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Abstract

Wireless devices like cell phones are popular in this day and age because they provide 

instant gratification and convenient services to users without restricting them to a 

particular place and time. Mobile devices support features like instant messaging, 

calendar services, and Web browsing. There is a growing need for Web access from 

mobile devices since numerous wireless applications require data from the Internet. 

Challenges arise when developing software for wireless devices, due to device constraints 

such as small screen sizes, limited memory, unreliable wireless connections and low 

processing power.

The goal of this research is to design a test-bed for investigating different caching 

and prefetching schemes for mobile devices that utilize the Java™ 2 Micro Edition 

platform (J2ME™); thereby opening up a fresh perspective for providing Web access 

solutions for small, wireless devices.
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Chapter 1 Introduction and Motivation
Mobile devices are becoming increasingly widespread and their everyday use is 

becoming indispensable. For this reason, a variety of software applications are being 

migrated to mobile platforms. These applications have to accommodate a range of 

constraints in contrast to their desktop counterparts, including a different set of 

interaction techniques, small screen size, limited memory and processing power. 

Furthermore, wireless web-based applications also have to deal with the unreliability of 

wireless connections due to possible disconnections, high bit error rate and low 

bandwidth. This chapter explains the motivation for this research and provides a brief 

introduction to the Java™ 2 Platform Micro Edition (from now on referred to as J2ME).

1.1 Motivation

J2ME is emerging as the de facto standard for handheld mobile devices and is being 

widely adopted as the platform for delivering web services to mobile users. This chapter 

introduces an experimental test-bed for evaluating caching and pre-fetching mechanisms 

for the J2ME platform.

Caching and prefetching are two common solutions for coping with low 

bandwidth and intermitent connectivity. Caching enables the storage of accessed web- 

based content in a local structure, anticipating similar future requests. Prefetching takes 

this idea one step further by anticipating future web-access by clients. There has been a 

substantial body of research on the performance of caching and prefetching mechanisms 

for wired network access. However, the problem is substantially different on wireless 

devices, due to the constraints faced by these devices.

MoBed provides an experimental test-bed for designing, developing and 

analyzing different caching and prefetching schemes that can be used in devising Web 

access solutions for J2ME-enabled devices. In the first stage of this research, a simple 

Web browser application was developed to fetch and display different types of web 

content such as static pages with text and images and dynamic forms. In this stage, the 

entire browser application functionality was implemented on the mobile device including 

URL fetching, web data retrieval, HTML parsing, and user interface generation to display

1
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of the parsed content on the mobile device. This approach proved to be very inefficient 

(as was expected) because of the limited device memory and the slow connections to the 

network. However, it provided a “reference” point against which other caching and 

prefetching schemes can be compared.

In the final stage of this project, a flexible client-server architecture was designed to 

replace the architecture described above. The client was resident on the mobile device 

and the server on a wired host acting as a proxy between the mobile client and the web 

servers. This new, flexible architecture allowed for various web-access functionalities to 

be flexibly distributed between the client, the proxy and the server, resulting in numerous 

possible configurations for experimentation. The ultimate goal is to readily provide Web 

access to wireless clients, while minimising delays. Using MoBed, the following 

scenarios for web access are investigated in the pursuit of this goal:

(a) Location of a local cache (at the client or proxy server)

(b) Caching using different policies and eviction schemes

(c) Prefetching data to the client, using user access history analysis

(d) Prefetching based on a ‘prefetch request’ signal from the mobile client

1.2 Why J2ME?

J2ME is emerging as a standard for handheld mobile devices and is being widely adopted 

as the platform for delivering web services to mobile users. J2ME is a version of Java 

targeting software development for smaller devices, such as Personal Digital Assistants, 

mobile phones, two-way pagers, etc. This section provides several reasons why J2ME is 

coming up on the forefront in the Wireless Web industry, and briefly describes the J2ME 

architecture (with an emphasis on the Mobile Information Device Profile).

1.2.1 Why bother with J2ME?

As the wireless Internet revolution continues to grow, mobile users expect more and more 

performance from handheld Internet-enabled devices. As these demands increase, more 

wireless application developers look toward using a programming language that is ideally
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suited for wireless devices, namely Java. Some of the major benefits of using Java as the 

programming language for wireless devices described by [RTV01] are outlined below:

• Java is rapidly becoming one of the most popular programming languages used by 

software developers worldwide; as such, there are numerous developers skilled in 

Java.

• Java has the advantage of being a modem object-oriented programming language, 

with better programming constructs and abstraction mechanisms than other tools and 

languages used for wireless software development.

• Java is cross-platform compatible: applications can be moved flexibly between 

different devices.

• Wireless Java technology allows for user interaction support and graphic capabilities 

for mobile devices.

• The Java platform allows for the dynamic delivery of content: Applications, services 

and content can be downloaded dynamically over different kinds of networks.

The J2ME platform addresses a range of devices from phones, pagers, to high-end 

devices like Internet TVs. As more consumers demand the services of such web-enabled 

devices, the result is an increased interest in J2ME. Some facts and statistics outlined 

below provide even more evidence of the fast growing base of J2ME:

• J2ME on handsets is supported by all major carriers and pushed by all major phone 

vendors (such as Motorola, Nokia, etc) [LG-J2ME].

• The Zelos Group (zelosgroup.com) is a provider of predictive analysis for technology 

vendors and service providers. It predicts that Java will be the dominant platform in 

the wireless sector, with support found in over 450 million handsets sold in 2007 

[McA02]. It has also been observed that the interest in Java as a platform for mobile 

handsets has grown significantly, especially interest in services based on J2ME 

[McA02],

• J2ME on cell phones sells: [LG-J2ME] shows that this combination is a commercial 

success, with more than 94 million devices shipped worldwide since 2002 [LG- 

J2ME],

3
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These are only a few of the statistics available that show the emergence of J2ME as a 

standard for the fast growing wireless web industry [LG-J2ME]. For these and many 

more reasons, research on wireless Interent usage using J2ME devices is rapidly 

increasing, especially since this platform ‘has positioned itself as the best solution for an 

extremely wide range of small devices’ [LG-J2ME]. As the wireless internet matures 

with time, research can bring us closer and closer to the goal of sophisticated Internet 

access for mobile users.

1.2.2 Basics of the J2ME architecture

J2ME was announced at the JavaOne Developer Conferences in June 1999 as a highly 

optimized Java run-time environment aimed at a wide range of smaller devices, such as 

pagers, Personal Digital Assistants (PDA), mobile phones and set-top boxes [NylOl]. 

Due to the high level of diversity between these range of devices, ‘an essential 

requirement for the J2ME architecture is not only small size but also modularity and 

customizability’ [RTV01]. In order to achieve modularity and scalability, the J2ME 

environment provides a range of Java Virtual machines with different processor and 

memory capabilities to service the diverse range of devices supported.

There are two main types of concepts used in the J2ME environment:

Configuration and Profile. A J2ME configuration defines a platform for a ‘horizontal

grouping of devices’ [RTV01] outlining the features that are expected to be available on 

devices from the same category. A J2ME Profile represents a vertical device family to 

ensure interoperability within a certain vertical device family [RTV01]. A profile is 

layered ontop of a configuration, thereby extending the latter. As such, in a J2ME 

environment, ‘an application is written for a particular profile, and a profile extends a 

particular configuration’ [RTV01].

In this research, the focus is on low-end devices such as cell phones, pagers etc. 

This part of the J2ME environment consists of the Connected Limited Device

Configuration (CLDC) that focuses on low-end consumer devices, and the Mobile

Information Device Profile (MIDP). The MIDP resides on or extends the CLDC, which

4
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runs on top of Sun’s KVM (K Virtual machine). The latter is a compact Java Virtual 

machine designed for mobile devices that are small in size and limited in resources.

Figure 1 below shows the relationship between the virtual machine, CLDC and MIDP in 

the J2ME environment.

MIDP

Figure 1 - Java™ 2 Micro Edition MID Profile Architecture 

1.2.3 Programming with J2ME

The MID Profile is an extension to the CLDC, and hence inherits the CLDC Application 

Programming Interfaces (APIs). Java applications developed using MIDP are called 

MIDlets. They use only the APIs defined by the MIDP and CLDC specifications. A 

group of MIDlets of can be packaged and installed on a device in the form of a MIDlet 

Suite, and can be removed only as a group.

Other Java editions provide packages that target personal computers with adequate 

memory, disk storage, and processing power. J2ME targets low-end devices like cell 

phones and other devices with limited footprint that cannot possible handle big packages 

like the Java Standard and Enterprise editions. The MIDP package is considerably 

smaller in order to fit the restrictions of these devices. When developing applications in 

J2ME, there are some main issues that the programmer must be aware of:

5
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• There is a growing number of devices from different manufacturers with different 

specifications that support J2ME, and the programmer has to be aware of what set of 

devices the application is targeting.

• J2ME devices have wireless networking, simple user interfaces and persistent storage 

for application-relevant data on the device. These properties differ from one device 

to the other, and the developer can choose to take advantage of them in different 

ways. In addition, mobile devices are always with the user, encouraging the 

development of mobile applications that can be customised to a user’s needs.

• There are Java development tools available to the mobile Java developer such as 

Software development kits provided by some manufacturers, and Integrated 

Development Environments. Java SUN provides a J2ME Wireless Toolkit that 

provides examples, CLDC/MIDP documentation as well as a customizable 

environment for emulating the bahaviour of applications on a group of devices.

1.2.4 J2ME versus Other Java™ 2 Editions

Server Desktop

High-
end

devices

Low-
end

devices

Profiles MIDP

J2ME

Figure 2 - The Java Editions

6
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There are three main Java platforms available:

• Java 2 Enterprise Edition (J2EE) -  Provides support for server-based applications

• Java 2 Standard Edition (J2SE) -  Designed for desktops and personal workstations

• Java 2 Micro Edition (J2ME) -  Designed for limited footprint devices.

Figure 2 above shows the different Java platforms in relation with each other. J2ME is a 

truncated version of J2SE. In order to keep the platform small and suitable for its target 

of small devices, a lot of the Java packages present in J2SE have been removed. Some of 

the J2SE packages that have been included in J2ME do not contain all the classes present 

in J2SE. Code written using J2SE can be run in J2ME only if the program uses Java API 

covered by both platforms. J2ME provides its own packages for persistent storage, user 

interface creation, and networking.

J2ME and J2EE can be brought together by means of mobile client-server 

applications. In such applications, the mobile client provides the user interface design, 

while the Server handles major computationally intensive tasks. Other J2EE platform 

functionalities can be used with MIDP clients, including Java Servlet API components, 

Enterprise JavaBeans components, XML, as well as JDBC (Java Database Connectivity) 

API.

The Proxy component classes in MoBed were implemented using the J2SE 

platform, while the Client component classes utilized the J2ME MIDP APIs. There are 

three main sub-components of the client component. First, the Browser MIDlet, which 

starts the web-browsing application. Second, the GUI Builder, which updates the user 

interface with the requested resource. Third, the Request Dispatcher, which manages the 

connection between the client and the proxy. These sub-components were implemented 

using some classes from all the J2ME MID Profile packages shown in Table 1 below. 

The Browser MIDlet and GUI Builder used some classes from the MIDP Core, 

Persistence, User interface and Application Lifecycle packages; and the Request 

Dispatcher used mainly classes from the MIDP Networking, Core and Application 

Lifecycle packages.

7
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Table 1 - The J2M E MID Profile Packages

, Package Iksi ription

User Interface javax.microedition.lcdui
features for the implementation 
of user interfaces for MIDlets.

Persistence javax.microedition.rms
Provides a mechanism for 

MIDlets to persistently store and 
retrieve data.

Networking javax.microedition.io
Networking support based on the 
GenericConnection framework 

from the CLDC

Application

Lifecycle
javax.microedition.midlet

Defines interactions between 
MIDlets and the environment in 

which they run.

Core
javaio, java.lang, 

java.util

System input and output classes; 
Language and Utility Classes 

included from J2SE

1.3 Contributions of this research

The main contributions of this thesis are outlined below:

• MoBed is used to investigate an intelligent method for flexibly combining caching 

and prefetching schemes towards providing Web access solutions for small, wireless 

devices. This project has achieved this objective while adaptively separating the 

mobile-resident from the proxy-resident functionality.

• J2ME is a fairly new specification that is rapidly growing in popularity. Such 

technology attracts research because it is still at an ‘adolescent’ stage, providing 

ample room for growth and improvement. This research introduces a fresh 

perspective on mobile web access targeted specifically towards the J2ME platform.

• Although numerous caching and prefetching schemes have been tested for wired- 

networked computers, there has been there has been no systematic study of the 

architecture and algorithmic design choices for mobile devices using J2ME. MoBed 

serves as testbed for studying caching and prefetching mechanisms specifically for 

wireless devices. Two experiments were conducted in this research. The first

8
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experiment was designed to investigate the benefit of introducing caching at the 

MoBed proxy level, using two caching schemes: LRU and LFU. The second 

experiment consisted of trace-based simulations used to investigate a path profiling 

prefetching algorithm that predicts a user’s next request based on past user access 

history, and the impact of having a cache on the mobile client. The main contribution 

of this research is not so much the results of these experiments, as the creation of a 

clean, modular, configurable architecture testbed design for investigating mobile Web 

access solutions.

1.4 Thesis Outline

This thesis is organised as follows. Chapter 2 provides a description of some related 

research in areas such as Mobile Internet access, Caching, Prefetching, proxy-based 

architectures, amongst others. Chapter 3 describes a Client Baseline Architecture, which 

demonstrates the implications of having a mobile-resident browser, where the mobile 

device performs computationally intensive tasks such as HTML Parsing, in addition to 

User interface generation. The improved version of the MoBed architecture is provided 

in Chapter 4. This architecture utilizes a client-proxy-server framework, which 

adaptively separates the mobile-resident from the proxy-resident functionality. Chapter 5 

sheds more light on the MoBed architecture implementation and its validation by means 

of experiments and trace-driven simulations. A detailed description of the nature and 

analysis of these experiments is provided. The contributions of this research, as well as 

possible directions for future work are summarised in Chapter 6.
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Chapter 2 Related Research

The related research discussions in this chapter are divided into the following topics: 

Web caching, Transcoding with distillation and refinement, J2ME and the Web, Web 

Access on Mobile devices, Web Prefetching, and the Performance of caching and/or 

Prefetching with proxies.

2.1 Web caching

Web caches exploit the locality of web page accesses, storing already-accessed web 

content in the hope that, when requested again, the transfer time from the server will be 

avoided, thus improving access time. By eliminating excessive transfers of stored web 

content, caches open the possibility of reducing bandwidth demands as well. However, 

for devices with restricted capabilities, one has to be aware that objects cached in their 

original form are not necessarily in the most “convenient” representation, as they will 

most likely need to be transformed in order to be rendered. In [KK098], the authors 

address a set of modifications to classical proxy caching algorithms, which allow the 

implementation of a soft caching proxy system. They propose a strategy called ‘Soft 

Caching’, which allows a ‘lower version’ of a web object to become available on the 

proxy, in addition to the real object (anticipating different clients’ needs). They provide a 

framework for the caching of images and media objects, but their focus is solely on the 

latter.

A more “classic” view is provided in [Dej99] where approaches to the issue of 

caching from the perspective of ‘Temporal Locality’ on the Web are studied, observing 

repeated accessed of one or more user to a single object. Given that caches are limited, in 

size, the caching policy used needs to have a reasonable eviction policy that determines 

which web objects are maintained in the cache or removed. The author’s focus is on the 

estimation of probabilities for the prediction of the time of next access of the same web 

object. He proposed an algorithm that tracks the previous delays between accesses of a 

given web object, and uses these traces to determine the likelihood of that object being 

accessed again in the near future. Since this research is still in progress, there are no 

empirical evaluation results at the moment.

10
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2.2 Transcoding with distillation and refinement

Incorporating a form of transcoding on web proxies has become an important subject of 

research as well. Transcoding allows data conversion from one format to one, which is 

better suited for the device that requested the information. A typical transcoder provides 

distillation, a process of compressing the data while still retaining enough semantic 

structure such that it is meaningful to the client [Cha95]. When a web document is 

distilled and sent to the client, the full version of the document is saved on the proxy to 

ensure that if the client requests any portion of the document (refinement), the proxy need 

not fetch the document from scratch. In this architecture, the proxy works with ‘helper 

processes’, which do the distillation using requirements provided by the proxy. 

Additionally, the author proposes a load balancing resource locator for proxies. It 

proposes an implementation of a complete prototype of the load-balancing resource 

locator on the UNIX platform. In a nutshell, a lightweight centralized server is 

maintained, which has the responsibility of managing proxies in a domain. Based on a 

client request, a proxy connects to the central server requesting a given transcoder, and 

the former allocates and caches transcoder addresses to the proxy. The central server 

performs load balancing by making intelligent decisions about which transcoder 

addresses to use [Cha95].

Additional research reported in [FB96] uses distillation and refinement of web 

data to bridge the gap between the low bandwidth client and high bandwidth of servers. 

An HTTP proxy was developed based on real-time distillation and refinement. In 

addition to the latter, statistical models were used, allowing the user to bound latency and 

exercise explicit control over bandwidth. The real-time data distillation eliminates the 

need for having several representations of a document, since desired intermediate 

representations can be created on demand using an appropriate distiller. The paper 

therefore claims that due to distillation and refinement, bandwidth is gained even if 

cycles are lost.

11
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2.3 J2ME and the Web

Finally, J2ME is increasingly available on mobile device platforms being used to access 

web content. However, creating J2ME applications that interact with an enterprise server 

takes on interesting challenges that traditional client/server and browser-based 

applications do not face [Hem02]. Problems arise from the severely limited set of Java 

classes available to J2ME. Re-implementing certain classes from scratch to bring the 

level of support in J2ME to that of J2SE makes no particular sense due to the 

requirements for small memory footprint of the applications and the limited bandwidth 

constraint (in the event of loading code from elsewhere).

The Sun Microsystems white paper draft [SUN03] provides various new 

guidelines for designing wireless clients for enterprise applications using J2ME and J2EE 

technology. This will undoubtedly provide additional guidelines for Java developers 

interested in applications that use client-server architectures. We should point out that the 

platform restrictions result in a much more severe impact than deciding representations 

for the objects to be transferred. The platform effectively limits the expressiveness of the 

language due to the limited support classes. This latter aspect is, to the best of our 

knowledge, dealt explicitly for the first time as part of a proxy architecture.

2.4 Web Access on Mobile devices

There is a rising need and importance for wireless Web access from a wide range of 

mobile devices, from cellular phones, pagers, and in-car computers to palmtop computers 

and other small mobile devices. Nowadays, mobile devices contain features like email 

access, instant messaging, address book and calendar services, and Web browsing. 

Such devices are characterized by limited keyboard, small screens, low bandwidth 

connection, small memory amongst other constraints. Because of these constraints, small 

devices need special consideration when accessing information from Web servers. 

Mobile screen displays are generally much smaller than conventional personal computer 

screens, thus allowing for only a small amount of text to be displayed at a time. As such, 

there is a major issue with rendering Web content on mobile devices. Web pages may 

contain multiple images, search engines, forms, and other dynamic content, which cannot
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be displayed in the same manner as on regular workstations and desktops. In certain 

cases, the limitations of the device may result in certain content being non-renderable, or 

simply not accessible (e.g., navigation via image-maps on a low resolution device). 

These issues raise questions about different methods of improving mobile Web access 

using different languages, formats and architectural designs.

The authors of [CM03] propose an architecture called Scalable Browser for 

mobile devices. The Browser features include fetch-on-demand, progressive rendering, 

display on demand navigation style. The overall goal of the research is to enhance the 

user interface and browsing experience for handheld devices. The Scalable Browser 

architecture is based on a progressive delivery and rendering process whereby partial 

contents are rendered to the client. This is achieved by separating HTML pages into: 

structural data (which determines the style/geometric layout of HTML tree) and semantic 

data (descendants of structural data) [CM03]. In addition, the browsing is aided by 

converting the HTML pages to an intermediate SVG format (XML-based language), 

which retains all the features of HTML in order to ease the deployment process. The 

authors claim that their architecture retains the layout and rendering styles of the original 

document, reduces network overhead, improves legibility and provides a better 

interaction interface. Some limitations of this architecture are regarding the fetch-on- 

demand scheme, which may introduce additional latency between numerous fetches. In 

addition, when partial data is rendered, the user may request it by clicking on it. This 

action invokes a script resident on the client to completely render the content. This text 

formatting on the client may be computationally expensive for very small devices.

Research has also been done to analyze the browsing patterns of users on mobile 

devices, as is the case in [ABQ01]. The main goal of this research was to perform user- 

behavior analysis for mobile users to determine the following: the type of content 

wireless users are interested in; server loads over time; and the amount of time spent by 

wireless users on the channel while accessing content. The experiments for this research 

were carried out based on some analysis studies performed by monitoring the access 

activities for mobile clients on a site designed specifically for mobile usage. Firstly, the 

user behavior analysis was carried out by studying the distribution of wireless user
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sessions, as well as the number of bytes downloaded by each user. Secondly, the system 

load analysis study determined the Web server loads at different times in a day as clients 

accessed the system. Finally, a content analysis study was performed to determine the 

sort of content the mobile users are most interested in, such as yellow pages, 

entertainment etc. The authors show that they research has important implications by 

shedding some light on important issues for mobile access such as query caching, server 

scheduling, channel use, and TCP optimization.

A small device navigation model for web access is proposed in [STHK03], 

providing architecture allows existing WWW content and services to be used on wireless 

devices. The m-Links system is designed to achieved the following goals: web 

navigation on small devices, digging into embedded information on web pages for useful 

data, separation of service from links, and providing an open framework for others to 

develop services for wireless clients. One main advantage of this scheme is that the 

entire content from the requested site is not sent back to the client all at once. Pages are 

summarized in a neat, hierarchical format of links to enable clear navigation. A user is 

not flooded with the entire contents of a page at the initial step, but receives a list of links 

through which she can “dig” for more content (“dig and do” model) [STHK03]. The m- 

Links architecture consists of three main components: the link engine (processes web 

pages into link data structure); the service manager (returns services appropriate for each 

link e.g. read, print, send, etc), and UI generator (supports different user interfaces for 

different small devices). Although the m-Links architecture provides a new navigation 

model for small Internet device access, there is one main limitation the authors are 

currently working to improve -  “link overload” [STHK03], The latter describes a 

scenario where the model (being link-centric), reacts poorly when encountering pages 

with large number of links.

As discussed above, there may be a lot of benefits involved in summarizing or 

partially rendering web content to mobile users, instead of sending the entire web page 

contents to a small device. In [BGMPOO], the authors introduce five methods for 

summarizing, browsing and progressively disclosing parts of web pages for small 

handheld devices. Using this scheme, the requested web page is divided into “Semantic
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Textual Units” (STUs), which can be lists, paragraphs or image ALT tags (images are not 

displayed) that are arranged in a STU hierarchy. The main contributions of this research 

include: summarizing Web pages through partitioning into STUs and summarizing the 

parts. The authors developed and experimented with different summarization schemes 

involving selecting important, descriptive STU keywords. This summarization process is 

very important, as it is the core of the progressive disclosure mechanism used for mobile 

clients. Different keyword extraction techniques and summary-sentence extraction were 

performed to adequately summarize the STUs. The authors demonstrate with 

experiments that their summarization scheme in some case prove to be three or four times 

better than no-summarization schemes.

Papadopouli et al. [PS01] present a peer-to-peer data sharing system for mobile 

users called 7DS. The latter is a system that enables data exchange among peers (mobile 

or stationary) by operating in two main modes: prefetch and on-demand. When the mode 

is on prefetch, the system expects information needs of users and gathers resources by 

querying other peers. When the mode is on-demand, the user explicitly searches for 

desired information among its peers. 7DS reads a user’s history file and predicts possible 

URLs the user may need later when there may be a loss of Internet connection. In this 

architecture, 7DS clients store data, URLs, web pages and exchange them with interested 

peers.

Sabnani [Sab97] shows that proxies can be used to process control information 

and manipulate data exchanged between the mobile client and server. The author 

discusses some benefits of proxies for mobile Web access: (1) proxies may hide the 

diversity of mobile devices from applications; (2) proxies may reduce the amount of 

communication involving the mobile device, hence reducing the consumed air 

bandwidth; and (3) proxies may take over the execution of complex functions, freeing 

resources of the limited devices. All these advantages are the main reasons why MoBed 

involves a client-proxy-server architecture.
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2.5 Web Prefetching

As WWW resources and services increase, significant delays are introduced in the form 

of network latency, server overloads and slow response times. Prefetching has been 

introduced as one of the potential schemes for reducing this Web latency. Many different 

prefetching models have been introduced for usage on wired networks, but not on 

wireless networks. This section sheds some light on some of the different prefetching 

models that have been researched in the past.

Many prefetching models prefetch web pages based on user profiles. The research 

conducted in [HBA99] introduced a prefetching model which studies the Web page 

contents for all users, builds up a user profile and knowledge base from this content 

analysis, thereby recognizing users’ individual preferences. This model combined 

caching and prefetching in a proxy server (proxy-initiated prefetching). The latter 

maintained user access logs and user interest profiles over periods of time. These two 

profiles were used for creating user interest registers, which provide an insight on the 

user’s possible interests (obtained by keyword extraction from visited pages). A user’s 

profile is constantly updated by means of a ‘recency-before-frequency selection 

algorithm’ [HBA99], and based on the user’s interest profile; web pages are prefetched 

for the client. As such, this study focused on users’ individual preferences as the basis 

for prefetching.

In another recent study by Cunha and Jaccoud [CJ97], the authors developed two 

user models that can be used in conjunction with prefetching schemes. The first model 

uses Random Walk Approximation (for capturing the long-term trend) and the second 

based on Digital Signal Processing (DSP) techniques (for short-term behavior). A user’s 

navigation strategy is taken into account as it poses a challenge in prefetching procedures. 

Some users surf the Net over multiple, while others are more inclined to access pages on 

the same site. User profiles can be explored by means of the two user models. For more 

information on the details of the two empirical user models, see [CJ97]. These models 

can be used for predicting a user’s next move, in combination with a prefetching 

procedure.
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Nanopoulos et al. in [NKM01] adopted a data mining approach to prediction for 

WWW access. The authors propose a method based on association patterns, which 

consider all the main features of Web user navigation. One of the main contributions of 

this paper includes the identification of three main factors affecting Web prefetching: the 

arrangement of page accesses, the noise present in access sequences, and page access 

dependencies. A new prefetching algorithm, WMo is also introduced and proven to 

outperform existing algorithms. The WMo algorithm focuses on preserving ordering in 

the access sequences, which is important for prefetching. All the details of the candidate 

generation and pruning processes of WMo are covered in [NKM01]. The performance of 

WMo was evaluated using a synthetic data generator, and analysed to achieve high 

prediction rates.

Although caching and/or prefetching provide some degree of latency reduction for 

Web users, all the latency cannot be completely eradicated due to bandwidth restrictions, 

and download bottlenecks. Kroeger et al. [KLM97] explore this further by investigating 

an upper bound for proxy-based caching and prefetching as means to effective Web 

latency reduction. By distinguishing caching and prefetching algorithms into distinct 

categories, the authors introduced four different models by which to test for upper 

bounds. The experiments and simulations from this research show that caching and 

prefetching can indeed reduce latency even though these techniques have limits in their 

ability to reduce latency. A combined caching and prefetching proxy was shown to be 

able to reduce latency by 60% at best [KLM97],

Prefetching in the Web can be initiated in most cases by three entities: a server 

communicating with a client, an intercepting proxy, or a client machine. A combination 

of client and proxy or client and server can be involved in the prefetching process. In 

[PM96], Padmanabhan and Mogul introduce a scheme where a server sees several 

requests from multiple clients, make predictions for pages, informs the client of the files 

that may be prefetched and lets the client make a decision on whether to prefetch the files 

or not. This decision is based on the clients’ current disposition such as memory, 

bandwidth, or cache storage issues. In this case, even though the server determines what 

files are possible options for prefetching, the client initiates prefetching. The prefetching
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algorithm on the server represents patterns of accesses by creating dependency graphs 

stored locally, and which are dynamically updated as new requests are satisfied. When a 

page is being accessed, another page is only considered for prefetching if the weight of 

the arc between the two pages (on the dependency graph) exceeds a prefetch threshold. 

In general, the results of this research demonstrate that even though predictive 

prefetching can significantly reduce perceived latency, there is a trade-off in increased 

network traffic.

Prediction by Partial Matching (PPM) is a widely used prediction algorithm 

employed in Web prefetching. PPM algorithms perform predictions from a prediction 

tree obtained from historical URLs. Chen and Zhang [CZ02] introduce a variation to 

PPM by incorporating popularity information into the PPM model (popularity-based 

PPM). The authors define the popularity of a URL as the number of times it is accessed 

in a time period. Incorporating popularity information into the PPM model involves 

altering the prediction tree as follows: branches that hold popular URLs can lead a set of 

long branches, while less popular documents can lead a set of short branches. In 

addition, this model implements optimization alternatives to reduce space allocation. 

Through trace simulations, the authors show that their popularity-based PPM model 

greatly reduces storage space for tree nodes; and outperforms other techniques by 5 to 

10% of hit ratios.

Many prefetching techniques make predictions based on user profiles and user’s 

history, but B. Davison [Dav02] examines the technique of prefetching a user’s next 

move by analyzing the content of recently requested pages from the user. He shows that 

this approach can make predictions of actions that the user may never have done in the 

past (as opposed to prefetching based on historical references). The goal of the research 

is to improve user-perceived performance without querying the user for interest topics, or 

altering pages presented to the user. Their approach involves modeling a user’s changing 

interests by analyzing the textual contents of pages recently requested by the user. A 

total of four methods were presented: baseline random ordering, original rank ordering, 

and two others which rank URLs based on the similarity of the link text and non-HTML 

text of preceding pages [Dav02]. The results from his research show that similarity-
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based rankings performed 29% better than random link selection methods, and 40% 

better than no prefetching at all (with infinite cache). The results also show that 

approximately 40% of the time, a user requests information that has never been seen 

before; hence showing the importance of prefetching based on page content as opposed to 

past accesses.

P. Cao et al. [CFK95] presents the integration of caching and prefetching as 

effective techniques of improving the performance of file systems. It provides a 

performance evaluation (by simulations) of two prefetching strategies: aggressive and 

conservative strategies. These strategies address the interaction between caching and 

prefetching, while tackling the main issues like when to start prefetching, what should be 

prefetched and what should be thrown out. The aggressive prefetching strategy always 

prefetches the next block into the cache at the earliest opportunity that is presented. The 

conservative prefetching strategy minimizes the elapsed time while performing a minimal 

number of fetches. Their simulations show that the two strategies are close to optimal 

while reducing the application elapsed time by 50%. This study focused on integrated 

caching and prefetching for file systems, as opposed to the WWW scenario, but provides 

insight on the integration of the two schemes.

The study in [CZ01] shows the importance of Web server input in the process of 

proxy-based prefetching. It proposes a coordinated proxy-server prefetching technique 

that coordinates prefetching activities at the web servers and proxy. In this paper, the 

authors investigated the shortcomings of proxy-based prefetching to discover situations 

where help is needed from web servers. This study employs the PPM (Partial Match) 

prediction technique for prefetching. Prefetching starts after a requested object is 

accessed at a level of the Internet caching system. The process continues by a search of 

the PPM tree rooted by the requested object. A relative probability is assigned to every 

object in the PPM tree as a ratio between the number of accesses to that object versus the 

number of accesses to the root object. This relative access probability is the variable used 

for adjusting the prediction accuracy in both proxy and Web servers (set to 30% in this 

paper). If the requested object is not found in the PPM tree, the Web server makes the 

prefetching decision. The coordinated proxy-server prefetching techniques was evaluated
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by measuring the reduction in communication over the server-based approach, and by 

comparing its hit ratio with those of the server and proxy based methods. Their results 

show that the byte hit ratios and hit ratios from the coordinated proxy-server prefetching 

are up to 88% higher than from proxy-based, and comparable to server-based prefetching 

results with 5% difference.

Markatos and Chronaki [MC98] present a Top-10 approach to prefetching, 

whereby there is a combination of client access profiles with the servers’ knowledge of 

their Top-10 most popular documents. The servers periodically calculate their top-10 

most popular documents and prefetch them only to clients that can potentially use them 

(i.e. to ‘frequent’ as opposed to ‘occasional’ users). The Top-10 approach is based on a 

client-proxy-server framework. On the server end, the Top-10 daemon processes the user 

access logs, computes the list of ten popular documents on that server and updates a web 

page showing this information, served by an HTTP server. On the client end, there 

resides a prefetching agent, which gathers a log of all the HTTP requests of the client and 

periodically creates a prefetching profile of the client (list of potential servers for 

prefetching). Based on this prefetching profile, the prefetching agent requests the most 

popular documents from the activated servers. From trace-driven simulations based on 

access logs from different servers, the performance results of the Top-10 approach in 

[MC98] show that the Top-10 scheme can anticipate more than 40% of a client’s requests 

with a network traffic increase of 10 to 20%.

Duchamp [Duc99] examines a new method for prefetching Web documents into 

the client-side cache. The clients send references to Web servers, which collect the 

information and disperse it to other clients. The reference information indicates how 

often hyperlink URLs embedded in pages have been previously accessed relative to the 

embedding page. The clients initiate the prefetching using any algorithm, based on their 

general knowledge of the popular hyperlinks. Dynamically generated pages, as well as 

pages with cookies can also be prefetched using this scheme. In addition, the prefetching 

algorithm measures the available bandwidth to the client and limits the prefetching 

requests to only a fraction of the bandwidth available. The author shows that as a result 

of these measures, prefetching is improved, client latency is reduced by 52.3%, the
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prefetch accuracy is 62.5% (prefetched pages that are eventually used), and network 

traffic less than 24%.

2.6 Performance of Caching and/or Prefetching with Proxies

M. Abrams et al. [ASA+95] conducted a study to assess the limitations and potentials of 

proxy servers in the caching of Web documents retrieved with different protocols using 

WWW browsers. The research used a cache simulation with traffic corresponding to 

three educational workloads over a semester period. The experiments involve examining 

and comparing three different cache replacement policies: LRU (classic), LRU-MIN 

(variant of LRU that minimizes number of replaced documents), and LRU-THOLD 

(variant of LRU where no document larger than a threshold is cached). This study 

demonstrated that even though caching provides valuable benefits by lowering traffic and 

bandwidth, it does not provide a complete solution to the Web latency problem. The 

results from this study show that: (1) using their workloads, the maximum possible hit 

rate for a proxy is 30 to 50%; (2) the classic LRU policy is a poor option when the cache 

is full and a document replaced, even though simple variants can drastically improve the 

results; (3) some modifications to proxy server configuration parameters for a cache may 

provide little benefit; (4) with the workloads used in this research, the proxy cache hit 

rate tended to decline over time; and (5) hit rates increased up to 20% when all 

documents are cached, regardless of its domain.

Padmanabhan and Mogul [PM96], in their research paper on using predictive 

prefetching as a means to improve WWW latency, showed clients that access the WWW 

through proxy caches may reap some benefits. They showed that prefetching could take 

place in two main ways: between Web servers to proxy and between proxy cache to 

clients. It was observed that proxies are in a good position to make prefetching-related 

decisions relative to Web servers, since they can observe different client access patterns 

across servers. The authors also outlined two main situations in which a proxy cache can 

be invaluable from the point of view of prefetching: (1) In a scenario where a client is 

connected to a proxy via a non-shared line, the idle time observed could be filled up with 

prefetch traffic while ensuring that other traffic flow across the connection is not 

hindered; and (2) in a second scenario where each client gets data through a high-latency,
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high-bandwidth connection and the reverse connection may be through a slow line. In 

this case, prefetching would be an attractive option when the spare bandwidth and large 

startup latency of fetching data on demand are taken advantage of. The authors showed 

that the two scenarios described above could prove to be especially useful for 

prefetching.

Markatos and Chronaki in [MC98] present a Top-10 approach to Prefetching on 

the Web, and show that the use of proxies could have a positive effect on the 

performance of prefetching. The authors advocated the use of proxies by showing that, in 

the event of all clients accessing a server through a proxy, the latter could aggregate all 

clients’ requests and qualify for prefetching as a repeated and heavy client [MC98]. They 

also mention that the proxy could prefetch documents on behalf of any of its clients. This 

activity would improve performance since a number of clients could be interested in the 

same document that was prefetched once. The authors used trace-driven simulations with 

artificial proxies, in order to test the effect of proxies on prefetching. Their experiments 

showed that the hit ratio using proxy servers doubled or tripled compared to hit ratios 

with no proxies used. They also observed that the increased hit ratios came with almost 

no increase in network traffic; in some cases, the traffic increase was less than 20% and 

in some occasions, there was a decrease in traffic. The reason for this decrease was 

analyzed and determined to be as a result of many clients using the same prefetched 

document. The research was taken one step further with the study of the effect of 

second-level proxies on prefetching. Second-level proxies aggregate requests from first- 

level proxies (which get requests from user-level clients) [MC98]. Their results for 

prefetching were even more promising in this case. One server used in the experiment 

reached a hit ratio of over 60%, showing a marked performance improvement, usually 

accompanied by a decrease in traffic. Their research shows that proxies have an impact 

on the process of prefetching documents from the WWW to clients.

Chen and Zhang in [CZ01] propose a coordinated proxy server prefetching 

technique that uses reference access information and coordinates prefetching at the proxy 

and Web servers. This research also involved the investigation of the conditions that 

make proxy-based prefetching ineffective and needs help from Web servers. The authors
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defined the relative hit ratio for a proxy as ‘the ratio between a hit ratio from the proxy- 

based prefetching and the hit ratio from a server-based prefetching’ [CZ01]. It was 

observed that as the number of clients accessing the proxy server increased, the proxy- 

based prefetching ability based on relative hit ratios with a given server increased as well. 

More precisely, in the conducted experiments, it was observed that as the client count 

increased from 16 to 64 users, the average relative hit ratios increased from 59% to 79% 

(for all servers used). Another important dimension in this research was to determine the 

shared request distribution to different servers through the proxy in a WWW 

environment. This study showed that in a proxy server with 1000 clients, proxy-based 

prefetching could satisfy less than 40% of requests (with about 60% relative hit ratio). In 

addition, for over 60% of the requests, prefetching at the proxy may not be sufficiently 

adequate. The authors hence show that proxy prefetching is limited, as the other studies 

described above show.

Although a lot of work has been done in caching using web proxies that act as 

intermediaries between the client and the servers, few studies address the specific topic of 

caching content (possibly in a transformed representation) that can be useful to mobile 

devices. The related work discussed in this chapter was divided into the following 

categories: WWW caching with/without proxies, transcoding with distillation and 

refinement, J2ME and the Web, Web access from Mobile devices, prefetching schemes 

for wired/wireless WWW access, and the performance of caching and/or prefetching with 

proxies. Although numerous caching and prefetching schemes have been tested for 

wired-networked computers, there has been there has been no known systematic study of 

the architecture and algorithmic design choices for Web access in mobile devices using 

J2ME.
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Chapter 3 A Client Baseline Architecture

This chapter provides a detailed description of the first stage of this research. In this 

stage, a mobile client baseline architecture was developed to provide a “reference” point 

against with other architecture designs could be compared in the later stages of this 

research. The idea for this architecture originated with an interest in porting a Web-based 

browser application (that would be very practical for a workstation using on a wired 

network), to a small mobile device that relies on a less reliable, wireless connection to the 

Web. This architecture shows that by simply porting such an application to a wireless 

client does not provide an adequate or practical solution to Web access for wireless 

devices, due to the intense level of processing that is required to sufficiently run the 

application. The costs of operating a simple Web browsing application (in terms of 

memory and time costs) are extremely noticeable on a constrained mobile client, as 

opposed to a wired client (like a personal computer) that has much larger memory

capacities and better connectivity to the Web.

Sub-sections 3.1 and 3.2 contain an in-depth description of the baseline

architecture and its implementation; and the remaining sub-sections describe the

evaluation process of this architecture

3.1 Architectural description

The overall web access process in the Client Baseline Architecture is illustrated in Figure 

3 below. The architecture consists of the following components:

• The Browser MIDlet or User Interface Manager, which initiates, creates and manages 

the mobile user interface.

• The HTML Parser, which establishes a connection with the Web server from which 

the request can be satisfied, and provides the HTML parsing capability for converting 

the requested resource data to a client-friendly version.
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Figure 3 - Web access in the Client Baseline Architecture
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3.1.1 The Browser MIDlet

When the mobile client application is started, the Browser MIDlet initiates the user 

interface by displaying a simple form allowing the client to enter the URL requested, as 

shown in the snapshots in Figure 4 and Figure 5 below.

;ch Web Page

Figure 4 - Initial Browser Screen

http- f /www  y aho 
o .com/

Figure 5 - Browser screen with user input
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Figure 6 - Requested Web content displayed

12 FORWARD 
3 ENTER URL

Figure 7 - Possible operations provided by the Browser

After the resource requested is retrieved from the Web Server and parsed, the user 

interface is updated with the Web content. The Browser MIDlet ‘renders’ the content on 

the device by outputting the displayable information such as links, texts, and images on 

the screen in the forni of a list (as shown in Figure 6 above). Using the navigation 

buttons on the mobile phone, the user can navigate through the contents of the list, and 

click on any links for viewing. This browser does not display embedded images on web 

pages once they are initially rendered. If the image icon on the page is clicked on, the 

image can then be viewed. The visited URLs can be navigated by means of back and 

forward soft buttons on the mobile phone. Figure 7 illustrates the different operations

27
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that can be carried out on the Browser when a user is perusing the content. The browser 

MIDlet also handles dynamic content and user interaction though forms, as well as 

maintains sessions and cookie management. When a user submits a form, a POST HTTP 

request is made to the server, and the response (if returned in HTML) is retrieved, parsed 

and rendered on the screen.

3.1.2 The HTML Parser Package

An open source HTML parser developed by the Kizna Corporation [HP1.1] provided the 

HTML parsing capability needed for the mobile Web access. This parser was chosen for 

use in this project for the following reasons. Firstly, it is implemented in Java using the 

Java 2 Standard Edition. Secondly, the source code had a minimal use of classes and 

packages that are absent in J2ME specification. This meant that there would be few 

changes needed to adapt the parser in order to make it functional in J2ME. Thirdly, the 

source code is open for public use and can be re-used or modified by the programmer. 

The code was adapted in order to make it usable in a J2ME/MIDP environment, by the 

addition of some functionality to the original classes, and providing new classes to 

augment the HTML-parsing ability. Figure 8 below provides a simplified class diagram 

showing the classes and directories found in the HTML parser package. Note that the 

class diagrams provided in this section contain only the interesting attributes pertaining to 

a given class, such as the major class members, parameters and methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28



HTMLParser

#reader:HTMLReader
#resourceLocn:String
#node:HTMLNode
-scanners:Vector

+HTMLParser 
+addScanner: void 
+elements:Enumeration 
-openConnection:void 
+ registerScanners:void

<-

Interface
HTMLNode

HTMLReader

#node:HTMLNode
#posInLine:int

+HTMLReader
+readLine:String
+readElement;HTMLNode

parser:HTMLParser
nextLine:String

+elementBegin:int
+elementEnd:int
+print:void

scanners

tags

-1  HTMLStringNode

+ HTMLStringNode 
+find:HTMLNode

iHTMLRemarkNode

+ HTMLRemarkNode 
+find:HTMLNode

util

parser
applications

Directories

Legend:

Dependency relationship: 

Interface “implementation”: 

Inheritance relationship:

Figure 8 - Class diagram of the HTML Parser package
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3.1.2.1 HTML Node object

The HTML Node class is an interface implemented by all types of nodes, such as strings, 

and all kinds of tags. The HTML Tag class and all its subclasses implement this 

interface. For example, an HTML Image tag is an HTML node, even though it may 

contain different information from say, a Link or Form Tag. Different nodes hold 

information relevant to the tag they represent. For example, an Image tag contains the 

resource link for the image, and its textual description.

3.1.2.2 The Parser

This class is used either to iterate through HTML page or to directly parse the contents of 

the page and print the results. Typical usage of the scanner involves the following steps: 

The Parser object is initialised with the requested URL. All the tag scanners that pertain 

to the HTML tags to be parsed are registered (scanners are described in Section 3.1.2.4 

below).

By calling the parser object’s elements() method, parsing occurs on demand. The 

Parser object initializes an HTMLReader object, which provides methods to read in data 

from the source. It is important to note that the parsing occurs only when the parser 

object is enumerated, by calling its elements() method. Figure 9 shows a sample code 

depicting the use of the HTMLParser object. The latter connects to the resource 

(http://www.cs.ualberta.ca) and prints all the tags located on the page.

Parser parser = new Parser ("http://www.cs.ualberta.ca");
parser.registerScanners(); //register common scanners

for (Enumeration i = parser.elements();i.hasMoreNodes();)
{

Node node = i.nextNode(); 
node.print();

}

Figure 9 - An example showing the use of the HTML Parser object

3 0
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3.1.23 The HTMLReader class

The HTMLReader builds on the BufferedReader class (from the J2SE IO package) and 

provides methods to read the data from an input stream. An HTMLReader object is 

typically initialized with an input reader object (from the J2SE IO package) and the URL 

to be read. Every parser object has an HTMLReader object associated with it. The 

HTMLReader’s readElement() method reads from the input stream one line at a time and 

invokes a find() method on the HTML tag class in order to locate HTMLtags (if any) 

within the input string. As the HTMLReader reads in lines from the stream in the form of 

Strings, HTMLNodes are created once HTML tags are located within the input strings.

3.1.2.4 The HTM L Tag classes

The tags package contains different tag types that are created mostly by the scanners. It 

contains a generic HTML tag class, which represents a generic HTML tag. This generic 

tag class allows the developer to register specific tag scanners, which can identify 

different tags such as links, image references and others. The generic HTML tag class is 

extended by different HTML tag classes such as: the HTML Link Tag class, Image Tag 

class, Title tag class, Form tag class and many others. Each tag class implements a find() 

method invoked by the HTMLReader. This method locates the tag within the input string 

provided by the HTMLReader, by parsing the string from a given position. A class 

diagram is provided in Figure 10, showing the relationship between the parent HTMLTag 

class and its subclasses.
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HTMLTag

+HTMLTag 
+find: HTMLTag 
+scan: HTMLNode
thisScannenHTMLT agScanner 
tag:String

A A AA A  A A A  A

l~~THTMI ScriptTag

r~l HTMLAppIetTag

rfl HTMLStyleT ag

HTMLJspTag

a i-iT M i ImageTag,

[~nHTMLDoctypeTag

rSlITMLAppletT ag

|~HHTMLMetaTag

f~H HTMLI JnkTag □HTMLEonnTag

Figure 10 - Class diagram of the HTML tag classes (HTML Parser package)

3.1.2.5 The HTM L Scanner classes

The scanners package consists of HTML tag scanners that can be fired automatically 

upon the identification of the tags. Each scanner is matched to a corresponding tag, 

forming a scanner-tag pair. For example, an HTML Link Tag class works with the Link 

scanner class to locate the link tag in a given string. This package contains a generic Tag 

scanner class, which is sub-classed to create specific scanners that identify the tag, 

operates on its strings, and can extracts data from it. Each scanner class implements two 

important methods: and evaluate() method and a scan() method. The evaluate() method 

is used to decide if the scanner can handle that particular tag type, while the scanQ 

method scans the tag and extracts all the information relevant to it. A class diagram is 

provided in Figure 11, showing the relationship between the parent HTMLTagScanner 

class and its subclasses. Figure 12 shows the association between an HTML tag class and 

its corresponding tag scanner class.

3 2
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HTMLT agScanner

+HTMLT agScanner 
+evaluate: boolean 
+scan: HTMLNode

A A A  AAA MA A
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Figure 11 - Class diagram of the HTML Tag Scanner classes (HTML Parser package)
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Figure 12 - Association between an HTML tag class and its corresponding scanner class.
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When the user enters a URL, a connection has to be established to the relevant Web 

server. An HTML Parser object is invoked, which opens a connection to the resource. 

This HTML Parser object uses an HTML Reader object, which reads in all the HTML 

source code for the requested page and builds HTMLNode objects that correspond to the 

HTML tags located on the page. These HTMLNode objects can be described as 

‘capsules’ that hold information pertaining to the HTML tag they represent. For 

example, consider the following link tag on a web page:

<a href = "http://wvm.ualberta.ca" >University o f Alberta</a>. The HTML link node 

corresponding to this tag will contain the contents of the tag {University o f Alberta) and 

the URL that the link points to ("http://www.ualberta.ca"). When all the HTML nodes 

for the page have been constructed, the content is rendered on the screen simply by 

accessing the information encapsulated in each node object.

3.2 Architecture Implementation

The entire architecture was implemented using the J2ME Wireless Toolkit [JW-J2ME]. 

This Toolkit provides examples, CLDC/MIDP documentation as well as a customizable 

environment for emulating the bahaviour of applications on a group of mobile devices. 

Table 2 below shows emulations of various example devices supported by the J2ME 

Wireless Toolkit. The devices possess a range of features that are found in mobile 

devices, all of which support the MIDP specification. The mobile Browser MIDlet ran 

successfully on all these devices except for the Palm OS device, which uses a different 

emulator from that provided by the J2ME Wireless Toolkit.

Table 2 - Characteristics of devices emulated using the J2ME Wireless Toolkit

Device Description Features

Dt-fau it ColorPS sont

Generic telephone with 
a color display (not an 
app-oximution of a real 

phone)

96x128 display resolution, 
256 colors, ITU-T keypad 

with 2 soft buttons

DdauitUrey Phone
Generic telephone with 

a ai av-sc;ile display.

96x128 display resolution, 
256 shades of gray, ITU-T 

keypad, with 2 soft 
buttons.

3 4
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MinimumPhone
Generic telephone with 

minimum display 
capabilities

96x54 display resolution, 
black and white color 

support, ITU-T keypad, no 
soft buttons

K1 MJaval landheid
RIM device from 

Research In Motion 
Ltd.

198x202 resolution, black 
and white color support, 
QWERTY-keyboard, no 

soft buttons

Motorola J85s Motorola I85s phone 
from Motorola, Inc.

111x100 resolution, black 
and white color support, 

ITU-T keypad, with 2 soft 
buttons

PalmOS.Deviee

Palm OS PDA from 
Palm, Inc. (this 

emulation uses the Palm 
OS Emulator from 

Palm, Inc._)

Usually 160x160 display 
resolution, variable black 
and white color support, 

Graffiti and hard buttons, 
no soft buttons

Implementation and Testing using the J2ME Wireless Toolkit Emulator

The J2ME emulator is a tool that enables a programmer to run MIDlets on a desktop 

computer in order to simulate how the MIDlet will run on a physical device. Even 

though the goal is to run the MIDlet on the actual device, the emulator plays an important 

role because it enables the programmer to work entirely on a personal computer 

throughout the application development process. [MorOl] lists a few of the benefits of 

using this Wireless Toolkit as follows:

• A MIDlet can be tested not only on one device, but on a variety of different target 

devices, including custom devices.

• The toolkit provides functionality for monitoring specific aspects of a MIDlefs 

execution such as class loading, method calls, and garbage collection.

•  The emulator serves as a substitute for a physical device during the early stages of 

MIDlet development when a programmer is likely to make numerous changes in the 

application.

3 5
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By testing a MIDlet on the range of devices available within the J2ME emulator, a more 

accurate approximation of how the MIDlet wili function on the real device is achieved, 

particularly how the application will look when displayed on the mobile device.

3.2.1 Drawbacks of using an emulated environment

Even though the J2ME Emulator displays numerous benefits as described above, there 

are some setbacks that a programmer must be aware of when using this emulated 

environment. The emulator does not replace the actual physical device, and the actual 

performance of an application can only be truly seen when run on the physical device. 

[MorOl] explains some of the limitations of using the emulator in testing MIDlets:

• The emulator does not properly simulate the varying range of memory constraints that 

exist between the different devices emulated. This undoubtedly poses a problem 

when testing MIDlets, since the available memory can drastically affect the 

performance of the MIDlet.

•  More importantly, the emulator provides only an approximation of the physical 

device. Hence, results acquired from an emulator regarding the execution or 

performance of a MIDlet is not guaranteed to be identical to that obtained when 

testing on the actual device.

Nonetheless, the Emulator was an ideal option for this application development stage of 

this work because it reaped all the benefits provided by its emulated environment.

3.3 Mobile-Resident Browser Evaluation

The baseline MoBed testbed described in the above sections burdens the constrained 

mobile device with computationally intensive tasks like data fetching, HTML parsing, as 

well as user interface maintenance. In a more practical scenario, such tasks should be 

off-loaded to a nearby proxy server to ensure that very little of the limited heap space on 

the device is consumed, thereby saving time. In this section however, we focus on the 

scenario where the browser is resident on the mobile, even though the costs are expected 

to be high.

36
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In order to measure the cost of the computationally intensive activities (such as obtaining 

the resource, parsing the data, and creating HTMLNodes), a simple experiment was 

designed to measure the strain on the device in this setting. A simple Driver MIDlet was 

designed to use the classes in the mobile Browser package to fetch and render pages from 

data file containing a list of URLs. Figure 13 shows the simple algorithm implemented 

for the Driver MIDlet.

Driver Test Program
-  Get fresh heap size
-Read a list o f URLs from a text file; FetchAndRender fa r  -  new;
For each URL, U in the list

far.startAppO //start the fetch and renderer MIDlet.
Get beforejheap snapshot 

far.fetch ( U ) -  fetch U 
Get afterJheap snapshot 
far.render (U) -  render U 
Get after heap snapshot
far.destroy() //clear all use o f  heap space to start over

Figure 13 - Driver MIDlet used to initiate client requests from the mobile client, while gathering 
information on the heap size change over time

3.3.1 The Dataset

The experiments were conducted using a small set of just over 100 URLs obtained from 

the server logs from the University of Alberta - Computing Science Department website. 

This dataset, although small, contained URLs to web pages that were varied in content, 

structure and size, in order to reflect the natural complexity of typical web pages.

In order to carry out this experiment, the dataset had to be divided into smaller 

workloads containing a collection of 10 to 12 URLs each. The reason for this was 

because an attempt to run the experiment with the complete set of over 100 URLs would 

fail because of the insufficient memory constraint on the device. As such, the experiment 

was performed using each of the smaller workloads generated from the dataset.

3.3.2 The Experiment

The Driver MIDlet illustrated in Figure 14 above was designed to show the state of a 

minimum requirement CLDC/MIDP mobile device (with a heap size of 500 kilobytes) as
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the processes of fetching and rendering the web pages occurred. Figure 14 shows a small 

snapshot of the output from the test application.

Starting Driver ... 482568 bytes 
#.-----------------------------------#
URI -  http://www.cs.ualberta.ca/
Before Fetch = 464848 FREE bytes.
Start of FETCH method... 464848 FREE bytes 
Number of HTMLNodes: 389 

End of FETCH Method... 209932 USED bytes 
After Fetch and Render = 259916 USED bytes.
#------------------------------------#
URI = http://www.cs.ualberta.ca/survev.php 
Before Fetch = 411716 FREE bytes.
Start of FETCH method... 411716 FREE bytes 
Number of HTMLNodes: 87 
End of FETCH Method... 87680 USED bytes 
After Fetch and Render = 134032 USED bytes.
# -------------------------------------------------#

URI = http://www.cs.ualberta.ca/contact.php 
Before Fetch = 410436 FREE bytes.
Start of FETCH method... 410492 FREE bytes
Number of HTMLNodes: 255

After Fetch and Render = 97296 USED bytes.
#---------------------------------- #

Figure 14 - Sample output from the Driver MIDlet

Elaborating on the sample output from Figure 14: the first line shows that the initial heap 

size for the phone is almost 500 kilobytes (Kb) when the URL htty://www. cs. ualberta. ca/  

is requested. After the page is fetched and parsed, the heap snapshot shows that the 

available memory has drastically reduced to about 209Kb and an additional 50Kb is used 

up to render the page on the user interface. The number of HTML nodes produced by the 

parser in this example is 389, showing that this page is reasonably big (as it contains at 

least 389 parse-able HTML page entities such as images, links and text). Figure 14 also 

shows that the different pages have a varied number of HTML nodes even though their 

content is not evident from the snapshot. The number of HTML nodes present in a page 

only reflects the number of ‘parse-able’ HTML tags from the HTML Parser program.

3 8
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3 3 .3  Experiment Analysis

Figure 15 below shows the amount of memory (in bytes) used to fetch and render the 

HTML nodes generated from each of the requested pages, while Figure 16 depicts the 

amount of time (in milliseconds) used to fetch and render the HTML nodes pertaining to 

each downloaded page.

Heap Size Used (Bytes) Heap Size vs* Number of HTML Nodes
350000

250000

200000

150000

100000

50000

300 500200 400 GOO 700 8001000
Number of HTML Nodes Fetched and Rendered

Figure 15 - Required heap size as a function of the number of ‘parsable’ HTML nodes.

_  , _ Fetch.and Render times oF HTML NodesNumber of HTML Nodes Fetched and Rendered
1200

1000

800

BOO

400

200 ■

20000 25000 30000 35000 40000 45000 50000 550001500010000
Time taken to Fetch and Render Nodes (ms)

Figure 16 - Time taken to fetch and render a requested page as a function of the number of
‘parsable’ HTML nodes.
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From the above graphs and from monitoring the runtime behavior of the browser

application, the following behavior is observed:

• The higher the number of HTML nodes generated for the URL being fetched, the 

more memory is used to fetch and render the page on the mobile device. This is an 

expected behavior, since a high number of HTML nodes indicates that the page 

requested is big and may have a high level of complexity. This behavior is captured 

in Figure 15 above. As shown by the values in the graph, almost half of the device’s 

entire heap could be used in retrieving a single large web page.

• Figure 16 shows the amount of time used to fetch and render the HTMLNodes. This 

graph is not as linear as the graph in Figure 15, but there is a general observation that 

the higher the number of HTML nodes parsed from a web page, the higher the time 

used up in the fetching and rendering process.

•  It was also generally observed that for most of the URLs, more memory was used in 

the ‘fetch’ process, and less or equal amounts of memory used up in the render phase. 

This is because the ‘fetch’ phase involves: reading data from the connection to the 

resource, creating HTML node objects and storing them in a vector for rendering. 

The ‘render’ phase simply entails iterating through all the HTML nodes stored in the 

fetch phase, and appending their relevant text information on the mobile client screen 

object. This clearly explains why more resources are used in downloading the page 

than in rendering it.

« Although not evident from the graphs above, it is important to mention here that with 

this HTML parsing scheme, when a page is parsed, HTML nodes are generated for 

HTML tags that are potentially useless to a mobile client, such as HTML remark tags 

and end tags. The HTML nodes generated from such tags do not provide any 

information that will be displayed to the user. Therefore, parsing and storing such 

nodes on a device with limited disk space is an expensive, and time-consuming task.

3-3.4 Limitations of the Experiment

The results demonstrated above are as expected, but there are a few limitations of the

experiment discussed below:
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• The experiment provided only an estimate of the cost incurred in fetching and 

rendering pages at the browser. Most experiments that attempt to measure the size of 

objects encounter one difficulty: simply taking the difference in memory size before 

and after an operation proves to be misleading since the JVM may be performing 

other tasks aside from the operation in question, including allocating and discarding 

transient objects. As such, it is recommended that the average of the difference (with 

the number of instantiated object) be taken to reduce the skewing of the results from 

the background JVM activities [Sin03]. In this experiment, it was difficult to average 

the memory size difference, since the exact number of objects being instantiated and 

used was not known. This is because in fetching a resource, several classes in the 

browser package are invoked, and it is not trivial to know exactly how many objects 

are involved in the activity. As such, the naive scheme of simply using the difference 

in memory size was adopted. Thus, there is no doubt that the results may be skewed, 

the extent of which is not known.

• The J2ME Wireless toolkit was used in this experiment, and all the drawbacks 

involved with using the emulator listed in Section 3.2.1 apply here.

The experimental results discussed in Section 3.3.3 clearly show the drawbacks of having 

a mobile-resident browser, where the mobile device does all the work in getting, parsing 

and displaying the requested resource. As long as computationally intensive processes 

are done on-device, the application will not be practical, due to all the constraints of a 

mobile device. Rather than perfect the application and/or the measurement process of the 

experiments, this research objective lies with the obvious approach of offloading 

computation and storage to a nearby proxy process residing on the fixed backbone 

network. We can tell by the browser example that, even though in absolute values, the 

number of pages that can be retrieved could be improved, the penalty of having a 

complete browser implementation on a mobile device is very prohibitive.
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Chapter 4 MoBed Client-Proxy Architecture

Web access from mobile devices is characterized by constraints such as small screen and 

keyboard size, slow connections, and limited bandwidth amongst others. Because of 

these constraints, small devices need special consideration when accessing information 

from Web servers. The authors of [CMOS] propose an architecture called Scalable 

Browser for mobile devices, with features such as fetch-on-demand, progressive 

rendering, and display on demand navigation style. In [BGMPOO], the authors introduce 

five methods for summarizing, browsing and progressively disclosing parts of web pages 

for small handheld devices. This summarization process is the core of the progressive 

disclosure mechanism used for mobile clients. [PS01] presents a peer-to-peer data 

sharing system for mobile users called 7DS, a system that enables data exchange among 

peers. A small device navigation model for web access called the m-Links [developed by 

[STHK03], was designed to achieve web navigation on small devices, digging into 

embedded information on web pages for useful data, separation of service from links, and 

providing an open framework for others to develop services for wireless. These are only 

a few cases of past research that show different approaches to making mobile Web access 

more readily available.

In this architecture, the client resides on the mobile device, while a middleware 

component or proxy server is used for computationally intensive tasks, such as 

networking, HTML Parsing and more. In other words, the bulk of the application logic 

resides on the proxy server while the mobile client is responsible for updating the user 

interface. The two main components in this architecture are the mobile client and the 

proxy server. Figure 17 shows a simple sequence diagram illustrating the interaction 

between the client and proxy components. A detailed description of the client and proxy 

components is provided in sub-sections 1 and 2, respectively.

4 2
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MOBILE Client Proxy Server WWW Server

<-

<-

updateScreen()

getUserlnputO

requestDispatch(url)

response: converted_bytes 

decode(converted_bytes) 

updateScreen()

<-

-e

<-

<-

getUserlPO

userSessionUpdate(IP)

checkCache(url)

parser_init(url)
fetch(url)

responserbytes

buildHTMLNodes(bytes) 

transcode(HTMLNodes) 

updateCache(url, bytes[ ] )

Legend: Control flow

Figure 17 - Interaction between main components in the MoBed Client-Proxy architecture

4.1 The Mobile Client Component

As previously mentioned, the client component in this architecture is the J2ME-enabled 

mobile device. One of the main objectives of introducing a proxy server into this testbed 

was to remove the bulk of the application logic from the client, in order to achieve a more 

efficient approach to Web access. Nevertheless, the client still maintained some logic, in
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addition to its main task of managing the user interface. Figure 18 shows the flow of 

control and interaction between the main sub-components in the client. Since this sub­

section focuses on the description of the Mobile Client Component, the details on the 

Proxy Server component are provided in sub-section 4.2 (and not illustrated in Figure 9). 

For each mobile client sub-component described in this section, a brief description of its 

corresponding component in the Client Baseline Architecture (in Chapter 3) is provided.

MOBILE CLIENT

k
Browser MIDIct

• Display Initial Browser Screen
•  Get URL

c
P.ins on URI. ini retelling

Request dispatcher
-v  Request U-RI-) PROXYw

Response
SRRVER

Pass on page Ryles 
foi rendering

(li anseoded bytes)

GUI Builder
Decode the page bytes 
Render decoded bytes

Update the uset interlace

Browser 
S c re e n  ri isn lnv

Legend:
Client state 

Client components 

Component Interaction

O
O
-----►

Figure 18 -  Interaction between main sub-components in the Client Component

The Client consists of the following sub-components:

• The Browser MIDlet, which initiates the browser application.

• The Request Dispatcher that connects to the Proxy when a request is made for a 

resource.
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• The GUI Builder, which builds and updates the user interface based on the bytes 

received from the Proxy.

4.1.1 The Browser MIDIet

The Browser MIDIet has the crucial function of allowing the user access to Web 

resources. When the application is initiated from the mobile phone, the user interface is 

updated, giving the user the option to enter a URL. When the URL is received from the 

user, the MIDIet invokes the Request dispatcher, which connects to the proxy. The 

MIDIet updates the user interface when the requested page becomes available, allowing 

the user to view or select the items on the page.

In the Client baseline architecture, a mobile-resident Browser MIDIet was 

developed, which performed similar functions such as user interface creation and 

management. The main difference between the two components is that the Browser 

MIDIet in the baseline architecture, when a URL was retrieved from the client; it invoked 

the mobile-resident HTML parser with the requested URL. In this testbed, the Browser 

communicates directly with its connection manager or Request dispatcher and passes on 

the String parameter for the requested resource. The Request dispatcher then 

communicates directly with the Proxy server, delivering the user’s request.

4.1.2 The Request Dispatcher

The Request dispatcher is the connection class that makes the Proxy server accessible to 

the mobile client. When this component is invoked, it establishes a socket connection to 

the proxy and sends the URL string request. In future, this class could be modified to 

send a request in the format: <String URL, int available space>; where URL is a String 

representation of the url requested, and available space is the integer value of the cache 

space available for storing any prefetched items from the Proxy. If such a request is 

dispatched, the client informs the Proxy of its storage constraint for two main reasons. 

First, to convey its willingness to receive prefetched items; and second, to set a constraint 

on the amount of prefetched data it can store, thereby saving the Proxy from excessive 

file prefetching. When a response to the request is received from the Proxy, the 

dispatcher updates the cache by storing the new page and its content bytes. At this point,
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the user interface is typically updated to display the new page. In the future, if 

prefetching to the client is possible, upon receipt of a prefetched item from the Proxy, the 

cache could be updated with that item, making it available for possible future access.

In the Client baseline architecture, the client establishes a connection directly to 

the Web server (through the HTML Parser). In this testbed, the implementation is clearly 

better, as it separates the user interface from the networking functionality.

4.1.3. The GUI Builder

The GUI Builder component consists of a collection of classes that perform the very 

important task of rendering the bytes received for a page, into a displayable format on the 

user interface. When the Proxy parses a page, it creates special nodes pertaining to the 

HTML tags present on the page. These nodes are packaged in a format known to the 

client, and can be easily unpacked for display. For example, a link tag on a page is 

converted to a special link node that is easily decoded and displayed as a link on the 

client user interface.

The GUI builder uses the MDDP User Interface package to create the graphics 

pertaining to the nodes for each page. A page to be displayed on the screen is essentially 

a List object on which other graphic items are appended, such as text fields, choice lists, 

strings and others. When a page is displayed, any images resident in it are not displayed 

(since the proxy does not download a page’s embedded images); images are rendered as 

links. This way, if a user wishes to view an image, she can click on the link and start 

downloading the image from the Proxy. Pages that contain forms are similarly 

approximated -  a form is only displayed when a user selects it on the screen.

In the Client baseline architecture, the Browser MIDIet is the only class that creates, and 

updates the screen when requests are made. This MIDIet extracts the relevant 

information from HTMLNodes generated from the parsing process, and updates the 

screen accordingly. In this testbed, when the Request dispatcher receives the packaged, 

transcoded bytes for a request from the Proxy, its passes the data to the GUI Builder 

classes which then decode the response bytes and update the screen.
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4.1.4 Adding a Cache on the Client

In the future, addition of a client cache to the client could provide an opportunity for the 

mobile to limit the number of accesses it makes to the Proxy. The Client cache could be 

implemented as a persistent storage that remains intact when the device is turned on and 

off. It could store the String representation of a URL, as well as the bytes received from 

the Proxy that pertain to that page, as shown in Figure 19. A simple cache eviction 

policy could also be implemented to ensure that the cache is properly managed and 

occupied with fresh items that reflect the user’s ever-changing needs. Depending on the 

constraints of a particular device, such a cache can be structured to hold more items, as 

well as implement a stricter or liberal cache eviction policy.

>j~Puge Bytesf] ]

String-URL 1 > Page By test ]

Page BytestCache

to Bytes[ ] mapping

Figure 19 - A view of the Mobile Client Cache

In the Client baseline architecture, there was no persistent client cache 

component. A collection of already-visited URLs and their content bytes was maintained 

during a user’s Web browsing session. These URLs are lost when the Browser MIDIet is 

exited.

4.2 The Proxy Server Component

The second major component of this testbed architecture is the Proxy Server. The latter 

works together with the mobile client to provide access to Web servers. The Proxy server 

was responsible for the following tasks:

• Receiving, processing and satisfying requests from the client.
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• Parsing the HTML content received from the WWW Server.

• Transcoding bytes read in from WWW servers into a ‘client-friendly’ version.

• Maintaining a Cache, thereby enabling the storage of already visited pages accessed 

by all clients over time.

• Performing prefetching to clients by using a prediction algorithm to determine what 

pages(s) a client will likely access next.

• Maintaining a registry of all users that access the proxy, as well as tracking user 

sessions for the creation of different client profiles.

Figure 20 shows a compact illustration of the Proxy in action, starting from when a client

requests a page until it receives a response from the Proxy. The main sub-components in

the Proxy are described in the sub-sections that follow.
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Figure 20 - The Proxy server functionality using MoBed
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4.2.1 The Proxy Controller class

The main controller class on the Proxy provides the connection to the client via a socket 

connection that accepts a client’s requests as they arrive. The mobile client connects to a 

given port on the wired host machine acting as the Proxy via a socket connection. The 

Controller class listens to that port and accepts requests for URL sent by clients. Client 

requests consist of the String representation of the URL requested, and the available 

space on the client for the storage of prefetched items (which also serves as a prefetch 

signal).

This class is responsible for initializing the local cache, client session tracker 

engine, the HTML Parser, and the Prefetch engine. When a request is received, a search 

for the requested URL is issued on the local proxy cache. If the request is found in the 

cache, its contents are simply retrieved and sent to the client. If the requested URL is not 

found in the cache, the Parser object is invoked -  beginning the process of making the 

file available for upload to the client.

4.2.2 The HTML Parser

The same HTML Parser was used in the Client Baseline architecture is used in MoBed as 

well. For a detailed description of the HTML Parser package, refer to Chapter 3, Section 

3.1.2.

4.2.3 The Proxy Transcoder

With the generation of HTML nodes from the HTML Parser (described above), the next 

step is to convert the nodes into a representation that can be easily unpacked and 

displayed at the mobile client. When the parser is invoked with the requested URL, it 

supplies HTML nodes generated from parsed HTML tags from the requested page. As 

the parser creates HTML node objects, it passes them on to a Transcoder, which extracts 

relevant tag-specific information from each node, and builds a corresponding basic, no- 

frills mobile browser page node (PageNode). There is a small package of PageNode 

classes shown in Figure 21, which reside on the client and the Proxy, ensuring that the 

client can work with the page nodes when it receives them.
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PageNode
+content: String 
+tvne: String

+PageNode 
+getNodeType():String 
+persist(): byte[] 
+resurrect(byte[] ):void

1  FormPageNode
VtormHeaders: String 
+HiddenParams: String 
+EntryParams: String

+FormPageNode 
+getHeaders(): String 
+getEntryP(): String 
+getHidden(): String 
+persist(): byte[] 
+resurrect(bvtefl ):void

interface 
Persistent

+persist(): byte[] 
+resurrect(byte[] ):void

LinkPageNode
+link: String

+LinkPageNode 
+getNodeLink():String 
+persist(): byte[]
x r P c n r r p r i t /K v r tA r i

Legend:

Interface “implementation”: ----------- ►

Inheritance relationship:  1̂ >

Figure 21 - Mobile Browser Page Nodes

A simple PageNode object consists of two main attributes: a type string, and a content 

string. Two classes currently extend the PageNode class: the LinkPageNode and 

FormPageNode classes. There are currently three main type attributes of PageNodes: the 

“text”, “link”, and “form” attributes.

•  The “text” type represents HTML tags such as title tags, Meta tags, and plain text 

available on the web page. When any of these HTML nodes is found, the Converter 

creates a corresponding PageNode of type “text”, with its content attribute set to the 

actual string content of the node.

• The “link” type of a PageNode represents HTML Link and Image tags that both have 

resource locators pointing to the link or image source. When a link or image tag is 

encountered, the Converter creates a corresponding LinkPageNode object, which has 

three main attributes: a type string (“link”), a content string (with the textual content 

of the tag), and a location string (which holds the URL of the image or link).
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• The “form” type represents the HTML form tag. A corresponding FormPageNode is 

created when a form tag is encountered. FormPageNode consists of its type (“form”), 

a string for display on the client screen stating that the node is a form, and strings 

holding the form parameters, and values.

All generated PageNodes are stored in a Vector, which is ‘persisted’ by writing its 

contents to a byte array output stream. The data bytes generated from this process are 

ready to be sent to the client. Persisting the Vector of page nodes is essential since object 

serialization is not possible using J2ME. When the client receives the data, the vector of 

PageNodes can be ‘resurrected’ and its contents accessed. A utility class known to both 

the client and proxy (obtained from [JTT]) provides the persistence/resurrection 

capability, ensuring that the client can ‘decode’ the data when it receives it.

Figure 22 summarizes the data transcoding process on the proxy server.

IN: HTML IN:k, __ Data Byic [

URI. bytes
parser A IlfMI.Noik Converter / \I

. .  ..

] Parse data j

i ■
I * I
I Build HTML :
! sii'iiies i

OUT:
HTML Node

i Si'ip the ; iTiViL Noili 

■:
I Build ii î n f i
! PageNoiles ;

I ^
i ‘P essiss’ ihc  !ls! ;

OUT:
'PeriUti'.- VocU’i »f P'lstNmks

Figure 22 -  The MoBed Proxy Transcoder functionality
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4.2.3.1 The Proxy Cache

The Proxy maintains a local cache, which contains all the pages that have been 

downloaded from Web servers, upon the requests of clients. Having a cache on the 

Proxy is beneficial in many ways:

1) The cache holds all previously visited pages requested by all clients, hence 

eliminating the need to fetch those pages again from the Web server when they are 

later requested (this is true for static pages).

2) The proxy cache is a collection of the URL requests of all the clients that access that 

proxy. When a page is downloaded to the proxy, if it is not already in the cache, the 

cache is updated with this new file (regardless of which user requested it). This 

ensures that other users who request the same page at a later time will potentially 

benefit from the initial page download.

3) To summarize the two points above, a local cache on the Proxy demonstrates the 

potential for bringing the contents of a Web Server closer to the user, thereby 

reducing the observed latency or delay when a page is requested. This also reduces 

the load on the network and the server.

In the MoBed proxy server, the cache is maintained as a Hash Table, consisting of URLs 

mapped to their corresponding page bytes. The bytes stored are parsed, transformed 

HTML nodes from the page, in a format ready to be sent to the mobile client. When a 

page is added to the cache, the string representation of its URL is hashed to a unique string 

using the MD5 hashing scheme provided by [MD5Q3]. The hash string is then mapped to 

an array containing the page bytes, as shown in Figure 23.

“http://www.cs.ualberta.ca/ ---- *j Ha |̂ier j---- H “7j7gh7£755f554g6d4”

} Page size: 2342 bytes
Store in Cache

Figure 23 - An example illustrating the addition of an element to the proxy cache
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4 .2 3 .2  Cache management

To cope with the limited resources of a caching proxy server, cache eviction schemes can 

be implemented to determine what document(s) should be replaced when the cache is full 

and a request arrives for a URL that is not in the cache. Different cache eviction policies 

evict documents from the cache based on various cached document attributes, such as: 

the latest access time of a page, the size of a page, the frequency at which a page is 

accessed, etc. When cache replacement schemes are not implemented, a proxy can 

maintain an infinite cache so that the proxy contains all documents ever accessed at any 

given time. In MoBed, the following two cache replacement schemes were investigated 

on the proxy cache. All the details on this investigation are described in Chapter 4. 

Suppose the proxy receives a request for a URL, U that is not in the cache.

• Least Recently Used (LRU)

In this scheme, the least recently used document is discarded and replaced with U. When 

implementing this policy, all cached documents were sorted by their access times, such 

that newly cached documents were the most recent ones, located at the top of the list. 

Whenever a document was accessed from the cache, its access time was updated and the 

document moved to the top of the list. When a request arrives for a URL that is not in the 

cache, and the cache is full, the document at the bottom of the list is evicted, and the new 

document stored at the top.

• Least Frequently Used (LFU)

In this policy, the least frequently used document is discarded and replaced with U. All 

cached documents were sorted by their access frequency counts, allowing cached 

documents with the highest frequencies to be located at the top of the list. When a 

document was accessed from the cache, its frequency count was incremented and the 

document moved to the top of the list. When a request arrives for a URL that is not in the 

cache, and the cache is full, the document at the bottom of the list is evicted, and the new 

document stored the top.

4.2.4 Session Tracker Engine

Given that many clients access the proxy server at different times, requesting various 

documents, the Proxy has to maintain some information about the clients it services such
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as: maintaining a registry of all clients and keeping track of all user sessions over a given 

time period. This information can also be used as the basis for prefetching mechanisms 

based on the access history of a set of clients.

The MoBed Proxy tracks all user sessions over a 30 minute period and uses these 

user profiles to predict possible documents that can be accessed by the client, and 

subsequently prefetching these documents to clients who are interested in receiving such 

files. The following sub-sections provide a detailed explanation of the prediction 

algorithm implemented on the MoBed proxy server; and illustrates the importance of 

tracking sessions and maintaining user profiles.

4.2.4.1 The Prediction Engine

One of the goals of this project was to determine how prefetching can improve Web 

access for limited mobile clients using MoBed. The goal is to reduce the latency or delay 

perceived by a client when a request for a page is made. Caching proxies are known to 

reduce latency to a fixed amount, but there is a limit to the extent of benefits reaped from 

caching. A caching proxy has the advantage of bringing Web content closer to the user 

by storing requests over a wide range of clients who may potentially request files already 

cached from other users’ previous requests.

A prefetching proxy goes a step further - it predicts a user’s next request, fetches 

the content, and sends it to the user before the page is requested. This raises a general 

concern that prefetching may lead to unnecessary increase in network traffic. However, 

assuming the proxy performs prefetching when it is idling with no client requests to 

process, there is a probability, P that the latency of future client requests will be reduced; 

where P is the probability of correct guesses (of requests) prefetched to a client.

A prefetching and caching proxy takes this idea another step further - not only 

does it store previously visited URL requests, but it also pushes documents to clients 

possibly from its local cache, further reducing the possibility of high client-perceived 

latency when a request is made in the future. The goal is to take advantage of proxy 

idling between requests to push documents to a client. The MoBed proxy maintains a 

local cache, and implements a prediction algorithm (discussed in following sub-section) 

that generates informed guesses of future client requests.
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4.2.4.2 Prediction using Path Profiles

The technique used to predict URLs on the MoBed proxy is based on the prediction 

algorithm originally coined by Schechter et al. [SKS98] which uses path profiles 

generated from past user requests. The authors describe an algorithm for efficiently 

generating path profiles from information contained in standard HTTP server logs. The 

key terms used in describing this prediction algorithm (as defined by [SKS98]) are 

outlined below and illustrated in Figure 24:

•  A path is defined as a sequence of URLs accessed by a single user, ordered by the 

time of access. A path may contain repeated instances of a request; and the length of 

a path is the number of URL requests that make up the path.

• A user session is the path that describes the full set of requests (ordered according to 

time of access) from a particular user within a specific time frame.

• A Path profile is a set of pairs, each of which consists of a path and the number of 

times that path occurs over a given time period. A profile is recorded over the set of 

all user sessions.

Userl
1.html
3.html
2.html

User2
l.html
3.html
3.html

Session traces "'i
I  sessions----------- ► Userl. l->3->2 L Paths

User2: 1—̂3—>3 J

/  Generate path profile 
/  from user sessions

Path Profile (for all session traces)
Path Frequency
1—>3 2
1—>3—>2 1
1—>3—>3 1

Figure 24 - An example showing the relationship between user sessions and path profiles

4.2.43 Generating Path profiles

[SKS98] describes two main ways of collecting path profiles: by using an HTTP client 

that records user paths or by using an HTTP Server that records the paths of all users that
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access its site. Standard server logs can be used to generate profiles from an HTTP 

server that contains a large number of accesses. [SKS98] describes an algorithm for 

efficiently generating path profiles from information contained in standard HTTP server 

logs. The main points on server-side profiling from the authors are outlined below:

• Most HTTP logs have five main fields that describe each request: the date, time of 

access, Source (Client) IP Address, the name of the requested file, and the parameter 

field (derived from the URL). When generating path profiles, a decision has to be 

reached about the URLs used to form paths: whether they should contain the 

parameter field or only the name of the file or script. Finding an automatic method 

for determining which parameters to ignore and which should be considered part of a 

URL remains an open problem [SKS98]. In this project, all profiles generated do not 

include parameters as part of the URL.

• The URLs used for profiling are compressed down to a compact format by mapping a 

unique integer to each unique URL in the log.

• The concept of a user is essential to path profiling because predictions are made to a 

current user based on the access history of other users who behaved similarly to the 

current user; thereby showing the importance of differentiating between all users. 

The IP addresses for each user is present in most server logs, and is used as the 

identifier for each client (even though this IP could actually represent a proxy server).

• When creating user sessions, all HTTP requests separated by more than thirty minutes 

are not considered to be part of the same session. This heuristic has to be used to 

handle cases where users are browsing pages on another site, in between accesses on 

the server.

4.2.4.4 Path Tree Construction from  user sessions

Upon generation of user session paths from HTTP server logs, the sessions are used to 

generate a tree of important paths [SKS98]:

A path tree begins with a root node and contains nodes that may have a varying 

number of children. Walking from the root node down the tree is equivalent to walking 

through a path of URLs. When recording a path in the tree, the first URL in a path is
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stored as a child of the root node of the tree; the second URL in the path is stored as a 

child node of the first URL’s node. This may continue until the end of the path.

In order to prevent the tree from growing too large, [SKS98] introduces the 

concept of a maximal prefix of a path. The maximal prefix, Mp of a path P contains the 

sequence of URLs in P except for the last one. A path is recorded in the tree if the 

maximal prefix of that path has occurred at least T times, where T is a threshold that can 

be configured based on available memory resources.

Each user session is represented as a collection of integers (corresponding to 

URLs), stored in an array object, which occur in the same order as the URLs in the user 

session. When the algorithm is initialized, the PathTree consists only of a root node. 

Each tree node, except the root, is labeled with a URL number. When a node is created, it 

is assigned an OccurrenceCount value of 0, except for the root, which is initialized with 

an OccurrenceCount of T. The complete PathTree is constructed by applying the 

algorithm in Figure 25 to each sequence of URLs that represent a user’s session. Figure 

26 shows an example of a path tree for storing path profiles.

After the first iteration of the algorithm, the OccurrenceCount variables of all tree 

nodes are zeroed (except for the root). The algorithm is re-ran over the set of all user 

sessions and the shape of the PathTree is refined. The algorithm must be re-iterated to 

generate accurate counts of all paths with immediate predecessors that occur at least T 

times. Before each supplemental iteration of the algorithm, the OccurrenceCount values 

of all leaf nodes are cleared so that the new-leaf threshold is not reached prematurely. In 

order to make the final counts accurately reflect path frequencies, a final iteration of the 

algorithm is performed with the tree structure in place but with all OccurrenceCount 

values reset to zero [SKS98],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58



• FOR each URL in the sequence (stepping through using a Counter)
o CurrentNode 4"root node o f PathTree 
o Index ^“Counter 
o DO

■ Increment the Occ urrenceCount of the CurrentNode 
(CurrentNode->OccurrenceCount)

■ URL_Number ̂ rURLSequence[Index]
■ IF there does not exist a child of CurrentNode labeled with 

URL_Number AND CurrentNode->OccurrenceCount >= T
■ Create a child node of CurrentNode labeled with 

URL_N umber
■ IF there exists a child of CurrentNode labeled with 

URL_Number
■ CurrentNode ^"Child of CurrentNode labeled with 

URL_Number
- ELSE

* EXIT Do/While Loop 
o WHILE (++Index < length of URLjSequence)

• END- FOR

Figure 25 - PathTree construction algorithm that accepts a list of URLSequences (Algorithm
extracted from [SKS98]).

Session traces
Userl: 1—>3—>2 
User2: 1—>3—>5 
User3: 3—>5

Path Profile
(For all session traces)
Path Frequency
1—>3 2
1—>3—>2 1
1—>3—>5 1
3->5 1

PathTree

Root

Path: 3—>5 
OccurenceCount: 1

Path: 1—>3—>5 
OccurenceCount: 1

Figure 26 - Example showing how paths are maintained in a PathTree as path profiles.
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4.2.4.S Prediction using the Path Tree

When the path tree is constructed as described above, it is used to make a prediction for 

the next URL. In order to make the prediction algorithm more efficient, the path tree can 

be transformed into a more condensed representation of path profiles. The motivation for 

this is to eliminate the paths not needed for prediction, thereby facilitating the search for 

paths that match a user’s access history:

4.2.4.5.1 Condensation of Path profiles

In order to condense the path profiles, the following steps are executed (and illustrated in 

Figure 27). A list of all the paths in the tree is constructed by iterating through the path 

tree. Each path is then separated from its frequency count. The most recently accessed 

URL in a path is the most important predictor because the page returned by that URL 

contains the hypertext links from which the user is likely to choose his next destination 

[SKS98]. After separating the paths from their frequency counts, the last URL is 

separated from the rest of the history path and becomes the prediction for that path.

The list of all paths are then stored in reverse order, with each entry representing a 

reverse-ordered path and the number of times that the path occurred. Longer paths that 

make the same prediction as their shorter counterparts could then be filtered out [SKS98]. 

The final step is to sort all entries by the reversed history path. If two entries have the 

same path, the one with the smaller frequency count is eliminated. Predictions are then 

made using these condensed path profiles. Each entry in the condensed path list is made 

up of three main elements: the reversed history path, the prediction (the last URL 

extracted from the original history path) and the frequency count (the number of times 

that path occurs).
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Figure 27 - Condensing path profiles

4.2.4.5.1 Prediction from the Condensed profiles

To predict the next URL that a user will request, the algorithm proceeds by first obtaining 

the user’s current session trace. In the MoBed Proxy, the session tracker engine provides 

the current session for a client when provided with its IP address. Recall that a client’s 

session consists of all the URL requests from that user within a thirty-minute time frame. 

The user’s session trace is then reversed. The condensed path list is then searched 

through, to find the path in the profile that matches the most consecutive characters in the 

user’s reversed session trace [SKS98]. The chosen URL for prefetching is the prediction 

element of the list entry chosen from the profile.

The MoBed proxy takes this one step further by making a prediction only when 

there already is a path in the profile that matches the user’s reversed session trace exactly. 

Even though this cuts down on the number of proxy predictions, this conservative 

approach to prediction is adopted because the MoBed proxy services mobile clients that 

have limited storage capacities, as well as bandwidth. This stresses the importance of 

pushing documents to clients only when the proxy has enough information to make the 

prediction. Since the condensed path list is already sorted by the reversed history paths,
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the best path chosen for prediction can be found using a binary search method, bound by 

0(log2(number o f paths)).

Figure 28 uses an example to illustrate how the condensed path list is used for 

making predictions on a user’s current session.

IN: MoBed Session OUT:
Clierit’sTP"* Tracker Current user

session for IP
user session

Search the condensed profiles for j z y x  j

best match of the reversed session

Condensed Profile List

(z, a, 20)
( z o j , k, 11)
( z y r , & 1)
(z z z, e, 10)
( )

Select chosen 
List entry

( z y r ,  g, 1) Predict: g

Figure 28 - Predicting using Condensing path profiles

When the proxy receives a request from a client, and the client desires documents to be 

pushed to it, the MoBed proxy’s prediction engine (which runs the path profiling scheme 

described above), uses the clients current user session to predict what URL it may request 

next. The predictability of requests is measured using training and testing data sets, for 

constructing the path list and testing the prediction engine (respectively). This 

experimental setup is extensively described in Chapter 5.
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Chapter 5 Empirical Evaluation

As previously described, MoBed provides an experimental test-bed for designing, 

developing and analyzing different caching and prefetching schemes that can be used in 

devising Web access solutions for J2ME-enabled devices. In this testbed, the client is 

resident on the mobile device, while the proxy server resides on a wired host between the 

mobile client and the web servers. This architecture allows for various web-access 

functionalities to be flexibly distributed between the client, proxy and server; resulting in 

numerous possible configurations for experimentation. Using MoBed, this thesis 

investigates the following scenarios for web access:

1) Location of a local cache (at the client or proxy server or both);

2) Caching using two main Cache replacement algorithms;

3) Prefetching data from the proxy to the client, using user access history analysis.

Keeping the above points in mind, a suite of experiments were designed to address each 

of the listed scenarios. Details on the design, results and evaluation of all the 

experiments are provided in the upcoming sub-sections, with a summary provided in 

Table 3 below.

Table 3 - Listing of Experiments performed using MoBed

Experiment Eactor(s) Response tariahle(s)

it o f  
Simida 

tion
RUNS

1
- Proxy location
- Caching scheme
- Proxy cache size

Proxy-to-Mobile response time 8

2 Original number of data 
bytes from Web Server

Number of Proxy-Transcoded data 
bytes for client N/A

3 3-1 Client cache size

- % of Proxy accesses;
- % of Prefetch-interrupts from large 

predicted files;
- Number of files prefetched to 

clients;
- Number of clients prefetched to. 51

3.-2

- PathTree size 
(determined by T-value)

- Using a Retraining phase
- Workload size

- % of Predicted File Hit Ratios
- % of Predicted Byte Hit Ratios

6 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A simulation study was chosen as the best way to study the performance of the testbed at 

this time for two main reasons. Firstly, workloads obtained from server logs can be used 

as input to a simulation. Such server logs are readily available from web site traffic 

traces and provide URLs that can be used to simulate client requests. Secondly, a 

simulation can help in identifying the effect of a number of different factors on the 

performance of the proxy in delivering web content to the client. Such factors include: 

the size of the local proxy cache, the cache replacement policies used, and the accuracy 

of the proxy prediction scheme.

It is important to mention here that the workloads used for all the MoBed 

experiments were not used for the baseline architecture. Recall from Section 3.3.1 that 

the dataset used for the Baseline architecture evaluation had to be divided into smaller 

workloads containing a collection of 10 to 12 URLs each. This dataset partitioning was 

essential because an attempt to run the experiment with the complete set of over 100 

URLs failed because of the insufficient memory constraint on the device (which was a 

minimum requirement phone with a heap size of 500 kilobytes). For the Baseline 

architecture evaluation, using the large workloads utilized in the MoBed experiments 

would be extremely time-consuming since these workloads are considerably large, with 

thousands of requests. For this reason, a smaller workload was chosen for the Baseline 

architecture evaluation

In describing the experiments carried out in this chapter, the following standard 

terminology was used: A factor is an independent variable that affects the outcome of a 

desired response. A response variable is a dependent variable that is affected by 

manipulating an independent variable. An experiment level represents a value taken by a 

factor. A nested experiment is one in which the levels of one factor are chosen as a 

function of the levels of another factor. A complete factorial experiment is one in which 

all of the possible combinations of levels for each factor are investigated.

5.1 Experiment 1: Caching restricted to the Proxy level

The goal of this experiment was to investigate the benefit of introducing caching only at 

the MoBed proxy.

6 4
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5.1.1 Objective

This experiment assessed the latency incurred at the proxy when processing a request, i.e. 

the time taken to fetch, parse, and transcode web content at the Proxy before responding 

to the client

5.1.2 Workload Description

The workload used for this experiment consisted of server traces collected from the 

CMPUT 301 course website at the University of Alberta in the Fall of 2001. The traces 

were made up of requests generated from repeated accesses to 116 distinct URLs from 

the course site at different times; resulting in 14,000 URL requests and their 

corresponding timestamps.

This workload was used to simulate actual URL requests issued from a J2ME client to 

the proxy. A simple J2ME program was designed to run on a mobile client using the 

J2ME Emulator. The client iterated through the dataset and fired off requests to the 

proxy. Each request consisted of the URL string and the original request timestamp 

retrieved from the trace. The client only made another request after it received the data 

content for its previous request from the proxy. The latter received URL requests and 

processed them while collecting statistics on the time taken to process each request.

5.1.3 Experiment Design

In this experimental setting, the client was ‘passive’ i.e. it only fired off URL requests to 

the client and did not maintain a cache or perform any other functions apart from user 

interface maintenance. There are three interesting factors in this experiment:

1. The physical location o f the proxy server

The location of the proxy server with regards to the client can greatly affect the latency 

observed after a user requests a URL. In the first scenario, the proxy is remote, as shown 

in Figure 29, located on a separate machine from the WWW and physically closer to the 

client. In the second scenario, the proxy is located on the WWW server machine 

(illustrated in Figure 30).
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Figure 29 - Experiment 1- Proxy location factor (Level 1): Remote proxy server

..... -...

\  Mobile Request ^ /

“Remote” Provider '.... .
Request

Mobile \ f Proxy Web
Client / Simplified Server ^  Response: 

HTML
Server

. HTML content content

Figure 30 - Experiment 1- Proxy location factor (Level 2): Proxy located on the Web server

Recall that the goal of this experiment is to measure the latency incurred at the Proxy 

server when a request is handled. As such, the observed proxy-to-server latency is of 

primary importance, as it would affect the overall processing time of requests at the 

Proxy. In Figure 29, the proxy server is located on a separate machine from the Web 

server, while in Figure 30, the proxy physically resides on the same machine as the Web 

server. The proxy-to-server latency in Figure 29 is expected to be higher as compared to 

that in Figure 30 because of the physical closeness of the proxy to the Web content in the 

latter scenario. As such, the two levels for this factor (location of the proxy) are: Remote 

and on Web server.

2. The basis o f caching with different cache replacement schemes

Two well-known cache eviction schemes were implemented and tested separately at the 

proxy: the Least Recently Used (LRU) and Least Frequently Used (LFU) policies. The 

description of these two schemes is provided in Section 4.2.3.2. The two levels of this 

factor are: LRU and LFU.

3. The size o f the Proxy cache
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The proxy cache was designed to store Cacheable objects. A Cacheable object consists 

of the URL string for a given request, and its transcoded content (a simplified version of 

the HTML content for the mobile client) shown is Section 4.2.3.1. At the start of an 

experiment run, the cache storage capacity was set to a fixed number, representing the 

number of Cacheables that can be stored in the cache before any eviction. There are two 

main levels to this factor (size of the Proxy cache). The caching performance was 

investigated in this experiment using two different sizes: 50 and 100. Recall from 

Section 5.1.2 above, that the workload used in this experiment consisted of 116 unique 

URLs. In order to study the performance of the different cache replacement schemes, the 

selected cache size levels had to be less than the total number of URLs present in the 

workload; to ensure that the cache attained its maximum capacity during every simulation 

run. With a cache size level of 100, the proxy cache was almost infinite (since the unique 

number of requested URLs was only 116); and with a cache size level of 50, less than 

half of the unique URL requests would be maintained in the cache at a time. This 

variation in the cache size provided an interesting heuristic for evaluating the 

performance.

This experiment consisted of a 3-factor (Proxy location, Caching policy, Cache 

size), complete factorial experiment, where each factor had two levels; requiring a total 

of 23 (eight) experiment runs. The response variable in this experiment was the Proxy-to- 

Mobile response time incurred after a request is made. This experiment design is 

summarized in Table 4 below, showing the different factors and levels for each run.

Table 4 - Factor-level combinations for Experiment 1

Run Pnixj
Lmalion

I'MCtnr'i
( aching 

IVilCV
('ache
Size

1 Remote 12UJ 50
2 Remote LRU 100
3 Web server LRU 50
4 Web server LRU 100
5 Remote LFU 50
6 Remote LFU 100
7 Web server LFU 50
8 Web server LFU 100
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5.1.4 Results and Evaluation

The time taken to process the web content at the Proxy was recorded for each cache 

eviction policy, each cache size (50 or 100 cacheable objects) and for each proxy location 

scenario (remote or on the Web server); resulting in eight experimental runs (shown in 

Table 4).

Table 5 - Observed Proxy latency for all simulation runs in Experiment 1

Perec ntsiue ol Prow p r o t l a t c m- i c - s  williin (lie giwn time inngc

RUNS Description (< 1 ms) (1 to 10
ms) (<= 500ms) (> 500ms) latency

1 LRU_Remote_50 14.5 67.9 99.8 0.2 23.05

2 LRU_Remote_l 00 3 77.9 99.7 0.3 54.34

3 LRU_WebServer_50 0 96.2 99.9 0.1 10.03

4 LRU_WebServer_100 0 93.5 99.9 0.1 11.6

5 LFU_Remote_50 5.5 73.8 99.8 0.2 22.17

6 LFU_Remote_100 11.5 69.7 99.8 0.2 22.78

7 LFU_W ebServer_5Q 0 91.9 99.8 0.2 12.32

8 LFUWebServer_100 0 93.7 99.8 0.2 11.42

Columns 3 to 6 in Table 5 above show the percentage of proxy-processing 

latencies that fall within the specified time ranges (in milliseconds). For example, for 

Run 1 (LRU scheme with remote proxy and cache size of 50), 14.5% of all requests were 

satisfied with an observed latency less than 1 millisecond (at the proxy); for Run 8 (LFU 

scheme with proxy on the Web server and cache size of 100), all the observed latencies 

were greater than 1 millisecond (with 93.7% of them less than 10 ms). The last column in 

the table shows the average latency incurred at the proxy during each simulation run (for 

all 14000 requests present in the workload).

From the average latencies in the last column, the following observations are 

made: First, the LFU caching eviction scheme outperforms the LRU scheme (the latter
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showed higher average latencies). Second, for both caching schemes, the average 

latencies were lower when the proxy was located on the Web server machine versus its 

location as a ‘remote’ server. This behavior is expected because with the proxy server 

residing on the same machine as the Web server, the latency incurred at the proxy in 

fetching Web content and receiving the response is lower (due to the physical proximity 

of the proxy and server); as opposed to a remote proxy, which is located on a different 

machine between the client and Web server (and consequently further away from the 

Web server). Third, from the average latencies in the last column, the size of the cache 

did not influence the values as much as could be expected. It is generally expected that 

the bigger the cache size, the lower the latency at the proxy since more previously 

accessed documents are stored at the proxy for potential future requests. The average 

latencies in the last column do not clearly spell out this trend, except in Runs 7 and 8 

where there is a slight decrease in the average latency when the cache size is 50 and 100, 

respectively.

5.1.5 Comparison to the Client Baseline architecture performance

Recall that in the Client baseline architecture (presented in Chapter 3), the mobile client 

Browser was responsible for the user interface management, in addition to the 

computationally intensive tasks of fetching requests from Web servers, parsing and 

rendering the content to the device. This proved to be very inefficient and impractical as 

described in Section 3.3.3.

Although the workload used in evaluating the baseline architecture is different 

from that used in this experiment, by observing the overall performance of both 

experiments we see that the MoBed architecture (with a caching proxy) is significantly 

better than the baseline architecture. Figure 16 represents the time taken to fetch and 

render the content of requested pages in the baseline architecture. It can be observed from 

this graph that the time taken to fetch and render all pages was no less than 10,000 

milliseconds (ms). The bulk of this time was used up in fetching and parsing the page 

contents, and little time used in rendering the parsed HTML to the screen. Using the 

MoBed architecture, in this experiment, it was observed that for all eight simulation runs 

(using both caching policies), that over 99% of requests were satisfied in less than 500
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ms. This means that the time taken to deliver the transcoded content bytes to the client 

was less than 500 ms. The ‘fetch’ stage is more time-consuming and memory intensive 

than the ‘render’ stage (recall Section 3.3.3). This is the case because the ‘fetch’ phase 

involves: reading data from the connection to the resource, creating HTML node objects 

and storing them in a vector for rendering. The ‘render’ phase simply entails iterating 

through all the HTML nodes created in the fetch phase, and appending their relevant text 

information on the mobile client screen object. The time taken to render a requested page 

(using the baseline architecture) was usually observed to be 5 to 15%(or less) of the total 

time taken to complete the request. As such, although the time measured in this 

experiment did not include the time taken to render the content on the client screen as it 

does in Figure 16, the time savings incurred when satisfying client requests are evident. 

This is because the presence of the MoBed cache reduces the time taken to fetch and 

transform a request to zero, when it is located in the cache.

5.2 Experiment 2: Data compression using the Proxy Transcoder

The goal of this experiment was to investigate the usefulness of the Proxy Transcoder as 

a data compression tool by determining the difference in the number of Web content 

bytes before and after the transcoding process.

5.2.1 Objective

Recall that the Proxy Transcoder was used for content adaptation, i.e. it was used to 

convert the parsed HTML content received from Web Servers to a simpler, compressed 

format for a mobile device. This experiment provided a comparison between the number 

of bytes received at the proxy from the original server, and the number of transcoded 

(simplified) bytes supplied to the mobile from the proxy server. In essence, this 

experiment provided a means of determining how much data compression was carried out 

by the Proxy Transcoder. Refer to Section 4.2.3 for details on the proxy transcoding 

process, as well as the generation of the converted web content using ‘PageNodes’.

7 0
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5.2.2 Workload description

The same workload used in Experiment 1 was used in this experiment. It consisted of 

server traces collected from the CMPUT 301 course website at the University of Alberta 

in the Fall Semester of 2001. The traces were made up of 14,000 requests generated from 

repeated accesses to 116 unique URLs from the course site.

The Proxy maintained a collection of all the unique URLs received through client 

requests. As the proxy satisfied client requests using this workload, 116 URLs were 

processed and statistics collected on the size of the requested content before and after the 

transcoding phase.

5.2.3 Experiment Design

In this experiment, statistics were recorded on two control variables: the size (in bytes) of 

the original data content received from the Web server by the proxy and the size (in 

bytes) of the transcoded data supplied to the mobile from the proxy server. These two 

statistics were documented for each unique URL that was requested by the client.

5.2.4 Results and Evaluation

The graph in Figure 31 shows the number of bytes received from the Web server versus 

the number of bytes transformed and sent to the mobile client from the proxy for all 116 

unique URLs.
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Figure 31 - Original bytes downloaded from Web servers Vs Proxy-transcoded bytes

From the graph, we can observe that in cases where the data content for the requested 

page was over 20kB, the effect of the proxy byte transformation process proved to be 

more noticeable and beneficial to the client (as less bytes are sent to the client, compared 

to the original downloaded size). For small byte sizes, the effect of converting the 

downloaded content sometimes results in a slightly larger byte content for the mobile 

client. This slight increase can be accounted for by the encapsulation overhead incurred 

in transforming bytes for the mobile client.

5.2.5 Comparison to the Client Baseline architecture performance

From Section 5.2.4, it is observed that although the proxy data compression scheme could 

be improved, there are some benefits to be reaped for performing content adaptation at 

the proxy (as opposed to the mobile client).

With the HTML parser used in both the Client baseline and MoBed architectures, 

when a page is parsed, HTML nodes are generated for HTML tags that are potentially 

useless to a mobile client, such as HTML remark tags and end tags. The HTML nodes 

generated from such tags do not provide any information that will be displayed to the
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user. Therefore, parsing and storing such nodes on a device with limited disk space is an 

expensive, and time-consuming task. When parsing is done on the Proxy, only HTML 

nodes that are useful and displayable to the client are transcoded and sent to the mobile. 

This process removes the unnecessary HTML from a requested web page before the user 

ever sees it. More benefits could be harvested with a proxy Transcoder that can compress 

the useful web data to much smaller sizes than are achieved by the current scheme.

5.3 Experiment 3: Caching at the Client-level while Prefetching at the Proxy

As previously mentioned, this testbed is used to investigate intelligent solutions for 

providing web content to mobile clients with reduced client-perceived latency. 

Experiment 1 addressed caching at the proxy level, using two cache replacement policies 

(LRU and LFU). The results demonstrated the need to explore another scenario for 

experimentation. The goal of this experiment was to assess the performance of MoBed 

with the following features: a cache maintained on the client; an infinite, local cache at 

the proxy, as well as prediction scheme implemented on the proxy. This assessment was 

achieved by means of a study consisting of trace-based simulation experiments run on the 

proxy server.

5.3.1 Objective

Before a detailed description of this experiment is provided, recall that: the proxy 

prediction engine (described in Section 4.2.4.1), builds a path tree to store path profiles of 

past user session traces and predicts a user’s next request based on past users who 

behaved similarly. Also recall that the size of the path tree is controlled by a threshold 

value (henceforth referred to as T-value), which restricts the degree of expansion in the 

path tree. When the prediction engine is initiated, it is provided with a training set of 

past user sessions, from which it creates the path tree, and path profiles. A test set is then 

used to supply different user requests, for which the engine predicts the next move the 

user is likely to make.

The purpose of this experiment was to investigate the following:

1. Experiment 3-1: The impact of having a mobile client cache (with three different 

cache sizes: 8 kilobytes (kB), 30kB and 60kB) on the following response variables:
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o The percentage of Wo Proxy accesses’ for all clients (when requested item 

was found in the mobile cache), 

o The percentage of prefetch-interrupts resulting from attempting to prefetch 

documents which are larger than a client’s available cache space. (A prefetch- 

interrupt was recorded when a client did not successfully receive the item 

predicted for its next request. Prefetching was interrupted when: there was an 

incoming request before it was completed (not enough time to complete the 

task), and when the file to be prefetched was larger than the user’s specified 

available caching space.) 

o The total number of files prefetched to all clients, and 

o The total number of unique clients who received prefetched documents.

The client cache size is the sole factor in this experiment, with the following levels: 

8kB, 30kB and 60kB. The smallest cache size was taken to be 8kB because it is the 

minimum amount of non-volatile memory that can be allocated for application- 

created persistent data using the J2ME MED Profile. Newer J2ME-enabled phones on 

the market today display remarkable capabilities, such as increased processing 

speeds, heap sizes and shared memory for storage. Such devices can afford to have 

larger memory allocations for application-created data, hence the reason for 

investigating the impact of the two larger cache sizes of 30 and 60 kB.

2. Experiment 3-2: This study also investigated the accuracy of the predictions from the 

proxy’s prediction engine. The prediction accuracy was measured using two response 

variables: the predicted file hit ratio and predicted byte hit ratio. There were three 

factors in this experiment that determined the response:

o The path tree size (varied by changing the threshold value T), 

o Retraining the prediction engine using recently-accessed test requests, and 

o The size of the workload (using train/test datasets of varied sizes).

5.3.2 Workload description

Two workloads were used for both Experiment 3-1 and 3-2. The first dataset was 

generated from server logs acquired from the CMPUT 301 course web site at the 

University of Alberta. These logs were collected over the Fall semester of 2001
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(September to December) for a period of 122 days, resulting in just over 140000 requests 

on 405 distinct URLs. The requests generated from the first week of September and the 

last 2 weeks of December were not included in this dataset, as there was very little 

activity on the web site. This dataset is henceforth referred to as C301.

The second dataset was generated from server logs obtained from the Computing 

Science Department Web server at the University of Alberta. It consisted of the first 

60000 requests extracted from server logs for December 5th 2003, with a total of 24,772 

unique URLs. This dataset is henceforth referred to as CS. The two workloads differed 

from each other as follows. The C301 dataset was generated from logs from a small, 

course website with a small number of URLs and small client population. The CS dataset 

was generated from logs from a much larger departmental server that services a larger 

client population and where a larger number of URLs are accessed over a very short time 

period. These two workloads were chosen for this study because of their diversity from 

each other. When conducting a performance study for the purpose of investigating the 

effectiveness of caching and prefetching mechanisms, a smaller workload is expected to 

result in a better outcome than a larger one because: it is less likely to contain a lot of 

dynamic content, and contains fewer URLs (both of which are advantageous to caching). 

In addition, with a smaller workload, the chance of discovering access patterns from user 

requests is heightened (which could be beneficial to prefetching), as compared to a larger 

workload where requests are as good as random.

The accuracy of the proxy prediction engine was measured using training and 

testing data created from each workload. To simulate a practical application of these 

logs, a testing set was designed to contain only requests that occurred after all of the 

training set requests were collected. For example, if the requests used for training were 

gathered from September 1 to September 30, then the test requests used must be collected 

after that time (say, from October 1). If only one log was available from a given site, the 

log was used for the generation of both the training and testing set. The URLs in each 

log needed to be represented in a more compact format, to allow for easy storage and 

quick comparisons. As such, a unique integer was assigned to each unique URL present
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in the logs. Throughout this study, URLs are simply referred to using their unique 

integer identifiers.

As mentioned before, for each workload, smaller datasets of varied-sizes were 

created (henceforth referred to as Workload partitions). From these partitions, a few 

training and testing sets were produced, in order to investigate the effect of the train and 

test set sizes on the accuracy of the prediction engine. This heuristic was adopted to 

determine whether the prediction accuracy would improve as the number of processed 

requests increased. This heuristic simulates a real life setting, whereby the number of 

requests intercepted and processed by the proxy server accumulates over time (hence 

adding to the access history knowledge base). Workload partitions can be considered 

simply as varied-sized workloads obtained from the same source. For every training set, 

its corresponding testing set was taken to be a third of the size of the training set. For 

instance, consider a workload made up of 40 requests. Using this workload, the training 

set would consist of 30 requests, and 10 requests for its corresponding testing set. Figure 

32 illustrates the process of generating training and testing sets from a sample workload 

partition.

Client IP address 
A

Request timestamp Unique URL number 
A

1
24.82.49.72

i
[19/Nov/2001:00:01:48 -0700]

i
1

24.82.49.72 [19/Nov/2001:00:01:50 -0700] 394
24.82.49.72 [19/Nov/2001:00:01:52 -0700] 398
24.82.49.72 [19/Nov/2001:00:02:11 -0700] 323 V
24.226.19.208 [19/Nov/2001:00:04:12 -0700] 39 f

24.65.55.165 [19/Nov/2001:00:23:33 -0700] 1
24.65.55.165 [19/Nov/2001:00:23:34 -0700] 312
24.65.55.165 [19/Nov/2001:00:23:36 -0700] 394
24.65.55.165 [19/Nov/2001:00:23:38 -0700] 398 4
24.82.49.72 [19/Nov/2001:00:25:32 -0700] 397
129.128.28.38 [ 19/Nov/2001:00:27:49 -0700] 1 >
129.128.28.38 [ 19/Nov/2001:00:27:49 -0700] 1

J

- Extract for training
(3/4 of total workload size). 
Train set = 3 x test set
- Build user sessions from 

traces.

Extract for testing.
(last 1/4 of total workload). 
Test set = 1/3 size of Train

Figure 32 - Generating training and testing sets from a workload partition

Each training set consisted of a collection of complete user sessions generated 

from requests collected over a period of time. User sessions were made up of all requests
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issued by a given user within a thirty-minute period. This time heuristic was adopted for 

the following reasons. First, it is not possible for a single server to trace a user’s paths 

through other sites; and thus impossible to verify if a user passed through another site 

between accessing two pages on a single server site [SKS98]. As such, a thirty-minute 

time period was adopted to ensure that any requests separated by more than thirty 

minutes constitute two separate user sessions. Figure 33 portrays a sample training set in 

a file called Train.txt.

Session generated for 
^  one IP over a thirty- 

minute period

Figure 33 - A sample training set

Each testing set consisted of a list of client requests as they arrived at the server over 

time. Each request was made up of the IP address of the client requesting the data, the 

timestamp showing when the request arrived at the server, and the unique URL number 

for the request (as shown in Figure 34).

Client IP address Request timestamp Unique URL number
A A *
J ____________________________________I_________________________L

216.35.103.58 [01/Sep/2001 03 01:42 -0600] 59
216.35.116.89 [01/Sep/2001 04 15:28 -0600] 159
63.99.105.163 [01/Sep/2001 05 52:50 -0600] 184
216.239.46.19 [01/Sep/2001 06 33:33 -0600] 213
216.239.46.153 [01/Sep/2001 06 37:59 -0600] 187
216.35.103.74 [01/Sep/2001 06 51:57-0600] 306

Figure 34 - A sample testing set.

Table 6 shows the different train/test sets generated from the C301 logs; while Table 7 

shows the train/test sets generated from the CS logs.

7 7

Trainutxt

81 33 402 316 405 389 322 1 1 12 ~
1 1 74 31 101 31 1 1 74 31 101 81 
312 314 314 1 1 312 314 322 317 
1 74 101 97 85 97 
1 312 314 314 314 1 316 314 
1 1 74 101 87
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Table 6 - A summary of the train/test sets generated from the C301 workload partitions

Workload
Partitions

Partition 
SiMMf 
<# of 

Requests)

Number of 
1 RAIN

reqiit-sis

Number
ofTKST
Requests

Number of 
Unique URLs 
from Training 

set

MAX 
Number of 

Unique URLs 
from Testing

. set

Total
number

('bents

1 1211 909 y j i 77 49 65

2 69,580 52,185 17,395 263 227 1129

3 109,523 82,356 27,167 307 241 1458

4 137,186 103,162 34,024 318 276 1416

Table 7 - A summary of the train/test sets generated from the CS workload partitions

Workload
Partitions

Piiititinn 
Size 
<# of 

Requests I

Number 
id 1 RAIN 
requests

Numtu r 
ot lb SI 
Requests

Number of 
Unique URI.s 

from 
'! raining si 1

MAX 
Nuinher of 

1 ii'que 
lIRLs from 
Testing set

Tutal 
nuinher of 

Clients

1 6,276 4,677 1,599 3014 898 251

2 48,704 36,528 12,176 17,286 5944 1196

Tables 5 and 6 show the details on the train/test sets generated from the C301 and CS 

logs, respectively. Column two represents the number of requests in each dataset 

generated from each workload; column three and four illustrate the size of the generated 

training and testing datasets; column five depicts the number of unique URLs obtained 

from the user sessions used in the initial training phase; column six shows the number of 

unique URLs obtained from the testing dataset; and column seven shows the total number 

of distinct clients serviced from the testing dataset only.

5.3.3 Structure of the Simulator

In this simulation study, the testbed is reduced to having one main component: the proxy 

server i.e. the client is simulated on the proxy and no separate client process is 

maintained. Since different workloads were used as a source of user requests, the proxy 

simply iterated through a test set generated from the workload, and issued requests on 

behalf of the client; thereby removing the need for explicitly defining a separate client 

process.
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5.3.3.1 Time sequence illustration o f  a simulation run

An illustration of the time sequence simulation for each experiment run is provided in 

Figure 35. It captures the transfer of a requested file and any prefetched item to the 

client, before another client request is issued. Note that the proxy to mobile client link is 

bounded by a bit rate of 9600 bits per second. This bit rate was chosen because most 

minimum-footprint J2ME platform devices are characterized by connectivity to a 

wireless, intermittent connection with limited bandwidth of 9600 bits per second (bps) or 

less [RTVOI],
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M obile  ('iienf

Mobile user sends 
request at time t (taken 

from trace) 
it also sends the size of 

the memory, M, for 
storing prefetched files:

REQ (url, M)

1 3

____ i i ____
Send result
in a simpler
form of L
bytes, to

the mobile
user.

..........

Next
Request

In parallel with 
sending the 

response to the 
mobile, Proxy 

starts 
prefetching the 
predicted item.

Proxy Server

Proxy sends out 
the request to the 
server (assuming 
request Not in the 

cache)

Server gets request 
and responds 
accordingly

L \W W \S em r

T ~
T = (4)

JTIME, T J  J  \£
T  =  (1 ) T  =  (2 )  T  =  (3 )

Increase in time =>

Legend:

A. T.: Arrival Time of an entity to its destination; 
request = The size of the request data from the mobile;
L = Number of transformed requested bytes;

9.6 kbps = The proxy-mobile link connection bandwidth

(1) A. T. = t  + request/9.6
(2) A. T. = t + request/9.6 + document_transfer_time (doc_transfer_time)

(3) A. T. = t + request/9.6 + doc_transfer_time + proxy_transform_time + L/9.6
(4) A.T. = t + request/9.6 + doc_transfer_time + proxy_transform_time + L/9.6 +

prefetched_doc_transfer_time + prefetched_doc_transform_time + 
prefetched_doc_size/9.6

T = t (taken
f r n m

Figure 35 - Time sequence illustration of a simulation run
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Steps 1 to 4 shown in are described as follows:

• Step 1: The mobile user sends a request at time, t (extracted from the workload 

traces). It also advises the Proxy on the space it has available for storing prefetched 

files. The Proxy captures this request at time (1), shown in Figure 35. The Proxy 

then sends out the request to the Web server (if it can not satisfy it from its local 

cache).

•  Step 2: The web server receives the request and responds with the requested content. 

The proxy receives the response at a time (2) (from Figure 35). The proxy then 

transcodes the original content to a version suitable for the mobile client.

•  Step 3: The transcoded content results in a representation of L bytes that is dispatched 

to the client. The response arrives at the client at time (3).

•  Step 4: In parallel with starting to send the response to the client (Step 3), the Proxy 

commences the prefetching process. If a document is chosen for prefetching, it is 

fetched, and transformed at the proxy. The time the prefetched item arrives at the 

client is determined by the times taken to fetch and transform the document content at 

the proxy. K it happens that the item is ready to be prefetched to the client before the 

initial client request has been satisfied, prefetching is suspended until the requested 

page transfer is completed. Under this assumption, the prefetched item finally arrives 

at the client at time (4).

5.3.4 Object and Data Structures of the Simulator

During each simulation run, there was no actual access to Web server resources when a 

client request was processed. For each unique URL in each workload, the following 

statistics were gathered on the Proxy during a pre-processing phase: the size of the 

mobile request (in the format: <String: clientJP, int: URL id, Date: accessJime>), the 

time taken to fetch each URL, the transcoding time, the number of original response 

bytes from the Web server, and the number of proxy-transcoded bytes. A simple 

program was run on the proxy (iterating through each URL from a list of unique URLs in 

the workload) in order to collect the values for these attributes for each URL. These 

attributes were then encapsulated in an URLUnit object shown in Figure 36. As such, at 

the start of each simulation run, a collection of URLUnits corresponding to each unique
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URL in the workload was available at the proxy. In calculating the simulation time when 

a request was being processed (illustrated in Figure 35), the URLUnit object pertaining to 

the requested URL was accessed and the relevant information retrieved.

The average time taken to read the data bytes from the Web server, create 

HTMLNodes and transcode the retrieved bytes was 14.13 milliseconds for the C301 

workload, and 47.43 milliseconds for the CS workload. These averages hint at the 

complexity of the web pages retrieved for the URLs from the CS workload.

Workload: URLUnits: __—
URL1

____ URLUnit 1
URL2

____
URLUnit 2"v

URLN URLUnit N

URLUnit object 
int U R L jd;
String url;
int URL_String_bytes; 
long original_response_size; 
long transcodedjresponse_size; 
int URL_fetch_time; 
int URL_transcode_time;

Figure 36 - A URLUnit object

5.3.4.1 Client simulation on the MoBed Proxy server

The client is simulated on the proxy by means of the following proxy components:

1. The Session Tracker Engine:

The proxy’s session tracker engine identifies different clients based on their IP addresses, 

while tracking each user’s current session. A user session is taken to be all the requests 

issued by the user in a thirty minute time period. If a user makes only one request and 

never makes another, that request is considered to be the completed user session after 

thirty minutes elapse.

2. The Mobile Cache Manager:

This component manages a client cache (of a fixed size) on behalf of each unique client 

serviced by the proxy. When a client accesses the proxy for the first time, a cache is 

created for that IP. It is important to mention here that the client caches were used to 

store only items prefetched to the client from the proxy. Pages explicitly requested by the 

client are not cached. In a real-life setting, the decision to cache requested pages could be 

cached on the client by an intelligent Web browser, based on the user’s interests. In this 

study however, a simple approach was taken by storing only prefetched items in the 

client caches. The Mobile Cache Manager is implemented as a Hash table, with unique
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client IP addresses mapped to their corresponding caches, as shown below in Figure 37. 

The class diagram in Figure 37 shows the interaction between the MobileCacheManager, 

MobileCache and MobileCacheNode classes on the MoBed Proxy.

Mobile Cache 
manager

I?! -» Cache" 
IP2 -» Cache 
IP3 —»Cache

Mobile cache

29.758.457.1 — > {4,3456} {10,307}
I  (1,3) J C(0,1) J

Client IP
MobileCacheNode:

Url#= 10
Data content = 3456 bytes 
Access count = 1 
Prefetch count = 3

Figure 37 - An illustration of the function of the Mobile Cache Manager.

When a document is prefetched to a client, the data is stored in the cache in the form of a 

MobileCacheNode object (shown in Figure 37 above). The latter consists of the URL 

number (unique identifier for the URL string) and the number of transformed data bytes 

of the resource content. Each MobileCacheNode also has two important attributes: an 

access count and a prefetch count. The access count defines the number of times that 

node has been accessed from the cache; and the prefetch count defines the number of 

times that node was prefetched to the client. When a document is selected for prefetching, 

its corresponding MobileCacheNode is created with an access count of zero and a 

prefetch count of one. If a client cache is full, then the mobile cache object performs a 

simple, self-cleaning activity that removes all MobileCacheNodes that had been 

prefetched once and never accessed. As such, fresh pages are added when the size of the 

client cache reaches its maximum.
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MobileCacheManager

-IP_caches:HashTable 
-MEMQRY;long______________

+MobileCacheManager(long) 
+insertIP(String): void 
+storePredictions(String, Vector): 
void
+getCache(String): MobileCache 
+getSpace(String): long

V
MobileCache

-mobileCache: Vector 
-node: MobileCacheNode 
-cacheSize: long

+MobileCache(long) 
+createCacheO: void 
+getAvailableSpace: long 
+cleanup(): void 
+getSpace(String): long 
+processPrefetchBundle(Vector): 
void
-addFile(MobileCacheNode):
void
+checkForFile(int): boolean

l 5l MobileCacheNode

Legend:
Dependency relationship: ____

-url_id: int 
-size: long 
- prefetchCount: int 
-nodeAccessCount: int

+MobileCacheNode(int,long) 
+getAccessCount(): int 
+getPrefetchCount(): int 
+addAccessCount(int): void 
+addPrefetchCount(int): void

Figure 38 - Function of the Proxy MobileCacheManager component

5.3.4.2 The Simulator Control Flow

In all simulation runs in this experiment, a non-persistent infinite proxy cache was 

simulated i.e. the proxy cache contained every document ever accessed during any given 

run. At the start of each run, the proxy cache was empty and consequently populated as 

user requests were received and processed. There were two main stages in each run, 

namely the training phase and the testing phase.

1. Training phase:

At the start of this phase, the main storage units on the proxy were initialized, such as: the 

local cache, the client session tracker, and the client cache manager. The proxy controller
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class then read in user sessions from a training set, built a path tree and condensed it to a 

list of useful path list entries from which predictions would be later made (described in 

Section 4.2.4.1).

2. Testing phase:

With the completion of the training phase, the knowledge base for the prediction engine 

was ready and user requests could be processed. At the beginning of the testing phase 

begins, the test data was read from a file and saved into a collection of Mobile Requests, 

which consisted of three attributes: the IP address of the client, the time the request 

arrived at the server, and the unique URL number identifying the URL string requested. 

The proxy controller’s request-iterator method iterated through the collection of Mobile 

Requests, and processed each request (as described below). Assume that the request 

being processed is from a client with IP address IPi at time 7), requesting URL number 

20.

The client’s cache was examined to determine whether it contained a 

MobileCacheNode with URL number 20. Since the client was simulated on the proxy, the 

Mobile Cache Manager provided access to the cache belonging to IP], and supplied the 

value of the available client cache space (for storing prefetched items). If the document 

was found in the client cache, the proxy’s request-iterator proceeded to release the next 

client request, and no prefetching was done for that request. This scenario was adopted 

because in a real-life situation, if a  mobile client finds a requested document in its cache, 

it will have no need to access the proxy; consequently, no documents are prefetched to 

the client since the proxy never processed that request.

If the requested document is not found in the client cache, then the proxy’s 

services are needed to satisfy the request. The proxy cache was verified to determine 

whether it contained that document. Note that since this was a simulation where the 

client was simulated on the proxy, the requested data was not actually sent back to the 

client. If the requested URL was found in the proxy cache or not, the time taken to 

satisfy that request was simulated (as shown in Step 3 in Figure 35); where the time taken 

to fetch the request from the Web was considered as 0 (if found in the cache) or the actual 

time taken to fetch the resource (if not found in the cache).
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When a request was satisfied, another request was obtained from the request-iterator and 

processed and so on. It is important to mention here that prefetching only commenced if 

the proxy was idling after satisfying a request. That is, if there was a time interval 

between the time of the next client request and the completion of the current request, the 

proxy proceeded to predict the item for prefetching. If there was no time interval 

between consecutive requests, the next request was processed.

If the proxy had an idle time interval between consecutive requests, the proxy 

began the prediction process in parallel with starting to send the requested data response 

to the client. The prediction engine only predicted one document at a time (the best 

possible choice), given the user’s current session and the available path profiles. 

Whether the prefetched item was found in the proxy cache or not, the simulated time 

taken to satisfy the prefetching process was calculated (as shown in Step 4 in Figure 35); 

where the time taken to fetch the predicted item from the Web was 0 (found in cache) or 

the actual time value. Note that the size of the prefetched item was restricted by the 

available cache space specified in the initial client request. If the prefetched document 

was too big, prefetching was interrupted. Prefetching was interrupted at any time, if there 

was an incoming client request.

In some of the simulation runs in this experiment, the prediction engine was 

‘retrained’ with requests from the test set after a fixed period of time elapsed (discussed 

in the upcoming section). The goal of retraining the prediction engine was to learn new 

paths, modify the path profiles, and perhaps improve the accuracy of the prediction 

engine. User sessions used for re-training were generated from the most recent test 

requests issued since the last retraining phase. If a simulation run contained a Retraining 

phase, retraining was performed at given time intervals during the testing stage. For 

example, the retraining could occur every 60 minutes during testing. This meant that 

following the timestamps of the URL requests issued, after processing requests for 60 

minutes, the testing phase was suspended and retraining carried out. With the completion 

of the retraining phase, the test phase was resumed and other requests made and 

processed as already described above.
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5.3.43 Experiment setup

Recall that the goal of this study was to assess the following (Section 5.3.1):

• Experiment 3-1: The effect of the client cache sizes (8, 30, 60 kilobytes) on the 

following dependent variables: the percentage of accesses NOT made to the Proxy 

when a request was made; the percentage of prefetch-interrupts from large prefetched 

files; the number of files prefetched to all clients; and the number of clients 

prefetched to.

•  Experiment 3-2: The effect of the following factors on the prediction accuracy 

(predicted byte and file hit ratio) of the proxy prediction engine: the size of the Path 

tree used in making predictions (determined by the T-value), including a retraining 

phase for the prediction engine; and the workload size.

For these two experiments, several simulation runs were performed. Table 8 shows the 

experiment setup used for both experiments.

The following notation is used to refer to the factor levels in Table 8. The 

mnemonics used for the Retrain factor (Y and N) refer to the presence (Y) or absence (N) 

of a retraining phase in the prediction process. The Workload factor mnemonics used 

(C301 and CS) are suffixed by /1_2_3, /1_2 or 12 (e.g. C301/l_2_3) to denote the list of 

workload partitions used (generated from the named workload). For example, 

C301/l_2_3 means that partitions 1, 2, and 3 (shown in Table 6) from the C301 workload 

were used in that simulation run; CS/2 means that only the second partition from the CS 

workload (shown in Table 7) was used in the run.
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Table 8 - Setup for Experiments 3-1 and 3-2

Number of 
Simulation
' RUNS

1-
Vahi*

T=2

Client 
cache 

Si/e fkit)

j j j j lB l l j
Retrain

N

W orkload

C 3 0 1 / i^ 3 ” _ ......
CS/i_2

24 runs

8

Y C301/l_2_3

30 N C301/l_2_3
CS/1_2

Y C301/l_2_3

60 N C301/l_2_3
CS/1_2

Y C301/1 2 3

27 runs T=3

8 N C301/l_2_3
CS/1_2

Y C301/l_2_3
CS/2

30 N C301/l_2_3
CS/1_2

Y C301/l_2_3
CS/2

60 N C301/l_2_3
CS/1_2

Y C301/l_2_3
CS/2

As shown in Table 8, the experiment design for Experiments 3-1 and 3-2 is 

nested; i.e. in this experiment, the levels of one factor are chosen within the levels of 

another factor. For each T-value, the levels for the Cache Size factor are chosen (8, 30, 

60 kB). Within each Cache Size level, the Retraining factor levels (Y and N) are chosen; 

and within each Retraining level, the different workloads are selected. For the T-value of 

2, a total of 24 simulations were required; for the T-value of 3, a total of 27 simulations 

were required. Although the experiment design was same for both experiments, their 

response variables differed, as shown in Table 9.
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Table 9 - Experiment 3: Factors and response variables

Experiment Far tors Rcsptmsc variables
- % of Proxy accesses;
- % of Prefetch-interrupts from large

3-1 Client cache size predicted files;
- Number of files prefetched to clients;
- Number of clients prefetched to.

- PathTree size (determined by T-

3-2 ■ ;
value) - % of Predicted File Hit Ratios

- Using a Retraining phase
- Workload size

- % of Predicted Byte Hit Ratios

5.3.5 Results and Analysis

The results for Experiment 3-1 and 3-2 are presented and evaluated below:

5.3.5.1 Experiment 3-1

Recall that the goal of this experiment was to determine the effect of the client cache size 

on the following dependent variables: the percentage of accesses to the Proxy when a 

request is made; the percentage of prefetch-interrupts from large prefetched files; the 

number of files prefetched to all clients; and the number of clients prefetched to. Three 

levels were investigated for the Client cache size in this experiment (8, 30, 60 kB). It is 

important to mention that all clients were assigned the same maximum cache capacity 

throughout each simulation. For example, if the current cache size under investigation 

was 30 kilobytes, then all clients had a maximum storage capacity of 30 kilobytes. At the 

start of each experiment, all client caches were empty and populated in the course of the 

simulation. Table 10 and Table 11 summarize the results from the simulation runs using 

the response variables shown in Table 9 above, for the C301 and CS workloads 

respectively.
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Table 10 - Experiment 3-1: Results obtained from the C301 workload

T-
Value

----- _—
Client
cache
Si/.e
■.kli)

8

Ur train

N

Workload
1‘arliiiiHi

2
3

C3C1

•v Ol
NO-

l*n»\>
Accosts

23.1
25.2

" 5  iir ' 
Preietch 
■iitrriiipis 

from

" -1 .0 -  -  
29.1 
34.8

lotill $ Ilf 
flit"* 

prcfetchcd 
to all 
clients _  

43 
1762 
2695

h b i h
i ntul if nf 
Clients 

Serviced

36
896
1160

1 5.3 8.0 43 36
Y 2 23.3 30.0 1803 883

3 25.6 35.4 2724 1156
1 6.0 1.4 46 38

30 N 2 24.1 12.7 2147 920
3 27.9 11.4 3434 1222
1 6.0 1.4 46 38

Y 2 24.5 15.8 2149 915
3 28.4 12.0 3483 1223
1 6.0 1.4 46 38

60 N 2 25.0 3.1 2293 942
3 28.3 3.6 3652 1253
1 6.0 1.4 46 38

Y 2 25.4 3.4 2379 951
3 28.8 4.0 3708 1254

IH mHI
1 5.3 7.2 42 35

8 N 2 23.7 25.9 1771 883
3 25.4 32.0 2624 1151
1 5.3 7.2 42 35

Y 2 23.8 28.2 1786 865
3 25.9 32.6 2628 1151
1 5.6 1.5 45 37

T~3 30 N 2 25.0 6.1 2155 911
3 27.4 8.5 3336 1213
1 5.6 1.5 45 37

Y 2 25.4 9.3 2158 892
3 28.1 9.0 3357 1213
1 5.6 1.5 45 37

60 N 2 25.0 1.6 2236 932
3 27.7 3.5 3464 1244
1 5.6 1.5 45 37

Y 2 25.7 2.2 2276 938
3 28.4 3.8 3487 1244
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Table 11 - Experiment 3-1: Results obtained from the CS workload

--------

Retrain

C’S

1
! Cl'cnl

T- i cache
Value ! Site

i

Workload
Partition

% Of 
NO-

Accesses

•/, Of 
Prefetch ■
mlL'irtipt'

from
tiles

Tula! # ot 
tiles 

prefelchcd 
to all

clients

Total ft 
rtk-m.-. 

Serviced

8 N 1 .2 0.0 1 1
2 0.04 0.6 24 23

T=2 30 N 1
2

23.2
0.04

0.0
0.1

1
24

1
23

60 N 1 23.2 0.0 1 1
2 0.04 0.0 24 23

m m u m M M M i1 llMlBMIIII
Q N i 23.2 0.0 1 1O 2 0.07 0.7 22 22

Y 2 0.07 0.8 22 22

T=3 30 N 1
2

23.2
0.07

0.0
0.1

1
22

1
22

Y 2 0.0 0.07 22 22

60 N 1 23.2 0.0 1 1
2 0.07 0.0 22 22

Y 2 0.0 0.0 22 22

The results summarized in the above tables are evaluated in the following sub-sections 

based on each of the response variables for this experiment:

5.3.5.1.1 The percentage o f requests satisfied from client caches (No Proxy accesses):

Recall that: if a client’s request was found in its local cache, it was instantly satisfied and 

there was no need to connect to the proxy server. There is a relation between the size of 

client caches and the number of accesses made to the proxy for a request: the bigger the 

client cache, the more documents can be stored, the less frequently do potentially-useful 

documents need to be evicted from the cache (to store newer items) and hence, the higher 

the chance of finding a requested document in the cache.

Table 10 summarizes the results from the C301 logs. Column 5 in this table 

shows the percentage of No-Proxy accesses i.e. the percentage of times when the client 

request was found in its local cache over the total number of requests issued from the 

testing set. For instance, for the C301 Workload partition of 3, with a T-value of 2, the 

percentage of No-Proxy accesses increased from 25.2 to 27.9 to 28.3% as the cache sizes
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increased from BkB to 30kB and 60kB, respectively. The same trend is noticeable over 

all the workload partitions and T-values. It is also observed from this table that for each 

cache size (over all T-values), the percentage of No-Proxy accesses increased, as the 

workload partition sizes increased. This is the case because the larger the size of the 

workload partition, the higher the number of clients, and hence the increase in the number 

of requests found in client caches (hence No-Proxy accesses).

Table 11 summarizes the results from the CS logs. The percentage of No Proxy 

accesses remains the same over all T-values for the CS workload partition 1. The 

percentage of No-Proxy accesses is surprisingly high for this workload partition, given 

that there was only one item ever prefetched to one client. The reason for this is because 

the one item prefetched to the single client was requested repeatedly (and found in the 

client cache), and hence recorded as a No-Proxy access hit. For the second partition, 

however, the percentage of No-Proxy accesses is quite low for both T-values. This is the 

case because from the few files successfully prefetched to the clients, only a very small 

number was accessed.

5.3.5.1.2 The percentage of ‘prefetch-interrupts’ resulting large prefetch documents:

Recall that a prefetch-interrupt was recorded when a client did not successfully receive 

the item predicted for its next request. Prefetching was interrupted when: there was an 

incoming request before it was completed (with not enough time to complete the task), 

and when the file to be prefetched was bigger than the user’s specified available caching 

space. The latter reason is of importance in this experiment, because it relates to the size 

of the client cache. Column 6 in both Table 10 and Table 11 shows the percentage of 

prefetch-interrupts resulting from the proxy attempting to prefetch a document that was 

bigger than the client cache constraints. In Table 10 (C301 workload), it can be observed 

that as the cache size increases, the percentage of prefetch-interrupts drops (for all 

Partitions and all T-values). For example, for C301 partition 2 and T-value 2, it can be 

seen that the percentage drops from 29.1 to 12.7 to 3.1% as the cache size increases from 

8kB to 30kB and 60kB, respectively. It is important to mention here that, the fewer the 

number of prefetch-interrupts, the higher the chances of a client finding its desired 

request in the cache, and the higher the number of No-Proxy accesses.
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In Table 11 (CS workload) however, the results appear peculiar, perhaps even 

puzzling at a glance. Before explaining the reason for this, recall that the main difference 

between the two workloads (C301 and CS) resulted from the fact that they were collected 

from a course website and a departmental server, respectively. The former contained less 

traffic and fewer requests over time, as compared to the latter, which received thousands 

of requests in a matter of minutes. This difference comes through in these simulation 

results because for a very busy server, there is a marked reduction in the number of 

successful prefetchs to clients. This is the case because prefetching only occurred when 

the proxy server was idling between client requests. In Table 11, the percentage of 

prefetch-interrupts (from large prefetch documents) is 0% for CS Partition 1, over all 

cache sizes because there are simply not enough successful prefetch attempts (since the 

requests came from a busy server). For CS Partition 2, on the other hand, the percentage 

of prefetch-interrupts is seen to drop from 0.7 to 0% (for T-value 3) and from 0.6 to 0.1 

to 0% (for T-value 2); as the client cache size is increased from 8 to 30 to 60kB. Due to 

the fact that the size of CS Partition 2 was considerably larger as compared to those in CS 

Partition 1, there were enough prefetch attempts to demonstrate the observed trend.

5.3.5.1.3 The total number o f files prefetched to all clients.

It follows from the above explanations that the larger the client cache, the higher the 

number of files prefetched to clients. This trend is demonstrated in Column 7 of Table 10 

(C301 workload). The number of files prefetched to all clients increases (over all T- 

values) as the size of the client cache is increased from 8kB to 60kB. From Table 11 (CS 

workload), only one item is prefetched for CS Partition 1 and over 20 items for CS 

Partition 2. The reason for this is as mentioned above: due to the density of the requests 

in the CS log, which were obtained from a very busy server.

5.3.5.1.4 The total number o f unique clients who received prefetched documents.

Table 10 and Table 11 demonstrate a general trend: the larger the client cache size, the 

more clients are likely to receive prefetched documents. Also, the bigger the workload

9 3
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partitions, the larger the number of clients serviced, and hence the higher the number of 

clients to potentially receive prefetched files.

53.5.2 Experiment 3-2

For each simulation run, the accuracy of the prediction engine was calculated. Statistics 

were collected showing: the number of times predictions were made and how often the 

predicted item turned out to be the user’s next request. It is important to mention that in 

this experiment, the prediction-accuracy rates (accuracy of predictions) were measured 

from the perspective of the client (client-based predictability), since client-perceived 

latency is one of the main concerns of MoBed. Keeping this in mind, the client-based 

prediction-accuracy rates excluded cases where a prediction was made but the user never 

requested another page (such as at the end of a user’s session). In this situation, the user 

never requests another page and hence does not suffer any losses even if the prediction 

was wrong. All predictions were made within a client’s user session i.e. after their first 

request and as long as they issued requests. As previously mentioned, predictions were 

made only when there was enough history to back-up the guess i.e. when the user’s 

current session has been previously ‘learned’ by the prediction engine; and only one item 

was prefetched to any given client at a time. Even though this amounts to the proxy not 

prefetching too often, it ensures that the best possible guess for each client’s next request 

is made (choosing the quality of predictions over the quantity). The accuracy of the 

predictions from the proxy’s prediction engine was measured based on three factors: re­

training the prediction engine using recently-accessed test requests, varying the path tree 

size by changing the threshold T-value, and workload size (using train/test datasets of 

varied sizes).

5.3.5.2.1 The impact o f the Re-training phase

The reason for re-training the prediction engine was to update the path profiles used in 

generating guesses for users’ next requests. The impact of retraining depended on two 

factors: the number of times re-training occurred and the size of the testing data used to 

generate the new requests for retraining. If the size of the retraining data was relatively 

large, then there was a greater possibility of updating the frequency counts of the history
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paths, and hence the path profiles. Recall that predictions were made using history paths 

with the highest frequency counts. As such, if the re-training phase did not result in an 

increase in the frequency counts for some paths, no new knowledge was ‘learned’ and the 

prediction-accuracy rates would barely change from those acquired from the same 

simulation run with no re-training phase. All the simulation runs were performed first 

without a re-training phase, and then repeated with re-training occurring after a specific 

period of time.

Table 12 and Table 13 below provide a concise summary of the prediction-accuracy rates 

obtained for all simulation runs using the workload partitions generated from the C301 

and CS workloads. For the C301 partitions, retraining was performed every six hours i.e. 

test requests were gathered in six-hour intervals and used as the new data for re-training. 

For the CS-Dec5 datasets, re-training was performed every thirty minutes, since these 

logs were collected from a busy server that received thousands of requests within 

minutes.
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Table 12 - Experiment 3-2: Results obtained from the C301 workload
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Vaiue

■ < liem 
| cache 

Size 
Ikll)

Ret rain #of
Re-trains

O O I

Size of 
Kc-trumins

set

Workload
Partitions

------- —  —

I'rrdicU-d 
I dc Hits

„— „  

f* o f  
Pit oil led 
iUlc Hits

1 ■7.1 29.6
8 N - - 2 24.0 16.0

3 20.8 14.3
1 136 1 37.1 30

Y 69 17014 2 24.1 16.5
103 26689 3 21.3 14.8

1 37.1 29.6
1=2 30 N - - 2 24.4 16.1

3 21.0 14.0
1 136 1 37.1 30

Y 69 17014 2 24.6 16.7
103 26689 3 21.5 14.4

1 37.1 29.6
60 N - - 2 24.3 16.1

3 21.0 13.6
1 136 1 37.1 29.6

Y 69 17014 2 24.5 16.2
103 26689 3 21.6 14.0

1 40.6 32.3
8 N - - 2 24.1 24.1

3 21.6 21.6
1 136 1 40.7 32.2

Y 69 17014 2 26.4 18.9
103 26689 3 22.1 15.4

1 40.6 32.3
T=3 30 N - - 2 24.4 16.3

3 21.6 14.5
1 136 1 40.6 32.3

Y 69 17014 2 26.6 18.9
103 26689 3 22.2 15.0

1 40.6 32.3
60 N - - 2 24.4 16.4

3 21.6 14.1
1 136 1 40.6 32.3

Y 69 17014 2 26.5 18.7
103 26689 3 22.2 14.7
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Table 13 - Experiment 3-2: Results obtained from the CS workload
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From Table 12 and Table 13, Columns 5 and 6 show the observed percentage of 

predicted file hits and byte hits (respectively). A predicted file hit is recorded when the 

predicted item for a user is actually requested next. The percentage of predicted file hits 

is defined as:

(The total number o f correct guesses -i-the total number o f guesses) times 100.

Similarly, a predicted byte hit is recorded whenever there is a prefetch file hit. The 

percentage of prefetch byte hits is defined as:

(The number o f requested predicted bytes the number o f predicted bytes) times 100.

Note that every predicted file was not necessarily prefetched to the client, as prefetching 

was only successful if there was sufficient time to deliver the predicted item to the client 

before another request was received. Columns 7 and 8 show the number of times when 

retraining occurred and the total number of retraining requests used in the process, 

respectively.

Table 12 contains the prediction-accuracy rates observed for the C301 workload. 

From the table, the following observations can be made. When re-training is performed,
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there is a general increase in the percentage of predicted file and byte hits over all three 

C301 workload partitions, even though the difference may be small. For instance, for T- 

value 2 and a client cache of 8 kilobytes, for the C301 Partition 1, the percentage of 

predicted file hits remains constant at 37.1% with and without retraining. This is because 

of the small size of the dataset, and the small number of retrains performed (only one), 

with only 136 retrain requests. For this same partition, the percentage of predicted byte 

hits increases from 29.6 to 30% when retraining is executed. For C301 Partition 1, the 

percentage of predicted file hits increases from 20.8 to 21.3% and the percentage of 

predicted byte hits increases from 16 to 16.5% when retraining is performed 69 times 

using over 17000 retrain requests. In general, there is a slight increase in the predicted 

file and byte hits when retraining is executed, for all three partitions.

Table 13 contains the prediction-accuracy rates observed using the CS workload. 

Note that there was no retraining executed for CS partition 1, because it consisted of only 

1599 test requests (as shown in Table 7), which were collected in a time period of less 

than ten minutes. Recall that for the CS-Dec5 datasets, re-training was performed at 

thirty-minute intervals. From the table, it can be observed that: For the CS partition 1, 

the percentage of predicted file and byte hits remains constant over all cache sizes for 

both T-values when there is no-retraining. For CS partition 2 however, there is a slight 

increase in the percentage of predicted file hits from 71.3 to 71.5% when retraining is 

performed 3 times with over 7000 requests.

53.5.2.2 The effect of varying the T-value

Recall that in building a path tree from past user sessions, the number of potential paths 

in the tree could be controlled by the T-value, which restricts the expansion of every node 

in the path tree. A node in the tree is only expanded when its maximal-prefix has 

occurred at least T times [SKS98]. The maximal prefix of a path is the ordered sequence 

of all the URLs in the path minus the last one. Thus, the T-value is a threshold value that 

can be configured based on the available memory resources [SKS98].

For the C301 workload, using Table 12, a comparison can be made between the 

prediction-accuracy rates over all C301 partitions, based on the T-value. It is observed 

from the table that the highest predicted file and but hit percentages are reached when the
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T-value is 3. This is true over all the partitions and client cache sizes. To better explain 

this trend, consider Table 14 below, which shows the prediction-accuracy rates observed 

from 2 different T-values using the three C301 partitions (with a cache size of 8kB, and 

No Retraining phase).

Table 14 - Prediction-accuracy rates observed from 2 different T-values using three C301 partitions 
(With a cache size of 8kB, and No Retraining phase).

T
Value

< Jirnl 
earhe 
Si/« 
(kli)

R etrain
# «il 
Re­

trains

Si/e of 
Re­

train ing 
set

\ \  orklund 
rnriitio ife l*i edit ted 

i'ile Hits

% of 
P ivdirtcd  
Byte llits

1 37.1 29.6
T -2 J.' N - 2 24.0 16.0

•% 20 8 14.3
40 6 32 3

T=3 8 N - - •• 24.1 24.1
21.6 21.6

Table 14 shows that the predicted file hit percentage rises from 37.1 to 40.6% (for the 

first partition) when the T-value changes from 2 to 3 respectively; while the predicted 

byte hit percentage rises from 29.6 to 32.3%. This increase can be credited to the size of 

the path tree created for each T-value. The higher the T-value, the smaller the size of the 

tree, since the expansion of every node in the tree is restricted, resulting in a smaller 

number of branches from each node. The smaller the number of branches from a node, 

the higher the probability of each branch occurring. Therefore, when the T-value is 3, 

there is an overall higher possibility of having better prediction-accuracy rates. It is also 

essential to point out here that when predicting a user’s next request, the prediction 

engine only selects one chosen path from the list of path profiles -  the path list entry with 

the same path as the client’s current session and with the highest frequency count; That 

path list entry’s predictor element is selected for prefetching. If there exist many other 

list entries with the same path and same frequency count (but different predictors), only 

one is chosen (the first one) since there is an equal probability for each path to occur. 

The fewer the number of path list entries with the same path and same frequency count, 

the higher the prediction rate.
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53.5.2.3 The workload size (with varied train/test dataset sizes)

Recall that both workloads used in this study were divided into workload partitions that 

were in turn divided into train/test sets of varied sizes (recall Table 6 and Table 7). The 

results showing the impact of the workload size on the prediction-accuracy rates are 

summarized in Table 15 and Table 16:

Table 15 - Experiment 3-2: Prediction-accuracy rates observed from all four C301 partitions (with
and without retraining).

<301

Partition
if 111 

'1 RAIN # .if I’ES'l 
Requests Retrain

% of 
Predicted

% of 
Predicted

1 909 302 N 37.1 -40.6 2 9 6 - 3 2 3

37.1-40.7 30.0 -  32.3

2 52,185 17,395 N 24.0 -  24.4 16.0 -16 .4

24.1-26.6 16.5-18.9

3
82,356 27,167 N 20.8-21.6 14.0-15.0

Y 21.3-22.2 14.4 -  15.4

4 103,162 34,024 N 27.8 17.8-19.1
Y 28.5 19.4-22.6

Table 16 - Experiment 3-2: Prediction-accuracy rates observed from both CS partitions (with and
without retraining).

Pari it inn
#nf  

TR UN
requests

$ nt '! PNi' 
Requests

CS

Retrain
% of 

I'rcflic ted
File Hits

........ ^ o f ’
Predicted 
Ifytc Hits

N 36.8 35.8
1 4677 1,599 Y - -

N 71.3 78.1
2 36,528 12,176 Y 71.5 . 78.1

In Table 15, columns 5 and 6 show the range of file and byte hit percentages 

(respectively) for each partition, over all T-values and client cache sizes, i.e. they portray 

the lowest and highest rates ever obtained using that workload partition (with and without 

retraining). For the C301 partitions, the general trend observed is that the bigger the 

partition, the lower the prediction-accuracy rates (both file and byte hit percentages).
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For the CS workload, the results in Table 16 show that both file and byte hit 

percentages are surprisingly high for the second larger CS partition than for the first, 

especially given that the complete CS workload contained over 17000 distinct URLs in 

its training data alone. The high prediction-accuracy rates observed for this dataset can 

be accounted for as follows. The large number of distinct URLs in the training data 

resulted in the creation of a broad path tree during the training phase. The breadth of a 

path tree increases as the number of children of the tree’s root node increases. Note that 

the number of child nodes of the root node cannot exceed the total number of unique 

URLs present in the training data. The CS partition 2 contained 36,528 train requests, 

consisting of 17,286 unique URLs (shown in Table 7), showing that the path tree created 

from this workload would be broad with little depth and limited branching. The fewer 

the branches from each node in the tree, the higher the probability of guessing one of its 

child nodes, resulting in increased prediction rates.

5.3.6 Comparison to the Client Baseline architecture performance

The MoBed architecture in this experiment is characterized by: caching support on the 

mobile client; an infinite cache at the proxy; as well as prefetching functionality. It is not 

trivial to analyze the benefits incurred from the different experiments carried out using 

MoBed, due to the diversity in the nature and design of the workloads and experiments. 

However, from the results and evaluation of Experiments 3-1 and 3-2 presented in 

Section 5.3.4 above, it can be observed that caching and prefetching at the MoBed proxy 

level is a promising combination when studying the performance of an intercepting proxy 

for satisfying client requests.

This MoBed architecture undoubtedly outperforms the client baseline 

architecture. First, the MoBed architecture attempts to reduce client-perceived latency 

from two perspectives: maintaining a client cache, infinite proxy cache, in addition to 

prefetching probable future requests from the proxy. Any results obtainable from such 

attempts are definitely an improvement to those reachable by the naive client baseline 

architecture. Although not explicitly calculated, the performance of the MoBed 

architecture implemented in Experiments 3-1 and 3-2 is an improvement to that used in 

Experiment 1, because there was no caching policy implemented in the former, allowing
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all requests ever made to be available at the Proxy for all other clients (thereby increasing 

the chances of finding a request in the Proxy cache).

In general, the MoBed architecture implemented in Experiments 3-1 and 3-2 

demonstrated the influence of the following factors on the perceived latency after client 

requests: the content adaptation (transcoding) scheme utilized at the proxy, the presence 

of a client and proxy cache, as well as the use of a prefetching mechanism at the proxy.

5.4 Summary

The simulation study presented in this chapter was designed to investigate the functions 

of the MoBed client-proxy server architecture in providing Web access for J2ME-enabled 

devices.

•  The goal of Experiment 1 was to investigate the benefit of introducing caching only at 

the proxy level, using two caching schemes: LRU and LFU. The general conclusion 

was that the LRU replacement scheme performs slightly worse than the LFU scheme, 

and the proxy latency was observed to be higher with a remote proxy, as opposed to 

the proxy located on the Web server machine (the difference in the machines used for 

both the remote proxy and Web server may have influenced this result).

• Experiment 2 investigated the data content adaptation or Transcoding process carried 

out at the proxy in order to compress data to be sent to the mobile.

• Experiment 3 was designed to assess the performance of MoBed with the following 

features: a cache maintained on the client; and a prediction and caching scheme 

implemented on the proxy. This assessment is achieved by means of a study 

consisting of trace-based simulation experiments run on the proxy server. This 

experiment investigated: the impact of having a cache on the mobile client, with three 

different cache sizes of 8 kilobytes (kB), 30kB and 60kB; the accuracy of the 

predictions from the proxy’s prediction engine based on three factors: re-training the 

prediction engine using recently-accessed test requests, varying the path tree size by 

changing the threshold T-value, and the using train/test datasets of varied sizes.

The results observed from all the above experiments, although not very high in some 

cases, are reasonable and promising enough to justify further research on improving the
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MoBed proxy’s function in caching and/or prefetching. The main contribution of this 

research does not lie principally in the results of these experiments but in the testbed 

architecture design, which allowed for complete factorial, and nested experiment design.

1 0 3
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Chapter 6 Conclusion and Future Work

6.1 Research Contributions

The main objective of MoBed is to provide an experimental test-bed for designing, 

developing and analyzing different caching and prefetching schemes that can be used in 

devising Web access solutions for J2ME-enabled devices. The main contributions of this 

thesis are outlined below:

• As mentioned above, the objective of MoBed is to investigate an intelligent method 

for flexibly combining caching and prefetching schemes towards providing Web 

access solutions for wireless devices. This project has achieved this objective while 

adaptively separating the mobile-resident from the proxy-resident functionality.

• J2ME is a fairly new specification that is rapidly growing in popularity. Such 

technology attracts research because it is still in its adolescence, providing ample 

room for growth and improvement. This research introduces a fresh perspective on 

mobile web access targeted specifically towards the J2ME platform.

• All the experiments conducted using this framework (discussed in Chapter 4) show 

that there are benefits to be gained for having a client - proxy architecture for wireless 

Web access: It was shown that a Browser cache on the mobile device can 

considerably reduce the observed delays when a page is requested, especially if it 

stores prefetched items received from the proxy. It was also shown that caching and 

prefetching at the proxy-level can be particularly advantageous to J2ME devices that 

possess more than just the minimum requirements for supporting the CLDC and MID 

profile.

•  The main contribution of this research is not so much the results of the experiments, 

as the creation of a modular, configurable testbed architecture design for investigating 

mobile Web access solutions using caching and prefetching schemes.

In general, the results from the experiments conducted on this architecture are reasonable 

and justify further research on improving the MoBed proxy’s function in caching and/or 

prefetching.

1 0 4
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6.2 Future Work

Possible future work on MoBed include the following:

• MoBed is still in its beginning stages, and there is room for improving some of its 

components:

o The HTML parsing scheme on the Proxy server can be changes to use a simpler, 

less time-consuming parser that produces parsed content with little overhead, 

o The packaging of converted requested bytes for the client sometimes results in the 

generation of a package larger in size than the original content downloaded from 

the Web server. This overhead is particularly noticeable when small HTML 

pages are requested. One possible area for future work could be to investigate 

other more efficient HTML compression schemes that can be used to ‘simplify’ 

the requested data before it is sent back to the client, 

o Other caching and prefetching schemes can be investigated and used for the 

proxy’s prediction engine. At this stage of the research, only one prediction 

scheme was implemented and tested (prediction through path-profiling user 

history). Even though the prediction-accuracy rates observed in Chapter Four 

were fairly reasonable, there is potential for improvement by examining other 

prefetching algorithms.

• The simulation study performed on the MoBed proxy used two different workloads to 

investigate the functionality of the framework. This study could be carried out with 

workloads obtained from a number of sites that vary in size, content, etc. to ensure 

that the results obtained from experiments are not biased to the workload used.

• For the experiments carried out in this research, the proxy-mobile link is bound by a 

bit rate of 9600 kilobits per second at all times. At the moment, there is no 

particularly accurate model for simulating the transfer delays on the mobile to proxy 

link. This connection can be characterized by higher and lower speeds over time. At 

times, when the speed is reduced, the bottleneck may not be the wireless link, and 

hence the approximation of such delays needs to be simulated to include a random 

component from the wired, which could be a bottleneck at times. With an accurate 

transfer model in place, experiments could be designed to investigate the actual 

client-perceived latency using this framework -  while keeping in mind the three main
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sources of latency in this architecture: the proxy to client connection, the server to 

proxy connection, and the data conversion process at the proxy.

• At this stage of the research, the development of the client-browser has been 

restricted to the J2ME Wireless toolkit environment. This device emulator provides 

only an approximation of the physical device. Hence, results acquired from it 

regarding the execution or performance of a MIDlet, are not guaranteed to be 

identical to those obtained when testing on the actual device. The Browser 

application in this project has not been deployed to an actual J2ME-enabled device 

and tested in that setting. This is an important step for future work because MoBed 

can actually be tested for performance in a real-life setting. This may bring up other 

issues or concerns with the architecture that are not considered at this stage and would 

otherwise be unforeseen.

• In future, the MoBed proxy server could potentially service wireless J2ME clients 

that have different device capabilities and constraints. The proxy could then provide 

better service by ‘discriminating’ between clients i.e. by maintaining a knowledge 

base of the device capabilities of all its clients. One possible benefit of this could be 

reaped when prefetching for clients. The proxy could be fairly liberal when 

prefetching documents to a ‘state-of-the-art’ client with fairly large disk area, 

memory and processing speed; as compared to a client that has the minimum support 

for J2ME.

• Transforming MoBed to a testbed framework architecture provides a very promising 

direction for future work. Such a framework would be very useful in providing a 

testbed for the investigation of various caching and prefetching algorithms to support 

Web access for mobile clients. In designing such a framework, determining the 

correct extension points or ‘hooks’ is crucial, where a hook is a point in a framework 

that is meant to be adapted. Extension points for a MoBed Framework could be 

implemented for the following features: a caching and/or prediction scheme, a 

transcoding process (for data compression at the proxy), and HTML parsing 

functionality. These features are extension points because they define the usefulness 

of the testbed. Having the ability to adapt the framework through these hooks will 

mean that these features can be enabled, disabled, replaced, or modified, hence
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fulfilling the goal of having a testbed; even though the transformation from MoBed to 

MoBed Framework is likely to be non-trivial.

6.3 Conclusion

Wireless devices like cell phones, two-way pagers, PDAs, etc. are popular in this day and 

age because they provide instant gratification and convenient services to users without 

restricting them to a particular place and time. Nowadays, such small devices support 

additional features like email access, messaging, address book and calendar services, as 

well as Web browsing. There is a rising need and importance for wireless Web access 

from portable devices and cell phones.

A lot of research has been reported on the performance of Web Caching and 

Prefetching for wired Internet access, but in a wireless network, Internet access is 

substantially different. The main objective of this research was to design a general test­

bed for investigating different caching and prefetching schemes that can be used with 

mobile devices and the Java™ 2 Micro Edition platform (J2ME™); opening up a fresh 

perspective for providing Web access solutions for small, wireless devices.

This research has achieved its objectives through the implementation and 

experimentation of MoBed, which shows a lot of promise in the long-term as discussed in 

Section 6.2. It is hoped that this thesis will inspire further research in the study of 

possible Web solutions for wireless devices in general.
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Appendices

The class names shown in the class diagrams may not be identical to the names of the 
components described in the thesis. As such, before each class diagram is provided, a 
small description is given to show the use of each class.

Note that the class diagrams shown in this section contain only the major classes used in 
the functionality for each component.
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(A) The Mobile Client component

- Browser MIDlet: MobileClient
Request Dispatcher: NetClient
GUI Builder: PageNode classes, ScreenBuilder, Executor classes

interface
Persistent

+persist:ty/telj 
* resurrect:void

r p PageNode

VectorHelper

nodeExecution:void
persist: byteu 

+resurrectV ector

con ien tS tring
type:String

+ P ageN ode
+P ageN ode
+persist:byteO
nesu rrec ttvo id
+toString:String

nodeType:String
nodeC on ten tS tring

CorrmandUstener
FormExecutor

-formDisplay:Form 
-form Subm it:Comm and 
-form C learC om m an d 
-backFrom Form :Com m and
-TB<T:Strinq
-PWD:Strinq
-STRINO:Strinq
-HIPDEN:Strinq
-formAction:String
-formMethod:String
-pageiList
-dispIay.Display
-m obiletM obileClient
-form lm agetlm age
form node:Form PageN ode
headtString
fields: String
hiddenfields:String
allfields: String
method:String
action:String
location:String
formfields:Vector

S creen B u ild e r

-holdnodes:V ector
screen;L ist
form tag:lm age
linktag:lm age
im gtag:lm age

+ScreenB uilder
+createScreen:L ist
-createlm ages:void

A

CommandListener
bnageExecutor

-backFrom lm aqe:C om m and 
-tem plm age:lm age 
-page.L ist 
-display:Display 
-mobile:M obileClient

+lm ageExecutor
+nodeExecution:void
+commandAction:void

Show lm age

1 1 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i
!

H 5  LW KPageNode

associatedL ink: String

+LinkPageN ode
+LinkPageN ode
+persist:byteO
+resurrect:vofd
+toString:String

nodeLink: String

FormExecutor
+F ormExecutor
'*-nodeExecution:void
+commandActton:void
-clearFDrmDaia.void
-createForm O ulvoid
-submitivoid
-getData:void
-getH eaderFiefds:V ector
-getFormFieldsiVector
-combineFiaJds-Strtng
-processH idden:String
-processEnteredrString
-processH ead:void

f  o rm PageN  ode

fo rmh e  a  d e  rs:Stri n g 
entryparams:String 
hid den param s:String 
bdataibyteQ

+Form PageN ode 
+Form PageN ode 
+-persistbyiefl 
+resurrect:void 
+to String :Siring

headenString  
e  ntry P a  ra ms: Stri n g 
hiddenParam s.String

c5~ N etC lient

-lMG:Strinq 
-LINK: String 
-FQRM:Strinq 
-uriiString
-requestm ethodiString 
-requestparam s; String 
-rawdataibyteQ

<-NetClient
HnvokeProxy:byteQ

pageType.String

MlDiet
GommandLlstener

R unnatfe
M obfleC fient

-m obilelnstance:M obileClient
-fetchThread:Thread
-TEXT:Strinq
-IMGiStrinq
-LINK: S tr in g
-FQRM.Strinq
-PQST:Strinq
-QET:String
netconnectN etC lient
sbrScreenB uilder
Im gexecdm ageExecutor
formexec:FormExecutor
-display:Display
-fetch:Com mand
-cancelrC om m and
-backCom m andiG om m and
-forw ardCom m and:Com m and
-enterU riCom m andiC om m and
-historyback: S tack
-h i sto iy tWd: S ta c k
tinkW ithinPage:boolean
-contentL lst
-eari:String
-initialForm Form
-progressForm iForm
- e nte rU rl :TextF i e I d
-waitimg:lmage
-enterlm gilm age
-p rogressG auge:G auge
-currPageN odes:V ector
urlCurrentString
reqM ethod.String
reqParam s: String
submittingF orm iboolean
dataread:byteQ

+MobileClient
+startApp:void
+pauseApp:void
+destroyApp.void
- c h ec kF o rmS u b mitStatus: v o i d
+setR equestParam s:void
-m akeListPage:void
-9nterUrl:void
-genProgress:void
+commandAction:void
-fetchervoid
-hand!eCSick:void
+run:void
display E rrorvoid
-getN odes:V ector

contentPage:D isplayable
form Subm itStatusrboolean
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(B) The Proxy Server component

(1) Processing a request at the proxy

Proxy Controller: Proxyserver
Request Handling: ClientConnection, FetchNodes, Processpr classes
Utility packages: com (parsing), MD5 (hashing), CookieClasses (session

handling), Jimi (Image processing).

FetchNodes

-uitString
-parser: HTMLParser
-currUrlNodes:Vector

♦FetchNodes
+fetch:void
+makeNodes:Vector
-prepareParservoid
+nodesToString:String

Pros^Serwer

portnumbenint
serverSocketServerSocket
clientSocketSocket
mobileConnect:ClientConnection

+main:void
+ProxyServer

Jimi

W________
Thread

ClientConnection

islnputStream
isrlnputStreamReader
br:BufferedReader
out:OutputStream
incomingDataxharQ
mobileCon:Socket
bytesRead:int

♦ClientConnection
+run:void

ImageProcessor

-MINWIDTH:int
-MINHEIGHT:int
-MAXWiDTHdnt
-MAXHEIGHT:int
-CQLQRS:int
-DITHER:boolean
-REDUCE.boolean

n
FormProcessor MD5

-url:URL
formtag:HTM LForrnTag
method:String
action:String
location:String
parameters:Vector
numfields:Vector

n
com
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widtlrint
heightint
startfetch:long
endfetch.long
starttrunc:long
stoptrunc:long
-url:URL
PNG MIME:Strinq 
J MIME:Strinq 
G MIME:String

+ImageProcessor
+process:bytefl

+ForrnProcessor
-getFormDetaiis:void

head:String 
parameters:String 
hiddenParameters: String

HttpURLConnection 
HttpU RLC ookieC onnection

-c:HttpURLConnection
-ur!:URL

HttpURLCookieConnection
+disconnect:void
+connect:void
+usingProxy:boolean
setConnection.HttpURLConnection
+getlnputStream:lnputStream
+getOutputStream:OutputStream
-checkResponseCode:void

HttpURLCookieConnector

-cookieStoreName:String
-fos:FileQutputStream
-ps:PrintStream
-storefile:Fiie

-HttpURLCookieConnector
+open:HttpURLConnection
+open:HttpURLConnection
+close:void
qetCookie^oid
addCookievoid
-»-removeCookies:void

CookieC lasses

n
Cookie
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(2) Proxy Transcoder classes

PageNode package: Small library o f classes known to client and proxy.
Object Serialisation utility: Persistent interface, VectorHelper class

interface
Persistent

VectorHelper

+persist'by tefl
+persist: ty/te[j 
+resurrect:vokt

+resurrectVector

V \

\

PageNode

contentString
type:String

+PagelMode
+PageNode
+persist:byteO
+resurrect:void
+toString:String

nodeType:String 
nodeContent String

FormPageNode

formheaders:String
entryparams:String
hiddenparams:String
bdata:byte(]

+FormPageNode
+FormPageNode
+persistbyteQ
+resurrect:void
+toString:String

header:String 
entryParams:String 
hiddenParams: String

H l l U n k P a g e N o d e

associatedLink:String

+LinkPageNode
+LinkPageNode
+persist:byteD
+resurrect:void
+toString:String

nodeLink: String
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(3) Prediction at the proxy

Proxy Controller: ProxyConnection class
Prediction Algorithm: PathTree, PathTreeNode, PathTreeBuilder, PathList, 

ListEntry, PredictionCounter.
Session Tracker: RegistryAgent.

Object
ListEntry

rev_path:String
predietor:String
freq:String

+ListEntry
+toString:String
+equals:boolean

PredictAgent

currSession:String 
reversedSession:String 
list_entries:Vector 
all_oaths:String Q

+PredictAgent
+reverse:void
+predsct:Vector
+searchList:Vector

userSession:String

A

PathList

tree:Path,Tree
paths:Vector
currPath:String
profi!e:Vector
freqs.Vector
predictor.Vector
reversedPaths:Vector
pathlist:Vector
condensedPathlist:Vector

+PathList
+createAIIPaths:yoid
+allPaths:Vector
-createPaths:void
-doPaths:Vecior
-getPredictor:Vector
-reversePaths:void
+buildList:Vector
+sortList:Vector
+extractPaths:void
+condensePaths:Vector
+clean:void

rawListVector 
condensedListVector 
sortedPaths:String G

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ProxyCormection

-storenameiStrinq
-CACHE SIZE.'int
-cachePool:Hashtable
-psTotalLatPrintStream
-psActualLatPrintStream
allSessions:Vector
pathtree:PathTree
pathiist:PathList
predictorPredictAqent
url units:Hashtable
mobileStats-'Stats
serverStats:ServerStats
cache st&raqe:Mol?ileCacheAqent
registry:RegistrvAqent
mobile _requests:Vector
-MOBILE BITRATEdouble
addedToCache:int
proxvAccessint
noProxyAccessrint
prefetch interrupt:int
proxyFoundPrefetchinq:int
proxyFoundNorrnalM
prefetchFileTooBig.int
numberRetrams:int
prefetchedAndNoTime.Int
predictedNothinq:int
predictedSomethingdnt
ipsPrefetchedTo:int
uniglps:Vector
trainfile:String
testfile:Strinq
MEMORY'.lonq
-T COUNTM
CURRENT INDEX:int
-TESTRUN TIME:lonq
DO RETRAIN:booiean
initialtime:long
retraintime.boolean
initialTrainReqs:int
retrainReqsM
rawList:Vector
condensadList:Vector
rawlistPaths:Vector
totalFilesReeeived:int

'■ ¥___________
H5 PathTree

rootNode:PathTreeNode
ireeSize.ini

-PathTree
+createRoot:void
+addNode:void
+printPathTree:void
-printTree:void
+clearLeafOccurenceCounts:voi
-clearLeafCounts:void
+clearAIIOccurenceCounts:void
-ciearAIICounts:void
+size:int
-getSizeivoid

root:PathTreeNode

A
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PredictionCoumer

ip preds:H ashtable
url units Hashtable
reqistry:ReqistryAqent
fileCountint
fileHits:int
totalBvlesionq
bvteHits:long

+collectPredictionoyuid
+notilvPC:void
+delivetv:Strinq
♦setvoid

♦mainyoid
+ProxyConnection
-cache JniLvoid
-registryjnitvoid
-m obitecachesjn itvoid
-createSessions:Vector
-iresConsiructorPathTree
-iistConstructorPathUst
-clean:vc>id
-proeessTestData:Vecior
-request iteratorvoid
-mobileProxvUnlcvoid
-proxyPrefetchLinkim
■updateClientCountyoid
-irifornnPC-yotd

■checkProxyCache-'booiean
-checkM obileCache:boolean 
-restoreC achevoid 
■saveCacheyoid 
■checkCacheF ile:void 
+resumeTestinq:void

Retrainer

\f
Registry A gent

ip_sessions:H ashtable 
init_tinnes:Vector 
all J p s  Vector 
flaggedlP:Vector 
TIME 30 MiNSdonq 
retrain_sessions:Vector

-iRegistryAgent
+insert:void
+getlPSessiorn:Stnng

numberOfCiients:int
retrainVector.Vector

V
PathTreeNode

url_id:int
occurenceCount:int 
chitdren.Vector 
children_ids:Vector 
parentPathT  reeNode

■►PathTreeNode 
•►incrementCountvoid 
+clearCount;void 
►getChifdNode PathTreeNode 
+toString.3tring

< -

PathTreeBuilder

currentNode:PathTreeNode
currentSessionVector
all_Sessions.Vector
tree:PathTree
index:int
urINumberint
l_COUNT:mt
!TER_COUNT:int
totalRequests:int

+PathTreeBuilder 
*buildTree.yoid 
+treelteratorPathTree 
^fixLe afNo deCo u ntvoi d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121



(4) Client Simulation at the Proxy server (Experiment 3)

Client Cache Manager: 
Client Cache handling: 
Client request handling: 
Proxy Controller: 
Session Tracker:

MobileCacheAgent 
MobileCacheNode, MobileCache. 
URLUnit classes, MobileRequest 
Proxy Connection 
RegistryAgent

H~i MobileCacheN ode

urljctint
size:long
nodeAccessCountint

+MobileCacheNode
+toString:String
+size:long
+addAccessCountvoid
+addPrefetchCount:void

id:int
accessCountint
prefetchCountint

<r

d=r MobileCache

fixed_size:Iong
mobile_cache:Vector
cacheFileSize:long
id_registry:Vector
index:int
mcnode:MobileCacheNode

+MobileCache
+createCache:void
+cleanup:void
+processPrefetchBundle:void
-addFile:void
+checkForFile:boolean

cacheSizeilong
avai!ableSpace:long
maxCacheSizeJong

URLUnitMaker

urls:Hashtable

+main:void
-saveUnitsTable:void

Serializable
URLUnit

id:int
url:String
url_bytes:int
transform_size:long
fetch_time:int
transform_time:int

+URLUnit
+toString:String

ProxyConnection MobileC ache A gent

-storename:String ip_caches:Hashtable
ips:Vector
cache_sizes:Vector
MEMORY'.long

-CACHE S!ZE:int 
-cachePool:Hashtable 
-psT otalLatPrintStream 
- p sA ctu a 1 Lat: P rintStre a m
a!lSessions:Vector

------ > +MobileCacheAgent
+insertlP:void 
+storePredictions.-void 
+getCache:M obileCache 
+getSpace:long 
+gatherStats:void

pathtree:PathTree
pathlist:PathList
predictor:PredictAqent
url units:Hashtable 
mobileStats: Stats
serverStats:SeiverStats
cache storaqe:MobileCacheAqent

[^] MobileRequest

-requestTime:Date

+MobileRequest

iP:String
id:int
time:Date
feedback:String
prefetchSize:long
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reqistry:RegistryAqent
mobile requests:Vector
-MOBILE BITRATE:double
addedT oC ache:int
proxvAccess:int
noProxvAccess:int
prefetch interruptint
proxvFoundPrefetchinq:int
proxyFoundNorm afint
prefetchFileTooBiq:int
numberRetrains:int
prefetchedAndNoTime:int
predictedNothinq:int
predictedSomethinq:lnt
ipsPrefetchedT o:lnt
uniglps:Vector
trainfile:Strlnq
testfile:Strinq
MEMORY:lonq
-T COUNT:int
CURRENT INDEX:int
-TESTRUN TIME:lonq
DO RETRAIN:boolean
initialtime:lonq
retraintime:boolean
initialTrainReqs:int
retrainReqs:int
rawList:Vector
condensedList:Vector
rawiistPaths:Vector
totalFilesR eceived.int

d 5  ReglstiyAgent

ip_sessions:H ashtab le  
init_times:Vector 
all_ips:Vector 
flaggedlP:Vector 
TIME 30  MINS:lonq 
retrain sessions:V ector

♦RegistryAgent
+insert:void
+getlPSession:Siring

numberOfClients:int
retrainVector.Vector

+main:void
+ProxyConnection
-c a c h e jn itv o id
-registry _init:void
-m obilecaches_init:void
-createSessions:V ector
-treeConstructonPathTree
-listConstructonPathList
-clean:void
-processTestD ata:V ector
-request iteratorvoid
-mobiteProxyLink:void
-proxvPrefetchLinlcint
-updateClientC ountvoid
-informPC.void
-checkProxyC acherboolean
-checkM obileC ache:boolean
-restoreCache:void
-saveC acheivoid
-checkC acheFile:void
-t-resumeTestinq.void

Retrainer
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