive performance at the second wave of measurement than returners. The 

following exclusionary criteria were applied at baseline to the source sample: (a) a diagnosis of 

AD or dementia (n = 0), or (b) missing data at all three waves across any one of the 50 measures 

used to calculate frailty index (n = 40), and (c) missing data at all three waves across any one of 
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the four measures used to calculate the memory, speed, or EF latent variable (n = 23). The final 

study sample was comprised of 632 adults at baseline (M age = 70.7, range = 53.25 – 95.45; 

66.7% female; see Table 2-2 for demographic information).  

Measures 

 Frailty Index. For each participant, the Frailty Index tallied the total number of health 

deficits from 50 variables (see Table 2-3) which previous work suggests is sufficient for 

accurately predicting adverse outcomes (Ferrucci et al., 2004). The items collected included self-

report data, physical examination, and formal tests with standardized scales. All frailty items 

were consistent with those included in previous frailty indexes (Andrew, Mitnitski, & 

Rockwood, 2008; Blodgett, Theou, Kirkland, Andreou, & Rockwood, 2015; Romero-Ortuno & 

Kenny, 2012; Searle, Mitnitski, Gahbauer, Gill, & Rockwood, 2008; Song, Mitnitski, & 

Rockwood, 2010). As cognitive performance and change were the primary outcomes, all 

cognitive-related measures or reports were excluded from the present frailty index.  

 The Frailty Index was constructed by first recoding each variable to an interval between 

zero and one (see Table 2-3). For variables with two possible responses, scores were either zero 

(deficit absent) or one (deficit present). Variables with four or five possible responses (e.g., 

subjective health responses included “very poor”, “poor”, “fair”, “good”, and “very good”) had 

scores that reflected a range between zero and one (e.g., 0.00, 0.25, 0.50, 0.75, 1.00). For all 

participants we calculated the frailty index as x/50, where x was the individual participant’s 

number of deficits (i.e., an individual with no deficits would have a frailty score of 0). In this 

sample, the Frailty Index means ranged from 0.13 – 0.53 at each wave (see Table 2-2), which is 

similar to previous studies (Armstrong, Mitnitski, Launer, White, & Rockwood, 2015). 
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 DNA Extraction and Genotyping. As described in previous studies (McFall, Wiebe, 

Vergote, Anstey, et al., 2015), the VLS collects saliva according to standard biofluid collection, 

stabilization, and preparation procedures from DNA Genotek technology. Genetic analyses 

included genotype categorization based on the presence or absence of the risk allele. APOE 

genotype was divided into dichotomous categories: ε4+ (risk) consisted of ε4ε4 and ε3/ε4 allele 

combinations and ε4- (non-risk) consisted of ε2ε2, ε2/ε3, and ε3ε3 allele combinations. For all 

analyses including APOE, we removed the genotype which combines the risk and protective 

alleles (ɛ2ɛ4; n = 30; McFall et al., 2014). The genotypic distribution for APOE was in Hardy-

Weinberg equilibrium, χ2 = .89. 

 Measures for the Cognitive Latent Variables. The memory, speed, and EF tests 

included in the current study have been frequently used and validated with older adults in the 

VLS (and other studies). Citations indicate sources for established measurement attributes, 

structural characteristics, and sensitivity to health and neurological factors in older adult 

populations. For each set of manifest indicators, we calculated a latent variable to represent the 

construct.  

 Episodic Memory. We calculated a robust latent variable comprised of four manifest 

indicators from two memory tasks (McFall, Wiebe, et al., 2015): Word recall score on list 1, and 

score on list 2, Rey Auditory Verbal Learning Test list B1, and list A6.  

 Word Recall. Two lists of 30 content diverse English words were used to test immediate 

recall in a rotated design. Participants were given two minutes to study each list and five minutes 

to write as many words as they could recall (Dixon et al., 2004). 

 Rey Auditory Verbal Learning Test. A list of 15 nouns was read aloud and immediately 

recalled; this process was repeated for five trials (A1-A5). Then a list (B1) of 15 unrelated nouns 
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was read aloud and immediately recalled, measuring free recall. Then the participant was asked 

to recall the first list of nouns (A6), measuring recall after interference (Lezak, 1983). 

 Speed. We calculated a robust speed latent variable comprised of four manifest indicators 

from four speed tasks following established procedures (McFall et al., 2015). The tasks 

weresimple reaction time, choice reaction time, lexical decision, and sentence verification. 

Because each of the speed measures varied in complexity, we applied validated correction 

procedures with specific lower and upper limits as follows: (a) simple reaction time, 150 ms; (b) 

choice reaction time, 150 ms and 4000 ms; (b) lexical decision, 400 ms and 10000 ms; (c) 

sentence verification, 1000 ms and 20000 ms. Subsequent trials 3 standard deviations above the 

mean were removed. 

 Simple Reaction Time. Participants were presented with a warning stimulus (***) 

followed by a signal stimulus (+) in the middle of the computer screen and asked to press a key 

as quickly as possible when the signal stimulus appeared. Fifty trials were administered, and the 

latency of the 50 trials was used for analysis (Dixon et al., 2007). 

 Choice Reaction Time. A grid of (+) was presented on the computer screen, after a 1000 

ms delay one of the (+) was changed to a square, and participants were asked to indicate the 

location of the square using a matching arrangement of keys on the response console. The 

dependent measure was the average latency across 20 trials (Palmer, MacLeod, Hunt, & 

Davidson, 1985). 

 Lexical Decision. A string of five to seven letters was presented on the computer screen. 

Participants were asked to identify as quickly as possible whether the letters formed an English 

word. The average latency across 60 trials was used for analysis (Palmer et al., 1985). 
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 Sentence Verification. A sentence was presented on the computer screen and participants 

were asked to identify as quickly as possible the plausibility of the sentence. The average latency 

across 50 trials was used for analysis (Palmer et al., 1985). 

 Executive Function (EF). We calculated a robust EF latent variable comprised of four 

manifest EF indicators (Thibeau et al., 2017): Hayling sentence completion test, Stroop test, 

Brixton spatial anticipation test, and Color trails test part two.  

 Hayling Sentence Completion. In section A, participants listened to 15 sentences read 

aloud with the last word missing, completing the sentence in a way that made sense and as 

quickly as possible. In section B, participants again listened to 15 sentences read aloud with the 

last word missing, completing the sentence quickly with a word that was unrelated or 

unconnected to the sentence. Response speed on both sections and errors within section B were 

used to create an overall scaled score (ranged from [impaired] to 10 [very superior]) (Burgess & 

Shallice, 1997).  

 Stroop. In part A, participants named the color of 24 dots (blue, green, red, or yellow) as 

quickly as possible. In part B, participants named the ink color of 24 words (e.g., “when”). In 

part C, participants named the ink color of color names (blue, green, red, or yellow) by ignoring 

the printed word and instead stating the color of the ink (e.g., if the word blue was printed in red 

ink, the correct answer was red). Scores were calculated from the interference index ([Part C 

time – Part A time]/Part A time) which reflects slowing in response to interference (Taylor, 

Kornblum, Lauber, Minoshima, & Koeppe, 1997). 

 Brixton Spatial Anticipation Test. Participants deduced simple and changing patterns by 

predicting the movement of a blue dot among ten possible positions on a page, which followed 

patterns that came and went without warning. The total errors were recorded (maximum 54) and 
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converted to scaled scores. An overall standardized scale resulted in scores ranging from 1 

(impaired) to 10 (very superior) (Burgess & Shallice, 1997). 

 Color Trails Test. Participants connected the numbers 1 to 25 by alternating between pink 

and yellow circles while disregarding the numbers in circles of the alternate color. The latency 

score to complete the task was used for analysis (lower scores indicated better performance) 

(D'Elia, Satz, Uchiyama, & White, 1996). 

Statistical Analyses 

 Analyses pertaining to our three RGs included confirmatory factor analyses, longitudinal 

measurement invariance, latent growth modeling, and moderation analyses through structural 

equation modeling (SEM) using Mplus 7 (Muthén & Muthén, 1998). Consistent with 

recommended standards and other VLS research, chronological age was coded as a continuous 

variable and used as the metric of change for all analyses. Age was centered at age 75, the 

approximate mean of the 40-year span of data, and a commonly observed inflection period in 

non-demented cognitive aging (Dixon, Small, MacDonald, & McArdle, 2012; Small, Dixon, & 

McArdle, 2011). We used robust maximum likelihood estimation methods based on all available 

information from every variable included in the covariance matrix, to estimate any missing 

values (Little, 2013).  

 Foundational analyses. We conducted several analyses to test and confirm basic 

characteristics of the data. Analyses for each cognitive variable were conducted separately (i.e., 

confirmatory factor analysis, measurement invariance, and latent growth modeling analyses were 

conducted (in that order) for the EF latent variable, then for memory, and finally for speed). All 

model testing, model fit indices, and chi-square difference tests are reported in Tables 2-4 to 2-7.   
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 First, confirmatory factor analysis was used to test whether four EF manifest variables fit 

a single-factor EF construct, and whether this single-factor EF variable fit the data for these 

participants. Second, longitudinal measurement invariance was tested using (a) configural 

invariance, which is used to determine if the same EF measures represent the latent variable at 

each wave of data collection, (b) metric invariance, which is used to determine that each EF 

latent variable was measuring the same construct, and (c) scalar invariance, which tests whether 

there are mean differences at the latent mean level. Model fit was determined using standard 

indices: (a) chi-square for which a good fit would produce a non-significant test (p > .05), 

indicating the data are not significantly different than the model estimates, (b) comparative fit 

index (CFI) for which ≥ .95 was judged a good fit and between .90 and .94 was judged an 

adequate fit, (c) root mean square error of approximation (RMSEA), for which ≤ .05 would be 

judged good and between .06 and .08 would be judged adequate, and (d) standardized root-

mean-square residual (SRMR) for which good fit is judged by a value of  ≤ .08 (Kline, 2011; 

Little, 2013).  

 Third, latent growth modeling was used to test variability in intra-individual patterns of 

change over time for frailty, and then separately for each cognitive domain. Growth models were 

tested in this order: (a) a fixed intercept model, which assumed no inter- or intra-individual 

variation, (b) a random intercept model, which modeled inter-individual variability in overall 

level but no intra-individual change, (c) a random intercept fixed slope model, which allowed 

inter-individual variability in level but assumes all individuals exhibited the same rate of change, 

and (d) a random intercept, random slope model which allowed inter-individual variability in 

level and change. When growth modeling uses individually varying times of observation as 

parameters the traditional SEM model fit indices (i.e., chi-square, RMSEA, CFI, etc) are not 
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available. Therefore, the log-likelihood (LL) and indices of relative fit, the Akaike (AIC) and 

Bayesian information criteria (BIC), are provided. The LL is the measure of the magnitude of the 

log-likelihood function for the particular combination of parameter estimates and observed data 

(Singer & Willett, 2003). It contains all parameters (sample data and the unknown parameters); 

smaller absolute values mean a better model fit (Singer & Willett, 2003). To compare the nested 

growth models, the Deviance statistic was used (D). The deviance statistic is -2 times the sample 

LL and measures the discrepancy between the current model and the full model. The difference 

(ΔD) between the full model and the reduced model has a chi-square distribution with degrees of 

freedom which is the number of constraints imposed (Singer & Willett, 2003). The ΔD value was 

compared to a chi-square critical value with the appropriate degrees of freedom; a significant 

deviance statistic indicates a better model fit than the previous model. Additionally, we evaluated 

the resulting parameter estimates to ensure that all variances were positive (i.e., no Heywood 

cases) and the resulting parameter estimates were plausible (Singer & Willett, 2003). The best 

growth models established a functional form of change in level and slope (one growth model 

each for the following: frailty, memory, speed, and EF; for a total of four growth models) and 

were used in the analyses for RG1-RG3.  

 Analyses for RG1: Independent effect of frailty on, separately, memory, speed, and 

EF. The best fitting frailty, memory, speed, and EF growth models according to the fit indices 

from the foundational analyses were used. We estimated three parallel process models to see 

whether (a) level of frailty predicted either level or change in (separately) memory, speed, or EF, 

and (b) change in frailty predicted change in (separately) memory, speed, or EF (see Figure 2-5 

for parallel process model diagram). First, we tested the frailty growth model in parallel process 

with the memory growth model to evaluate whether frailty or change in frailty exerted important 
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effects on level or change in memory. Path analyses were used to determine the effects (a) level 

of frailty (intercept) regressed on level of memory performance (intercept), (b) level of frailty 

(intercept) regressed on memory change (slope), and (c) change in frailty (slope) regressed on 

memory change (slope). These steps were repeated using the frailty growth model in parallel 

process with the speed growth model, and then with the EF growth model. 

 Analysis for RG2: Moderation of the frailty-cognition relationships by sex. A series 

of steps to test sex moderation was followed. First, a model which tested the effect of frailty 

(intercept) regressed on both level memory (intercept) and change in memory (slope), and frailty 

change (slope) regressed on memory change (slope) was estimated, with all the parameter 

estimates constrained to be equal across sex (i.e., female and male) groups. Second, the 

parameters were free to vary between sex groups to examine moderation. Evidence of 

moderation was indicated by a significant deviance test which compared the fully constrained 

model to the unconstrained model (Little, 2013). This indicated a model in which the effect of 

frailty on memory performance and change was different for males and females fit the data better 

than a model for which the effect of frailty on memory level and change was the same for both 

groups. The same series of steps was used to test sex moderation of the frailty-speed, and then 

the frailty-EF relationships. 

 Analyses for RG3: Moderation of the frailty-cognition relationships by APOE. We 

used the APOE groups (i.e., risk and non-risk) and applied the aforementioned analytical 

moderation steps to examine APOE moderation of the frailty-memory relationships. The same 

series of steps was used to test APOE moderation again for the frailty-speed and then the frailty-

EF relationships.  
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Results 

Foundational Analyses  

 In foundational analyses we separately tested and verified longitudinal invariance for the 

one-factor memory, speed, and EF latent variables. The frailty, EF, speed, and memory growth 

models were computed over a 40-year period. Results are briefly summarized below. The 

specific model fit indices and model comparisons are presented in Tables 2-4 to 2-7.  

 Confirmatory factor analysis and measurement invariance testing. Briefly, a single-

factor memory model comprised of four memory mainfest indicators fit this sample of 

participants, and had partial scalar invariance across time (final model fit indices: RMSEA = .07; 

CFI = .95; SRMR = .08; Δχ2 = 9.88, Δdf = 4, p = .042). A single-factor speed model comprised 

of four manifest indicators fit this sample of participants, and had partial scalar invariance 

(RMSEA = .096; CFI = .94, SRMR = .086; Δχ2 = 94.32, Δdf = 2, p < .001). A single-factor EF 

model comprised of four manifest indicators fit the data and  had partial scalar invariance 

(RMSEA = .04; CFI = .97, SRMR = .08; Δχ2 = 44.7, Δdf = 4, p < .001; see Tables 2-4 to 2-7 for 

model fit and model testing comparisons). Partial scalar invariance for all measures indicates 

mean differences were evident at the factor level and mean level for the majority of the 

indicators, and we “can proceed with making comparisons of the construct’s key parameters” 

(Little, 2011, pg. 178).   

 Latent growth models. First, for frailty (higher score = worse) we observed that 

individuals varied in level of frailty at the centering age (b = 0.423, p < 0.01), exhibited 

significant increase in frailty scores (M = 0.034, p < 0.01), and showed variable patterns of 

decline (b = 0.001, p < 0.01; see Figure 2-1). As can be seen in Figure 2-1, (a) the full 

distribution of frailty index trajectories reveals variability in level and slope and (b) the group 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  70

  

 

mean trajectory curve (in bold) documents the gradual increase in frailty over the 40-year band 

of aging. Second, for memory we observed that individuals varied in performance at the 

centering age (b = 17.745, p < 0.01), exhibited significant decrease in memory performance (M = 

-0.073, p < 0.01), and showed variable patterns of decline (b = 0.027, p < 0.01; see Figure 2-

2)Third, for speed we observed that individuals varied in level of speed performance at age 75 (b 

= 67.849, p < 0.01), exhibited significant decrease in performance (M = -0.100, p < 0.01), and 

showed variable patterns of decline (b = 0.139, p < 0.01; see Figure 2-3). Fourth, for EF, we 

observed that individuals varied in level of performance at the centering age (b = 0.997, p < 

0.01), exhibited significant decrease in EF performance (M = -0.012, p = 0.01), and showed 

variable patterns of decline (b = 0.003, p < 0.01; see Figure 2-4).  

RG1: Independent effect of frailty on cognition 

 Frailty predicting memory. Although baseline frailty did not predict baseline level of 

memory performance (b = -0.435, p = 0.189) it significantly predicted rate of memory change (b 

= -0.039, p = 0.032). Change in frailty did not predict change in memory (b = -0.032, p = 0.946). 

In sum, higher (worse) frailty was associated with more rapid memory decline than was lower 

(better) frailty (see Figure 2-6a). 

 Frailty predicting speed. Frailty level significantly predicted level of speed performance 

(b =-1.529, p = 0.041) but did not predict rate of change (b = -0.03, p = 0.436). Notably, change 

in frailty significantly predicted change (slowing) in speed performance (b = -4.463, p < 0.001). 

In sum, higher (worse) frailty was associated with slower levels of speed performance (see 

Figure 2-6b). Additionally, a more rapid increase in frailty was associated with a more rapid 

decrease in speed. 
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 Frailty predicting EF. Frailty level significantly predicted level of EF performance (b = -

0.235, p = 0.019) but did not predict rate of EF change (b = -0.01, p = 0.151). In addition, change 

in frailty significantly predicted change in EF performance (b = -0.217, p = 0.049). In sum, 

higher (worse) frailty was associated with lower levels of EF performance than was lower 

(better) frailty (see Figure 2-6c). Additionally, a more rapid increase in frailty was associated 

with a more rapid decrease in EF. 

RG2: Moderation of the frailty-cognition relationships by sex 

 We conducted six sets of moderation analyses to examine whether sex differentially 

moderated the previously observed frailty-memory, frailty-speed, and frailty-EF relationships. 

 Sex moderation of the frailty-memory relationship. Sex moderated the frailty-memory 

relationship (D = 102.18, Δdf = 15, p < .001). This moderation occurred for females only. For 

females, frailty level predicted memory performance (b = -.892, p = .014) and change in memory 

(b = -0.050, p = 0.013; see Figure 2-7). Specifically, for females, higher (worse) frailty was 

associated with lower memory performance and steeper memory decline than was lower (better) 

frailty. This effect was not seen for males, as frailty did not predict level or change in memory. 

 Sex moderation of the frailty-speed relationship. Sex moderated the frailty-speed 

relationship (D = 60.82, Δdf = 15, p < .001). This moderation occurred for females only; frailty 

change predicted change in speed (b = -3.282, p = 0.003; see Figure 2-8). Specifically, for 

females, worsening frailty was associated with steeper speed decline than was lower (better) 

frailty. This effect was not seen for males, as frailty did not predict level or change in speed. 

 Sex moderation of the frailty-EF relationship. Sex moderated the frailty-EF relationship 

(D = 62.32, Δdf = 13, p < .001). Frailty level predicted EF performance for both males (b = -

.450, p = 0.029) and females (b = -.231, p = .048; see Figure 2-9). Specifically, higher (worse) 
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frailty was associated with steeper EF decline than was lower (better) frailty for both males and 

females. As this effect occurred in both sexes, we examined this moderation further. A model 

with constrained intercept parameters across males and females was a significantly worse fit than 

the unconstrained model (D = 25.7, Δdf = 5, p < .001).  This indicates the effect of frailty on EF 

was stronger for males than females. Specifically, males with high levels of frailty had lower EF 

performance than females with the same levels of frailty. 

RG3: Moderation of the frailty-cognition relationships by APOE 

 We conducted six sets of moderation analyses to examine whether APOE differentially 

moderated the previously observed frailty-memory, frailty-speed, and frailty-EF relationships. 

Results indicated that APOE moderated the frailty-memory relationship (D = 52.62, Δdf = 1, p < 

0.001). This moderation occurred for the APOE risk carriers only. Overall, frailty level predicted 

change in memory (b = -0.095, p = 0.048; see Figure 2-10). Specifically, for APOE ɛ4+ (risk) 

carriers, higher (worse) frailty was associated with steeper memory decline than was lower 

(better) frailty.  APOE did not moderate the frailty-speed or frailty-EF relationships.  

Discussion 

 The overall purpose of this research was to examine the influence of frailty across three 

domains of cognition, as moderated by two non-modifiable factors associated with AD. Overall, 

examining age-related cognitive decline through the lens of the cumulative deficit model 

indicated that frailty is a major risk factor for both lower cognitive performance and steeper 

decline. Notably, our results also indicated that risk factors for AD (i.e., sex and APOE) exerted 

differential effects on the frailty-cognition relationships.  
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RG1: Independent effect of frailty on, separately, memory, speed, and EF 

 We first examined the independent effects of frailty on three domains of cognition, 

memory, speed, and EF. Results indicated that worse frailty was associated with steeper memory 

decline. For speed and EF, results were similar worse frailty was associated with lower 

performance, and worsening frailty was associated with steeper decline.  

 Although expanding, few studies to date have examined the longitudinal relationship 

between specific cognitive domains and the frailty index. Notably, our results are among the first 

that examine the relationships between frailty level, change in frailty, and cognitive performance 

and change. One recent study, using the frailty phenotype, examined baseline frailty as a 

predictor of performance and change across multiple cognitive domains (Bunce, Batterham, & 

Mackinnon, 2018). Their results indicated that frailty was associated with poorer speed 

performance, but not speed decline over time; they also found no relationship between baseline 

frailty and memory performance or change (Bunce et al., 2018). Our results (using the frailty 

index) differ in two main ways. First, our results indicated that higher frailty was associated with 

steeper memory decline, a result not seen by Bunce and colleagues (2018). It is possible that the 

use of an accumulation of deficits model could delineate predictive effects on memory not seen 

using the phenotypic model. Future research could examine and compare the frailty phenotype 

and frailty index as predictive of longitudinal memory outcomes. Second, our results examined 

the cognitive influence of frailty level as well as change in frailty. Specifically, our results 

indicated a higher frailty level was associated with worse EF and speed performance, a result 

consistently supported in the literature (Avila-Funes et al., 2009; Bunce et al., 2018; Rolfson et 

al., 2013; Wu et al., 2015). Notably however, our results also indicated that an increase in frailty 

over time was associated with faster EF and speed decline, while a higher frailty level was not. 
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Taken together, these results may indicate that in order to ascertain the influence of frailty on 

speed or EF change trajectories, it is necessary to examine frailty and cognition as simultaneous 

change processes.  

 Neuropathological effects of physical frailty may affect white matter in posterior and 

anterior brain regions (associated with EF and speed, respectively) more so than central white 

matter regions (associated with memory) (Kennedy & Raz, 2009), a possible explanation for the 

similar relationships seen between EF and speed. In fact, EF and speed deficits are both found in 

cognitive impairment associated with dysfunction of the frontal-subcortical circuitry (Koga et al., 

2017), which provides a unifying framework for understanding the functional and cognitive 

changes associated with neurodegenerative disorders (Lichter & Cummings, 2001). Notably, 

multiple age-related complex processes contribute to the development of frailty. Therefore, it is 

very likely there is pathophysiologic mechanistic overlap with some of the age-related processes 

that contribute to cognitive decline and impairment over the course of the lifespan (Robertson et 

al., 2013). Indeed, chronic inflammation has been linked to cognitive decline, AD, and frailty 

(Heppner, Ransohoff, & Becher, 2015; Hubbard, O’Mahony, Savva, Calver, & Woodhouse, 

2009; Scott et al., 2015). Inflammatory receptors located in the hippocampus and prefrontal 

cortex (associated with memory and EF, respectively) may be adversely affected by the state of 

chronic inflammation in frailty, affecting EF and memory performance (Hubbard et al., 2009; 

Rosano, Marsland, & Gianaros, 2011), a possible explanation for the results seen for memory 

and EF. Recent analyses suggest that the deficits that accumulate in a frailty index play an 

important role not just in dementia risk (Song et al., 2011) but also in moderating the relationship 

between Alzheimer’s neuropathology and the clinical expression of dementia (Wallace et al., 
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2019). Those analyses, controlled for sex and APOE ɛ4 status, are consistent with what we have 

observed here.  

RG2: Moderation of the frailty-cognition relationships by sex 

 The second research goal was to examine sex moderation of frailty-cognition 

relationships.  Results indicated that frailty predicted worse cognitive performance or change 

across all three cognitive domains for females, but only predicted EF performance level for 

males. This indicates that females may experience a wider cognitive deficit from higher levels of 

frailty than males.   

 Females have a higher risk for AD than males. Additionally, females have been found to 

have higher levels of frailty than men, but lower levels of mortality (Hubbard & Rockwood, 

2011). This may be because men may have a lower threshold for deficit accumulation than 

females; at any level of frailty men may have changed more from their baseline status (Gordon et 

al., 2017). In fact, descriptive analyses indicated that overall, women in our sample had higher 

frailty levels; however, men at the same frailty level had steeper frailty change trajectories than 

women, supporting the male-female health-survival paradox, a phenomenon in which females 

experience higher rates of disability and poor health but longer lives than males (Gordon et al., 

2017). While some recent research has examined the effect of frailty across different domains of 

cognition, our study is one of the first to specifically examine sex differences within these frailty-

cognition associations.  

 Notably, men in this study did not experience a cognitive cost of frailty on memory or 

speed performance or change. However, our results indicated the effect of frailty on EF 

performance was stronger for males than females.  A recent study of sex differences in cognition 

by McCarrey and colleagues (2016) indicated that in a cognitively normal sample of older adults, 
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males and females experienced the same rates of decline in EF. Therefore, frailty may be a 

discriminating factor of cognitive differences between sexes; there may be a higher cognitive 

cost of frailty for males that results in a more profound EF deficit, despite more widespread 

cognitive deficits for females. In fact, a recent study by Gallucci and colleagues (2018) examined 

the association between frailty and cerebral atrophy. Their results indicated an increase in frailty 

was associated with an increase in cortical atrophy in the frontal and temporal lobes, an effect 

which was more evident in males, despite a similar level in frailty between the two sexes 

(Gallucci, Piovesan, & Di Battista, 2018). Taken together, the effect of frailty may have a higher 

impact on EF performance for males due to the higher level of frontal lobe atrophy that occurs 

with the accumulation of deficits.  

 The pathophysiologic underpinnings of frailty may differ between males and females 

(Gordon & Hubbard, 2018; Gordon et al., 2017). Among them, inflammatory markers, 

hormones, and genetic influences have all been found to exhibit both differential and systemic 

effects on frailty (Cawthon et al., 2009; Collerton et al., 2012; Gordon & Hubbard, 2018; 

Hubbard et al., 2009; Mitnitski et al., 2015). Future research should examine sex differences in 

physiological biomarkers of frailty, as well as examine frailty-related sex differences in brain 

structure and accumulation of neuropathology that could explain the frailty-cognition sex 

differences seen in this study.   

RG3: Moderation of the frailty-cognition relationships by APOE 

 Research goal three was to examine APOE moderation of the frailty-cognition 

relationships. Our results indicated that APOE only moderated the association between frailty 

and memory. Specifically, for APOE risk carriers, frailty predicted significant memory decline, 

suggesting that genetic risk may increase vulnerability to negative health states, such as 
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cumulative health deficits. APOE ɛ4 is recognized as a “frailty allele” (Gerdes et al., 2000). 

However, the literature examining the relationship between APOE and frailty is sparse. One 

study conducted by Rockwood and colleagues (2009) found no relationship between frailty and 

APOE status. Notably, the effect of APOE has been found to occur in interaction with health and 

lifestyle factors (McFall, Wiebe, Vergote, Anstey, et al., 2015). Therefore, more information 

may be offered when examining APOE interactively, rather than as an independent influence.   

 APOE may moderate the relationship between frailty and memory by promoting more 

widespread neuropathology, particularly in the deeper, medial regions associated with memory 

before the onset of neurodegenerative disease (Lu, Thompson, et al., 2011). Buchman and 

colleagues (2013) found that the accumulation of brain pathology may contribute to frailty 

progression in older adults. Additionally, Bailey and colleagues (2015) found that APOE ɛ4 

carriers had smaller medial temporal lobe volumes, and that the volume mediated the 

relationship between memory performance and APOE genotype. APOE ɛ4 is also associated with 

altered levels of C-reactive protein, a systemic marker of inflammation (Yun et al., 2015) which 

has been found to be associated with frailty (Velissaris et al., 2017), memory performance and 

lower medial temporal volume (Bettcher et al., 2012), and cognitive decline in a non-demented 

population (Yaffe et al., 2003). Taken together, frailty biomarkers, APOE, and age-related 

memory decline may share common pathophysiological mechanisms (i.e., brain atrophy, beta-

amyloid burden, inflammatory markers) (Ruan et al., 2017). 

 There are several strengths and limitations to this study. A first limitation is the 

participants of the VLS may not be representative of the broadest population of older adults, as 

they are initially selected to be relatively healthy, free of neurodegenerative disease and may 

possess several risk-reducing factors. However, they could reflect a growing proportion of older 
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adults in western countries. Second, only participants from the first and third VLS cohort 

contributed three data points to this particular study. A more complete design would have 

included three data points from all samples. However, this design characteristic did not affect the 

results, as evidenced by the invariance testing, which showed that the EF, episodic memory, and 

neurocognitive speed latent variables were the same across time and could be compared at each 

data point. Third, we did not determine directional effects of the frailty-cognition relationship, as 

we examined frailty as a predictor of cognitive performance and change. Future research could 

examine the possibility of bidirectional frailty-cognition relationships. Fourth, we were not able 

to examine moderation with respect to a sex × APOE interaction, as these models did not 

converge. This non-convergence could be due to a low number of APOE ɛ4+ males (n = 54) 

which is not sufficient for the complex analyses used to jointly model performance and change 

of both frailty and cognition within this study (Kline, 2011). Fifth, our present analyses do not 

model trajectory-based subgroups for either frailty or cognition (Mitnitski, Fallah, Dean, & 

Rockwood, 2014). Such trajectory subgroup analyses could potentially distinguish patterns of 

improvement, stability, and decline that would be valuable to investigate in future research 

(Canevelli et al., 2017). Regarding strengths, first, we used contemporary statistical approaches 

to systematically analyze three complex research goals, examining (a) longitudinal frailty-

cognition relationships using three parallel process growth models, and (b) the moderating 

influence of two major risk factors for AD (i.e., sex, APOE). Second, we used multiple standard 

episodic memory, EF, and neurocognitive speed variables, which contributed to validated, 

invariant, longitudinal latent variables. This is valuable as the use of latent variables adjusts for 

the measurement error that affects reliability of measurement when using a single measure 

(Little, 2013). Third, we used an accelerated longitudinal design with age as the metric of 
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change, allowing age to be incorporated directly into the analyses. Fourth, we used a substantial 

and well-characterized longitudinal sample (Wave 1 n = 632) tested at 3 waves across a band of 

40 years of aging. Fifth, we developed a frailty index using 50 non-cognitive and non-genetic 

variables that previously demonstrated effectiveness in frailty indices.   

 In conclusion, we found that frailty in non-demented older adults affects performance and 

change in three age-sensitive cognitive domains. Our results are among some of the first to 

contribute information about moderation of the cognitive consequences of frailty in non-

demented aging (Canevelli et al., 2015). Specifically, two non-modifiable AD biomarkers 

differentially modified these relationships. Frailty predicted worse cognitive performance or 

change across all three domains of cognition for females but only for EF for males. An APOE 

moderating effect was evidenced, predicting the rate of memory decline for APOE risk carriers 

only. Our results provide further evidence of the link between frailty and cognitive decline and 

contribute to the idea that multifactorial mechanisms contribute to cognitive decline. 

Disentangling the link between frailty and cognition can offer two main benefits: (a) 

identification of risk factors for cognitive decline and impairment, and (b) evidence-based 

development of new interventions that can target both frailty and cognitive decline (Robertson et 

al., 2013). For example, interventions that target a large array of health factors (or overall health 

status) with a life-course approach (Anstey, 2014) may prove to be the best way to prevent or 

delay cognitive decline and perhaps impairment, and dementia. 
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Table 2-1 

Attrition Rates per Sample and Wave 

 

Note. Results presented as n (% attrition). Due to ongoing data collection, Sample two did not 

contribute a third data point to this study.  

  

  

Wave 1

Return Non Return Return Non Return

Sample One n 58 49 9 (15.5%) 38 11 (22.4%) 

Sample Two n 179 146 33 (18.4%) - -

Sample Three n 394 333 61 (15.4%) 300 33 (10%)

Wave 2 Wave 3
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Table 2-2 

Baseline Descriptive Statistics by APOE Genotype 

 

Note. Results presented as Mean (Standard Deviation). MMSE = Mini Mental State Exam.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline Descriptive Statistics by APOE Genotype

APOE ɛ4+ (risk) ɛ4- (non-risk)

n 146 456

Age 69.82 (8.34) 71.01 (8.86)

    Range 55.0 - 87.0 53.0 - 95.0

Gender (% female) 63.7 66.9

Education (years) 15.63 (3.02) 15.15 (3.0)

    Range 8.0 - 24.0 5.0 - 23.0

MMSE 28.80 (1.19) 28.70 (1.24)

    Range 25.00 - 30.00 24.00 - 30.00

Frailty Score 0.12 (0.07) 0.13 (0.07)

    Range .01 - .32 .01 - .42
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Table 2-3 

List of Variables Used to Construct the 50-Item Frailty Index 

 Frailty Measures Coding 

 

 

 

 

 

 

 

 

 

 

SR 

Stroke  

 

 

 

 

 

 

 

0 = no 

0.33 = yes, not serious 

0.67 = yes, moderately 

serious 

1 = yes, very serious 

Thyroid condition 

Arthritis (rheumatoid and/or osteo-) 

Osteoporosis 

Cancer 

Asthma 

Migraines 

Stomach ulcer 

Kidney or bladder trouble 

Gastrointestinal problems (colitis/diverticulitis, gall      

bladder trouble, and/or liver trouble) 

Bronchitis or emphysema 

Diabetes 

High blood pressure 

Sex-related health problems (i.e., gynecological problems 

or prostate problems) 

Anaemia 

Drug and/or alcohol dependence 

Spinal condition and/or back trouble 

Hardening of arteries (i.e., atherosclerosis) 
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Heart trouble 

Other conditions (up to three) 

SR Number of medications 0 = 0-3; 0.5 = 4-7; 1 = 8+ 

 

 

SR 

Subjective health relative to a perfect state of health 

 

0 = very good 

0.25 = good 

0.50 = fair 

0.75 = poor  

1 = very poor 

Eyesight relative to age group 

Hearing relative to age group 

 

 

 

SR 

Health has affected ability to do chores  

0 = no change, improved, 

N/A  

0.25 = slightly reduced 

0.50 = moderately reduced 

0.75 = drastically reduced 

1 = gave up doing activity 

Health has affected ability to get around town 

Health has affected ability to do mental recreational 

activities 

Health has affected ability to do physical recreational 

activities 

Health has affected ability to do hobbies 

Health has affected ability to socialize 

Health has affected ability to travel 

SR Stay at home but in chair most of the time 0 = no; 1 = yes 

SR Number of times sick in bed all day in the past year 0 = 0-3; 1 = 4+ 

SR Number of times confined to hospital in the past year 0 = 0; 0.5 = 1-2; 3+ = 1 

SR Feeling short of breath 0 = no; 1 = yes 

SR Use of a walker, cane, or wheelchair 0 = no; 1 = yes 
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M Resting heart rate (bpm) 0 = 60-99; 1 = <60 or 100+ 

M Pulse pressure (mmHg) 0 = 52-63; 0.5 = 64-75.9; 1 

= 76+ 

M Peak expiratory flow (L/min) Men: 0 = >340; 1 = ≤340 

Women: 0 = >310; 1 = 

≤310 

M  

Body mass index (kg/m2) 

0 = 18.5-25 

0.5 = 25-<30 

1= <18.5 or ≥30 

M  

 

 

 

Grip strength (kg) 

Men:  

For BMI ≤24, GS ≤29  

For BMI 24.1-28, GS ≤30  

For BMI >28, GS ≤32 

Women:  

For BMI ≤23, GS ≤17  

For BMI 23.1-26, GS ≤17.3  

For BMI 26.1-29, GS ≤18  

For BMI >29, GS ≤21 

M Timed walk 0 = ≤10s; 1 = >10s 

M Timed turn 0 = < 90th percentile 

1 = within 90th percentile 

M Finger dexterity 0 = < 90th percentile 

1 = within 90th percentile 
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SR CES-D “during the past week, my sleep was restless” 

 

 

0 = rarely or none of the 

time 

0.33 = some or a little of the 

time 

0.67 = occasionally or a 

moderate amount of 

the time 

1 = most or all of the time 

SR CES-D “during the past week, I felt depressed” 

 

SR CES-D “during the past week, I felt lonely” 

 

SR CES-D “during the past week, I could not get going” 

 

 

 

SR 

 

 

Bradburn negative affect (restless, lonely, bored, 

depressed, upset due to criticism)  

0 = no to all 

0.2 = yes to one 

0.4 = yes to two 

0.6 = yes to three 

0.8 = yes to four 

1 = yes to all 

SR Physical activity at least 2-3 times per week 0 = yes; 1 = no 

 

Note. SR = Self-reported; M = measured; CES-D = Center for Epidemiological Studies 

Depression Scale  
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Table 2-4 

Growth Model Goodness of Fit Index for Frailty  

 

Note. -2LL = -2 Log likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion; D = difference statistic 

(using -2LL); Δdf = change in degrees of freedom; -2LL = -2 Log likelihood 

*Best fitting model 

 

 

 

 

 

 

 

 

Model -2LL AIC BIC D Δdf p

Frailty

    Fixed intercept 3538.08 3546.07 3563.87

    Random intercept 2927.16 2937.16 2959.40 610.92 1 < .001

    Random intercept, fixed slope 2732.76 2744.77 2771.46 194.40 1 < .001

    Random intercept, random slope* 2695.56 2711.96 2747.55 37.20 2 < .001
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Table 2-5 

Goodness of Fit Indices for Episodic Memory (EM) Confirmatory Analysis Models and Measurement Invariance Testing 

 

Note. CFA = Confirmatory Factor Analysis; AIC = Akaike information criterion; BIC = Bayesian information criterion; χ2 = chi-

square test of model fit; df = degrees of freedom for model fit; RMSEA = Root Mean Square Error of Approximation; CFI = 

Comparative Fit Index; SRMR = Standardized Root Mean Square Residual; Δ χ2 = change in chi-square; Δdf = change in degrees of 

freedom; -2LL = -2 Log likelihood; D = difference statistic (using -2LL)  

*Best Fitting Model 

a RAVLT free recall and RAVLT recall after interference free to vary

Model AIC BIC χ2 df p RMSEA CFI SRMR Δχ2 Δdf

CFA for One Factor Model (EM)

   Configural Invariance 33838.01 34051.60 87.15 42 <.001 .04 (.03-.05) 0.99 0.04

   Metric Invariance 33839.61 34026.46 100.75 48 <.001 .04 (.03-.05) 0.98 0.05 13.60 6

   Scalar Invariance 34046.29 34197.52 323.39 56 <.001 .09 (.08-.10) 0.92 0.01 222.64 6

   Partial Scalar Invariance*
a 33937.52 34016.58 206.65 52 <.001 .07 (.07-.08) 0.95 0.08 9.88 4

Model AIC BIC -2LL D Δdf p

Latent Growth Model (EM)

    Fixed intercept 84524.59 8476.39 8450.60

    Random intercept 6433.46 6455.70 6423.46 2027.14 1 <.001

    Random intercept, fixed slope 6277.36 6304.06 6265.36 158.10 1 <.001

    Random intercept, random slope* 5939.34 5974.93 5923.34 342.02 2 <.001



  

 

Table 2-6 

Goodness of Fit Indices for Neurocognitive Speed Confirmatory Analysis Models and Measurement Invariance Test 

 

Note. CFA = Confirmatory Factor Analysis; AIC = Akaike information criterion; BIC = Bayesian information criterion; χ2 = chi-

square test of model fit; df = degrees of freedom for model fit; RMSEA = Root Mean Square Error of Approximation; CFI = 

Comparative Fit Index; TLI = Tucker-Lewis Index; SRMR = Standardized Root Mean Square Residual; Δ χ2 = change in chi-square; 

Δdf = change in degrees of freedom; -2LL = -2 Log likelihood; D = difference statistic (using -2LL) 

*Best Fitting Model 

a Simple Reaction Time, Lexical Decision, and Sentence Verification free to vary 

 

Model AIC BIC χ2 df p RMSEA CFI SRMR Δχ2 Δdf

CFA for One Factor Model (NS)

     Configural Invariance 49170.456 49424.04 173.117 33 <.001 .082 (.070-.094) 0.965 0.073

     Metric Invariance 49172.953 49399.85 187.614 39.00 <.001 .078 (.067-.089) 0.963 0.08 14.50 6

     Scalar Invariance 49360.533 49551.84 391.194 47.00 <.001 .105 (.098-.118) 0.915 0.14 203.58 8

     Partial Scalar Invariance*
a

49263.27 49481.27 281.931 41 <.001 .096 (.086-.107) 0.94 0.086 94.32 2

Model AIC BIC -2LL D Δdf p

Latent Growth Model (NS)

    Fixed intercept 10601.46 10619.26 10593.46

    Random intercept 8833.83 8856.07 8823.82 1769.64 1 <.001

    Random intercept, fixed slope 8775.89 8802.59 8763.90 59.92 1 <.001

    Random intercept, random slope* 8335.33 8370.52 8319.32 444.58 2 <.001
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Table 2-7 

Goodness of Fit Indices for Executive Function (EF) Confirmatory Analysis Models and Measurement Invariance Testing 

 

Note. CFA = Confirmatory Factor Analysis; AIC = Akaike information criterion; BIC = Bayesian information criterion; χ2 = chi-

square test of model fit; df = degrees of freedom for model fit; RMSEA = Root Mean Square Error of Approximation; CFI = 

Comparative Fit Index; SRMR = Standardized Root Mean Square Residual; Δ χ2 = change in chi-square; Δdf = change in degrees of 

freedom; -2LL = -2 Log likelihood; D = difference statistic (using -2LL)  

*Best Fitting Model  

a Brixton and Color Trails free to vary 

Model AIC BIC χ2 df p RMSEA CFI SRMR Δχ2 Δdf

CFA for One Factor Model (EF)

     Configural Invariance 22685.78 22912.67 37.40 39 0.543 .00 (.00-.03) 1 0.03

     Metric Invariance 22689.16 22889.36 52.79 45 0.199 .02 (.00-.03) 1 0.05 15.38 6

     Scalar Invariance 22848.22 23012.83 277.85 53 <.001 .07 (.06-.08) 0.89 0.11 225.06 8

     Partial Scalar Invariance*
a 22725.86 22908.27 97.49 49 <.001 .04 (.03-.05) 0.97 0.08 44.70 4

Model AIC BIC -2LL D Δdf p

Latent Growth Model (EF)

    Fixed intercept 4147.60 4165.40 4139.60

    Random intercept 2503.96 2526.20 2493.96 1645.64 1 <.001

    Random intercept, fixed slope 2404.46 2431.15 2392.46 101.50 1 <.001

    Random intercept, random slope* 1570.45 1606.05 1554.46 838.00 2 <.001
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Figure 2-1 

Individual Frailty Trajectories Across a 40-Year Band of Aging 

 

 

 

 

 

 

 

 

 

 

 

Note. The blue line is the group mean trajectory (final growth model random intercept, random 

slope; D = 37.2, Δdf = 2, p < .001). 
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Figure 2-2 

Individual Memory Trajectories Across a 40-Year Band of Aging 

 

Note. The thick black line is the group mean trajectory line (final growth model random 

intercept, random slope; D = 342.02, Δdf = 2, p <.001).  
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Figure 2-3 

Individual Speed Trajectories Across a 40-Year Band of Aging 

 

Note. The black line is the group mean trajectory (final growth model random intercept, random 

slope; D = 444.58, Δdf = 2, p <.001). 
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Figure 2-4 

Individual Executive Function (EF) Trajectories Across a 40-Year Band of Aging  

 

Note. The thick black line is the group mean trajectory line (final growth model random 

intercept, random slope; D = 838.0, Δdf = 2, p <.001). 

  



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  94

  

 

 

 

 

Figure 2-5 

Illustration of the Frailty-Cognition Parallel Process Model 

 

Note. The level of frailty is regressed onto level and slope of cognition, and slope of frailty is 

regressed onto the slope of cognition.
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Figure 2-6 

Frailty-Cognition Parallel Process Models  

6a. 

       

6b.  

         

6c. 
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Note. Age in years was the metric of change. The age variable was centered at 75 years. Figure 

6a is the frailty-memory parallel process model. Figure 6b is the frailty-speed parallel process 

model. Figure 6c is the frailty-executive function (EF) parallel process model. * = p < 0.05, *** 

= p < 0.001. 
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Figure 2-7 

Frailty-Memory Parallel Process Model 

 

 

Note. This figure shows moderation by sex for change in memory. Age in years was the metric 

of change. The age variable was centered at 75 years.  

* = p < 0.001
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Figure 2-8 

Frailty-Speed Parallel Process Model 

 

 

Note. This model shows moderation by sex for speed change. Age in years was the metric of 

change. The age variable was centered at 75 years.  

* = p < 0.05 
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Figure 2-9 

Frailty-EF Parallel Process Model 

 

 

Note. This figure shows moderation by sex for change in executive function (EF). Age in years 

was the metric of change. The age variable was centered at 75 years.  

* = p < 0.05 
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Figure 2-10 

Frailty-Memory Parallel Process Model 

 

 

Note. This figure shows moderation by APOE status. Age in years was the metric of change. The 

age variable was centered at 75 years.  

* = p < 0.05 

  



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  101

  

 

 

 

 

References 

Altmann, A., Tian, L., Henderson, V. W., & Greicius, M. D. (2014). Sex modifies the APOE-

related risk of developing Alzheimer disease. Annals of Neurology, 75(4), 563-573. 

doi:10.1002/ana.24135 

Andrew, M. K., Mitnitski, A. B., & Rockwood, K. (2008). Social vulnerability, frailty and 

mortality in elderly people. PLoS One, 3(5), e2232. doi:10.1371/journal.pone.0002232 

Anstey, K. J. (2014). Optimizing cognitive development over the life course and preventing 

cognitive decline: introducing the Cognitive Health Environment Life Course Model 

(CHELM). International Journal of Behavioral Development, 38(1), 1-10. 

doi:10.1177/0165025413512255 

Armstrong, J. J., Godin, J., Launer, L. J., White, L. R., Mitnitski, A., Rockwood, K., & Andrew, 

M. K. (2016). Changes in frailty predict changes in cognition in older men: the Honolulu-

Asia Aging Study. Journal of Alzheimers Disease, 53(3), 1003-1013. doi:10.3233/JAD-

151172 

Armstrong, J. J., Mitnitski, A., Launer, L. J., White, L. R., & Rockwood, K. (2015). Frailty in the 

Honolulu-Asia Aging Study: Deficit accumulation in a male cohort followed to 90% 

mortality. Journals of Gerontology: Series A, 70(1), 125-131. doi:10.1093/gerona/glu089 

Avila-Funes, J. A., Amieva, H., Barberger-Gateau, P., Goff, M., Raoux, N., & Ritchie, K. 

(2009). Cognitive impairment improves the predictive validity of the phenotype of frailty 

for adverse health outcomes: The Three-City Study. Journal of the American Geriatric 

Society, 57. doi:10.1111/j.1532-5415.2008.02136.x 

 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  102

  

 

 

 

 

Bailey, H. R., Sargent, J. Q., Flores, S., Nowotny, P., Goate, A., & Zacks, J. M. (2015). APOE 

ε4 genotype predicts memory for everyday activities. Neuropsychology, Development, 

and Cognition: Section B, 22(6), 639-666. doi:10.1080/13825585.2015.1020916 

Bettcher, B. M., Wilheim, R., Rigby, T., Green, R., Miller, J. W., Racine, C. A., Yaffe, K., 

Miller, B. L., & Kramer, J. H. (2012). C-Reactive protein is related to memory and medial 

temporal brain volume in older adults. Brain, Behavior, and Immunity, 26(1), 103-108. 

doi:10.1016/j.bbi.2011.07.240 

Blodgett, J., Theou, O., Kirkland, S., Andreou, P., & Rockwood, K. (2015). The association 

between sedentary behaviour, moderate-vigorous physical activity and frailty in NHANES 

cohorts. Maturitas, 80(2), 187-191. doi:10.1016/j.maturitas.2014.11.010 

Buchman, A. S., Yu, L., Wilson, R. S., Schneider, J. A., & Bennett, D. A. (2013). Association of 

brain pathology with the progression of frailty in older adults. Neurology, 80. 

doi:10.1212/WNL.0b013e318294b462 

Buckley, R. F., Mormino, E. C., Amariglio, R. E., Properzi, M. J., Rabin, J. S., Lim, Y. Y., Papp, 

K. V., Jacobs, H. I. L.,Burnham, S., Hanseeuw, B. J., Dore, V., Dobson, A., Masters, C. L., 

Waller, M., Rowe, C. C., Maruff, P., Donohue, M. C., Rentz, D. M., . . . & Sperling, R. A. 

(2018). Sex, amyloid, and APOE ε4 and risk of cognitive decline in preclinical Alzheimer's 

disease: Findings from three well-characterized cohorts. Alzheimer's & Dementia, 14(9), 

1193-1203. doi:https://doi.org/10.1016/j.jalz.2018.04.010 

Bunce, D., Batterham, P. J., & Mackinnon, A. J. (2018). Long-term associations between 

physical frailty and performance in specific cognitive domains. The Journals of 

Gerontology: Series B, 74(6), 919-926. gbx177-gbx177. doi:10.1093/geronb/gbx177 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  103

  

 

 

 

 

Burgess, P. W., & Shallice, T. (1997). The Hayling and Brixton tests. Thurston, Suffolk: Thames 

Valley Test Company. 

Canevelli, M., Bruno, G., Remiddi, F., Vico, C., Lacorte, E., Vanacore, N., & Cesari, M. (2017). 

Spontaneous reversion of clinical conditions measuring the risk profile of the individual: 

from frailty to mild cognitive impairment. Frontiers in Medicine, 4, 184. 

doi:10.3389/fmed.2017.00184 

Canevelli, M., Cesari, M., & van Kan, G. A. (2015). Frailty and cognitive decline: How do they 

relate? Current Opinion in Clinical Nutrition and Metabolic Care, 18(1), 43-50. 

doi:10.1097/MCO.0000000000000133 

Cawthon, P. M., Ensrud, K. E., Laughlin, G. A., Cauley, J. A., Dam, T.-T. L., Barrett-Connor, 

E., Fink, H. A., Hoffman, A. R., Lau, E., Lane, N. E., Stefanick, M. L., Cummings, S. R., 

& Orwoll, E. S. (2009). Sex hormones and frailty in older men: The Osteoporotic Fractures 

in Men (MrOS) Study. The Journal of Clinical Endocrinology & Metabolism, 94(10), 

3806-3815. doi:10.1210/jc.2009-0417 

Collerton, J., Martin-Ruiz, C., Davies, K., Hilkens, C. M., Isaacs, J., Kolenda, C., Parker, C., 

Dunn, M., Catt, M., Jagger, C., von Zglinicki, T., & Kirkwood, T. B. L. (2012). Frailty and 

the role of inflammation, immunosenescence and cellular ageing in the very old: Cross-

sectional findings from the Newcastle 85+ Study. Mechanisms of Ageing and 

Development, 133(6), 456-466. doi:10.1016/j.mad.2012.05.005 

D'Elia, L. F., Satz, P., Uchiyama, C. L., & White, T. (1996). Color Trails Test: Professional 

Manual. Odessa, FL: Psychological Assessment Resources. 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  104

  

 

 

 

 

Dent, E., Kowal, P., & Hoogendijk, E. O. (2016). Frailty measurement in research and clinical 

practice: A review. European Journal of Internal Medicine, 31, 3-10. 

doi:10.1016/j.ejim.2016.03.007 

Dixon, R. A., & de Frias, C. M. (2004). The Victoria Longitudinal Study: From characterizing 

cognitive aging to illustrating changes in memory compensation. Aging, Neuropsychology, 

and Cognition, 11(2-3), 346-376. doi:10.1080/13825580490511161 

Dixon, R. A., Garrett, D. D., Lentz, T. L., MacDonald, S. W., Strauss, E., & Hultsch, D. F. 

(2007). Neurocognitive markers of cognitive impairment: Exploring the roles of speed and 

inconsistency. Neuropsychology, 21(3), 381-399. doi:10.1037/0894-4105.21.3.381 

Dixon, R. A., Small, B. J., MacDonald, S. W. S., & McArdle, J. J. (2012). Yes, memory declines 

with aging—but when, how, and why? In M. Naveh-Benjamin & N. Ohta (Eds.), Memory 

and Aging: Current Issues and Future Directions (pp. 325-347). New York, NY: 

Psychology Press. 

Dixon, R. A., Wahlin, Å., Maitland, S. B., Hultsch, D. F., Hertzog, C., & Bäckman, L. (2004). 

Episodic memory change in late adulthood: Generalizability across samples and 

performance indices. Memory & Cognition, 32(5), 768-778. doi:10.3758/bf03195867 

Ferrucci, L., Guralnik, J. M., Studenski, S., Fried, L. P., Cutler, G. B., & Walston, J. D. (2004). 

Designing randomized, controlled trials aimed at preventing or delaying functional decline 

and disability in frail, older persons: A consensus report. Journal of the American 

Geriatrics Society, 52(4), 625-634. doi:10.1111/j.1532-5415.2004.52174.x 

Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., & Gottdiener, J. (2001). 

Frailty in older adults: Evidence for a phenotype. Journals of Gerontology: Series A, 56(3), 

M1456-156. doi:10.1093/gerona/56.3.M146 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  105

  

 

 

 

 

Gallucci, M., Piovesan, C., & Di Battista, M. E. (2018). Associations between the Frailty Index 

and brain atrophy: The Treviso Dementia (TREDEM) Registry. Journal of Alzheimer's 

Disease, 62(4), 1623-1634. doi:10.3233/JAD-170938 

Gerdes, L. U., Jeune, B., Ranberg, K. A., Nybo, H., & Vaupel, J. W. (2000). Estimation of 

apolipoprotein E genotype-specific relative mortality risks from the distribution of 

genotypes in centenarians and middle-aged men: Apolipoprotein E gene is a "frailty gene," 

not a "longevity gene". Genetic Epidemiology, 19(3), 202-210. doi:10.1002/1098-

2272(200010)19:3<202::aid-gepi2>3.0.co;2-q 

Gordon, E. H., & Hubbard, R. E. (2018). The pathophysiology of frailty: Why sex is so 

important. Journal of the American Medical Directors Association, 19(1), 4-5. 

doi:10.1016/j.jamda.2017.10.009 

Gordon, E. H., Peel, N. M., Samanta, M., Theou, O., Howlett, S. E., & Hubbard, R. E. (2017). 

Sex differences in frailty: A systematic review and meta-analysis. Experimental 

Gerontology, 89(Supplement C), 30-40. doi:10.1016/j.exger.2016.12.021 

Heppner, F. L., Ransohoff, R. M., & Becher, B. (2015). Immune attack: The role of 

inflammation in Alzheimer disease. Nature Reviews Neuroscience, 16, 358. 

doi:10.1038/nrn3880 

Hubbard, R. E., O’Mahony, M. S., Savva, G. M., Calver, B. L., & Woodhouse, K. W. (2009). 

Inflammation and frailty measures in older people. Journal of Cellular and Molecular 

Medicine, 13(9B), 3103-3109. doi:10.1111/j.1582-4934.2009.00733.x 

Hubbard, R. E., & Rockwood, K. (2011). Frailty in older women. Maturitas, 69(3), 203-207. 

doi:10.1016/j.maturitas.2011.04.006 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  106

  

 

 

 

 

Kennedy, K. M., & Raz, N. (2009). Aging white matter and cognition: Differential effects of 

regional variations in diffusion properties on memory, executive functions, and speed. 

Neuropsychologia, 47(3), 916-927. doi:10.1016/j.neuropsychologia.2009.01.001 

Kline, R. B. (2011). Principles and practice of structural equation modeling (Vol. 3rd). New 

York, NY: Guilford Press. 

Koga, S., Parks, A., Uitti, R. J., van Gerpen, J. A., Cheshire, W. P., Wszolek, Z. K., & Dickson, 

D. W. (2017). Profile of cognitive impairment and underlying pathology in multiple system 

atrophy. Movement Disorders, 32(3), 405-413. doi:10.1002/mds.26874 

Lezak, M. D. (1983). Neuropsychological assessment. New York, NY: Oxford University Press. 

Lichter, D. G., & Cummings, J. L. (2001). Frontal-subcortical circuits in psychiatric and 

neurological disorders. New York, NY: Guilford Press. 

Lim, W.-S., Canevelli, M., & Cesari, M. (2018). Editorial: Dementia, frailty and aging. Frontiers 

in Medicine, 5, 168. doi:10.3389/fmed.2018.00168 

Little, T. D. (2013). Longitudinal structural equation modeling. New York, NY: Guilford Press. 

Liu, C.-C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease: 

risk, mechanisms and therapy. Nature Reviews Neurology, 9(2), 106-118.  

Lu, P. H., Thompson, P. M., Leow, A., Lee, G. J., Lee, A., Yanovsky, I., Parikshak, N., Khoo, 

T., Wu, S., Geschwind, D., & Bartzokis, G. (2011). Apolipoprotein E genotype is 

associated with temporal and hippocampal atrophy rates in healthy elderly adults: A 

tensor-based morphometry study. Journal of Alzheimers Disease, 23(3), 433-442. 

doi:10.3233/JAD-2010-101398 

Mazure, C. M., & Swendsen, J. (2016). Sex differences in Alzheimer’s disease and other 

dementias. The Lancet. Neurology, 15(5), 451-452. doi:10.1016/S1474-4422(16)00067-3 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  107

  

 

 

 

 

McCarrey, A. C., An, Y., Kitner-Triolo, M. H., Ferrucci, L., & Resnick, S. M. (2016). Sex 

differences in cognitive trajectories in clinically normal older adults. Psychology and 

Aging, 31(2), 166-175. doi:10.1037/pag0000070 

McFall, G. P., Sapkota, S., McDermott, K. L., & Dixon, R. A. (2016). Risk-reducing 

Apolipoprotein E and Clusterin genotypes ptotect against the consequences of poor 

vascular health on executive function performance and change in non-demented older 

adults. Neurobiology of Aging, 42, 91-100. doi:10.1016/j.neurobiolaging.2016.02.032 

McFall, G. P., Wiebe, S. A., Vergote, D., Anstey, K. J., & Dixon, R. A. (2015). Alzheimer's 

genetic risk intensifies neurocognitive slowing associated with diabetes in nondemented 

older adults. Alzheimer’s & Dementia, 1(4), 395-402. doi:10.1016/j.dadm.2015.08.002 

McFall, G. P., Wiebe, S. A., Vergote, D., Jhamandas, J., Westaway, D., & Dixon, R. A. (2014). 

IDE (rs6583817) polymorphism and pulse pressure are independently and interactively 

associated with level and change in executive function in older adults. Psychology and 

Aging, 29(2), 418-430. doi:org/10.1037/a0034656 

McFall, G. P., Wiebe, S. A., Vergote, D., Westaway, D., Jhamandas, J., Bäckman, L., & Dixon, 

R. A. (2015). ApoE and pulse pressure interactively influence level and change in the 

aging of episodic memory: Protective effects among ɛ2 carriers. Neuropsychology, 29(3), 

388-401. doi:10.1037/neu0000150 

Mitnitski, A., Collerton, J., Martin-Ruiz, C., Jagger, C., von Zglinicki, T., Rockwood, K., & 

Kirkwood, T. B. L. (2015). Age-related frailty and its association with biological markers 

of ageing. BMC Medicine, 13(1), 1-9. doi:10.1186/s12916-015-0400-x 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  108

  

 

 

 

 

Mitnitski, A., Fallah, N., Dean, C. B., & Rockwood, K. (2014). A multi-state model for the 

analysis of changes in cognitive scores over a fixed time interval. Statistical Methods in 

Medical Research, 23(3), 244-256. doi:10.1177/0962280211406470 

Mitnitski, A. B., Mogilner, A. J., & Rockwood, K. (2001). Accumulation of deficits as a proxy 

measure of aging. Scientific World Journal, 1, 323-336. doi:10.1100/tsw.2001.58 

Muthén, L., & Muthén, B. (1998). Mplus User’s Guide (7th edn). Muthén & Muthén: Los 

Angeles, CA, USA, 2012.  

Palmer, J., MacLeod, C. M., Hunt, E., & Davidson, J. E. (1985). Information processing 

correlates of reading. Journal of Memory and Language, 24, 59–88. doi:10.1016/0749-

596X(85)90016-6  

Robertson, D. A., Savva, G. M., & Kenny, R. A. (2013). Frailty and cognitive impairment—A 

review of the evidence and causal mechanisms. Ageing Research Reviews, 12(4), 840-851. 

doi:http://dx.doi.org/10.1016/j.arr.2013.06.004 

Rockwood, K., & Mitnitski, A. (2007). Frailty in relation to the accumulation of deficits. 

Journals of Gerontology: Series A, 62(7), 722-727. doi:10.1093/gerona/62.7.722 

Rockwood, K., Nassar, B., & Mitnitski, A. (2008). Apolipoprotein E-polymorphism, frailty and 

mortality in older adults. Journal of Cellular and Molecular Medicine, 12(6b), 2754-2761. 

doi:10.1111/j.1582-4934.2008.00270.x 

Rogers, N. T., Steptoe, A., & Cadar, D. (2017). Frailty is an independent predictor of incident 

dementia: Evidence from the English Longitudinal Study of Ageing. Scientific Reports, 

7(1), 15746. doi:10.1038/s41598-017-16104-y 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  109

  

 

 

 

 

Rolfson, D. B., Wilcock, G., Mitnitski, A., King, E., de Jager, C. A., Rockwood, K., Fallah, N., 

& Searle, S. D. (2013). An assessment of neurocognitive speed in relation to frailty. Age 

and Ageing, 42(2), 191-196. doi:10.1093/ageing/afs185 

Romero-Ortuno, R., & Kenny, R. A. (2012). The frailty index in Europeans: Association with 

age and mortality. Age and Ageing, 41(5), 684-689. doi:10.1093/ageing/afs051 

Rosano, C., Marsland, A. L., & Gianaros, P. J. (2011). Maintaining brain health by monitoring 

inflammatory processes: a mechanism to promote successful aging. Aging and Disease, 

3(1), 16-33.  

Ruan, Q., D’Onofrio, G., Sancarlo, D., Greco, A., Lozupone, M., Seripa, D., Panza, F., & Yu, Z. 

(2017). Emerging biomarkers and screening for cognitive frailty. Aging Clinical and 

Experimental Research, 29(6), 1075-1086. doi:10.1007/s40520-017-0741-8 

Schiepers, O., Harris, S., Gow, A., Pattie, A., Brett, C., Starr, J., & Deary, I. (2012). APOE E4 

status predicts age-related cognitive decline in the ninth decade: Longitudinal follow-up of 

the Lothian Birth Cohort 1921. Molecular Psychiatry, 17(3), 315-324. 

doi:10.1038/mp.2010.137 

Scott, S. B., Graham-Engeland, J. E., Engeland, C. G., Smyth, J. M., Almeida, D. M., Katz, M. 

J., Lipton, R. B., Mogle, J. A., Munoz, E., Ram, N., & Sliwinski, M. J. (2015). The effects 

of stress on cognitive aging, physiology and emotion (ESCAPE) project. BMC Psychiatry, 

15(1), 146. doi:10.1186/s12888-015-0497-7 

Searle, S. D., Mitnitski, A., Gahbauer, E. A., Gill, T. M., & Rockwood, K. (2008). A standard 

procedure for creating a frailty index. BMC Geriatrics, 8. doi:10.1186/1471-2318-8-24 

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and 

event occurrence. New York, NY: Oxford University Press; US. 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  110

  

 

 

 

 

Small, B. J., Dixon, R. A., & McArdle, J. J. (2011). Tracking cognition–health changes from 55 

to 95 years of age. Journals of Gerontology: Series B, 66B(suppl_1), i153-i161. 

doi:10.1093/geronb/gbq093 

Song, X., Mitnitski, A., & Rockwood, K. (2010). Prevalence and 10-year outcomes of frailty in 

older adults in relation to deficit accumulation. Journal of the American Geriatrics Society, 

58(4), 681-687. doi:10.1111/j.1532-5415.2010.02764.x 

Song, X., Mitnitski, A., & Rockwood, K. (2011). Nontraditional risk factors combine to predict 

Alzheimer disease and dementia. Neurology, 77(3), 227-234. 

doi:10.1212/WNL.0b013e318225c6bc 

Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., & Koeppe, R. A. (1997). Isolation of 

specific interference processing in the Stroop task: PET activation studies. NeuroImage, 

6(2), 81-92. doi:10.1006/nimg.1997.0285 

Theou, O., Cann, L., Blodgett, J., Wallace, L. M. K., Brothers, T. D., & Rockwood, K. (2015). 

Modifications to the frailty phenotype criteria: Systematic review of the current literature 

and investigation of 262 frailty phenotypes in the Survey of Health, Ageing, and 

Retirement in Europe. Ageing Research Reviews, 21, 78-94. doi:10.1016/j.arr.2015.04.001 

Thibeau, S., McFall, G. P., Wiebe, S. A., Camicioli, R., & Dixon, R. A. (2017). Alzheimer's 

disease biomarkers interactively influence physical activity, mobility, and cognition 

associations in a non-demented population. Journal of Alzheimers Disease, 60(1), 69-86. 

doi:10.3233/JAD-170130. 

Velissaris, D., Pantzaris, N., Koniari, I., Koutsogiannis, N., Karamouzos, V., Kotroni, I., 

Skroumpelou, A., & Ellul, J. (2017). C-Reactive protein and frailty in the elderly: A 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  111

  

 

 

 

 

literature review. Journal of Clinical Medicine Research, 9(6), 461-465. 

doi:10.14740/jocmr2959w 

Wallace, L. M. K., Theou, O., Godin, J., Andrew, M. K., Bennett, D. A., & Rockwood, K. 

(2019). Investigation of frailty as a moderator of the relationship between neuropathology 

and dementia in Alzheimer's disease: A cross-sectional analysis of data from the Rush 

Memory and Aging Project. The Lancet Neurology, 18(2), 177-184. doi:10.1016/S1474-

4422(18)30371-5 

Widagdo, I. S., Pratt, N., Russell, M., & Roughead, E. E. (2016). Construct validity of four 

frailty measures in an older Australian population: A Rasch analysis. The Journal of 

Frailty & Aging, 5(2), 78-81. doi:10.14283/jfa.2016.83 

Wu, Y.-H., Liu, L.-K., Chen, W.-T., Lee, W.-J., Peng, L.-N., Wang, P.-N., & Chen, L.-K. 

(2015). Cognitive function in individuals with physical frailty but without dementia or 

cognitive complaints: Results from the I-Lan Longitudinal Aging Study. Journal of the 

American Medical Directors Association, 16(10), e899-899.  

doi:10.1016/j.jamda.2015.07.013 

Yaffe, K., Lindquist, K., Penninx, B., Simonsick, E., Pahor, M., Kritchevsky, S., Launer, L., 

Kuller, L., Rubin, S., & Harris, T. (2003). Inflammatory markers and cognition in well-

functioning African-American and white elders. Neurology, 61(1), 76-80. 

doi:10.1212/01.wnl.0000073620.42047.d7 

Yun, Y.-W., Kweon, S.-S., Choi, J.-S., Rhee, J.-A., Lee, Y.-H., Nam, H.-S., Jeong, S.-K., Park, 

K.-S., Ryu, S.-Y., Choi, S.-W., Kim, H. N., Cauley, J. A., & Shin, M.-H. (2015). APOE 

polymorphism is associated with C-reactive protein levels but not with white blood cell 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  112

  

 

 

 

 

count: Dong-gu Study and Namwon Study. Journal of Korean Medical Science, 30(7), 

860-865. doi:10.3346/jkms.2015.30.7.860 

 

  



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING  113

  

 

 

 

 

Appendix A: 

Supplementary Material for Frailty Effects on Non-Demented Cognitive Trajectories are 

Moderated by Sex and Alzheimer’s Genetic Risk 

Statistical Analyses 

 

 Parallel Process Models. We tested whether frailty predicted memory, speed, or EF 

using latent growth curve parallel process models. Latent growth curve parallel process models 

address the foundational question of whether or not there is an association between growth 

parameters (Little, 2013).
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Figure S1 

Study Flowchart of Study Participants 

 

 
 

 

Note. The final sample consisted of 632 participants. 
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Chapter Three: Cognitive Resilience to Frailty: Definition and Determinants of Predictive 

Profiles 

Frailty, a common condition associated with increasing age, reflects cumulative 

multisystem physiological and functional health decline (Mitnitski, Mogilner, & Rockwood, 

2001). Frailty affects between 10 and 15% of older adults over the age of 65 and has been 

identified as an emerging public health priority (Cesari et al., 2016; Clegg et al., 2013). In fact, 

frailty has been linked to many adverse health outcomes, including a higher risk for falls, 

functional decline, mortality, cognitive decline, and AD (Buchman, Boyle, Wilson, Tang, & 

Bennett, 2007; Hoogendijk, Suanet, Dent, Deeg, & Aartsen, 2016). Our previous research found 

frailty was associated with cognitive performance in non-demented older adults differentially 

across three cognitive domains (Thibeau et al., 2019). A notable finding of this research was the 

empirical identification of vast heterogeneity in frailty trajectories for older adults. Specifically, 

non-demented older adults differed in the initial level of frailty and had highly variable patterns 

of frailty over time. Upon consideration, it may be possible that this overall heterogeneous 

distribution can be clustered into patterns representing differential patterns of frailty 

development and change (Caballero et al., 2020; McFall et al., 2019). Moreover, it is also 

possible that distinct trajectories of frailty would be differentially associated with health and 

cognitive outcomes. For example, it is possible that individuals with higher levels of frailty 

would be at a higher risk for cognitive decline, impairment, and dementia, while those with 

relatively stable frailty trajectories over time may be protected from cognitive decline for a 

longer period of time. In fact, recent research has identified differential patterns of frailty 

trajectories and subsequent associations with adverse health outcomes (i.e., mortality; Stow et 
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al., 2018). In contrast to this pathogenic approach, the present research uses a salutogenic 

approach to examine factors that support health and well-being despite the presence of frailty.   

Resilience is a longstanding phenomenon with considerable application to cognitive 

aging. Resilience is defined as the ability to maintain or regain wellness despite adversity (Luthar 

et al., 2000). When applied to cognitive aging, resilience has been defined as the ability to 

preserve cognitive functioning, despite harbouring major risk factors for AD, such as age or 

APOE ɛ4 (Okonkwo & Vemuri, 2017; Staal, Bolton, Yaroush, & Bourne Jr, 2008). Markedly, 

the concept of resilience in aging brings adversity directly into the equation with the underlying 

assumption that everyone has a profile of risk factors detrimental to brain health (Anstey et al., 

2019; Lavretsky, 2014; Livingston et al., 2017). Newly emerging research has indicated it is 

possible to have high genetic risk for AD, yet maintain cognitive functioning, displaying 

cognitive resilience (Kaup et al., 2015; McDermott, McFall, Andrews, Anstey, & Dixon, 2017). 

Applied to frailty, a cognitive resilience framework suggests that individuals with high levels of 

frailty may be able to maintain cognitive functioning.  

Notably, a resilience framework also focuses on identifying other facets of health that 

confer resilience when risk factors for cognitive decline are present. For example, two recent 

studies have identified several predictors of cognitive resilience to AD genetic risk. McDermott 

and colleagues (2017) identified factors from demographic, lifestyle, functional biomarker, 

health, and mobility domains which predicted memory resilience to APOE and Clusterin (CLU) 

genetic risk. Kaup and colleagues (2015) identified lifestyle, psychosocial, health and 

demographic factors that were predictive of cognitive resilience to APOE genetic risk. Similar 

factors predicting resilience in both studies included high education and high cognitive activity. 

The present chapter adds to the emergent resilience research outside genetic risk, by examining 
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resilience considering an accumulation of health deficits. We aim to identify classes of frailty 

trajectories with the underlying assumption that some individuals with frailty may be cognitively 

resilient. Additionally, we examine a constellation of thirteen predictors to see whether these 

factors may discriminate between resilient and non-resilient individuals.   

Research Goals 

The overall purpose of the present chapter was three-fold. First, the distribution of 

longitudinal frailty trajectories was examined for differential classes in a large, non-demented, 

older adult group. Second, cognitive resilience to frailty was empirically characterized across 

three domains of cognition, namely memory, speed, and EF. Third, differences in predictors of 

frailty-resilient cognitive trajectories were examined and predictors of resilience were compared 

across the three cognitive domains. We assembled a distribution of individualized frailty 

trajectories covering a 40-year band of aging (53 – 95 years). We used data-driven analytics to 

investigate three research goals (RGs). For RG1 we used LCGA to classify frailty classes based 

on an algorithm of level and slope of the individualized frailty trajectories established in previous 

research (Thibeau et al., 2019). For RG2, we selected the frail class identified in RG1 and 

applied LCGA to each of three cognitive domain trajectory distributions. These analyses served 

to discriminate two subclasses of cognitive trajectories, with the higher subclass reflecting 

cognitive resilience to frailty and the lower subclass reflecting non-resilient trajectories. These 

analyses were conducted separately for the three cognitive domains. For RG3, RFA was used to 

identify salient predictors that discriminated the cognitively resilient from the non-resilient 

subclass. The same pool of 13 potential predictors was used in the models for each cognitive 

domain.    
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Methods 

Participants 

Participants were community-dwelling older adult volunteers of the VLS. The VLS is a 

large-scale, long-term Canadian investigation of human aging as influenced by genetic, 

biomedical, biological, health, lifestyle, and other factors (Dixon & de Frias, 2004). All 

participants provided written informed consent and all data collection procedures were in full 

and certified compliance (annually) with Health Research Ethics Board at the University of 

Alberta. Three main sequential samples (initially aged 53 – 95 years) are followed at about 4-

year intervals (M = 4.4-year interval). As this chapter included genetic factors as predictors of 

cognitive resilience, participants were limited to a source subsample who had provided biofluid 

for genotyping between 2009 and 2011 (n = 695). This source subsample consisted of current 

subsets of three equivalent sequential cohorts, with present data collection occurring in the 2001 

– 2015 period. The VLS cohorts were from Sample 1 (waves 6, 7, and 8), Sample 2 (waves 4 and 

5), and Sample 3 (waves 1, 2, and 3). The total individualized duration is up to nine years, and 

we use an accelerated longitudinal design to cover a 40-year age band (McFall et al., 2014). The 

following exclusionary criteria were applied at baseline to the source sample: (a) a diagnosis of 

AD or dementia (n = 0), or (b) missing data at all three waves across any one of the 50 measures 

used to calculate frailty index (n = 40), and (c) missing data at all three waves across any one of 

the four measures used to calculate the memory, speed, or EF latent variable (n = 23). The final 

sample was comprised of 632 adults at baseline (M age = 70.7, range = 53.25 – 95.45; 66.9% 

female; see Table 2-2 for demographic information).  

DNA Extraction and Genotyping. As previously described (McFall et al., 2014) the VLS 

collected saliva according to standard biofluid collection, stabilization, and preparation 
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procedures from DNA Genotek. Genetic analyses included genotype categorization based on the 

presence or absence of the risk allele. APOE genotype was divided into dichotomous categories: 

ε4+ (risk) consisted of ε4ε4 and ε3/ε4 allele combinations and ε4- (non-risk) consisted of ε2ε2, 

ε2/ε3, and ε3ε3 allele combinations. For all analyses including APOE, we removed the genotype 

which combines the risk and protective alleles (ɛ2ɛ4; n = 30; McFall et al., 2014). The genotypic 

distribution for APOE was in Hardy-Weinberg equilibrium, χ2 = 0.89. The BDNF genotype was 

divided into two categories, Met+ (risk) and Met- (non-risk). The genotypic distribution for 

BDNF was in Hardy-Weinberg equilibrium, χ2=1.31. 

Measures 

 Frailty Index. For each participant, the Frailty Index tallied the total number of health 

deficits from 50 variables (see Table 3-2) which previous work suggests is sufficient for 

accurately predicting adverse outcomes (Ferrucci et al., 2004). The items collected included self-

report data, physical examination, and formal tests with standardized scales. All frailty items 

were consistent with those included in previous frailty indexes (Andrew, Mitnitski, & 

Rockwood, 2008; Blodgett, Theou, Kirkland, Andreou, & Rockwood, 2015; Romero-Ortuno & 

Kenny, 2012; Searle, Mitnitski, Gahbauer, Gill, & Rockwood, 2008; Song, Mitnitski, & 

Rockwood, 2010). As cognitive performance and change were the primary outcomes in this 

chapter, all cognitive-related measures or reports were excluded from the present frailty index.  

 The FI was constructed by first recoding each variable to an interval between zero and 

one (see Table 3-2). For variables with two possible responses, scores were either zero (deficit 

absent) or one (deficit present). Variables with four or five possible responses (e.g., subjective 

health responses included “very poor”, “poor”, “fair”, “good”, and “very good”) had scores that 

reflected a range between zero and one (e.g., 0.00, 0.25, 0.50, 0.75, 1.00). For all participants we 
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calculated the FI as x/50, where x was the individual participant’s number of deficits (i.e., an 

individual with no deficits would have a frailty score of 0). In this sample, the FI means ranged 

from 0.11 – 0.53 at each wave, which is similar to previous studies (Armstrong, Mitnitski, 

Launer, White, & Rockwood, 2015). For all model testing results, model fit indices, and chi-

square differences tests see Chapter Two (Thibeau et al., 2019). 

 Measures for the Cognitive Latent Variables. The memory, speed, and EF tests included 

in the current chapter have been frequently used and validated with older adults in the VLS (and 

other studies). A previously established latent variable representing each set of manifest 

indicators for each (separately) of the cognitive domains was verified and used for subsequent 

analyses (see Chapter Two, Thibeau et al., 2019 and Tables 2-4 to 2-7 for the latent variable 

testing information and fit indices).  

 Episodic Memory. The robust latent memory variable was comprised of four manifest 

indicators from two memory tasks (McFall, Wiebe, et al., 2015): Word recall score on list 1, and 

score on list 2, Rey Auditory Verbal Learning Test list B1, and list A6. For all model testing 

results, model fit indices and chi-square differences tests see Chapter Two (Thibeau et al., 2019). 

 Word Recall. Two lists of 30 English words were used to test immediate recall in a 

rotated design. Participants were given two minutes to study each list and five minutes to write 

as many words as they could recall (Dixon et al., 2004). Six equivalent lists exist and were 

administered so that no participant saw the same list twice. A maximum score of 30 could be 

achieved on each of the two trials. The score on list 1 and score on list 2 were used as two of the 

four manifest variables for the latent memory construct.  

 Rey Auditory Verbal Learning Test. Participants listened to list of 15 nouns which was 

read aloud and then recalled orally as many as possible. This process was repeated for five trials 
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(A1-A5). Then a list (B1) of 15 unrelated nouns was read aloud and immediately recalled. 

Finally, the participant was asked to recall the first list of nouns (A6) (Lezak, 1983). This task 

provided the remaining two of the four manifest variables, list B1 was used as a measure of free 

recall, and list A6 was used to measure recall after interference.  

 Speed. A robust speed latent variable was calculated from four manifest speed tasks 

following established procedures (McFall et al., 2015). The tasks were: simple reaction time, 

choice reaction time, lexical decision, and sentence verification. Because each of the speed 

measures varied in complexity, we applied validated correction procedures with specific lower 

and upper limits as follows: (a) simple reaction time, 150 ms; (b) choice reaction time, 150 ms 

and 4000 ms; (b) lexical decision, 400 ms and 10000 ms; (c) sentence verification, 1000 ms and 

20000 ms. Subsequent trials 3 standard deviations above the mean were removed. All model 

testing, model fit indices and chi-square differences tests are reported in Chapter Two, Thibeau 

et al., 2019. 

 Simple Reaction Time. Participants were presented with a warning stimulus (***) 

followed by a signal stimulus (+) in the middle of the computer screen and asked to press a key 

as quickly as possible when the signal stimulus appeared. Fifty trials were administered, and the 

latency of the 50 trials was used for analysis (Dixon et al., 2007). 

 Choice Reaction Time. A grid of (+) was presented on the computer screen, after a 1000 

ms delay one of the (+) was changed to a square, and participants were asked to indicate the 

location of the square using a matching arrangement of keys on the response console. The 

dependent measure was the average latency across 20 trials (Palmer, MacLeod, Hunt, & 

Davidson, 1985). 
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 Lexical Decision. A string of five to seven letters was presented on the computer screen. 

Participants were asked to identify as quickly as possible whether the letters formed an English 

word. The average latency across 60 trials was used for analysis (Palmer et al., 1985). 

 Sentence Verification. A sentence was presented on the computer screen and participants 

were asked to identify as quickly as possible the plausibility of the sentence. The average latency 

across 50 trials was used for analysis (Palmer et al., 1985). 

 Executive Function (EF). A robust EF latent variable was calculated from four manifest 

EF indicators (Thibeau et al., 2017): Hayling sentence completion test, Stroop test, Brixton 

spatial anticipation test, and Color trails test part two. For model testing results, model fit indices 

and chi-square differences tests are published (see Chapter Two, Thibeau et al., 2019). 

 Hayling Sentence Completion. In section A, participants listened to 15 sentences read 

aloud with the last word missing, completing the sentence in a way that made sense and as 

quickly as possible. In section B, participants again listened to 15 sentences read aloud with the 

last word missing, completing the sentence quickly with a word that was unrelated or 

unconnected to the sentence. Response speed on both sections and errors within section B were 

used to create an overall scaled score (ranged from 1 [impaired] to 10 [very superior]) (Bielak et 

al., 2006; Burgess & Shallice, 1997).  

 Stroop. In part A, participants named the color of 24 dots (blue, green, red, or yellow) as 

quickly as possible. In part B, participants named the ink color of 24 words (e.g., “when”). In 

part C, participants named the ink color of color names (blue, green, red, or yellow) by ignoring 

the printed word and instead stating the color of the ink (e.g., if the word blue was printed in red 

ink, the correct answer was red). Scores were calculated from the interference index ([Part C 
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time – Part A time]/Part A time) which reflects slowing in response to interference (Taylor, 

Kornblum, Lauber, Minoshima, & Koeppe, 1997). 

 Brixton Spatial Anticipation Test. Participants deduced simple and changing patterns by 

predicting the movement of a blue dot among ten possible positions on a page, which followed 

patterns that came and went without warning. The total errors were recorded (maximum 54) and 

converted to scaled scores. An overall standardized scale resulted in scores ranging from 1 

(impaired) to 10 (very superior) (Bielak et al., 2006; Burgess & Shallice, 1997). 

 Color Trails Test. Participants connected the numbers 1 to 25 by alternating between 

pink and yellow circles while disregarding the numbers in circles of the alternate color. The 

latency score to complete the task was used for analysis (lower scores indicated better 

performance) (D'Elia, Satz, Uchiyama, & White, 1996). 

 Predictors from risk domains. For the third research goal, a total of 13 predictive 

factors were included to discriminate resilient from non-resilient subclasses. These factors were 

included as baseline measurements from three risk domains: demographic, lifestyle, and genetic 

factors that were not included in the 50-item frailty index. Demographic factors included 

participants: (a) age in years, (b) marital status, (c) education (total years) (d) sex (male or 

female), (e) living status, and (f) pet ownership (yes or no). Lifestyle factors included: (a) 

everyday novel cognitive activity, (b) social activity, (c) volunteer activity, (d) alcohol use (yes 

or no), and (e) current smoking status (smoker or non-smoker). Genetic factors included risk or 

non-risk status for the following genes: (a) APOE and (b) BDNF. Bivariate correlations were 

examined for each of these predictors across each cognitive domain (see Table 3-3). 
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Statistical Analyses 

 Analyses pertaining to our RGs included LCGA through structural equation modeling 

using Mplus 7 (Muthén & Muthén, 1998) and RFA using R 3.2.3 (R Development Core Team, 

2015). Missing data was estimated in the growth models in MPlus 7 using robust maximum 

likelihood estimation. For the prediction analysis, missing predictor data (1% overall, ranging 

from 1% to 2% across the predictor variables) were estimated using a random forest algorithm 

for non-parametric imputation with the “missForest” package in R for the RFA (Stekhoven & 

Bühlmann, 2012; Waljee et al., 2013). Preliminary statistical analyses were performed (i.e., 

confirmatory factor analysis, measurement invariance, and latent growth modeling) to establish 

the frailty growth model used for RG1.  

 Analyses for RG1: LCGA for Frailty Classes. A previously established frailty growth 

model (see Table 2-4 for model testing and fit indices) was used to perform LCGA on the full 

distribution of individual frailty trajectories to determine frailty status classification (frail or non-

frail) based on an algorithm of individualized level and slope (Hayden et al., 2011; Jung & 

Wickrama, 2008; Nylund, Asparouhob, & Muthén, 2007; McFall et al., 2019; Pietrzak et al., 

2015; Ram & Grimm, 2009). LCGA allows for data-driven, post-hoc classification of individual 

frailty trajectories using a latent categorical variable for class (Ram & Grimm, 2009). Three 

LCGA models were tested and compared: one, two, and three latent class frailty models (Grimm, 

Ram, & Estabrook, 2016). A fully constrained growth model with a random intercept, random 

slope was used for each model tested. The variance of both the intercept and slope were fixed to 

zero within the separate classes to determine differences (Berlin, Williams, & Parra, 2014). 

Model fit was determined using comparative fit indices (i.e., AIC, BIC, -2LL), entropy, 

proportion, and probability statistics, along with assessing a visual inspection of graphical model 
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fit (see Figure 3-1). The preferred model was identified based on the following considerations: 

(a) low comparative fit indices, (b) high entropy value, (c) classes comprising a substantial 

proportion of the sample (>10% in each class), and (d) theoretical expectation. 

 Analyses for RG2: Cognitive Resilience to Frailty. Using the frail class established in 

RG1, the same LCGA procedure was used on the distribution of individualized memory 

trajectories to determine resilience status classification (resilient to frailty or non-resilient to 

frailty) based on individualized level and slope trajectories. These steps were then repeated 

(separately) for speed and EF. For each latent cognitive variable, one-to-three class models were 

tested. Model fit was determined using comparative fit indices (i.e., AIC, BIC, -2LL), entropy, 

proportion, and probability statistics (see Figures 3-2 to 3-4). The preferred model was identified 

based on the following considerations: (a) low comparative fit indices, (b) high entropy value, (c) 

classes comprising a substantial proportion of the sample (>10% in each class), and (d) 

theoretical expectation. 

 Analyses for RG3: Predictors of Cognitive Resilience to Frailty. RFA (R Development 

Core Team, 2015) was used to determine the most important (of 13) predictors of cognitively 

resilient or non-resilient status from three domains (i.e., genetic, demographic, and lifestyle). 

RFA is a supervised machine learning classification algorithm, which combines the predictions 

of many single classification and regression trees (ntree), each of which is based on a random 

sample of participants and prediction variables (mtry). We selected RFA over multiple regression 

for several reasons: (a) RFA can test the importance of many predictors at the same time in the 

model (Strobl, Boulesteix, Zeileis, & Hothorn, 2007), (b) RFA allows for a relative ranking of 

important predictors, and (c) the model parameters can be adjusted to obtain completely unbiased 

predictors (e.g., to take the correlation between marital status and living status into account; 
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(Strobl, Hothron, & Zeileis, 2009). See Table 3-3 for bivariate correlations between predictor 

variables.  

 Using the Party Package in R 3.2.3 (R Development Core Team, 2015), our forest 

consisted of ntree = 5000, and at each potential split we evaluated a random sample of mtry = 3 

predictors (√# 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠). Model strength was reported as the area under the receiver 

operating characteristic curve (AUC, using the C-statistic). Relative to this chapter, the AUC 

equals the probability that a randomly drawn score from the resilient subclass is higher than a 

randomly drawn score from the non-resilient subclass (Rice & Harris, 2005). A C-statistic of 0.5 

is considered to be chance, between 0.51 and 0.59 a small effect size, between 0.6 and 0.7 a 

medium effect size, and 0.8 or greater is a large effect size (Rice & Harris, 2005). Permutation 

accuracy importance was used to define relative variable importance (Strobl, Malley, & Tutz, 

2009) with the cforest package in the Party Package. Variables with negative, zero, or small 

positive values (left of the dotted line in Figures 3-5 to 3-7) are not important predictors of 

cognitive resilience to frailty. Variables beyond this range (right of the dotted line in Figures 3-5 

to 3-7) are informative and interpreted with a ranking of relative importance (McDermott et al., 

2017; Strobl, Hothron, et al., 2009).  

Results 

RG1: LCGA for Frailty Classes   

The analysis indicated that a two-class model fit the data better than the one-class or the 

three-class models (AIC = -4813.15, BIC = -4777.60, -2LL = 4829.12; entropy = 0 .76; see 

Table 3-4 for comparative fit indices). The frail class was characterized by higher baseline levels 

of frailty and a steeper longitudinal increase of frailty (n = 95 [15%], intercept = 0.25, 95% CI 
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[0.20, 0.30], slope = 0.01, 95% CI [0.01, 0.008]). The non-frail class was characterized by lower 

baseline level of frailty and a stable slope or slightly increasing slope of frailty (n = 534 [85%], 

intercept = 0.11, 95% CI [-0.00, 0.12], slope = 0.003, 95% CI [.001, .005]; see Figure 3-1).  

RG2: Cognitive Resilience to Frailty 

Memory. The memory LCGA indicated that a three-class memory model provided the 

best comparative fit indices and had class proportions of >10% (AIC = 872.54, BIC = 899.79, -

2LL = -850.54; entropy = 0.87; see Table 3-5 for comparative model fit indices). The high-

memory subclass was characterized by high baseline memory performance and a stable slope or 

slightly decreasing longitudinal memory trajectory (n = 45 [47%], intercept = 1.71, 95% CI 

[1.40, 2.01], slope = -0.13, 95% CI [-0.09, -0.17]). The mid-performing memory subclass 

characterized by mid-level of memory performance and a slightly decreasing slope of memory (n 

= 35 [38%], intercept = -1.93, 95% CI [-2.29, -1.57], slope = -0.11, 95% CI [-0.16, -0.06]). The 

low-performing memory subclass characterized by low memory performance and a steeply 

decreasing slope (n =15 [16%], intercept = -5.55, 95% CI [-6.15, -4.95], slope = -0.19, 95% CI [-

0.25, -0.13]). This result supports previous research that also found three subclasses of memory 

in an overall sample of older adults: (a) a stable memory class, (b) a normally aging memory 

class, (c) and a declining memory class (McFall et al., 2019). With this result and our research 

question in mind, three decision points were considered: (a) moving forward with the three-class 

model to compare only the resilient (the high performing) and non-resilient (lowest performing) 

classes, (b) combining two subclasses to characterize either the resilient or non-resilient subclass 

(e.g., similar to Kaup et al., 2015), or (c) choosing to move forward with the two-class model 

based on the theory and research questions guiding this examination of resilience. Theoretically, 

resilient brain aging may be related to, but unique and distinct from normal brain aging or 
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successful brain aging, therefore, using the middle class of a three-class model may not be 

representative of resilience, but instead represent a normally aging memory class. Upon 

consideration, Option A meant that a substantial part of the sample would not be considered 

(38%, n = 35) in the comparison analyses, and Option B would negate the use of the information 

the LCGA provided. Therefore, Option C was considered. The two-class model met all the 

previously established considerations of model choice: this model had low comparative fit 

indices (AIC = 912.69, BIC = 932.51, -2LL = -896.69), a very good entropy value (0.81), class 

proportions of over 10%, and aligned with the research goals of comparing resilient and non-

resilient subclasses. Future research could examine the predictive differences between the three 

subclasses, with a refined aim of defining resilience in contrast or conceptualization of normal 

memory aging and declining memory aging (e.g., McFall et al., 2019).  

The two-class model consisted of: (a) higher performing subclass characterized by higher 

baseline levels of memory performance and a stable or slightly declining memory slope (n = 58 

[61%], intercept = 1.17, 95% CI [0.80, 1.53]), slope = -0.14, 95% CI [-0.19, -0.09]), and (b) a 

lower performing subclass characterized by lower baseline levels of memory performance and a 

declining memory trajectory (n = 37 [39%], intercept = -3.52, 95% CI [-3.85, -3.19], slope = -

0.14, 95% CI [-0.18, -0.10]; see Figure 3-2).  

Speed. The speed LCGA results indicated that a three-class speed model fit the data 

better than the one-class or the two-class models. However, the class proportion for the low-

performing subclass fell below 10% of the sample, (0.06%, n = 6). Therefore, the two-class 

model was used (AIC = 1205.47, BIC = 1185.75, -2LL = 1169.74; entropy = 0.85; see Table 3-6 

for model fit indices). The two-class model consisted of: (a) higher performing subclass 

characterized by higher baseline levels of speed performance and a stable or slightly declining 
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speed slope (n = 52 [55%], intercept = 3.56, 95% CI [2.58, 4.54], slope = -0.29, 95% CI [-0.39, -

0.19]), and (b) a lower performing subclass characterized by worse speed performance and 

declining speed slope (n = 43 [45%], intercept = -6.36, 95% CI [-7.07, -5.65], slope = -0.40, 95% 

CI [-0.48, -0.32]; see Figure 3-3).  

EF. The EF LCGA indicated that a two-class EF model fit the data better than the one-

class or the three-class models (AIC = 300.92, BIC = 332.58, -2LL = -284.92; entropy = 0.91; 

see Table 3-7 for comparative model fit indices). The higher performing subclass was 

characterized by higher baseline levels of EF performance and a stable longitudinal EF trajectory 

(n = 66 [69%], intercept = 0.13, 95% CI [0.04, 0.21], slope = -0.02, 95% CI [-.03, -.008]). The 

lower performing subclass characterized by lower baseline levels of EF performance and a 

declining EF slope (n = 29 [31%], intercept = -1.0, 95% CI [-1.14, 0.86], slope = -0.02, 95% CI 

[-.04, -0.002]; see Figure 3-4).   

RG3: Predictors of Cognitive Resilience to Frailty  

RFA was used to test the relative importance of 12 factors discriminating resilient to 

frailty from non-resilient to frailty status for each of the cognitive domains. These 12 predictors 

came from three domains: demographic (i.e., age, education, sex, marital status, living status, pet 

ownership), genetic (i.e., BDNF, APOE genetic risk status), and lifestyle (i.e., cognitive activity, 

social activity, volunteer activity, alcohol use). Originally, current smoking status (smoker or 

non-smoker) was included but was excluded from the final list due to insufficient participant 

rates (n = 3).  

Memory Resilience to Frailty. Five predictors distinguished the resilient subclass from 

the non-resilient subclass. Memory resilience to frailty was predicted (in order of relative 

importance) by being female, having higher education, being married, alcohol use, and higher 
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cognitive activity (C = 0.55; 95% CI [0.39 – 0.63], ntree = 5000, mtry =3). Figure 3-5 shows the 

predictors in order of importance, with the predictors to the right of the vertical line having the 

best permutation accuracy.  

Speed Resilience to Frailty. RFA results indicated that only one predictor, high cognitive 

activity, distinguished speed resilience from non-resilience to frailty (C = 0.57, 95% CI [0.45 – 

0.68], ntree = 5000, mtry = 3). Figure 3-6 shows the predictors in order of importance, as the 

predictors to the right of the line have the best permutation accuracy. 

EF Resilience to Frailty. When examining EF resilience to frailty, RFA results indicated 

that three predictors distinguished the resilient subclass from non-resilient subclass. EF resilience 

to frailty was predicted (in order of relative importance) by younger age, high education, and 

high cognitive activity, Model classification performance (C) was 0.68, 95% CI [0.56 – 0.80], 

mtry = 3, ntree = 5000. Figure 3-7 shows the predictors in order of importance. 

Generalizability of Predictors of Resilience Across Cognitive Domains. When 

examining the results for each cognitive domain, only high cognitive activity predicted resilience 

to frailty across all three domains of cognition. Memory resilience and EF resilience were both 

predicted by higher education (see Table 3-8).  

Discussion 

The overall aim of this chapter was to establish and define cognitive resilience to frailty 

and examine predictive factors of this newly emerging phenomenon. To address this aim, we 

examined three research goals by applying a series of data-driven analytics to longitudinal 

trajectory distributions. First, we identified distinct, separable classes of frailty trajectories for 

older adults. Second, we examined cognitive resilience to frailty across three cognitive domains 
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(i.e., memory, speed, and EF). Cognitive resilience was defined as a high level of cognitive 

performance and stability over time despite frailty. Third, we examined and compared predictor 

profiles of cognitively resilient and non-resilient individuals, separately across the three 

cognitive domains.  

RG1: LCGA for Frailty Classes 

First, using LCGA, we empirically differentiated longitudinal frailty trajectories into 

distinct, separable classes in a non-demented older adult population. These classes were 

discerned by an algorithm considering both level and slope information from individual 

trajectories. This methodology allowed us to study frailty change over a 40-year band of aging 

and identify differences in frailty trajectories over time. Specifically, results indicated that frailty 

trajectories were best classified into two distinct classes: a frail and a non-frail class. Consistent 

with the literature, individuals in the non-frail class had lower frailty scores, and more stable or 

slightly increasing frailty trajectories over time. Specifically, our non-frail class had a baseline 

mean FI score of 0.11. Recent studies have identified 0.12 as a cutoff for distinguishing between 

prefrail and low frail individuals (Clegg, Bates, & Young, 2016). In the present chapter, at 

subsequent waves the FI mean values were 0.13, and 0.13, thus indicating a low and stable 

trajectory over the longitudinal interval. This stability is reflected in the intercept and slope 

values in the growth model (viz., 0.11 and 0.003, respectively). In contrast, individuals in the 

frail class had higher frailty scores and worsening frailty trajectories. Notably, our frail class had 

a baseline mean FI value of 0.23, and slightly increasing mean FI over the subsequent 

measurement occasions (M = 0.26, and 0.28), consistent with the clinical cutoff for frailty (Dent, 

Kowal, & Hoogendijk, 2016; Searle et al., 2008). Moreover, our frail class (15.03%) is 
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representative of the overall occurrence of frailty (about 15%) in non-demented and community 

dwelling samples (Bandeen-Roche et al., 2015).  

Previous studies have verified that frailty increases with age and the results of this 

analysis established there is vast variability in frailty trajectories. It is notable that this area of 

research is newly emerging with few publications addressing the variability in frailty trajectories. 

One recent example is research by Stow and colleagues (2018), which used similar methodology 

(i.e., a frailty index and LCGA) to identify distinct frail classes. Their results indicated the 

preferred model was a three-class model (i.e., stable, moderately increasing, and rapidly rising 

classes). The stable class consisted of a larger proportion of the study sample (76%) and had very 

little change in frailty over time. The moderately increasing class contained 21% of their sample 

and had a higher baseline and an increase in frailty over time. The rapidly rising class was 

comprised of 2% of their sample and showed a distinct increase in frailty over time. Notably, 

their population-based data consisted of health records of over 26000 older adults allowing a 

three-class model to provide the best fit for the data, even with a small proportion of the sample 

within the ‘rapidly rising’ frail class. Furthermore, they assessed mortality risk based on class 

membership and found that the ‘rapidly rising’ and ‘moderately increasing’ frail classes were 

associated with an increased chance of mortality. Another recent study by Chamberlain and 

colleagues (2016) examined the heterogeneity in frailty trajectories over time as stratified by age. 

Their results identified more variability in frailty for older adults between the ages of 60 – 69 

than between 70 – 89 years of age (Chamberlain et al., 2016). Specifically, in the age range of 60 

– 69, three subclasses of frailty trajectories were identified, but in the age strata of 70 – 79 and 

80 – 89 only two subclasses of frailty were differentiated. Future research using data from the 

VLS could examine the heterogeneity in frailty trajectories as stratified by age and relative to 
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mortality risk. The present chapter enhances the emerging literature as it extracts the frail class 

and then focuses on subclasses representing objective operational definitions of either cognitive 

resilience or non-resilience to frailty. 

RG2: Cognitive Resilience to Frailty 

Using the frail class identified in RG1, cognitively higher and lower performing 

subclasses were identified within each domain of cognition, establishing resilient and non-

resilient subclasses. These trajectory subclasses were differentiated by an algorithm considering 

level and slope trajectories for each individual (Cabellero et al, 2020; McFall et al., 2019) and 

performed separately across each cognitive domain. Results indicated that cognitive trajectories 

of a non-demented sample of older adults with frailty could be classified into two neighboring, 

yet differential secondary phenotypes (i.e., cognitively resilient to the effects of frailty, and non-

resilient to frailty).  

Notably, results indicated that the number of cognitively resilient individuals varied with 

each cognitive domain (i.e., Memory resilience n = 58 (61%); Speed resilience n = 52 (55%); EF 

resilience n = 66 (69%)). Upon further examination, 33% (n = 31) of the frail class were 

classified as cognitively resilient in all three cognitive domains, 38% (n = 36) were resilient in 

two out of three of the cognitive domains, 12% (n = 11) were resilient in one of three. Regarding 

non-resilient proportions, 18% (n = 17) were non-resilient across all three domains, 11% (n = 10) 

were non-resilient in two of three domains, and 39% (n = 37) were non-resilient in one of three 

domains. Considering these proportions, our findings are representative of the uniqueness of and 

vast heterogeneity within cognitive aging domains. Additionally, as far as we are aware, this is 

the first longitudinal study which examines resilience to frailty separately across three cognitive 

domains. Recently, McDermott and colleagues (2017) considered memory resilience to AD 
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genetic risk but did not include other age-sensitive cognitive domains. Kaup and colleagues 

(2015) determined cognitive resilience to AD genetic risk using a global cognition score (i.e., 

3MS). While necessary and informative, simultaneously examining multiple discrete cognitive 

abilities allows a more comprehensive vantage point from which to investigate cognitive 

resilience. Future research could compare the use of global cognitive assessments with multiple 

domain-specific measures for determination of cognitive resilience within an older adult 

population.  

RG3: Predictors of Cognitive Resilience to Frailty  

For the third research goal, we conducted RFA comparing resilient and non-resilient 

subclasses across each cognitive domain. Results revealed that demographic and lifestyle factors 

distinguished between resilience and non-resilience to frailty. However, the predictors of 

resilience were mostly unique to each cognitive domain examined. Specifically, memory 

resilience was predicted by high cognitive activity, high education, marital status, alcohol use, 

and sex. EF resilience was predicted by high education, high cognitive activity, and younger age. 

Speed resilience was predicted only by high cognitive activity. In fact, high cognitive activity 

was the only common predictor of resilience across all three cognitive domains, which could 

speak to the beneficial ubiquitous influence of cognitive stimulation on the aging brain.  

High cognitive activity and high education may contribute to resilience to frailty by enhancing 

cognitive performance, buffering against cognitive decline and offsetting the risk for cognitive 

decline and dementia (Anstey, 2014; Cheng, 2016; Clouston et al., 2020; Hultsch, Hertzog, 

Small, & Dixon, 1999; Lenehan, Summers, Saunders, Summers, & Vickers, 2015; Yates & 

Orrell, 2016). Moreover, cognitive activity and education both contribute to cognitive reserve, 

which protects against brain degeneration and neuronal injury associated with aging (Mungas et 
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al., 2018; Thow et al., 2018; Wilson et al., 2019). Similar to our results, McDermott and 

colleagues (2017) found education and high cognitive activity were predictors of memory 

resilience to AD genetic risk. Additionally, Kaup and colleagues (2015) found education and 

high literacy level predicted resilience to APOE genetic risk. In a recent study examining 

memory trajectory classification for older adults, McFall and colleagues (2019) found that 

education discriminated between stable memory aging and normal memory aging classes for 

Young-Old and Old-Old adults. Furthermore, their results also indicated that high education and 

high cognitive activity discriminated between stable memory aging and declining memory aging 

classes across both age strata. Although stable memory aging does not necessarily denote 

cognitive resilience, it is probable that some of the individuals in their stable memory aging class 

have various risk factors for AD. Therefore, factors discriminating stable memory aging from 

normal memory aging may be relevant to consider in the context of cognitive resilience. In the 

present chapter, education was found to discriminate resilient from non-resilient subclasses only 

for the memory and EF domains. Notably, these are the two of the most age-sensitive cognitive 

functions, in which decline is salient and detectable in the preclinical phases of AD (Mortamais 

et al., 2017). Therefore, it is plausible that EF and memory domains would be selectively 

sensitive to factors that have influences on neural development, such as education in the early 

life.  

Age is a key risk factor for cognitive decline and neurodegenerative diseases (Guerreiro 

& Bras, 2015). Results from the present chapter indicated that younger age was a predictor of EF 

resilience to frailty. Notably, a recent study by Cabellero and colleagues (2020) investigated 

predictors of EF trajectories in older adults and found that age was a significant predictor of 

membership in the highest performing subclass, similar to the results in this chapter. 
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Mechanistically, age-related losses in prefrontal cortex (PFC) volume and cortical thickness may 

be responsible for this association. Greater PFC volume and thickness is associated with higher 

performance on various EF tasks (Yuan & Raz, 2014). Thus, age-related deterioration of the PFC 

may influence EF resilience to the effects of frailty.  

While our results indicated that current alcohol use was associated with memory 

resilience to frailty, mixed evidence exists for the interplay between cognitive function and 

alcohol use. For example, a reverse u-shaped pattern has been established, as several studies 

provide evidence that moderate alcohol use is associated with a reduced risk of cognitive decline 

and heavy alcohol use is associated with faster cognitive decline (Neafsey & Collins, 2011; 

Richard et al., 2017; Sabia et al., 2014). However, it has been contested that the relationship may 

be domain specific, with an inverted u-shape pattern indicated for memory, and a linear pattern 

indicated for global cognition and EF (Reas, Laughlin, Kritz-Silverstein, Barrett-Connor, & 

McEvoy, 2016). As the present chapter did not examine the amount of alcohol consumed, future 

research could examine the dose-dependent relationship relative to cognitive resilience.  

Marital status is an important risk/protective factor for cognitive decline and impairment 

but is often overlooked (Liu, Zhang, Burgard, & Needham, 2019; Liu, Zhang, Choi, & Langa, 

2020). Our results indicate that being married contributed to memory resilience to frailty. This 

effect could be due to the psychosocial benefits (e.g., social activity, cognitive activity, and 

emotional support) associated with having a partner throughout the lifespan.  

Sex is an important factor influencing cognitive performance and change (McCarrey, An, 

Kitner-Triolo, Ferrucci, & Resnick, 2016). It is well established that females have a higher risk 

for AD and dementia (Podcasy & Epperson, 2016). Additionally, previous research has shown 

that females have higher levels of frailty than males and high frailty levels are predictive of 
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lower memory performance and more memory decline over time for females (Gordon et al., 

2017; Thibeau, McDermott, McFall, Rockwood, & Dixon, 2019). To add further complexity, 

McDermott and colleagues found that memory resilience was predicted by a greater number and 

wider breadth of factors for females than males. Moreover, McFall and colleagues (2019) 

indicated that female sex discriminated between the stable memory aging and normal memory 

aging classes, and between stable memory aging and declining memory aging classes across both 

Young-Old and Old-Old age strata. Interestingly, the results of the present chapter indicated 

female sex was a significant predictor of memory resilience, indicating existence of a small 

subsample of females that are resilient to the effects of frailty on memory performance and 

change. While the area under the receiver operating characteristic curve of this RFA was small 

(C = 0.55), this prediction result indicates two main important considerations. First, while there 

was a previously established overall effect of frailty on memory performance and change for 

females (Thibeau et al., 2019), there may be heterogeneity within this effect that is detected only 

when examining the subsample of highly frail individuals. Therefore, when examining frailty 

and memory trajectories in older females, one should take into consideration the interindividual 

variability within these developmental pathways. Second, a subsequent RFA was run on the 

subsample of females to further elucidate this interesting effect. Results indicated that several 

predictors distinguished memory resilient from non-resilient females (C = 0.62, 95% CI [0.48, 

0.76]). These factors were high education, APOE non-risk status, being married, living with 

someone, alcohol use, and high cognitive activity. Notably, in comparison to McDermott and 

colleagues (2017), all of these factors except for alcohol use and APOE non-risk status were 

common to the classes of females who had resilience to genetic risk for AD. We note that this 

additional analysis was also conducted with the subsample of males; however, there were not 
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enough participants to run the model (n = 21). Taken together, this indicates that there are several 

factors that can foster memory resilience in the face of frailty for females, offering further 

refinement on the sex effect of frailty on memory performance and change (Thibeau et al., 2019).  

Our results also suggest that while some predictors of cognitive resilience are 

generalizable across cognitive domains, such as high cognitive activity, other predictors have 

domain-specific influences. McDermott and colleagues (2017) and Kaup and colleagues (2015) 

both noted variability in prediction patterns of resilience based on subgroups of non-modifiable 

factors such as genetic risk, race, and sex. As this area of research expands and cognitive 

resilience to AD risk is examined across more studies, we may find that several factors are found 

to be selectively predictive of cognitive resilience (i.e., specific to risk factor or specific to 

cognitive domain). In the present research, we note that some factors did not predict cognitive 

resilience as expected. For example, social and volunteer activity were not found to be predictive 

of cognitive resilience to frailty, despite being robust predictors of memory resilience 

(McDermott et al., 2017). Additionally, BDNF has been related to neuroprotection through 

synaptic plasticity and the reduction of inflammation (Markar et al 2008; Martinowich et al., 

2007). BDNF has also been identified as a potential mediator of resilience (Karatsoreos & 

McEwan, 2013). Additionally, plasma BDNF levels have been found to differ in non-frail and 

frail individuals (Coelho et al., 2011), and reduced plasma BDNF levels associated with frailty 

have been related to the single nucleotide polymorphism BDNF (Ingles et al., 2016). Thus, we 

expected BDNF genetic status to be a predictive factor discriminating between resilient and non-

resilient individuals. However, our results did not support this expected result. Also, APOE 

genetic status has been previously identified as a moderator of the effect of frailty on memory 

decline. Specifically, frailty has been found to have a deleterious effect on memory decline only 
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for APOE risk carriers (Chapter Two: Thibeau et al., 2019). Additionally, there were differential 

predictive factors for cognitive resilience to APOE genetic risk status when stratified by sex and 

race (Kaup et al., 2015; McDermott et al., 2017). Taken together, we expected APOE genetic 

risk status to be predictive of cognitive resilience to frailty. However, in the present chapter, 

APOE non-risk status was predictive only of memory resilience to frailty for females, but not for 

the other two cognitive domains. Future research could examine this interesting sex-specific 

effect to see if APOE non-risk status is a predictive factor of EF or speed resilience as well.  

There are several strengths and limitations to this research. Regarding limitations, first, 

the class of frail individuals comprised a relatively small sub-sample (n = 95). However, this 

relatively frail class constituted about 15% of the study sample and was thus comparable in 

proportion to a recently estimated occurrence of frailty in non-demented, community-dwelling 

older adult samples (also 15%; Bandeen-Roche et al., 2015). From this frail class, we initiated 

the classification analyses that produced the cognitively resilient and non-resilient sub-

classifications. Although the analyses produced meaningful results, a larger relatively frail class 

would have been preferable. Second, the fit indicators (area under the Receiver Operating 

Characteristic curve) for the RFAs predicting memory and speed resilience to frailty were 

relatively small (C = 0.55 and 0.57, respectively). Such values are associated with models 

characterized as having between small to medium effect sizes (i.e., d = 0.21 and 0.26, 

respectively) (Rice & Harris, 2005; Salgado, 2018). This result indicates that our pool of 12 

predictors were moderately successful at discriminating the EF resilient from non-resilient 

subclasses (C = 0.69), but that there could be room for improvement in the discrimination for the 

memory and speed resilience subclasses. Notably, when memory resilience was considered only 

in the context of females, the C-statistic was 0.62, indicating significantly better discrimination 
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than when the model was conducted with females and males combined. We note that this 

analysis could not be applied only in the context of males, due to small cell sizes (resilient males 

n = 10; non-resilient males n = 11). In a cognitive resilience study with a similar approach but 

different form of resilience (to genetic risk), McDermott and colleagues (2017) had 22 predictors 

and found C-statistics of between 0.73 – 0.78 (females) and 0.69 – 0.72 (males) prior to a data 

augmentation approach. After the data augmentation approach was used to balance their cell 

sizes (i.e., Synthetic Minority Oversampling Technique; SMOTE; Chawla, Bowyer, Hall & 

Kegelmeyer, 2002), the AUC values increased to 0.82 – 0.91 (females) and 0.77 – 0.78 (males). 

Upon consideration, future research could examine whether a data augmentation approach would 

yield higher fit indices for cognitive resilience to frailty. Alternately, including more predictors 

may also lead to higher discrimination with RFA, thus bringing us to the third limitation. The 

number of predictors we were able to test was limited because of the comprehensive 50-item 

frailty index. In the foundational steps of this chapter, we made sure that the predictors 

considered were not also included in the frailty index, which resulted in fewer variables available 

to use for our study. Specifically, when compared with the 22 predictors used in McDermott and 

colleagues (2017), nine predictors they used were already included in the frailty index and could 

not be used to discriminate cognitive resilience to frailty. These variables were walking time, PP, 

turning time, peak expiratory flow, grip strength, depressive symptoms, physical activity, BMI, 

and anti-inflammatory medication. In order to examine a larger number of predictors of cognitive 

resilience to frailty, with the potential of having higher discrimination values for the RFA 

models, future VLS research may consider a FI with fewer indicators. Notably, 30-70 item FIs 

have been found to provide robust risk estimates, so a FI with 30 items may be a feasible target 

for future research (Cesari et al., 2014; Mitnitski, Graham, Mogilner, & Rockwood, 2002; 
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Mitnitski, Mogilner, & Rockwood, 2001). Fourth, some of the resilient or non-resilient cell sizes 

were relatively small (e.g., n = 29), however, we used RFA for the analysis, which is suitable for 

testing multiple predictors even with small sample sizes (Strobl, Hothron, et al., 2009). Fifth, 

participants were selected to be relatively healthy and non-demented, which may not be 

representative of all older adults. Notably, however, within this sample we had variable 

distributions within frailty and cognitive performance, representative of the range of variability 

within non-demented community dwelling western populations. Sixth, although frailty and the 

cognitive domains were represented with growth models based on multiple data collection 

points, predictors of resilience were tested at baseline. Testing these predictions against second 

or third data collection points could be an interesting examination of robustness of these 

predictors.  

Regarding strengths, we used an accelerated longitudinal design, spanning a 40-year band 

of aging, which allowed us a robust examination of frailty and cognitive trajectories in older 

adults. With this approach, we used age as the metric of change which enabled us to cover this 

broad band of aging in a shorter period and examine individualized trajectories of frailty and 

cognitive performance over time. Second, we note the novel focus of this chapter: resilience to 

frailty. To quantify this novel concept, we used a 50-item frailty index, and multi-item latent 

cognitive variables. The classification of subgroups within cognitive and frailty performance and 

subsequent cognitive resilience was based on level and performance across these robust 

indicators. Third, we used modern data-driven statistical approaches (LCGA and RFA) to 

examine our research goals. These advanced modern approaches provide objective classification 

and high prediction accuracy within this non-demented sample of older adults. Additionally, one 

advantage of using RFA is that all predictors are evaluated and compared in a quantitatively 
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competitive context. This evaluation produces a robust estimation of the precise order of 

predictive factors discriminating between the subclasses of resilience and non-resilience.  

In conclusion, this chapter indicates that older adults with varying frailty trajectories can 

be objectively classified into two phenotypes, frail and non-frail. Additionally, this chapter 

quantified the discordance between higher cognitive function and frailty. Specifically, cognitive 

resilience was defined as being frail and having higher levels and sustained or slightly declining 

cognitive performance. Notably, we examined cognitive resilience across three domains of 

cognition, namely memory, speed, and EF. As resilience is a multidimensional phenomenon, 

arising from the combination or interaction of several protective resources and risk factors, we 

examined whether several factors were predictors of resilience to frailty. Our prediction analyses 

revealed that factors promoted as protective for AD (e.g., cognitive activity and education) 

distinguished cognitive resilience from non-resilience to frailty. Notably, as cognitive resilience 

research progresses, many common factors which confer resilience may be identified across risk 

factors for AD. For example, it is possible that high cognitive activity will foster cognitive 

resilience to multiple types of risk for cognitive decline. In contrast, our results also indicate that 

profiles of resilience may also be unique to the risk factor being examined. Accordingly, 

identifying common predictors of cognitive resilience to AD risk has the potential for 

generalized recommendations to be made for promoting brain and cognitive health for older 

adults. Moreover, detecting unique factors that are predictive of resilience to specific types of 

AD risk fosters an opportunity for precision intervention for older adults (Dixon & Lachman, 

2019). Therefore, increasing cognitive resilience, considering the multi-dimensional health 

challenges faced by older adults, offers an opportunity for multifactorial intervention and 

assistance for this particularly vulnerable population.  
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Table 3-1 

Baseline Descriptive Statistics for Entire Sample, by Frail Class, and Cognitive Resilience Status  

   Cognitive Resilience Status Within the Frail Class 

  

Whole 

Sample 

Frail    

Class 

Memory 

Resilience  

Memory 

Non-

Resilience 

Speed 

Resilience  

Speed Non-

Resilience 

EF 

Resilience 

EF Non-

Resilience 

  n = 632 n = 95 n = 58 n = 37 n = 52 n = 43 n = 66 n = 29 

Age (years) 70.65 (8.70) 70.62 (7.22) 70.60 (7.41) 70.63 (7.02) 70.98 (7.42) 70.18 (7.04) 69.20 (7.16) 73.84 (6.35) 

Sex (% female) 66.90 77.90 82.80 70.30 78.80 76.70 77.30 79.30 

Education (years) 15.24 (2.97) 14.85 (2.89) 15.29 (2.92) 14.16 (2.73) 15.13 (3.06) 14.51 (2.67) 15.21 (2.81) 14.03 (2.96) 

Frailty Score 0.13 (0.07) 0.23 (0.07) 0.22 (0.06) 0.24 (0.08) 0.22 (0.06) 0.23 (0.08) 0.22 (0.06) 0.25 (0.08) 

Memory Score -0.07 (3.67) -0.55 (3.14) 1.25 (1.98) -3.36 (2.48) 0.17 (2.81) -1.41 (3.32) 0.49 (2.55) -2.91 (3.08) 

Speed Score -0.42 (7.08) -0.86 (6.33) 0.75 (4.40) -3.38 (7.97) 3.10 (3.53) -5.64 (5.66) 1.47 (4.56) -6.15 (6.69) 

EF Score -0.06 (0.76) -0.21 (0.68) 0.02 (0.51) -0.58 (0.75) -0.02 (0.53) -0.45 (0.76) 0.16 (0.32) -1.06 (0.48) 

MMSE 28.73 (1.21) 28.71 (1.14) 28.81 (1.05) 28.53 (1.27) 28.60 (1.11) 28.85 (1.15) 28.67 (1.11) 28.80 (1.23) 

Note. Results presented as Mean (Standard Deviation) unless otherwise stated. Abbreviations: EF, executive function; MMSE, Mini-

mental state examination score.
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Table 3-2 

List of Variables Used to Construct the 50-Item Frailty Index 

 Frailty Measures Coding 

 

 

 

 

 

 

 

 

 

 

SR 

Stroke  

 

 

 

 

 

 

 

0 = no 

0.33 = yes, not serious 

0.67 = yes, moderately 

serious 

1 = yes, very serious 

Thyroid condition 

Arthritis (rheumatoid and/or osteo-) 

Osteoporosis 

Cancer 

Asthma 

Migraines 

Stomach ulcer 

Kidney or bladder trouble 

Gastrointestinal problems (colitis/diverticulitis, gall      

bladder trouble, and/or liver trouble) 

Bronchitis or emphysema 

Diabetes 

High blood pressure 

Sex-related health problems (i.e., gynecological problems 

or prostate problems) 

Anaemia 

Drug and/or alcohol dependence 

Spinal condition and/or back trouble 
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Hardening of arteries (i.e., atherosclerosis) 

Heart trouble 

Other conditions (up to three) 

SR Number of medications 0 = 0-3; 0.5 = 4-7; 1 = 8+ 

 

 

SR 

Subjective health relative to a perfect state of health 

 

0 = very good 

0.25 = good 

0.50 = fair 

0.75 = poor  

1 = very poor 

Eyesight relative to age group 

Hearing relative to age group 

 

 

 

SR 

Health has affected ability to do chores  

0 = no change, improved, 

N/A  

0.25 = slightly reduced 

0.50 = moderately reduced 

0.75 = drastically reduced 

1 = gave up doing activity 

Health has affected ability to get around town 

Health has affected ability to do mental recreational 

activities 

Health has affected ability to do physical recreational 

activities 

Health has affected ability to do hobbies 

Health has affected ability to socialize 

Health has affected ability to travel 

SR Stay at home but in chair most of the time 0 = no; 1 = yes 

SR Number of times sick in bed all day in the past year 0 = 0-3; 1 = 4+ 

SR Number of times confined to hospital in the past year 0 = 0; 0.5 = 1-2; 3+ = 1 
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SR Feeling short of breath 0 = no; 1 = yes 

SR Use of a walker, cane, or wheelchair 0 = no; 1 = yes 

M Resting heart rate (bpm) 0 = 60-99; 1 = <60 or 100+ 

M Pulse pressure (mmHg) 0 = 52-63 ; 0.5 = 64-75.9; 1 

= 76+ 

M Peak expiratory flow (L/min) Men: 0 = >340; 1 = ≤340 

Women: 0 = >310; 1 = 

≤310 

M  

Body mass index (kg/m2) 

0 = 18.5-25 

0.5 = 25-<30 

1= <18.5 or ≥30 

M  

 

 

 

Grip strength (kg) 

Men:  

For BMI ≤24, GS ≤29  

For BMI 24.1-28, GS ≤30  

For BMI >28, GS ≤32 

Women:  

For BMI ≤23, GS ≤17  

For BMI 23.1-26, GS ≤17.3  

For BMI 26.1-29, GS ≤18  

For BMI >29, GS ≤21 

M Timed walk 0 = ≤10s; 1 = >10s 
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M Timed turn 0 = < 90th percentile 

1 = within 90th percentile 

M Finger dexterity 0 = < 90th percentile 

1 = within 90th percentile 

SR CES-D “during the past week, my sleep was restless” 

 

 

0 = rarely or none of the 

time 

0.33 = some or a little of the 

time 

0.67 = occasionally or a 

moderate amount of 

the time 

1 = most or all of the time 

SR CES-D “during the past week, I felt depressed” 

 

SR CES-D “during the past week, I felt lonely” 

 

SR CES-D “during the past week, I could not get going” 

 

 

 

SR 

 

 

Bradburn negative affect (restless, lonely, bored, 

depressed, upset due to criticism)  

0 = no to all 

0.2 = yes to one 

0.4 = yes to two 

0.6 = yes to three 

0.8 = yes to four 

1 = yes to all 

SR Physical activity at least 2-3 times per week 0 = yes; 1 = no 

 

Note. SR = Self-reported; M = measured; CES-D = Center for Epidemiological Studies 

Depression Scale  



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING   149 

 

 

 

 

Table 3-3 

Correlations Between Predictor Variables 

 

Note. Correlations were calculated for entire frail class (n = 95). Abbreviations: APOE, Apolipprotein E; BDNF, brain–derived 

neurotrophic factor. *Significant at p < 0.05, ** p < 0.001  

1 2 3 4 5 6 7 8 9 10 11 12 13

1. Age 1

2. Education 0.115 1

3. Sex 0.085 0.186 1

4. Marital status -0.043 -0.139 -0.217* 1

5. Living status -0.033 0.113 0.290** 0.535** 1

6. Pets -0.179 0.011 0.011 -0.011 0.073 1

7. Smoke -0.072 0.135 0.049 -0.021 -0.094 0.158 1

8. Drink 0.044 -0.017 0.026 0.095 0.146 0.089 -0.202* 1

9. Social Activity -0.044 0.172 -0.075 -0.060 0.050 -0.007 -0.136 -0.061 1

10. Cognitive 

Activity

-0.168 0.352** 0.191 -0.206* 0.107 0.088 -0.130 0.083 0.499** 1

11. Volunteer 

Activity

0.040 0.105 -0.071 0.038 0.070 -0.115 -0.073 -0.110 0.676** 0.352** 1

12. APOE -0.072 0.018 -0.007 0.025 -0.069 -0.125 -0.099 -0.039 0.116 0.114 0.075 1

13. BDNF -0.102 0.090 -0.119 0.118 0.028 0.020 0.138 -0.127 -0.123 -0.064 -0.069 -0.221* 1
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Table 3-4 

Goodness of Fit Indices for One to Three-Class Frailty Latent Growth Mixture Models  

 

Note. *Preferred model. Abbreviations: AIC, Akaike information criteria; BIC, Bayesian 

information criteria; -2LL, -2 log likelihood; Probability, probability of latent class membership; 

Proportion, proportion for the latent classes based on estimate model; n, sample size.  

  

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 -4394.3 -4372.1 -4404.298 - 1 1 629

2* 1 -4813.2 -4777.6 -4829.12 0.762 0.86 0.15 95

2 - - - - 0.95 0.85 534

3 1 -4941.2 -4892.3 -4963.2 0.713 0.85 0.04 25

2 - - - - 0.88 0.71 446

3 - - - - 0.08 0.25 158
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Table 3-5 

Goodness of Fit Indices for One to Three Class Memory Latent Growth Mixture Models 

 

Note. *Preferred model. -2LL, -2 log likelihood; Probability, probability of latent class 

membership; Proportion, proportion for the latent classes based on estimate model; n, sample 

size.  

  

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 1000.61 1013.00 -990.61 - 1 1 95

2* 1 912.69 932.51 896.69 0.81 0.95 0.61 58

2 - - - - 0.93 0.39 37

3 1 872.54 899.79 -850.54 0.87 0.93 0.38 35

2 - - - - 0.96 0.47 45

3 - - - - 0.91 0.16 15
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Table 3-6 

Goodness of Fit Indices for One to Three Class Speed Latent Growth Mixture Models 

 

Note. *Preferred model. Abbreviations: AIC, Akaike information criteria; BIC, Bayesian 

information criteria; -2LL, -2 log likelihood; Probability, probability of latent class membership; 

Proportion, proportion for the latent classes based on estimate model; n, sample size.  

 

  

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 1282.35 1294.68 -1272.36 - 1 1 95

2* 1 1205.47 1185.75 -1169.74 0.85 0.97 0.55 52

2 - - - - 0.95 0.45 43

3 1 1130.8 1157.93 -1108.8 0.88 0.94 0.46 44

2 - - - - 0.94 0.06 6

3 - - - - 0.98 0.43 41
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Table 3-7 

Goodness of Fit Indices for One to Three Class EF Latent Growth Mixture Models 

 

Note. * Preferred model. Abbreviations: EF, Executive Function; AIC, Akaike information 

criteria; BIC, Bayesian information criteria; -2LL, -2 log likelihood; Probability, probability of 

latent class membership; Proportion, proportion for the latent classes based on estimate model; n, 

sample size.  

  

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 399.76 412.09 -389.76 - 1 1 95

2* 1 300.92 332.58 -284.92 0.91 0.97 0.31 29

2 - - - - 0.98 0.69 66

3 1 240.98 268.1 -218.98 0.88 0.96 0.54 47

2 - - - - 0.95 0.1 9

3 - - - - 0.9 0.36 31
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Table 3-8 

Generalizability of Predictors of Resilience to Frailty Across Cognitive Domains 

  Memory Speed EF 

Age   X 

Education X  X 

Sex X   

Marital Status X   

Living Status    

Pet Ownership    

Alcohol Use X   

Cognitive Activity X X X 

Social Activity    

Volunteer Activity    

APOE    

BDNF    

 

Note. Abbreviations: APOE, Apolipprotein E; BDNF, brain–derived neurotrophic factor.  
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Figure 3-1 

Frailty Trajectories Differentiated into a 2-Class Model 

 

Note. Frailty distribution divided into 2-classes (i.e., frail n = 95, non-frail n = 534) based on 

level and slope with latent class growth analysis. Blue lines represent non-frail, red lines 

represent frailty.   
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Figure 3-2 

Memory Trajectories Differentiated into a 2-Class Model 

 

Note. Memory trajectories within the frail class, divided into two subclasses based on level and 

slope of memory with latent class growth analysis. Blue lines represent higher performing (i.e., 

memory resilience to frailty, n = 58), while red lines represent lower performance (i.e., non-

resilience to frailty, n = 37).  
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Figure 3-3 

Speed Trajectories Differentiated into a 2-Class Model 

 

Note. Speed trajectories empirically classified into a 2-subclass model based on speed 

performance and change. Blue lines represent higher performance (i.e., speed resilience to 

frailty, n = 52), while red lines indicate lower performance (i.e., non-resilience to frailty, n = 43).  
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Figure 3-4 

Executive Function (EF) Trajectories Differentiated into a 2-Class Model 

 

Note. EF trajectories within the frail class, divided into two subclasses (resilient, non-resilient) 

based on level and slope. Blue lines represent higher performance (i.e., EF resilience to frailty, n 

= 66), while red lines indicate lower performance (i.e., non-resilient to frailty, n = 29).   
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Figure 3-5 

Relative Importance of Predictors of Memory Resilience to Frailty 

 

Note. Predictors of memory resilience versus non-resilience to frailty. Dotted line represents cut-

off values for variable importance. Variable importance was calculated based on the mean 

decrease in accuracy (C = 0.55; 95% CI [0.39 – 0.63]; n = 95). Predictors to the right of the 

vertical line have the best permutation accuracy importance. Abbreviations: BDNF, brain–

derived neurotrophic factor; APOE, Apolipoprotein. 
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Figure 3-6 

Relative Importance of Predictors of Speed Resilience to Frailty 

 

Note. Predictors of speed resilience versus non-resilience to frailty. Dotted line represents cut-off 

values for variable importance. Variable importance was calculated based on the mean decrease 

in accuracy (C = 0.57; 95% CI [0.49 – 0.68]; n = 95). Predictors to the right of the vertical line 

have the best permutation accuracy importance. Abbreviations: BDNF, brain–derived 

neurotrophic factor; APOE, Apolipoprotein. 
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Figure 3-7 

Relative Importance of Predictors of Executive Function Resilience to Frailty 

 

Note. Predictors of EF resilience versus non-resilience to frailty. Dotted line represents cut-off 

values for variable importance. Variable importance was calculated based on the mean decrease 

in accuracy (C = 0.69; 95% CI [0.56 – 0.79]; n = 95). Predictors to the right of the vertical line 

have the best permutation accuracy importance. Abbreviations: BDNF, brain–derived 

neurotrophic factor; APOE, Apolipoprotein. 
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Chapter Four: Cognitive Resilience: The Crossroads of Low Mobility and High Cognitive 

Performance 

 As the world demographics shift, the percentage of people over the age of 65 is estimated 

to nearly double over the next 25 years (United Nations, 2019). While not a normal part of aging, 

cognitive impairment and dementia present a major challenge to healthcare (Shah et al., 2016). 

Dementia is a significant cause of dependence and disability, and has substantial economic costs 

(World Health Organization, 2019). Recently, dementia risk reduction was identified as an 

important target for the public health response to dementia (World Health Organization, 2019). 

In parallel, several studies have identified risk factors that are associated with cognitive decline, 

impairment, and dementia (Anstey, 2014; Livingston et al., 2017). Notably, risk-reduction is a 

feasible target for many modifiable risk factors, such as smoking or a sedentary lifestyle. 

However, some risk factors may not be modifiable or are the result of multisystem physiological 

decline and therefore not be amendable to such strategies. Therefore, a resilience framework may 

be warranted.  

Resilience in aging has been used to convey the concept that individuals can maintain or 

regain sustained levels of functioning despite significant risk factors in their lives (Staudinger & 

Greve, 2015). With regards to cognitive aging, resilience may be conceptualized as the ability to 

maintain cognitive performance over time, despite the presence of risk factors that increase the 

likelihood of decline and impairment (Anstey & Dixon, in press). Newly emerging research has 

characterized cognitive resilience as relatively high cognitive performance and stable change 

trajectories despite significant AD genetic risk (Kaup et al., 2015; McDermott et al., 2017). Of 

note, genetic risk is one of many factors that have been identified to have a negative influence on 

cognitive performance and decline.  
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Mobility deficits increase with advancing age and are the cardinal signs of further 

functional impairment (Rantakokko, Mӓnty, & Rantanen, 2013). Mobility is a core component of 

functional health that influences cognitive trajectories across midlife and older adulthood and has 

a strong predictive value for disability and morbidity (Ferrucci et al., 2016). Maintaining a high 

level of mobility is associated with increased protection against age-related structural brain 

changes and subsequent declines in EF, memory, and processing speed (Demnitz et al., 2017; 

Zhao, Tranovich, & Wright, 2014). A recent review examined the relationship with mobility and 

cognition across several domains and concluded that better mobility was associated with better 

performance in global cognition, memory, EF, and processing speed (Demnitz et al., 2017).  

In contrast, the slowing of gait speed has been identified as a marker of cognitive decline 

and impairment (Montero-Odasso, Verghese, Beauchet, & Hausdorff, 2012; Rosano & Snitz, 

2018). Declines in multisystem mobility performance measures, such as walking speed and tests 

of balance, are consistently associated with lower quality of life, adverse health outcomes, lower 

cognitive performance, transitions between normal cognition to mild cognitive impairment, 

increased risk for dementia and mortality (Cooper, Kuh, & Hardy, 2010; Grande et al., 2019; 

Hoogendijk et al, 2020; Perera et al., 2016; Studenski et al., 2011; Thibeau et al., 2017; Thibeau 

et al., 2019). Moreover, mobility limitations, impairment, and gait abnormalities are all 

indicators of altered brain function such as cognitive decline, mild cognitive impairment, and 

dementia (Hoogendijk et al., 2020; Tian et al., 2017; Varma et al., 2016; Verghese et al., 2008). 

In fact, the combination of slow gait and cognitive complaints has been termed ‘motoric 

cognitive risk syndrome’ (MCR) (Ayers, Verghese, & Allali, 2015). Conversely, it may be 

possible that older adults with low mobility levels can maintain high cognitive performance, 

displaying cognitive resilience to low mobility. As such, the present chapter examines whether 
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older adults with low mobility levels can maintain their cognitive performance, displaying 

cognitive resilience.  

Cognitive resilience may be determined by a constellation of resources that contribute to 

optimal cognitive functioning despite the presence of AD risk (Anstey & Dixon, in press; 

Staudinger & Greve, 2015). Emerging research in this area suggests that certain factors help 

protect older adults from the detrimental cognitive effects of APOE genetic risk (Kaup et al., 

2015; McDermott et al., 2017). For example, high cognitive activity and high education have 

been found to contribute to cognitive resilience to APOE genetic risk (Kaup et al., 2015; 

McDermott et al., 2017). Upon consideration, a comparable phenomenon may exist when 

considering low mobility. Specifically, factors from multiple domains may differentiate 

cognitive resilience to low mobility from non-resilience. Furthermore, this conceptualization of 

cognitive resilience to low mobility may be counter to MCR; resilience would be characterized 

in non-demented older adults as poor mobility (i.e., slow gait speed and poor balance) yet 

maintained cognitive trajectories.  

Whilst an important phenomenon, the concept of cognitive resilience to low mobility 

provides considerable benefit for older adults. Identifying and stabilizing, or even increasing 

conditions that are protective to cognitive functioning despite mobility impairment has potential 

for delaying the onset of dementia. Moreover, empirical evidence on cognitive resilience has the 

potential to provide the foundation for interventions targeted at increasing factors which foster 

resilience to AD risk.    

Research Goals 

This chapter had two main aims. First, cognitive resilience to low mobility was defined 

and characterized across three domains of cognition, including memory, speed, and EF. Second, 
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22 factors from lifestyle, demographic, health, and genetic domains were examined as predictors 

of cognitive resilience to low mobility. We assembled a distribution of individualized mobility 

trajectories covering a 40-year band of aging (53 – 95 years). We used data-driven analytics to 

investigate three research goals (RGs). For RG1 we used LCGA to classify mobility classes 

based on an algorithm of level and slope of the individualized mobility trajectories. For RG2, we 

selected the low mobility class identified in RG1 and applied LCGA to each of three cognitive 

domain trajectory distributions. These analyses served to discriminate two subclasses of 

cognitive trajectories, with the higher subclass reflecting cognitive resilience to low mobility and 

the lower subclass reflecting non-resilient trajectories. These analyses were conducted separately 

for the three cognitive domains. For RG3, RFA was used to identify salient predictors that 

discriminated the cognitively resilient from the non-resilient subclass. The same pool of 22 

potential predictors was used in the models for each cognitive domain.    

Methods 

Participants 

Participants were community-dwelling older adult volunteers of the VLS. The VLS is an 

ongoing Canadian, large-scale, long-term, multi-cohort investigation of human aging, 

impairment, and dementia as influenced by genetic, biomedical, biological, health, lifestyle, and 

other factors (Dixon & de Frias, 2004). Three main sequential samples (initially aged 53 – 95 

years) are followed at about 4-year intervals (M = 4.4-year interval). All participants provided 

written informed consent and all data collection procedures were in full and certified compliance 

(annually) with Health Research Ethics Board at the University of Alberta. As this research 

included examining genetic factors as predictive of cognitive resilience to low mobility, 

participants were limited to a source subsample who had provided biofluid for genotyping 
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between 2009 and 2011 (n = 695). This source subsample consisted of current subsets of three 

equivalent sequential cohorts, with present data collection occurring in the 2001 – 2015 period. 

The VLS cohorts were from Sample 1 (waves 6, 7, and 8), Sample 2 (waves 4 and 5), and 

Sample 3 (waves 1, 2, and 3). The total individualized duration is up to nine years (McFall et al., 

2014). As this is the same sample used in the previous chapters in the dissertation, the 

exclusionary criteria included: (a) a diagnosis of AD or dementia (n = 0), (b) missing data at all 

three waves across any one of the 50 measures used to calculate the frailty index (n = 40), and (c) 

missing data at all three waves across any one of the four measures used to calculate the 

memory, speed, or EF latent variable (n = 23). The final study sample was comprised of 632 

adults at baseline (M age = 70.7, range = 53.25 – 95.45; 66.9% female; see Table 2-1 for 

demographic information).  

DNA Extraction and Genotyping. As previously described (McFall et al., 2014), the VLS 

collected saliva according to standard biofluid collection, stabilization, and preparation 

procedures from DNA Genotek. Genetic analyses included genotype categorization based on the 

presence or absence of the risk allele. APOE genotype was divided into dichotomous categories: 

ε4+ (risk) consisted of ε4ε4 and ε3/ε4 allele combinations and ε4- (non-risk) consisted of ε2ε2, 

ε2/ε3, and ε3ε3 allele combinations. For all analyses including APOE, we removed the genotype 

which combines the risk and protective alleles (ɛ2ɛ4; n = 30; McFall et al., 2014). The genotypic 

distribution for APOE was in Hardy-Weinberg equilibrium, χ2 = 0.89. Additionally, one other 

genetic factor associated with normal aging and mobility was included (i.e., BDNF). The BDNF 

genotype was divided into two categories, Met+ (risk) and Met- (non-risk). The genotypic 

distribution for BDNF was in Hardy-Weinberg equilibrium, χ2=1.31. 
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Measures 

 Mobility. Timed walk (gait measure) and timed turn (balance measure) have both been 

previously described elsewhere (MacDonald et al., 2017; Thibeau et al., 2017). These speed 

values (in seconds) were reverse-coded, and a composite mobility score was formed with unit-

weighted z-scores of the two indicators. Higher scores indicated better mobility performance. 

 Measures for the Cognitive Latent Variables. The memory, speed, and EF tests included 

in the current chapter have been frequently used and validated with older adults in the VLS (and 

other studies). Citations indicate sources for established measurement attributes, structural 

characteristics, and sensitivity to health and neurological factors in older adult populations. For 

each set of manifest indicators, we calculated a latent variable to represent the construct (see 

Chapter Two: Thibeau et al., 2019 for the latent variable testing information and fit indices).  

 Episodic Memory. We calculated a robust latent variable comprised of four manifest 

indicators from two memory tasks (McFall et al., 2015): Word recall score on list 1, and score on 

list 2, Rey Auditory Verbal Learning Test list B1, and list A6.  

 Word Recall. Two lists of 30 content diverse English words were used to test immediate 

recall in a rotated design. Participants were given two minutes to study each list and five minutes 

to write as many words as they could recall (Dixon et al., 2004). 

 Rey Auditory Verbal Learning Test. A list of 15 nouns was read aloud and immediately 

recalled; this process was repeated for five trials (A1 – A5). Then a list (B1) of 15 unrelated 

nouns was read aloud and immediately recalled, measuring free recall. Then the participant was 

asked to recall the first list of nouns (A6), measuring recall after interference (Lezak, 1983). 

 Speed. We calculated a robust speed latent variable comprised of four manifest indicators 

from four speed tasks following established procedures (McFall et al., 2015). The tasks were 
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simple reaction time, choice reaction time, lexical decision, and sentence verification. Because 

each of the speed measures varied in complexity, we applied validated correction procedures 

with specific lower and upper limits as follows: (a) simple reaction time, 150 ms; (b) choice 

reaction time, 150 ms and 4000 ms; (b) lexical decision, 400 ms and 10000 ms; (c) sentence 

verification, 1000 ms and 20000 ms. Subsequent trials 3 standard deviations above the mean 

were removed. 

 Simple Reaction Time. Participants were presented with a warning stimulus (***) 

followed by a signal stimulus (+) in the middle of the computer screen and asked to press a key 

as quickly as possible when the signal stimulus appeared. Fifty trials were administered, and the 

latency of the 50 trials was used for analysis (Dixon et al., 2007). 

 Choice Reaction Time. A grid of (+) was presented on the computer screen, then after a 

1000 ms delay one of the (+) was changed to a square, and participants were asked to indicate 

the location of the square using a matching arrangement of keys on the response console. The 

dependent measure was the average latency across 20 trials (Palmer, MacLeod, Hunt, & 

Davidson, 1985). 

 Lexical Decision. A string of five to seven letters were presented on the computer screen. 

Participants were asked to identify as quickly as possible whether the letters formed an English 

word. The average latency across 60 trials was used for analysis (Palmer et al., 1985). 

 Sentence Verification. A sentence was presented on the computer screen and participants 

were asked to identify as quickly as possible the plausibility of the sentence. The average latency 

across 50 trials was used for analysis (Palmer et al., 1985). 
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 Executive Function (EF). We calculated a robust EF latent variable comprised of four 

manifest EF indicators (see Chapter Two, Thibeau et al., 2019 for fit indices): Hayling sentence 

completion test, Stroop test, Brixton spatial anticipation test, and Color trails test part two.  

 Hayling Sentence Completion. In section A, participants listened to 15 sentences read 

aloud with the last word missing, completing the sentence in a way that made sense and as 

quickly as possible. In section B, participants again listened to 15 sentences read aloud with the 

last word missing, completing the sentence quickly with a word that was unrelated or 

unconnected to the sentence. Response speed on both sections and errors within section B were 

used to create an overall scaled score (ranged from 1 [impaired] to 10 [very superior]) (Bielak et 

al., 2006; Burgess & Shallice, 1997).  

 Stroop. In part A, participants named the color of 24 dots (blue, green, red, or yellow) as 

quickly as possible. In part B, participants named the ink color of 24 words (e.g., “when”). In 

part C, participants named the ink color of color names (blue, green, red, or yellow) by ignoring 

the printed word and instead stating the color of the ink (e.g., if the word blue was printed in red 

ink, the correct answer was red). Scores were calculated from the interference index ([Part C 

time – Part A time]/Part A time) which reflects slowing in response to interference (Taylor, 

Kornblum, Lauber, Minoshima, & Koeppe, 1997). 

 Brixton Spatial Anticipation Test. Participants deduced simple and changing patterns by 

predicting the movement of a blue dot among ten possible positions on a page, which followed 

patterns that came and went without warning. The total errors were recorded (maximum 54) and 

converted to scaled scores. An overall standardized scaled resulted in scores ranging from 1 

(impaired) to 10 (very superior) (Bielak et al., 2006; Burgess & Shallice, 1997). 
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 Color Trails Test. Participants connected the numbers 1 to 25 by alternating between pink 

and yellow circles while disregarding the numbers in circles of the alternate color. The latency 

score to complete the task was used for analysis (lower scores indicated better performance) 

(D'Elia, Satz, Uchiyama, & White, 1996). 

 Predictors from risk domains. A total of 22 predictive factors were included to 

discriminate cognitively resilient from non-resilient subclasses. These factors were included as 

baseline measurements from three risk domains: demographic, lifestyle, and genetic factors. 

Demographic factors included participants: (a) age in years, (b) marital status, (c) education 

(total years) (d) sex (male or female), (e) living status, and (f) pet ownership (yes or no). 

Lifestyle factors included: (a) everyday novel cognitive activity, (b) social activity, (c) volunteer 

activity, (d) physical activity, (e) alcohol use (yes or no), (f) current smoking status (smoker or 

non-smoker). Genetic factors included risk or non-risk status for the following genes: (a) APOE 

and (b) BDNF. Health factors included: (a) PP, (b) peak flow, (c) grip strength, (d) BMI, (e) anti-

inflammatory medication, (f) subjective health, (g) depressive symptoms, and (h) diabetes. 

Bivariate correlations were examined for each of these predictors across each cognitive domain 

(see Table 4-2). 

Statistical Analyses 

 Analyses pertaining to our RGs included LCGA through structural equation modeling 

using Mplus7 (Muthén & Muthén, 1998) and RFA using R 3.2.3 (R Development Core Team, 

2015). Missing data was estimated in the growth models using robust maximum likelihood 

estimation. For the prediction analysis, missing predictor scores (0.02% overall, ranging from 

0.01 – 0.04% across the predictor variables) were estimated using a random forest algorithm for 
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non-parametric imputation with the “missForest” package in R for the RFA (Stekhoven & 

Bühlmann, 2012; Waljee et al., 2013).  

Foundational Analyses. Latent growth modeling was used to establish variability in 

intra-individual patterns of change over time for mobility. Growth models were tested in this 

order: (a) a fixed intercept model, which assumed no inter- or intra-individual variation, (b) a 

random intercept model, which modeled inter-individual variability in overall level but no intra-

individual change, (c) a random intercept fixed slope model, which allowed inter-individual 

variability in level but assumes all individuals exhibited the same rate of change, and (d) a 

random intercept, random slope model which allowed inter-individual variability in level and 

change. The best growth model established variability in both level and change over time for 

mobility and was used in the analyses for RG1.  

 Analyses for RG1: LCGA for Mobility Classes. The established mobility growth model 

was used to perform LCGA on the full distribution of mobility trajectories data to determine 

mobility status based on an algorithm of individualized level and slope (Hayden et al., 2011; 

Jung & Wickrama, 2008; Nylund, Asparouhob, & Muthén, 2007; McFall et al., 2019; Pietrzak et 

al., 2015; Ram & Grimm, 2009). LCGA allows for data-driven, post-hoc classification of 

individual mobility trajectories using a latent categorical variable for class (Ram & Grimm, 

2009). Three LCGA models were tested and compared: one, two, and three latent class mobility 

models. (Grimm, Ram, & Estabrook, 2016). For each class model tested, each model was a fully 

constrained growth model with a random intercept, random slope. The variance of both the 

intercept and slope were fixed to zero within the separate classes to determine differences 

(Berlin, Williams, & Parra, 2014). Model fit was determined using comparative fit indices (i.e., 

AIC, BIC, -2LL), entropy, proportion, and probability statistics (see Figure 4-1). The preferred 
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model was identified based on the following considerations: (a) low comparative fit indices, (b) 

high entropy value, (c) classes comprising a substantial proportion of the sample (>10% in each 

class), and (d) theoretical expectation. 

 Analyses for RG2: Cognitive Resilience to Low Mobility. Using the low mobility class 

established in RG1, the same LCGA procedure was used on individual memory trajectory data to 

determine resilience status classification (resilient to low mobility or non-resilient to low 

mobility) based on individualized level and slope trajectories. These steps were then repeated 

(separately) for speed and EF. For each latent cognitive variable, one-to-three class models were 

tested. Model fit was determined using comparative fit indices (i.e., AIC, BIC, -2LL), entropy, 

proportion, and probability statistics. The preferred model was identified based on the following 

considerations: (a) low comparative fit indices, (b) high entropy value, (c) classes comprising a 

substantial proportion of the sample (>10% in each class), and (d) theoretical expectation. 

 Analyses for RG3: Predictors of Cognitive Resilience to Low Mobility. RFA (R 

Development Core Team, 2015) was used to determine the most important (of 22) predictors of 

cognitively resilient or non-resilient status from four domains (i.e., genetic, demographic, health, 

and lifestyle). RFA is a supervised machine learning classification algorithm, which combines 

the predictions of many single classification and regression trees (ntree), each of which is based 

on a random sample of participants and prediction variables (mtry).  

 Using the Party Package in R 3.2.3 (R Development Core Team, 2015), our forest 

consisted of ntree = 5000 for good model stability, and at each potential split we evaluated a 

random sample of mtry = 5 predictors (√# 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠). Model strength was assessed as the 

area under the receiver operating characteristic curve (AUC; C-statistic), with values closer to 

one indicating better model strength. Relative to this chapter, the AUC equals the probability that 
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a randomly drawn score from the resilient subclass is higher than a randomly drawn score from 

the non-resilient subclass (Rice & Harris, 2005). When compared to Cohen’s d (effect size) 

statistics, a C-statistic of 0.5 is considered to be chance, between 0.51 and 0.59 a small effect 

size, between 0.6 and 0.7 a medium effect size, and 0.8 or greater is a large effect size (Rice & 

Harris, 2005). We used permutation accuracy importance to define relative variable importance 

(Strobl, Malley, & Tutz, 2009) with the cforest package in the Party Package. Variables with 

negative, zero, or small positive values (left of the dotted line in Figures 4-6 to 4-8) are not 

important predictors of cognitive resilience to low mobility. Variables beyond this range (right of 

the dotted line in Figures 4-6 to 4-8) are informative and interpreted with a ranking of relative 

importance (McDermott et al., 2017; Strobl, Hothron, & Zeileis, 2009).  

Results 

Foundational Analyses  

In the foundational analysis, we calculated a mobility growth model over a 40-year 

period. The latent growth model for mobility (higher score = better performance) indicated that 

individuals varied in the level of mobility, exhibited a significant decrease in mobility scores (M 

= -0.367, p > 0.001), and showed variable patterns of decline (b = -0.061, p > 0.001; see Figure 

4-1, and Table 4-3 for comparative fit indices). This growth model was used in the subsequent 

analysis for RG1.  

RG1: LCGA for Mobility Classes 

The analysis indicated that a two-class model provided the best solution when compared 

with the one-class or the three-class models (AIC = 6832.37, BIC = 6867.92, -2LL = 6816.37; 

entropy = 0.81; see Table 4-4 for comparative fit indices). The high mobility class was 

characterized by higher baseline levels of mobility performance and stable or slightly declining 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING   174 

 

 

 

 

mobility scores over time (n = 504 [80%], intercept = 0.19, 95% CI [-0.04, 0.42], slope = - 0.09 

95% CI [-0.11, -0.07]). The low mobility class was characterized by lower baseline levels of 

mobility performance and a more steeply declining mobility trajectory (n = 125 [20%], intercept 

= -2.34, 95% CI [-2.97, -1.71], slope -0.14, 95% CI [-0.17, -0.11]; see Figure 4-2).   

RG2: Cognitive Resilience to Low Mobility 

Memory. The memory LCGA identified a two-class memory model as the best-fitting 

solution (AIC = 1428.12, BIC = 1450.56, -2LL = -1412.14; entropy = 0.86; see Table 4-5 for 

comparative model fit indices). The higher performing subclass (resilient to low mobility) was 

characterized by higher baseline levels of memory performance and stable or slightly declining 

memory scores over time (n = 71 [57%], intercept = 1.94, 95% CI [1.62, 2.26], slope = -0.07, 

95% CI [-0.11, -0.03]). The lower performing subclass (non-resilient to low mobility) 

characterized by lower baseline levels of memory performance and a more steeply declining 

memory trajectory (n = 54 [43%], intercept = -4.25, 95% CI [-4.62, -3.88], slope -0.18, 95% CI 

[-0.23, -0.13]; see Figure 4-3).   

Speed. The speed LCGA results identified that a three-class speed model had the lowest 

comparative fit indices and a very good entropy value, however, the proportion for the lowest-

performing subclass fell below 10% of the sample, (0.07%, n = 9), so the three-class model was 

not considered further. Therefore, the two-class model was used (AIC = 1909.89, BIC = 

1932.32, -2LL = 1893.90; entropy = 0.88; see Table 4-6 for model fit indices). The higher 

performing subclass (resilient to low mobility) was characterized by higher baseline levels of 

speed performance and stable or slightly declining speed scores over time (n = 91 [73%], 

intercept = 2.98, 95% CI [2.16, 3.80], slope = -0.21, 95% CI [-0.30, -0.12]). The lower 

performing subclass (non-resilient to low mobility) characterized by lower baseline levels of 
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speed performance and a more steeply declining speed trajectory (n = 34 [27%], intercept = -

11.78, 95% CI [-12.91, -10.65], slope -0.25, 95% CI [-0.8, -0.12]; see Figure 4-4).   

EF. The EF LCGA identified that a two-class EF model fit the data better than the one-

class or the three-class models (AIC = 645.67, BIC = 668.11, -2LL = -629.68; entropy = 0.95; 

see Table 4-7 for comparative model fit indices). The higher performing subclass (resilient to 

low mobility) was characterized by higher baseline levels of EF performance and stable or 

slightly declining EF scores over time (n = 110 [88%], intercept = 0.06, 95% CI [-0.05, 0.17], 

slope = -0.04, 95% CI [-0.05, -0.03]). The lower performing subclass (non-resilient to low 

mobility) characterized by lower baseline levels of EF performance and a more steeply declining 

EF trajectory (n = 15 [12%], intercept = -1.94, 95% CI [-2.16, -1.72], slope -0.08, 95% CI [-0.10, 

-0.06]; see Figure 4-5).   

RG3: Predictors of Cognitive Resilience to Low Mobility  

RFA was used to compute the relative predictive importance of 21 factors discriminating 

resilient to low mobility from non-resilient to low mobility (separately) across each of the three 

cognitive domains. These 21 predictors came from four domains: demographic (i.e., age, sex, 

education, marital status, living status, pet ownership), health (i.e., anti-inflammatory 

medication, peak flow, grip strength, PP, BMI, depressive symptoms, diabetes, subjective 

health), genetic (i.e., APOE and BDNF genetic risk status), and lifestyle (i.e., cognitive activity, 

social activity, physical activity, volunteer activity, alcohol use). Current smoking status (smoker 

or non-smoker) was originally included but was excluded from the final list due to insufficient 

participant rates (n = 4). 

Memory Resilience to Low Mobility. Seven predictors distinguished the resilient subclass 

from the non-resilient subclass. Memory resilience to low mobility was predicted (in order of 
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relative importance) by higher physical activity, higher education, lower depressive symptoms, 

APOE genetic non-risk status, higher cognitive activity, lower alcohol use, and higher peak flow. 

Model classification performance indicated moderate discrimination (C = 0.63, 95% CI [0.53 – 

0.73], mtry = 5, ntree = 5000). Figure 4-6 shows the predictors in order of relative importance. 

The predictors to the right of the vertical line have the best permutation accuracy.  

Speed Resilience to Low Mobility. As can be seen in Figure 4-7, five predictors 

distinguished speed resilience to low mobility from non-resilience. Speed resilience to low 

mobility was predicted (in order of relative importance) by higher subjective health, higher peak 

flow, higher social activity, higher education, and younger age. Model classification performance 

indicated moderate discrimination (C = 0.65, 95% CI [0.54 – 0.76], mtry = 5, ntree = 5000).   

EF Resilience to Low Mobility. As can be seen in Figure 4-8, five predictors 

distinguished the resilient subclass from the non-resilient subclass. EF resilience to low mobility 

was predicted (in order of relative importance) by high cognitive activity, younger age, high grip 

strength, higher volunteer activity, and higher social activity. Model classification performance 

indicated moderate discrimination (C = 0.69, 95% CI [0.54 – 0.84], mtry = 5, ntree = 5000). 

Generalizability of Predictors of Resilience Across Cognitive Domains. While there 

were no predictors common to all three cognitive domains, there were predictors common to two 

of three domains of cognition (see Table 4-8). Specifically, younger age and high social activity 

were predictors of both EF and speed resilience to low mobility. High education and higher peak 

flow were predictive of both memory and speed resilience to low mobility. Additionally, high 

cognitive activity was a predictor of both memory resilience and EF resilience to low mobility.  
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Discussion 

 The overall aim of this chapter was to establish and define cognitive resilience to low 

mobility and examine factors that are predictive of resilience. To address this aim, we examined 

three research goals by applying a series of data-driven analytics to longitudinal trajectory 

distributions. First, we identified distinct, separable classes of mobility trajectories for non-

demented older adults. Second, we examined cognitive resilience to low mobility across three 

domains of cognition (i.e., memory, speed, and EF). Cognitive resilience to low mobility was 

empirically defined as a high level of cognitive performance and stability or slight decline 

despite low mobility levels. Third, we examined multifactorial determinants of resilience, 

identifying factors uniquely contributing to resilience to low mobility, separately across three 

cognitive domains.  

RG1: LCGA for Mobility Classes 

  Utilizing the full distribution of mobility trajectories across a 40-year band of aging, we 

empirically established two separate and distinct classes of level and performance. These classes 

were calculated based on an algorithm considering individualized mobility level and slope data. 

The high performing mobility class was characterized by high mobility level and slightly 

declining mobility over time. The low mobility class was characterized by low mobility level and 

rapidly declining mobility over time. We note that our low mobility class (19.8%) is relatively 

consistent with of the overall occurrence of mobility disability (20.6%) in a community-

dwelling, non-demented older population (Statistics Canada, 2016).   

 A previous longitudinal study by White and colleagues (2013) characterized three 

trajectories of gait speed (i.e., fast decline, moderate decline, and slow decline) in 2364 older 

adults aged 70 – 79. Their results indicated that 22% of their sample had fast gait speed decline, 
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which was characterized by a slower gait speed and a steep decline in gait speed over eight years. 

Although we have a wider age range in our sample and include measures of balance in our 

mobility measure, the proportion of older adults in the ‘fast decline’ group is similar to our class 

of low mobility. Recently, a study by Ferrucci and colleagues (2016) discussed the vast 

heterogeneity in the trajectory of mobility loss for older adults. They proposed a hypothetical 

representation of individualized mobility trajectories and a grand mean, depicting the individual 

versus population trend in mobility from age 20 to 100. Additionally, they identified a critical 

inflection point in mobility decline that occurs around 70 years of age for the population yet 

noted that individualized trends may show these critical declines at a varied rate. Notably, our 

novel results empirically establish the vast variability in mobility level and change in a non-

demented older population aged 55 – 95. Furthermore, we have characterized two classes within 

the overall mobility distribution which conceptualizes two differentially aging phenotypes. For 

the subsequent analyses, we used the low mobility class to characterize cognitive resilience and 

non-resilience. 

RG2: Cognitive Resilience to Low Mobility 

For the second research goal, the class of individuals with low mobility was used to 

examine cognitive resilience and non-resilience across three cognitive domains, memory, speed, 

and EF. These resilient and non-resilient trajectories were differentiated by an algorithm 

considering individualized level and slope data (McDermott et al., 2017; McFall et al., 2019). 

Notably, the LCGA revealed that cognitive trajectories in a sample of older adults with low 

mobility could be classified into two separate, distinct, neighboring phenotypes (i.e., higher 

cognitive performance and less decline, and lower cognitive performance and steeper decline 

trajectories). The subclass with higher cognitive performance was classified as resilient to low 
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mobility and the subclass with lower cognitive performance was classified as non-resilient to low 

mobility. Notably, a recent longitudinal study by Gonzales and colleagues (2020) identified joint 

trajectories of cognitive performance (measured by MMSE) and gait speed in older adults aged 

65 – 74. Their results established three latent classes: (a) relatively stable cognition and gait 

(labelled stable cognition and gait), (b) deteriorating cognition and gait (labelled cognitive and 

physical vulnerability), and (c) stable cognition and deteriorating gait (labelled physical 

vulnerability). While their research goal was to identify joint trajectories of cognition and gait 

speed changes, considered with the present research, their physical vulnerability class may 

represent a class of older adults cognitively resilient to deteriorating gait speed. Future research 

could examine these subclasses of joint trajectories to identify similarities and differences when 

compared with the phenomenon of cognitive resilience.  

Of note, our results revealed that the number of cognitively resilient individuals varied 

within each cognitive domain (i.e., memory resilience n = 71; speed resilience n = 91; EF 

resilience n = 110). Upon further examination, 14% (n = 18) were considered resilient in one of 

three domains, 30% (n = 38) were resilient in two of three domains, and 49% (n = 61) were 

resilient in all three domains. Regarding the non-resilient proportions, 7% (n = 9) of the low 

mobility sample were considered non-resilient across all three cognitive domains, 21% (n = 20) 

were non-resilient in two of three domains, and 36% (n = 34) were non-resilient in one of three 

domains. These results indicate that while resiliency is possible across three cognitive domains, 

it may be largely domain-specific and best measured using multiple domains. Additionally, this 

is one of the first studies that consider: (a) cognitive resilience across three age-sensitive domains 

of cognition, and (b) resilience in the lens of low mobility.  
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RG3: Predictors of Cognitive Resilience to Low Mobility  

 Overall, for the third research goal, results indicated a number of factors from four broad 

domains (i.e., demographic, lifestyle, health, and genetic) predicted resilient status differentially 

for three cognitive domains. While relevant predictors were not common across all three 

domains of cognition, particular predictors were similar across two of the three cognitive 

domains. Specifically, younger age and high social activity were common predictors of speed 

and EF resilience, high education and high peak flow were common to memory and speed 

resilience, and high cognitive activity was common to memory and EF resilience. This 

interesting result signifies the vast network of factors differentially influencing cognitive 

performance in older adults. For example, while almost 50% of individuals were cognitively 

resilient in all three domains of cognitive performance, most of the factors that contribute to 

domain-specific resilience were distinct and disparate. Unique predictors of memory resilience to 

low mobility included alcohol consumption, high physical activity, no depressive symptoms, and 

APOE non-risk genetic status. Subjective health was a distinctive factor differentiating speed 

resilience from non-resilience to low mobility. High volunteer activity and high grip strength 

were also distinctive to EF resilience.  

 Recently, Gonzales and colleagues (2020) examined the predictors contributing to joint 

gait and cognition trajectory differences. Their results indicated that membership in the class of 

low mobility and high cognitive performance (termed physical vulnerability class) was predicted 

by female sex and BMI. Neither factor was a predictor of cognitive resilience in the present 

research. Notably, they used MMSE as a global measure of cognitive function, and therefore 

differential predictors could be seen when examining domain-specific factors as our results 
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indicate. Further research in this area is necessary to establish the generalizability of our results 

to other older adult populations.  

In the demographic domain, younger age and high education were identified as predictors 

of cognitive resilience in differential domain-specific patterns. It is well established that age-

related cognitive declines occur outside of any neurodegenerative process, and advancing age is 

one of the three greatest risk factors for AD (Deary et al., 2009; Reidel, Thomspon, & Brinton, 

2016; Salthouse, 2009). Additionally, education has been identified as a fundamental protective 

factor for cognitive health and has been positively associated with baseline cognition and 

delayed onset of decline (Clouston et al., 2020; Zahodne & Zajacova, 2020). This effect is 

thought to be a result of increased cognitive reserve (Schneeweis, Skirbekk, & Winter-Ebmer, 

2014; Stern, 2012). In recent research, younger age and high education were identified as 

genetically robust predictors of memory resilience (McDermott et al., 2017). In contrast, while 

higher education was a robust predictive factor, older age was found to be a predictor of global 

cognitive resilience to APOE genetic risk for white but not black older adults. With this 

interesting contrast in age results, future research could examine resilience as stratified by age 

groups to identify potentially differential factors associated with domain-specific cognitive 

resilience (see McFall et al., 2019 for an example of this analyses).  

In the lifestyle domain, predictors of cognitive resilience to low mobility include alcohol 

use, high cognitive activity, high social activity, high physical activity, and high volunteer 

activity. These results are consistent with recent research on memory resilience to AD genetic 

risk. Specifically, McDermott and colleagues (2017) identified that cognitive, physical, social, 

and volunteer activity predicted resilient status to AD genetic risk. Notably, the cognitively 

beneficial effects of an engaged lifestyle have been extensively supported in the literature 
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(Anstey et al., 2014; Borgeest et al., 2020; Dause & Kirby, 2019; Etnier, Drollette, & Slutsky, 

2019; Kivipelto, Mangialasche, & Ngandu, 2018). The beneficial brain effects of a physically 

and cognitively engaged lifestyle are well documented and likely supported through neural 

plasticity, neurogenesis, synaptogenesis, angiogenesis, increased neural connectivity, reduced 

cellular atrophy, and increased cognitive reserve (Chapman, Spence, Aslan, & Keebler, 2017; 

Dause & Kirby, 2019; Lista & Sorrentino, 2010). Social engagement and volunteer activity are 

largely thought to have their effect through the relationship with cognitive and physical activity, 

increased social support, and more positive health behaviors (Brown, Robitaille, Zelinski, Dixon, 

& Piccinin, 2016; Dause & Kirby, 2019; Watt et al., 2014). Regarding alcohol, some patterns of 

alcohol use have been associated with cognitive benefits in older adults. Specifically, low and 

moderate alcohol consumption has been associated with beneficial effects, while heavy drinking 

has been linked to lower cognitive scores, executive impairments, brain atrophy, and a higher 

risk of dementia (Koch, Fitzpatrick, & Rapp, 2019; Rehm, Hasan, Black, Shield, & 

Schwarzinger, 2019; Topiwala, & Ebmeier, 2017).  

In the genetic domain, our results indicated that APOE non-risk was associated with 

memory resilience to low mobility. This is the first known study on cognitive resilience that 

included genetic factors as predictors. Other recent studies on this novel concept included APOE 

genetic risk status as the main variable of interest (Kaup et al., 2015; McDermott et al., 2017). 

Notably, memory deficits are the cardinal marker of AD, and APOE ɛ4 is the main genetic risk 

factor for sporadic AD. Recent evidence suggests that some of the cognitive deficits seen for 

APOE risk carriers result from developing AD neuropathology (O’Donoghue, Murphy, 

Zamboni, Nobre, & Mackay, 2018). Therefore, it is possible that APOE genetic risk carriers are 
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more susceptible to the effect of low mobility on memory, lending to the contribution of non-risk 

status to resilience.  

In the health domain, predictors of cognitive resilience to low mobility included lack of 

depressive symptoms, higher peak flow, higher subjective health rating, and lower PP. We note 

that these predictors were domain-specific, with only higher peak flow common to memory and 

EF resilience. Comparably, McDermott and colleagues (2017) identified that these four health 

factors differentiated memory resilient from non-resilient classes. Depressive symptoms in late-

life have been linked to lower cognitive function, faster cognitive decline, and a higher risk for 

dementia (Donovan et al., 2017; Singh-Manoux, Dugravot, & Fournier, 2017; Wei et al., 2019). 

Peak expiratory flow is a measure of pulmonary function that has been associated with both 

cognitive performance and walking speed in older adults (Emery, Finkel, & Pedersen, 2012; 

Ferreira, Tanaka, Santos-Galduroz, & Galduroz, 2015; Singh-Manoux et al., 2010; Trevisan et 

al., 2020). This relationship is thought to be due to reduced brain oxygenation, hypoxia, reduced 

neurotransmitter function, and increased inflammatory processes (Emery et al., 2012). Higher 

ratings of subjective health were associated with speed resilience to mobility limitation. There is 

a paucity of recent research on subjective health and cognitive performance, however, one older 

study indicated that self-reported health was associated with processing speed (Van Boxtel, 

Langerak, Houx, & Jolles, 1996). This is interesting, as our results indicated subjective health 

was a predictor of speed resilience. More research is needed in this area to examine this effect. 

Additionally, PP, a proxy measure of arterial stiffness, has been associated with EF performance 

and change in an older non-demented population (Caballero et al., 2020; McFall et al., 2013; 

McFall et al., 2015). Arterial stiffness is known to be a sensitive predictor of cognitive 



COGNITIVE RESILIENCE TO ADVERSITIES IN AGING   184 

 

 

 

 

impairment, mechanistically related through damages to the cerebral microcirculation (Li, Lyu, 

Ren, An, & Dong, 2017).   

Taken together, RFA indicated that multiple predictors from four broad domains 

discriminate cognitive resilience from non-resilience to low mobility. We also note that several 

of these predictive factors are modifiable (i.e., alcohol use, high cognitive, physical, social, and 

volunteer activity, depressive symptoms, peak expiratory flow, and PP), which may lead to 

promising intervention targets. Conceptually, these results suggest that older adults may be able 

to develop cognitive resilience in spite of physical health adversities. We also note that some 

factors did not predict cognitive resilience to low mobility, contrary to what we had expected. 

Specifically, it was expected that sex and APOE non-risk would differentiate between EF 

resilient and non-resilient classes. In previous VLS research, it was found that males with low 

mobility levels had faster EF decline than females with low mobility levels (Thibeau, McFall et 

al., 2019). Moreover, APOE risk has also been associated with poor mobility performance and 

EF performance and change (Melzer et al., 2005; Sapkota, Bӓckman & Dixon, 2017). Therefore, 

we expected that female sex would support cognitive resilience to low mobility, and that APOE 

non-risk would be a predictor of EF resilience but this expectation was not observed in the 

results of the present chapter. Notably, our results suggest there were distinct, domain-specific 

predictors of resilience, which lend evidence to the multifactorial model of cognitive aging. 

Precision medicine is a newly emerging concept that refers to individualizing therapeutic 

approaches to disease (National Research Council, 2011). When applied to brain aging, precision 

medicine could be conceptualized as identifying and proactively increasing individualized 

resources and reducing individualized risks for cognitive decline, impairment, and dementia. To 

put a precision medicine model into place for cognitive aging, risk categories must be identified 
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in light of other genetic, demographic, lifestyle, and functional health factors (Ryan et al., 2019). 

Our results add to emerging evidence on the novel concept of resilience and may be applied to 

developing an individualized constellation of risks and resources.  

Limitations and Strengths 

Several limitations are noted. First, participants of the VLS were initially selected to be 

relatively healthy and free of neurodegenerative diseases. Additionally, these participants are 

predominately caucasian and possess several risk-reducing factors, such as above average 

education, access to health care, and are community-dwelling. Therefore, this sample may not be 

representative of all older adults. Notably, however, within this sample we had variable 

distributions within mobility and cognitive performance, representative of the range of variability 

within non-demented community dwelling western populations. Second, the class of individuals 

with low mobility comprised a relatively small sub-sample (n = 125) from which to infer 

cognitive resilience. A larger sample of individuals with low mobility may be more informative 

however, this class (20%) is representative of the overall occurrence of mobility disability 

(between 14 and 26%) in non-demented, older community-dwelling samples (Okoro, Holllis, 

Cyrus, & Griffin-Blake, 2018; Satariano et al., 2016; Statistics Canada, 2016). Furthermore, we 

obtained meaningful estimates and results even with this smaller sample size. Specifically, the 

area under the Reciever Operating Characteristic curve (C-statistic) for all three of the RFA 

models indicated that our pool of 21 predictors was moderately successful at discriminating 

resilient from non-resilient groups within this subsample of 125 individuals. Third, the EF non-

resilient cell size was relatively small (e.g., 15) however, RFA is suitable for testing multiple 

predictors even with small sample sizes (Strobl, Hothron, & Zeileis, 2009), and we obtained a 

moderate AUC value (C = 0.69, equivalent to d = 0.70) (Salgado, 2018) with meaningful 
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predictive results. Future research could use data augmentation approaches (i.e., under sampling 

the larger subclass and oversampling the smaller subclass) with the EF subclass to see if there is 

a difference in the AUC estimates and discriminating predictors. Fourth, predictors of resilience 

were tested at baseline, and not against second or third data collection points. Future research 

could examine longitudinal predictors of resilience to test the robustness of these resilience 

predictors over time. Fifth, smoking was originally included in the set of predictors, however, 

was not used due to a low frequency of participation (n = 4). Additionally, other factors that 

could be related to cognitive resilience such as sleep time, nutritional status, cholesterol levels, 

and psychological resources, were not available in the VLS battery. Future research could 

include a broader constellation of predictors to assess the impact on cognitive resilience to AD 

risk factors.  

Five main strengths of this research are noted. First, we note the use of a sizeable, well 

characterized sample of non-demented community-dwelling older adults tested at three waves 

(wave 1, n = 632). This initial sample allowed us to portray the vast heterogeneity in mobility 

trajectories among older adults, displayed in Figure 4-1. To our knowledge, this is the first study 

to examinevariability in mobility trajectories and include model-based trajectory subclass 

analysis. This trajectory-based subclass analysis identified novel patterns of mobility stability 

and mobility decline within the overall sample. Second, we note the focus on cognitive resilience 

to low mobility. We classified a novel concept, cognitive resilience, by using the individualized 

level and slope trajectories across multi-indicator latent variables. Notably, this classification 

was performed separately on three age-sensitive domains of cognitive function, namely, 

memory, speed, and EF. Third, we used an accelerated longitudinal design, spanning a 40-year 

band of aging, which allowed us a robust examination of mobility and cognitive trajectories in 
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older adults. Fourth, age was used both as the metric of change, which enabled us to examine 

individualized trajectories of mobility and cognitive function over a broad band of human aging, 

and as a predictor of cognitive resilience. Fifth, we used contemporary statistical approaches 

(including LCGA and RFA) to sequentially examine our research goals. These advanced data-

driven modern approaches provide objective classification and high prediction accuracy within 

this non-demented sample of older adults (Cabellero et al., 2020; McFall et al., 2019).  

In summary, we provide evidence of: (a) significant heterogeneity in level and slope of 

mobility trajectories for an older non-demented population, (b) data-driven identification of 

subclasses within this broad mobility distribution, and (c) identification of resilient and non-

resilient subclasses of cognitive performance. Notably, the greater number of resilient compared 

with non-resilient individuals across all three cognitive domains supports that resilience may be 

ubiquitous (Staudinger & Greve, 2015). Therefore, developing resilience is a very promising and 

feasible target for older adults, despite the presence of AD risk factors. In that line, our results 

also indicate that multiple predictors from four broad domains (i.e., health, genetic, demographic, 

and lifestyle) differentiate between cognitively resilient and non-resilient individuals. Taken 

together, the promotion of cognitive resilience to low mobility may occur through developing a 

constellation of resources to offset dementia risk. Notably, better understanding of the drivers of 

resilience offers the opportunity to develop more effective interventions targeted at improving 

the resources needed to overcome risks and vulnerabilities.
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Table 4-1 

Baseline Descriptive Statistics for Low Mobility Class (n = 125) 

  

Low 

Mobility 

Class 

Memory 

Resilience  

Memory 

Non-

Resilience 

Speed 

Resilience  

Speed Non-

resilience 

EF 

Resilience 

EF Non-

resilience 

  n = 125 n = 73 n = 52 n = 91 n = 34 n = 108 n = 17 

Age (years) 71.31 (8.04) 70.50 (7.50) 71.88 (8.61) 70.03 (7.62) 73.95 (8.38) 70.41 (7.36) 76.05 (10.35) 

Sex (% female) 77.90 68.6 55.80 61.8 66.7 61.30 76.50 

Education (years) 15.1 (3.13) 15.75 (3.12) 14.27 (3.0) 15.48 (2.95) 14.15 (3.48) 15.24 (3.19) 14.24 (2.77) 

Mobility Score -0.40 (1.62) 0.23 (1.63) -0.43 (1.51) 0.31 (1.42) -1.0 (1.77) 0.26 (1.41) -1.74 (1.68) 

Memory Score -0.49 (6.36) 0.18 (0.56) -0.53 (1.05) 0.15 (0.57) -.86 (1.10) 0.13 (0.50) -1.76 (0.98) 

EF Score -0.15 (0.89) 2.03 (1.90) -3.68 (2.70) 0.60 (3.15) -3.13 (3.46) 0.12 (3.20) -3.86 (4.30) 

Speed Score -0.90 (7.79) 2.26 (5.26) -4.63 (8.48) 3.01 (3.96) -10.63 (5.93) 0.67 (6.73) -9.65 (6.87) 

MMSE 28.75 (1.29) 28.96 (1.17) 28.51 (1.38) 28.85 (1.24) 28.57 (1.34) 28.90 (1.17) 27.81 (1.64) 

 

Note. Baseline descriptive statistics for the low mobility class. Abbreviations: EF, executive function; MMSE, Mini-mental state 

examination score
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Table 4-2 

Bivariate Correlations for Predictors of Cognitive Resilience to Low Mobility  

 

 

Note. Correlations were calculated for entire low mobility sample (n = 125). Abbreviations: BMI, body mass index; APOE, 

Apolipprotein E; BDNF, brain–derived neurotrophic factor. 

*Significant at p < 0.05, ** p < 0.001 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1. Age 1

2. Education -0.013 1

3. Sex 0.109 0.055 1

4. Marital Status -0.118 0.001 0.267** 1

5. Living Status -0.064 -0.024 0.444** 0.354** 1

6. Pet Ownership -0.024 0.025 0.015 -0.014 0.118 1

7. Smoking 0.008 0.098 0.017 0.047 -0.195* -0.127 1

8. Alcohol Use 0.133 0.126 0.055 0.064 0.275** 0.052 -0.057 1

9. Social Activity -0.031 0.053 -0.080 -0.059 -0.129 -0.077 0.018 -0.133 1

10. Cognitive Activity -0.255** 0.348** 0.241** 0.012 0.215* -0.069 0.012 0.032 0.272** 1

11. Volunteer Activity -0.061 0.166 -0.127 -0.034 -0.242** -0.037 0.092 -0.131 0.721** 0.150 1

12. Physical Activity -0.182* 0.096 0.040 -0.076 0.119 0.074 -0.164 0.018 0.062 0.345** 0.115 1

13. Pulse Pressure 0.546** -0.072 -0.059 -0.002 0.016 0.075 -0.022 0.142 -0.164 -0.193* -0.156 -0.160 1

14. Body Mass Index 0.002 0.027 0.045 -0.126 -0.164 0.217* -0.083 -0.149 -0.041 0.029 0.045 -0.166 0.128 1

15. Grip Strength -0.268** 0.023 0.740** -0.180* 0.355** 0.051 0.012 0.067 -0.114 0.292** -0.134 0.079 -0.225* 0.107 1

16. Depressive Symptoms -0.097 -0.067 -0.110 0.043 -0.026 -0.024 -0.008 -0.060 -0.067 -0.111 -0.092 -0.173 -0.068 0.005 -0.027 1

17. Diabetes -0.072 -0.128 0.120 -0.016 -0.071 -0.068 -0.063 -0.248** -0.029 -0.022 0.066 -0.108 0.065 0.312** 0.077 -0.026 1

18. Subjective Health 0.094 -0.089 -0.097 -0.020 -0.158 0.037 -0.016 -0.057 -0.144 -0.173 -0.093 -0.158 0.230* 0.132 -0.141 -0.008 0.184* 1

19. Antiinflammatory Medication -0.043 0.011 -0.072 0.138 -0.145 -0.066 0.050 0.131 -0.096 -0.081 -0.099 -0.286** 0.009 0.071 -0.048 0.045 -0.028 0.293** 1

20. Peak Flow -0.184* 0.160 0.620** -0.227* 0.309** -0.011 -0.106 0.032 -0.006 0.330** 0.000 0.159 -0.223* -0.021 0.631** 0.029 0.051 -0.171 -0.082 1

21. APOE -0.120 0.104 0.122 0.020 0.104 -0.089 0.076 -0.036 0.038 0.175 0.005 0.152 -0.053 -0.017 0.124 -0.052 -0.101 -0.101 -0.147 0.204* 1

22. BDNF -0.115 -0.099 -0.035 0.210* 0.163 0.074 -0.039 -0.130 -0.170 -0.173 -0.156 -0.072 0.074 -0.059 0.086 0.144 0.026 0.014 -0.123 0.015 -0.052 1
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Table 4-3 

Goodness of Fit Indices for Mobility Growth Model 

Model -2LL AIC BIC D Δdf p 

Fixed Intercept 

  

5351.34 3533.34 5363.92 

   
Random Intercept 

  

4808.28 4814.27 4827.14 555.64 1 < 0.001 

Random intercept, fixed slope 4376.88 4384.88 4402.04 431.40 1 < 0.001 

Random intercept, random slope* 4198.15 4210.43 4235.89 178.73 2 < 0.001 

Note. -2LL = -2 Log likelihood; AIC = Akaike information criterion; BIC = Bayesian 

information criterion; D = difference statistic (using -2LL); Δdf = change in degrees of freedom; 

-2LL = -2 Log likelihood 

*Best fitting model 
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Table 4-4 

Goodness of Fit Indices for One to Three-Class Mobility Latent Growth Mixture Models   

 

Note. *Best fitting model. Abbreviations: AIC, Akaike information criteria; BIC, Bayesian 

information criteria; -2LL, -2 log likelihood; Probability, probability of latent class membership; 

Proportion, proportion for the latent classes based on estimate model; n, sample size. 

  

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 7320.74 7342.96 -7310.74 - 1 1 629

2* 1 6832.37 6867.92 -6816.37 0.813 0.973 0.8 504

2 - - - - 0.844 0.2 125

3 1 6695.71 6744.59 -6673.71 0.743 0.93 0.63 396

2 - - - - 0.86 0.07 41

3 - - - - 0.781 0.31 192
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Table 4-5 

Goodness of Fit Indices for One to Three-Class Memory Latent Growth Mixture Models   

 

Note. *Best fitting model. Abbreviations: AIC, Akaike information criteria; BIC, Bayesian 

information criteria; -2LL, -2 log likelihood; Probability, probability of latent class membership; 

Proportion, proportion for the latent classes based on estimate model; n, sample size. 

  

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 1572.91 1589.93 -1565.92 - 1 1 125

2* 1 1428.12 1450.56 -1412.14 0.86 0.96 0.43 54

2 - - - - 0.97 0.57 71

3 1 1369.38 1400.22 -1347.68 0.86 0.88 0.17 20

2 - - - - 0.95 0.39 47

3 - - - - 0.92 0.45 55
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Table 4-6 

Goodness of Fit Indices for One to Three-Class Speed Latent Growth Mixture Models   

 

Note. *Best fitting model. Abbreviations: AIC, Akaike information criteria; BIC, Bayesian 

information criteria; -2LL, -2 log likelihood; Probability, probability of latent class membership; 

Proportion, proportion for the latent classes based on estimate model; n, sample size. 

 

  

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 2046.23 2060.25 2036.23 - 1 1 125

2* 1 1909.89 1932.32 1893.9 0.88 0.951 0.27 34

2 - - - - 0.974 0.73 91

3 1 1807.92 1838.76 1785.92 0.89 0.982 0.07 9

2 - - - - 0.922 0.4 50

3 - - - - 0.966 0.52 65
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Table 4-7 

Goodness of Fit Indices for One to Three-Class EF Latent Growth Mixture Models   

 

Note. *Best fitting model. Abbreviations: EF, Executive Function; AIC, Akaike information 

criteria; BIC, Bayesian information criteria; -2LL, -2 log likelihood; Probability, probability of 

latent class membership; Proportion, proportion for the latent classes based on estimate model; n, 

sample size. 

 

 

 

 

 

 

 

 

 

 

 

 

Model Class AIC BIC 2LL Entropy Probability Proportion n

1 1 781.73 795.75 771.74 - 1 1 125

2* 1 645.67 668.11 629.68 0.95 0.963 0.12 15

2 - - - - 0.989 0.88 110

3 1 583.63 614.48 561.64 0.86 0.95 0.75 94

2 - - - - 0.924 0.21 26

3 - - - - 0.985 0.03 5
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Table 4-8 

Generalizability of Predictors of Resilience to Low Mobility Across Cognitive Domains 

  Memory Speed EF 

Age 
 

X X 

Education X X 
 

Sex 
   

Marital Status 
   

Living Status 
   

Pet Ownership 
   

Alcohol Use X   

Cognitive Activity X 
 

X 

Social Activity 
 

X X 

Volunteer Activity   X 

Physical Activity X 
  

Diabetes 
   

Depressive Symptoms X   

Peak Flow X X 
 

Subjective Health  X  

Anti-inflammatory Medication    

Grip Strength 
  

X 

Pulse Pressure 
   

BMI 
   

APOE X 
  

BDNF 
   

 

Note. Abbreviations: BMI, body mass index; APOE, Apolipprotein E; BDNF, brain–derived 

neurotrophic factor
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Figure 4-1 

Mobility Trajectories Across a 40-Year Band of Aging 

 

Note. Individualized mobility trajectories. The red line is the group mean trajectory line (final 

growth model random intercept, random slope; D = 178.73, Δdf = 2, p < 0.001).  
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Figure 4-2 

Mobility Trajectories Differentiated into a 2-Class Model 

 

Note. Individualized mobility trajectories differentiated into two classes (i.e., high mobility n = 

504, low mobility n = 125) based on level and slope with latent class growth analysis. Blue lines 

represent high (better) mobility, red lines represent low mobility (worse). Additionally, overall 

mean trajectory lines are displayed in the same colour.   
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Figure 4-3 

Memory Trajectories Within the Low Mobility Class 

 

Note. Memory trajectories differentiated into a 2-class model based on level and slope of 

memory with latent class growth analysis. Blue lines represent higher performing (i.e., memory 

resilience to low mobility, n = 71), while red lines represent lower performance (i.e., non-

resilience to low mobility, n = 54). Additionally, overall mean trajectory lines are displayed in 

the same colour.   
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Figure 4-4 

Speed Trajectories Within the Low Mobility Class 

 

Note. Speed trajectories differentiated into a 2-class model based on speed performance and 

change. Blue lines represent higher performance (i.e., speed resilience to low mobility, n = 91), 

while red lines indicate lower performance (i.e., non-resilience to low mobility, n = 34). 

Additionally, overall mean trajectory lines are displayed in the same colour.   
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Figure 4-5 

Executive Function (EF) Trajectories Within the Low Mobility Class 

 

Note. EF trajectories differentiated into a 2-class model based on level and slope. Blue lines 

represent higher performance (i.e., EF resilience to low mobility, n = 110), while red lines 

indicate lower performance (i.e., non-resilient to low mobility, n = 15). Additionally, overall 

mean trajectory lines are displayed in the same colour.    
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Figure 4-6 

Relative Importance of Predictors of Memory Resilience to Low Mobility 

 

Note. Predictors of resilience to low mobility versus non-resilience to low mobility. Dotted line 

represents cut-off values for variable importance. Variable importance was calculated based on 

the mean decrease in accuracy; (C = 0.63; 95% CI [0.53 – 0.73]; n = 125). Predictors to the right 

of the vertical line have the best permutation accuracy importance. Abbreviations: BMI, body 

mass index; BDNF, brain–derived neurotrophic factor.   
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Figure 4-7 

Relative Importance of Predictors of Speed Resilience to Low Mobility 

 

Note. Predictors of speed resilience versus non-resilience to low mobility. Dotted line represents 

cut-off values for variable importance. Variable importance was calculated based on the mean 

decrease in accuracy, (C = 0.65; 95% CI [0.54 – 0.76]; n = 125). Predictors to the right of the 

vertical line have the best permutation accuracy importance. Abbreviations: BMI, body mass 

index; BDNF, brain–derived neurotrophic factor; APOE, Apolipoprotein. 
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Figure 4-8 

Relative Importance of Predictors of EF Resilience to Low Mobility 

 

Note. Predictors of EF resilience versus non-resilience to low mobility. Dotted line represents 

cut-off values for variable importance. Variable importance was calculated based on the mean 

decrease in accuracy, (C = 0.69; 95% CI [0.54 – 0.84]; n = 125). Predictors to the right of the 

vertical line have the best permutation accuracy importance. Abbreviations: BMI, body mass 

index; BDNF, brain–derived neurotrophic factor.   
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Chapter Five: General Discussion 

The overall goal of the three longitudinal, programmatic studies within this dissertation 

was to examine the emerging concept of cognitive resilience despite the presence of either of two 

forms of detectable physical health adversity in a non-demented, community-dwelling, older 

population. Framed by a developmental lifespan perspective, and conceptually guided by the 

theories of individual differences (Hertzog, 2008), resilient brain aging (Park & Bischof, 2013), 

and the cognitive health and environment life course model (Anstey, 2014), this research utilized 

a salutogenic approach to examining cognitive resilience relative to two major predictors of 

cognitive decline, impairment, and dementia. We achieved this overall aim in a series of 

sequential analyses, across three longitudinal studies. As the results and details of each study are 

explicitly discussed in Chapters Two, Three, and Four, this general discussion will give a broad 

overview of the main results, integrated and compared across studies. Specifically, considering 

and integrating the commonalities across the chapters, the results of the research are identified in 

four main features. First, we established the influence of frailty on cognitive performance across 

three domains, as moderated by sex and APOE genetic risk status. Second, we established 

variability in the level and slope of individualized frailty and mobility trajectories and identified 

homogeneous classes within the overall heterogeneous frailty and mobility distributions. Third, 

we examined the classes of individuals with frailty and low mobility with regards to cognitive 

performance, establishing cognitive resilience to two physical health adversities. Specifically, 

cognitive resilience was established if the individual had relatively high cognitive performance 

and stable or slight change over time, despite the presence of a significant physical health 

adversity. Fourth, we identified common and distinct predictors distinguishing cognitively 
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resilient from non-resilient subclasses. These overall results are discussed integratively in the 

ensuing paragraphs.  

Frailty Influence on Cognitive Performance and Change 

Frailty has been associated with adverse brain and cognitive outcomes (Rockwood et al., 

2007). In Chapter Two, we aimed to examine the influence of frailty on longitudinal change in 

three domains of cognitive performance. We were guided by two overall orienting questions: 

“Does frailty performance and change influence cognitive performance and change?” and “Do 

these frailty-cognition relationships differ by sex or APOE genetic risk status?”. We used 

structural equation modeling to investigate how frailty performance or change in frailty 

influenced level and change in memory, speed, and EF. With these parallel process analyses, we 

were able to examine longitudinal relationships between frailty and cognition and separate these 

effects by sex and APOE genetic risk status. Our results indicated that the effect of frailty may be 

domain-specific, and that other risk factors for AD may moderate these effects. This research 

was among the first to contribute information about the multifactorial influences on the frailty-

cognition relationship. Once the frailty-cognition relationship was established relative to three 

age-sensitive domains of cognitive performance, this research also initiated the examination of 

frailty trajectory classification, discussed in the following section.  

Frailty and Mobility Trajectory Classes 

 The primary orienting questions for the studies presented in Chapters Three and Four 

were (a) “Do older adults vary in frailty and mobility performance and change over time?” and 

(b) “Can we separate older adults into classes within the overall frailty and mobility 

trajectories?”. Important results of this phase of the third and fourth chapters include empirical 

establishment of the vast heterogeneity in level and change frailty and mobility. Specifically, 
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separate analyses of frailty and mobility revealed that non-demented older adults had significant 

variability in initial level and rates of change. Additionally, these trajectory distributions were 

further analyzed into classes based on data driven LCGA utilizing individualized level and slope 

algorithms. Specifically, two classes were identified (separately) for frailty and mobility. First, a 

frail class was characterized by a higher initial level of frailty and a steep increase in frailty. 

Second, the non-frail class was characterized by a lower initial level of frailty and a stable or 

slight increase in frailty over time. For mobility, a higher mobility (better) class was 

characterized by higher initial mobility level and stable or slight decrease in mobility across 

time, while a lower mobility (worse) class was characterized by low initial mobility level and 

steeper decrease in mobility. Notably, of the 125 older adults with low mobility, only 16% (n = 

20) were also classified as having frailty. This comparison shows that although mobility 

limitations contribute to the overall construct of frailty, these two physical adversities are 

separate and relatively unshared by this older adult group.  

 Previous studies have identified separable frailty and mobility classes within older adult 

populations using similar data-driven analytic approaches. Specifically, Stow and colleagues 

(2018) examined monthly frailty index scores over a one-year period in a sample of 26000 older 

adults over the age of 75. Using latent class growth mixture models, they idenitfied three distinct 

frail classes: stable, moderately increasing, and rapidly rising classes. They further noted that the 

rapidly rising frail class was associated with an increased risk of mortality in older adults. With 

regard to mobility, a longitudinal study by White and colleagues (2013) used latent class analysis 

to identify three classes of gait speed (i.e., fast decline, moderate decline, and slow decline) in 

2364 older adults between the ages of 70 to 79. They also reported that rapidly declining gait 

speed was associated with an increased risk of mortality. In comparison, our sample of older 
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adults was comprised of adults aged 53 to 95; therefore, we offer evidence of variability in frailty 

and mobility trajectories across a wider age range, using a similar data-driven analytic approach. 

Additionally, while the aforementioned research has examined the negative consequences of 

frailty or low mobility (i.e., mortality), the present research takes a salutogenic approach by 

examining resilience, which could be conceptualized as the converse of mortality (MacLeod, 

Musich, Hawkins, Alsgaard, & Wicker, 2016).  

Empirically Characterizing Cognitive Resilience 

 After discriminating the trajectory classes in Chapters Three and Four, we then 

empirically established cognitive resilience in the presence of one of two physical health 

adversities, frailty (Chapter Three) and low mobility (Chapter Four). The overall orienting 

question for the analyses was “Are older adults able to maintain cognitive performance over 

time, despite having a physical health adversity?”. Therefore, using the classes of individuals 

with either frailty or low mobility, we applied LCGA to identify those who displayed cognitive 

resilience by performing at a relatively high and stable level despite the presence of one of the 

adversity factors. We performed these analyses separately in the trajectory distributions for the 

three cognitive domains. In contrast, non-resilience was operationally characterized as relatively 

lower and declining cognitive performance inthe presence each of these two adversities.  

Notably, our results indicated that a large proportion of non-demented older adults in our 

study with either (a) frailty or (b) low mobility were objectively classified as cognitively 

resilient. For example, regarding cognitive resilience to frailty, between 55 and 69% of older 

adults were classified as resilient, depending on the cognitive domain. For cognitive resilience to 

low mobility, between 58 and 86% of older adults were classified as resilient. This evidence 

emphasizes the ubiquity of resilience in the context of non-demented aging. Even under 
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conditions such as advancing age and physical health adversities, older adults are able to 

maintain levels of cognitive functioning (Anstey & Dixon, in press; Staudinger & Greve, 2016).  

Correspondingly, McDermott and colleagues identified that 61% (n = 110) of their 

sample of older adults with APOE ɛ4 genetic risk were classified as cognitively resilient, and 

62% (n = 134) of their sample with CLU genetic risk were classified as cognitively resilient. In 

contrast, Kaup and colleagues (2015) termed only 28% (n = 187) of the APOE ɛ4 carriers as 

resilient. This discrepancy in the proportion of resilient older adults could be due to (a) statistical 

methods used to establish resilient subclasses, (b) conceptually different definitions of resilience. 

or (c) different samples. For example, latent class growth analyses used in the present research to 

establish resilience directly within the context of risk. Latent class growth modeling is a data-

driven technique to identify meaningful homogeneous subpopulations within the larger 

heterogeneous distribution (Jung & Wickrama, 2008). Specifically, in Chapters Three and Four, 

higher (resilient) and lower (non-resilient) performing subclasses were established within the 

class of individuals with the adversity. In contrast, Kaup and colleagues (2015) used linear 

mixed-effects regression models to characterize global cognitive trajectories and then defined 

resilience by using change values which compared trajectories from the highest tertile of APOE 

risk carriers with the entire cohort. In their study, cognitive resilience was determined relative to 

the cognitive performance of the entire cohort (including non-risk carriers). Notably, these are 

two theoretically and methodologically distinct ways of conceptualizing resilience. Of 

importance, our definition of resilience was directed from a salutogenic perspective, which 

assumes that older adults are characterized by risk factors for cognitive decline yet focuses on 

the resources that explain maintenance of cognitive health (Antonovsky, 1996). In addition, the 

method we used is person-centered and data-driven; it determines resilience based on 
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individualized cognitive trajectories directly in the presence of the adversity. In contrast, the 

approach, used by Kaup and colleagues (2015), determines resilience in a group-centered 

manner, considering at-risk individuals resilient only if they perform at the highest level of the 

other older adults without the adversity risk factor. While an instructive way of characterizing 

superior cognitive performance despite the presence of a risk factor, it may negate or dismiss the 

trajectories of those who maintain their level of cognitive performance at a lower level than non-

risk carriers. Yet, these individuals may indeed be cognitively resilient, as resilience may not 

assume superior performance, but rather stabilization within the context of risk. Taken together, 

as this newly emerging area grows, future research may benefit from a consensus in empirically 

defining and examining resilience in general (Anstey & Dixon, in press) and cognitive resilience 

in particular.  

Predictive Profiles of Cognitive Resilience 

 As resilience is the product of a constellation of risk and resources which may be variable 

both between and within people and domains of functioning (Staudinger & Greve, 2016), in 

Chapters Three and Four, we also examined predictors which distinguished between cognitively 

resilient and non-resilient subclasses. Specifically, we aimed to answer the questions “What 

factors distinguish cognitively resilient from non-resilient older adults?”, and “Are the factors 

that contribute to resilience domain-specific, or are they generalized?”. To answer these 

questions, RFA was used to examine the predictive importance of factors previously associated 

with resilience, frailty, or mobility, separately across all three domains of cognition. Specifically, 

in Chapter Three, we examined whether 12 factors discriminated between cognitive resilience 

and non-resilience to frailty separately for memory, speed, and EF. These 12 factors can be 

grouped into three domains: demographic (i.e., age, education, sex, marital status, living status, 
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pet ownership); lifestyle (i.e., alcohol use, social activity, cognitive activity, and volunteer 

activity); and genetic (i.e., APOE and BDNF genetic risk status). In Chapter Four, we performed 

similar analyses with the core set of predictors combined with nine additional factors: one from 

the lifestyle domain (i.e., physical activity), and eight from the health domain (i.e., diabetes, 

depressive symptoms, peak flow, subjective health, PP, grip strength, BMI, and the use of anti-

inflammatory medication). See Table 5.1 for a comparison of the predictive factors across frailty 

andlow mobility, in all three cognitive domains. The results from both chapters are discussed 

integratively here relative to the cognitive domains, namely memory, speed, and EF.  

 Briefly, regarding memory resilience to frailty, results indicated (in order of importance) 

female sex, high education, being married, alcohol use, and high cognitive activity all 

differentiated resilient from non-resilient older adults (Chapter Three). Additionally, memory 

resilience to low mobility was predicted by (in order of importance): high physical activity, high 

education, no depressive symptoms, APOE non-risk status, high cognitive activity, alcohol use, 

and high peak expiratory flow (Chapter Four). When comparing predictive factors between 

frailty and low mobility, we note that high education, high cognitive activity, and alcohol use 

were predictive of memory resilience to both physical health adversities. Notably, these results 

are consistent with recent research on memory resilience to genetic risk. Specifically, high 

education and high cognitive activity were robust predictors of memory resilience to genetic risk 

(McDermott et al., 2017). Additionally, in their research, alcohol use predicted memory 

resilience to CLU genetic risk, but only for females.  

Regarding speed resilience, our results indicated only high cognitive activity was 

predictive of resilience to frailty (Chapter Three). In contrast, speed resilience to low mobility 

was predicted by high subjective health rating, high peak expiratory flow, high social activity, 
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high education, and younger age (Chapter Four). We did not find common predictors of speed 

resilience across the two physical health adversities. This suggests that speed resilience is unique 

to the risk factor being considered, indicating further research is necessary to elucidate this 

phenomenon.  

With regard to EF resilience to frailty, predictors discriminating resilient from non-

resilient older adults included (in order of importance): younger age, high education, and high 

cognitive activity (Chapter Three). For EF resilience to low mobility, predictors (in order of 

importance) included: high cognitive activity, younger age, high grip strength, high volunteer 

activity, and high social activity (Chapter Four). Common predictors to both physical health 

adversities included younger age and higher cognitive activity. Notably, these studies may be 

among the first to examine resilience across speed and EF domains of cognition. Future research 

could examine predictors of speed and EF resilience to other types of risk for AD, including 

genetic risk, and compare with the novel results in the present research.  

 As noted, while investigating cognitive resilience to frailty and low mobility across 

cognitive domains, we found similarities and differences in predictors of resilience, as discussed 

in the following paragraphs. 

Similarities in Predictors of Resilience to Frailty and Low Mobility. Across both frailty 

and low mobility and all three cognitive domains (i.e., six set of predictive analyses), the most 

common predictor of resilience was high cognitive activity in everyday life, which discriminated 

resilient from non-resilient subclasses for all but speed resilience to low mobility. In addition, 

high education discriminated resilience from non-resilience for all but speed resilience to frailty 

and EF resilience to low mobility. Correspondingly, McDermott and colleagues (2017) found 

that high education and high cognitive activity were robust predictors of resilience to APOE and 
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CLU genetic risk for males and females. Likewise, Kaup and colleagues (2015) found that high 

education and a literacy level over the 9th grade were racially robust predictors of global 

cognitive resilience. Mechanistically, it is thought that high education and high cognitive activity 

are beneficial to cognitive function by way of contributing to and increasing cognitive reserve 

(Stern, 2012). In fact, number of years of education (early and late life) and leisure cognitive 

activity are two factors used to indirectly measure cognitive reserve in older adults (Meng & 

D’arcy, 2012; Nucci, Mapelli, & Mondini, 2012; Opdebeeck, Martyr, & Clare, 2016; Peeters, 

Kenny, & Lawlor, 2020; Thow et al., 2018). Taken together, a generalized recommendation of 

increasing education and cognitive activity is a feasible target for older adults to develop 

resilience against multiple risk factors for cognitive decline.  

 Notably, there were other domain-specific commonalities regarding the constellations of 

factors associated with resilience. A common factor contributing to memory resilience across the 

two physical health adversities was alcohol use. This was also noted as a predictor of memory 

resilience for female CLU risk carriers (McDermott et al., 2017). Most prior studies suggest an 

inverted u-shaped relationship, indicating that low and moderate alcohol use is associated with 

cognitively protective effects, whereas heavy use is associated with adverse cognitive effects 

(Anstey, Mack, & Cherbuin, 2009; Carrigan & Barkus, 2016; Piumatti, Moore, Berridge, Sakar, 

& Gallacher, 2018; Sachdeva, Chandra, Choudhary, Dayal, & Anand, 2016). We note that in our 

research and the study done by McDermott and colleagues (2017), the alcohol use variable was 

dichotomized into yes or no categories and does not include information about the amount of 

consumption. Therefore, while outside the scope of the present reserach, future research could 

aim to quantify the amount of alcohol use that contributes to memory resilience.  
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Younger age was a common predictor of EF resilience across the the two health 

adversities. Recently, younger age has been identified as a discriminating factor of EF 

trajectories in older non-demented adults (Caballero et al., 2020). Specifically, younger age 

distinguished between EF trajectories of older adults classified in a highest-level-and-stable 

group versus a lowest-level-and-declining group. As EF is one of the most age-sensitive 

cognitive domains, with increasing age associated with structural changes in the prefrontal cortex 

and subsequent EF deficits, it makes sense that younger age would proffer resilience against the 

influence of frailty and mobility adversity for EF decline (Li, Vadaga, Bruce, & Lai, 2017).  

Differences in Predictors of Resilience to Frailty and Low Mobility. Our results 

indicated notable diversity in the predictive profiles of resilience to each of the physical health 

adversities, and across the cognitive domains. For example, comparing predictors of frailty and 

mobility adversity, there were several commonalities for memory and EF resilience, but no 

common predictors of speed resilience. This result may indicate varying pathophysiologic 

underpinnings of frailty and low mobility that lend differentially to the neuropsychological 

effects of both domain-specific cognitive performance, and the factors that may foster cognitive 

resilience. Moreover, the variability in predictive factors supports the contentions that resilience 

may be the result of unique constellations of resources that vary across different domains of 

functioning (Staudinger & Greve, 2015). Notably, this diversity in predictive factors also 

suggests that resilience to adversity does not require specific factors or resources that are only 

available to certain individuals (e.g., those of younger age, females). In fact, there may be a 

variety of resilience-fostering factors from which individuals may select what is feasible for their 

individual situation and developmental processes.  
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In sum, the machine learning prediction analyses (RFA) indicated that multiple predictors 

discriminate between data-driven subclasses of cognitively resilient and non-resilient trajectories. 

As we increase our understanding of factors that foster cognitive resilience, in the face of 

adversities, it may be possible to develop a systematic approach to fostering resilience across the 

lifespan (Staudinger & Greve, 2016).  

Future Directions 

The strengths and limitations of each study have been discussed extensively in the 

separate chapters, so rather than repeating their commonalities here, this section will focus on 

future directions and suggestions for research in this newly emerging field. First, an enhanced 

conceptual and operational understanding of resilience (in general) and cognitive resilience (in 

particular) will contribute to further advancement in this promising area (Anstey & Dixon, in 

press; Dixon & Lachman, 2019). For the latter, we suggest an operational definition that would 

apply to examination of cognitive resilience within the context of multiple common aging-related 

adversities. Specifically, as used in this dissertation, we suggest that resilience be considered 

directly in the presence of objectively measureable adversities that present elevated risk for early 

or exacerbated cognitive decline. With this approach, cognitive resilience could be examined and 

compared across multiple aging-related adversities, perhaps especially those that present risk for 

neurodegenerative disease, such as AD. For example, future research could examine cognitive 

resilience in light of other detrimental physical health factors (e.g., obesity, diabetes).  

Second, to developmentally contextualize resilience, research needs to consider 

individualized, longitudinal cognitive trajectories, across a wide band of aging. Notably, as 

suggested by Staudinger and Greve (2016; see also McFall et al., 2019), it will be important to 

determine which processes take their roots in early life and manifest in resilience constellations 
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in older age (e.g., early life education), and which practices can be fostered in later life (e.g., 

physical activity).  

Third, it may be important for future research to consider (a) age-related changes in 

resilience, as well as (b) changes across time in predictors of resilience. The present research 

considered baseline predictors of resilience and examined age as a predictor of resilience. 

However, this may only be a small piece of the puzzle. Examining resilience across (a) age 

strata, and (b) predictive factors across multiple timepoints may indicate times or ages during 

which some predictive factors are more prevalent or influential than others. Additionally, 

examining resilience considering age groups of older adults may reveal differing patterns or 

predictors of resilience for differing age strata (see McFall et al., 2019 for an example of this 

analysis). 

Fourth, future research should consider another important stratification variable, namely 

sex or gender. We are aware of only one cognitive resilience study that stratifies by sex 

(McDermott et al., 2017). Sex has been identified as one of three main risk factors for AD 

(Riedel et al., 2017) yet there is a paucity of research directly considering sex effects in cognitive 

aging research. Recently, a best-practice model for the integration of sex and gender in cognitive 

aging research has been incorporated into the Canadian Consortium on Neurodegeneration in 

Aging (CCNA) (Tierney et al., 2017). Tierney and colleagues (2017) strongly recommend that 

research designs be balanced between males and females, and that sex be considered as a main 

variable of interest. Notably, our memory resilience to frailty results indicated that there are 

factors predictive of resilience specific to females. However, we were unable to conduct the 

same analysis with the small sample of males in our study. Future research would be well 
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advised to consider a sex-balanced research design as there may be differential sex-specific 

mechanisms underlying cognitive resilience (Dixon & Lachman, 2019).  

Fifth, it will be important to determine networks of interacting factors that foster (or 

suppress) cognitive resilience over time. While our research considered a set of individual 

predictors of resilience across each cognitive domain, there may be factors that work together or 

can be clustered into composites. For example, it may be possible that some factors may 

synergistically contribute to resilience (e.g., engaged lifestyle). Therefore, considering those 

collectively may yield differing results than when considered individually. A similar approach 

(assessing dementia risk) was done using polygenic risk and healthy lifestyle scores (Lourida et 

al., 2019). Conceptually, this approach to dementia risk may be used to inform the field of 

cognitive resilience.  

Sixth, our results do not make any determinations of causality, nor of the neurological 

correlates of resilience. Instead, our research contributes to the foundational work in cognitive 

resilience. Specifically, we establish this emerging phenomenon by empirically defining 

cognitive resilience to common aging-related physical health adversities and examine possible 

age-associated factors predictive of resilience. Future research in this emerging area may 

examine the neural basis for cognitive resilience, including the distinct domain-specific neural 

correlates that are associated with the distinct results we see in this research. Finally, future 

research will need to examine how cognitive resilience can be altered by interventions targeting 

at increasing or developing resilience. While there is great potential in this novel concept, 

interventions targeting resilience have yet to be developed and tested. Notably, optimizing 

resilience across the lifespan may prove to be a feasible target for older adults at risk for 

cognitive impairment.  



COGNITIVE RESILENCE TO ADVERSITIES IN AGING 217 

 

 

 

 

 In conclusion, the present research established variability in level and slope of two 

common aging-related physical health adversities, both of which contribute to cognitive decline 

and impairment, namely frailty and mobility. In the second chapter, we examined the influence 

of frailty on cognitive performance and change as moderated by sex and APOE genetic risk. In 

the third and fourth chapters, we provided evidence that two classes of higher and lower 

performance can be empirically derived from broad distributions of frailty and mobility 

trajectories. Subsequently, in the latter chapters, we used the frailty and low mobility classes to 

operationally define and objectively determine cognitive resilience across three age-sensitive 

domains of cognition. Specifically, we identified several predictive factors of resilience to two 

physical health adversities, proffering both generalized and specific means of fostering cognitive 

resilience, despite risk for later cognitive impairment or even AD. Accordingly, identifying 

common predictors of cognitive resilience has the potential for generalized recommendations to 

be made to promote brain and cognitive health for older adults. Specific to the results of the 

present and emerging resilience research, these generalized recommendations currently include 

increasing education and cognitive activity. Furthermore, this research detected unique factors 

that were predictive of resilience to the two physical health adversities. This may foster future 

opportunities for precision interventions for older adults (Dixon & Lachman, 2019). In sum, 

identifying and quantifying cognitive resilience in the context of common aging-related 

adversities offers immense potential as an AD risk-reduction target for older adults.  
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Table 5-1 

Predictive Factors of Cognitive Resilience Across Physical Health Adversity and Cognitive 

Domain 

Predictive Factors  
Frailty  Low Mobility  

Memory Speed EF Memory Speed EF 

1. Age     X   X X 

2. Education X   X X X   

3. Sex X           

4. Marital Status X           

5. Living Status             

6. Pet Ownership             

7. Alcohol Use X     X     

8. Cognitive Activity X X X X   X 

9. Social Activity         X X 

10. Volunteer Activity           X 

11. APOE       X     

12. BDNF             

13. Physical Activity       X     

14. Diabetes             

15. Depressive Symptoms 

SSYmptons Symptoms 
      X     

16. Peak Flow       X X   

17. Subjective Health         X   

18. Anti-inflammatory 

Medication 
            

19. Grip Strength           X 

20. Pulse Pressure             

21. BMI             

 

Note. Abbreviations: APOE, Apolipprotein E; BDNF, brain–derived neurotrophic factor; BMI, 

body mass index. The first 12 predictors were used in Chapters Three and Four. The latter 

predictors were included in Chapter Four.  
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