
University of Alberta,
Department of Computing Science

“MoBed”: A Mobile Test Bed for investigating
Web Access Solutions for J2ME™-enabled devices

by

Mildred N. Ambe

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements of the degree of Master of Science.

Department of Computing Science,

University of Alberta

Edmonton, Alberta

Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96443-4
Our file Notre reference
ISBN: 0-612-96443-4

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Wireless devices like cell phones are popular in this day and age because they provide

instant gratification and convenient services to users without restricting them to a

particular place and time. Mobile devices support features like instant messaging,

calendar services, and Web browsing. There is a growing need for Web access from

mobile devices since numerous wireless applications require data from the Internet.

Challenges arise when developing software for wireless devices, due to device constraints

such as small screen sizes, limited memory, unreliable wireless connections and low

processing power.

The goal of this research is to design a test-bed for investigating different caching

and prefetching schemes for mobile devices that utilize the Java™ 2 Micro Edition

platform (J2ME™); thereby opening up a fresh perspective for providing Web access

solutions for small, wireless devices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my loving Mother and Father

Agnes and Cletus Ambe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I wish to extend my heartfelt thanks to my supervisors: Dr. Eleni Stroulia and Dr. Ioanis

Nikolaidis. Their invaluable help, ideas and support through out my research pushed me

on in the right direction. All their help is very much appreciated.

I would also like to extend many thanks to all my friends who supported me tirelessly

through out my graduate studies. My special thanks go to Josephine Felix, Yiqiao Wang,

Kavita Gandhi, Maurine Hatch, Edward Zadrozny and all others who offered me help,

advice and fun conversations over a coffee.

I would like to thank Abdullah Tuncay for all his love and support and for possessing the

knack of constantly reminding me to be happy and to keep a smile on my face.

Finally, I would like to thank my mother and father for all their love, prayers, and

encouragement all through the years, especially for always reassuring me that I could

succeed in all my endeavours.

Mildred N. Ambe

January 2004

Edmonton Alberta, Canada.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

CHAPTER 1 INTRODUCTION AND MOTIVATION 1

1.1 Motivation...1

1.2 Why J2ME?...2

1.2.1 Why bother with J2ME?.. 2

1.2.2 Basics o f the J2ME architecture................... 4

1.2.3 Programming with J2ME.. 5

1.2.4 J2ME versus Other Java™ 2 Editions...6

1.3 Contributions of this research... 8

1.4 Thesis Outline...9

CHAPTER 2 RELATED RESEARCH.. 10

2.1 Web caching.. 10

2.2 Transcoding with distillation and refinement...11

2.3 J2ME and the We b ... 12

2.4 Web Access on Mobile devices... 12

2.5 Web Prefetching...16

2.6 Performance of Caching and/or Preeetching with Proxies......................21

CHAPTER 3 A CLIENT BASELINE ARCHITECTURE....................... 24

3.1 Architectural description...24

3.1.1 The Browser MIDlet.. 26

3.1.2 The HTML Parser Package.. 28

3.1.2.1 HTML Node object.. 30

3.1.2.2 The Parser..30

3.1.2.3 The HTMLReader class..31

3.1.2.4 The HTML Tag classes...31

3.1.2.5 The HTML Scanner classes... 32

3.2 A r c h it e c t u r e I m p le m e n t a t io n .. 34

3.2.1 Drawbacks o f using an emulated environment...36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Mobile-Resident Browser Evaluation.................. 36

3.3.1 The Dataset... 37

3.3.2 The Experiment... 57

5.3.3 Experiment Analysis39

3.3.4 Limitations o f the Experiment...40

CHAPTER 4 MOBED CLIENT-PROXY ARCHITECTURE 42

4.1 The Mobile Client Component.. ..43

4.1.1 The Browser MIDlet... 45

4.1.2 The Request Dispatcher.. 45

4.1.3. The GUI Builder... 46

4.1.4 Adding a Cache on the Client.................... 47

4.2 The Proxy Server Component..47

4.2.1 The Proxy Controller class ... 50

4.2.2 The HTML Parser..................... 50

4.2.3 The Proxy Transcoder..50

4.2.3.1 The Proxy Cache..53

4.2.3.2 Cache management..54

4.2.4 Session Tracker Engine... 54

4.2.4.1 The Prediction Engine... 55

4.2.4.2 Prediction using Path Profiles.. 56

4.2.4.3 Generating Path profiles..56

4.2.4.4 Path Tree Construction from user sessions.. 57

4.2.4.5 Prediction using the Path Tree... 60

CHAPTER 5 EM PIRICAL EVALUATION... 63

5.1 Experiment 1: Caching restricted to the Proxy level...............................64

5.1.1 Objective.. 65

5.1.2 Workload Description... 65

5.1.3 Experiment Design... 65

5.1.4 Results and Evaluation.. 68

5.1.5 Comparison to the Client Baseline architecture performance..................... 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 E x p e r im e n t 2 : D a t a c o m p r e s s io n u s in g t h e P r o x y T r a n s c o d e r 70

5.2.1 Objective ... 70

5.2.2 Workload description...71

5.2.3 Experiment Design.. 71

5.2.4 Results and Evaluation.. 71

5.2.5 Comparison to the Client Baseline architecture performance.......................72

5.3 Experiment 3: Caching at the Client-level while Prefetching at the

Proxy 73

5.3.1 Objective.. 73

5.3.2 Workload description...74

5.3.3 Structure o f the Simulator...78

5.3.3.1 Time sequence illustration of a simulation run 79

5.3.4 Object and Data Structures o f the Simulator... 81

5.3.4.1 Client simulation on the MoBed Proxy server..82

5.3.4.2 The Simulator Control Flow ... 84

5.3.4.3 Experiment setup.. 87

5.3.5 Results and Analysis.. 89

5.3.5.1 Experiment 3-1... 89

5.3.5.2 Experiment 3-2..................... 94

5.3.6 Comparison to the Client Baseline architecture performance....................101

5.4 Summary..102

CHAPTER 6 CONCLUSION AND FUTURE WORK.................... 104

6.1 Research Contributions..104

6.2 Future Work..105

6.3 Conclusion... 107

BIBLIOGRAPHY... 108

APPENDICES..113

(A) The Mobile Client component.. 114

(B) The Proxy Server component..116

(1) Processing a request at the proxy... 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) Proxy Transcoder classes...

(3) Prediction at the proxy ...

(4) Client Simulation at the Proxy server (Experiment 3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables
Table 1 - The J2ME MID Profile Packages..8

Table 2 - Characteristics o f devices emulated using the J2ME Wireless Toolkit..............34

Table 3 - Listing o f Experiments performed using MoBed... 63

Table 4 - Factor-level combinations for Experiment 1 ..67

Table 5 - Observed Proxy latency for all simulation runs in Experiment 1....................... 68

Table 6 - A summary o f the train/test sets generated from the C301 workload partitions78

Table 7 - A summary o f the train/test sets generated from the CS workload partitions... 78

Table 8 - Setup fo r Experiments 3-1 and 3-2 ..88

Table 9 - Experiment 3: Factors and response variables... 89

Table 10 - Experiment 3-1: Results obtained from the C301 workload............................. 90

Table 11 - Experiment 3-1: Results obtained from the CS workload..................................91

Table 12 - Experiment 3-2: Results obtained from the C301 workload..............................96

Table 13 - Experiment 3-2: Results obtained from the CS workload..................................97

Table 14 - Prediction-accuracy rates observed from 2 different T-values using three

C301 partitions (With a cache size o f 8kB, and No Retraining phase)...............................99

Table 15 - Experiment 3-2: Prediction-accuracy rates observed from all four C301

partitions (with and without retraining)..................................... 100

Table 16 - Experiment 3-2: Prediction-accuracy rates observed from both CS partitions

(with and without retraining)... 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
Figure 1 - Java™ 2 Micro Edition MID Profile Architecture.. 5

Figure 2 - The Java Editions..6

Figure 3 - Web access in the Client Baseline Architecture... 25

Figure 4 - Initial Browser Screen............................ ... 26

Figure 5 - Browser screen with user input...26

Figure 6 - Requested Web content displayed.. 27

Figure 7 - Possible operations provided by the Browser..27

Figure 8 - Class diagram o f the HTML Parser package...29

Figure 9 - An example showing the use o f the HTML Parser object..................................30

Figure 10 - Class diagram o f the HTML tag classes (HTML Parser package).................32

Figure 11 - Class diagram o f the HTML Tag Scanner classes (HTML Parser package) 33

Figure 12 - Association between an HTML tag class and its corresponding scanner class.

.. 33

Figure 13 - Driver MIDlet used to initiate client requests from the mobile client, while

gathering information on the heap size change over time...37

Figure 14 - Sample output from the Driver MIDlet...38

Figure 15 - Required heap size as a function o f the number o f ‘parsable’ HTML nodes. 39

Figure 16 - Time taken to fetch and render a requested page as a function o f the number

o f ‘parsable’ HTML nodes.. 39

Figure 17 - Interaction between main components in the MoBed Client-Proxy

architecture..43

Figure 18 - Interaction between main sub-components in the Client Component 44

Figure 19 -A view o f the Mobile Client Cache..47

Figure 20 - The Proxy server functionality using MoBed..49

Figure 21 - Mobile Browser Page Nodes.. 51

Figure 22 - The MoBed Proxy Transcoder functionality..52

Figure 23 - An example illustrating the addition of an element to the proxy cache 53

Figure 24 - An example showing the relationship between user sessions and path profiles

... 56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 25 - PathTree construction algorithm that accepts a list o f URLSequences

(Algorithm extracted from [SKS98]).. 59

Figure 26 - Example showing how paths are maintained in a PathTree as path profiles.

 59

Figure 27 - Condensing path profiles...61

Figure 28 - Predicting using Condensing path profiles...62

Figure 29 - Experiment 1- Proxy location factor (Level 1): Remote proxy server............66

Figure 30 - Experiment 1- Proxy location factor (Level 2): Proxy located on the Web

server... 66

Figure 31 - Original bytes downloaded from Web servers Vs Proxy-transcoded bytes... 72

Figure 32 - Generating training and testing sets from a workload partition.................... 76

Figure 33 - A sample training set................ 77

Figure 34 - A sample testing set...77

Figure 35 - Time sequence illustration o f a simulation run.. 80

Figure 36 - A URLUnit object..82

Figure 37 - An illustration o f the function o f the Mobile Cache Manager........................83

Figure 38 - Function o f the Proxy MobileCacheManager component.............................. 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations
APIs... Application Programming Interfaces

CLDC... Connected Limited Device Configuration

CDC. Connected Device Configuration

HTML...Hypertext Markup Language

HTTP.............................. Hypertext Transport Protocol
IP..Internet Protocol

J2ME... Java II Micro Edition

J2SE.. Java II Standard Edition
J2EE. Java II Enterprise Edition
JVM... Java Virtual Machine
KVM... K Virtual Machine
LRU...Least Recently Used (caching policy)

LFU... Least Frequently Used (caching policy)
MIDP........................ Mobile Information Device Profile
PPM... Prediction by Partial Match
URL Uniform Resource Locator
WWW..World Wide Web

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction and Motivation
Mobile devices are becoming increasingly widespread and their everyday use is

becoming indispensable. For this reason, a variety of software applications are being

migrated to mobile platforms. These applications have to accommodate a range of

constraints in contrast to their desktop counterparts, including a different set of

interaction techniques, small screen size, limited memory and processing power.

Furthermore, wireless web-based applications also have to deal with the unreliability of

wireless connections due to possible disconnections, high bit error rate and low

bandwidth. This chapter explains the motivation for this research and provides a brief

introduction to the Java™ 2 Platform Micro Edition (from now on referred to as J2ME).

1.1 Motivation

J2ME is emerging as the de facto standard for handheld mobile devices and is being

widely adopted as the platform for delivering web services to mobile users. This chapter

introduces an experimental test-bed for evaluating caching and pre-fetching mechanisms

for the J2ME platform.

Caching and prefetching are two common solutions for coping with low

bandwidth and intermitent connectivity. Caching enables the storage of accessed web-

based content in a local structure, anticipating similar future requests. Prefetching takes

this idea one step further by anticipating future web-access by clients. There has been a

substantial body of research on the performance of caching and prefetching mechanisms

for wired network access. However, the problem is substantially different on wireless

devices, due to the constraints faced by these devices.

MoBed provides an experimental test-bed for designing, developing and

analyzing different caching and prefetching schemes that can be used in devising Web

access solutions for J2ME-enabled devices. In the first stage of this research, a simple

Web browser application was developed to fetch and display different types of web

content such as static pages with text and images and dynamic forms. In this stage, the

entire browser application functionality was implemented on the mobile device including

URL fetching, web data retrieval, HTML parsing, and user interface generation to display

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the parsed content on the mobile device. This approach proved to be very inefficient

(as was expected) because of the limited device memory and the slow connections to the

network. However, it provided a “reference” point against which other caching and

prefetching schemes can be compared.

In the final stage of this project, a flexible client-server architecture was designed to

replace the architecture described above. The client was resident on the mobile device

and the server on a wired host acting as a proxy between the mobile client and the web

servers. This new, flexible architecture allowed for various web-access functionalities to

be flexibly distributed between the client, the proxy and the server, resulting in numerous

possible configurations for experimentation. The ultimate goal is to readily provide Web

access to wireless clients, while minimising delays. Using MoBed, the following

scenarios for web access are investigated in the pursuit of this goal:

(a) Location of a local cache (at the client or proxy server)

(b) Caching using different policies and eviction schemes

(c) Prefetching data to the client, using user access history analysis

(d) Prefetching based on a ‘prefetch request’ signal from the mobile client

1.2 Why J2ME?

J2ME is emerging as a standard for handheld mobile devices and is being widely adopted

as the platform for delivering web services to mobile users. J2ME is a version of Java

targeting software development for smaller devices, such as Personal Digital Assistants,

mobile phones, two-way pagers, etc. This section provides several reasons why J2ME is

coming up on the forefront in the Wireless Web industry, and briefly describes the J2ME

architecture (with an emphasis on the Mobile Information Device Profile).

1.2.1 Why bother with J2ME?

As the wireless Internet revolution continues to grow, mobile users expect more and more

performance from handheld Internet-enabled devices. As these demands increase, more

wireless application developers look toward using a programming language that is ideally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

suited for wireless devices, namely Java. Some of the major benefits of using Java as the

programming language for wireless devices described by [RTV01] are outlined below:

• Java is rapidly becoming one of the most popular programming languages used by

software developers worldwide; as such, there are numerous developers skilled in

Java.

• Java has the advantage of being a modem object-oriented programming language,

with better programming constructs and abstraction mechanisms than other tools and

languages used for wireless software development.

• Java is cross-platform compatible: applications can be moved flexibly between

different devices.

• Wireless Java technology allows for user interaction support and graphic capabilities

for mobile devices.

• The Java platform allows for the dynamic delivery of content: Applications, services

and content can be downloaded dynamically over different kinds of networks.

The J2ME platform addresses a range of devices from phones, pagers, to high-end

devices like Internet TVs. As more consumers demand the services of such web-enabled

devices, the result is an increased interest in J2ME. Some facts and statistics outlined

below provide even more evidence of the fast growing base of J2ME:

• J2ME on handsets is supported by all major carriers and pushed by all major phone

vendors (such as Motorola, Nokia, etc) [LG-J2ME].

• The Zelos Group (zelosgroup.com) is a provider of predictive analysis for technology

vendors and service providers. It predicts that Java will be the dominant platform in

the wireless sector, with support found in over 450 million handsets sold in 2007

[McA02]. It has also been observed that the interest in Java as a platform for mobile

handsets has grown significantly, especially interest in services based on J2ME

[McA02],

• J2ME on cell phones sells: [LG-J2ME] shows that this combination is a commercial

success, with more than 94 million devices shipped worldwide since 2002 [LG-

J2ME],

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These are only a few of the statistics available that show the emergence of J2ME as a

standard for the fast growing wireless web industry [LG-J2ME]. For these and many

more reasons, research on wireless Interent usage using J2ME devices is rapidly

increasing, especially since this platform ‘has positioned itself as the best solution for an

extremely wide range of small devices’ [LG-J2ME]. As the wireless internet matures

with time, research can bring us closer and closer to the goal of sophisticated Internet

access for mobile users.

1.2.2 Basics of the J2ME architecture

J2ME was announced at the JavaOne Developer Conferences in June 1999 as a highly

optimized Java run-time environment aimed at a wide range of smaller devices, such as

pagers, Personal Digital Assistants (PDA), mobile phones and set-top boxes [NylOl].

Due to the high level of diversity between these range of devices, ‘an essential

requirement for the J2ME architecture is not only small size but also modularity and

customizability’ [RTV01]. In order to achieve modularity and scalability, the J2ME

environment provides a range of Java Virtual machines with different processor and

memory capabilities to service the diverse range of devices supported.

There are two main types of concepts used in the J2ME environment:

Configuration and Profile. A J2ME configuration defines a platform for a ‘horizontal

grouping of devices’ [RTV01] outlining the features that are expected to be available on

devices from the same category. A J2ME Profile represents a vertical device family to

ensure interoperability within a certain vertical device family [RTV01]. A profile is

layered ontop of a configuration, thereby extending the latter. As such, in a J2ME

environment, ‘an application is written for a particular profile, and a profile extends a

particular configuration’ [RTV01].

In this research, the focus is on low-end devices such as cell phones, pagers etc.

This part of the J2ME environment consists of the Connected Limited Device

Configuration (CLDC) that focuses on low-end consumer devices, and the Mobile

Information Device Profile (MIDP). The MIDP resides on or extends the CLDC, which

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

runs on top of Sun’s KVM (K Virtual machine). The latter is a compact Java Virtual

machine designed for mobile devices that are small in size and limited in resources.

Figure 1 below shows the relationship between the virtual machine, CLDC and MIDP in

the J2ME environment.

MIDP

Figure 1 - Java™ 2 Micro Edition MID Profile Architecture

1.2.3 Programming with J2ME

The MID Profile is an extension to the CLDC, and hence inherits the CLDC Application

Programming Interfaces (APIs). Java applications developed using MIDP are called

MIDlets. They use only the APIs defined by the MIDP and CLDC specifications. A

group of MIDlets of can be packaged and installed on a device in the form of a MIDlet

Suite, and can be removed only as a group.

Other Java editions provide packages that target personal computers with adequate

memory, disk storage, and processing power. J2ME targets low-end devices like cell

phones and other devices with limited footprint that cannot possible handle big packages

like the Java Standard and Enterprise editions. The MIDP package is considerably

smaller in order to fit the restrictions of these devices. When developing applications in

J2ME, there are some main issues that the programmer must be aware of:

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• There is a growing number of devices from different manufacturers with different

specifications that support J2ME, and the programmer has to be aware of what set of

devices the application is targeting.

• J2ME devices have wireless networking, simple user interfaces and persistent storage

for application-relevant data on the device. These properties differ from one device

to the other, and the developer can choose to take advantage of them in different

ways. In addition, mobile devices are always with the user, encouraging the

development of mobile applications that can be customised to a user’s needs.

• There are Java development tools available to the mobile Java developer such as

Software development kits provided by some manufacturers, and Integrated

Development Environments. Java SUN provides a J2ME Wireless Toolkit that

provides examples, CLDC/MIDP documentation as well as a customizable

environment for emulating the bahaviour of applications on a group of devices.

1.2.4 J2ME versus Other Java™ 2 Editions

Server Desktop

High-
end

devices

Low-
end

devices

Profiles MIDP

J2ME

Figure 2 - The Java Editions

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are three main Java platforms available:

• Java 2 Enterprise Edition (J2EE) - Provides support for server-based applications

• Java 2 Standard Edition (J2SE) - Designed for desktops and personal workstations

• Java 2 Micro Edition (J2ME) - Designed for limited footprint devices.

Figure 2 above shows the different Java platforms in relation with each other. J2ME is a

truncated version of J2SE. In order to keep the platform small and suitable for its target

of small devices, a lot of the Java packages present in J2SE have been removed. Some of

the J2SE packages that have been included in J2ME do not contain all the classes present

in J2SE. Code written using J2SE can be run in J2ME only if the program uses Java API

covered by both platforms. J2ME provides its own packages for persistent storage, user

interface creation, and networking.

J2ME and J2EE can be brought together by means of mobile client-server

applications. In such applications, the mobile client provides the user interface design,

while the Server handles major computationally intensive tasks. Other J2EE platform

functionalities can be used with MIDP clients, including Java Servlet API components,

Enterprise JavaBeans components, XML, as well as JDBC (Java Database Connectivity)

API.

The Proxy component classes in MoBed were implemented using the J2SE

platform, while the Client component classes utilized the J2ME MIDP APIs. There are

three main sub-components of the client component. First, the Browser MIDlet, which

starts the web-browsing application. Second, the GUI Builder, which updates the user

interface with the requested resource. Third, the Request Dispatcher, which manages the

connection between the client and the proxy. These sub-components were implemented

using some classes from all the J2ME MID Profile packages shown in Table 1 below.

The Browser MIDlet and GUI Builder used some classes from the MIDP Core,

Persistence, User interface and Application Lifecycle packages; and the Request

Dispatcher used mainly classes from the MIDP Networking, Core and Application

Lifecycle packages.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1 - The J2M E MID Profile Packages

, Package Iksi ription

User Interface javax.microedition.lcdui
features for the implementation
of user interfaces for MIDlets.

Persistence javax.microedition.rms
Provides a mechanism for

MIDlets to persistently store and
retrieve data.

Networking javax.microedition.io
Networking support based on the
GenericConnection framework

from the CLDC

Application

Lifecycle
javax.microedition.midlet

Defines interactions between
MIDlets and the environment in

which they run.

Core
javaio, java.lang,

java.util

System input and output classes;
Language and Utility Classes

included from J2SE

1.3 Contributions of this research

The main contributions of this thesis are outlined below:

• MoBed is used to investigate an intelligent method for flexibly combining caching

and prefetching schemes towards providing Web access solutions for small, wireless

devices. This project has achieved this objective while adaptively separating the

mobile-resident from the proxy-resident functionality.

• J2ME is a fairly new specification that is rapidly growing in popularity. Such

technology attracts research because it is still at an ‘adolescent’ stage, providing

ample room for growth and improvement. This research introduces a fresh

perspective on mobile web access targeted specifically towards the J2ME platform.

• Although numerous caching and prefetching schemes have been tested for wired-

networked computers, there has been there has been no systematic study of the

architecture and algorithmic design choices for mobile devices using J2ME. MoBed

serves as testbed for studying caching and prefetching mechanisms specifically for

wireless devices. Two experiments were conducted in this research. The first

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

experiment was designed to investigate the benefit of introducing caching at the

MoBed proxy level, using two caching schemes: LRU and LFU. The second

experiment consisted of trace-based simulations used to investigate a path profiling

prefetching algorithm that predicts a user’s next request based on past user access

history, and the impact of having a cache on the mobile client. The main contribution

of this research is not so much the results of these experiments, as the creation of a

clean, modular, configurable architecture testbed design for investigating mobile Web

access solutions.

1.4 Thesis Outline

This thesis is organised as follows. Chapter 2 provides a description of some related

research in areas such as Mobile Internet access, Caching, Prefetching, proxy-based

architectures, amongst others. Chapter 3 describes a Client Baseline Architecture, which

demonstrates the implications of having a mobile-resident browser, where the mobile

device performs computationally intensive tasks such as HTML Parsing, in addition to

User interface generation. The improved version of the MoBed architecture is provided

in Chapter 4. This architecture utilizes a client-proxy-server framework, which

adaptively separates the mobile-resident from the proxy-resident functionality. Chapter 5

sheds more light on the MoBed architecture implementation and its validation by means

of experiments and trace-driven simulations. A detailed description of the nature and

analysis of these experiments is provided. The contributions of this research, as well as

possible directions for future work are summarised in Chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Chapter 2 Related Research

The related research discussions in this chapter are divided into the following topics:

Web caching, Transcoding with distillation and refinement, J2ME and the Web, Web

Access on Mobile devices, Web Prefetching, and the Performance of caching and/or

Prefetching with proxies.

2.1 Web caching

Web caches exploit the locality of web page accesses, storing already-accessed web

content in the hope that, when requested again, the transfer time from the server will be

avoided, thus improving access time. By eliminating excessive transfers of stored web

content, caches open the possibility of reducing bandwidth demands as well. However,

for devices with restricted capabilities, one has to be aware that objects cached in their

original form are not necessarily in the most “convenient” representation, as they will

most likely need to be transformed in order to be rendered. In [KK098], the authors

address a set of modifications to classical proxy caching algorithms, which allow the

implementation of a soft caching proxy system. They propose a strategy called ‘Soft

Caching’, which allows a ‘lower version’ of a web object to become available on the

proxy, in addition to the real object (anticipating different clients’ needs). They provide a

framework for the caching of images and media objects, but their focus is solely on the

latter.

A more “classic” view is provided in [Dej99] where approaches to the issue of

caching from the perspective of ‘Temporal Locality’ on the Web are studied, observing

repeated accessed of one or more user to a single object. Given that caches are limited, in

size, the caching policy used needs to have a reasonable eviction policy that determines

which web objects are maintained in the cache or removed. The author’s focus is on the

estimation of probabilities for the prediction of the time of next access of the same web

object. He proposed an algorithm that tracks the previous delays between accesses of a

given web object, and uses these traces to determine the likelihood of that object being

accessed again in the near future. Since this research is still in progress, there are no

empirical evaluation results at the moment.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Transcoding with distillation and refinement

Incorporating a form of transcoding on web proxies has become an important subject of

research as well. Transcoding allows data conversion from one format to one, which is

better suited for the device that requested the information. A typical transcoder provides

distillation, a process of compressing the data while still retaining enough semantic

structure such that it is meaningful to the client [Cha95]. When a web document is

distilled and sent to the client, the full version of the document is saved on the proxy to

ensure that if the client requests any portion of the document (refinement), the proxy need

not fetch the document from scratch. In this architecture, the proxy works with ‘helper

processes’, which do the distillation using requirements provided by the proxy.

Additionally, the author proposes a load balancing resource locator for proxies. It

proposes an implementation of a complete prototype of the load-balancing resource

locator on the UNIX platform. In a nutshell, a lightweight centralized server is

maintained, which has the responsibility of managing proxies in a domain. Based on a

client request, a proxy connects to the central server requesting a given transcoder, and

the former allocates and caches transcoder addresses to the proxy. The central server

performs load balancing by making intelligent decisions about which transcoder

addresses to use [Cha95].

Additional research reported in [FB96] uses distillation and refinement of web

data to bridge the gap between the low bandwidth client and high bandwidth of servers.

An HTTP proxy was developed based on real-time distillation and refinement. In

addition to the latter, statistical models were used, allowing the user to bound latency and

exercise explicit control over bandwidth. The real-time data distillation eliminates the

need for having several representations of a document, since desired intermediate

representations can be created on demand using an appropriate distiller. The paper

therefore claims that due to distillation and refinement, bandwidth is gained even if

cycles are lost.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 J2ME and the Web

Finally, J2ME is increasingly available on mobile device platforms being used to access

web content. However, creating J2ME applications that interact with an enterprise server

takes on interesting challenges that traditional client/server and browser-based

applications do not face [Hem02]. Problems arise from the severely limited set of Java

classes available to J2ME. Re-implementing certain classes from scratch to bring the

level of support in J2ME to that of J2SE makes no particular sense due to the

requirements for small memory footprint of the applications and the limited bandwidth

constraint (in the event of loading code from elsewhere).

The Sun Microsystems white paper draft [SUN03] provides various new

guidelines for designing wireless clients for enterprise applications using J2ME and J2EE

technology. This will undoubtedly provide additional guidelines for Java developers

interested in applications that use client-server architectures. We should point out that the

platform restrictions result in a much more severe impact than deciding representations

for the objects to be transferred. The platform effectively limits the expressiveness of the

language due to the limited support classes. This latter aspect is, to the best of our

knowledge, dealt explicitly for the first time as part of a proxy architecture.

2.4 Web Access on Mobile devices

There is a rising need and importance for wireless Web access from a wide range of

mobile devices, from cellular phones, pagers, and in-car computers to palmtop computers

and other small mobile devices. Nowadays, mobile devices contain features like email

access, instant messaging, address book and calendar services, and Web browsing.

Such devices are characterized by limited keyboard, small screens, low bandwidth

connection, small memory amongst other constraints. Because of these constraints, small

devices need special consideration when accessing information from Web servers.

Mobile screen displays are generally much smaller than conventional personal computer

screens, thus allowing for only a small amount of text to be displayed at a time. As such,

there is a major issue with rendering Web content on mobile devices. Web pages may

contain multiple images, search engines, forms, and other dynamic content, which cannot

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be displayed in the same manner as on regular workstations and desktops. In certain

cases, the limitations of the device may result in certain content being non-renderable, or

simply not accessible (e.g., navigation via image-maps on a low resolution device).

These issues raise questions about different methods of improving mobile Web access

using different languages, formats and architectural designs.

The authors of [CM03] propose an architecture called Scalable Browser for

mobile devices. The Browser features include fetch-on-demand, progressive rendering,

display on demand navigation style. The overall goal of the research is to enhance the

user interface and browsing experience for handheld devices. The Scalable Browser

architecture is based on a progressive delivery and rendering process whereby partial

contents are rendered to the client. This is achieved by separating HTML pages into:

structural data (which determines the style/geometric layout of HTML tree) and semantic

data (descendants of structural data) [CM03]. In addition, the browsing is aided by

converting the HTML pages to an intermediate SVG format (XML-based language),

which retains all the features of HTML in order to ease the deployment process. The

authors claim that their architecture retains the layout and rendering styles of the original

document, reduces network overhead, improves legibility and provides a better

interaction interface. Some limitations of this architecture are regarding the fetch-on-

demand scheme, which may introduce additional latency between numerous fetches. In

addition, when partial data is rendered, the user may request it by clicking on it. This

action invokes a script resident on the client to completely render the content. This text

formatting on the client may be computationally expensive for very small devices.

Research has also been done to analyze the browsing patterns of users on mobile

devices, as is the case in [ABQ01]. The main goal of this research was to perform user-

behavior analysis for mobile users to determine the following: the type of content

wireless users are interested in; server loads over time; and the amount of time spent by

wireless users on the channel while accessing content. The experiments for this research

were carried out based on some analysis studies performed by monitoring the access

activities for mobile clients on a site designed specifically for mobile usage. Firstly, the

user behavior analysis was carried out by studying the distribution of wireless user

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sessions, as well as the number of bytes downloaded by each user. Secondly, the system

load analysis study determined the Web server loads at different times in a day as clients

accessed the system. Finally, a content analysis study was performed to determine the

sort of content the mobile users are most interested in, such as yellow pages,

entertainment etc. The authors show that they research has important implications by

shedding some light on important issues for mobile access such as query caching, server

scheduling, channel use, and TCP optimization.

A small device navigation model for web access is proposed in [STHK03],

providing architecture allows existing WWW content and services to be used on wireless

devices. The m-Links system is designed to achieved the following goals: web

navigation on small devices, digging into embedded information on web pages for useful

data, separation of service from links, and providing an open framework for others to

develop services for wireless clients. One main advantage of this scheme is that the

entire content from the requested site is not sent back to the client all at once. Pages are

summarized in a neat, hierarchical format of links to enable clear navigation. A user is

not flooded with the entire contents of a page at the initial step, but receives a list of links

through which she can “dig” for more content (“dig and do” model) [STHK03]. The m-

Links architecture consists of three main components: the link engine (processes web

pages into link data structure); the service manager (returns services appropriate for each

link e.g. read, print, send, etc), and UI generator (supports different user interfaces for

different small devices). Although the m-Links architecture provides a new navigation

model for small Internet device access, there is one main limitation the authors are

currently working to improve - “link overload” [STHK03], The latter describes a

scenario where the model (being link-centric), reacts poorly when encountering pages

with large number of links.

As discussed above, there may be a lot of benefits involved in summarizing or

partially rendering web content to mobile users, instead of sending the entire web page

contents to a small device. In [BGMPOO], the authors introduce five methods for

summarizing, browsing and progressively disclosing parts of web pages for small

handheld devices. Using this scheme, the requested web page is divided into “Semantic

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Textual Units” (STUs), which can be lists, paragraphs or image ALT tags (images are not

displayed) that are arranged in a STU hierarchy. The main contributions of this research

include: summarizing Web pages through partitioning into STUs and summarizing the

parts. The authors developed and experimented with different summarization schemes

involving selecting important, descriptive STU keywords. This summarization process is

very important, as it is the core of the progressive disclosure mechanism used for mobile

clients. Different keyword extraction techniques and summary-sentence extraction were

performed to adequately summarize the STUs. The authors demonstrate with

experiments that their summarization scheme in some case prove to be three or four times

better than no-summarization schemes.

Papadopouli et al. [PS01] present a peer-to-peer data sharing system for mobile

users called 7DS. The latter is a system that enables data exchange among peers (mobile

or stationary) by operating in two main modes: prefetch and on-demand. When the mode

is on prefetch, the system expects information needs of users and gathers resources by

querying other peers. When the mode is on-demand, the user explicitly searches for

desired information among its peers. 7DS reads a user’s history file and predicts possible

URLs the user may need later when there may be a loss of Internet connection. In this

architecture, 7DS clients store data, URLs, web pages and exchange them with interested

peers.

Sabnani [Sab97] shows that proxies can be used to process control information

and manipulate data exchanged between the mobile client and server. The author

discusses some benefits of proxies for mobile Web access: (1) proxies may hide the

diversity of mobile devices from applications; (2) proxies may reduce the amount of

communication involving the mobile device, hence reducing the consumed air

bandwidth; and (3) proxies may take over the execution of complex functions, freeing

resources of the limited devices. All these advantages are the main reasons why MoBed

involves a client-proxy-server architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

2.5 Web Prefetching

As WWW resources and services increase, significant delays are introduced in the form

of network latency, server overloads and slow response times. Prefetching has been

introduced as one of the potential schemes for reducing this Web latency. Many different

prefetching models have been introduced for usage on wired networks, but not on

wireless networks. This section sheds some light on some of the different prefetching

models that have been researched in the past.

Many prefetching models prefetch web pages based on user profiles. The research

conducted in [HBA99] introduced a prefetching model which studies the Web page

contents for all users, builds up a user profile and knowledge base from this content

analysis, thereby recognizing users’ individual preferences. This model combined

caching and prefetching in a proxy server (proxy-initiated prefetching). The latter

maintained user access logs and user interest profiles over periods of time. These two

profiles were used for creating user interest registers, which provide an insight on the

user’s possible interests (obtained by keyword extraction from visited pages). A user’s

profile is constantly updated by means of a ‘recency-before-frequency selection

algorithm’ [HBA99], and based on the user’s interest profile; web pages are prefetched

for the client. As such, this study focused on users’ individual preferences as the basis

for prefetching.

In another recent study by Cunha and Jaccoud [CJ97], the authors developed two

user models that can be used in conjunction with prefetching schemes. The first model

uses Random Walk Approximation (for capturing the long-term trend) and the second

based on Digital Signal Processing (DSP) techniques (for short-term behavior). A user’s

navigation strategy is taken into account as it poses a challenge in prefetching procedures.

Some users surf the Net over multiple, while others are more inclined to access pages on

the same site. User profiles can be explored by means of the two user models. For more

information on the details of the two empirical user models, see [CJ97]. These models

can be used for predicting a user’s next move, in combination with a prefetching

procedure.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nanopoulos et al. in [NKM01] adopted a data mining approach to prediction for

WWW access. The authors propose a method based on association patterns, which

consider all the main features of Web user navigation. One of the main contributions of

this paper includes the identification of three main factors affecting Web prefetching: the

arrangement of page accesses, the noise present in access sequences, and page access

dependencies. A new prefetching algorithm, WMo is also introduced and proven to

outperform existing algorithms. The WMo algorithm focuses on preserving ordering in

the access sequences, which is important for prefetching. All the details of the candidate

generation and pruning processes of WMo are covered in [NKM01]. The performance of

WMo was evaluated using a synthetic data generator, and analysed to achieve high

prediction rates.

Although caching and/or prefetching provide some degree of latency reduction for

Web users, all the latency cannot be completely eradicated due to bandwidth restrictions,

and download bottlenecks. Kroeger et al. [KLM97] explore this further by investigating

an upper bound for proxy-based caching and prefetching as means to effective Web

latency reduction. By distinguishing caching and prefetching algorithms into distinct

categories, the authors introduced four different models by which to test for upper

bounds. The experiments and simulations from this research show that caching and

prefetching can indeed reduce latency even though these techniques have limits in their

ability to reduce latency. A combined caching and prefetching proxy was shown to be

able to reduce latency by 60% at best [KLM97],

Prefetching in the Web can be initiated in most cases by three entities: a server

communicating with a client, an intercepting proxy, or a client machine. A combination

of client and proxy or client and server can be involved in the prefetching process. In

[PM96], Padmanabhan and Mogul introduce a scheme where a server sees several

requests from multiple clients, make predictions for pages, informs the client of the files

that may be prefetched and lets the client make a decision on whether to prefetch the files

or not. This decision is based on the clients’ current disposition such as memory,

bandwidth, or cache storage issues. In this case, even though the server determines what

files are possible options for prefetching, the client initiates prefetching. The prefetching

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm on the server represents patterns of accesses by creating dependency graphs

stored locally, and which are dynamically updated as new requests are satisfied. When a

page is being accessed, another page is only considered for prefetching if the weight of

the arc between the two pages (on the dependency graph) exceeds a prefetch threshold.

In general, the results of this research demonstrate that even though predictive

prefetching can significantly reduce perceived latency, there is a trade-off in increased

network traffic.

Prediction by Partial Matching (PPM) is a widely used prediction algorithm

employed in Web prefetching. PPM algorithms perform predictions from a prediction

tree obtained from historical URLs. Chen and Zhang [CZ02] introduce a variation to

PPM by incorporating popularity information into the PPM model (popularity-based

PPM). The authors define the popularity of a URL as the number of times it is accessed

in a time period. Incorporating popularity information into the PPM model involves

altering the prediction tree as follows: branches that hold popular URLs can lead a set of

long branches, while less popular documents can lead a set of short branches. In

addition, this model implements optimization alternatives to reduce space allocation.

Through trace simulations, the authors show that their popularity-based PPM model

greatly reduces storage space for tree nodes; and outperforms other techniques by 5 to

10% of hit ratios.

Many prefetching techniques make predictions based on user profiles and user’s

history, but B. Davison [Dav02] examines the technique of prefetching a user’s next

move by analyzing the content of recently requested pages from the user. He shows that

this approach can make predictions of actions that the user may never have done in the

past (as opposed to prefetching based on historical references). The goal of the research

is to improve user-perceived performance without querying the user for interest topics, or

altering pages presented to the user. Their approach involves modeling a user’s changing

interests by analyzing the textual contents of pages recently requested by the user. A

total of four methods were presented: baseline random ordering, original rank ordering,

and two others which rank URLs based on the similarity of the link text and non-HTML

text of preceding pages [Dav02]. The results from his research show that similarity-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based rankings performed 29% better than random link selection methods, and 40%

better than no prefetching at all (with infinite cache). The results also show that

approximately 40% of the time, a user requests information that has never been seen

before; hence showing the importance of prefetching based on page content as opposed to

past accesses.

P. Cao et al. [CFK95] presents the integration of caching and prefetching as

effective techniques of improving the performance of file systems. It provides a

performance evaluation (by simulations) of two prefetching strategies: aggressive and

conservative strategies. These strategies address the interaction between caching and

prefetching, while tackling the main issues like when to start prefetching, what should be

prefetched and what should be thrown out. The aggressive prefetching strategy always

prefetches the next block into the cache at the earliest opportunity that is presented. The

conservative prefetching strategy minimizes the elapsed time while performing a minimal

number of fetches. Their simulations show that the two strategies are close to optimal

while reducing the application elapsed time by 50%. This study focused on integrated

caching and prefetching for file systems, as opposed to the WWW scenario, but provides

insight on the integration of the two schemes.

The study in [CZ01] shows the importance of Web server input in the process of

proxy-based prefetching. It proposes a coordinated proxy-server prefetching technique

that coordinates prefetching activities at the web servers and proxy. In this paper, the

authors investigated the shortcomings of proxy-based prefetching to discover situations

where help is needed from web servers. This study employs the PPM (Partial Match)

prediction technique for prefetching. Prefetching starts after a requested object is

accessed at a level of the Internet caching system. The process continues by a search of

the PPM tree rooted by the requested object. A relative probability is assigned to every

object in the PPM tree as a ratio between the number of accesses to that object versus the

number of accesses to the root object. This relative access probability is the variable used

for adjusting the prediction accuracy in both proxy and Web servers (set to 30% in this

paper). If the requested object is not found in the PPM tree, the Web server makes the

prefetching decision. The coordinated proxy-server prefetching techniques was evaluated

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by measuring the reduction in communication over the server-based approach, and by

comparing its hit ratio with those of the server and proxy based methods. Their results

show that the byte hit ratios and hit ratios from the coordinated proxy-server prefetching

are up to 88% higher than from proxy-based, and comparable to server-based prefetching

results with 5% difference.

Markatos and Chronaki [MC98] present a Top-10 approach to prefetching,

whereby there is a combination of client access profiles with the servers’ knowledge of

their Top-10 most popular documents. The servers periodically calculate their top-10

most popular documents and prefetch them only to clients that can potentially use them

(i.e. to ‘frequent’ as opposed to ‘occasional’ users). The Top-10 approach is based on a

client-proxy-server framework. On the server end, the Top-10 daemon processes the user

access logs, computes the list of ten popular documents on that server and updates a web

page showing this information, served by an HTTP server. On the client end, there

resides a prefetching agent, which gathers a log of all the HTTP requests of the client and

periodically creates a prefetching profile of the client (list of potential servers for

prefetching). Based on this prefetching profile, the prefetching agent requests the most

popular documents from the activated servers. From trace-driven simulations based on

access logs from different servers, the performance results of the Top-10 approach in

[MC98] show that the Top-10 scheme can anticipate more than 40% of a client’s requests

with a network traffic increase of 10 to 20%.

Duchamp [Duc99] examines a new method for prefetching Web documents into

the client-side cache. The clients send references to Web servers, which collect the

information and disperse it to other clients. The reference information indicates how

often hyperlink URLs embedded in pages have been previously accessed relative to the

embedding page. The clients initiate the prefetching using any algorithm, based on their

general knowledge of the popular hyperlinks. Dynamically generated pages, as well as

pages with cookies can also be prefetched using this scheme. In addition, the prefetching

algorithm measures the available bandwidth to the client and limits the prefetching

requests to only a fraction of the bandwidth available. The author shows that as a result

of these measures, prefetching is improved, client latency is reduced by 52.3%, the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prefetch accuracy is 62.5% (prefetched pages that are eventually used), and network

traffic less than 24%.

2.6 Performance of Caching and/or Prefetching with Proxies

M. Abrams et al. [ASA+95] conducted a study to assess the limitations and potentials of

proxy servers in the caching of Web documents retrieved with different protocols using

WWW browsers. The research used a cache simulation with traffic corresponding to

three educational workloads over a semester period. The experiments involve examining

and comparing three different cache replacement policies: LRU (classic), LRU-MIN

(variant of LRU that minimizes number of replaced documents), and LRU-THOLD

(variant of LRU where no document larger than a threshold is cached). This study

demonstrated that even though caching provides valuable benefits by lowering traffic and

bandwidth, it does not provide a complete solution to the Web latency problem. The

results from this study show that: (1) using their workloads, the maximum possible hit

rate for a proxy is 30 to 50%; (2) the classic LRU policy is a poor option when the cache

is full and a document replaced, even though simple variants can drastically improve the

results; (3) some modifications to proxy server configuration parameters for a cache may

provide little benefit; (4) with the workloads used in this research, the proxy cache hit

rate tended to decline over time; and (5) hit rates increased up to 20% when all

documents are cached, regardless of its domain.

Padmanabhan and Mogul [PM96], in their research paper on using predictive

prefetching as a means to improve WWW latency, showed clients that access the WWW

through proxy caches may reap some benefits. They showed that prefetching could take

place in two main ways: between Web servers to proxy and between proxy cache to

clients. It was observed that proxies are in a good position to make prefetching-related

decisions relative to Web servers, since they can observe different client access patterns

across servers. The authors also outlined two main situations in which a proxy cache can

be invaluable from the point of view of prefetching: (1) In a scenario where a client is

connected to a proxy via a non-shared line, the idle time observed could be filled up with

prefetch traffic while ensuring that other traffic flow across the connection is not

hindered; and (2) in a second scenario where each client gets data through a high-latency,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

high-bandwidth connection and the reverse connection may be through a slow line. In

this case, prefetching would be an attractive option when the spare bandwidth and large

startup latency of fetching data on demand are taken advantage of. The authors showed

that the two scenarios described above could prove to be especially useful for

prefetching.

Markatos and Chronaki in [MC98] present a Top-10 approach to Prefetching on

the Web, and show that the use of proxies could have a positive effect on the

performance of prefetching. The authors advocated the use of proxies by showing that, in

the event of all clients accessing a server through a proxy, the latter could aggregate all

clients’ requests and qualify for prefetching as a repeated and heavy client [MC98]. They

also mention that the proxy could prefetch documents on behalf of any of its clients. This

activity would improve performance since a number of clients could be interested in the

same document that was prefetched once. The authors used trace-driven simulations with

artificial proxies, in order to test the effect of proxies on prefetching. Their experiments

showed that the hit ratio using proxy servers doubled or tripled compared to hit ratios

with no proxies used. They also observed that the increased hit ratios came with almost

no increase in network traffic; in some cases, the traffic increase was less than 20% and

in some occasions, there was a decrease in traffic. The reason for this decrease was

analyzed and determined to be as a result of many clients using the same prefetched

document. The research was taken one step further with the study of the effect of

second-level proxies on prefetching. Second-level proxies aggregate requests from first-

level proxies (which get requests from user-level clients) [MC98]. Their results for

prefetching were even more promising in this case. One server used in the experiment

reached a hit ratio of over 60%, showing a marked performance improvement, usually

accompanied by a decrease in traffic. Their research shows that proxies have an impact

on the process of prefetching documents from the WWW to clients.

Chen and Zhang in [CZ01] propose a coordinated proxy server prefetching

technique that uses reference access information and coordinates prefetching at the proxy

and Web servers. This research also involved the investigation of the conditions that

make proxy-based prefetching ineffective and needs help from Web servers. The authors

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

defined the relative hit ratio for a proxy as ‘the ratio between a hit ratio from the proxy-

based prefetching and the hit ratio from a server-based prefetching’ [CZ01]. It was

observed that as the number of clients accessing the proxy server increased, the proxy-

based prefetching ability based on relative hit ratios with a given server increased as well.

More precisely, in the conducted experiments, it was observed that as the client count

increased from 16 to 64 users, the average relative hit ratios increased from 59% to 79%

(for all servers used). Another important dimension in this research was to determine the

shared request distribution to different servers through the proxy in a WWW

environment. This study showed that in a proxy server with 1000 clients, proxy-based

prefetching could satisfy less than 40% of requests (with about 60% relative hit ratio). In

addition, for over 60% of the requests, prefetching at the proxy may not be sufficiently

adequate. The authors hence show that proxy prefetching is limited, as the other studies

described above show.

Although a lot of work has been done in caching using web proxies that act as

intermediaries between the client and the servers, few studies address the specific topic of

caching content (possibly in a transformed representation) that can be useful to mobile

devices. The related work discussed in this chapter was divided into the following

categories: WWW caching with/without proxies, transcoding with distillation and

refinement, J2ME and the Web, Web access from Mobile devices, prefetching schemes

for wired/wireless WWW access, and the performance of caching and/or prefetching with

proxies. Although numerous caching and prefetching schemes have been tested for

wired-networked computers, there has been there has been no known systematic study of

the architecture and algorithmic design choices for Web access in mobile devices using

J2ME.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3

Chapter 3 A Client Baseline Architecture

This chapter provides a detailed description of the first stage of this research. In this

stage, a mobile client baseline architecture was developed to provide a “reference” point

against with other architecture designs could be compared in the later stages of this

research. The idea for this architecture originated with an interest in porting a Web-based

browser application (that would be very practical for a workstation using on a wired

network), to a small mobile device that relies on a less reliable, wireless connection to the

Web. This architecture shows that by simply porting such an application to a wireless

client does not provide an adequate or practical solution to Web access for wireless

devices, due to the intense level of processing that is required to sufficiently run the

application. The costs of operating a simple Web browsing application (in terms of

memory and time costs) are extremely noticeable on a constrained mobile client, as

opposed to a wired client (like a personal computer) that has much larger memory

capacities and better connectivity to the Web.

Sub-sections 3.1 and 3.2 contain an in-depth description of the baseline

architecture and its implementation; and the remaining sub-sections describe the

evaluation process of this architecture

3.1 Architectural description

The overall web access process in the Client Baseline Architecture is illustrated in Figure

3 below. The architecture consists of the following components:

• The Browser MIDlet or User Interface Manager, which initiates, creates and manages

the mobile user interface.

• The HTML Parser, which establishes a connection with the Web server from which

the request can be satisfied, and provides the HTML parsing capability for converting

the requested resource data to a client-friendly version.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Mobile Client Browser

Generate User Interface for I
URL Entry J

I ~ x

User Input _

Retrieve ITRL

J L

Browser MIDlet

Connect to W 1 W Server

Read in I JRI. data bytes

’arse the HTML, data

Render parsed HTML data into
displayable format

Update User Interface to
display Web page

Web Server

Request (URL)

X. lit in]

DH HTML Parser
{___________ jSBS'""'

Browser MIDlet

Legend:

Activity on User Interface

Process

Control Flow

Manual User Input

Process carried out by the
named component

CUD
IHJ

Figure 3 - Web access in the Client Baseline Architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.1 The Browser MIDlet

When the mobile client application is started, the Browser MIDlet initiates the user

interface by displaying a simple form allowing the client to enter the URL requested, as

shown in the snapshots in Figure 4 and Figure 5 below.

;ch Web Page

Figure 4 - Initial Browser Screen

http- f /www y aho
o .com/

Figure 5 - Browser screen with user input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6

Figure 6 - Requested Web content displayed

12 FORWARD
3 ENTER URL

Figure 7 - Possible operations provided by the Browser

After the resource requested is retrieved from the Web Server and parsed, the user

interface is updated with the Web content. The Browser MIDlet ‘renders’ the content on

the device by outputting the displayable information such as links, texts, and images on

the screen in the forni of a list (as shown in Figure 6 above). Using the navigation

buttons on the mobile phone, the user can navigate through the contents of the list, and

click on any links for viewing. This browser does not display embedded images on web

pages once they are initially rendered. If the image icon on the page is clicked on, the

image can then be viewed. The visited URLs can be navigated by means of back and

forward soft buttons on the mobile phone. Figure 7 illustrates the different operations

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that can be carried out on the Browser when a user is perusing the content. The browser

MIDlet also handles dynamic content and user interaction though forms, as well as

maintains sessions and cookie management. When a user submits a form, a POST HTTP

request is made to the server, and the response (if returned in HTML) is retrieved, parsed

and rendered on the screen.

3.1.2 The HTML Parser Package

An open source HTML parser developed by the Kizna Corporation [HP1.1] provided the

HTML parsing capability needed for the mobile Web access. This parser was chosen for

use in this project for the following reasons. Firstly, it is implemented in Java using the

Java 2 Standard Edition. Secondly, the source code had a minimal use of classes and

packages that are absent in J2ME specification. This meant that there would be few

changes needed to adapt the parser in order to make it functional in J2ME. Thirdly, the

source code is open for public use and can be re-used or modified by the programmer.

The code was adapted in order to make it usable in a J2ME/MIDP environment, by the

addition of some functionality to the original classes, and providing new classes to

augment the HTML-parsing ability. Figure 8 below provides a simplified class diagram

showing the classes and directories found in the HTML parser package. Note that the

class diagrams provided in this section contain only the interesting attributes pertaining to

a given class, such as the major class members, parameters and methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

HTMLParser

#reader:HTMLReader
#resourceLocn:String
#node:HTMLNode
-scanners:Vector

+HTMLParser
+addScanner: void
+elements:Enumeration
-openConnection:void
+ registerScanners:void

<-

Interface
HTMLNode

HTMLReader

#node:HTMLNode
#posInLine:int

+HTMLReader
+readLine:String
+readElement;HTMLNode

parser:HTMLParser
nextLine:String

+elementBegin:int
+elementEnd:int
+print:void

scanners

tags

-1 HTMLStringNode

+ HTMLStringNode
+find:HTMLNode

iHTMLRemarkNode

+ HTMLRemarkNode
+find:HTMLNode

util

parser
applications

Directories

Legend:

Dependency relationship:

Interface “implementation”:

Inheritance relationship:

Figure 8 - Class diagram of the HTML Parser package

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.2.1 HTML Node object

The HTML Node class is an interface implemented by all types of nodes, such as strings,

and all kinds of tags. The HTML Tag class and all its subclasses implement this

interface. For example, an HTML Image tag is an HTML node, even though it may

contain different information from say, a Link or Form Tag. Different nodes hold

information relevant to the tag they represent. For example, an Image tag contains the

resource link for the image, and its textual description.

3.1.2.2 The Parser

This class is used either to iterate through HTML page or to directly parse the contents of

the page and print the results. Typical usage of the scanner involves the following steps:

The Parser object is initialised with the requested URL. All the tag scanners that pertain

to the HTML tags to be parsed are registered (scanners are described in Section 3.1.2.4

below).

By calling the parser object’s elements() method, parsing occurs on demand. The

Parser object initializes an HTMLReader object, which provides methods to read in data

from the source. It is important to note that the parsing occurs only when the parser

object is enumerated, by calling its elements() method. Figure 9 shows a sample code

depicting the use of the HTMLParser object. The latter connects to the resource

(http://www.cs.ualberta.ca) and prints all the tags located on the page.

Parser parser = new Parser ("http://www.cs.ualberta.ca");
parser.registerScanners(); //register common scanners

for (Enumeration i = parser.elements();i.hasMoreNodes();)
{

Node node = i.nextNode();
node.print();

}

Figure 9 - An example showing the use of the HTML Parser object

3 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca
http://www.cs.ualberta.ca

3.1.23 The HTMLReader class

The HTMLReader builds on the BufferedReader class (from the J2SE IO package) and

provides methods to read the data from an input stream. An HTMLReader object is

typically initialized with an input reader object (from the J2SE IO package) and the URL

to be read. Every parser object has an HTMLReader object associated with it. The

HTMLReader’s readElement() method reads from the input stream one line at a time and

invokes a find() method on the HTML tag class in order to locate HTMLtags (if any)

within the input string. As the HTMLReader reads in lines from the stream in the form of

Strings, HTMLNodes are created once HTML tags are located within the input strings.

3.1.2.4 The HTM L Tag classes

The tags package contains different tag types that are created mostly by the scanners. It

contains a generic HTML tag class, which represents a generic HTML tag. This generic

tag class allows the developer to register specific tag scanners, which can identify

different tags such as links, image references and others. The generic HTML tag class is

extended by different HTML tag classes such as: the HTML Link Tag class, Image Tag

class, Title tag class, Form tag class and many others. Each tag class implements a find()

method invoked by the HTMLReader. This method locates the tag within the input string

provided by the HTMLReader, by parsing the string from a given position. A class

diagram is provided in Figure 10, showing the relationship between the parent HTMLTag

class and its subclasses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

HTMLTag

+HTMLTag
+find: HTMLTag
+scan: HTMLNode
thisScannenHTMLT agScanner
tag:String

A A AA A A A A A

l~~THTMI ScriptTag

r~l HTMLAppIetTag

rfl HTMLStyleT ag

HTMLJspTag

a i-iT M i ImageTag,

[~nHTMLDoctypeTag

rSlITMLAppletT ag

|~HHTMLMetaTag

f~H HTMLI JnkTag □HTMLEonnTag

Figure 10 - Class diagram of the HTML tag classes (HTML Parser package)

3.1.2.5 The HTM L Scanner classes

The scanners package consists of HTML tag scanners that can be fired automatically

upon the identification of the tags. Each scanner is matched to a corresponding tag,

forming a scanner-tag pair. For example, an HTML Link Tag class works with the Link

scanner class to locate the link tag in a given string. This package contains a generic Tag

scanner class, which is sub-classed to create specific scanners that identify the tag,

operates on its strings, and can extracts data from it. Each scanner class implements two

important methods: and evaluate() method and a scan() method. The evaluate() method

is used to decide if the scanner can handle that particular tag type, while the scanQ

method scans the tag and extracts all the information relevant to it. A class diagram is

provided in Figure 11, showing the relationship between the parent HTMLTagScanner

class and its subclasses. Figure 12 shows the association between an HTML tag class and

its corresponding tag scanner class.

3 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HTMLT agScanner

+HTMLT agScanner
+evaluate: boolean
+scan: HTMLNode

A A A AAA MA A
r f l HTMLScaptScaanfic

r h iiiM LAppletScanner

r~~THTMI .StyleScanner

rhHTM IJspScanner

rhfrrMi ImageScanner

I IHTMLDoctypeScanner

rZlHTMIAppletScanner

[ZIIHTMLMetatagS.canaej ...

XinkScanner I I , I HTMLFormScanner

Figure 11 - Class diagram of the HTML Tag Scanner classes (HTML Parser package)

□ interface
HTMLNode

1 HTMLTaeScanner H1 HTMLTaej .. ■■ — " Li

+evaluate: boolean
+scan: HTMLNode

+scan: HTMLNode

t
HTMLLinkScanner p 1-*] HTMLLinkTag

-S.
s'

Figure 12 - Association between an HTML tag class and its corresponding scanner class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When the user enters a URL, a connection has to be established to the relevant Web

server. An HTML Parser object is invoked, which opens a connection to the resource.

This HTML Parser object uses an HTML Reader object, which reads in all the HTML

source code for the requested page and builds HTMLNode objects that correspond to the

HTML tags located on the page. These HTMLNode objects can be described as

‘capsules’ that hold information pertaining to the HTML tag they represent. For

example, consider the following link tag on a web page:

University o f Alberta. The HTML link node

corresponding to this tag will contain the contents of the tag {University o f Alberta) and

the URL that the link points to ("http://www.ualberta.ca"). When all the HTML nodes

for the page have been constructed, the content is rendered on the screen simply by

accessing the information encapsulated in each node object.

3.2 Architecture Implementation

The entire architecture was implemented using the J2ME Wireless Toolkit [JW-J2ME].

This Toolkit provides examples, CLDC/MIDP documentation as well as a customizable

environment for emulating the bahaviour of applications on a group of mobile devices.

Table 2 below shows emulations of various example devices supported by the J2ME

Wireless Toolkit. The devices possess a range of features that are found in mobile

devices, all of which support the MIDP specification. The mobile Browser MIDlet ran

successfully on all these devices except for the Palm OS device, which uses a different

emulator from that provided by the J2ME Wireless Toolkit.

Table 2 - Characteristics of devices emulated using the J2ME Wireless Toolkit

Device Description Features

Dt-fau it ColorPS sont

Generic telephone with
a color display (not an
app-oximution of a real

phone)

96x128 display resolution,
256 colors, ITU-T keypad

with 2 soft buttons

DdauitUrey Phone
Generic telephone with

a ai av-sc;ile display.

96x128 display resolution,
256 shades of gray, ITU-T

keypad, with 2 soft
buttons.

3 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wvm.ualberta.ca
http://www.ualberta.ca

MinimumPhone
Generic telephone with

minimum display
capabilities

96x54 display resolution,
black and white color

support, ITU-T keypad, no
soft buttons

K1 MJaval landheid
RIM device from

Research In Motion
Ltd.

198x202 resolution, black
and white color support,
QWERTY-keyboard, no

soft buttons

Motorola J85s Motorola I85s phone
from Motorola, Inc.

111x100 resolution, black
and white color support,

ITU-T keypad, with 2 soft
buttons

PalmOS.Deviee

Palm OS PDA from
Palm, Inc. (this

emulation uses the Palm
OS Emulator from

Palm, Inc._)

Usually 160x160 display
resolution, variable black
and white color support,

Graffiti and hard buttons,
no soft buttons

Implementation and Testing using the J2ME Wireless Toolkit Emulator

The J2ME emulator is a tool that enables a programmer to run MIDlets on a desktop

computer in order to simulate how the MIDlet will run on a physical device. Even

though the goal is to run the MIDlet on the actual device, the emulator plays an important

role because it enables the programmer to work entirely on a personal computer

throughout the application development process. [MorOl] lists a few of the benefits of

using this Wireless Toolkit as follows:

• A MIDlet can be tested not only on one device, but on a variety of different target

devices, including custom devices.

• The toolkit provides functionality for monitoring specific aspects of a MIDlefs

execution such as class loading, method calls, and garbage collection.

• The emulator serves as a substitute for a physical device during the early stages of

MIDlet development when a programmer is likely to make numerous changes in the

application.

3 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By testing a MIDlet on the range of devices available within the J2ME emulator, a more

accurate approximation of how the MIDlet wili function on the real device is achieved,

particularly how the application will look when displayed on the mobile device.

3.2.1 Drawbacks of using an emulated environment

Even though the J2ME Emulator displays numerous benefits as described above, there

are some setbacks that a programmer must be aware of when using this emulated

environment. The emulator does not replace the actual physical device, and the actual

performance of an application can only be truly seen when run on the physical device.

[MorOl] explains some of the limitations of using the emulator in testing MIDlets:

• The emulator does not properly simulate the varying range of memory constraints that

exist between the different devices emulated. This undoubtedly poses a problem

when testing MIDlets, since the available memory can drastically affect the

performance of the MIDlet.

• More importantly, the emulator provides only an approximation of the physical

device. Hence, results acquired from an emulator regarding the execution or

performance of a MIDlet is not guaranteed to be identical to that obtained when

testing on the actual device.

Nonetheless, the Emulator was an ideal option for this application development stage of

this work because it reaped all the benefits provided by its emulated environment.

3.3 Mobile-Resident Browser Evaluation

The baseline MoBed testbed described in the above sections burdens the constrained

mobile device with computationally intensive tasks like data fetching, HTML parsing, as

well as user interface maintenance. In a more practical scenario, such tasks should be

off-loaded to a nearby proxy server to ensure that very little of the limited heap space on

the device is consumed, thereby saving time. In this section however, we focus on the

scenario where the browser is resident on the mobile, even though the costs are expected

to be high.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to measure the cost of the computationally intensive activities (such as obtaining

the resource, parsing the data, and creating HTMLNodes), a simple experiment was

designed to measure the strain on the device in this setting. A simple Driver MIDlet was

designed to use the classes in the mobile Browser package to fetch and render pages from

data file containing a list of URLs. Figure 13 shows the simple algorithm implemented

for the Driver MIDlet.

Driver Test Program
- Get fresh heap size
-Read a list o f URLs from a text file; FetchAndRender fa r - new;
For each URL, U in the list

far.startAppO //start the fetch and renderer MIDlet.
Get beforejheap snapshot

far.fetch (U) - fetch U
Get afterJheap snapshot
far.render (U) - render U
Get after heap snapshot
far.destroy() //clear all use o f heap space to start over

Figure 13 - Driver MIDlet used to initiate client requests from the mobile client, while gathering
information on the heap size change over time

3.3.1 The Dataset

The experiments were conducted using a small set of just over 100 URLs obtained from

the server logs from the University of Alberta - Computing Science Department website.

This dataset, although small, contained URLs to web pages that were varied in content,

structure and size, in order to reflect the natural complexity of typical web pages.

In order to carry out this experiment, the dataset had to be divided into smaller

workloads containing a collection of 10 to 12 URLs each. The reason for this was

because an attempt to run the experiment with the complete set of over 100 URLs would

fail because of the insufficient memory constraint on the device. As such, the experiment

was performed using each of the smaller workloads generated from the dataset.

3.3.2 The Experiment

The Driver MIDlet illustrated in Figure 14 above was designed to show the state of a

minimum requirement CLDC/MIDP mobile device (with a heap size of 500 kilobytes) as

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the processes of fetching and rendering the web pages occurred. Figure 14 shows a small

snapshot of the output from the test application.

Starting Driver ... 482568 bytes
#.-----------------------------------#
URI - http://www.cs.ualberta.ca/
Before Fetch = 464848 FREE bytes.
Start of FETCH method... 464848 FREE bytes
Number of HTMLNodes: 389

End of FETCH Method... 209932 USED bytes
After Fetch and Render = 259916 USED bytes.
#------------------------------------#
URI = http://www.cs.ualberta.ca/survev.php
Before Fetch = 411716 FREE bytes.
Start of FETCH method... 411716 FREE bytes
Number of HTMLNodes: 87
End of FETCH Method... 87680 USED bytes
After Fetch and Render = 134032 USED bytes.
---#

URI = http://www.cs.ualberta.ca/contact.php
Before Fetch = 410436 FREE bytes.
Start of FETCH method... 410492 FREE bytes
Number of HTMLNodes: 255

After Fetch and Render = 97296 USED bytes.
#---------------------------------- #

Figure 14 - Sample output from the Driver MIDlet

Elaborating on the sample output from Figure 14: the first line shows that the initial heap

size for the phone is almost 500 kilobytes (Kb) when the URL htty://www. cs. ualberta. ca/

is requested. After the page is fetched and parsed, the heap snapshot shows that the

available memory has drastically reduced to about 209Kb and an additional 50Kb is used

up to render the page on the user interface. The number of HTML nodes produced by the

parser in this example is 389, showing that this page is reasonably big (as it contains at

least 389 parse-able HTML page entities such as images, links and text). Figure 14 also

shows that the different pages have a varied number of HTML nodes even though their

content is not evident from the snapshot. The number of HTML nodes present in a page

only reflects the number of ‘parse-able’ HTML tags from the HTML Parser program.

3 8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.ualberta.ca/
http://www.cs.ualberta.ca/survev.php
http://www.cs.ualberta.ca/contact.php

3 3 .3 Experiment Analysis

Figure 15 below shows the amount of memory (in bytes) used to fetch and render the

HTML nodes generated from each of the requested pages, while Figure 16 depicts the

amount of time (in milliseconds) used to fetch and render the HTML nodes pertaining to

each downloaded page.

Heap Size Used (Bytes) Heap Size vs* Number of HTML Nodes
350000

250000

200000

150000

100000

50000

300 500200 400 GOO 700 8001000
Number of HTML Nodes Fetched and Rendered

Figure 15 - Required heap size as a function of the number of ‘parsable’ HTML nodes.

_ , _ Fetch.and Render times oF HTML NodesNumber of HTML Nodes Fetched and Rendered
1200

1000

800

BOO

400

200 ■

20000 25000 30000 35000 40000 45000 50000 550001500010000
Time taken to Fetch and Render Nodes (ms)

Figure 16 - Time taken to fetch and render a requested page as a function of the number of
‘parsable’ HTML nodes.

3 9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

From the above graphs and from monitoring the runtime behavior of the browser

application, the following behavior is observed:

• The higher the number of HTML nodes generated for the URL being fetched, the

more memory is used to fetch and render the page on the mobile device. This is an

expected behavior, since a high number of HTML nodes indicates that the page

requested is big and may have a high level of complexity. This behavior is captured

in Figure 15 above. As shown by the values in the graph, almost half of the device’s

entire heap could be used in retrieving a single large web page.

• Figure 16 shows the amount of time used to fetch and render the HTMLNodes. This

graph is not as linear as the graph in Figure 15, but there is a general observation that

the higher the number of HTML nodes parsed from a web page, the higher the time

used up in the fetching and rendering process.

• It was also generally observed that for most of the URLs, more memory was used in

the ‘fetch’ process, and less or equal amounts of memory used up in the render phase.

This is because the ‘fetch’ phase involves: reading data from the connection to the

resource, creating HTML node objects and storing them in a vector for rendering.

The ‘render’ phase simply entails iterating through all the HTML nodes stored in the

fetch phase, and appending their relevant text information on the mobile client screen

object. This clearly explains why more resources are used in downloading the page

than in rendering it.

« Although not evident from the graphs above, it is important to mention here that with

this HTML parsing scheme, when a page is parsed, HTML nodes are generated for

HTML tags that are potentially useless to a mobile client, such as HTML remark tags

and end tags. The HTML nodes generated from such tags do not provide any

information that will be displayed to the user. Therefore, parsing and storing such

nodes on a device with limited disk space is an expensive, and time-consuming task.

3-3.4 Limitations of the Experiment

The results demonstrated above are as expected, but there are a few limitations of the

experiment discussed below:

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• The experiment provided only an estimate of the cost incurred in fetching and

rendering pages at the browser. Most experiments that attempt to measure the size of

objects encounter one difficulty: simply taking the difference in memory size before

and after an operation proves to be misleading since the JVM may be performing

other tasks aside from the operation in question, including allocating and discarding

transient objects. As such, it is recommended that the average of the difference (with

the number of instantiated object) be taken to reduce the skewing of the results from

the background JVM activities [Sin03]. In this experiment, it was difficult to average

the memory size difference, since the exact number of objects being instantiated and

used was not known. This is because in fetching a resource, several classes in the

browser package are invoked, and it is not trivial to know exactly how many objects

are involved in the activity. As such, the naive scheme of simply using the difference

in memory size was adopted. Thus, there is no doubt that the results may be skewed,

the extent of which is not known.

• The J2ME Wireless toolkit was used in this experiment, and all the drawbacks

involved with using the emulator listed in Section 3.2.1 apply here.

The experimental results discussed in Section 3.3.3 clearly show the drawbacks of having

a mobile-resident browser, where the mobile device does all the work in getting, parsing

and displaying the requested resource. As long as computationally intensive processes

are done on-device, the application will not be practical, due to all the constraints of a

mobile device. Rather than perfect the application and/or the measurement process of the

experiments, this research objective lies with the obvious approach of offloading

computation and storage to a nearby proxy process residing on the fixed backbone

network. We can tell by the browser example that, even though in absolute values, the

number of pages that can be retrieved could be improved, the penalty of having a

complete browser implementation on a mobile device is very prohibitive.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

Chapter 4 MoBed Client-Proxy Architecture

Web access from mobile devices is characterized by constraints such as small screen and

keyboard size, slow connections, and limited bandwidth amongst others. Because of

these constraints, small devices need special consideration when accessing information

from Web servers. The authors of [CMOS] propose an architecture called Scalable

Browser for mobile devices, with features such as fetch-on-demand, progressive

rendering, and display on demand navigation style. In [BGMPOO], the authors introduce

five methods for summarizing, browsing and progressively disclosing parts of web pages

for small handheld devices. This summarization process is the core of the progressive

disclosure mechanism used for mobile clients. [PS01] presents a peer-to-peer data

sharing system for mobile users called 7DS, a system that enables data exchange among

peers. A small device navigation model for web access called the m-Links [developed by

[STHK03], was designed to achieve web navigation on small devices, digging into

embedded information on web pages for useful data, separation of service from links, and

providing an open framework for others to develop services for wireless. These are only

a few cases of past research that show different approaches to making mobile Web access

more readily available.

In this architecture, the client resides on the mobile device, while a middleware

component or proxy server is used for computationally intensive tasks, such as

networking, HTML Parsing and more. In other words, the bulk of the application logic

resides on the proxy server while the mobile client is responsible for updating the user

interface. The two main components in this architecture are the mobile client and the

proxy server. Figure 17 shows a simple sequence diagram illustrating the interaction

between the client and proxy components. A detailed description of the client and proxy

components is provided in sub-sections 1 and 2, respectively.

4 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

MOBILE Client Proxy Server WWW Server

<-

<-

updateScreen()

getUserlnputO

requestDispatch(url)

response: converted_bytes

decode(converted_bytes)

updateScreen()

<-

-e

<-

<-

getUserlPO

userSessionUpdate(IP)

checkCache(url)

parser_init(url)
fetch(url)

responserbytes

buildHTMLNodes(bytes)

transcode(HTMLNodes)

updateCache(url, bytes[])

Legend: Control flow

Figure 17 - Interaction between main components in the MoBed Client-Proxy architecture

4.1 The Mobile Client Component

As previously mentioned, the client component in this architecture is the J2ME-enabled

mobile device. One of the main objectives of introducing a proxy server into this testbed

was to remove the bulk of the application logic from the client, in order to achieve a more

efficient approach to Web access. Nevertheless, the client still maintained some logic, in

4 3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

addition to its main task of managing the user interface. Figure 18 shows the flow of

control and interaction between the main sub-components in the client. Since this sub­

section focuses on the description of the Mobile Client Component, the details on the

Proxy Server component are provided in sub-section 4.2 (and not illustrated in Figure 9).

For each mobile client sub-component described in this section, a brief description of its

corresponding component in the Client Baseline Architecture (in Chapter 3) is provided.

MOBILE CLIENT

k
Browser MIDIct

• Display Initial Browser Screen
• Get URL

c
P.ins on URI. ini retelling

Request dispatcher
-v Request U-RI-) PROXYw

Response
SRRVER

Pass on page Ryles
foi rendering

(li anseoded bytes)

GUI Builder
Decode the page bytes
Render decoded bytes

Update the uset interlace

Browser
S c re e n ri isn lnv

Legend:
Client state

Client components

Component Interaction

O
O
-----►

Figure 18 - Interaction between main sub-components in the Client Component

The Client consists of the following sub-components:

• The Browser MIDlet, which initiates the browser application.

• The Request Dispatcher that connects to the Proxy when a request is made for a

resource.

4 4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• The GUI Builder, which builds and updates the user interface based on the bytes

received from the Proxy.

4.1.1 The Browser MIDIet

The Browser MIDIet has the crucial function of allowing the user access to Web

resources. When the application is initiated from the mobile phone, the user interface is

updated, giving the user the option to enter a URL. When the URL is received from the

user, the MIDIet invokes the Request dispatcher, which connects to the proxy. The

MIDIet updates the user interface when the requested page becomes available, allowing

the user to view or select the items on the page.

In the Client baseline architecture, a mobile-resident Browser MIDIet was

developed, which performed similar functions such as user interface creation and

management. The main difference between the two components is that the Browser

MIDIet in the baseline architecture, when a URL was retrieved from the client; it invoked

the mobile-resident HTML parser with the requested URL. In this testbed, the Browser

communicates directly with its connection manager or Request dispatcher and passes on

the String parameter for the requested resource. The Request dispatcher then

communicates directly with the Proxy server, delivering the user’s request.

4.1.2 The Request Dispatcher

The Request dispatcher is the connection class that makes the Proxy server accessible to

the mobile client. When this component is invoked, it establishes a socket connection to

the proxy and sends the URL string request. In future, this class could be modified to

send a request in the format: <String URL, int available space>; where URL is a String

representation of the url requested, and available space is the integer value of the cache

space available for storing any prefetched items from the Proxy. If such a request is

dispatched, the client informs the Proxy of its storage constraint for two main reasons.

First, to convey its willingness to receive prefetched items; and second, to set a constraint

on the amount of prefetched data it can store, thereby saving the Proxy from excessive

file prefetching. When a response to the request is received from the Proxy, the

dispatcher updates the cache by storing the new page and its content bytes. At this point,

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the user interface is typically updated to display the new page. In the future, if

prefetching to the client is possible, upon receipt of a prefetched item from the Proxy, the

cache could be updated with that item, making it available for possible future access.

In the Client baseline architecture, the client establishes a connection directly to

the Web server (through the HTML Parser). In this testbed, the implementation is clearly

better, as it separates the user interface from the networking functionality.

4.1.3. The GUI Builder

The GUI Builder component consists of a collection of classes that perform the very

important task of rendering the bytes received for a page, into a displayable format on the

user interface. When the Proxy parses a page, it creates special nodes pertaining to the

HTML tags present on the page. These nodes are packaged in a format known to the

client, and can be easily unpacked for display. For example, a link tag on a page is

converted to a special link node that is easily decoded and displayed as a link on the

client user interface.

The GUI builder uses the MDDP User Interface package to create the graphics

pertaining to the nodes for each page. A page to be displayed on the screen is essentially

a List object on which other graphic items are appended, such as text fields, choice lists,

strings and others. When a page is displayed, any images resident in it are not displayed

(since the proxy does not download a page’s embedded images); images are rendered as

links. This way, if a user wishes to view an image, she can click on the link and start

downloading the image from the Proxy. Pages that contain forms are similarly

approximated - a form is only displayed when a user selects it on the screen.

In the Client baseline architecture, the Browser MIDIet is the only class that creates, and

updates the screen when requests are made. This MIDIet extracts the relevant

information from HTMLNodes generated from the parsing process, and updates the

screen accordingly. In this testbed, when the Request dispatcher receives the packaged,

transcoded bytes for a request from the Proxy, its passes the data to the GUI Builder

classes which then decode the response bytes and update the screen.

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1.4 Adding a Cache on the Client

In the future, addition of a client cache to the client could provide an opportunity for the

mobile to limit the number of accesses it makes to the Proxy. The Client cache could be

implemented as a persistent storage that remains intact when the device is turned on and

off. It could store the String representation of a URL, as well as the bytes received from

the Proxy that pertain to that page, as shown in Figure 19. A simple cache eviction

policy could also be implemented to ensure that the cache is properly managed and

occupied with fresh items that reflect the user’s ever-changing needs. Depending on the

constraints of a particular device, such a cache can be structured to hold more items, as

well as implement a stricter or liberal cache eviction policy.

>j~Puge Bytesf]]

String-URL 1 > Page By test]

Page BytestCache

to Bytes[] mapping

Figure 19 - A view of the Mobile Client Cache

In the Client baseline architecture, there was no persistent client cache

component. A collection of already-visited URLs and their content bytes was maintained

during a user’s Web browsing session. These URLs are lost when the Browser MIDIet is

exited.

4.2 The Proxy Server Component

The second major component of this testbed architecture is the Proxy Server. The latter

works together with the mobile client to provide access to Web servers. The Proxy server

was responsible for the following tasks:

• Receiving, processing and satisfying requests from the client.

47

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

• Parsing the HTML content received from the WWW Server.

• Transcoding bytes read in from WWW servers into a ‘client-friendly’ version.

• Maintaining a Cache, thereby enabling the storage of already visited pages accessed

by all clients over time.

• Performing prefetching to clients by using a prediction algorithm to determine what

pages(s) a client will likely access next.

• Maintaining a registry of all users that access the proxy, as well as tracking user

sessions for the creation of different client profiles.

Figure 20 shows a compact illustration of the Proxy in action, starting from when a client

requests a page until it receives a response from the Proxy. The main sub-components in

the Proxy are described in the sub-sections that follow.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 8

Requested
resource data

Request (URL)

Proxy Server

1 U|>i'll S.vkt.’; eeiir.i l.Lei: »i e-'iC:’:.
<- I.i.-»;er. rc.iicve elient requests

iui:>;iiL- Cache. P;cle!cher, Client Reg'sav

Update (."iienl session

Conceit HTML nodes to
Mobile readable nodes

Response: bytes

Check. Cache for URL

Initiate HTML Parser

Create HTML node object

Mobile Client

WWW Server

Legend:

Process description I I

Storage Unit Q

Components external |r- -~j|
to the Proxy server

Control flow between ---------►
processes

Data flow to client

Figure 20 - The Proxy server functionality using MoBed

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.1 The Proxy Controller class

The main controller class on the Proxy provides the connection to the client via a socket

connection that accepts a client’s requests as they arrive. The mobile client connects to a

given port on the wired host machine acting as the Proxy via a socket connection. The

Controller class listens to that port and accepts requests for URL sent by clients. Client

requests consist of the String representation of the URL requested, and the available

space on the client for the storage of prefetched items (which also serves as a prefetch

signal).

This class is responsible for initializing the local cache, client session tracker

engine, the HTML Parser, and the Prefetch engine. When a request is received, a search

for the requested URL is issued on the local proxy cache. If the request is found in the

cache, its contents are simply retrieved and sent to the client. If the requested URL is not

found in the cache, the Parser object is invoked - beginning the process of making the

file available for upload to the client.

4.2.2 The HTML Parser

The same HTML Parser was used in the Client Baseline architecture is used in MoBed as

well. For a detailed description of the HTML Parser package, refer to Chapter 3, Section

3.1.2.

4.2.3 The Proxy Transcoder

With the generation of HTML nodes from the HTML Parser (described above), the next

step is to convert the nodes into a representation that can be easily unpacked and

displayed at the mobile client. When the parser is invoked with the requested URL, it

supplies HTML nodes generated from parsed HTML tags from the requested page. As

the parser creates HTML node objects, it passes them on to a Transcoder, which extracts

relevant tag-specific information from each node, and builds a corresponding basic, no-

frills mobile browser page node (PageNode). There is a small package of PageNode

classes shown in Figure 21, which reside on the client and the Proxy, ensuring that the

client can work with the page nodes when it receives them.

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

PageNode
+content: String
+tvne: String

+PageNode
+getNodeType():String
+persist(): byte[]
+resurrect(byte[]):void

1 FormPageNode
VtormHeaders: String
+HiddenParams: String
+EntryParams: String

+FormPageNode
+getHeaders(): String
+getEntryP(): String
+getHidden(): String
+persist(): byte[]
+resurrect(bvtefl):void

interface
Persistent

+persist(): byte[]
+resurrect(byte[]):void

LinkPageNode
+link: String

+LinkPageNode
+getNodeLink():String
+persist(): byte[]
x r P c n r r p r i t /K v r tA r i

Legend:

Interface “implementation”: ----------- ►

Inheritance relationship: 1̂ >

Figure 21 - Mobile Browser Page Nodes

A simple PageNode object consists of two main attributes: a type string, and a content

string. Two classes currently extend the PageNode class: the LinkPageNode and

FormPageNode classes. There are currently three main type attributes of PageNodes: the

“text”, “link”, and “form” attributes.

• The “text” type represents HTML tags such as title tags, Meta tags, and plain text

available on the web page. When any of these HTML nodes is found, the Converter

creates a corresponding PageNode of type “text”, with its content attribute set to the

actual string content of the node.

• The “link” type of a PageNode represents HTML Link and Image tags that both have

resource locators pointing to the link or image source. When a link or image tag is

encountered, the Converter creates a corresponding LinkPageNode object, which has

three main attributes: a type string (“link”), a content string (with the textual content

of the tag), and a location string (which holds the URL of the image or link).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The “form” type represents the HTML form tag. A corresponding FormPageNode is

created when a form tag is encountered. FormPageNode consists of its type (“form”),

a string for display on the client screen stating that the node is a form, and strings

holding the form parameters, and values.

All generated PageNodes are stored in a Vector, which is ‘persisted’ by writing its

contents to a byte array output stream. The data bytes generated from this process are

ready to be sent to the client. Persisting the Vector of page nodes is essential since object

serialization is not possible using J2ME. When the client receives the data, the vector of

PageNodes can be ‘resurrected’ and its contents accessed. A utility class known to both

the client and proxy (obtained from [JTT]) provides the persistence/resurrection

capability, ensuring that the client can ‘decode’ the data when it receives it.

Figure 22 summarizes the data transcoding process on the proxy server.

IN: HTML IN:k, __ Data Byic [

URI. bytes
parser A IlfMI.Noik Converter / \I

. . ..

] Parse data j

i ■
I * I
I Build HTML :
! sii'iiies i

OUT:
HTML Node

i Si'ip the ; iTiViL Noili

■:
I Build ii î n f i
! PageNoiles ;

I ^
i ‘P essiss’ ihc !ls! ;

OUT:
'PeriUti'.- VocU’i »f P'lstNmks

Figure 22 - The MoBed Proxy Transcoder functionality

with permission of the copyright owner. Further reproduction prohibited without permission.

5 2

4.2.3.1 The Proxy Cache

The Proxy maintains a local cache, which contains all the pages that have been

downloaded from Web servers, upon the requests of clients. Having a cache on the

Proxy is beneficial in many ways:

1) The cache holds all previously visited pages requested by all clients, hence

eliminating the need to fetch those pages again from the Web server when they are

later requested (this is true for static pages).

2) The proxy cache is a collection of the URL requests of all the clients that access that

proxy. When a page is downloaded to the proxy, if it is not already in the cache, the

cache is updated with this new file (regardless of which user requested it). This

ensures that other users who request the same page at a later time will potentially

benefit from the initial page download.

3) To summarize the two points above, a local cache on the Proxy demonstrates the

potential for bringing the contents of a Web Server closer to the user, thereby

reducing the observed latency or delay when a page is requested. This also reduces

the load on the network and the server.

In the MoBed proxy server, the cache is maintained as a Hash Table, consisting of URLs

mapped to their corresponding page bytes. The bytes stored are parsed, transformed

HTML nodes from the page, in a format ready to be sent to the mobile client. When a

page is added to the cache, the string representation of its URL is hashed to a unique string

using the MD5 hashing scheme provided by [MD5Q3]. The hash string is then mapped to

an array containing the page bytes, as shown in Figure 23.

“http://www.cs.ualberta.ca/ ---- *j Ha |̂ier j---- H “7j7gh7£755f554g6d4”

} Page size: 2342 bytes
Store in Cache

Figure 23 - An example illustrating the addition of an element to the proxy cache

5 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/

4 .2 3 .2 Cache management

To cope with the limited resources of a caching proxy server, cache eviction schemes can

be implemented to determine what document(s) should be replaced when the cache is full

and a request arrives for a URL that is not in the cache. Different cache eviction policies

evict documents from the cache based on various cached document attributes, such as:

the latest access time of a page, the size of a page, the frequency at which a page is

accessed, etc. When cache replacement schemes are not implemented, a proxy can

maintain an infinite cache so that the proxy contains all documents ever accessed at any

given time. In MoBed, the following two cache replacement schemes were investigated

on the proxy cache. All the details on this investigation are described in Chapter 4.

Suppose the proxy receives a request for a URL, U that is not in the cache.

• Least Recently Used (LRU)

In this scheme, the least recently used document is discarded and replaced with U. When

implementing this policy, all cached documents were sorted by their access times, such

that newly cached documents were the most recent ones, located at the top of the list.

Whenever a document was accessed from the cache, its access time was updated and the

document moved to the top of the list. When a request arrives for a URL that is not in the

cache, and the cache is full, the document at the bottom of the list is evicted, and the new

document stored at the top.

• Least Frequently Used (LFU)

In this policy, the least frequently used document is discarded and replaced with U. All

cached documents were sorted by their access frequency counts, allowing cached

documents with the highest frequencies to be located at the top of the list. When a

document was accessed from the cache, its frequency count was incremented and the

document moved to the top of the list. When a request arrives for a URL that is not in the

cache, and the cache is full, the document at the bottom of the list is evicted, and the new

document stored the top.

4.2.4 Session Tracker Engine

Given that many clients access the proxy server at different times, requesting various

documents, the Proxy has to maintain some information about the clients it services such

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as: maintaining a registry of all clients and keeping track of all user sessions over a given

time period. This information can also be used as the basis for prefetching mechanisms

based on the access history of a set of clients.

The MoBed Proxy tracks all user sessions over a 30 minute period and uses these

user profiles to predict possible documents that can be accessed by the client, and

subsequently prefetching these documents to clients who are interested in receiving such

files. The following sub-sections provide a detailed explanation of the prediction

algorithm implemented on the MoBed proxy server; and illustrates the importance of

tracking sessions and maintaining user profiles.

4.2.4.1 The Prediction Engine

One of the goals of this project was to determine how prefetching can improve Web

access for limited mobile clients using MoBed. The goal is to reduce the latency or delay

perceived by a client when a request for a page is made. Caching proxies are known to

reduce latency to a fixed amount, but there is a limit to the extent of benefits reaped from

caching. A caching proxy has the advantage of bringing Web content closer to the user

by storing requests over a wide range of clients who may potentially request files already

cached from other users’ previous requests.

A prefetching proxy goes a step further - it predicts a user’s next request, fetches

the content, and sends it to the user before the page is requested. This raises a general

concern that prefetching may lead to unnecessary increase in network traffic. However,

assuming the proxy performs prefetching when it is idling with no client requests to

process, there is a probability, P that the latency of future client requests will be reduced;

where P is the probability of correct guesses (of requests) prefetched to a client.

A prefetching and caching proxy takes this idea another step further - not only

does it store previously visited URL requests, but it also pushes documents to clients

possibly from its local cache, further reducing the possibility of high client-perceived

latency when a request is made in the future. The goal is to take advantage of proxy

idling between requests to push documents to a client. The MoBed proxy maintains a

local cache, and implements a prediction algorithm (discussed in following sub-section)

that generates informed guesses of future client requests.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4.2 Prediction using Path Profiles

The technique used to predict URLs on the MoBed proxy is based on the prediction

algorithm originally coined by Schechter et al. [SKS98] which uses path profiles

generated from past user requests. The authors describe an algorithm for efficiently

generating path profiles from information contained in standard HTTP server logs. The

key terms used in describing this prediction algorithm (as defined by [SKS98]) are

outlined below and illustrated in Figure 24:

• A path is defined as a sequence of URLs accessed by a single user, ordered by the

time of access. A path may contain repeated instances of a request; and the length of

a path is the number of URL requests that make up the path.

• A user session is the path that describes the full set of requests (ordered according to

time of access) from a particular user within a specific time frame.

• A Path profile is a set of pairs, each of which consists of a path and the number of

times that path occurs over a given time period. A profile is recorded over the set of

all user sessions.

Userl
1.html
3.html
2.html

User2
l.html
3.html
3.html

Session traces "'i
I sessions----------- ► Userl. l->3->2 L Paths

User2: 1—̂3—>3 J

/ Generate path profile
/ from user sessions

Path Profile (for all session traces)
Path Frequency
1—>3 2
1—>3—>2 1
1—>3—>3 1

Figure 24 - An example showing the relationship between user sessions and path profiles

4.2.43 Generating Path profiles

[SKS98] describes two main ways of collecting path profiles: by using an HTTP client

that records user paths or by using an HTTP Server that records the paths of all users that

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access its site. Standard server logs can be used to generate profiles from an HTTP

server that contains a large number of accesses. [SKS98] describes an algorithm for

efficiently generating path profiles from information contained in standard HTTP server

logs. The main points on server-side profiling from the authors are outlined below:

• Most HTTP logs have five main fields that describe each request: the date, time of

access, Source (Client) IP Address, the name of the requested file, and the parameter

field (derived from the URL). When generating path profiles, a decision has to be

reached about the URLs used to form paths: whether they should contain the

parameter field or only the name of the file or script. Finding an automatic method

for determining which parameters to ignore and which should be considered part of a

URL remains an open problem [SKS98]. In this project, all profiles generated do not

include parameters as part of the URL.

• The URLs used for profiling are compressed down to a compact format by mapping a

unique integer to each unique URL in the log.

• The concept of a user is essential to path profiling because predictions are made to a

current user based on the access history of other users who behaved similarly to the

current user; thereby showing the importance of differentiating between all users.

The IP addresses for each user is present in most server logs, and is used as the

identifier for each client (even though this IP could actually represent a proxy server).

• When creating user sessions, all HTTP requests separated by more than thirty minutes

are not considered to be part of the same session. This heuristic has to be used to

handle cases where users are browsing pages on another site, in between accesses on

the server.

4.2.4.4 Path Tree Construction from user sessions

Upon generation of user session paths from HTTP server logs, the sessions are used to

generate a tree of important paths [SKS98]:

A path tree begins with a root node and contains nodes that may have a varying

number of children. Walking from the root node down the tree is equivalent to walking

through a path of URLs. When recording a path in the tree, the first URL in a path is

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stored as a child of the root node of the tree; the second URL in the path is stored as a

child node of the first URL’s node. This may continue until the end of the path.

In order to prevent the tree from growing too large, [SKS98] introduces the

concept of a maximal prefix of a path. The maximal prefix, Mp of a path P contains the

sequence of URLs in P except for the last one. A path is recorded in the tree if the

maximal prefix of that path has occurred at least T times, where T is a threshold that can

be configured based on available memory resources.

Each user session is represented as a collection of integers (corresponding to

URLs), stored in an array object, which occur in the same order as the URLs in the user

session. When the algorithm is initialized, the PathTree consists only of a root node.

Each tree node, except the root, is labeled with a URL number. When a node is created, it

is assigned an OccurrenceCount value of 0, except for the root, which is initialized with

an OccurrenceCount of T. The complete PathTree is constructed by applying the

algorithm in Figure 25 to each sequence of URLs that represent a user’s session. Figure

26 shows an example of a path tree for storing path profiles.

After the first iteration of the algorithm, the OccurrenceCount variables of all tree

nodes are zeroed (except for the root). The algorithm is re-ran over the set of all user

sessions and the shape of the PathTree is refined. The algorithm must be re-iterated to

generate accurate counts of all paths with immediate predecessors that occur at least T

times. Before each supplemental iteration of the algorithm, the OccurrenceCount values

of all leaf nodes are cleared so that the new-leaf threshold is not reached prematurely. In

order to make the final counts accurately reflect path frequencies, a final iteration of the

algorithm is performed with the tree structure in place but with all OccurrenceCount

values reset to zero [SKS98],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

• FOR each URL in the sequence (stepping through using a Counter)
o CurrentNode 4"root node o f PathTree
o Index ^“Counter
o DO

■ Increment the Occ urrenceCount of the CurrentNode
(CurrentNode->OccurrenceCount)

■ URL_Number ̂ rURLSequence[Index]
■ IF there does not exist a child of CurrentNode labeled with

URL_Number AND CurrentNode->OccurrenceCount >= T
■ Create a child node of CurrentNode labeled with

URL_N umber
■ IF there exists a child of CurrentNode labeled with

URL_Number
■ CurrentNode ^"Child of CurrentNode labeled with

URL_Number
- ELSE

* EXIT Do/While Loop
o WHILE (++Index < length of URLjSequence)

• END- FOR

Figure 25 - PathTree construction algorithm that accepts a list of URLSequences (Algorithm
extracted from [SKS98]).

Session traces
Userl: 1—>3—>2
User2: 1—>3—>5
User3: 3—>5

Path Profile
(For all session traces)
Path Frequency
1—>3 2
1—>3—>2 1
1—>3—>5 1
3->5 1

PathTree

Root

Path: 3—>5
OccurenceCount: 1

Path: 1—>3—>5
OccurenceCount: 1

Figure 26 - Example showing how paths are maintained in a PathTree as path profiles.

5 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4.S Prediction using the Path Tree

When the path tree is constructed as described above, it is used to make a prediction for

the next URL. In order to make the prediction algorithm more efficient, the path tree can

be transformed into a more condensed representation of path profiles. The motivation for

this is to eliminate the paths not needed for prediction, thereby facilitating the search for

paths that match a user’s access history:

4.2.4.5.1 Condensation of Path profiles

In order to condense the path profiles, the following steps are executed (and illustrated in

Figure 27). A list of all the paths in the tree is constructed by iterating through the path

tree. Each path is then separated from its frequency count. The most recently accessed

URL in a path is the most important predictor because the page returned by that URL

contains the hypertext links from which the user is likely to choose his next destination

[SKS98]. After separating the paths from their frequency counts, the last URL is

separated from the rest of the history path and becomes the prediction for that path.

The list of all paths are then stored in reverse order, with each entry representing a

reverse-ordered path and the number of times that the path occurred. Longer paths that

make the same prediction as their shorter counterparts could then be filtered out [SKS98].

The final step is to sort all entries by the reversed history path. If two entries have the

same path, the one with the smaller frequency count is eliminated. Predictions are then

made using these condensed path profiles. Each entry in the condensed path list is made

up of three main elements: the reversed history path, the prediction (the last URL

extracted from the original history path) and the frequency count (the number of times

that path occurs).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 0

History paths Frequencies Predictions

Original history
paths extracted
from the Path
Tree with their
frequencies.

<

r

a b e d ,
z b,
d e f ,

Condensed Path
list -<

5
20
7

V .

r
i . i c b a , d, 5
i e d f, 7
i z , b, 20

Separate
prediction from _______\j/

Path T u b e , d,
! z , b,
! d e f,

5
20
7

Sort all entries

Reverse the
history paths

j c b a ,
4 z>
i e d

d,
b,
f,

5
20
7

Figure 27 - Condensing path profiles

4.2.4.5.1 Prediction from the Condensed profiles

To predict the next URL that a user will request, the algorithm proceeds by first obtaining

the user’s current session trace. In the MoBed Proxy, the session tracker engine provides

the current session for a client when provided with its IP address. Recall that a client’s

session consists of all the URL requests from that user within a thirty-minute time frame.

The user’s session trace is then reversed. The condensed path list is then searched

through, to find the path in the profile that matches the most consecutive characters in the

user’s reversed session trace [SKS98]. The chosen URL for prefetching is the prediction

element of the list entry chosen from the profile.

The MoBed proxy takes this one step further by making a prediction only when

there already is a path in the profile that matches the user’s reversed session trace exactly.

Even though this cuts down on the number of proxy predictions, this conservative

approach to prediction is adopted because the MoBed proxy services mobile clients that

have limited storage capacities, as well as bandwidth. This stresses the importance of

pushing documents to clients only when the proxy has enough information to make the

prediction. Since the condensed path list is already sorted by the reversed history paths,

6 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the best path chosen for prediction can be found using a binary search method, bound by

0(log2(number o f paths)).

Figure 28 uses an example to illustrate how the condensed path list is used for

making predictions on a user’s current session.

IN: MoBed Session OUT:
Clierit’sTP"* Tracker Current user

session for IP
user session

Search the condensed profiles for j z y x j

best match of the reversed session

Condensed Profile List

(z, a, 20)
(z o j , k, 11)
(z y r , & 1)
(z z z, e, 10)
()

Select chosen
List entry

(z y r , g, 1) Predict: g

Figure 28 - Predicting using Condensing path profiles

When the proxy receives a request from a client, and the client desires documents to be

pushed to it, the MoBed proxy’s prediction engine (which runs the path profiling scheme

described above), uses the clients current user session to predict what URL it may request

next. The predictability of requests is measured using training and testing data sets, for

constructing the path list and testing the prediction engine (respectively). This

experimental setup is extensively described in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 2

Chapter 5 Empirical Evaluation

As previously described, MoBed provides an experimental test-bed for designing,

developing and analyzing different caching and prefetching schemes that can be used in

devising Web access solutions for J2ME-enabled devices. In this testbed, the client is

resident on the mobile device, while the proxy server resides on a wired host between the

mobile client and the web servers. This architecture allows for various web-access

functionalities to be flexibly distributed between the client, proxy and server; resulting in

numerous possible configurations for experimentation. Using MoBed, this thesis

investigates the following scenarios for web access:

1) Location of a local cache (at the client or proxy server or both);

2) Caching using two main Cache replacement algorithms;

3) Prefetching data from the proxy to the client, using user access history analysis.

Keeping the above points in mind, a suite of experiments were designed to address each

of the listed scenarios. Details on the design, results and evaluation of all the

experiments are provided in the upcoming sub-sections, with a summary provided in

Table 3 below.

Table 3 - Listing of Experiments performed using MoBed

Experiment Eactor(s) Response tariahle(s)

it o f
Simida

tion
RUNS

1
- Proxy location
- Caching scheme
- Proxy cache size

Proxy-to-Mobile response time 8

2 Original number of data
bytes from Web Server

Number of Proxy-Transcoded data
bytes for client N/A

3 3-1 Client cache size

- % of Proxy accesses;
- % of Prefetch-interrupts from large

predicted files;
- Number of files prefetched to

clients;
- Number of clients prefetched to. 51

3.-2

- PathTree size
(determined by T-value)

- Using a Retraining phase
- Workload size

- % of Predicted File Hit Ratios
- % of Predicted Byte Hit Ratios

6 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A simulation study was chosen as the best way to study the performance of the testbed at

this time for two main reasons. Firstly, workloads obtained from server logs can be used

as input to a simulation. Such server logs are readily available from web site traffic

traces and provide URLs that can be used to simulate client requests. Secondly, a

simulation can help in identifying the effect of a number of different factors on the

performance of the proxy in delivering web content to the client. Such factors include:

the size of the local proxy cache, the cache replacement policies used, and the accuracy

of the proxy prediction scheme.

It is important to mention here that the workloads used for all the MoBed

experiments were not used for the baseline architecture. Recall from Section 3.3.1 that

the dataset used for the Baseline architecture evaluation had to be divided into smaller

workloads containing a collection of 10 to 12 URLs each. This dataset partitioning was

essential because an attempt to run the experiment with the complete set of over 100

URLs failed because of the insufficient memory constraint on the device (which was a

minimum requirement phone with a heap size of 500 kilobytes). For the Baseline

architecture evaluation, using the large workloads utilized in the MoBed experiments

would be extremely time-consuming since these workloads are considerably large, with

thousands of requests. For this reason, a smaller workload was chosen for the Baseline

architecture evaluation

In describing the experiments carried out in this chapter, the following standard

terminology was used: A factor is an independent variable that affects the outcome of a

desired response. A response variable is a dependent variable that is affected by

manipulating an independent variable. An experiment level represents a value taken by a

factor. A nested experiment is one in which the levels of one factor are chosen as a

function of the levels of another factor. A complete factorial experiment is one in which

all of the possible combinations of levels for each factor are investigated.

5.1 Experiment 1: Caching restricted to the Proxy level

The goal of this experiment was to investigate the benefit of introducing caching only at

the MoBed proxy.

6 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.1 Objective

This experiment assessed the latency incurred at the proxy when processing a request, i.e.

the time taken to fetch, parse, and transcode web content at the Proxy before responding

to the client

5.1.2 Workload Description

The workload used for this experiment consisted of server traces collected from the

CMPUT 301 course website at the University of Alberta in the Fall of 2001. The traces

were made up of requests generated from repeated accesses to 116 distinct URLs from

the course site at different times; resulting in 14,000 URL requests and their

corresponding timestamps.

This workload was used to simulate actual URL requests issued from a J2ME client to

the proxy. A simple J2ME program was designed to run on a mobile client using the

J2ME Emulator. The client iterated through the dataset and fired off requests to the

proxy. Each request consisted of the URL string and the original request timestamp

retrieved from the trace. The client only made another request after it received the data

content for its previous request from the proxy. The latter received URL requests and

processed them while collecting statistics on the time taken to process each request.

5.1.3 Experiment Design

In this experimental setting, the client was ‘passive’ i.e. it only fired off URL requests to

the client and did not maintain a cache or perform any other functions apart from user

interface maintenance. There are three interesting factors in this experiment:

1. The physical location o f the proxy server

The location of the proxy server with regards to the client can greatly affect the latency

observed after a user requests a URL. In the first scenario, the proxy is remote, as shown

in Figure 29, located on a separate machine from the WWW and physically closer to the

client. In the second scenario, the proxy is located on the WWW server machine

(illustrated in Figure 30).

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

High Latency

, , , 0 . “Local” Provider. „Mobile Request / , Request

“Remote”
Provider

Mobile
4-------------------f

Proxy
-i----------------► Web

Client 9| \
/ Simplified \ Server T Response: \

/ HTML \
Server

content

Figure 29 - Experiment 1- Proxy location factor (Level 1): Remote proxy server

..... -...

\ Mobile Request ^ /

“Remote” Provider '.... .
Request

Mobile \ f Proxy Web
Client / Simplified Server ^ Response:

HTML
Server

. HTML content content

Figure 30 - Experiment 1- Proxy location factor (Level 2): Proxy located on the Web server

Recall that the goal of this experiment is to measure the latency incurred at the Proxy

server when a request is handled. As such, the observed proxy-to-server latency is of

primary importance, as it would affect the overall processing time of requests at the

Proxy. In Figure 29, the proxy server is located on a separate machine from the Web

server, while in Figure 30, the proxy physically resides on the same machine as the Web

server. The proxy-to-server latency in Figure 29 is expected to be higher as compared to

that in Figure 30 because of the physical closeness of the proxy to the Web content in the

latter scenario. As such, the two levels for this factor (location of the proxy) are: Remote

and on Web server.

2. The basis o f caching with different cache replacement schemes

Two well-known cache eviction schemes were implemented and tested separately at the

proxy: the Least Recently Used (LRU) and Least Frequently Used (LFU) policies. The

description of these two schemes is provided in Section 4.2.3.2. The two levels of this

factor are: LRU and LFU.

3. The size o f the Proxy cache

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The proxy cache was designed to store Cacheable objects. A Cacheable object consists

of the URL string for a given request, and its transcoded content (a simplified version of

the HTML content for the mobile client) shown is Section 4.2.3.1. At the start of an

experiment run, the cache storage capacity was set to a fixed number, representing the

number of Cacheables that can be stored in the cache before any eviction. There are two

main levels to this factor (size of the Proxy cache). The caching performance was

investigated in this experiment using two different sizes: 50 and 100. Recall from

Section 5.1.2 above, that the workload used in this experiment consisted of 116 unique

URLs. In order to study the performance of the different cache replacement schemes, the

selected cache size levels had to be less than the total number of URLs present in the

workload; to ensure that the cache attained its maximum capacity during every simulation

run. With a cache size level of 100, the proxy cache was almost infinite (since the unique

number of requested URLs was only 116); and with a cache size level of 50, less than

half of the unique URL requests would be maintained in the cache at a time. This

variation in the cache size provided an interesting heuristic for evaluating the

performance.

This experiment consisted of a 3-factor (Proxy location, Caching policy, Cache

size), complete factorial experiment, where each factor had two levels; requiring a total

of 23 (eight) experiment runs. The response variable in this experiment was the Proxy-to-

Mobile response time incurred after a request is made. This experiment design is

summarized in Table 4 below, showing the different factors and levels for each run.

Table 4 - Factor-level combinations for Experiment 1

Run Pnixj
Lmalion

I'MCtnr'i
(aching

IVilCV
('ache
Size

1 Remote 12UJ 50
2 Remote LRU 100
3 Web server LRU 50
4 Web server LRU 100
5 Remote LFU 50
6 Remote LFU 100
7 Web server LFU 50
8 Web server LFU 100

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.4 Results and Evaluation

The time taken to process the web content at the Proxy was recorded for each cache

eviction policy, each cache size (50 or 100 cacheable objects) and for each proxy location

scenario (remote or on the Web server); resulting in eight experimental runs (shown in

Table 4).

Table 5 - Observed Proxy latency for all simulation runs in Experiment 1

Perec ntsiue ol Prow p r o t l a t c m- i c - s williin (lie giwn time inngc

RUNS Description (< 1 ms) (1 to 10
ms) (<= 500ms) (> 500ms) latency

1 LRU_Remote_50 14.5 67.9 99.8 0.2 23.05

2 LRU_Remote_l 00 3 77.9 99.7 0.3 54.34

3 LRU_WebServer_50 0 96.2 99.9 0.1 10.03

4 LRU_WebServer_100 0 93.5 99.9 0.1 11.6

5 LFU_Remote_50 5.5 73.8 99.8 0.2 22.17

6 LFU_Remote_100 11.5 69.7 99.8 0.2 22.78

7 LFU_W ebServer_5Q 0 91.9 99.8 0.2 12.32

8 LFUWebServer_100 0 93.7 99.8 0.2 11.42

Columns 3 to 6 in Table 5 above show the percentage of proxy-processing

latencies that fall within the specified time ranges (in milliseconds). For example, for

Run 1 (LRU scheme with remote proxy and cache size of 50), 14.5% of all requests were

satisfied with an observed latency less than 1 millisecond (at the proxy); for Run 8 (LFU

scheme with proxy on the Web server and cache size of 100), all the observed latencies

were greater than 1 millisecond (with 93.7% of them less than 10 ms). The last column in

the table shows the average latency incurred at the proxy during each simulation run (for

all 14000 requests present in the workload).

From the average latencies in the last column, the following observations are

made: First, the LFU caching eviction scheme outperforms the LRU scheme (the latter

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

showed higher average latencies). Second, for both caching schemes, the average

latencies were lower when the proxy was located on the Web server machine versus its

location as a ‘remote’ server. This behavior is expected because with the proxy server

residing on the same machine as the Web server, the latency incurred at the proxy in

fetching Web content and receiving the response is lower (due to the physical proximity

of the proxy and server); as opposed to a remote proxy, which is located on a different

machine between the client and Web server (and consequently further away from the

Web server). Third, from the average latencies in the last column, the size of the cache

did not influence the values as much as could be expected. It is generally expected that

the bigger the cache size, the lower the latency at the proxy since more previously

accessed documents are stored at the proxy for potential future requests. The average

latencies in the last column do not clearly spell out this trend, except in Runs 7 and 8

where there is a slight decrease in the average latency when the cache size is 50 and 100,

respectively.

5.1.5 Comparison to the Client Baseline architecture performance

Recall that in the Client baseline architecture (presented in Chapter 3), the mobile client

Browser was responsible for the user interface management, in addition to the

computationally intensive tasks of fetching requests from Web servers, parsing and

rendering the content to the device. This proved to be very inefficient and impractical as

described in Section 3.3.3.

Although the workload used in evaluating the baseline architecture is different

from that used in this experiment, by observing the overall performance of both

experiments we see that the MoBed architecture (with a caching proxy) is significantly

better than the baseline architecture. Figure 16 represents the time taken to fetch and

render the content of requested pages in the baseline architecture. It can be observed from

this graph that the time taken to fetch and render all pages was no less than 10,000

milliseconds (ms). The bulk of this time was used up in fetching and parsing the page

contents, and little time used in rendering the parsed HTML to the screen. Using the

MoBed architecture, in this experiment, it was observed that for all eight simulation runs

(using both caching policies), that over 99% of requests were satisfied in less than 500

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ms. This means that the time taken to deliver the transcoded content bytes to the client

was less than 500 ms. The ‘fetch’ stage is more time-consuming and memory intensive

than the ‘render’ stage (recall Section 3.3.3). This is the case because the ‘fetch’ phase

involves: reading data from the connection to the resource, creating HTML node objects

and storing them in a vector for rendering. The ‘render’ phase simply entails iterating

through all the HTML nodes created in the fetch phase, and appending their relevant text

information on the mobile client screen object. The time taken to render a requested page

(using the baseline architecture) was usually observed to be 5 to 15%(or less) of the total

time taken to complete the request. As such, although the time measured in this

experiment did not include the time taken to render the content on the client screen as it

does in Figure 16, the time savings incurred when satisfying client requests are evident.

This is because the presence of the MoBed cache reduces the time taken to fetch and

transform a request to zero, when it is located in the cache.

5.2 Experiment 2: Data compression using the Proxy Transcoder

The goal of this experiment was to investigate the usefulness of the Proxy Transcoder as

a data compression tool by determining the difference in the number of Web content

bytes before and after the transcoding process.

5.2.1 Objective

Recall that the Proxy Transcoder was used for content adaptation, i.e. it was used to

convert the parsed HTML content received from Web Servers to a simpler, compressed

format for a mobile device. This experiment provided a comparison between the number

of bytes received at the proxy from the original server, and the number of transcoded

(simplified) bytes supplied to the mobile from the proxy server. In essence, this

experiment provided a means of determining how much data compression was carried out

by the Proxy Transcoder. Refer to Section 4.2.3 for details on the proxy transcoding

process, as well as the generation of the converted web content using ‘PageNodes’.

7 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Workload description

The same workload used in Experiment 1 was used in this experiment. It consisted of

server traces collected from the CMPUT 301 course website at the University of Alberta

in the Fall Semester of 2001. The traces were made up of 14,000 requests generated from

repeated accesses to 116 unique URLs from the course site.

The Proxy maintained a collection of all the unique URLs received through client

requests. As the proxy satisfied client requests using this workload, 116 URLs were

processed and statistics collected on the size of the requested content before and after the

transcoding phase.

5.2.3 Experiment Design

In this experiment, statistics were recorded on two control variables: the size (in bytes) of

the original data content received from the Web server by the proxy and the size (in

bytes) of the transcoded data supplied to the mobile from the proxy server. These two

statistics were documented for each unique URL that was requested by the client.

5.2.4 Results and Evaluation

The graph in Figure 31 shows the number of bytes received from the Web server versus

the number of bytes transformed and sent to the mobile client from the proxy for all 116

unique URLs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

O rig in a l b y te s fetched from W WW s e r v e r s V S. bytes processed by Proxy server
for Mobile client

140000 --------------- - - — - ..-

120000

M 100000
(l>
§■ 80000

® 60000

f 400003
Z 20000

0
-20000

N u m b er o f URLs

—e>— Proxy-generated bytes —a— O riginal bytes from WWW

Figure 31 - Original bytes downloaded from Web servers Vs Proxy-transcoded bytes

From the graph, we can observe that in cases where the data content for the requested

page was over 20kB, the effect of the proxy byte transformation process proved to be

more noticeable and beneficial to the client (as less bytes are sent to the client, compared

to the original downloaded size). For small byte sizes, the effect of converting the

downloaded content sometimes results in a slightly larger byte content for the mobile

client. This slight increase can be accounted for by the encapsulation overhead incurred

in transforming bytes for the mobile client.

5.2.5 Comparison to the Client Baseline architecture performance

From Section 5.2.4, it is observed that although the proxy data compression scheme could

be improved, there are some benefits to be reaped for performing content adaptation at

the proxy (as opposed to the mobile client).

With the HTML parser used in both the Client baseline and MoBed architectures,

when a page is parsed, HTML nodes are generated for HTML tags that are potentially

useless to a mobile client, such as HTML remark tags and end tags. The HTML nodes

generated from such tags do not provide any information that will be displayed to the

72

U fe . n th _irtr r K ~ ^ ° ^ i r r iF'V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user. Therefore, parsing and storing such nodes on a device with limited disk space is an

expensive, and time-consuming task. When parsing is done on the Proxy, only HTML

nodes that are useful and displayable to the client are transcoded and sent to the mobile.

This process removes the unnecessary HTML from a requested web page before the user

ever sees it. More benefits could be harvested with a proxy Transcoder that can compress

the useful web data to much smaller sizes than are achieved by the current scheme.

5.3 Experiment 3: Caching at the Client-level while Prefetching at the Proxy

As previously mentioned, this testbed is used to investigate intelligent solutions for

providing web content to mobile clients with reduced client-perceived latency.

Experiment 1 addressed caching at the proxy level, using two cache replacement policies

(LRU and LFU). The results demonstrated the need to explore another scenario for

experimentation. The goal of this experiment was to assess the performance of MoBed

with the following features: a cache maintained on the client; an infinite, local cache at

the proxy, as well as prediction scheme implemented on the proxy. This assessment was

achieved by means of a study consisting of trace-based simulation experiments run on the

proxy server.

5.3.1 Objective

Before a detailed description of this experiment is provided, recall that: the proxy

prediction engine (described in Section 4.2.4.1), builds a path tree to store path profiles of

past user session traces and predicts a user’s next request based on past users who

behaved similarly. Also recall that the size of the path tree is controlled by a threshold

value (henceforth referred to as T-value), which restricts the degree of expansion in the

path tree. When the prediction engine is initiated, it is provided with a training set of

past user sessions, from which it creates the path tree, and path profiles. A test set is then

used to supply different user requests, for which the engine predicts the next move the

user is likely to make.

The purpose of this experiment was to investigate the following:

1. Experiment 3-1: The impact of having a mobile client cache (with three different

cache sizes: 8 kilobytes (kB), 30kB and 60kB) on the following response variables:

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o The percentage of Wo Proxy accesses’ for all clients (when requested item

was found in the mobile cache),

o The percentage of prefetch-interrupts resulting from attempting to prefetch

documents which are larger than a client’s available cache space. (A prefetch-

interrupt was recorded when a client did not successfully receive the item

predicted for its next request. Prefetching was interrupted when: there was an

incoming request before it was completed (not enough time to complete the

task), and when the file to be prefetched was larger than the user’s specified

available caching space.)

o The total number of files prefetched to all clients, and

o The total number of unique clients who received prefetched documents.

The client cache size is the sole factor in this experiment, with the following levels:

8kB, 30kB and 60kB. The smallest cache size was taken to be 8kB because it is the

minimum amount of non-volatile memory that can be allocated for application-

created persistent data using the J2ME MED Profile. Newer J2ME-enabled phones on

the market today display remarkable capabilities, such as increased processing

speeds, heap sizes and shared memory for storage. Such devices can afford to have

larger memory allocations for application-created data, hence the reason for

investigating the impact of the two larger cache sizes of 30 and 60 kB.

2. Experiment 3-2: This study also investigated the accuracy of the predictions from the

proxy’s prediction engine. The prediction accuracy was measured using two response

variables: the predicted file hit ratio and predicted byte hit ratio. There were three

factors in this experiment that determined the response:

o The path tree size (varied by changing the threshold value T),

o Retraining the prediction engine using recently-accessed test requests, and

o The size of the workload (using train/test datasets of varied sizes).

5.3.2 Workload description

Two workloads were used for both Experiment 3-1 and 3-2. The first dataset was

generated from server logs acquired from the CMPUT 301 course web site at the

University of Alberta. These logs were collected over the Fall semester of 2001

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(September to December) for a period of 122 days, resulting in just over 140000 requests

on 405 distinct URLs. The requests generated from the first week of September and the

last 2 weeks of December were not included in this dataset, as there was very little

activity on the web site. This dataset is henceforth referred to as C301.

The second dataset was generated from server logs obtained from the Computing

Science Department Web server at the University of Alberta. It consisted of the first

60000 requests extracted from server logs for December 5th 2003, with a total of 24,772

unique URLs. This dataset is henceforth referred to as CS. The two workloads differed

from each other as follows. The C301 dataset was generated from logs from a small,

course website with a small number of URLs and small client population. The CS dataset

was generated from logs from a much larger departmental server that services a larger

client population and where a larger number of URLs are accessed over a very short time

period. These two workloads were chosen for this study because of their diversity from

each other. When conducting a performance study for the purpose of investigating the

effectiveness of caching and prefetching mechanisms, a smaller workload is expected to

result in a better outcome than a larger one because: it is less likely to contain a lot of

dynamic content, and contains fewer URLs (both of which are advantageous to caching).

In addition, with a smaller workload, the chance of discovering access patterns from user

requests is heightened (which could be beneficial to prefetching), as compared to a larger

workload where requests are as good as random.

The accuracy of the proxy prediction engine was measured using training and

testing data created from each workload. To simulate a practical application of these

logs, a testing set was designed to contain only requests that occurred after all of the

training set requests were collected. For example, if the requests used for training were

gathered from September 1 to September 30, then the test requests used must be collected

after that time (say, from October 1). If only one log was available from a given site, the

log was used for the generation of both the training and testing set. The URLs in each

log needed to be represented in a more compact format, to allow for easy storage and

quick comparisons. As such, a unique integer was assigned to each unique URL present

7 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the logs. Throughout this study, URLs are simply referred to using their unique

integer identifiers.

As mentioned before, for each workload, smaller datasets of varied-sizes were

created (henceforth referred to as Workload partitions). From these partitions, a few

training and testing sets were produced, in order to investigate the effect of the train and

test set sizes on the accuracy of the prediction engine. This heuristic was adopted to

determine whether the prediction accuracy would improve as the number of processed

requests increased. This heuristic simulates a real life setting, whereby the number of

requests intercepted and processed by the proxy server accumulates over time (hence

adding to the access history knowledge base). Workload partitions can be considered

simply as varied-sized workloads obtained from the same source. For every training set,

its corresponding testing set was taken to be a third of the size of the training set. For

instance, consider a workload made up of 40 requests. Using this workload, the training

set would consist of 30 requests, and 10 requests for its corresponding testing set. Figure

32 illustrates the process of generating training and testing sets from a sample workload

partition.

Client IP address
A

Request timestamp Unique URL number
A

1
24.82.49.72

i
[19/Nov/2001:00:01:48 -0700]

i
1

24.82.49.72 [19/Nov/2001:00:01:50 -0700] 394
24.82.49.72 [19/Nov/2001:00:01:52 -0700] 398
24.82.49.72 [19/Nov/2001:00:02:11 -0700] 323 V
24.226.19.208 [19/Nov/2001:00:04:12 -0700] 39 f

24.65.55.165 [19/Nov/2001:00:23:33 -0700] 1
24.65.55.165 [19/Nov/2001:00:23:34 -0700] 312
24.65.55.165 [19/Nov/2001:00:23:36 -0700] 394
24.65.55.165 [19/Nov/2001:00:23:38 -0700] 398 4
24.82.49.72 [19/Nov/2001:00:25:32 -0700] 397
129.128.28.38 [19/Nov/2001:00:27:49 -0700] 1 >
129.128.28.38 [19/Nov/2001:00:27:49 -0700] 1

J

- Extract for training
(3/4 of total workload size).
Train set = 3 x test set
- Build user sessions from

traces.

Extract for testing.
(last 1/4 of total workload).
Test set = 1/3 size of Train

Figure 32 - Generating training and testing sets from a workload partition

Each training set consisted of a collection of complete user sessions generated

from requests collected over a period of time. User sessions were made up of all requests

7 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

issued by a given user within a thirty-minute period. This time heuristic was adopted for

the following reasons. First, it is not possible for a single server to trace a user’s paths

through other sites; and thus impossible to verify if a user passed through another site

between accessing two pages on a single server site [SKS98]. As such, a thirty-minute

time period was adopted to ensure that any requests separated by more than thirty

minutes constitute two separate user sessions. Figure 33 portrays a sample training set in

a file called Train.txt.

Session generated for
^ one IP over a thirty-

minute period

Figure 33 - A sample training set

Each testing set consisted of a list of client requests as they arrived at the server over

time. Each request was made up of the IP address of the client requesting the data, the

timestamp showing when the request arrived at the server, and the unique URL number

for the request (as shown in Figure 34).

Client IP address Request timestamp Unique URL number
A A *
J ____________________________________I_________________________L

216.35.103.58 [01/Sep/2001 03 01:42 -0600] 59
216.35.116.89 [01/Sep/2001 04 15:28 -0600] 159
63.99.105.163 [01/Sep/2001 05 52:50 -0600] 184
216.239.46.19 [01/Sep/2001 06 33:33 -0600] 213
216.239.46.153 [01/Sep/2001 06 37:59 -0600] 187
216.35.103.74 [01/Sep/2001 06 51:57-0600] 306

Figure 34 - A sample testing set.

Table 6 shows the different train/test sets generated from the C301 logs; while Table 7

shows the train/test sets generated from the CS logs.

7 7

Trainutxt

81 33 402 316 405 389 322 1 1 12 ~
1 1 74 31 101 31 1 1 74 31 101 81
312 314 314 1 1 312 314 322 317
1 74 101 97 85 97
1 312 314 314 314 1 316 314
1 1 74 101 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6 - A summary of the train/test sets generated from the C301 workload partitions

Workload
Partitions

Partition
SiMMf
<# of

Requests)

Number of
1 RAIN

reqiit-sis

Number
ofTKST
Requests

Number of
Unique URLs
from Training

set

MAX
Number of

Unique URLs
from Testing

. set

Total
number

('bents

1 1211 909 y j i 77 49 65

2 69,580 52,185 17,395 263 227 1129

3 109,523 82,356 27,167 307 241 1458

4 137,186 103,162 34,024 318 276 1416

Table 7 - A summary of the train/test sets generated from the CS workload partitions

Workload
Partitions

Piiititinn
Size
<# of

Requests I

Number
id 1 RAIN
requests

Numtu r
ot lb SI
Requests

Number of
Unique URI.s

from
'! raining si 1

MAX
Nuinher of

1 ii'que
lIRLs from
Testing set

Tutal
nuinher of

Clients

1 6,276 4,677 1,599 3014 898 251

2 48,704 36,528 12,176 17,286 5944 1196

Tables 5 and 6 show the details on the train/test sets generated from the C301 and CS

logs, respectively. Column two represents the number of requests in each dataset

generated from each workload; column three and four illustrate the size of the generated

training and testing datasets; column five depicts the number of unique URLs obtained

from the user sessions used in the initial training phase; column six shows the number of

unique URLs obtained from the testing dataset; and column seven shows the total number

of distinct clients serviced from the testing dataset only.

5.3.3 Structure of the Simulator

In this simulation study, the testbed is reduced to having one main component: the proxy

server i.e. the client is simulated on the proxy and no separate client process is

maintained. Since different workloads were used as a source of user requests, the proxy

simply iterated through a test set generated from the workload, and issued requests on

behalf of the client; thereby removing the need for explicitly defining a separate client

process.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.3.1 Time sequence illustration o f a simulation run

An illustration of the time sequence simulation for each experiment run is provided in

Figure 35. It captures the transfer of a requested file and any prefetched item to the

client, before another client request is issued. Note that the proxy to mobile client link is

bounded by a bit rate of 9600 bits per second. This bit rate was chosen because most

minimum-footprint J2ME platform devices are characterized by connectivity to a

wireless, intermittent connection with limited bandwidth of 9600 bits per second (bps) or

less [RTVOI],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 9

M obile ('iienf

Mobile user sends
request at time t (taken

from trace)
it also sends the size of

the memory, M, for
storing prefetched files:

REQ (url, M)

1 3

____ i i ____
Send result
in a simpler
form of L
bytes, to

the mobile
user.

..........

Next
Request

In parallel with
sending the

response to the
mobile, Proxy

starts
prefetching the
predicted item.

Proxy Server

Proxy sends out
the request to the
server (assuming
request Not in the

cache)

Server gets request
and responds
accordingly

L \W W \S em r

T ~
T = (4)

JTIME, T J J \£
T = (1) T = (2) T = (3)

Increase in time =>

Legend:

A. T.: Arrival Time of an entity to its destination;
request = The size of the request data from the mobile;
L = Number of transformed requested bytes;

9.6 kbps = The proxy-mobile link connection bandwidth

(1) A. T. = t + request/9.6
(2) A. T. = t + request/9.6 + document_transfer_time (doc_transfer_time)

(3) A. T. = t + request/9.6 + doc_transfer_time + proxy_transform_time + L/9.6
(4) A.T. = t + request/9.6 + doc_transfer_time + proxy_transform_time + L/9.6 +

prefetched_doc_transfer_time + prefetched_doc_transform_time +
prefetched_doc_size/9.6

T = t (taken
f r n m

Figure 35 - Time sequence illustration of a simulation run

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Steps 1 to 4 shown in are described as follows:

• Step 1: The mobile user sends a request at time, t (extracted from the workload

traces). It also advises the Proxy on the space it has available for storing prefetched

files. The Proxy captures this request at time (1), shown in Figure 35. The Proxy

then sends out the request to the Web server (if it can not satisfy it from its local

cache).

• Step 2: The web server receives the request and responds with the requested content.

The proxy receives the response at a time (2) (from Figure 35). The proxy then

transcodes the original content to a version suitable for the mobile client.

• Step 3: The transcoded content results in a representation of L bytes that is dispatched

to the client. The response arrives at the client at time (3).

• Step 4: In parallel with starting to send the response to the client (Step 3), the Proxy

commences the prefetching process. If a document is chosen for prefetching, it is

fetched, and transformed at the proxy. The time the prefetched item arrives at the

client is determined by the times taken to fetch and transform the document content at

the proxy. K it happens that the item is ready to be prefetched to the client before the

initial client request has been satisfied, prefetching is suspended until the requested

page transfer is completed. Under this assumption, the prefetched item finally arrives

at the client at time (4).

5.3.4 Object and Data Structures of the Simulator

During each simulation run, there was no actual access to Web server resources when a

client request was processed. For each unique URL in each workload, the following

statistics were gathered on the Proxy during a pre-processing phase: the size of the

mobile request (in the format: <String: clientJP, int: URL id, Date: accessJime>), the

time taken to fetch each URL, the transcoding time, the number of original response

bytes from the Web server, and the number of proxy-transcoded bytes. A simple

program was run on the proxy (iterating through each URL from a list of unique URLs in

the workload) in order to collect the values for these attributes for each URL. These

attributes were then encapsulated in an URLUnit object shown in Figure 36. As such, at

the start of each simulation run, a collection of URLUnits corresponding to each unique

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

URL in the workload was available at the proxy. In calculating the simulation time when

a request was being processed (illustrated in Figure 35), the URLUnit object pertaining to

the requested URL was accessed and the relevant information retrieved.

The average time taken to read the data bytes from the Web server, create

HTMLNodes and transcode the retrieved bytes was 14.13 milliseconds for the C301

workload, and 47.43 milliseconds for the CS workload. These averages hint at the

complexity of the web pages retrieved for the URLs from the CS workload.

Workload: URLUnits: __—
URL1

____ URLUnit 1
URL2

URLUnit 2"v

URLN URLUnit N

URLUnit object
int U R L jd;
String url;
int URL_String_bytes;
long original_response_size;
long transcodedjresponse_size;
int URL_fetch_time;
int URL_transcode_time;

Figure 36 - A URLUnit object

5.3.4.1 Client simulation on the MoBed Proxy server

The client is simulated on the proxy by means of the following proxy components:

1. The Session Tracker Engine:

The proxy’s session tracker engine identifies different clients based on their IP addresses,

while tracking each user’s current session. A user session is taken to be all the requests

issued by the user in a thirty minute time period. If a user makes only one request and

never makes another, that request is considered to be the completed user session after

thirty minutes elapse.

2. The Mobile Cache Manager:

This component manages a client cache (of a fixed size) on behalf of each unique client

serviced by the proxy. When a client accesses the proxy for the first time, a cache is

created for that IP. It is important to mention here that the client caches were used to

store only items prefetched to the client from the proxy. Pages explicitly requested by the

client are not cached. In a real-life setting, the decision to cache requested pages could be

cached on the client by an intelligent Web browser, based on the user’s interests. In this

study however, a simple approach was taken by storing only prefetched items in the

client caches. The Mobile Cache Manager is implemented as a Hash table, with unique

8 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

client IP addresses mapped to their corresponding caches, as shown below in Figure 37.

The class diagram in Figure 37 shows the interaction between the MobileCacheManager,

MobileCache and MobileCacheNode classes on the MoBed Proxy.

Mobile Cache
manager

I?! -» Cache"
IP2 -» Cache
IP3 —»Cache

Mobile cache

29.758.457.1 — > {4,3456} {10,307}
I (1,3) J C(0,1) J

Client IP
MobileCacheNode:

Url#= 10
Data content = 3456 bytes
Access count = 1
Prefetch count = 3

Figure 37 - An illustration of the function of the Mobile Cache Manager.

When a document is prefetched to a client, the data is stored in the cache in the form of a

MobileCacheNode object (shown in Figure 37 above). The latter consists of the URL

number (unique identifier for the URL string) and the number of transformed data bytes

of the resource content. Each MobileCacheNode also has two important attributes: an

access count and a prefetch count. The access count defines the number of times that

node has been accessed from the cache; and the prefetch count defines the number of

times that node was prefetched to the client. When a document is selected for prefetching,

its corresponding MobileCacheNode is created with an access count of zero and a

prefetch count of one. If a client cache is full, then the mobile cache object performs a

simple, self-cleaning activity that removes all MobileCacheNodes that had been

prefetched once and never accessed. As such, fresh pages are added when the size of the

client cache reaches its maximum.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MobileCacheManager

-IP_caches:HashTable
-MEMQRY;long______________

+MobileCacheManager(long)
+insertIP(String): void
+storePredictions(String, Vector):
void
+getCache(String): MobileCache
+getSpace(String): long

V
MobileCache

-mobileCache: Vector
-node: MobileCacheNode
-cacheSize: long

+MobileCache(long)
+createCacheO: void
+getAvailableSpace: long
+cleanup(): void
+getSpace(String): long
+processPrefetchBundle(Vector):
void
-addFile(MobileCacheNode):
void
+checkForFile(int): boolean

l 5l MobileCacheNode

Legend:
Dependency relationship: ____

-url_id: int
-size: long
- prefetchCount: int
-nodeAccessCount: int

+MobileCacheNode(int,long)
+getAccessCount(): int
+getPrefetchCount(): int
+addAccessCount(int): void
+addPrefetchCount(int): void

Figure 38 - Function of the Proxy MobileCacheManager component

5.3.4.2 The Simulator Control Flow

In all simulation runs in this experiment, a non-persistent infinite proxy cache was

simulated i.e. the proxy cache contained every document ever accessed during any given

run. At the start of each run, the proxy cache was empty and consequently populated as

user requests were received and processed. There were two main stages in each run,

namely the training phase and the testing phase.

1. Training phase:

At the start of this phase, the main storage units on the proxy were initialized, such as: the

local cache, the client session tracker, and the client cache manager. The proxy controller

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class then read in user sessions from a training set, built a path tree and condensed it to a

list of useful path list entries from which predictions would be later made (described in

Section 4.2.4.1).

2. Testing phase:

With the completion of the training phase, the knowledge base for the prediction engine

was ready and user requests could be processed. At the beginning of the testing phase

begins, the test data was read from a file and saved into a collection of Mobile Requests,

which consisted of three attributes: the IP address of the client, the time the request

arrived at the server, and the unique URL number identifying the URL string requested.

The proxy controller’s request-iterator method iterated through the collection of Mobile

Requests, and processed each request (as described below). Assume that the request

being processed is from a client with IP address IPi at time 7), requesting URL number

20.

The client’s cache was examined to determine whether it contained a

MobileCacheNode with URL number 20. Since the client was simulated on the proxy, the

Mobile Cache Manager provided access to the cache belonging to IP], and supplied the

value of the available client cache space (for storing prefetched items). If the document

was found in the client cache, the proxy’s request-iterator proceeded to release the next

client request, and no prefetching was done for that request. This scenario was adopted

because in a real-life situation, if a mobile client finds a requested document in its cache,

it will have no need to access the proxy; consequently, no documents are prefetched to

the client since the proxy never processed that request.

If the requested document is not found in the client cache, then the proxy’s

services are needed to satisfy the request. The proxy cache was verified to determine

whether it contained that document. Note that since this was a simulation where the

client was simulated on the proxy, the requested data was not actually sent back to the

client. If the requested URL was found in the proxy cache or not, the time taken to

satisfy that request was simulated (as shown in Step 3 in Figure 35); where the time taken

to fetch the request from the Web was considered as 0 (if found in the cache) or the actual

time taken to fetch the resource (if not found in the cache).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When a request was satisfied, another request was obtained from the request-iterator and

processed and so on. It is important to mention here that prefetching only commenced if

the proxy was idling after satisfying a request. That is, if there was a time interval

between the time of the next client request and the completion of the current request, the

proxy proceeded to predict the item for prefetching. If there was no time interval

between consecutive requests, the next request was processed.

If the proxy had an idle time interval between consecutive requests, the proxy

began the prediction process in parallel with starting to send the requested data response

to the client. The prediction engine only predicted one document at a time (the best

possible choice), given the user’s current session and the available path profiles.

Whether the prefetched item was found in the proxy cache or not, the simulated time

taken to satisfy the prefetching process was calculated (as shown in Step 4 in Figure 35);

where the time taken to fetch the predicted item from the Web was 0 (found in cache) or

the actual time value. Note that the size of the prefetched item was restricted by the

available cache space specified in the initial client request. If the prefetched document

was too big, prefetching was interrupted. Prefetching was interrupted at any time, if there

was an incoming client request.

In some of the simulation runs in this experiment, the prediction engine was

‘retrained’ with requests from the test set after a fixed period of time elapsed (discussed

in the upcoming section). The goal of retraining the prediction engine was to learn new

paths, modify the path profiles, and perhaps improve the accuracy of the prediction

engine. User sessions used for re-training were generated from the most recent test

requests issued since the last retraining phase. If a simulation run contained a Retraining

phase, retraining was performed at given time intervals during the testing stage. For

example, the retraining could occur every 60 minutes during testing. This meant that

following the timestamps of the URL requests issued, after processing requests for 60

minutes, the testing phase was suspended and retraining carried out. With the completion

of the retraining phase, the test phase was resumed and other requests made and

processed as already described above.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.43 Experiment setup

Recall that the goal of this study was to assess the following (Section 5.3.1):

• Experiment 3-1: The effect of the client cache sizes (8, 30, 60 kilobytes) on the

following dependent variables: the percentage of accesses NOT made to the Proxy

when a request was made; the percentage of prefetch-interrupts from large prefetched

files; the number of files prefetched to all clients; and the number of clients

prefetched to.

• Experiment 3-2: The effect of the following factors on the prediction accuracy

(predicted byte and file hit ratio) of the proxy prediction engine: the size of the Path

tree used in making predictions (determined by the T-value), including a retraining

phase for the prediction engine; and the workload size.

For these two experiments, several simulation runs were performed. Table 8 shows the

experiment setup used for both experiments.

The following notation is used to refer to the factor levels in Table 8. The

mnemonics used for the Retrain factor (Y and N) refer to the presence (Y) or absence (N)

of a retraining phase in the prediction process. The Workload factor mnemonics used

(C301 and CS) are suffixed by /1_2_3, /1_2 or 12 (e.g. C301/l_2_3) to denote the list of

workload partitions used (generated from the named workload). For example,

C301/l_2_3 means that partitions 1, 2, and 3 (shown in Table 6) from the C301 workload

were used in that simulation run; CS/2 means that only the second partition from the CS

workload (shown in Table 7) was used in the run.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Table 8 - Setup for Experiments 3-1 and 3-2

Number of
Simulation
' RUNS

1-
Vahi*

T=2

Client
cache

Si/e fkit)

j j j j lB l l j
Retrain

N

W orkload

C 3 0 1 / i^ 3 ” _
CS/i_2

24 runs

8

Y C301/l_2_3

30 N C301/l_2_3
CS/1_2

Y C301/l_2_3

60 N C301/l_2_3
CS/1_2

Y C301/1 2 3

27 runs T=3

8 N C301/l_2_3
CS/1_2

Y C301/l_2_3
CS/2

30 N C301/l_2_3
CS/1_2

Y C301/l_2_3
CS/2

60 N C301/l_2_3
CS/1_2

Y C301/l_2_3
CS/2

As shown in Table 8, the experiment design for Experiments 3-1 and 3-2 is

nested; i.e. in this experiment, the levels of one factor are chosen within the levels of

another factor. For each T-value, the levels for the Cache Size factor are chosen (8, 30,

60 kB). Within each Cache Size level, the Retraining factor levels (Y and N) are chosen;

and within each Retraining level, the different workloads are selected. For the T-value of

2, a total of 24 simulations were required; for the T-value of 3, a total of 27 simulations

were required. Although the experiment design was same for both experiments, their

response variables differed, as shown in Table 9.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9 - Experiment 3: Factors and response variables

Experiment Far tors Rcsptmsc variables
- % of Proxy accesses;
- % of Prefetch-interrupts from large

3-1 Client cache size predicted files;
- Number of files prefetched to clients;
- Number of clients prefetched to.

- PathTree size (determined by T-

3-2 ■ ;
value) - % of Predicted File Hit Ratios

- Using a Retraining phase
- Workload size

- % of Predicted Byte Hit Ratios

5.3.5 Results and Analysis

The results for Experiment 3-1 and 3-2 are presented and evaluated below:

5.3.5.1 Experiment 3-1

Recall that the goal of this experiment was to determine the effect of the client cache size

on the following dependent variables: the percentage of accesses to the Proxy when a

request is made; the percentage of prefetch-interrupts from large prefetched files; the

number of files prefetched to all clients; and the number of clients prefetched to. Three

levels were investigated for the Client cache size in this experiment (8, 30, 60 kB). It is

important to mention that all clients were assigned the same maximum cache capacity

throughout each simulation. For example, if the current cache size under investigation

was 30 kilobytes, then all clients had a maximum storage capacity of 30 kilobytes. At the

start of each experiment, all client caches were empty and populated in the course of the

simulation. Table 10 and Table 11 summarize the results from the simulation runs using

the response variables shown in Table 9 above, for the C301 and CS workloads

respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Table 10 - Experiment 3-1: Results obtained from the C301 workload

T-
Value

----- _—
Client
cache
Si/.e
■.kli)

8

Ur train

N

Workload
1‘arliiiiHi

2
3

C3C1

•v Ol
NO-

l*n»\>
Accosts

23.1
25.2

" 5 iir '
Preietch
■iitrriiipis

from

" -1 .0 - -
29.1
34.8

lotill $ Ilf
flit"*

prcfetchcd
to all
clients _

43
1762
2695

h b i h
i ntul if nf
Clients

Serviced

36
896
1160

1 5.3 8.0 43 36
Y 2 23.3 30.0 1803 883

3 25.6 35.4 2724 1156
1 6.0 1.4 46 38

30 N 2 24.1 12.7 2147 920
3 27.9 11.4 3434 1222
1 6.0 1.4 46 38

Y 2 24.5 15.8 2149 915
3 28.4 12.0 3483 1223
1 6.0 1.4 46 38

60 N 2 25.0 3.1 2293 942
3 28.3 3.6 3652 1253
1 6.0 1.4 46 38

Y 2 25.4 3.4 2379 951
3 28.8 4.0 3708 1254

IH mHI
1 5.3 7.2 42 35

8 N 2 23.7 25.9 1771 883
3 25.4 32.0 2624 1151
1 5.3 7.2 42 35

Y 2 23.8 28.2 1786 865
3 25.9 32.6 2628 1151
1 5.6 1.5 45 37

T~3 30 N 2 25.0 6.1 2155 911
3 27.4 8.5 3336 1213
1 5.6 1.5 45 37

Y 2 25.4 9.3 2158 892
3 28.1 9.0 3357 1213
1 5.6 1.5 45 37

60 N 2 25.0 1.6 2236 932
3 27.7 3.5 3464 1244
1 5.6 1.5 45 37

Y 2 25.7 2.2 2276 938
3 28.4 3.8 3487 1244

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 11 - Experiment 3-1: Results obtained from the CS workload

Retrain

C’S

1
! Cl'cnl

T- i cache
Value ! Site

i

Workload
Partition

% Of
NO-

Accesses

•/, Of
Prefetch ■
mlL'irtipt'

from
tiles

Tula! # ot
tiles

prefelchcd
to all

clients

Total ft
rtk-m.-.

Serviced

8 N 1 .2 0.0 1 1
2 0.04 0.6 24 23

T=2 30 N 1
2

23.2
0.04

0.0
0.1

1
24

1
23

60 N 1 23.2 0.0 1 1
2 0.04 0.0 24 23

m m u m M M M i1 llMlBMIIII
Q N i 23.2 0.0 1 1O 2 0.07 0.7 22 22

Y 2 0.07 0.8 22 22

T=3 30 N 1
2

23.2
0.07

0.0
0.1

1
22

1
22

Y 2 0.0 0.07 22 22

60 N 1 23.2 0.0 1 1
2 0.07 0.0 22 22

Y 2 0.0 0.0 22 22

The results summarized in the above tables are evaluated in the following sub-sections

based on each of the response variables for this experiment:

5.3.5.1.1 The percentage o f requests satisfied from client caches (No Proxy accesses):

Recall that: if a client’s request was found in its local cache, it was instantly satisfied and

there was no need to connect to the proxy server. There is a relation between the size of

client caches and the number of accesses made to the proxy for a request: the bigger the

client cache, the more documents can be stored, the less frequently do potentially-useful

documents need to be evicted from the cache (to store newer items) and hence, the higher

the chance of finding a requested document in the cache.

Table 10 summarizes the results from the C301 logs. Column 5 in this table

shows the percentage of No-Proxy accesses i.e. the percentage of times when the client

request was found in its local cache over the total number of requests issued from the

testing set. For instance, for the C301 Workload partition of 3, with a T-value of 2, the

percentage of No-Proxy accesses increased from 25.2 to 27.9 to 28.3% as the cache sizes

91

with permission of the copyright owner. Further reproduction prohibited without permission.

increased from BkB to 30kB and 60kB, respectively. The same trend is noticeable over

all the workload partitions and T-values. It is also observed from this table that for each

cache size (over all T-values), the percentage of No-Proxy accesses increased, as the

workload partition sizes increased. This is the case because the larger the size of the

workload partition, the higher the number of clients, and hence the increase in the number

of requests found in client caches (hence No-Proxy accesses).

Table 11 summarizes the results from the CS logs. The percentage of No Proxy

accesses remains the same over all T-values for the CS workload partition 1. The

percentage of No-Proxy accesses is surprisingly high for this workload partition, given

that there was only one item ever prefetched to one client. The reason for this is because

the one item prefetched to the single client was requested repeatedly (and found in the

client cache), and hence recorded as a No-Proxy access hit. For the second partition,

however, the percentage of No-Proxy accesses is quite low for both T-values. This is the

case because from the few files successfully prefetched to the clients, only a very small

number was accessed.

5.3.5.1.2 The percentage of ‘prefetch-interrupts’ resulting large prefetch documents:

Recall that a prefetch-interrupt was recorded when a client did not successfully receive

the item predicted for its next request. Prefetching was interrupted when: there was an

incoming request before it was completed (with not enough time to complete the task),

and when the file to be prefetched was bigger than the user’s specified available caching

space. The latter reason is of importance in this experiment, because it relates to the size

of the client cache. Column 6 in both Table 10 and Table 11 shows the percentage of

prefetch-interrupts resulting from the proxy attempting to prefetch a document that was

bigger than the client cache constraints. In Table 10 (C301 workload), it can be observed

that as the cache size increases, the percentage of prefetch-interrupts drops (for all

Partitions and all T-values). For example, for C301 partition 2 and T-value 2, it can be

seen that the percentage drops from 29.1 to 12.7 to 3.1% as the cache size increases from

8kB to 30kB and 60kB, respectively. It is important to mention here that, the fewer the

number of prefetch-interrupts, the higher the chances of a client finding its desired

request in the cache, and the higher the number of No-Proxy accesses.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Table 11 (CS workload) however, the results appear peculiar, perhaps even

puzzling at a glance. Before explaining the reason for this, recall that the main difference

between the two workloads (C301 and CS) resulted from the fact that they were collected

from a course website and a departmental server, respectively. The former contained less

traffic and fewer requests over time, as compared to the latter, which received thousands

of requests in a matter of minutes. This difference comes through in these simulation

results because for a very busy server, there is a marked reduction in the number of

successful prefetchs to clients. This is the case because prefetching only occurred when

the proxy server was idling between client requests. In Table 11, the percentage of

prefetch-interrupts (from large prefetch documents) is 0% for CS Partition 1, over all

cache sizes because there are simply not enough successful prefetch attempts (since the

requests came from a busy server). For CS Partition 2, on the other hand, the percentage

of prefetch-interrupts is seen to drop from 0.7 to 0% (for T-value 3) and from 0.6 to 0.1

to 0% (for T-value 2); as the client cache size is increased from 8 to 30 to 60kB. Due to

the fact that the size of CS Partition 2 was considerably larger as compared to those in CS

Partition 1, there were enough prefetch attempts to demonstrate the observed trend.

5.3.5.1.3 The total number o f files prefetched to all clients.

It follows from the above explanations that the larger the client cache, the higher the

number of files prefetched to clients. This trend is demonstrated in Column 7 of Table 10

(C301 workload). The number of files prefetched to all clients increases (over all T-

values) as the size of the client cache is increased from 8kB to 60kB. From Table 11 (CS

workload), only one item is prefetched for CS Partition 1 and over 20 items for CS

Partition 2. The reason for this is as mentioned above: due to the density of the requests

in the CS log, which were obtained from a very busy server.

5.3.5.1.4 The total number o f unique clients who received prefetched documents.

Table 10 and Table 11 demonstrate a general trend: the larger the client cache size, the

more clients are likely to receive prefetched documents. Also, the bigger the workload

9 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

partitions, the larger the number of clients serviced, and hence the higher the number of

clients to potentially receive prefetched files.

53.5.2 Experiment 3-2

For each simulation run, the accuracy of the prediction engine was calculated. Statistics

were collected showing: the number of times predictions were made and how often the

predicted item turned out to be the user’s next request. It is important to mention that in

this experiment, the prediction-accuracy rates (accuracy of predictions) were measured

from the perspective of the client (client-based predictability), since client-perceived

latency is one of the main concerns of MoBed. Keeping this in mind, the client-based

prediction-accuracy rates excluded cases where a prediction was made but the user never

requested another page (such as at the end of a user’s session). In this situation, the user

never requests another page and hence does not suffer any losses even if the prediction

was wrong. All predictions were made within a client’s user session i.e. after their first

request and as long as they issued requests. As previously mentioned, predictions were

made only when there was enough history to back-up the guess i.e. when the user’s

current session has been previously ‘learned’ by the prediction engine; and only one item

was prefetched to any given client at a time. Even though this amounts to the proxy not

prefetching too often, it ensures that the best possible guess for each client’s next request

is made (choosing the quality of predictions over the quantity). The accuracy of the

predictions from the proxy’s prediction engine was measured based on three factors: re­

training the prediction engine using recently-accessed test requests, varying the path tree

size by changing the threshold T-value, and workload size (using train/test datasets of

varied sizes).

5.3.5.2.1 The impact o f the Re-training phase

The reason for re-training the prediction engine was to update the path profiles used in

generating guesses for users’ next requests. The impact of retraining depended on two

factors: the number of times re-training occurred and the size of the testing data used to

generate the new requests for retraining. If the size of the retraining data was relatively

large, then there was a greater possibility of updating the frequency counts of the history

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

paths, and hence the path profiles. Recall that predictions were made using history paths

with the highest frequency counts. As such, if the re-training phase did not result in an

increase in the frequency counts for some paths, no new knowledge was ‘learned’ and the

prediction-accuracy rates would barely change from those acquired from the same

simulation run with no re-training phase. All the simulation runs were performed first

without a re-training phase, and then repeated with re-training occurring after a specific

period of time.

Table 12 and Table 13 below provide a concise summary of the prediction-accuracy rates

obtained for all simulation runs using the workload partitions generated from the C301

and CS workloads. For the C301 partitions, retraining was performed every six hours i.e.

test requests were gathered in six-hour intervals and used as the new data for re-training.

For the CS-Dec5 datasets, re-training was performed every thirty minutes, since these

logs were collected from a busy server that received thousands of requests within

minutes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Table 12 - Experiment 3-2: Results obtained from the C301 workload

T-
Vaiue

■ < liem
| cache

Size
Ikll)

Ret rain #of
Re-trains

O O I

Size of
Kc-trumins

set

Workload
Partitions

------- — —

I'rrdicU-d
I dc Hits

„— „

f* o f
Pit oil led
iUlc Hits

1 ■7.1 29.6
8 N - - 2 24.0 16.0

3 20.8 14.3
1 136 1 37.1 30

Y 69 17014 2 24.1 16.5
103 26689 3 21.3 14.8

1 37.1 29.6
1=2 30 N - - 2 24.4 16.1

3 21.0 14.0
1 136 1 37.1 30

Y 69 17014 2 24.6 16.7
103 26689 3 21.5 14.4

1 37.1 29.6
60 N - - 2 24.3 16.1

3 21.0 13.6
1 136 1 37.1 29.6

Y 69 17014 2 24.5 16.2
103 26689 3 21.6 14.0

1 40.6 32.3
8 N - - 2 24.1 24.1

3 21.6 21.6
1 136 1 40.7 32.2

Y 69 17014 2 26.4 18.9
103 26689 3 22.1 15.4

1 40.6 32.3
T=3 30 N - - 2 24.4 16.3

3 21.6 14.5
1 136 1 40.6 32.3

Y 69 17014 2 26.6 18.9
103 26689 3 22.2 15.0

1 40.6 32.3
60 N - - 2 24.4 16.4

3 21.6 14.1
1 136 1 40.6 32.3

Y 69 17014 2 26.5 18.7
103 26689 3 22.2 14.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 13 - Experiment 3-2: Results obtained from the CS workload

r r
i V alue

Client
' rsuhe

Slw
{U«J

,

Retrain # of Re­
trains

bi/e of
Re-training

sot

iiiiisiiiMiliiiil
Workload
rm lim-fls

n oi
Predicted
FiU lists

% of
Predicted
(Wlc 5Ht:

s N - - 1
2

■ S.8
67.9

35.8
73.6

T—2 30 N - - 1
2

36.8
67.9

35.8
73.6

60 N - - 1
2

36.8
67.9

35.8
73.6

8 N - - 1
2

35.7
71.3

.1 3
78.1

Y 7005 o 71.5 78. 1

T=3 30 N - - 1
2

35.7
71.3

22 3
7f? 1

Y 3 i 7003 2 71.5 7<S\ /

60 N - - 1
2

35.7
71.3

22.3
78.1

Y 3 7065 2 71.5 78.1

From Table 12 and Table 13, Columns 5 and 6 show the observed percentage of

predicted file hits and byte hits (respectively). A predicted file hit is recorded when the

predicted item for a user is actually requested next. The percentage of predicted file hits

is defined as:

(The total number o f correct guesses -i-the total number o f guesses) times 100.

Similarly, a predicted byte hit is recorded whenever there is a prefetch file hit. The

percentage of prefetch byte hits is defined as:

(The number o f requested predicted bytes the number o f predicted bytes) times 100.

Note that every predicted file was not necessarily prefetched to the client, as prefetching

was only successful if there was sufficient time to deliver the predicted item to the client

before another request was received. Columns 7 and 8 show the number of times when

retraining occurred and the total number of retraining requests used in the process,

respectively.

Table 12 contains the prediction-accuracy rates observed for the C301 workload.

From the table, the following observations can be made. When re-training is performed,

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

there is a general increase in the percentage of predicted file and byte hits over all three

C301 workload partitions, even though the difference may be small. For instance, for T-

value 2 and a client cache of 8 kilobytes, for the C301 Partition 1, the percentage of

predicted file hits remains constant at 37.1% with and without retraining. This is because

of the small size of the dataset, and the small number of retrains performed (only one),

with only 136 retrain requests. For this same partition, the percentage of predicted byte

hits increases from 29.6 to 30% when retraining is executed. For C301 Partition 1, the

percentage of predicted file hits increases from 20.8 to 21.3% and the percentage of

predicted byte hits increases from 16 to 16.5% when retraining is performed 69 times

using over 17000 retrain requests. In general, there is a slight increase in the predicted

file and byte hits when retraining is executed, for all three partitions.

Table 13 contains the prediction-accuracy rates observed using the CS workload.

Note that there was no retraining executed for CS partition 1, because it consisted of only

1599 test requests (as shown in Table 7), which were collected in a time period of less

than ten minutes. Recall that for the CS-Dec5 datasets, re-training was performed at

thirty-minute intervals. From the table, it can be observed that: For the CS partition 1,

the percentage of predicted file and byte hits remains constant over all cache sizes for

both T-values when there is no-retraining. For CS partition 2 however, there is a slight

increase in the percentage of predicted file hits from 71.3 to 71.5% when retraining is

performed 3 times with over 7000 requests.

53.5.2.2 The effect of varying the T-value

Recall that in building a path tree from past user sessions, the number of potential paths

in the tree could be controlled by the T-value, which restricts the expansion of every node

in the path tree. A node in the tree is only expanded when its maximal-prefix has

occurred at least T times [SKS98]. The maximal prefix of a path is the ordered sequence

of all the URLs in the path minus the last one. Thus, the T-value is a threshold value that

can be configured based on the available memory resources [SKS98].

For the C301 workload, using Table 12, a comparison can be made between the

prediction-accuracy rates over all C301 partitions, based on the T-value. It is observed

from the table that the highest predicted file and but hit percentages are reached when the

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T-value is 3. This is true over all the partitions and client cache sizes. To better explain

this trend, consider Table 14 below, which shows the prediction-accuracy rates observed

from 2 different T-values using the three C301 partitions (with a cache size of 8kB, and

No Retraining phase).

Table 14 - Prediction-accuracy rates observed from 2 different T-values using three C301 partitions
(With a cache size of 8kB, and No Retraining phase).

T
Value

< Jirnl
earhe
Si/«
(kli)

R etrain
«il
Re­

trains

Si/e of
Re­

train ing
set

\ \ orklund
rnriitio ife l*i edit ted

i'ile Hits

% of
P ivdirtcd
Byte llits

1 37.1 29.6
T -2 J.' N - 2 24.0 16.0

•% 20 8 14.3
40 6 32 3

T=3 8 N - - •• 24.1 24.1
21.6 21.6

Table 14 shows that the predicted file hit percentage rises from 37.1 to 40.6% (for the

first partition) when the T-value changes from 2 to 3 respectively; while the predicted

byte hit percentage rises from 29.6 to 32.3%. This increase can be credited to the size of

the path tree created for each T-value. The higher the T-value, the smaller the size of the

tree, since the expansion of every node in the tree is restricted, resulting in a smaller

number of branches from each node. The smaller the number of branches from a node,

the higher the probability of each branch occurring. Therefore, when the T-value is 3,

there is an overall higher possibility of having better prediction-accuracy rates. It is also

essential to point out here that when predicting a user’s next request, the prediction

engine only selects one chosen path from the list of path profiles - the path list entry with

the same path as the client’s current session and with the highest frequency count; That

path list entry’s predictor element is selected for prefetching. If there exist many other

list entries with the same path and same frequency count (but different predictors), only

one is chosen (the first one) since there is an equal probability for each path to occur.

The fewer the number of path list entries with the same path and same frequency count,

the higher the prediction rate.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53.5.2.3 The workload size (with varied train/test dataset sizes)

Recall that both workloads used in this study were divided into workload partitions that

were in turn divided into train/test sets of varied sizes (recall Table 6 and Table 7). The

results showing the impact of the workload size on the prediction-accuracy rates are

summarized in Table 15 and Table 16:

Table 15 - Experiment 3-2: Prediction-accuracy rates observed from all four C301 partitions (with
and without retraining).

<301

Partition
if 111

'1 RAIN # .if I’ES'l
Requests Retrain

% of
Predicted

% of
Predicted

1 909 302 N 37.1 -40.6 2 9 6 - 3 2 3

37.1-40.7 30.0 - 32.3

2 52,185 17,395 N 24.0 - 24.4 16.0 -16 .4

24.1-26.6 16.5-18.9

3
82,356 27,167 N 20.8-21.6 14.0-15.0

Y 21.3-22.2 14.4 - 15.4

4 103,162 34,024 N 27.8 17.8-19.1
Y 28.5 19.4-22.6

Table 16 - Experiment 3-2: Prediction-accuracy rates observed from both CS partitions (with and
without retraining).

Pari it inn
#nf

TR UN
requests

$ nt '! PNi'
Requests

CS

Retrain
% of

I'rcflic ted
File Hits

........ ^ o f ’
Predicted
Ifytc Hits

N 36.8 35.8
1 4677 1,599 Y - -

N 71.3 78.1
2 36,528 12,176 Y 71.5 . 78.1

In Table 15, columns 5 and 6 show the range of file and byte hit percentages

(respectively) for each partition, over all T-values and client cache sizes, i.e. they portray

the lowest and highest rates ever obtained using that workload partition (with and without

retraining). For the C301 partitions, the general trend observed is that the bigger the

partition, the lower the prediction-accuracy rates (both file and byte hit percentages).

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the CS workload, the results in Table 16 show that both file and byte hit

percentages are surprisingly high for the second larger CS partition than for the first,

especially given that the complete CS workload contained over 17000 distinct URLs in

its training data alone. The high prediction-accuracy rates observed for this dataset can

be accounted for as follows. The large number of distinct URLs in the training data

resulted in the creation of a broad path tree during the training phase. The breadth of a

path tree increases as the number of children of the tree’s root node increases. Note that

the number of child nodes of the root node cannot exceed the total number of unique

URLs present in the training data. The CS partition 2 contained 36,528 train requests,

consisting of 17,286 unique URLs (shown in Table 7), showing that the path tree created

from this workload would be broad with little depth and limited branching. The fewer

the branches from each node in the tree, the higher the probability of guessing one of its

child nodes, resulting in increased prediction rates.

5.3.6 Comparison to the Client Baseline architecture performance

The MoBed architecture in this experiment is characterized by: caching support on the

mobile client; an infinite cache at the proxy; as well as prefetching functionality. It is not

trivial to analyze the benefits incurred from the different experiments carried out using

MoBed, due to the diversity in the nature and design of the workloads and experiments.

However, from the results and evaluation of Experiments 3-1 and 3-2 presented in

Section 5.3.4 above, it can be observed that caching and prefetching at the MoBed proxy

level is a promising combination when studying the performance of an intercepting proxy

for satisfying client requests.

This MoBed architecture undoubtedly outperforms the client baseline

architecture. First, the MoBed architecture attempts to reduce client-perceived latency

from two perspectives: maintaining a client cache, infinite proxy cache, in addition to

prefetching probable future requests from the proxy. Any results obtainable from such

attempts are definitely an improvement to those reachable by the naive client baseline

architecture. Although not explicitly calculated, the performance of the MoBed

architecture implemented in Experiments 3-1 and 3-2 is an improvement to that used in

Experiment 1, because there was no caching policy implemented in the former, allowing

101

permission of the copyright owner. Further reproduction prohibited without permission.

all requests ever made to be available at the Proxy for all other clients (thereby increasing

the chances of finding a request in the Proxy cache).

In general, the MoBed architecture implemented in Experiments 3-1 and 3-2

demonstrated the influence of the following factors on the perceived latency after client

requests: the content adaptation (transcoding) scheme utilized at the proxy, the presence

of a client and proxy cache, as well as the use of a prefetching mechanism at the proxy.

5.4 Summary

The simulation study presented in this chapter was designed to investigate the functions

of the MoBed client-proxy server architecture in providing Web access for J2ME-enabled

devices.

• The goal of Experiment 1 was to investigate the benefit of introducing caching only at

the proxy level, using two caching schemes: LRU and LFU. The general conclusion

was that the LRU replacement scheme performs slightly worse than the LFU scheme,

and the proxy latency was observed to be higher with a remote proxy, as opposed to

the proxy located on the Web server machine (the difference in the machines used for

both the remote proxy and Web server may have influenced this result).

• Experiment 2 investigated the data content adaptation or Transcoding process carried

out at the proxy in order to compress data to be sent to the mobile.

• Experiment 3 was designed to assess the performance of MoBed with the following

features: a cache maintained on the client; and a prediction and caching scheme

implemented on the proxy. This assessment is achieved by means of a study

consisting of trace-based simulation experiments run on the proxy server. This

experiment investigated: the impact of having a cache on the mobile client, with three

different cache sizes of 8 kilobytes (kB), 30kB and 60kB; the accuracy of the

predictions from the proxy’s prediction engine based on three factors: re-training the

prediction engine using recently-accessed test requests, varying the path tree size by

changing the threshold T-value, and the using train/test datasets of varied sizes.

The results observed from all the above experiments, although not very high in some

cases, are reasonable and promising enough to justify further research on improving the

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MoBed proxy’s function in caching and/or prefetching. The main contribution of this

research does not lie principally in the results of these experiments but in the testbed

architecture design, which allowed for complete factorial, and nested experiment design.

1 0 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6 Conclusion and Future Work

6.1 Research Contributions

The main objective of MoBed is to provide an experimental test-bed for designing,

developing and analyzing different caching and prefetching schemes that can be used in

devising Web access solutions for J2ME-enabled devices. The main contributions of this

thesis are outlined below:

• As mentioned above, the objective of MoBed is to investigate an intelligent method

for flexibly combining caching and prefetching schemes towards providing Web

access solutions for wireless devices. This project has achieved this objective while

adaptively separating the mobile-resident from the proxy-resident functionality.

• J2ME is a fairly new specification that is rapidly growing in popularity. Such

technology attracts research because it is still in its adolescence, providing ample

room for growth and improvement. This research introduces a fresh perspective on

mobile web access targeted specifically towards the J2ME platform.

• All the experiments conducted using this framework (discussed in Chapter 4) show

that there are benefits to be gained for having a client - proxy architecture for wireless

Web access: It was shown that a Browser cache on the mobile device can

considerably reduce the observed delays when a page is requested, especially if it

stores prefetched items received from the proxy. It was also shown that caching and

prefetching at the proxy-level can be particularly advantageous to J2ME devices that

possess more than just the minimum requirements for supporting the CLDC and MID

profile.

• The main contribution of this research is not so much the results of the experiments,

as the creation of a modular, configurable testbed architecture design for investigating

mobile Web access solutions using caching and prefetching schemes.

In general, the results from the experiments conducted on this architecture are reasonable

and justify further research on improving the MoBed proxy’s function in caching and/or

prefetching.

1 0 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Future Work

Possible future work on MoBed include the following:

• MoBed is still in its beginning stages, and there is room for improving some of its

components:

o The HTML parsing scheme on the Proxy server can be changes to use a simpler,

less time-consuming parser that produces parsed content with little overhead,

o The packaging of converted requested bytes for the client sometimes results in the

generation of a package larger in size than the original content downloaded from

the Web server. This overhead is particularly noticeable when small HTML

pages are requested. One possible area for future work could be to investigate

other more efficient HTML compression schemes that can be used to ‘simplify’

the requested data before it is sent back to the client,

o Other caching and prefetching schemes can be investigated and used for the

proxy’s prediction engine. At this stage of the research, only one prediction

scheme was implemented and tested (prediction through path-profiling user

history). Even though the prediction-accuracy rates observed in Chapter Four

were fairly reasonable, there is potential for improvement by examining other

prefetching algorithms.

• The simulation study performed on the MoBed proxy used two different workloads to

investigate the functionality of the framework. This study could be carried out with

workloads obtained from a number of sites that vary in size, content, etc. to ensure

that the results obtained from experiments are not biased to the workload used.

• For the experiments carried out in this research, the proxy-mobile link is bound by a

bit rate of 9600 kilobits per second at all times. At the moment, there is no

particularly accurate model for simulating the transfer delays on the mobile to proxy

link. This connection can be characterized by higher and lower speeds over time. At

times, when the speed is reduced, the bottleneck may not be the wireless link, and

hence the approximation of such delays needs to be simulated to include a random

component from the wired, which could be a bottleneck at times. With an accurate

transfer model in place, experiments could be designed to investigate the actual

client-perceived latency using this framework - while keeping in mind the three main

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sources of latency in this architecture: the proxy to client connection, the server to

proxy connection, and the data conversion process at the proxy.

• At this stage of the research, the development of the client-browser has been

restricted to the J2ME Wireless toolkit environment. This device emulator provides

only an approximation of the physical device. Hence, results acquired from it

regarding the execution or performance of a MIDlet, are not guaranteed to be

identical to those obtained when testing on the actual device. The Browser

application in this project has not been deployed to an actual J2ME-enabled device

and tested in that setting. This is an important step for future work because MoBed

can actually be tested for performance in a real-life setting. This may bring up other

issues or concerns with the architecture that are not considered at this stage and would

otherwise be unforeseen.

• In future, the MoBed proxy server could potentially service wireless J2ME clients

that have different device capabilities and constraints. The proxy could then provide

better service by ‘discriminating’ between clients i.e. by maintaining a knowledge

base of the device capabilities of all its clients. One possible benefit of this could be

reaped when prefetching for clients. The proxy could be fairly liberal when

prefetching documents to a ‘state-of-the-art’ client with fairly large disk area,

memory and processing speed; as compared to a client that has the minimum support

for J2ME.

• Transforming MoBed to a testbed framework architecture provides a very promising

direction for future work. Such a framework would be very useful in providing a

testbed for the investigation of various caching and prefetching algorithms to support

Web access for mobile clients. In designing such a framework, determining the

correct extension points or ‘hooks’ is crucial, where a hook is a point in a framework

that is meant to be adapted. Extension points for a MoBed Framework could be

implemented for the following features: a caching and/or prediction scheme, a

transcoding process (for data compression at the proxy), and HTML parsing

functionality. These features are extension points because they define the usefulness

of the testbed. Having the ability to adapt the framework through these hooks will

mean that these features can be enabled, disabled, replaced, or modified, hence

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fulfilling the goal of having a testbed; even though the transformation from MoBed to

MoBed Framework is likely to be non-trivial.

6.3 Conclusion

Wireless devices like cell phones, two-way pagers, PDAs, etc. are popular in this day and

age because they provide instant gratification and convenient services to users without

restricting them to a particular place and time. Nowadays, such small devices support

additional features like email access, messaging, address book and calendar services, as

well as Web browsing. There is a rising need and importance for wireless Web access

from portable devices and cell phones.

A lot of research has been reported on the performance of Web Caching and

Prefetching for wired Internet access, but in a wireless network, Internet access is

substantially different. The main objective of this research was to design a general test­

bed for investigating different caching and prefetching schemes that can be used with

mobile devices and the Java™ 2 Micro Edition platform (J2ME™); opening up a fresh

perspective for providing Web access solutions for small, wireless devices.

This research has achieved its objectives through the implementation and

experimentation of MoBed, which shows a lot of promise in the long-term as discussed in

Section 6.2. It is hoped that this thesis will inspire further research in the study of

possible Web solutions for wireless devices in general.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

Bibliography

[ABQ01]

[AkcOl]

[ASA+95]

[BatOl]

[BGMPOO]

[CCC+03]

[CFK95]

[Cha95]

[Cha03]

[CJ97]

[CM03]

Atul Adya, Paramvir Bahl, and Lili Qiu; Analyzing browse patterns of
Mobile Clients; Microsoft Research, Redmond, Washington, 2001

Muammer Akcay; Advance Web requests: Reducing latency while
utilizing resources more effectively via the Instructor initiated Prefetching;
Department o f Electrical Engineering and Computer Science - Lehigh
University; August 2001.

M. Abrams, C.R. Stanbridge, G. Abdulla, S. Williams, and E.A. Fox;
Caching Proxies: Limitations and Potentials; Proceedings o f 4th
International World Wide Web Conference, pages 119-133, Boston, USA,
1995.

K. Bates; The Wireless Web is Approaching Adolescence; January 2001

O. Buyukkokten, H. Garcia-Molina, and A. Paepcke; Seeing the Whole in
parts: Text Summarization for Web Browsing on Handheld devices;
Stanford University, 2000

Claudia Canali, Valeria Cardellini, Michele Colajanni, Riccardo
Lancellotti, and Philip S. Yu; Cooperative TransCaching: A System of
Distributed Proxy Servers for Web Content Adaptation; Poster Proc. o f
the Twelfth International World Wide Web Conference (WWW2003),
Budapest, Hungary, May 2003

Pei Cao, Edward W. Felten , and Anna R. Karlin , Kai Li; A Study of
Integrated Prefetching and Caching Strategies; 1995

Yatin Chawathe, A Load Balancing Resource Locator for Proxies;
University o f California, Berkeley, 1995

S. Chadha; J2ME Issues in the Real Wireless World; MicroDevNet -
Micro Java Network; 2003

C.R. Cunha, and C.F.B. Jaccoud; Determining WWW User’s Next Access
and its Application to Pre-fetching; In Proceedings o f Second IEEE
Symposium on Computers and Communications (ISCC’97), Alexandria,
Egypt, July 1997.

H. Chen and P. Mohapatra; A Novel Navigation and Transmission
Technique for mobile handheld devices; University o f California, Davis
January 2003

1 0 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[C Z 01J

[CZ02]

[Dav02]

[Dej99]

[Duc99]

[EJMOO]

[FB96]

[HBA99]

[Hem02]

[JC98]

Xin Chen, and Xiaodong Zhang; Coordinated Data Prefetching by
Utilizing Reference Information at Both Proxy and Web Servers;
Proceedings o f the 2nd ACM Workshop on Performance and Architecture
of Web Servers (PAWS-2001), 2001

X. Chen, and X. Zhang; Popularity-Based PPM: An Effective Web
Prefetching Technique for High Accuracy and Low Storage; 2002
International Conference on Parallel Processing (ICPP’02), 2002.

Brian D. Davison; Predicting Web actions from HTML content;
Proceedings o f the Thirteenth ACM Conference on Hypertext and
Hypermedia (HT’02) 2002.

Petkovic Dejan; Intelligent proxy caching based on the principles of
temporal locality; Department o f Computer Engineering, School o f
Electrical Engineering, University o f Belgrade, 1999.

Dan Duchamp; Prefetching Hyperlinks; AT&T Research Labs; Proc. 2nd
Usenix Symp. Internet Technologies and Systems, Usenix, Berkeley,
California, 1999.

A.N. Eden, B.W. Joh, and T. Mudge; Web latency reduction via Client-
side Prefetching; Proceedings 2000 IEEE Int. Symposium on Performance
- Analysis o f Systems & Software (ISPASS-2000), Austin, TX, pp. 193-200;
2000.

Armando Fox and Eric A. Brewer; Reducing WWW Latency and
Bandwidth Requirements by Real-Time Distillation; University o f
California, Berkeley; Fifth International World Wide Web Conference
Paris, France, May 6-10, 1996

O. K. Hong, and F. Biuk-Aghai; A Web Prefetching Model Based on
Content Analysis; University o f Macau; 1999

David Hemphill; J2ME and J2EE: Together - “At Last Sun has developed
a blueprint for creating mobile and wireless applications that access
enterprise services—where do we go from here?” , April 2002 Issue.

Q. Jacobson, and P. Cao; Potential and Limits of Web Prefetching
Between Low-Bandwidth Clients and Proxies; Department o f Electrical
and Computer Engineering, Proceedings o f the Third International WWW
Caching Workshop, 1998

1 0 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[KK098]

[KLM02]

[KLM97]

[MahOl]

[MC98]

[McA02]

[MorOl]

[NKM01]

[NylOl]

[PM96]

[PSOl]

Jussi Kangashaqu, Young G. Kwon, and Antonio Ortega; Design and
Implementation of a Soft Caching Proxy; Computer Networks and ISDN
Systems Integrated Media Systems Center, Los Angeles, 1998.

Bjom Knutsson, Honghui Lu, Jeffrey Mogul; Architecture and Pragmatics
of Server-directed Transcoding; Proceedings o f the 7th International
Workshop on Web Content Caching and Distribution, Boulder, CO, USA,
August, 2002.

T.M. Kroeger, D.D.E. Long, and J.C. Mogul; Exploring the Bounds of
Web Latency Reduction from Caching and Prefetching; USENIX
Symposium on Internet Technologies and Systems, 1997

Maheshwari, A.; TranSqui: Transcoding and Caching Proxies for
Heterogenous E-Commerce Environments; UM-CS-2001-051, December
2001

Evangelos P. Markatos, and Catherine E. Chronaki; A Top-10 Approach
to Prefetching on the Web; ICS Foundation fo r Research and Technology;
1998

S. McAteer; Java Will be the Dominant Handset platform; MicroDevNet -
Micro Java Network; 2002

Micheal Morrison; Getting to know the J2ME Emulator; Article courtesy
o f sampublishing.com - excerpted from Sams Teach Yourself Wireless
Java w/J2ME in 21 Days; August 2001

A. Nanopoulos, D. Katsaros, and Y. Manolopoulos; Effective Prediction
of Web-user Accesses: A Data Mining Approach; Aristotle University;
2001

Kristian Nylund; Developing software for mobile phones using J2ME;
ACM Classification: D.2.0, D.2.3, ACM SIGs: SIGMOB1LE, SIGSOFT;
2001

V.N. Padmanabhan, and J.C. Mogul; Using Predictive Prefetching to
Improve World Wide Web Latency; Proceedings o f the ACM SIGCOMM
'96 Conference 1996

M. Papadopouli, and H. Schulzrinne; Design and Implementation of a
Peer-to-Peer Data Dissemination and Prefetching Tool for Mobile Users;
First NY Metro Area Networking Workshop, IBM TJ Watson Research
Center, Hawthorne, New York, March 12th, 2001.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[RP01]

[RTVOIJ

[Sab97]

[Sin03]

[SKS98]

[STHK03]

[STRS02]

[SulOl]

[SUN03]

James Reilly, and David Price; Developing MIDP Client/Server
Applications; JavaOne SUN’s 2001 Worldwide Java Developer
Conference; 2001

R. Riggs, A. Taivalsaari, and M. VandenBrink; Programming Wireless
Devices with the Java 2 Platform, Micro Edition; Addison Wesley 2001.

K. Sabnani; Wireless Data Services; Bell Laboratories NJ. Holmdel NJ
0773, March 1997

Tony Sintes; Memory matters;
http://www.javaworld.eom/javaworld/javaqa/2001-12/03-qa-1228-
memory.html; January 2003

S.E. Schechter, M. Krishan, M.D. Smith; Using Path Profiles to Predict
HTTP Requests; Harvard University Division o f Engineering and Applied
Sciences, and Microsoft Corporation Internet Server team; April 1998.

Bill N. Schilit, Jonathan Trevor, David M. Hilbert, and Tzu Khiau Koh;
m-links: An infrastructure for very small Internet devices; Mobile
Computing and Networking; December 2003

Aameek Singh, Abhishek Trivedi, Krithi Ramamritham and Prashant
Shenoy; PTC : Proxies that Transcode and Cache in Heterogeneous Web
Client Environments; In the Proceedings o f The Third International
Conference on Web Information Systems Engineering -(WISE), December
2002 (a Best Paper)

A. Sullivan; J2ME: Why Now? MicroDevNet - Micro Java Network;
2001

Java Blueprints for a Wireless white paper - Designing Wireless Clients
for Enterprise Applications with Java Technology; June 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

http://www.javaworld.eom/javaworld/javaqa/2001-12/03-qa-1228-

Source Code and Internet Resources

[HP1.1]

[JTMI]

[JTT]

[JW-J2ME]

[JYL-JW]

[LG-J2ME]

[MD503]

[SUN]

HTML Parser version 1.1; http://htmlparser. source forge, net/ - New
releases available at: http://htmlparser.sourceforge.net/javadoc 1 3/; Last
access to site: December 2003.

JIMI Software Development Kit; Jimi - a class library for managing
images. http://iava.sun, com/products/jimi/; Last access to site: July 2003.

J2ME Tech Tips: Wireless Tech Tips - Object Serialization in CLDC-
based profiles : Persistence classes - VectorHelper, Persistent
interface.http ://iava. sun, com/developer/J2METechTips/2002/tt0226. html:
Last access to site: June 2003

Java 2 Platform, Micro Edition (J2ME) Resources and Articles:
http://www.javaworld.com/channel content/jw-j2me-index.shtml; Last
access to site: January 2004.

M. Juntao Yuan, and Ju Long; Cookie Support - Extended and enhanced
for JavaWorld. Source code: RMSCookieConnector class.
http://www.iavaworld.com/iavaworld/iw-04-2002/iw-Q426-wireless.html;
Last access to site: December 2003.

The Lurker’s Guide to J2ME; Why J2ME?
http://www.blueboard.com/j2me/why.htm\ Last access to site: December
2003.

Timothy Macinta; MD5 implementation in Java; Fast implementation of
RSA’s MD5 hash generator in Java JDK Beta-2 or higher.
http-J/www.twmacinta.com/mviava/fast mdS.php; 2003; Last access to
site: July 2003.

Java Sun website for Java Technology - http://iava.sum.com and Java
Technology, Java 2 Platform, Micro Edition (J2ME) -
httv://iava. sum. com/i2me/; Last access to site: January 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

http://htmlparser
http://htmlparser.sourceforge.net/javadoc
http://iava.sun
http://www.javaworld.com/channel
http://www.iavaworld.com/iavaworld/iw-04-2002/iw-Q426-wireless.html
http://www.blueboard.com/j2me/why.htm/
http://www.twmacinta.com/mviava/fast
http://iava.sum.com

Appendices

The class names shown in the class diagrams may not be identical to the names of the
components described in the thesis. As such, before each class diagram is provided, a
small description is given to show the use of each class.

Note that the class diagrams shown in this section contain only the major classes used in
the functionality for each component.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 3

(A) The Mobile Client component

- Browser MIDlet: MobileClient
Request Dispatcher: NetClient
GUI Builder: PageNode classes, ScreenBuilder, Executor classes

interface
Persistent

+persist:ty/telj
* resurrect:void

r p PageNode

VectorHelper

nodeExecution:void
persist: byteu

+resurrectV ector

con ien tS tring
type:String

+ P ageN ode
+P ageN ode
+persist:byteO
nesu rrec ttvo id
+toString:String

nodeType:String
nodeC on ten tS tring

CorrmandUstener
FormExecutor

-formDisplay:Form
-form Subm it:Comm and
-form C learC om m an d
-backFrom Form :Com m and
-TB<T:Strinq
-PWD:Strinq
-STRINO:Strinq
-HIPDEN:Strinq
-formAction:String
-formMethod:String
-pageiList
-dispIay.Display
-m obiletM obileClient
-form lm agetlm age
form node:Form PageN ode
headtString
fields: String
hiddenfields:String
allfields: String
method:String
action:String
location:String
formfields:Vector

S creen B u ild e r

-holdnodes:V ector
screen;L ist
form tag:lm age
linktag:lm age
im gtag:lm age

+ScreenB uilder
+createScreen:L ist
-createlm ages:void

A

CommandListener
bnageExecutor

-backFrom lm aqe:C om m and
-tem plm age:lm age
-page.L ist
-display:Display
-mobile:M obileClient

+lm ageExecutor
+nodeExecution:void
+commandAction:void

Show lm age

1 1 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i
!

H 5 LW KPageNode

associatedL ink: String

+LinkPageN ode
+LinkPageN ode
+persist:byteO
+resurrect:vofd
+toString:String

nodeLink: String

FormExecutor
+F ormExecutor
'*-nodeExecution:void
+commandActton:void
-clearFDrmDaia.void
-createForm O ulvoid
-submitivoid
-getData:void
-getH eaderFiefds:V ector
-getFormFieldsiVector
-combineFiaJds-Strtng
-processH idden:String
-processEnteredrString
-processH ead:void

f o rm PageN ode

fo rmh e a d e rs:Stri n g
entryparams:String
hid den param s:String
bdataibyteQ

+Form PageN ode
+Form PageN ode
+-persistbyiefl
+resurrect:void
+to String :Siring

headenString
e ntry P a ra ms: Stri n g
hiddenParam s.String

c5~ N etC lient

-lMG:Strinq
-LINK: String
-FQRM:Strinq
-uriiString
-requestm ethodiString
-requestparam s; String
-rawdataibyteQ

<-NetClient
HnvokeProxy:byteQ

pageType.String

MlDiet
GommandLlstener

R unnatfe
M obfleC fient

-m obilelnstance:M obileClient
-fetchThread:Thread
-TEXT:Strinq
-IMGiStrinq
-LINK: S tr in g
-FQRM.Strinq
-PQST:Strinq
-QET:String
netconnectN etC lient
sbrScreenB uilder
Im gexecdm ageExecutor
formexec:FormExecutor
-display:Display
-fetch:Com mand
-cancelrC om m and
-backCom m andiG om m and
-forw ardCom m and:Com m and
-enterU riCom m andiC om m and
-historyback: S tack
-h i sto iy tWd: S ta c k
tinkW ithinPage:boolean
-contentL lst
-eari:String
-initialForm Form
-progressForm iForm
- e nte rU rl :TextF i e I d
-waitimg:lmage
-enterlm gilm age
-p rogressG auge:G auge
-currPageN odes:V ector
urlCurrentString
reqM ethod.String
reqParam s: String
submittingF orm iboolean
dataread:byteQ

+MobileClient
+startApp:void
+pauseApp:void
+destroyApp.void
- c h ec kF o rmS u b mitStatus: v o i d
+setR equestParam s:void
-m akeListPage:void
-9nterUrl:void
-genProgress:void
+commandAction:void
-fetchervoid
-hand!eCSick:void
+run:void
display E rrorvoid
-getN odes:V ector

contentPage:D isplayable
form Subm itStatusrboolean

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(B) The Proxy Server component

(1) Processing a request at the proxy

Proxy Controller: Proxyserver
Request Handling: ClientConnection, FetchNodes, Processpr classes
Utility packages: com (parsing), MD5 (hashing), CookieClasses (session

handling), Jimi (Image processing).

FetchNodes

-uitString
-parser: HTMLParser
-currUrlNodes:Vector

♦FetchNodes
+fetch:void
+makeNodes:Vector
-prepareParservoid
+nodesToString:String

Pros^Serwer

portnumbenint
serverSocketServerSocket
clientSocketSocket
mobileConnect:ClientConnection

+main:void
+ProxyServer

Jimi

W________
Thread

ClientConnection

islnputStream
isrlnputStreamReader
br:BufferedReader
out:OutputStream
incomingDataxharQ
mobileCon:Socket
bytesRead:int

♦ClientConnection
+run:void

ImageProcessor

-MINWIDTH:int
-MINHEIGHT:int
-MAXWiDTHdnt
-MAXHEIGHT:int
-CQLQRS:int
-DITHER:boolean
-REDUCE.boolean

n
FormProcessor MD5

-url:URL
formtag:HTM LForrnTag
method:String
action:String
location:String
parameters:Vector
numfields:Vector

n
com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

widtlrint
heightint
startfetch:long
endfetch.long
starttrunc:long
stoptrunc:long
-url:URL
PNG MIME:Strinq
J MIME:Strinq
G MIME:String

+ImageProcessor
+process:bytefl

+ForrnProcessor
-getFormDetaiis:void

head:String
parameters:String
hiddenParameters: String

HttpURLConnection
HttpU RLC ookieC onnection

-c:HttpURLConnection
-ur!:URL

HttpURLCookieConnection
+disconnect:void
+connect:void
+usingProxy:boolean
setConnection.HttpURLConnection
+getlnputStream:lnputStream
+getOutputStream:OutputStream
-checkResponseCode:void

HttpURLCookieConnector

-cookieStoreName:String
-fos:FileQutputStream
-ps:PrintStream
-storefile:Fiie

-HttpURLCookieConnector
+open:HttpURLConnection
+open:HttpURLConnection
+close:void
qetCookie^oid
addCookievoid
-»-removeCookies:void

CookieC lasses

n
Cookie

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 7

(2) Proxy Transcoder classes

PageNode package: Small library o f classes known to client and proxy.
Object Serialisation utility: Persistent interface, VectorHelper class

interface
Persistent

VectorHelper

+persist'by tefl
+persist: ty/te[j
+resurrect:vokt

+resurrectVector

V \

\

PageNode

contentString
type:String

+PagelMode
+PageNode
+persist:byteO
+resurrect:void
+toString:String

nodeType:String
nodeContent String

FormPageNode

formheaders:String
entryparams:String
hiddenparams:String
bdata:byte(]

+FormPageNode
+FormPageNode
+persistbyteQ
+resurrect:void
+toString:String

header:String
entryParams:String
hiddenParams: String

H l l U n k P a g e N o d e

associatedLink:String

+LinkPageNode
+LinkPageNode
+persist:byteD
+resurrect:void
+toString:String

nodeLink: String

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3) Prediction at the proxy

Proxy Controller: ProxyConnection class
Prediction Algorithm: PathTree, PathTreeNode, PathTreeBuilder, PathList,

ListEntry, PredictionCounter.
Session Tracker: RegistryAgent.

Object
ListEntry

rev_path:String
predietor:String
freq:String

+ListEntry
+toString:String
+equals:boolean

PredictAgent

currSession:String
reversedSession:String
list_entries:Vector
all_oaths:String Q

+PredictAgent
+reverse:void
+predsct:Vector
+searchList:Vector

userSession:String

A

PathList

tree:Path,Tree
paths:Vector
currPath:String
profi!e:Vector
freqs.Vector
predictor.Vector
reversedPaths:Vector
pathlist:Vector
condensedPathlist:Vector

+PathList
+createAIIPaths:yoid
+allPaths:Vector
-createPaths:void
-doPaths:Vecior
-getPredictor:Vector
-reversePaths:void
+buildList:Vector
+sortList:Vector
+extractPaths:void
+condensePaths:Vector
+clean:void

rawListVector
condensedListVector
sortedPaths:String G

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ProxyCormection

-storenameiStrinq
-CACHE SIZE.'int
-cachePool:Hashtable
-psTotalLatPrintStream
-psActualLatPrintStream
allSessions:Vector
pathtree:PathTree
pathiist:PathList
predictorPredictAqent
url units:Hashtable
mobileStats-'Stats
serverStats:ServerStats
cache st&raqe:Mol?ileCacheAqent
registry:RegistrvAqent
mobile _requests:Vector
-MOBILE BITRATEdouble
addedToCache:int
proxvAccessint
noProxyAccessrint
prefetch interrupt:int
proxyFoundPrefetchinq:int
proxyFoundNorrnalM
prefetchFileTooBig.int
numberRetrams:int
prefetchedAndNoTime.Int
predictedNothinq:int
predictedSomethingdnt
ipsPrefetchedTo:int
uniglps:Vector
trainfile:String
testfile:Strinq
MEMORY'.lonq
-T COUNTM
CURRENT INDEX:int
-TESTRUN TIME:lonq
DO RETRAIN:booiean
initialtime:long
retraintime.boolean
initialTrainReqs:int
retrainReqsM
rawList:Vector
condensadList:Vector
rawlistPaths:Vector
totalFilesReeeived:int

'■ ¥___________
H5 PathTree

rootNode:PathTreeNode
ireeSize.ini

-PathTree
+createRoot:void
+addNode:void
+printPathTree:void
-printTree:void
+clearLeafOccurenceCounts:voi
-clearLeafCounts:void
+clearAIIOccurenceCounts:void
-ciearAIICounts:void
+size:int
-getSizeivoid

root:PathTreeNode

A

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PredictionCoumer

ip preds:H ashtable
url units Hashtable
reqistry:ReqistryAqent
fileCountint
fileHits:int
totalBvlesionq
bvteHits:long

+collectPredictionoyuid
+notilvPC:void
+delivetv:Strinq
♦setvoid

♦mainyoid
+ProxyConnection
-cache JniLvoid
-registryjnitvoid
-m obitecachesjn itvoid
-createSessions:Vector
-iresConsiructorPathTree
-iistConstructorPathUst
-clean:vc>id
-proeessTestData:Vecior
-request iteratorvoid
-mobileProxvUnlcvoid
-proxyPrefetchLinkim
■updateClientCountyoid
-irifornnPC-yotd

■checkProxyCache-'booiean
-checkM obileCache:boolean
-restoreC achevoid
■saveCacheyoid
■checkCacheF ile:void
+resumeTestinq:void

Retrainer

\f
Registry A gent

ip_sessions:H ashtable
init_tinnes:Vector
all J p s Vector
flaggedlP:Vector
TIME 30 MiNSdonq
retrain_sessions:Vector

-iRegistryAgent
+insert:void
+getlPSessiorn:Stnng

numberOfCiients:int
retrainVector.Vector

V
PathTreeNode

url_id:int
occurenceCount:int
chitdren.Vector
children_ids:Vector
parentPathT reeNode

■►PathTreeNode
•►incrementCountvoid
+clearCount;void
►getChifdNode PathTreeNode
+toString.3tring

< -

PathTreeBuilder

currentNode:PathTreeNode
currentSessionVector
all_Sessions.Vector
tree:PathTree
index:int
urINumberint
l_COUNT:mt
!TER_COUNT:int
totalRequests:int

+PathTreeBuilder
*buildTree.yoid
+treelteratorPathTree
^fixLe afNo deCo u ntvoi d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

(4) Client Simulation at the Proxy server (Experiment 3)

Client Cache Manager:
Client Cache handling:
Client request handling:
Proxy Controller:
Session Tracker:

MobileCacheAgent
MobileCacheNode, MobileCache.
URLUnit classes, MobileRequest
Proxy Connection
RegistryAgent

H~i MobileCacheN ode

urljctint
size:long
nodeAccessCountint

+MobileCacheNode
+toString:String
+size:long
+addAccessCountvoid
+addPrefetchCount:void

id:int
accessCountint
prefetchCountint

<r

d=r MobileCache

fixed_size:Iong
mobile_cache:Vector
cacheFileSize:long
id_registry:Vector
index:int
mcnode:MobileCacheNode

+MobileCache
+createCache:void
+cleanup:void
+processPrefetchBundle:void
-addFile:void
+checkForFile:boolean

cacheSizeilong
avai!ableSpace:long
maxCacheSizeJong

URLUnitMaker

urls:Hashtable

+main:void
-saveUnitsTable:void

Serializable
URLUnit

id:int
url:String
url_bytes:int
transform_size:long
fetch_time:int
transform_time:int

+URLUnit
+toString:String

ProxyConnection MobileC ache A gent

-storename:String ip_caches:Hashtable
ips:Vector
cache_sizes:Vector
MEMORY'.long

-CACHE S!ZE:int
-cachePool:Hashtable
-psT otalLatPrintStream
- p sA ctu a 1 Lat: P rintStre a m
a!lSessions:Vector

------ > +MobileCacheAgent
+insertlP:void
+storePredictions.-void
+getCache:M obileCache
+getSpace:long
+gatherStats:void

pathtree:PathTree
pathlist:PathList
predictor:PredictAqent
url units:Hashtable
mobileStats: Stats
serverStats:SeiverStats
cache storaqe:MobileCacheAqent

[^] MobileRequest

-requestTime:Date

+MobileRequest

iP:String
id:int
time:Date
feedback:String
prefetchSize:long

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reqistry:RegistryAqent
mobile requests:Vector
-MOBILE BITRATE:double
addedT oC ache:int
proxvAccess:int
noProxvAccess:int
prefetch interruptint
proxvFoundPrefetchinq:int
proxyFoundNorm afint
prefetchFileTooBiq:int
numberRetrains:int
prefetchedAndNoTime:int
predictedNothinq:int
predictedSomethinq:lnt
ipsPrefetchedT o:lnt
uniglps:Vector
trainfile:Strlnq
testfile:Strinq
MEMORY:lonq
-T COUNT:int
CURRENT INDEX:int
-TESTRUN TIME:lonq
DO RETRAIN:boolean
initialtime:lonq
retraintime:boolean
initialTrainReqs:int
retrainReqs:int
rawList:Vector
condensedList:Vector
rawiistPaths:Vector
totalFilesR eceived.int

d 5 ReglstiyAgent

ip_sessions:H ashtab le
init_times:Vector
all_ips:Vector
flaggedlP:Vector
TIME 30 MINS:lonq
retrain sessions:V ector

♦RegistryAgent
+insert:void
+getlPSession:Siring

numberOfClients:int
retrainVector.Vector

+main:void
+ProxyConnection
-c a c h e jn itv o id
-registry _init:void
-m obilecaches_init:void
-createSessions:V ector
-treeConstructonPathTree
-listConstructonPathList
-clean:void
-processTestD ata:V ector
-request iteratorvoid
-mobiteProxyLink:void
-proxvPrefetchLinlcint
-updateClientC ountvoid
-informPC.void
-checkProxyC acherboolean
-checkM obileC ache:boolean
-restoreCache:void
-saveC acheivoid
-checkC acheFile:void
-t-resumeTestinq.void

Retrainer

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

