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Abstract

The clinical applicability of tumour control probability (TCP) and normal tissue 

complication probability (NTCP) models is investigated. A method of choosing dose- 

volume constraint points based on biological criteria is presented. This method requires 

random sampling from the functional space of all monotonically decreasing functions in 

the unit square. A random function generator is developed by determining and utilizing 

the distribution that describes the number of normalized integral dose volume histograms 

(DVHs) passing through a point in DVH space. Randomly simulated DVHs that result in 

clinically acceptable levels of complication are selected and averaged, producing a mean 

DVH, from which dose-volume constraints may be selected. The impact of the number 

of constraints to be fulfilled on the likelihood that a DVH satisfying them will result in an 

acceptable NTCP is also determined. A property of the integral dose-volume histogram 

(DVH) space is analytically investigated -  a curve is constructed by connecting points 

belonging to step-like integral DVHs with a NTCP equal to a particular value, a. It is 

proven that any DVH that at least partially lies above this curve results in NTCP > a. 

The functional form similarity between the individual and fundamental population TCP 

models is investigated. Using the fact that both models can be expressed in terms of the 

parameters D5o (dose at 50% control) and /so (normalized slope at Dso), it is shown that 

they have almost identical functional form for values of yso > 1. The possibility of 

applying the individual TCP model for the case of heterogeneous irradiations is 

discussed. By making use of this functional similarity, the alfi (ratio of linear quadratic
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radiosensitivity parameters) estimates that would be obtained by fitting each TCP model 

to clinical data are analytically compared. It is shown that the alp  ratio estimated from 

clinical dose-response data is model-dependent -  a population TCP model that accounts 

for heterogeneity in radiosensitivity will produce a higher alp  estimate than that resulting 

from the individual TCP model. Finally, the impact of clinical data quality on the 

accuracy of estimated TCP model parameters is investigated, by means of numerical 

experiments with pseudo-data.
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List of Symbols

D Radiation dose [Gy].

S(D), Ps(D) Represents the fraction of cells that survive irradiation to dose D.

a  Represents lethal (non-repairable) damage in a cell that results from a
single radiation interaction.

P  Represents sub-lethal (repairable) damage in a cell that results from two
separate radiation interactions.

H Repair constant for sub-lethal lesions.

G(/j,T) Lea-Catcheside dose-protraction factor -  describes repair of sub-lethal
lesions that occurs for low dose rates. T  represents total irradiation time.

d (Constant) dose per fraction in a fractionated radiation treatment.

Ns Mean number of tumour cells that survive a treatment in which a total
dose, D, is delivered.

No Total (initial) number of clonogens in a tumour before a radiation
treatment. This is an individual TCP model parameter.

A Cell repopulation, or growth-rate, constant.

T  Total treatment time in the individual or population TCP model
expressions.

A' = AT/ n Cell repopulation constant scaled by the number of days per fraction (T
= total treatment time in days, n = total number of fractions in 
treatment).

d  For constant dose per fraction, d, this parameter is a combination of
radiosensitivity and repopulation parameters -  a ' -  a  + pd + A'/d (this 
is a parameter of the individual TCP model).

a ' Average of d  over a population of patients -  a ' = d  + p d  + A'/d (this
is a parameter of the population-averaged TCP model).

a  Average of a  over a population of patients.
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P  Average of P  over a population of patients.

X' Average of X' over a population of patients.
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/ \2

inter-tumour heterogeneity in d  -  (a')2 = a  2 + <rp2d 2 + •

cra Standard deviation of the parameter a. Represents the amount of inter
tumour heterogeneity in a  among a patient population.

op Standard deviation of the parameter p. Represents the amount of inter
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a r  Standard deviation of the parameter X'. Represents the amount of inter
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averaged TCP model parameter).
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Yf Normalized slope at Df.

(v, D) A  relative volume-dose point of a DVH.

<f>(x) Probit function.

m Parameter that describes the slope of a normal tissue dose-response
curve in the Lyman model.
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a Volume parameter for EUD in the Lyman model.

Mfsu Number of FSUs that must be destroyed in order for a complication to
occur in an organ.

Nfsu Total number of FSUs that comprise an organ.

Her The relative critical volume (individual CV NTCP model) or population-
averaged relative critical volume (population CV NTCP model).

Jid The relative mean damaged volume (CV NTCP model).

a ^  Standard deviation of ~j2d (individual CV NTCP model).

PfsiAP) Probability of damaging a FSU when it is irradiated to a (uniform) dose
of D (CV NTCP model).

D ™  FSU dose at 50% control for P Fs u ( D )  (CV NTCP model).

Y FSU normalized slope for P fsiA P )  (CV NTCP model).

Nc Number of cells in a FSU (for the CV NTCP model).

ac Radiosensitivity of a cell in a FSU.
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n (1) Number of fractions in a standard extemal-beam treatment.
(2) Observed number of ‘successes’ in the binomial or Poisson 

distribution formula.

p  In the Poisson or binomial distribution expressions, p  is the probability
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N  (1) The total number of ‘trials’ in the Poisson or binomial distribution
expressions.

(2) The number of patients per point in a generated pseudo-dataset.

alfi This ratio determines a tissue’s sensitivity to fractionation. It is typically
low (~3) for late-responding tissues and high (~10) for early-responding 
tissues.

?Ja A parameter ratio that represents the amount of dose per day that is
needed to combat tumour growth.
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Volume that is irradiated to at least a dose, D ,  in an integral DVH. 

Heaviside step function.

Dose distribution in a structure of interest.

Radius of a circle surrounding a dose-volume constraint point, through 
which a DVH must pass in order for it to satisfy the constraint.

Maximum dose point for a DVH defined as D V H k.

Total number of DVHs generated by means of the reverse mapping 
method.

A uniform randomly-generated number, used to assign a maximum dose 
value to a DVH generated during the reverse mapping process.

Doses that give a NTCP of 5 and 99%, respectively, assuming uniform 
whole-organ irradiation. These quantities are used for the reverse 
mapping process.

Typical clinical lower and upper limits, respectively, for maximum 
organ dose.

DVH point probability. The probability that a DVH, with a user- 
specified NTCP range, passes through a given point in the dose-volume 
histogram space.

The relative volume of the average DVH at the dose point A . This 
quantity is used during the reverse mapping process.

The total number of DVHs with NTCP = 5 ± 0.5%. Used during the 
reverse mapping process.

The fraction of DVHs, generated by means of the reverse mapping 
method, with NTCP = 5 ± 0.5%.

The probability that a DVH which satisfies a set of constraints leads to 
an unacceptable NTCP of greater than 5.5%.
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P^...) The probability that a DVH with NTCP e [4.5,5.5]% passes within the
e- vicinity of the chosen constraint(s).

(Dk, Point on the a-iso-NTCP envelope in integral DVH space.

AAjA^p  Normalized difference between the areas under the individual and

population-averaged TCP curves.

75ojY50,b Ratio of normalized slope parameters corresponding to the TCP curves
that represent an extemal-beam treatment and a low-dose brachytherapy 
treatment for a given tumour type.

TCPX TCP level that is characteristic of a point in a generated pseudo-clinical
tumour dose-response dataset.

Dx Dose point corresponding to TCPX.

AD Dose interval corresponding to a generated pseudo-dataset. This
quantity represents the dose range in which the individual points fall.

np Total number of points that comprise a generated pseudo-dataset.

Cu, Ci Upper and lower 95% confidence limits for a fitted parameter.
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Chapter 1 Introduction and Background

1.1 Introduction

1.1.1 Radiation therapy

The most common types of radiation used for the treatment of cancer are photons 

and electrons, delivered via extemal-beam linear accelerators or administered by placing 

radioactive sources right at the treatment site (brachytherapy). While these forms of 

cancer therapy are an effective means of tumour control, it is inevitable that some healthy 

tissues will be irradiated when dose is delivered to the tumour.

The probability of controlling a tumour as a function of delivered radiation dose is 

defined as the tumour control probability (TCP). When plotted in dose-TCP space, this 

curve is sigmoidal. Similarly, the probability that a certain dose will lead to a 

complication in a normal tissue or organ is known as the normal tissue complication 

probability (NTCP). The NTCP is also a sigmoidal function of dose. The goal of 

radiation therapy is to maximize TCP while minimizing NTCP. Currently, this is 

accomplished by keeping the normal tissue dose low in comparison to the dose delivered

1
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to the tumour, and through dose fractionation techniques. Dose distributions are 

optimized through the use of three-dimensional treatment planning and highly conformal 

delivery techniques, such as intensity modulated radiation therapy (IMRT). It is 

generally accepted that the complication rate should ideally be around 5% or less. Of 

course, for some treated sites it is possible to achieve even lower complication rates, 

while for others it is not possible to get as low as 5%. The value of 5% is somewhat 

arbitrarily quoted as a reasonably low complication rate in the clinic, however.

Other factors besides dose distribution can influence TCP and NTCP. 

Fundamentally, the dose-response function for an organ (or tumour) is dependant on the 

effect of ionizing radiation on biological tissues.

1.1.2 Radiobiology

The field of radiobiological modeling involves the investigation of the impact of 

ionizing radiation on cell survival, and the quantification of the dose-response of cells, 

organs, and tumours in the form of models.

This branch of science is reasonably well-understood at the cellular level. 

Considerable progress has been made in regards to research involving the deposition of 

energy in a cell by ionizing radiation and the consequential cellular damage and/or 

reproductive death. Also, through laboratory experiments, the in-vitro response of cells 

to radiation has been quantified and modeled. In vitro cell survival parameters are thus 

reasonably well-known. Investigations continue to be carried out in the field of 

radiobiology to further our understanding of the mechanisms involved in the response of 

cells to ionizing radiation, and also to ultimately take this knowledge and apply it 

clinically.

Within the past couple of decades, there has been considerable research activity 

involving the application of radiobiological principles to clinical radiation therapy. In 

this vein, attempts have been made to collect dose-response data for both normal tissues 

and tumours, and then to apply radiobiological dose-response models to such data. Once 

model parameters have been estimated in this way, they could conceivably be used to

2
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predict the effects of different treatments regimes (different dose distributions, 

fractionation regimes, or total dose delivered, for example) on NTCP and TCP. TCP and 

NTCP models could potentially be used for the purpose of ranking different treatment 

plans, or they could be incorporated into the treatment planning process itself (for 

example, they could be used for inverse planning optimization). A few researchers have 

assumed that the in vivo radiobiological parameters and parameter ratios can be extracted 

from model fits to clinical dose-response data. It is hoped that the results of such 

parameter estimations could be applied clinically (for example, radiosensitivity parameter 

estimates for tumour and normal tissue may be used to determine optimal dose delivery 

patterns, that is, fractionation regimes).

The incorporation of radiobiological models and principles in the radiation 

therapy process in this way could ultimately lead to treatments with improved outcome, 

and research in this area is currently being carried out with this as a goal. However, this 

particular branch of research is still relatively new, and hence there are some difficulties 

associated with the field.

For one thing, the clinical dose-response datasets that are currently available for 

both tumours and normal tissues are generally sparse, and subject to considerable 

uncertainty. Tumour dose-response data tend to cover only a narrow range in the high- 

probability end of the curve. In contrast, normal tissue dose-response data normally 

covers only a narrow range in the low-probability end of the curve. In addition, the 

existing dose-response datasets are not generally based on a large number of samples (for 

example, in dose escalation trials, generally less than ~100 patients are treated to a given 

prescription dose), which increases the uncertainty associated with a given dataset. A 

number of different TCP and NTCP models have been proposed, ranging from purely 

phenomenological to being derived on the basis of radiobiological principles, and they all 

tend to describe existing clinical dose-response data equally well. That is, the quality of 

such data is not high enough to distinguish one model from another.

Clinical dose-response data are population-averaged and include the effects of 

inter-tumour heterogeneity. On the other hand, data from synergistic/inbred animal 

experiments, in which inter-individual heterogeneity is negligible, are capable of 

distinguishing between different individual dose-response models. For example, the data

3
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of Fischer and Moulder1 were obtained from animal experiments in which tumour size 

was carefully monitored. This dataset also contained enough points to fully sample the 

entire dose-response curve. Stavreva et al? fit this dataset with different individual TCP 

models, and found that the Zaider-Minerbo3 model, which takes cell repopulation into 

account, best fit the data. Unfortunately, the existing clinical datasets are not nearly as 

detailed, and represent a significant amount of inter-tumour heterogeneity.

While the effect of ionizing radiation on an in vitro sample of cells is well- 

understood and the radiobiological parameters well-determined, considerably less is 

known about the in vivo situation. The in vivo environment is much more complicated 

than the in vitro one, and is difficult to reproduce for the purpose of laboratory 

experiments. Therefore, in vivo radiobiological parameters are theoretically determined 

from dose-response data by means of TCP and NTCP models. When the effects of intra- 

and inter- tumour/organ heterogeneity are taken into account, it may not be possible to 

estimate in vivo parameters directly from dose-response data in the first place.

These difficulties have thus far delayed the widespread use of radiobiological 

principles in a clinical setting. However, it is still useful to carry out investigations 

related to clinical radiobiology. The dose-response data that are currently available may 

have some use in treatment planning, and for the relative ranking of treatment plans. 

Even if  this proves not to be the case, methods that are developed using such data may be 

used in a clinical setting once better clinical data do become available. Also, while it 

may not currently be possible to determine individual in vivo radiobiological parameters 

accurately, this may not be true for parameter ratios.

The next few sections of this chapter outline the field of radiobiology, starting 

from the effects of radiation at a cellular level, and the modeling of cell survival. The 

main TCP and NTCP models are described, as well as their use in treatment planning and 

in parameter estimation. The objectives of this thesis are then outlined, followed by a 

brief description of the contents of each following chapter.
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1.2 Cell damage by radiation

When a group of cells is exposed to ionizing radiation, the latter can interact 

either directly or indirectly with DNA to eventually lead to damage and potentially 

reproductive death. With a direct interaction, the radiation causes an ionization event on 

the DNA itself. With an indirect interaction, it ionizes a nearby water molecule to 

produce highly reactive species (such as the hydroxyl radical -  OH»). The reactive 

species then interact with DNA and causes damage.

The relationship between the surviving fraction of a population of irradiated cells 

and the radiation dose delivered to the cells is described by the cell survival curve. A 

number of cell survival models have been developed to describe this curve, but the most 

widely used one is the linear quadratic (LQ) model, originally derived by Chadwick and 

Leenhouts.4

1.3 The linear quadratic model

In the original derivation by Chadwick and Leenhouts, a single DNA double

strand break was assumed to be the type of damage that eventually leads to the loss of a 

cell’s reproductive capability. A double-strand break could result from one of two 

possible events:

(i) One radiation event breaks both DNA strands.

(ii) Two separate radiation events cause two single-strand breaks, which then 

combine to produce one double-strand break if they occur close enough in 

time and space.

According to the LQ model, the cell survival curve is given by:

(1-1) S{D)=exp[-(ccD +J3D2)],

where, in the Chadwick and Leenhouts interpretation, a  [G y1] represents double strand 

breaks caused by a single radiation event, and /? [Gy' ] represents double strand breaks 

caused by the interaction of two single strand breaks from two different radiation events. 

The parameters a  and [5 describe a cell’s radiosensitivity.

5
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Since the original derivation of the LQ model by Chadwick and Leenhouts, it has 

been determined that the existence of a single DNA double-strand break does not 

necessarily lead to reproductive death of a cell. The current theory is that the number of 

chromosomal aberrations, which consist of clusters of double-strand breaks, correlates 

with cell survival when cells are irradiated.5 This observation does not change the form 

of the LQ model given by Eq. (1-1), but it does lead to a different interpretation of linear 

(a-type) and quadratic (/?-type) damage. The ar-type damage is now interpreted as the 

formation of complex chromosomal aberrations caused by one radiation event, while the 

yff-type damage now represents the formation of complex chromosomal aberrations 

through the interaction of DNA double-strand breaks caused by separate radiation events.

Alternatively, the a  and /? terms of the LQ model may be interpreted as lethal 

lesions, and sub-lethal lesions, respectively. This interpretation relates to the ability of 

cells to repair different types of damage. Lethal lesions are those that are completely 

non-repairable, while sub-lethal lesions could potentially either interact with each other to 

lead to a lethal lesion, or they could be repaired by the cell.

1.3.1 Dose rate effects and the LQ model

The number of lethal lesions produced depends on dose rate. The lower the dose 

rate, the higher the chances that sub-lethal lesions are repaired. The effect of dose-rate on 

cell survival curves has been observed experimentally,6 and the complete form of the LQ 

model explicitly includes this effect:

(1-2) S  = exp[- (ccD + G(//, T)/3D2)].

The repair constant for sub-lethal lesions is given by the parameter /u, and T  [s] is the 

time of irradiation (which depends on dose rate). The function G(jj,T) is known as the 

Lea-Catcheside dose-protraction factor, originally presented by Lea.7 It ranges from 0 at 

very low dose rates (all sub-lethal lesions are repaired before they can interact to form 

lethal lesions), to 1 at very high dose rates (all sub-lethal lesions interact to form lethal

lesions). For the case of constant dose rate and exponential repair with repair constant ju
1 7[s' ], this function is given by the expression:

6
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Following either the method proposed by Lea7 to derive this function, or that of 

Kellerer and Rossi,8 a dose-protraction factor may be derived for situations where the 

dose rate is not constant (for example, an exponentially-decaying dose rate, such as the 

one that would occur for brachytherapy treatments).

1.3.2 The relationship between the a ip  ratio and dose-fractionation for 
external-beam treatments

1.3.2.1 Effect of fractionation on cell survival curves

For a typical external-beam radiation therapy (EBRT) treatment, the total 

prescribed dose is delivered in a number of smaller daily fractions, usually around 2 Gy 

each. For non-fractionated dose delivery, the natural logarithm of the LQ survival curve 

is given by:

(1-4) In S = -(aD + pD 2),

and a plot of IilS vs. dose, D, is parabolic as shown by the red curve in Figure 1-1. Now 

suppose a total dose, D, is delivered in n equal fractions of dose d, with enough time 

between irradiations to allow complete repair to occur. In this case, we have:

(1-5) S = InS = -(and + find2).

Substituting D = nd in Eq. (1-5), we arrive at the following survival curve for a 

fractionated treatment:

(1-6) In S = - (a  + j3d)D = -aD 1 +  -

V a /P ,

When Eq. (1-6) is plotted as IilS1 v s . D, the result is a straight line and, in comparison to a 

non-fractionated treatment [Eq. (1-4)], the same total dose, D, will result in less cell 

killing. A smaller dose per fraction results in a larger survival fraction for a given total

7
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dose, D. The difference between fractionated and non-fractionated treatments is 

illustrated in Figure 1 -1, for aip  = 2 Gy, a  = 0.3, and d = 2 Gy/fr.
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Figure 1-1: Cell survival curves for a non-fractionated external-beam treatment (red) 
and a fractionated treatment (black). In this particular example, d = 2 Gy/fr, a  = 0.3, and 
aip  = 2. If time is allowed for all //-type damage to be repaired between fractions, each 
new fractional dose corresponds to ‘repeating’ the first part of the survival curve. This 
idea is represented by the dotted curve.

1.3.2.2 Fractionation sensitivity and the alfi ratio

The aip  ratio [Gy] describes the amount of curvature of a cell survival curve. A 

large cdfi ratio implies that the interaction of sub-lethal lesions plays only a minor role in 

cell killing relative to direct cell-killing through a-type damage. The opposite is true for 

tissues with a low alfi ratio -  the interaction of sub-lethal lesions to produce lethal 

damage dominates cell kill. In the latter case, repair should also have a greater role in 

cell survival.
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The sensitivity of a group of cells to the dose per fraction, d  is determined by the 

aip  ratio, and this concept is illustrated in Figure 1-2. In Figure l-2(a), three survival 

curves are plotted for the case of a!P = 10 Gy and a  = 0.3. The red dotted curve

No fractionation 
■ 4 Gy/fr 
■2 Gy/fr

cdP= 10 Gy-15

-20

AD = 9.9 Gy

-25

0

-10§
-15

-20

AD = 14.3 Gy
-25

Dose [Gy]

Figure 1-2: The effect of alfi on fractionation sensitivity. Survival curves are plotted 
for the case of no fractionation (red), d = 4 Gy/fraction (black) and d = 2 Gy/fraction 
(blue). Also shown is the difference, AD, between the total doses required to produce a 
given survival fraction of cells (laS = -25) for each of the two fractionation regimes. In 
(a), these curves are shown for an aip  ratio of 10 Gy, and in (b), they are shown for ajp=  
3 Gy.

9
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corresponds to the case of no fractionation. The black curve describes cell survival 

fraction for a dose per fraction of 4 Gy, and the blue curve describes cell survival fraction 

for d = 2 Gy/fraction. The dose difference, AD, between the two fractionated treatment 

curves at an iso-effect of InS = -25 is also shown; for alf5= 10 Gy, this quantity amounts 

to AD = 9.9 Gy.

Similar curves are shown in Figure l-2(b), but in this case the a l(3 ratio was set 

equal to 3 Gy. For this example, the dose difference to produce the same iso-effect of InS 

= -25 for the two different fractionation regimes is AD = 14.3 Gy. Tissues with a lower 

aip  ratio thus exhibit an increased sensitivity to sparing by dose fractionation.

1.3.2.3 Early and late-responding tissues

The effects of radiation on normal tissues can be characterized according to the 

time it takes for them to manifest. Early effects result from the immediate depletion of 

parenchymal and/or stem cells (the former are cells that directly perform a tissue’s 

function and the latter are those that proliferate to produce new parenchymal cells). Late 

effects result from the depletion of stromal cells (which support the function of 

parenchymal cells). The time at which the effects of radiation become apparent has been 

observed to depend on the rate of proliferation of the cells that comprise a tissue. Early- 

responding tissues tend to be composed of cells that proliferate rapidly; while late- 

responding tissues regenerate at a significantly slower rate. A given organ can exhibit 

both early and late effects following irradiation, depending on its composition.

It has been observed experimentally that late-responding tissues are more 

sensitive to changes in fractionation size than early-responding tissues.9,10 This 

observation may be explained by considering the cell survival curves, and the a lfi ratios, 

of late and early-responding tissues. Fowler11 published a paper in 1983 that reported 

measured a lfi ratios for a variety of late and early-responding tissues. The early- 

responding tissues tended to have higher cdf3 ratios (-10 Gy) than did the late-responding 

tissues (~3 Gy).

10
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The majority of tumours can be considered early-responding tissues -  they 

proliferate rapidly, and have relatively high aip  ratios. Thus, by delivering the 

prescribed dose for a radiation treatment in a number of daily fractions, the surrounding, 

late-responding normal tissues are allowed time for repair of sub-lethal lesions. For the 

case where the tumour being treated has a higher aip  ratio than the surrounding normal 

tissues, fractionated treatments with d  = 2 Gy/fr should facilitate maximum TCP with 

m in im u m  NTCP. This value for d was arrived at based on clinical experience, and is 

consistent with the aip  ratio description.

The aip  ratio is a fairly important quantity, as the difference between alP  for the 

treated tumour and that of the surrounding normal tissues is an important factor in 

determining an optimum fractionation regime.

1.4 TCP and NTCP models

While cell survival models are adequate for describing the results of lab 

experiments in which a number of cells are irradiated in vitro, more complex models are 

required to describe tumour control probability and normal tissue complication 

probability. In this section, the TCP and NTCP models referred to throughout the rest of 

this thesis are summarized.

1.4.1 TCP models

1.4.1.1 The individual TCP model based on Poisson statistics

The Poisson distribution,

(1-7) f ( n, v ) = '£ - e v,
n\

is a special case of the binomial distribution,

11
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The binomial distribution gives the probability of observing a total of n successes out of 

N  trials, where the probability of one success is p. The Poisson distribution may be 

applied when the number of trials, N, is very large, while the probability of one success, 

p , is very small. In Eq. (1-7), the mean (or expected) number of successes is given by v 

(= Np) and n still corresponds to the number of observed successes.

The individual TCP model is derived under the assumption that tumour control is 

achieved only by killing all tumour clonogens. 12 Let the total number of clonogens in a 

tumour be equal to No, and the probability of one clonogen surviving irradiation be equal 

to Ps(D), the cell survival fraction after a dose, D . In this case, we can assume that No is 

large, Ps(D) is small, and the product v = NqP^D) is finite. The probability of no 

surviving clonogens [n = 0 in Eq. (1-7)] after a tumour receives a dose, D  (i.e., the TCP), 

under the assumption of Poisson statistics, is given by:

where A [s'1] is the growth-rate constant.

Now assume that the treatment consists of n fractions of equal dose, d {nd = D), 

over time T, and that there is sufficient time between fractions for full repair of damage to 

occur. The cell survival fraction, Ps(D), is assumed to be well-represented by the linear 

quadratic formula [Eq. (1-1)]. In this case, Eq. (1-10) becomes:

For a constant dose per fraction, the growth constant can be scaled by the number of days 

per fraction, A' = AT/n. Under these assumptions, the individual TCP model can be 

written as:

(1-9)

Adding in a simple description for clonogen repopulation13 that takes place over the time 

of the treatment, T, the expression becomes:

(1-11)
TCPmd = exp[- N 0 exp(- aD -  /3dD)exp(AT)] 

= exp[- N 0 exp(- (a + j3d)D + AT)]

(1-12) TCPind = exp[- N 0 exp(- cc'D)] = exp -  N 0 exp -  a  + (3d------- D ,
I V v d ) )_

12
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where a  and ft  are the linear quadratic radiosensitivity parameters.

The validity of the Poisson TCP model was questioned by Tucker and Travis, 14 

and others3,15' 18 who explored the non-Poisson nature of TCP. Under certain conditions, 

however, it has also been shown15,19 that the distribution of the number of clonogen cells 

remaining at the end of a treatment is well-approximated by the Poisson distribution. In 

view of these results, and also because of the relative complexity of the non-Poisson TCP 

models, the individual TCP function that is derived on the basis of Poisson statistics is 

often used for clinical radiobiology purposes.

1.4.1.2 The population TCP model20

For tumours as well as for normal tissues, the dose-response exhibited by a 

clinical series is a population-based, rather than an individual, response. The inter

tumour heterogeneity within a clinical dataset leads to a dose-response curve that is 

flattened relative to the individual dose-response curve. An illustration of this concept is 

shown in Figure 1-3. The black TCP curves correspond to individual tumours with 

different radiosensitivity parameters, d .  The average of a number of these curves over a 

population distribution of radiosensitivity parameters gives the population TCP curve 

shown in blue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1-3: Individual TCP curves with different radiosensitivity values (black), and the 
population TCP curve that represents an average of many such individual TCP functions.

A population-based TCP model may be derived from an individual TCP model by

fundamental form of the population TCP model in this way by making use of the

following assumptions:

• There is no correlation between any of the parameters for an individual. Thus, the 

multidimensional probability distribution function (PDF) for all parameters can be 

represented as the product of the PDF for each individual parameter.

• Assume a lognormal PDF for No, and a Gaussian PDF for d .

• Assume that heterogeneity in the radiosensitivity parameter d  is much larger than 

that in the log of initial clonogen number, ln/Vo.
20Under these assumptions, the population TCP model is given by:

averaging Eq. (1-12) over distributions for d  and Nq. Carlone et al. derived a

(1-13)

where

14
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(1-14) 1 a'

and

(1-15)
r + lniV0

The parameters a ' and In N() represent population averages of the corresponding 

individual parameters, where

A similar expression may be derived for the limit where heterogeneity in clonogen 

number dominates.

1.4.2 NTCP models

For the TCP models presented above, it was assumed that the entire tumour is 

irradiated to a uniform dose, D. While this is not a bad approximation for tumours 

treated by means of a standard EBRT technique, this is not the case for irradiated organs 

at risk. Normal tissues are generally irradiated heterogeneously during radiation 

treatments. Thus, NTCP models must take nonuniform dose distributions into account. 

In addition to the heterogeneous irradiation patterns, many organs exhibit volume effects 

-  some organs will exhibit very few complications if the irradiated volume remains small, 

even if  that part of the organ receives a relatively high dose. NTCP models must also 

take these volume effects into account.

(1-16) — ~  Ha *  a  = a  + B d  .
d

The heterogeneity in a ' is o', and is given by:

15
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1.4.2.1 The Lyman21 (sigmoidal dose response) model

This is a phenomenological model that describes normal tissue dose-response 

using the following function:

NTCP = O r E U D -D 5 0A
mD,

(1-18)

where ® is the probit function, 

(1-19) o (x ) = - ^ =  Jexpj

and x -  (EUD -  D50)/mD50 .

50

- t 2 \ . 1dt = — 
2

l + erf /  x ^
T i

EUD is the equivalent uniform dose,22 which is defined as the uniform organ dose 

that would produce the same effect as the given heterogeneous dose distribution, as 

specified by a differential dose-volume histogram (dDVH) defined by the points {ZT, vy}.

The dDVH describes the distribution of dose in an organ at risk or a target volume. Dose 

is binned, and each dose bin contains the fraction of the total volume that receives a dose 

within the range of the dose bin. The EUD or generalized mean dose GMD, which in this

case is chosen to represent the EUD, is calculated from the dDVH as follows: 23-25

( 1-20) EUD = GMD = 2 > a
1/a

\ a

V J

There are three parameters that determine the response of normal tissues to radiation 

according to the Lyman model: m, a and D5 0 . The dose-volume dependence of a tissue is 

determined by the parameter a, m is related to the slope of the dose-response curve, and 

D50 is the (whole-organ) dose that gives a 50% complication rate and thus determines the 

position of the response curve. The Lyman model is a population model -  D 50 is 

assumed to be normally distributed among a population of patients, with standard 

deviation mDso.

16
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1.4.2.2 The critical volume model26-28

The derivation of the critical volume NTCP model is based on biological 

considerations, unlike the Lyman model. Withers et al. introduced the idea that organs 

are composed of a collection of functional subunits (FSUs) that carry out an organ’s 

function. In this description, an organ is able to function as long as a certain number of 

its FSUs are viable. In other words, the organ has a number of redundant FSUs, all of 

which must be destroyed for its function to be compromised -  this collection of FSUs is 

referred to as the functional reserve. Organs that require all of their FSUs to function 

(i.e., those that have a functional reserve of zero) are referred to as serial organs; an 

example is the spinal cord. Organs that have a functional reserve consisting of two or 

more FSUs are referred to as parallel.

The critical volume model expresses this description mathematically. It is derived 

based on the following assumptions:

• Normal tissue is composed of FSUs.

• The distribution of organ function among its FSUs is homogeneous. That is, each

FSU has an identical role in carrying out organ function, regardless of its location

within the organ.

• An FSU is destroyed if  all cells within it are destroyed.

• The radiation response of each cell within an FSU is independent of the response of 

other cells.

• The radiation response of each FSU is statistically independent.

• A normal-tissue complication occurs if  a certain number, Mfsu, out of a total of N Fsu  

FSUs are destroyed, or equivalently, if a certain fraction of the FSUs, fxcr, is destroyed 

(where = M f s u / N f s u )-  The parameter f ic r  is called the relative critical volume. For 

parallel organs, M f s u  is some number greater than one. The critical volume model 

may also be applied to serial organs28 with M f s u  =  1 • This special case is referred to 

as the critical element model. The discussion in this section will be limited to the 

critical volume model.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4.2.2.1 Individual critical volume model

For an individual, the critical volume NTCP is given by the expression:

(1-21) NTCP- =  O  ^ d ^ cr ̂indNTCPind =  O

where N f s u  is the total number of FSUs that comprise the organ, p cr is the critical relative 

volume, Jid is the relative mean damaged volume,

The points y, and Dj represent a differential DVH. PfsiAPj) is the probability of 

damaging a functional subunit when it is irradiated to dose Dj. Here, it is assumed that 

the damage to an FSU is described by a probit function parameterized using position and 

normalized slope parameters -  D™u and y™u ,

1.4.2.2.2 Population critical volume model

Clinical data describe a normal tissue dose-response that is averaged over a 

population of individuals. A more appropriate model that is applicable to realistic dose- 

response data can be derived by averaging the individual critical volume model over a 

population (as was done for the population TCP model), and thus taking inter-patient 

variability into consideration. Further assumptions made to arrive at a population critical 

volume model are:

• The individual model can be approximated as a step function:

(1-22) Pd ~ vyPfsu(Pj\
j

and is the standard deviation of p d,

(1-23)

(1-24)

18
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[0 L lj  <  U
(1-25) NTCPind= \

I 1 Md *  P er

• Inter-patient variability is dominated by variation in relative critical volume, ficr, and 

thus any other sources of heterogeneity can be neglected.

• Values for /dcr are log-log normally distributed in the population (because this 

parameter is bounded by [0 ,1 ]) with -  ln(- In//cr) having a standard deviation of

^ ~ ~ ^ r / P c r l n P c r -

The population critical volume model, under these assumptions, is:

(1-26) NTCP„  = - ln ( - l" A ,)+ 1 n ( - ln fe ) l
V

where /ucr in the above expression now represents the average relative critical volume for 

a population.

1.5 Incorporation of radiobiological models into the treatment planning 
process

An essential part of radiation therapy is treatment planning. This process begins 

with the delineation of target volume(s) along with organs at risk (OARs) based on 

patient images (e.g., a computed tomography (CT) dataset). Beam energies, sizes, and 

locations are then determined and a dose distribution calculated. Through this process, a 

treatment that should result in the delivery of the prescribed dose to the tumour is 

designed by ensuring coverage of the planning target volume (PTV). The PTV includes 

the visible tumour (gross tumour volume -  GTV), any microscopic disease that may be 

present (clinical target volume -  CTV), and a margin that takes into account patient 

movement, positioning errors, and mechanical and dosimetric uncertainties. Normally 

the treatment plan is designed so that the PTV will be irradiated as uniformly as possible; 

under-dosed areas may lead to failure to achieve tumour control. At the same time, the 

dose to the surrounding OARs is minimized.

19
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Modem advances in imaging, computer technology, and radiation delivery 

techniques have allowed for the development of three-dimensional image-based 

conformal radiotherapy (3DCRT). This is accomplished through the use of 3- 

dimensional treatment planning systems and beam-shaping devices such as a multi-leaf 

collimator (MLC). The treatment plans for 3DCRT can be produced by means of 

forward or inverse planning.

In forward planning, the planner defines all beam parameters (directions, weights, 

blocks, wedges, etc.) and the field shapes (selected to conform to the PTV). Dose is then 

calculated and evaluated, and adjustments to the beam parameters are made until a 

satisfactory dose distribution is produced. With inverse planning, the number of beams 

and their directions are selected. The desired dose distribution is chosen by defining a 

number of constraints (for example, limits placed on the maximum OAR dose or the 

minimum PTV dose), and then a computer algorithm is used to optimize beam 

parameters to obtain a dose distribution that follows the specified constraints as closely as 

possible.30 This is the treatment planning process that is most often used to produce plans 

for intensity-modulated radiation therapy (IMRT). With IMRT, highly conformal dose 

distributions are delivered by varying the intensity across each beam’s field (the 

nonuniform beam intensity is accomplished by varying the MLC leaf positions during a 

treatment). The varying intensity of each IMRT beam is represented by different beamlet 

weights in a treatment planning system, and it is these weights that are optimized through 

the inverse planning process.

1.5.1 Inverse planning optimization by means of physical dose-volume 
constraints

Modem treatment planning systems handle inverse planning optimization by 

means of physical dose-volume constraints. Central to this process is the specification of 

an objective, or cost, function. This function represents the ‘goodness’ of a treatment 

plan, and its numerical value is calculated from a weighted average of the differences 

between the delivered and prescribed doses in every volume of interest delineated in the

20
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treatment plan.30 The objective function is minimized until the DVHs for the target and 

relevant normal tissues come as close as possible to satisfying each dose-volume 

constraint for the treatment. An example of the integral DVHs for an optimized head and 

neck plan (created using a sample dataset and the Pinnacle treatment planning system) is 

shown in Figure 1-4, along with the specified dose-volume constraints. The constraint

Dose Volume Histogram

O.S

0.3

0.2

0.1

Dose (cGy)

Figure 1-4: Optimized integral dose-volume histograms for the target (red), the spinal 
cord (blue) and a volume representing the cord plus a margin (green) of a head and neck 
treatment plan. Constraints for each volume are represented by circles of the same 
colours.

for the target (red) was to deliver the prescription dose of 70 Gy uniformly to 100% of 

the target volume. A constraint was also defined for the spinal cord (blue) — the 

maximum dose to this volume should not exceed 40 Gy. Finally, a constraint was 

defined for the volume representing the cord plus a margin (green) -  no more than 63% 

of the organ is to receive a dose that exceeds 34.5 Gy.
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Physical dose-volume constraint points for normal tissues are usually selected 

based on clinical experience.

1.5.2 Radiobiological optimization

The goal of treatment planning is to minimize NTCP while maximizing TCP, so 

the use of objective functions that are based directly on biological models promises a 

more direct approach than optimization by physical dose-volume constraints. A number
« • • • * 3 1of authors have published papers on inverse planning based on biological optimization.

41

Pure biological optimization (maximizing TCP for the target and minimizing 

NTCP for the outlined critical structures) turns out to be problematic in practice. For 

typical treatment plans, not all critical structures are outlined; only those that are in close 

enough proximity to the treated site that they are at risk of receiving a significant dose. 

Ideal tumour control is achieved when the TCP function is equal to 1, and this maximum 

is only reached when the tumour dose is infinitely large [see Eq. (1-13), for example]. 

Thus, in an attempt to maximize TCP, the inverse planning algorithm delivers very large 

doses to the tumour, through the normal tissues that were not outlined for optimization
36  •purposes. This phenomenon is demonstrated in Fig. 3 of de Meerleer et al., and is 

discussed in Stavrev et a l 40

Because of this difficulty associated with pure biological optimization, a hybrid 

physico-biological approach has been suggested.35,36,40 For this type of inverse planning 

optimization, physical dose-volume constraints are set for the tumour, and NTCP is 

minimized for each of the critical structures. Another approach that has been explored is 

optimization based on EUD [Eq. (1-20) ] . 22,42"45 In this case, constraints are specified 

directly for the EUDs of the target and normal tissues. Use of the EUD, similarly to the 

use of NTCP, takes inhomogeneous dose distributions into account, eliminating the need 

for multiple dose-volume constraints for normal tissues.

Despite the advances made in the area of biological optimization, clinical inverse 

planning is currently still based on physical dose-volume constraints. Optimization based
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on biological objectives is generally discouraged, based on the unknown predictive power 

of the available models.46,47 The main contributor to this problem is the incomplete and 

scarce nature of the available clinical data.

1.5.3 Ranking of treatment plans and evaluating potential dose escalation 
benefits

The advent of 3DCRT has made it possible to increase the prescribed target dose 

for some tumour sites, and this has led to a number of clinical trials investigating the 

potential benefits of dose escalation (e.g. prostate48' 52 and lung53,54).

TCP and NTCP models can theoretically be used for radiation therapy (RT) plan 

ranking. This follows from the probabilistic nature of cell kill by radiation and also from 

the fact that we are dealing with a population of patients -  hence only the probability of a 

given response could be estimated. Currently, worldwide, the process of plan ranking 

relies more on the experience of radiation oncologists than on radiobiological criteria 

expressed in mathematical forms. Unfortunately, TCP and NTCP models currently have 

limited use in treatment plan ranking, although a number of software tools have been 

developed for this purpose.55' 58 The usual reasoning of those who are opposed to the 

application of TCP/NTCP models in the evaluation and ranking of clinical treatment 

plans is that the actual predictive power of these models is unknown, due to the scarcity 

and relatively poor quality of the available clinical dose-response data.

On the other hand, models based on the LQ theory for cellular response and the 

notion that TCP is equal to the probability of zero clonogen survivors (introduced by
19 9 13 5QMunro and Gilbert ) have been shown ’ ’ to describe dose-response data well. For the 

purposes of plan ranking, as shown by Stanescu et al.,60 there is no need to know the 

exact parameter values. If, for each parameter value, we have TCP(planl)>TCP(plan2), 

then the second plan is inferior to first one. This notion could be easily generalized for 

NTCP and for a combined TCP/NTCP plan ranking cost function. Nowadays, we have 

sufficient information indicating that the TCP/NTCP models at our disposal adequately
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describe the existing data. Thus, only a general knowledge of TCP/NTCP models is 

necessary for the purpose of plan ranking.

1.6 Estimating the a/fi ratio from clinical dose-response data

While TCP curves with fitted parameters may be useful for treatment plan ranking 

and evaluating dose escalation benefits, it is generally not possible to obtain estimates for 

radiobiological parameters from fits of either the individual or the population TCP model 

to clinical dose-response data. If the individual model is fit to a clinical (i.e., a 

population-averaged) dose-response dataset, the estimates for the parameters d  and ln/Vo 

turn out to be unrealistically low .61,62 For the population TCP model, it is generally not 

possible to obtain unique radiobiological parameter estimates, due to the fact that many 

different combinations of parameters fit the data equally well.

However, it has been postulated that the same difficulties involved in determining 

individual radiobiological parameters may not apply to parameter ratios, such as a!p. As 

previously mentioned, the alft ratio is a clinically-important quantity, as it determines the 

effect of dose per fraction on the tumour and normal tissue responses. This quantity has 

been estimated for cell lines from a variety of tumours and normal tissues using linear 

quadratic theory. 11 Yet, it is only relatively recently that attempts have been made to 

estimate the alfi ratio for tumours by means of TCP models and clinical dose-response 

data.

One of the most influential papers along these lines was published by Brenner and 

Hall63 in 1999. In this work, the authors noted that the cell proliferation rate for prostate 

cancer is quite slow in comparison to other cancers. Because cell proliferation rate 

correlates with the aip  ratio, the authors proposed that alfi for prostate cancer is most 

likely low, as is the case for late-responding normal tissues. Thus, prostate cancer should 

respond to fractionation in a similar way as do late-responding normal tissues, which 

would mean that the differential response of tumour and normal tissue would disappear. 

In this case, then, the sparing of normal tissues by reducing dose per fraction becomes 

less important, assuming the total dose delivered is adjusted to take into account fraction
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size. In principle, a hypofractionated treatment (i.e., a larger dose per fraction with a

reduced total delivered dose) for this site should be equally effective as the standard

treatment involving 2 Gy per fraction. Such a treatment regime would be more efficient,

and beneficial to the patient, as fewer hospital visits would be required.

As a supporting argument to the hypothesis of a lower prostate alfi ratio, Brenner

and Hall estimated this quantity by means of the individual Poisson-based TCP model.

To do so, they fit two different dose-response datasets for prostate cancer, each with

different fractionation regimes. One dataset was for an external-beam radiation therapy

(EBRT) dose escalation trial, with the standard dose per fraction of 2 Gy.64 The other
1dataset corresponded to brachytherapy treatment by permanent implantation of I 

seeds.65 Since the dose rate for the latter treatment is very low, one may assume that all 

sub-lethal lesions are repaired, and that the dose-protraction factor in Eq. (1-2) is equal to 

zero. It can also be assumed for this particular cancer that repopulation is negligible. 

Thus, if the individual TCP model [Eq. (1-12)] is fit to the brachytherapy dataset, 

estimates for a  and ln/Vo may be obtained. If the same model is fit to the EBRT dataset, 

the parameters d  = a  + fid and lnVo may be estimated. The aip  ratio may then be 

estimated from the formula:66

d-27,
p  a  - a

From the estimates for a  and d ,  Brenner and Hall deduced that the aip  ratio for prostate 

cancer is 1.5 Gy [0.8, 2.2],

The Brenner and Hall paper initiated a significant amount of literature activity 

related to the determination of ajp  for prostate cancer. Fowler67 conducted a similar 

analysis as did Brenner and Hall, using a more extensive dataset, and likewise arrived at a 

low value for aip. Others68' 73 also took an interest in estimating a lp  by means of TCP 

models and clinical data, and the collective evidence of a low aip  ratio has led to the 

initiation of a number of clinical hypoffactionation trials for this treatment site,74' 78 

including one at our own institution.

Estimating the a lp  ratio by means of the individual TCP model requires the 

assumption that parameter ratios are insensitive to the presence of inter-tumour 

heterogeneity. Very few investigations on the influence of inter-tumour heterogeneity on
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79parameter ratio estimates have been carried out. Dubray and Thames conducted 

numerical experiments in which the effect of heterogeneity in clonogen number on 

parameter ratio estimates was studied, and found to have very little influence on the 

estimated parameter ratio value. Less detailed experiments were conducted for other 

forms of inter-tumour heterogeneity. Carlone et al.66 investigated the difference between 

prostate a!(3 estimates obtained using a population and an individual TCP model. To do 

so, they utilized clinical dose-response data for two EBRT dose escalation trials64,80 and 

one 125I dose-response dataset.65 It was found that alfi estimates from the population 

TCP model had much larger confidence intervals than the estimates from the individual 

TCP model. The clinical dose-response datasets were of too poor a quality to determine 

whether or not a difference in the best-fit individual and population alfi estimates exists -  

the 95% confidence interval from the population alfi estimates overlapped with those of 

the individual estimates.

1.7  Thesis objectives

Although limitations to the application of radiobiological theory to clinically- 

relevant problems exist, clinical radiobiology is an important field and has the potential to 

lead to advances in radiation therapy. This thesis investigates two different applications 

of TCP/NTCP models to clinically-relevant problems. The first involves the 

incorporation of models into the treatment planning process, and the second involves the 

estimation of clinically-relevant parameter ratios from TCP models.

1.7.1 Incorporation of NTCP models and parameter sets into modern 
treatment planning systems

As previously mentioned, current treatment planning systems do not utilize 

biological optimization for inverse planning, due to the lack of a sufficient amount of 

clinical dose-response data to describe NTCP. However, in some institutions, physical

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dose-volume constraints are chosen based on existing dose-response data. That is, the 

‘raw’ dose-response data points are applied directly as physical constraints for normal 

tissues. This approach is problematic, and will always lead to higher NTCPs than 

desired, as will be explained in further chapters.

The first main objective of this thesis is to develop a method that allows one to 

calculate physical dose-volume constraint points for normal tissues based on existing 

NTCP models and parameter sets. These constraint points have radiobiological 

significance, and may be used by the currently-available treatment planning systems for 

inverse planning optimization. It is also shown that, while the calculated constraint 

points are capable of producing dose distributions that lead to sufficiently low NTCP, the 

application of physical constraint points for inverse planning also excludes a number of 

DVHs that lead to viable NTCP values.

1.7.2 Analytical investigation of the effects of inter-tumour heterogeneity on
parameter ratio estimates

Very few studies have been undertaken thus far to determine whether the alp  

ratio estimated from an individual TCP model is different from that estimated from a 

population model, yet the majority of works in which this ratio is estimated by means of 

TCP models and clinical dose-response data involve the assumption that inter-patient 

heterogeneity does not influence parameter ratios.

The second main objective of this thesis is to determine whether this assumption 

is, in fact, reasonable. Specifically, the difference between the aip  estimate that would 

be obtained from the individual TCP model and from the population TCP model will be 

analytically investigated. Two cases will be considered -  the case where heterogeneity in 

clonogen number is the dominant form within a clinical dose-response dataset, and the 

case where heterogeneity in radiosensitivity dominates. All analytic results will be tested 

through numerical simulations involving pseudo-data.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.8 Outline

Chapter 2 outlines a method for calculating physical dose-volume constraints for

the purpose of inverse planning optimization, based on existing NTCP models and

parameter sets. This method is called reverse mapping of NTCP into DVH space.

Constraint points are calculated for several organs, using two different NTCP models and

parameter sets based on the same dose-response data. The ability of physical dose-

volume constraint points to limit NTCP in OARs is also investigated theoretically, by
81means of the reverse mapping method. This chapter was published in Medical Physics 

in 2006. In Chapter 3, the proper theory of DVH generation is presented. Probability 

distributions are derived that describe the density of random DVH curves passing through 

a given point in DVH space, and these distributions are used to develop a random DVH 

generator. The DVH generator is then compared with two other, simpler ones. A version 

of Chapter 3 was published in Medical Physics in 2006. In Chapter 2, a curve in DVH 

space was defined that we refer to as the iso-NTCP envelope. It was numerically 

observed to have the property that any DVH which is tangential to or crosses this curve 

will have an NTCP greater than or equal to the one used to construct the curve. Chapter 

4 presents the theoretical proof of this property, for three different NTCP models. A
83version of this chapter has been published in Radiology & Oncology in 2007 and 

previously84 in Medical Physics as an AAPM (American Association of Physicists in 

Medicine) abstract.

In Chapter 5, the functional forms of the individual and population-averaged TCP 

models are compared. It is determined that each model is functionally similar -  if  they 

are both fit to the same clinical dose-response dataset, nearly identical estimates for the 

geometric parameters yso and Dso would be obtained. The conceptual inadequacy of 

applying the individual model to a population-averaged dataset is discussed. Also, the 

possibility of applying a modified version of the individual TCP model to a population of 

heterogeneously-irradiated tumours is discussed, for the purposes of estimating geometric 

parameters. A version of this chapter was published85 in Radiology & Oncology in 2007, 

and has previously86 been published in Medical Physics as an AAPM abstract.
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In Chapter 6 , the functional similarity between the individual and population- 

averaged TCP models is used to derive analytic relationships between the alfi ratio 

estimates that would be obtained from both models if  they are fit to the same clinical 

dataset. It is shown that, when heterogeneity in radiosensitivity is the dominant form 

among a patient population, the individual and population TCP models will lead to 

different alfi estimates. A version of this chapter has been accepted for publication by 

the International Journal o f Radiation Oncology Biology Physics, and is currently in
87press.

In Chapter 7, numerical simulations with pseudo-data are conducted to estimate 

the statistics that would be required of a ‘typical’ clinical dose-response dataset if  it were 

to be used for estimating the parameters D50 and /so from the population TCP model. 

Specifically, the number of patients for each dose point in a dose escalation trial that is 

required to lead to reasonable 95% confidence intervals for the fitted parameters is 

estimated.

In Chapter 8 , conclusions are presented, and potential areas o f future work are 

discussed.
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Chapter 2 A theoretical approach to the 
estimation of dose-volume constraints and their 
impact on dose-volume histogram selection

A version of this chapter was published as:

C. Schinkel, P. Stavrev, N. Stavreva, and B. G. Fallone, “A theoretical approach to the 
problem of dose-volume constraint estimation and their impact on the dose-volume 
histogram selection,” Med. Phys. 33, 3444 -  3459 (2006)

2.1 Introduction

The most advanced treatment planning systems to date make use of inverse 

planning software in order to produce plans that will deliver a high dose to the target 

while minimizing dose, and thus normal tissue complication probability (NTCP), to the 

surrounding structures. This is accomplished through the specification of physical dose- 

volume objectives and constraints, and there are often multiple constraints selected for a 

given organ at risk. These constraints are often selected based on clinical experience. 

However, in many institutions, they are chosen based on the dose-response values 

published by Emami et al} This work is the first and remains the largest compilation of 

dose-response data to date. It contains estimates of doses that lead to 5 and 50% 

complication probability for partial volume irradiation of a variety of organs. Tolerance 

doses are given for relative irradiated volumes of lA, 2A, and 1. It is assumed that, in each 

case, a homogeneous dose is delivered to the given relative volume while the rest of the 

organ receives no dose. Thus, any dose-response data from Emami et al. are equivalent 

to single-step dose-volume histograms (DVHs). During the majority of treatments, the
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organs at risk are irradiated heterogeneously as opposed to homogeneously. Therefore, 

using any of the Emami 5% complication rate dose-volume points, or combinations of 

them, as constraints would likely fail to produce a treatment plan that would yield the 

desired NTCP of 5% or less.

To avoid the difficulties that could result from using raw clinical dose-response

data (such as the Emami et al. estimates) directly as constraints, one might consider using
2 6biological, rather than physical, inverse planning optimization. ' That is, specify a 

constraint NTCP value for each organ at risk instead of a physical dose-volume point. 

Then the dose to the organ would be limited based on NTCP models and parameters 

reflecting clinical dose-volume characteristics of different tissues. Inverse planning can, 

in principle, use NTCP constraints directly. For example, an intensity modulated 

radiation therapy (IMRT) plan can vary the beamlet weights to satisfy both the physical 

and radiobiological constraints simultaneously.2"4,6 Although biological optimization is
7 8not a new concept, ’ it is not currently available as an option for inverse planning on 

commercially available treatment planning systems. The main reason why biological 

constraints are not routinely used for inverse planning is the lack of a sufficient amount of 

clinical dose-response data on which to base NTCP model parameter estimates.9"11 

Misinterpretation of model formalism and assumptions also contributes to this problem. 

Due to the incompleteness of the clinical dose-response data available currently, 

biological optimization for inverse planning is generally discouraged. 10,11 This is a 

puzzling fact, considering that almost three decades have passed since the introduction of 

the concept. The work of Emami et al. unfortunately did not provoke an appropriate data 

gathering “rush,” which would have led to the creation of sufficiently large data sets. 

Different researchers have started analyzing small data sets of real clinical data, and 

alternative sets of parameter estimates for different NTCP models have been reported. 12"27 

Some of the reports, though, use data obtained under different conditions (tumour radio- 

sensitizing, 13"15 surgical or non-surgical intrusion,28 dose-volume versus dose-wall
29 31histograms, " etc.). Therefore, care should be taken that the application of these

■39

parameter estimates be consistent with the conditions under which they were derived.

The purpose of applying physical dose-volume constraints is to produce a plan 

that results in a low complication probability, and the problem remains that the Emami
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dose-volume points are sometimes used as constraint points. In this chapter, we present a 

method that enables the calculation of physical dose-volume constraints that are based on 

NTCP models for the purpose of inverse planning optimization. Specifically, we apply a 

Monte Carlo method of reverse NTCP mapping to calculate dose-volume constraints for 

16 organs for which parameter value information is available.34,35 The method makes use 

of the random DVH generator introduced in Chapter 3 and our companion work.36 The 

NTCP for each randomly generated DVH is estimated by application of the Lyman32,37
•JQ  A*\

and the critical volume NTCP models. The investigation of the impact of these two 

well-known NTCP models on dose-volume constraint estimation is the second purpose of 

this study. Dose-volume constraint points are calculated by interpolating from the 

average of all DVHs with NTCP = 5 ± 0.5%. It is shown that these points have the 

potential to increase the probability that the inversely planned treatment will lead to an 

acceptably low NTCP for the organs at risk.

2.2 Background

We give some definitions and a short discussion of the models and parameters 

necessary for the understanding of our present study.

2.2.1 Some definitions

Integral dose-volume histogram: defines the volume Vint, which is irradiated to at least a 

dose D :

(2-1) r j D ) =  |0 [D (r )-D ]r fJi=,
Structure Of Interest

where © is the Heaviside step function and D(r) is the dose distribution in the structure 

of interest.43 From the definition of an integral DVH it is clear that any monotonically 

decreasing function in the region [0 ,1 ] x [0 ,1 ] could represent a normalized integral 

DVH.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Iso-NTCP envelope: The curve v(D) defined by the relationship NTCP(Z), v) = a, where 

D is the dose of partial homogeneous irradiation of the relative volume v will be called an 

a-iso-NTCP envelope.

The ar-iso-NTCP envelope has a very interesting property: If a DVH is tangential to or 

crosses the envelope, so that a part of the DVH curve happens to be above it, the NTCP 

in which this DVH results is higher than a.

£ dose-volume constraint vicinity: Consider an integral dose-volume histogram, DVHk,

with dose-volume points (D, v) and a maximum dose of Z)max̂  at v = 0. If, for a particular 

dose-volume constraint point {vi,D j} (i = 1 , ..., nc), the following condition is met:

then this DVH belongs to the e-vicinity of the given constraint and is said to satisfy the e-

(2-2)

criterion. This definition selects functions that are crossing a circle of radius e around a 

constraint point.

2.2.2 NTCP models

2.2.2.1 The Lyman (Sigmoidal dose response) NTCP model

he Sigmoidal dose response (SDR) model, first introduced by Lyman, 37 describes 

the dose-response of normal tissues as follows:

(2-3) NTCP = <D
"E U D -D 50"

where O is the probit function

(2-4)

and x = (EUD -  D50)/mD50 .
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The equivalent uniform dose (EUD) 44 is defined as the uniform organ dose that would 

produce the same effect as the given heterogeneous dose distribution, as specified by a 

differential dose-volume histogram (dDVH) defined by the points {ZT, v; }. The EUD or

generalized mean dose (GMD), which in this case is chosen to represent the EUD, is 

calculated from the dDVH as follows:45'47

(  Y
(2-5) EUD = GMD = Y*vjDT  '

\  J

There are three parameters that determine the response of normal tissues to radiation 

according to the Lyman model: m, a, and D50. The dose-volume dependence of a tissue is 

determined by the parameter a, m gives the slope of the dose-response curve, and D 50 is 

the dose that gives a 50% complication rate and thus determines the position of the 

response curve.

2.2.2.2 Critical volume population model

•50 -JQ a 1
The critical volume (CV) model ’ ’ is based on the idea that organs are 

composed of functional subunits (FSUs) and that a complication occurs when a certain 

number of these FSUs are destroyed. The response of different tissues is determined by 

the application of binomial statistics. Here we use the CV population NTCP model,35’42’48 

which takes into account inter-patient variability in normal tissue response and describes 

dose-volume response averaged over a population of individuals:

f  ln ( - \njid)+ ln (-In fxcr)

-V uJV cM V cr
(2-6) NTCPpop * O

v

where

(2-7) Jl, = X  14 ° ,  / D ™  ))■
j

For the CV population model, it is assumed that the interpatient variability is limited to 

the parameter ficr (the mean critical relative volume). The parameters for this model
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include the mean critical volume ficr, the population variation in this parameter a^ , the 

position of the FSU dose response D??u , and the slope of the FSU dose response y??u .

2.2.3 Model parameters

For the calculations in this chapter, we use the CV population model parameters 

from Stavrev et al?5 These authors estimated parameters that are based on the dose- 

response estimates of Emami et al? for each of 16 types of normal tissue (see Table 2-1). 

For the SDR model proposed by Lyman, we use parameters derived by Burman et al?4 

that are also based on the Emami et al? data. Burman et al?4 provided SDR parameter 

estimates for 27 organs in total (a list of these organs is given in Burman et al.). For this 

work, our database consists of 16 organs for which both SDR and CV population NTCP 

model parameters exist.

2.3 Method

2.3.1 Reverse mapping o f NTCP onto DVH space -  a theoretical approach 
for dose-volume constraint estimation

In general, the reverse mapping method is carried out as follows:

i. Generate monotonically decreasing dose-volume histogram functions.

ii. Calculate the NTCPs corresponding to these dose-volume histogram functions.

iii. Identify DVH functions resulting in NTCP values falling in a user-specified NTCP 

interval. Plot all these DVHs.

iv. From iii, calculate the probability (frequency) of a DVH, within a user-specified 

NTCP interval, to pass through a given point in the dose-volume histogram space.

v. From iv, calculate the averaged and the most probable DVHs. These two curves may 

each serve as a source of dose-volume constraint points, for the process of inverse 

treatment planning by physical objective functions.
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2.3.1.1 Generation of random DVHs

The first step of the reverse mapping process involves the generation of N d v h  

random integral DVH curves that decrease monotonically from a relative volume of 1 and

a relative dose of 0 to (0,1). The proper theory of DVH generation is presented in
1/:

Chapter 3 and Markov et al. In that chapter it is theoretically determined that the 

distribution of the number of monotonically decreasing functions passing through a point 

in the dose-volume histogram space follows the hypergeometric distribution, which is 

given in Sec. 3.3.1. The generator that we use in this simulation is based on the random 

walk theory and simulates in a random fashion trajectories corresponding to 

monotonically decreasing functions (finite series) situated in the unit square [0 ,1 ] x [1 ,0 ] 

subject to the hyper-geometric distribution.

2.3.1.2 Scaling the random DVHs

To calculate NTCP, the relative dose values of the integral DVHs must first be 

scaled to absolute doses. That is, we must multiply the relative dose points of each 

randomly generated integral dose-volume histogram by a maximum dose value 

appropriate to each organ of interest. The maximum dose of the kih randomly generated 

DVH, DVHk (where k  = 1, ..., N d v h )  is designated as and is calculated using the

expression:

(2_8) m̂ax./t = D5 + nk {D99 — D5),

where tit is a uniform randomly generated number (between 0 and 1). We have chosen 

the uniform distribution for m* because there is no reason to believe that the possible 

maximum doses should have any other distribution. The dose values D 5 and D99 are 

those that give a NTCP of 5 and 99%, respectively, assuming uniform whole-organ 

irradiation, and are thus different for each of the 16 organs. The reason for the choice of 

D5 and £>99 will be explained below. Two sets of Z) 5 and £>99 values were calculated: one 

based on the CV population model and one based on the Lyman model. Table 2-1 shows 

a list of all 16 organs along with the calculated £>5 and £>99 values. Examples of typical
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clinical Dmax ranges, along with the treatments associated with those values, are shown 

for comparison. It should be emphasized that the clinical values for the minimal and 

maximal doses do not necessarily correspond to NTCPs of 5 and 99%. Instead, the 

clinical values for these parameters indicate the observed range of maximum organ dose 

during actual treatments. To avoid confusion, we will hereafter refer to these clinical 

values as Diow and Dhigh. Note that the upper and lower limits of clinical organ dose 

(Table 2-1) are sometimes extreme in comparison to the calculated limits (for example, 

an organ may have a typical clinical D/ovv of 0). Clinical maximum organ dose for a given 

treatment depends on factors such as where the planning target volume (PTV) is located 

in relation to the normal tissue of interest and the maximum dose prescribed to the PTV. 

Organs that have a clinical Diow value of zero (Table 2-1) reflect the fact that for the type 

of treatment listed, they may not be within the radiation field at all (the esophagus, for 

example). On the other hand, there are some normal tissues that have a good chance of 

receiving a significant dose during treatment of a tumour in their vicinity (the lung, for 

example, will always receive a relatively high maximum dose during lung tumour 

treatments).

For the purpose of customization and to avoid biasing between the results for 

different organs, we have chosen to use the calculated D 5 and D99 to define the range of 

A n a x  instead of the clinical values. The minimum value of D5 was chosen arbitrarily to 

eliminate the generation of DVHs with unrealistically low NTCP. Also, in half of the 

organs (Table 2-1), the clinical Diow values are relatively close to D 5 . Ideally, we would 

like to generate a decent number of low-NTCP DVHs to choose the constraints from, 

because our ultimate goal is to generate constraint points that will have a good chance of 

producing a clinically acceptable NTCP. We realize that, for some sites, the range of 

maximum delivered dose may be significantly different than D 5 -  D99. This case is also 

investigated here, namely the impact of Dmax range on the dose-volume constraint 

estimation.

In addition, part of this work involves grouping the randomly generated DVHs 

into intervals according to the resulting NTCP values from each of the two different 

models, and then calculating the averaged DVH for each NTCP interval (intervals are 0 -
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Table 2-1: Estimates for the clinical maximum dose range to 16 critical structures (Diow, 
Dhigh) that typically occur during the listed treatments (values based on treatments given 
at the Cross Cancer Institute). Also shown are values for the maximum dose range (Ds 
and D99) calculated according to both the Lyman and CV population models. The 
parameters D$ and D99 are used to scale randomly-generated DVHs appropriately to 
calculate constraint points using the reverse mapping method. The following 
abbreviations are used: CNS -  central nervous system; PTV -  planning target volume; 
H&N -  head and neck.

Clinical Lyman CV Pop.

Organ Treatment Type D low D  high D s D 99 D 5 D 99

(Gy) (Gy) (Gy) (Gy) (Gy) (Gy)
Lung Radical lung treatment (60 Gy to PTV) 60 65 17.3 34.8 18.7 46.5
Liver Abdomen - eg stomach cancer (45 Gy to PTV) 30 50 30.1 54.0 30.2 52.0
Brain CNS - eg Glioblastoma (60 Gy to PTV) 60 65 45.2 80.9 45.8 85.1
Heart Radical lung treatment (60 Gy to PTV) 0 60 40.1 59.2 40.6 61.0
Kidney — — — 23.4 34.5 2 2 . 8 40.0
Esophagus Radical lung treatment (60 Gy to PTV) 0 65 55.7 85.4 56.2 82.4
Stomach Abdomen - eg stomach cancer (45 Gy to PTV) 40 55 50.0 8 6 . 2 53.0 80.7
Brachial plexus Radical lung treatment (60 Gy to PTV) 0 50 60.2 95.9 60.6 87.4
Bladder Prostate (74 Gy to PTV) 70 76 65.5 100.5 65.8 98.3
Mandible H&N (70 Gy to PTV) 50 75 60.2 88.7 60.8 83.5
Brain stem CNS - eg Glioblastoma (60 Gy to PTV) 0 55 50.0 8 6 . 2 49.6 87.1
Larynx H&N (70 Gy to PTV) 55 75 70.1 94.0 70.6 91.1
Small intestine Abdomen - eg stomach cancer (45 Gy to PTV) 40 55 40.5 75.5 41.2 71.7
Colon Abdomen - eg stomach cancer (45 Gy to PTV) 40 55 45.1 69.1 45.6 6 6 . 6

Spinal cord H&N (70 Gy to PTV) 40 50 47.4 93.6 46.7 8 6 . 1

Skin Breast (50 Gy to PTV) 30 60 56.2 89.5 54.2 88.9

10, ..., 90 -  100%). In order to explore the DVH space properly and produce the 

averages corresponding to different NTCP ranges, we require a sufficient number of the 

DVHs to yield the corresponding NTCPs. While the clinical Diow and Dhigh are 

encountered more readily during radiation treatments than the calculated values, they 

may result in a bias of the distribution of all possible NTCPs for a critical structure. That 

is, some NTCP ranges may contain only a small sample of DVHs. To avoid this potential 

problem and to ensure that there will be a large enough number of DVHs in each NTCP 

interval, we chose to use the calculated values of D 5 and D99 to define the range of Dmax.
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2.3.1.3 Probability that a DVH, with a user-specified NTCP, passes through a given 
point in the dose-volume histogram space

Following the method outlined in Sections 2.3.1.1 and 2.3.1.2, N d v h  integral DVH 

curves have now been generated for a given organ at risk. We proceed by evaluating the 

NTCP of each integral DVH. To do this, a differential DVH is calculated from each of 

the N d v h  integral ones and then used, along with the SDR and CV population models 

with appropriate parameter values, to evaluate the NTCPs.

The ratio of the number of DVHs resulting in a user-specified NTCP range \a,b\ 

that pass through a given point in the dose-volume space ( D ,  v) to the number of all 

generated DVHs passing through this point:

(2-9) P[D, v IDVH„CP̂m  : {D, v} e DVH) = >
all D  VHs through {D, v}

may serve as an estimate of the probability that a DVH, with a user-specified NTCP 

range, passes through a given point in the dose-volume histogram space. Hereafter this 

quantity will be referred to as “DVH point probability.” The DVH point probability 

defined in Eq. (2-9) depends on both the DVH generation algorithm and the dose scaling,

^mdx.k '

Currently, an acceptable level of normal tissue complication is around 5% or less 

for radiation treatments. A NTCP range of [4.5%, 5.5%] was selected to represent 

clinically-acceptable DVHs in our calculation of the DVH point probability. For some 

treatment sites, it is possible to achieve a lower NTCP than the chosen range and for 

others, it is not possible to get as low as NTCP = 5.5%. The range of 5 ± 0.5% was 

selected to illustrate the reverse mapping method. To use this method for treatment 

planning, the NTCP range should be chosen to best reflect what is achievable for the site 

of interest. The DVH point probability was calculated for a given organ at risk from the 

N d v h  DVHs generated by means of Sections 2.3.1.1 and 2.3.1.2. From the randomly 

generated DVHs, those resulting in a NTCP in the range [4.5%, 5.5%] were selected. 

The dose-volume space was split in square bins and Eq. (2-9) was evaluated at each bin.
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2.3.1.4 Constraint point estimation

For the purpose of inverse planning, constraint points are selected for nearby 

organs to limit dose (and correspondingly NTCP) to these structures while allowing 

delivery of the treatment dose to the PTV. We propose the radiobiological constraint 

points be estimated from the integral DVH that is the average of all integral DVHs 

resulting in a NTCP in the range [4.5%, 5.5%]. This curve could be estimated from the 

DVH point probability defined by Eq. (2-9) or calculated directly from the generated 

DVHs that have a NTCP in the corresponding range. We use the latter method to 

determine the average DVH. Specifically, the relative volume of the average DVH at the 

dose point A  is calculated using the formula

1 n DVH

(2-10) Y „ ( P i )  = —  2 X ( A ) .
n DVH > 1

where hdvh is the total number of DVHs with NTCP = 5 ± 0.5%. The average DVH 

(calculated as shown) and the weighted average DVH (calculated from the probability 

distribution) are one and the same function. Indeed, upon checking, we found that the 

average DVH coincides with the weighted average DVH within statistical error. Because 

larger statistics are required for the accurate determination of the probability 

distributions, and hence the weighted averages, we have chosen to use the arithmetic 

mean DVH calculated according to the above formula.

An additional and alternative source of dose-volume constraints may be found in 

the most probable integral DVH, which could be directly calculated from the DVH point 

probability, Eq. (2-9). However, for the organs at risk investigated here, we will use the 

average DVH to estimate a set of dose-volume constraint points at relative volumes of

0.1, 0.2, ..., 0.9. The average and the most probable DVHs are the two most 

characteristic quantities of the 2-dimensional distribution of DVHs that result in the 

desired NTCP and are both potential sources for constraint points.

Initially there are no indications that the DVH averaged from those resulting in 

NTCP = [4.5%, 5.5%] should be an object of the same kind, that is, resulting in the same
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NTCP range. However, it is easily seen that this averaged DVH is also a monotonic 

function -  a sum of monotonic functions is a monotonic function.

Average DVHs are also calculated for other NTCP ranges (0-10, 10-20 ...90- 

100%) to indicate where the DVHs with higher NTCP values may be located. NTCPs of 

these average curves are calculated to verify whether the average DVH has a NTCP that 

is within the corresponding range.

For completeness, the 67% confidence limits of the average of all DVHs with a 

NTCP of 5 ± 0.5% are calculated from the DVH point probability.

2.3.2 Reverse mapping of NTCP onto DVH space -  a theoretical approach to 
the investigation of the radiobiological impact o f a set o f dose-volume 
constraints

The use of dose-volume constraints in the process of inverse treatment planning 

does not necessarily lead to low complication probability of the organs at risk. We 

believe that the reliability of a certain set of dose-volume constraints can be revealed by 

considering the following problems:

Problem 1: What is the probability distribution of the NTCPs corresponding to the DVHs 

belonging to a certain s-vicinity of a given set of dose-volume constraints?

Problem 2: What is the 95% most probable interval of NTCP values corresponding to the 

DVHs belonging to a certain s-vicinity of a given set of dose-volume constraints? 

Problem 3: What is the probability that a DVH, belonging to a certain s-vicinity of a 

given set of dose-volume constraints, will result in a particular NTCP value, for instance 

NTCP > 5.5% or a NTCP belonging to a given interval of values?

Problem 4: What is the probability that a DVH resulting in a NTCP belonging to a given 

interval of values belongs to the s-vicinity of a given set of dose-volume constraints?

The following algorithm, based on the reverse mapping method, was implemented 

in order to obtain the solutions of problems 1 - 4 :

i. Generate monotonically decreasing dose-volume histogram functions (2.3.1.1).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ii. Calculate the NTCPs corresponding to these dose-volume histogram functions.

iii. Count the number of DVHs resulting in NTCPs belonging to a certain interval [a,b]

of NTCP values - N  r .curves with NTCPe[a,b\

iv. Choose a set of dose-volume constraints.

v. For each generated DVH, determine whether it belongs to the s-vicinity of the chosen

set of dose-volume constraints. If it does, save the corresponding NTCP value.

vi. Use the saved NTCP values to build the distribution sought in problem 1.

vii. Based on this distribution calculate the quantity sought in problem 2.

viii. For the DVHs belonging to the s-vicinity of the chosen set of dose-volume

constraints, count the number of those resulting in NTCPs belonging to the interval

[ 9̂ ]̂ 9 ^curvesfzi: vicinllv with NTCPe[a,b\

ix. Calculate the probability sought in problem 3 according to the following ratio:

^ c u r v e s E f -v ic in ity  with N TC Pe[a,b]

N c u r v e se e -v ic m ity

x. Calculate the probability sought in problem 4 according to the following ratio:

N curvese£  -  vicinity with N T C P ^\a ,b \

^ c u r v e s  with N TC P e[a,b]

For the calculations in the above algorithm we used the s-vicinity definition 

presented in Sec. 2.2.1.

2.4 Results

Table 2-2 lists the dose-volume constraints (in Gy) for each of 16 organs, 

calculated by interpolating from the average of all DVHs resulting in a NTCP of 5  ± 

0.5% according to the Lyman NTCP model at the relative volumes of 0.1, 0.2, ..., 0.9. 

Table 2-3 gives the dose-volume constraints for the same organs, calculated according to 

the CV population NTCP model. For all organs and for both NTCP models, the first few
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high-volume constraint points are characterized by negligibly small doses (close to zero). 

A total of 1 x 106 integral DVHs were simulated for each organ to calculate these 

constraint points. The fraction of these simulated DVHs that resulted in NTCP = 5 ± 

0.5%, P n t c p = 5%, is shown in the last column of Table 2-2 and Table 2-3. As it is 

impractical to include figures for all 16 organs listed in Table 2-2 and Table 2-3, the 

endpoint of heart pericarditis was selected for illustration purposes. In Figure 2-1(a) and 

(b), a sample of the family of nearly iso-NTCP randomly-generated DVH curves that 

result in NTCP e [4.5%, 5.5%] are shown for both chosen models. The average, along

Table 2-2: Constraint points interpolated from the average of DVHs with a Lyman 
NTCP of 5 ± 0.5% for 16 organs. For each of the relative volumes shown across the top 
of the chart, the interpolated dose in Gy is given for each organ if this value is non-zero. 
The far right column in the table shows the fraction of randomly-generated DVHs, out of 
a total of 1 x 106, that have an NTCP of 5 ± 0.5%, P n t c p =s%-

Organ/Volume 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 P  NTCP=  5%

Lung 27.9 25.0 22.7 20.9 19.2 17.5 14.3 — — 1.4%
Liver 40.9 36.6 33.6 31.0 27.2 18.7 — — — 2.2%
Brain 58.7 52.5 48.1 43.8 35.1 10.9 — — — 2.6%

Heart 51.0 47.8 45.3 43.1 41.1 38.3 31.8 — — 1.0%
Kidney 30.8 29.0 27.7 26.5 25.4 24.3 23.0 19.7 — 0.5%
Esophagus 58.6 54.6 47.7 35.5 2.9%
Stomach 58.8 53.4 48.9 40.2 21.4 — — — — 3.0%
Brachial plexus 61.0 56.6 48.9 36.2 2.7%
Bladder 86.9 81.2 76.8 72.9 69.3 65.6 58.2 — — 0.8%
Mandible 64.2 59.9 53.1 40.7 6.3 — — — — 2.9%
Brain stem 59.5 53.9 49.6 41.9 25.3 — — — — 2.9%
Larynx 79.2 74.2 70.5 65.0 55.1 35.2 — — — 1.9%
Small intestine 47.5 42.9 38.8 30.6 7.4 — — — — 3.1%
Colon 54.2 49.6 46.3 42.3 34.5 16.5 — — — 2.3%
Spinal cord 49.2 45.8 39.7 29.1 2.9%
Skin 62.2 57.4 51.7 40.5 13.2 — — — — 3.0%
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Table 2-3: Same as Table 2-2, but calculated using the CV population NTCP model.

Organ/Volume 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 P  NTCP=  5* /.

Lung 33.3 28.6 25.1 22.3 19.8 16.1 — — — 1.7%

Liver 41.7 37.7 34.7 32.3 29.8 25.0 9.0 — — 1.5%

Brain 55.5 49.5 44.9 36.1 15.8 — — — — 3.3%

Heart 51.7 47.9 45.2 42.9 40.5 36.2 23.2 — — 1.2%

Kidney 33.3 30.4 28.2 26.3 24.6 22.7 19.0 — — 1.0%

Esophagus 58.3 53.9 45.8 31.6 3.8%

Stomach 55.4 51.1 43.3 29.5 3.8%

Brachial plexus 59.6 54.4 46.5 33.7 4.6%

Bladder 84.9 79.4 75.1 71.4 67.9 — — — — 1.0%
Mandible 63.0 58.1 49.4 35.0 — — — — — 4.5%
Brain stem 60.5 54.2 49.5 41.6 25.2 — — — — 3.3%

Larynx 79.0 74.5 71.2 66.4 58.3 43.1 — — — 1.9%
Small intestine 47.9 43.3 39.0 30.5 9.2 — — — 3.3%
Colon 54.2 50.0 46.9 43.4 36.7 23.3 — — — 2.1%

Spinal cord 48.0 44.0 36.7 23.7 4.4%

Skin 60.2 55.1 48.5 36.1 4.0%

with the proposed constraint points calculated as discussed in Section 2.3, are also 

shown in Figure 2-1(a) and (b). The averaged DVHs result in NTCP values of 4.98 ± 

0.02% for the Lyman and 4.98 ± 0.02% for the CV population model. Finally, the 

Emami1 constraint points (each of these lead to NTCP = 5% assuming uniform, partial 

organ irradiation) and the 5% iso-NTCP envelopes for both NTCP models are also 

plotted for comparison in Figure 2-1(a) and (b). The property of the envelope stated in the 

definition (Sec. 2.2.1) is clearly illustrated in both plots; namely, no DVH with NTCP < 

5% crosses the envelope. It should be noted that a DVH passing through a combination of 

constraints from the envelope has a NTCP higher than 5%.

As defined in Sec. 2.3.1.3, we call the probability of a DVH, with a user-specified 

NTCP, passing through a given point in the dose-volume histogram space the DVH point 

probability. The DVH point probabilities were used to estimate the 67% confidence limits 

for DVHs resulting in NTCP = 5 ± 0.5%. Figure 2-l(c) and (d) present an example of 

what these probabilities look like. The averaged DVH together with the 67% confidence
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limits for the end point heart-pericarditis are also shown. Both the DVH point 

probabilities and the confidence limits indicate more spread of the DVHs with NTCP = 5 

± 0.5% in the low dose regions; while in the high dose regions, the majority of DVHs 

pass through or near the average.

The calculated most probable DVHs for both NTCP models are plotted in Figure 

2-l(e) and (f). The NTCP values corresponding to the most probable DVH curves are 5.7 

± 0.1% for the Lyman model and 5.1 ± 0.1% for the CV population model.

<D
E
o>
a.>
a0£.

0.9 0.9'
NTCP>5% NTCP>5%

0.7 0.7

0.60.6

0.50.5

0.40.4

0.30.3 N
0.20.2

40
Dose [Gy] Dose [Gy]

Figure 2-1: (a) and (b) -  a sample of DVHs with NTCP=5±0.5% (grey dotted curves) 
calculated according to the Lyman NTCP model (a) and the CV population NTCP model 
(b) for the endpoint heart pericarditis. Also shown in each of these subplots are the 
average of all DVHs with NTCP = 5 ± 0.5% along with the constraint points interpolated 
from this curve (solid black curve with diamond points). The Emami constraints for heart 
are shown for comparison as circles, along with the 5% iso-NTCP envelope that passes 
near to the Emami points.
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Figure 2-1 (c) and (d) -  Show the DVH point-probabilities (curves in the zy plane) for 
heart calculated using the Lyman model (c) and the CV population model (d). The 
average of DVHs with NTCP = 5 ± 0.5% is shown (dark curve in xy plane) for 
comparison, along with the 67% confidence limits (dashed curves in xy plane) that were 
calculated by means of the DVH point-probabilities.

NTCPmD = 5.1 ±  0.1%NTCPm„ = 5.7 ± 0.1%0.9 0.9
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Figure 2-1 (e) and (f) -  The most probable DVH curves for heart, calculated from the 
DVH point-probabilities in (c) and (d). The Lyman model was used for (e), and the 
Lyman NTCP of the most probable DVH is shown in the upper right comer. For (f), the 
CV population model results are shown, along with the CV population NTCP for this 
curve.
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In Figure 2-2, for the same end-point, heart pericarditis, the average DVHs are 

shown for six different intervals of NTCP values: 0-10,10-20, 20-30, 50-60, 70-80, and 

90-100%. Figure 2-2(a) shows the average DVHs calculated based on the Lyman NTCP 

model, and Figure 2-2(b) shows the average DVHs calculated based on the CV 

population model.

Lyman NTCP CVpop NTCP

0.8

0.6

0.4

0.2

Dose [Gy]

©
E

£ 0.6
©
>

0.4

0.2

Dose [Gy]

Figure 2-2: Plot of the average DVH for each of 6  NTCP intervals for the endpoint heart 
pericarditis. Averages were calculated based on the Lyman NTCP model (a) and the CV 
population model (b). From the lowest volume to the highest volume curves, the 
intervals are NTCP = [0%, 10%] (first solid line), [10%, 20%] (first dotted line), [20%, 
30%] (dash-dotted line), [50%, 60%] (dashed line), [70%, 80%] (second solid line) and 
[90%, 100%] (second dotted line).

Out of the 16 organs investigated in this chapter, the lung is unique in that the 

clinical Dhigh value of 65 Gy is significantly larger than the D99 estimated using either of 

the NTCP models (Table 2-1). In some clinics, there are dose escalation protocols for 

lung tumours that can get as high as 90 Gy.49 In order to demonstrate the impact of the 

Dmax range on the dose-volume constraint estimation, we use the lung and the CV 

population model as an example (Figure 2-3). The average DVHs and the constraint 

points are calculated for the following ranges of Dmax values [Eq. (2-8)]: 

= D5 +nkiD99  “ A )  shown in Figure 2-3(a); Dmxk = Ds +nk(90Gy -  D5) shown

in Figure 2-3(b); Dinax(t = 60Gy + nk(65Gy -  60Gy) shown Figure 2-3(c) -  this
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Figure 2-3: A subset of DVHs that have a critical volume population NTCP of 5±0.5% 
for the endpoint lung pneumonitis (grey dashed curves), the average of these DVHs and 
the interpolated constraint points (solid curve with black diamonds). Each subplot shows 
these curves for a different DVH dose scaling: (a) Dm\n -  Z)max = D$ — Dg% (b) D$ -  90Gy, 
(c) 60 -  65Gy and (d) 60 -  90Gy. In each subplot, the 5% iso-NTCP envelope is shown 
along with the Emami points (O) for lung pneumonitis. The NTCPs are those of the 
average DVHs.
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corresponds to the sample clinical maximum dose range given in Table 2-1; and 

A ™xk = 60Gy + nk (90Gy -  60Gy) shown in Figure 2-3(d). The iso-NTCP envelope and

the Emami constraint points are presented as well. NTCP values for each averaged DVH 

are shown on the corresponding subplots. The calculations were done using both NTCP 

models and the estimated constraint points are presented in Table 2-4 for comparison.

Table 2-4: This table illustrates the effect of Dmax range on calculated constraint points. 
Dose-volume constraint points were calculated for lung with the random DVHs scaled 
according to Dmax ranges of A  -  As>, A  -  90Gy, 60 -  65 Gy and 60 -  90Gy, using both 
the Lyman and CV population models.

Volume

Lyman constraint dose CV Pop. constraint dose

D s D 99 D  5-90Gy 60-65Gy 60-90Gy D  5  Z > 9 9 D  s-90Gy 60-65Gy 60-90Gy

0.1 27.9 40.8 54.3 59.3 33.3 42.6 54.8 60.4
0.2 24.9 30.0 41.9 40.8 28.6 31.4 43.0 43.2
0.3 22.7 23.8 22.6 — 25.1 25.0 25.1 6.0
0.4 20.9 19.1 — — 22.3 20.1 — —

0.5 19.2 10.6 — — 19.8 10.0 — —

0.6
0.7

17.5
14.3

--------

__
— 16.1 -------- -------- —

0.8
0.9

-------- --------

__ __
------- -------- --- ---

Figure 2-4 presents the probability distributions of the NTCPs corresponding to 

the DVH curves belonging to a certain e-vicinity (e = 1%) for several sets of dose-volume 

constraints. Again, both NTCP models discussed in this chapter were used. In Figure 

2-4, the Lyman model results are presented on the left while the CV population model 

results are presented on the right. The end point of brain necrosis was chosen for this 

investigation. The following sets of dose-volume constraints were selected and used to 

calculate the corresponding distributions: (D, v) = (48.1 Gy, 0.3) in Figure 2-4(a); (D ,v) 

= (44.9 Gy, 0.3) in Figure 2-4(b); the pair ( A ,  v0 = (52.5 Gy, 0.2), ( A ,  v2) = (48.1 Gy, 

0.3) in Figure 2-4(c); the pair ( A ,  vi) = (49.5 Gy, 0.2), ( A ,  v2) = (44.9 Gy, 0.3) in Figure 

2-4(d); the set ( A ,  v,) = (58.7 Gy, 0 .1), ( A ,  v2) = (48.1 Gy, 0.3), ( A ,  v3) =(43.8 Gy, 0.4) 

in Figure 2-4(e); and the set ( A ,  vi) = (55.5 Gy, 0 .1), ( A ,  v2) = (44.9 Gy, 0.3), ( A ,  v3) =
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NTCP NTCP
Figure 2-4: Lyman (left) and CV population (right) NTCP probability distributions for 
the endpoint brain necrosis for the given sets of calculated dose-volume constraint points. 
A total of 2 x 1 0 6 DVHs were simulated in order to build these distributions, and of those, 
the ones that passed within a vicinity of e = 1% were deemed to satisfy the constraints. 
Shown in each subplot are two additional quantities: the probability that a DVH which 
satisfies the given constraint(s) will have an NTCP that is greater than 5.5% 
[P(NTCP > 5.5%)] and the 95% confidence intervals (CIs) for the distributions. In (a) 
and (b), the NTCP distributions for the Emami v = lA, D = 60 Gy constraint point is 
shown for comparison (black line).
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(36.1 Gy, 0.4) in Figure 2-4(f). The probability of observing a value of NTCP > 5.5% for 

the DVHs belonging to a certain £-vicinity is calculated for each set of dose-volume 

constraints and is given in the corresponding subplots together with the 95% NTCP most 

probable interval. In Figure 2-4(a) and (b), NTCP probability distributions for the v = Vi, 

D  = 60 Gy Emami point are shown (black line) along with those for the v = 0.3 calculated 

points. The above values together with the probability that a DVH resulting in a NTCP = 

5 ± 0.5% will belong to the e-vicinity o f the chosen sets of dose-volume constraints are 

presented in Table 2-5.

Table 2-5: This table shows three quantities calculated for the end-point brain necrosis, 
for the given sets of constraints. Calculations were done with both the Lyman and CV 
population NTCP models, and for each constraint volume given, a dose value from either 
Table 2-2 (for the Lyman model analysis) or Table 2-3 (for the CV population model 
analysis) was selected (except for the Emami constraint point, for which the dose was 60 
Gy). The first quantity in this table is P£ (NTCP = 5 ± 0.5%), which represents the
probability that a DVH with NTCP <=[4.5%,5.5%] passes within the e-vicinity (e = 1%) of 
the chosen constraint(s). The value P(NTCP > 5.5%) is the probability that a DVH which 
satisfies the chosen constraint(s) has an NTCP that is greater than 5.5%. Finally, this 
table shows the NTCP range in which 95% of the DVHs satisfying the constraint(s) result 
[the 95% confidence interval (Cl)].

Constraint Volume(s)

/ ’/NTCP = 5 ± 0.5%) P(NTCP > 5.5%) 95% Cl

Lyman CV Pop. Lyman CV Pop. Lyman CV Pop.
Emami v = 'A, D = 60Gy 0.004% 0.0% 100.0% 100.0% 11.7-43.7% 18.0-44.7%
0.3 18.2% 8.0% 46.7% 53.7% 0.0 - 15.1% 0.0 - 23.8%
0.2, 0.3 3.9% 1.5% 5.2% 4.2% 1.5- 6.8% 1.5- 6.8%
0.1, 0.3, 0.4 1.6% 0.1% 5.5% 0.2% 2.0- 6.8% 2.0- 6.8%

2.5 Discussion

The theoretical approach of reverse NTCP mapping onto DVH space described 

above was used to estimate dose-volume constraints for the needs of inverse treatment
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planning and to provide a basis for comparison between the physical and biological 

radiation therapy optimization.

2.5.1 Suitability o f the calculated constraint points for inverse planning

In Sec. 2.3.1, we proposed that physical dose-volume constraints may be 

estimated from the curve that represents the average of all DVHs with an NTCP of 5 ± 

0.5%. For these constraint points to be “reasonable,” the NTCP of the average DVH 

should also fall within the same interval. However, not all DVHs resulting in a certain 

NTCP are suitable for choosing constraint points. An example is a step like DVH 

corresponding to partial organ homogeneous irradiation resulting in the desired NTCP 

(such as the Emami DVHs). Our investigations show that the averaged DVH indeed 

results in a NTCP that is within the above range of values for both the Lyman and the CV 

population NTCP models. This holds true for all of the investigated organs and the 

different intervals in which the maximum dose for the simulated DVHs was selected. An 

example of this can be seen in Figure 2-1 and Figure 2-4. These figures also indicate that, 

in general, the region of DVHs with NTCP -5%  is more spread out at low doses and 

more concentrated at high doses. In Sec. 2.3.1, we mentioned that a potential alternate 

source for dose-volume constraint points is the most probable DVH. This curve almost 

coincides with the average DVH in the low-volume region; thus, the difference in the 

NTCPs of the two curves is due mainly to the differences in the high-volume, low-dose 

region. However, while the average of the DVHs resulting in NTCP = 5 ± 0.5% is also 

an object of the same kind, this condition is not always satisfied for the most probable 

DVH (Figure 2-1). Thus, we have placed more emphasis on the average DVH as a 

source for dose-volume constraints.

The dose-volume constraint points estimated here and presented in Table 2-2 and 

Table 2-3 only reflect the data presented in the Emami et al. work through the 

mathematical forms of the NTCP models derived on the basis of some biological
37"40 42 50observations or assumptions about the tissue response to irradiation. ’ ’ About the 

data presented in the Emami et al. work the authors are aware that “The Emami estimates
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are not, in any sense of the word, primary data. Rather, they are a distillation from the 

literature of whatever information could be gleaned, combined with the clinical 

impressions of experienced radiation oncologists. ” 35 On the other hand they are widely 

cited and used in the clinical practice together with the Lyman model with parameter 

estimates of Burman et al. This is why we turned to these parameter estimates to 

illustrate the application of the reverse mapping method to the problem of dose-volume 

constraint estimation. This also gave us the opportunity to compare, through the results 

obtained, two different NTCP models, when the values of their parameters are derived 

from the same source. It should be pointed out, however, that this method is not confined 

to the NTCP models or parameter values used in this chapter. Constraint points may be 

calculated according to the method outlined in Sec. 2.3.1 using a completely different 

NTCP model and/or parameter set if one desires. The use of a different parameter set 

could potentially have an impact on the constraint calculation, but such a comparison is 

beyond the scope of this chapter. One way to estimate the impact of a different, for 

example, more recent, parameter set is to calculate the 5% iso-NTCP envelope based on 

the new parameter set and observe its deviation from the envelope calculated from the
1 Tprevious set. For example, the iso-NTCP envelope of the Dawson et al. liver 

parameters for the Lyman model is shifted considerably to the right in comparison to the 

Emami parameters for this organ (e.g., see the 10% iso-NTCP envelopes in Fig. 1 of their 

work). The corresponding impact of using the Dawson parameters in place of the Emami 

ones for constraint point estimation could thus be considerable. If more accurate 

parameter estimates are available, these should be used for the dose-volume constraint 

estimation.

It may seem that the model predictions deduced from the Emami et al. tolerances 

are assumed to be more reliable than the original estimates. However, if  the model 

accurately reflects the nature of the phenomenon, the model predictions are as reliable as 

the data used to derive the model parameters. The use of a model broadens our capability 

to predict the outcome in cases that have not yet been investigated by means of an 

experiment.

We would like to point out that care has to be exercised in the interpretation of the 

iso-NTCP envelope depicted in Figure 2-1(a) and (b) or Figure 2-3. It is misleading to
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assume that any curve in the region to the left of the 5% iso-NTCP envelope will result in 

an acceptable NTCP of about 5%. We can only say that there is a chance that a DVH 

lying in this region may result in an acceptable NTCP of around 5%, while we can say 

with absolute certainty that if  a DVH crosses or is tangential to the 5% iso-NTCP 

envelope, it will definitely result in a NTCP higher than 5%. It is important to point out 

that the Emami points lie on or near the 5% iso-effect envelope. Therefore, it must be 

obvious that any DVH curve passing through any Emami point will with certainty result 

in an NTCP y  5%. Indeed, the 95% confidence intervals of the NTCP values 

corresponding to the DVHs passing through an s-vicinity of the lA volume Emami point 

for the brain, for instance, are [11.7%, 43.7%] for the Lyman model and [18.0%, 44.7%] 

for the CV population model. These confidence intervals are considerably larger than the 

ones -  [0.0%, 15.1%] for the Lyman model and [0.0%, 23.8%] for the CV population 

model -  characteristic o f the 0.3 volume constraint point calculated according to the 

proposed algorithm (Table 2-2 and Table 2-3). More importantly, the lower limit of the 

confidence intervals for the Emami points is y  5% indicating, as stated above, that the 

achievable values of the NTCP will always be larger than 5%. The same calculations 

were done for the lA and % volume Emami points and for the generated dose-volume 

constraint points shown in Table 2-2 and Table 2-3 for several other randomly selected 

organs, namely -  lung, liver and bladder. In all cases, the result is the same: the lower 

limit of the 95% confidence intervals for observing a NTCP value for any DVH curve 

passing through or near an Emami point is larger than 5%; while it is always near to 0% 

for the generated dose-volume constraint points. Also, the NTCP confidence intervals of 

the generated constraint points are always narrower than the confidence intervals of the 

Emami points. This means that the outcome in terms of NTCP values is predictable to a 

higher extent in the case where the dose-volume constraints are chosen according to the 

proposed algorithm.

Therefore, we consider the generated dose-volume constraint points more suitable 

for clinical application than the Emami data points if  used as dose-volume constraints.

Note that, although the constraint points derived from the two NTCP models 

display the same general trends (Table 2-2 and Table 2-3), there are differences in the
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doses obtained for the different relative volumes. In addition, the estimates using the CV 

population model result in fewer constraint points with nonzero dose values for some 

organs than those using the Lyman model.

For all organs, the average of DVHs with a NTCP of 0 -  10% has the lowest 

relative volume at each dose and represents a relatively small partial volume irradiation 

of the critical structure (see the example for heart pericarditis -  Figure 2-2). As the 

NTCP interval increases, the relative volumes of the curves become larger, and the 

average DVHs tend to ‘flatten out.’ The average of DVHs with a NTCP of 90 -  100% 

generally corresponds to a relatively uniform irradiation of a significant portion of the 

organ, at a relatively high dose. The NTCPs of the average DVHs shown in Figure 2-2 

are consistent with the NTCP intervals used to calculate these average curves.

2.5.2 Random integral DVHs and dose scaling

The reverse mapping method of constraint point estimation relies heavily upon the 

generation of random DVHs and also the scaling of the dose axis to absolute values. The 

dependence of the average DVH on the generation algorithm is illustrated and discussed 

in Chapter 3 and Markov et al. The set of clinically achievable DVHs is an undefined 

one, due to the fact that the treatment strategies and the available radiation treatment 

techniques realizing these strategies change considerably through the years. Hence, it is 

difficult, if  not impossible, to describe the set of clinically realizable DVHs 

mathematically. However, the set of clinically realized DVHs is a subset of the set of all 

monotonically decreasing functions. The DVHs that were generated in this chapter 

include those that are characteristic of a portion of the organ at risk receiving no 

irradiation. Clinically, exact partial organ irradiation cannot be achieved as there will 

always be some dose deposition due to scatter. However, modem IMRT techniques and 

delivery systems, such as tomotherapy,51,52 allow for dose distributions that come very 

close to fully sparing a portion of an organ at risk. These modem techniques expand the 

set of the clinically possible DVHs (making it a dynamic concept), because they expand 

the number of solutions through which the dose field could be delivered to the tumour.
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53For example, some of the integral DVHs shown in the works o f Coselmon et al., Horton 

et al.,54 Hanks et al.55 and Wang et al.56 exhibit an initial drop in relative volume around a 

dose of zero, indicating that a portion of these organs is almost entirely spared. In fact, 

the slope of this drop-off looks very similar to the one observed in the average DVHs 

presented in this chapter. Therefore, the random DVHs used here to estimate physical 

dose-volume constraint points are not impossible to achieve clinically.

There are cases that exist where the constraint points interpolated from the 

average DVH may not be suitable for inverse planning. For example, if the organ at risk 

(OAR) is sufficiently close to the target, its achievable DVH may be above the average 

on the high-dose side. Our experience shows that in the process of inverse planning, the 

OAR DVH moves “down” rather than “up,” that is, the average vector of the shift, in the 

process of an iterative search of the solution, points toward the (0, 0) point of the DVH 

space. Hence the algorithm would try to go as close as possible to the dose-volume 

constraints “from above,” although they will not be reached. A better solution might be 

found if  a physico-biological optimization is performed; but if  the achievable OAR DVH 

is above the average DVH as a consequence of the specifics of the individual geometry, 

this would present a problem for the physical inverse treatment planning no matter what 

the dose-volume constraints are. The OAR NTCP will remain high, irrespective of the 

choice of the constraint points, because it is fundamentally determined by the higher 

doses.

In Sec. 2.3.1.2, we observed that for some organs, the clinical range of possible 

maximum dose values is significantly different from the calculated D$ and D99 values 

based on the NTCP models. An interesting result concerning the calculated D99 values is 

that depending on the model used -  Lyman or CV population -  the calculated D99 for 

some organs differs significantly for both models (Table 2-1). Clinical dose values 

exhibit varying degrees of disparity depending on factors such as the position of the 

target relative to the organ at risk and the prescribed target dose. Although we have opted 

to use the calculated D5 and D99 values for dose-volume constraint estimation, with the 

purpose of unification, we did carry out an investigation of how the different dose ranges, 

to which the maximum dose could belong, would affect the values of the dose-volume 

constraint estimates.
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The nonuniqueness of the estimated dose-volume constraints is clearly 

demonstrated in Figure 2-3 and in Table 2-4. These results suggest that knowledge of the 

range in which the maximum doses are going to be is extremely important for the 

determination of appropriate dose-volume constraints via the reverse mapping method. 

Figure 2-3 unambiguously shows that the averaged DVH results in a NTCP of the same 

range as the DVHs from which it is calculated, regardless of the Dmax range. In each of 

the four cases illustrated, the NTCP of the averaged DVH was 4.98 ± 0.02%. It is 

interesting to note that the obtained averaged DVHs shown in Figure 2-3(b) and (c) 

resemble the averaged DVHs reported by Tsougos et al. In their work, the occurrence 

of radiation pneumonitis was studied in a group of 150 patients treated for breast cancer. 

Their averaged DVHs suggest a trend favouring the partial organ nonirradiation similar to 

our results presented in Figure 2-3. As noted above, the maximum dose range will depend 

on the treatment site and the treatment strategy. Hence, we recommend a recalculation of 

the dose-volume constraints if the maximum dose range differs considerably from the one 

used here.

The maximum dose range of D$ -  D99 and the NTCP range of 4.5 -  5.5% were 

chosen for this work to illustrate the reverse mapping constraint point estimation for a 

number of organs, but one is by no means limited to these parameter values. Different 

NTCP levels and maximum dose ranges may be selected to take into account clinical 

variables such as tumour size and location with respect to the organs at risk, beam 

arrangement, and anatomic structure. In each case, the constraint points could be 

recalculated for the desired NTCP and Z)max range using the reverse mapping method.

2.5.3 Comparison with other methods of dose-volume constraint 
determination

Another approach to the problem of dose-volume constraints determination is 

described in Hartford et al.,51 Huang et a / . , 58 Jackson et al.59 and Pollack et al.60 It 

consists of classifying the clinically realized DVHs for the responders and the 

nonresponders for a given complication end point. However, the two DVH regions
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corresponding to the two groups of responders and nonresponders obtained by this 

method, unfortunately, overlap considerably. ’ ’ This effect could be due to the fact 

that statistics of even several hundred patients is insufficient to allow the proper 

determination and differentiation of the two regions in the DVH space. Indeed, due to the 

probabilistic nature of the tissue-dose response, a given clinical DVH may produce a 

responder but it may also result in a nonresponder. In addition, DVHs do not convey any 

information about the spatial distribution of dose. Hence, a clinically acceptable dose 

distribution and an unacceptable one may result in DVHs that are practically identical.

In order to compare the results from the reverse mapping method with those 

reported by Jackson et al.,59 we calculated the dose-volume constraints for the rectum 

based on the Burman parameter estimates for the Lyman model. This organ was not 

included in the main investigation because there were no sufficient data for the extraction 

of parameter estimates for the CV population model.35 Figure 2-5 shows our dose- 

volume constraint estimates (diamond points on the dashed line) together with the 

averaged DVH for nonbleeders (top solid curve) and the lower limit of its 67% 

confidence range (lower solid curve) obtained by Jackson et al., for the patients treated to 

a maximum dose of 70.2 Gy. The Lyman NTCP of the Jackson et al. nonbleeder DVH 

was calculated to be 5.43% and is also shown in Figure 2-5; while the Lyman NTCP of 

the averaged DVH is only slightly lower -  4.99 ± 0.02%. Both NTCPs are within the 

acceptable interval of [4.5%, 5.5%] and thus the small difference is not very important. 

For the region of relative volumes less than 40%, the results from the reverse mapping 

method almost coincide with Jackson et al. observations. Because these two curves 

almost coincide in the high-dose region, it stands to reason that the differing low-dose 

regions are the cause of the observed small difference in NTCP. It is important to note 

that dose-volume constraints with lower relative volumes are the ones narrowing the area 

in the DVH space corresponding to sufficiently low complication probabilities. In other 

words, if  points with higher relative volumes are used as constraints, there is a higher 

probability of allowing DVHs with unacceptable NTCP values, as the NTCP distributions 

widen when the relative volume increases. A similar result was reported by Hartford et 

al.51 (Fig. 1 of their work) and it is also well illustrated in Figure 2-4.
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Figure 2-5: Averaged DVH (dottea °^nej ^nd dose-volume constraint estimates
(diamonds) for rectum, calculated by means of the reverse mapping method. The Lyman 
NTCP model with the Burman parameters was used to obtain these constraint points. 
Shown for comparison are the averaged DVH for non-bleeders from Jackson et al.59 
(upper solid curve) and the lower limit of its 67% confidence range (lower solid curve). 
The Lyman NTCP of the non-bleeder DVH is given in the upper right comer of this plot.

cn
Thus, based on the results of this study and the ones reported by Hartford et al. 

we recommend that the dose-volume constraint points be chosen among those 

corresponding to sufficiently low relative volumes and high doses (in the case of rectum

0.4 or less).

2.5.4 Physical versus radiobiological optimization

The selection of a given set of dose-volume constraints in the process of treatment 

planning presumes that these constraints will result in an appropriate restriction of the
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dose, which in turn ensures an acceptable level of the complication probability for the 

organ at risk. The proposed reverse mapping method (Sec. 2.3.2) presents a theoretical 

way to investigate the radiobiological impact of a set of dose-volume constraints. Figure 

2-4(a) and (b) clearly show that the distributions of the NTCP values, for the end-point 

brain necrosis, produced by DVHs satisfying just one dose-volume constraint are 

sufficiently wide and include DVHs leading to unacceptably high complication 

probabilities. The corresponding 95% confidence intervals given in Table 2-5 confirm 

the above inference. It is also seen that almost half of the DVHs passing through the e- 

vicinity of the chosen constraint point result in NTCP values higher than 5.5%. The 

choice of more than one dose-volume constraint considerably narrows the NTCP 

distributions (problem 1, Sec. 2.3.2), as demonstrated in Figure 2-4(b), (c), (d), and (f). 

The corresponding 95% confidence intervals, when two or three dose-volume constraints 

are used, suggest that the DVHs satisfying these constraints result in NTCP values that 

are confined to a reasonably small interval of clinically acceptable complication 

probabilities. The fraction of DVHs leading to more than 5.5% NTCP [ P{NTCP > 5.5%) 

-  Table 2-5] is also considerably reduced compared to the case when only one constraint 

is used. It should be reiterated that the NTCP distributions generally become wider with 

the increase of the relative volume value of the lower dose-volume constraint.

The introduction of every other dose-volume constraint (first column of Table 

2-5) considerably lowers the number of DVHs with NTCP e [4.5%, 5.5%], thus shrinking 

the area of the set of solutions. The investigations that were carried out for several other 

organs show similar trends. It was also confirmed that the use of two or three dose- 

volume constraints could ensure the selection of DVHs resulting in clinically acceptable 

complication rates. We can therefore conclude that the reverse mapping method allows 

us to demonstrate that the radiation treatment optimization based on physical objective 

functions can sufficiently restrict the dose to the organs at risk resulting in low enough 

NTCP values through the employment of several appropriate dose-volume constraints.

However, a comparison with the results reported in Stavrev et al.6 shows that a 

treatment plan leading to NTCP levels of around 1% for all organs at risk (in the 

treatment of lungs excluding the lung in which the tumour was situated) can be clinically
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achieved when the hybrid physicobiological optimization of the radiation treatment is 

employed where minimization of the NTCP values is sought. At the same time, the pure 

physical approach to optimization is self-restrictive due to the preassignment of 

acceptable NTCP levels, thus leaving out possible better solutions to the problem. The 

exclusion of clinically acceptable DVHs that occurs as a result of the imposition of 

physical dose-volume constraints can be seen in the Pe(NTCP = 5±  0.5%) values that are

presented in Table 2-5. Pe{NTCP = 5 ± 0.5%) is the quantity that is described in problem

4 of Sec. 2.3.2; it represents the probability that a DVH with a NTCP in the interval 

[4.5%, 5.5%] satisfies a given set of constraints according to the e-criterion. For the v =

0.3 calculated constraint point, for instance, this probability is just 18.2% for the Lyman 

model and has an even lower value of 8.0% for the CV population model. As more 

constraint points are added, the chance that a viable solution is eliminated increases, in 

other words, Pe(NTCP = 5 ± 0.5%) lowers considerably. The application of any physical 

dose-volume constraints -  not just those that were estimated in this chapter -  will exclude 

a number of DVHs with acceptable NTCP. The hybrid optimization method presented in 

Stavrev et al.6 appears to be superior to pure physical optimization due to the fact that this 

method would not eliminate clinically desirable solutions.

2.6 Conclusions

In this study, we developed a theoretical method to estimate dose-volume 

constraint points based on radiobiological models for the needs of inverse treatment 

planning. This method presents a general guidance to the problem of dose-volume 

constraint estimation. Sample constraint points estimated by the use of two different 

NTCP models -  the Lyman and the CV population model -  were calculated. An 

interesting result is that the calculations done with both NTCP models, especially for low 

relative volume points, produce similar constraint points. Model parameters for both 

models were based on the dose-response estimates in the Emami et al} report.
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The average of a set or subset of DVHs resulting in NTCP values belonging to a 

given range, <DVH>, results in a NTCP that falls within the same range of values. The 

dose-volume constraint points from this average DVH are not unique -  they depend on 

the range of values in which the maximum dose is allowed to vary. In order to achieve 

adequate functioning of the constraint points, they must be chosen among those 

corresponding to sufficiently low relative volumes (approximately less than 0.5). Similar 

results were obtained by Hartford et al.51

The use of two or three appropriately chosen low-volume constraint points can 

shrink the NTCP interval associated with the DVHs that pass sufficiently close to these 

constraints to a clinically acceptable range. If we seek DVHs with NTCP = a, then the 

constraint points should lie at a sufficient distance below the or-iso-NTCP envelope. This 

renders the Emami points inadequate as dose-volume constraints if the goal is a dose 

distribution resulting in ~ 5% NTCP.
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Chapter 3 Reverse mapping of normal tissue 
complication probabilities onto dose volume 
histogram space: The problem of randomness 
of the dose volume histogram sampling

A version of this chapter was published as:

K. Markov, C. Schinkel, P. Stavrev, N. Stavreva, M. Weldon, B. G. Fallone, “Reverse 
mapping of normal tissue complication probabilities onto dose volume histogram space: 
the problem of randomness of the dose volume histogram sampling,” Med. Phys. 33, 
3435-3443, 2006.

3.1 Introduction

We recently introduced the concept of reverse mapping of normal tissue 

complication probability (NTCP) onto the space of the dose volume histogram (DVH) . 1 

This method allows the investigation of DVH space with respect to the NTCPs for a 

given organ and a corresponding NTCP model. In this manner, one can investigate the 

probability that a DVH resulting in a given NTCP value would pass in the vicinity o f a 

certain point within the DVH space. More practically, an average DVH curve can be 

calculated from a set of simulated DVHs individually resulting in NTCP e [4.5; 5.5]%. 

The points from this average DVH curve can then be used as dose-volume constraints for 

inverse treatment planning.

One very important issue in the problem of reverse mapping of NTCP onto DVH 

space is that of the generation of DVH curves. It is necessary to determine a proper 

simulation algorithm, which will ensure that the generated DVHs are sampled from the 

correct distribution. Thus, the less probable DVHs will appear in the sampling process
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less often, while the more probable ones will appear more often. In this chapter, we 

present the mathematical theory to determine the type of distribution to which is subject 

the number of normalized integral DVHs passing through a point in DVH space. Based 

on this theory, a two-dimensional (2D) random function generator is developed. This 

generator produces monotonically decreasing functions based on the theory of random 

walk, and can be used to simulate random normalized integral DVHs. Such a generator is 

essential to calculate physical dose-volume constraint points by the method of reverse 

mapping of NTCP onto DVH space. In the previous chapter and in Schinkel et al. , we 

calculated dose-volume constraints using the reverse mapping method for the needs of 

inverse treatment planning.

3.2 Background

In this study, we use normalized DVHs, where the dose delivered to different 

relative sub-volumes of the organ is normalized to the maximum dose delivered and is 

measured as a percent dose in terms of the maximum. It is clear, then, that any 

monotonically decreasing function in the region [1 ,0 ] x [0 ,1] could represent a 

normalized integral DVH (Figure 3-1). Several Monte Carlo procedures can be used to 

simulate monotonically decreasing functions by creating finite series. We propose in this 

chapter a Monte Carlo procedure which we call a “random walk” DVH generator. Two 

procedures that are simpler than the one proposed here have been used for DVH 

generation elsewhere:

(1) Random number descent1 and
■>

(2) Random angle - random step descent

They will be described in detail further below, and compared to the appropriate random 

walk DVH generator, whose theory we present here.
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3.3 Theory

Let us consider, for instance, the set of all continuous monotonically decreasing 

functions in the unit square [1,0] x [0,1]. These functions completely fill up the unit 

square. Our initial assumption is that the density of functions passing through different 

points -  for example, points P  and Q in Figure 3-1 -  should be different and should 

depend on the position of the point. It is not simple to express this notion mathematically. 

The power of a set in the set theory will produce equal powers for each set of continuous 

monotonically decreasing functions passing through any point within the unit square and

D C

A

Figure 3-1: Monotonically decreasing functions. Our initial assumption is that the
number of functions passing through different points - for example points P  and Q - 
should be different and should depend on the position of the point. The thick black line 
represents a step like trajectory from point D to point B.
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thus would give an inaccurate estimate in this case. Alternatively, one can define a certain 

measure in the space of continuous monotonically decreasing functions in the interval 

[0,1]. We opted to simplify the operation by considering the discrete version of the 

problem.

3.3.1 Determining the distribution o f curves passing through a point in the 
unit square

The unit square ABCD, which encompasses the region of the functions of interest, 

can be divided through a net of vertical and horizontal lines into a finite number of small 

squares. Then, the curves representing the functions of interest will be portrayed through 

steplike trajectories from point D to point B that pass only through points from the 

dividing net. An example of such a trajectory is shown in Figure 3-1.

The discrete version of the problem defined in this way determines a finite 

number of trajectories connecting any two points in a monotonically decreasing fashion. 

Indeed, the number of steplike trajectories connecting, for instance, points E  and B in 

Figure 3-1 depends only on the size p  and q of the rectangle EFBG. This fact will enable 

us to count the number of steplike trajectories passing through different points. By 

dividing this number by the total number of trajectories connecting points D and B 

(which is the total number of possible DVHs) we will determine the distribution of DVHs 

depending on the position of the point.

We can construct each trajectory from point D to point B through randomly 

choosing points of passage which lie on a series of vertical intercepts (intercepts parallel 

to the Y axes) (Figure 3-1). However, due to such a choice of the intercepts, the 

trajectories become degenerate, i.e., a function may pass through more than one point on 

the intercept. Therefore, the sum of the trajectories passing through all points of an 

intercept will be greater than the total number of trajectories from point D  to point B. In 

order to avoid the double counting of trajectories, a different choice of intercepts will be 

made. We will consider intercepts perpendicular to the diagonal DB. This choice of 

intercepts determines the construction of trajectories that are unique. A proof of this 

statement will be given below [Eq. (3-3)].
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The further consideration of the problem will be facilitated if  we translate and 

rotate the coordinate system at 45° as shown in Figure 3-2 so that the X  axis of the new 

system coincides with DB and the Y axis is parallel to the intercepts. The coordinates of 

point D in the new coordinate system are (0, 0). The coordinates of point B are (0, 2N) 

where N  is the number of horizontal/vertical lines of the dividing net. The trajectories 

from point D  to point B represent a well known mathematical process -  random walk 

with a step of +1 or -1. A step of +1 is a step forward which increases both the x and y  

coordinates with +1. A step of -1 is a step downward, which increases the x coordinate 

with +1 but decreases the y  coordinate with -1. Examples of a step forward (+1) and a 

step downward (-1) are shown in Figure 3-2. It is shown in Appendix B (see also Feller4) 

that the number of trajectories connecting point D  with point E, for instance, with 

coordinates Er - m  and £„ = r isx y

The last equality is written for compactness. It should also be pointed out that because 

each step changes both coordinates with 1 , the coordinates of all points from the dividing 

net in the square ABCD are either both odd or both even numbers, independent of the 

number of steps via which each point is reached from point D.

In Appendix B it is also shown that the number of trajectories connecting two 

points depends only on the difference between their coordinates. For instance, the number 

of trajectories from point E\ with coordinates (xi, yi) to point E2 with coordinates (X2, ^2) 

equals the number of trajectories between point (0 , 0 ) and point (x2 - x , , y2-y^ ) ,  i.e.,

(3-1) N,D(0,0),E(m,r) '  m W  m ) - f  m "
y(m + r ) / 2y K( m - r ) /  2 , K( m ± r ) / 2 y

m

/
(3-2)

((x2 -X j)± (y2 _ T i))/2 j  { ( m ± r ) / 2 /v

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



+1

MV

Figure 3-2: Plot assisting us in the determination of the number of curves from point D 
to point B passing through point M* lying on the intercept PQ and also in the 
determination of the number of curves connecting an intermediate point T  with the end 
point B passing through point A/V-
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Let us consider now the intercept PQ as shown in Figure 3-2. We will consider 

points Mk from it that coincide with points from the dividing net and therefore are 

reachable from point D via the steplike trajectories discussed above. The number of these 

points is 2n+l (k = 0, ... , 2n) where n determines the position of the intercept along the X  

axis, 2n being the x  coordinate of all points lying on it. The simulated density of curves 

passing through different points does not depend on the values of N  and n, only the 

resolution of the picture depends on them. Therefore, the values of N  and n are a matter 

of choice depending on the researcher, the desired resolution, and computational time. In 

this work we have chosen N  = 300 and n = 10, based on these considerations. We have 

also tried other values of N  and n and have noticed no significant difference in the results. 

Due to the obvious symmetry of the problem the y  coordinate of point P  is also 2n, P(2n, 

In) and the y  coordinate of point Q is (-2n), Q(2n, -2n). Point M* has coordinates (2n, - 

2n+2k).

Based on Eqs. (3-1) and (3-2), we can calculate the number of trajectories from 

point D to point M*, ND M , and also from point M* to point B, Mm b ■ The product

N d m ,Nm b gives the number of curves from point D to point B passing through point

Mk. Since the set Q, ...M k ■■■ ,P is the full set of points of the intercept PQ coinciding 

with points from the dividing net and because the trajectories through these points are

In
unique due to the choice of the intercept, we expect that the sum ^ N DM .NM B should

*=o

be equal to the total number of curves connecting points D  and B, NDy -  

<3' 3) = My, B
A=0

'2  N ' 2 n (2n\ ' 2 N - 2 n
=> = y

k=0 , N ~ k  ,

Indeed, according to the well-known identity of Wandermond5 the right-hand equation is 

fulfilled. Thus, we have proven the uniqueness of the trajectories passing through the 

chosen intercept. This uniqueness secures the simulation of trajectories with the correct 

density, which is the aim of this chapter.
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The ratio
r2n r2 N - 2 n /"2 N '

Kk , , N - k  ,/ gives the density of curves through point M* or

the probability that a curve passes through this point for each k=0, 1, 2, 2n. This

probability happens to be the hypergeometric distribution. Naturally, each intercept is 

characterized by its own hypergeometric distribution depending on the value of n, i.e., 

depending on the position of the intercept along the x  axis.

As will be shown below, it is necessary to determine the distribution of curves 

connecting intermediate points in the plane of square ABCD with the end point B.

We will consider a set of intercepts lying at distance 2n from each other along the 

x axis as shown in Figure 3-2. Now we consider, for instance, a point T  lying on the K th 

intercept and having coordinates (2nK, 2R). K  and R determine the positions of the 

intercept and the point. The values of K  and R are not chosen in the direct sense; they are 

the coordinates of the randomly realized point of passage at a certain step of the 

procedure of constructing the random curve. We have to examine only curves connecting 

point T  and point B that lie in rectangle ATCB (Figure 3-2) since only these curves are 

monotonically decreasing. We construct the intercept P Q  lying at distance 2n from point 

T and therefore having 2n + 1 points coinciding with points from the dividing net. Then, 

analogous to Eq. (3-3), we have:

r 2 N - 2 n K \ _ ^ ( 2 n \ ( 2 N - 2 n K - 2 n  '  
N - n K  + R,

(3-4)
k '= 0 k'=0 k'V / yN - n K  + R - k  j

where M k is a point from the intercept P Q  with coordinates (2nK+2n, 2R-2n+2k'), (k' =

0, 1, ..., 2n). This expression is only slightly modified in comparison to Eq. (3-3). The

corresponding density of curves passing through point M k from the intermediate point T

r2 n \( 2 N  -  2 nK - 2  / (  2 N -  2 nK A
N  -n K  + R - k ’,

to point B is given by the ratio
KN  -  nK + R ,
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3.3.2 Constructing a generator of random functions subject to the 
hypergeometric distribution. A random walk generator.

Each curve connecting points D and B is constructed via the generation of a 

number of points through which this curve passes. These points lie on intercepts 

positioned at equal distances ( 2 n) from each other along the x  axis in the plane of square 

ABCD. The first point after point D  through which the trajectory passes lies on segment 

PQ (Figure 3-2). The point is chosen using a random number generator generating 

uniformly distributed numbers between 0 and 1. Let the random number generated be jc. 

The point of passage is chosen through the assignment to the random number x  a number 

L for which the following double inequality is fulfilled:

! ^ ( 2 n \ ( 2 N - 2 n \

k=0 Kk j N - k
^ 2 n \ ( 2 N - 2 n ^

< x < k=Q V k N - k

f2A0UJ UJ
(3-5)

In this way, the uniformly distributed random numbers 0 < x < 1 are transformed 

into numbers 0 < L < 2n distributed according to the hypergeometric distribution valid 

for intercept PQ characterized by n. Since the numbers L label the points M k , the points

along the intercept are also chosen according to this distribution. This is a standard 

procedure for creating random number generators subject to non-uniform distributions.6

At the next step, as well as at all steps afterwards, we must continue the trajectory 

starting from an intermediate point. We therefore have to choose the next point from an 

intercept positioned similarly to intercept FQ'  (Figure 3-2). For this purpose, we assign to 

the uniformly distributed randomly chosen number x  a number L' for which the following 

double inequality is fulfilled:

2 n \ f  2 N - 2 n K - 2 r Q

(3-6)

^ ( 2 n V 2 N - 2 n K - 2 n '  
^  N - n K  + R - kk= 0

f  2 N - 2 n K ^  
N - n K  + R

^ x < k = o \ k  y N - n K  + R - k

V

/  2 N - 2 n K \  
N - n K  + R
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This inequality is similar to the one given by Eq. (3-5). However, it is modified 

accordingly to account for the changed position of the intercept. As explained in the 

previous subsection, R and K  determine the coordinates of the intermediate point realized 

as a point of passage in the previous step. R and K, together with n, also determine the 

position of the next intercept. Thus the uniformly distributed random numbers 0 < x < 1 

are now transformed into numbers 0 < L ' < 2 n  distributed according to the 

hypergeometric distribution valid for the corresponding intercept characterized by n, R, 

and K.

There exist two special cases which are fully examined in Appendix C.

Thus the construction of a generator of randomly chosen monotonically 

decreasing series/functions, which reflect the density of such functions in different points 

of the unit square, is completed. Because the theory of random walk was used for its 

creation, we call it a random walk generator.

3.4 Comparison of different generators

In Sec. 3.1 we mentioned two different generators of monotonically decreasing 

series of numbers that should also be considered. The algorithms used in these generators 

are outlined in this section.

3.4.1 Random number descent (Stavrev et al}  )

In this case, pairs of random numbers are generated determining the jc and y  

coordinates of a set of points in the unit square. However, not all points are recorded, but 

only these for which the y  coordinate has a smaller value than the y  coordinate of the 

previous point and the x  coordinate has a value higher than the previous one. Once the 

values x = 0.99 andy = 0.01 are reached, the point B (1, 0) is automatically added. Thus 

a set of points determining a monotonically decreasing function/series is constructed.
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3.4.2 Random angle - random step descent

This generator is illustrated in Figure 3-3. A random angle, a t e  [0, — ^r/2], and a

random step r are generated at each simulation to determine the next point of the

monotonically decreasing series/function. The first point that is generated with 

coordinates outside of the unit square is automatically replaced with point B.

0.8

0.6

0 .4

0,2

0.6 0.80 0.2 0 .4
Percent (%) Dose

Figure 3-3: Illustration of the random angle - random step descent generator.

In both of the above mentioned random function generators, the point B (1, 0) was 

added artificially. However, since both procedures are intuitive and they are only meant 

to produce monotonically decreasing series, the artificial addition of point B to the 

generated DVH is of no particular importance.

In the remainder of this section, we investigate the applicability to DVH reverse 

mapping of these two intuitive generators and compare them to results from our random 

walk generator.
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We used the DVH reverse mapping method in the previous chapter (and in 

Schinkel et al.2) to calculate adequate dose-volume constraints for the needs of inverse 

treatment planning. In that study,2 an averaged DVH is calculated -  for a given organ -  

from a set of DVHs, which resulted in NTCP e [4.5; 5.5]%. The NTCP is calculated 

according to the population based critical volume model7’10 for each of the generated 

DVH curves. Subsequently, only DVH curves that result in NTCP e [4.5; 5.5]% are 

selected. The average DVH is obtained as the arithmetic mean of the selected DVHs with 

respect to the relative volumes (i.e., the y  values) of those points of passage that have the 

same x  coordinate (i.e., dose).

In the previous chapter and the work of Schinkel et al., we suggest that the dose- 

volume constraints be chosen as points from this averaged DVH, because the resultant 

NTCPs would be in the same interval [4.5; 5.5]%.

To check the applicability of the simpler generators described above to the clinic, 

we decided to compare the averaged DVHs, produced by them, which result in 

NTCP e [4.5; 5.5]% with the same averaged DVH produced by the random walk 

generator. Of course, it might also be possible to compare the 2-dimensional distributions 

of the DVH density produced by the different generators. However, since the dose- 

volume constraint points are to be chosen from the averaged DVHs, the clinical interest 

should lie in the generation of such averaged DVH curves. Therefore, a comparison 

between the generators, based on the averaged DVHs, might be more indicative of the 

differences and interchangeability of the generators for the clinic. In addition, if  all the 

generators studied in this chapter or any pair of them would produce curves with equal 

density in the square they would also produce coinciding average curves, since these 

curves are the average of a subset of curves chosen under the same criterion for all 

generators. Thus, for this reason it is not necessary to compare 2-dimensional 

distributions of the DVH density produced by the different generators. It may be that the 

difference between the average curves (if it exists) depends on the chosen NTCP model 

and on the parameter values (as Figure 3-4 and Figure 3-5 indicate), but we are only 

interested in the existence or absence of such a difference indicative of whether or not the 

generators are interchangeable.
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The investigation was carried out for four organs -  liver, brain, bladder, and 

spinal cord and the results are shown in Figure 3-4. The dose is renormalized, that is, 

translated to absolute dose through multiplying the relative dose by a corresponding 

maximum dose for each organ. The parameter values for the calculation of the 

corresponding NTCPs according to the critical volume population NTCP model were

liver brain

■ Random walk 
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Figure 3-4: Comparison between the three different DVH generators according to the 
averaged DVH curves resulting in NTCP e [4.5; 5.5]% for liver, brain, bladder and 
spinal cord.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



taken from Stavrev et al.n Based on the graphs shown in Figure 3-4 one may conclude 

that the random angle generator produces averaged DVHs that are almost identical to the 

ones produced with the random walk generator. The random number descent generator, 

however, produces visibly different DVHs than the ones produced by the random walk 

generator.

In some cases, it may be possible to design a treatment that almost entirely spares
12part of an organ from irradiation (for example, the DVHs appearing in Coselmon et al. ). 

This organ sparing can be represented in a DVH generator by incorporating an initial, 

random, step downward. In order to include the case of partial organ irradiation, 

“hybrid” generators were constructed, which are based on the studied generators, in the 

following way: An initial random jump was used as a starting point to simulate a random 

part of the organ receiving no radiation and then the corresponding generator was used to 

complete the DVH generation for the rest of the organ receiving heterogeneous 

irradiation. A comparison was made of the averaged DVH curves produced by the three 

hybrid generators, for the same four organs -  liver, brain, bladder, and spinal cord -  and 

the results are shown in Figure 3-5. This figure shows that in the case of an initial jump, 

simulating partial organ irradiation, the averaged DVHs produced via the three generators 

differ from each other almost always.

The hybrid generators could be used for constraint point calculation in cases 

where it is possible to spare part of the organ. For cases where partial organ sparing is 

not possible, the generator could be used as-is, without the incorporation of an initial 

random step downward.
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Figure 3-5: Comparison between the three hybrid DVH generators with initial jump 
simulating partial organ irradiation according to the averaged DVH curves resulting 
in NTCP e [4.5; 5.5]% for liver, brain, bladder, and spinal cord.
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3.5 Discussion and conclusions

It was theoretically determined that the distribution of the number of 

monotonically decreasing finite series passing through a point in the dose volume 

histogram space follows the hypergeometric distribution.

A generator of random monotonically decreasing series/functions called a random 

walk generator is constructed. The generator follows the hypergeometric distribution, 

which was found to describe the probability distribution of the DVHs in the dose-volume 

space. It is compared with two other intuitive random function generators. The random 

walk generator is used as a standard in this comparative study since the selection process 

based on this generator reflects the inherent density of monotonically decreasing 

functions in the unit square. The comparison is carried out with the purpose of exploring 

the goodness of the two simpler generators and the potential of using any of them in place 

of the more complex random walk generator. Based on the results of the comparison 

between the three random function generators investigated in this chapter, which show 

that there is a significant difference between the generators (Figure 3-4 and Figure 3-5), it 

can be concluded that neither of the two simpler generators can replace the random walk 

generator.

Because we suggest that the averaged DVH curve produced by a random function 

generator, that results in NTCP e [4.5; 5.5]% , is to be used to determine the dose-volume 

constraints for use in the treatment planning optimization as described in the previous 

chapter and Schinkel et al.,2 we conclude that it is of high importance to use the correct 

generator of DVH curves on the basis of which an average DVH resulting in 

NTCP e [4.5; 5.5]% will be constructed. Therefore, we recommend that the random walk 

generator be used for the generation of average DVH curves with a subsequent choice of 

dose-volume constraints.
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Chapter 4 Analytical investigation of properties 
of the iso-NTCP envelope

A version of this chapter was published as:

P. Stavrev, C. Schinkel, N. Stavreva, K. Markov, B. G. Fallone, “Analytical investigation 
of properties of the iso-NTCP envelope,” Radiol. Oncol. 41(1), 41 -  47 (2007)

4.1 Introduction

In Chapter 2 we proposed that the DVH averaged from those resulting in a certain 

normal tissue complication probability (NTCP) can be used as a source of dose-volume
1 9constraints for inverse planning. ’ Constraint points were estimated for a number of

organs using two NTCP models -  the Lyman model with the parameters of Burman et

al.4 and the critical volume population model5 with the parameters of Stavrev et al.6 We

also reported an observed property of the integral dose-volume histogram (DVH) 
1 2space. ’ In those reports we constructed a curve, which we called an a-iso-NTCP 

envelope, by connecting points belonging to step-like integral DVHs. Each of these 

DVHs corresponded to homogeneous partial organ irradiation of a relative volume v* to 

dose Dk such that, for each DVH, the resulting NTCP had a particular value a. We 

numerically demonstrated that any DVH passing through a point {Dk, v*) from the a-iso- 

NTCP envelope, i.e., any DVH that is tangential to or crosses the envelope, will result in 

NTCP > a  . It should be emphasized that the equality is valid only for the step-like DVH 

that corresponds to the homogeneous partial organ irradiation of v* to D*. In this chapter,
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we prove this property of the iso-NTCP envelope analytically for the three most 

commonly used NTCP models -  the Lyman model, the individual critical volume model 

and the population critical volume model.

4.2 Proof for the Lyman model

For our purposes, a normalized integral DVH is defined as a monotonically 

decreasing function characterized by the set of points Dj,vi : i = 1 such that v, = 1,

VN+1 = 0, vM <v,., Di < d m .

We begin this proof for the Lyman NTCP model:
/

NTCP = O
r E U D -D %̂

mD

(4-D = exp

50 /

/
dt = — 

2
l + erf

( \  x

n .

where m and D 50 are model parameters, and EUD is the equivalent uniform dose, which 

will be defined later. It is clear from Eq. (4-1) that NTCP is a monotonically increasing 

function of EUD. Thus, for two arbitrary EUDs, if EUD] > EUD2, then it follows that 

NTCP{EUD\) > NTCP(EUD2).

Consider an arbitrary integral DVH, with points ( A ,  v,-: i = 1, N), that passes

through the point (A , n ) on the a-iso-NTCP envelope (Figure 4-1). The EUD of this 

arbitrary DVH will be referred to as EUD. Now consider a step-like DVH that also 

passes through the same point. This step-like DVH has an NTCP of a. If we call the 

EUD of this DVH EUDa, then we may write that NTCP(EUDa) = a. According to our 

observation,2 the NTCP of the arbitrary DVH that passes through a point on the a-iso- 

NTCP envelope will be greater than a:

(4-2) NTCP (EUD) > NTCP (EUDa )= a .

Because of the monotonic nature of NTCP as a function of EUD, this statement is true, if 

and only if,

(4-3) EUD > EUD„
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Figure 4-1: Illustration of an a-iso-NTCP envelope and two arbitrary DVH curves -  one 
that crosses the envelope at the point {Dk, Vk) and one that is tangential to the envelope at 
the same point. Also shown is a step-like DVH passing through {Dk, v*) that corresponds 
to homogeneous partial organ irradiation. The NTCP of the step-like DVH should be 
equal to a, while the NTCP for both arbitrary DVHs should be greater than a.

Therefore, if we can show that E U D  >  E U D a , then Eq. (4-2) is also true.

To calculate E U D ,  the integral DVHs must be converted into differential DVHs. 

In the case of homogeneous partial organ irradiation of volume v* to a dose Dk, the 

integral and the differential DVHs are determined solely by the pair (v*, D k). For any 

other type of irradiation, the corresponding differential DVH is given by the following set 

of points: (v,- -  v,+i, Di).

One of the commonly accepted forms of E U D  is the one given by the generalized 

mean dose (GA/D) : 7' 9

where a is a volume parameter. For the case of partial organ irradiation of the volume v* 

to dose Dk, Eq. (4-4) simplifies to:

(4-4) E U D  =  G M D  =  Y , ( U - vm ) D ;
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(4-5) = < £ > ,-

For the arbitrary DVH passing through point (Dk, vk), the EUD may be written as:

f  N  \ a

EUD =
V  1=1

+ (v* _ v w )DtV“ + 2 > ,  - v j A 1"
\ a

(4-6) _
V  (= 1  r= A + l

To prove Eq. (4-3), we have to prove, from Eqs. (4-5) and (4-6), that the following 

inequality is valid:

EUD„ < EUD =>

(4-7) ( v . d / T  < [ E ( v , - v w )A '/“ +(v1 - v i .,)i)l l/“ + X (v ,-v ,.,)D ,1"
V /=1 i=k+ 1

Taking each side of Eq. (4-7) to the power of 1/a , we obtain:

(4-8) vkDk /a < £  (v, -  vi+I )D-'a + (vk -  vt+1 )DkVa + £  (v, -  v,.+1 )D^la ,
(=1

which can then be written as:
k- 1

i=k+\

(4-9) v k +i D k < X ( V; - v/+i )A  + Z ( v , - v, , ) A 1/a •

i=i i=k+ 1

We now proceed by proving that Eq. (4-9) is true.

First, consider the term vk+xDk a in Eq. (4-9). It may be re-written as:

D *  = (•k+\ )Dk la + {vk+2 -  vk+i)Dklla +... + (vN -  vN+t )D, 1/a

(4-10) = Z ( v, - v,+i)A
1/a

i= Jt+ l

where, by definition, vAr+1 = 0 .

We can expand the second sum in Eq. (4-9):

(4-11) X (v, -  vMW a = ( v k+1 -  v k+i ) D J la  +  i v k+2 -  vk+i)DkJ a + ... + (v„ -  vN+i)DN[/a .
i=k+\

According to our definition of the integral DVH, Z) < DM for all i = I ...N . Therefore,

each term of the sum in Eq. (4-10) is less than the corresponding term in Eq. (4-11), and 

we can write:
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(4-12) v „ 1D ,v* < | ; ( v , - v w )D /“ .
i=*+1

Because of our definition of an integral DVH, v, > vM for all i = 1 ...N , the first 

sum in Eq. (4-9) is greater than zero:

(4-13) I ( v , - v w ) D /- > 0 .
1=1

From Eqs. (4-12) and (4-13), the following is true:

(4-14) v,„ < i>, -  v,„ )d ;'- + £ ( v ,  -  v,„ )D;>■,
(=1 i=k+\

which is identical to Eq. (4-9). Thus, we have proven Eq. (4-9), which is equivalent to 

Eq. (4-7), and thus, Eq. (4-3). Therefore, Eq. (4-2) is also true, and we have thus 

mathematically proven the property of the envelope for the Lyman model.

4.3 Proof for the critical volume NTCP model

The basic property of the a-iso-NTCP envelope will be proven for the critical 

volume (CV) NTCP model in this section. The CV model exists in two forms -  

individual and population models.

The individual CV model is given by:

(4-15) NTCPind = 0>

where Npsu is the total number of functional subunits (FSUs) comprising the organ, Jid is

the mean relative damaged volume, is the variance in jld , and ficr is the relative

critical volume of the organ.5,10,11

The population CV model, under the assumption that only the relative critical 

volume displays inter-patient variability, is given by:

ln(- \njid)+ ln (- In jlcr)(4-16) NTCP„ = O

where Jicr is the population mean relative critical volume and cr is the variance in Jicr .5
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As can be seen in Eqs. (4-15) and (4-16), both the individual and the population 

CV models are monotonically increasing functions of the mean relative damaged 

volume Jid . This quantity is given by the following sum:

(4-17) A, = 2 > . - V« ) ^ ( A ) .
i

where PFSU (Z>) is the probability that a functional subunit is damaged beyond repair. It, 

in turn is given by:

(4-18) PFSU (D,) = exp[- N c exp(- a cDi)],

where Nc is the number of cells in an FSU and Oc is the cell radiosensitivity. The 

quantity exp(- acD) is the probability that a cell survives an irradiation to dose D. 

Because ac is a positive quantity, exp(- acD) is a decreasing function of dose. The term 

Nc exp(- a cD) is the mean number of cells that survive dose D and also decreases as D

increases. Equation (4-18) is the probability that a functional subunit is damaged beyond 

repair, which is equivalent to the probability that all cells in the subunit are destroyed. 

Therefore, exp(- N ce~a‘°), which is the probability of zero cell survivals, increases with 

decreasing mean number of cell survivals, N c exp(- acD ), or increasing dose D.

We now compare the mean relative damaged volume caused by an arbitrary DVH 

that is tangential to or is crossing the ar-iso-NTCP envelope at point (Dk, v*) with the 

mean relative damaged volume caused by a step-like DVH given by {Dk, v*). From Eq. 

(4-17), the mean relative damaged volume for the arbitrary DVH passing through the 

point {Dk, Vk) on the a-iso-NTCP envelope is:

P d  =  ^  ( v ; —  v /+ i  ) P f s u  ( A  )

(4~19) '=!

= _  V'+l )A sU ( a  ) + (VA _  V/t+l )As(/ ( a  ) + S  (Vi _  Vl+1 )P fSU ( a  )
1=1 /= *+ 1

The mean relative damaged volume caused by partial organ homogeneous irradiation of 

relative volume v* to dose Dk will be denoted as ~jud a and is given by:

(4-20) jj.da =vkPFsu(Dk).
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N

We now compare Jid = ^ ( v ,  -  vI+1 )PFSU (Di) [Eq. (4-19)], containing point (Dk, vk), with
j=i

Jida -  vkPFSU(Dk) [Eq. (4-20)]. Since PFSU (d ) is an increasing function of dose, Eqs.

(4-19) and (4-20) are similar to the EUD form of Eq. (4-4) from the Lyman model. By 

applying the same process as to the proof of Eq. (4-7) it can be shown that the following 

inequality is valid:

(4-21) ^  (v, -  Vi+, )PFSU (-D, ) > Pd,a = Vk^F SU  i P k ) •
/=i

Given that NTCP is an increasing function of the mean relative damaged volume, it 

follows that NTCP(jud)>  NTCP{/2da)= a  for DVHs having a common point with the a-

iso-NTCP envelope.

4.4 Discussion and conclusions

Because we have proven that the discussed property of the or-iso-NTCP envelope 

applies to three of the most commonly used NTCP models -  the Lyman model, the 

critical volume individual model, and the critical volume population model -  there is 

reason to believe that this property may be model-independent.

The or-iso-NTCP envelope divides the dose-volume space in two sub-spaces. For 

the sub-space above the envelope, we have analytically proven that all DVH curves with 

at least one point in this region result in NTCP > a. For the sub-space under the 

envelope, it was numerically demonstrated elsewhere2 that there exist DVH curves that 

result in a NTCP < a. However, as it is shown above, there do exist other curves, for 

example, those that are tangential to the envelope from below, which result in NTCP > a. 

Nevertheless, because there is a chance that a DVH lying under the or-iso-NTCP 

envelope will result in a NTCP less than a, one can conclude that it would be preferable 

in the treatment optimization process to seek solutions for DVHs lying entirely under an 

iso-NTCP envelope and avoid those that lie even partially above the envelope.
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The physical dose-volume constraint points calculated in Chapter 2 and Schinkel 

et al. were found to be dependent on the NTCP model as well as the parameters used for 

their determination. The iso-NTCP envelope could be used to estimate the impact of a 

change of NTCP model and/or parameters on the calculated constraint points for a given 

organ, since the envelope curve is dependent on both of these quantities. Dawson et al}2 

observed that the iso-NTCP curve corresponding to their liver parameters for the Lyman3 

model was shifted considerably to the right in DVH space compared to the iso-NTCP 

curve corresponding to the Burman et al}  parameters for the same organ. To estimate 

how the source of dose-volume constraints (the average of DVHs with a certain NTCP) 

would change with a change of NTCP parameter values, one could calculate the iso- 

NTCP envelope corresponding to these new parameters. The distance in DVH space 

between the old and new iso-NTCP curves is approximately the same as the distance 

between the old and new averaged DVHs. The position of the new dose-volume 

constraints could then be estimated by shifting them in DVH space by an amount equal to 

the distance between the two iso-NTCP curves. In this way, one can avoid having to 

perform an extensive recalculation of the dose-volume constraints.
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Chapter 5 Functional form comparison between 
the population and the individual Poisson based 
TCP models

A version of this chapter has been accepted for publication:

C. Schinkel, N. Stavreva, P. Stavrev, M. Carlone, B. G. Fallone, “Functional form 
comparison between the population and the individual Poisson based TCP models,” 
Radiol. Oncol. 41(2), 90-98 (2007)

5.1 Introduction

In the decades following the introduction of the first individual TCP model by 

Munro and Gilbert, 1 the distinction between the individual and population response has 

often been disregarded and individual TCP models have been fit to clinical datasets. The 

necessity of describing the impact of population heterogeneity on dose-response has led 

to the development, by a number of authors, of population-based tumour control 

probability (TCP) models.2' 5

It has been shown that the presence of population heterogeneity leads to a dose- 

response curve that is flattened relative to the individual dose-response curve. If an 

individual TCP model is fit to a population dataset, the biological meaning of the 

parameter estimates is lost -  the radiobiological parameters take on unrealistically low 

values.6 Nevertheless, although it is conceptually incorrect, the individual TCP model 

has been fit to clinical datasets and parameters obtained from these fits have been 

assumed to have radiobiologically meaningful values.4,7' 10 On the other hand, it has also 

been shown that these fits are characterized by an acceptable goodness of fit.
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It has been expected that the population TCP models would allow for the 

estimation of biologically meaningful population parameters. Unfortunately, it is 

impossible to obtain a unique set of parameter values when a population TCP model is fit 

to clinical data.6,11 This is due to the fact that different sets of population parameter 

values produce almost identical TCP curves. Carlone et al.n  analytically demonstrated 

that when the dominant source of inter-patient heterogeneity is that of tumour 

radiosensitivity, the population TCP function has only two independent parameters -  the 

dose at 50% TCP, D$o, which determines the position of the TCP curve, and the 

normalized slope of the curve, /so- These parameters have geometric meaning. Since it 

is also true that the individual TCP model may be expressed in terms of the same two 

parameters,312 it is possible that, for a given range of parameter values, both models will 

exhibit almost identical functional form. In this chapter, we investigate the similarities 

between these two models expressed in terms of D50 and y50 by plotting them for identical 

values of these geometric parameters.

5.2 Background and method

The general form of the population-based Poisson TCP model has eight 

parameters. However, it has previously been shown6,11 that the parameters of such a 

model are interrelated; many different combinations of parameters lead to one and the 

same TCP curve. Thus, it may seem difficult to directly compare the functional forms of 

the individual and population-based TCP models. On the other hand, Carlone et al.6'n 

have specified (based on a certain approximation, but a clinically valid one) what these 

interrelations actually are, and have shown that there are only two independent 

population model parameters -  D5q and /so- Fortunately, the individual Poisson-based 

TCP model can also be parameterized by these two parameters. This fact makes the 

comparison of both models an easier task.
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5.2.1 The Poisson-based individual TCP model

This common form of the individual TCP model is based on Poisson statistics 

combined with a simplified description of clonogen repopulation.4’10,11,13-26 In the case 

where a tumour undergoes homogeneous irradiation to a total dose D, split into n 

fractions with equal dose per fraction, d, the individual Poisson TCP model may be

written as: 11

TCPind = e~Ns =exp [- N 0e~(a+/3d)D+XT]

(5-1)
= exp ■N0e = exp[-iV0e-ffD],

where No is the initial number of clonogens, Ns is the mean number of surviving 

clonogens following the treatment, a  and f t  are the linear quadratic (LQ) radiosensitivity

Tparameters, A is the tumour repopulation rate, T is the total treatment time and A' = A — .
n

Note that as long as an equal dose is given during each fraction of the treatment (as is 

common clinical practice), the parameters a, f t  and A' can be combined into one single 

parameter:

(5-2) a ’ = a  + p d - — .
d

The validity of the Poisson TCP model was questioned by Tucker and Travis,21 and 

others27' 31 who explored the non-Poisson nature of the TCP in the case where tumour 

repopulation occurs. Under certain conditions, however, it has been shown27,32 that the 

distribution of the number of clonogen cells remaining at the end of a treatment is well- 

approximated by the Poisson distribution. In view of these results, and also because of 

the relative complexity of the non-Poissonian TCP models, the individual TCP function 

presented in Eq. (5-1) is often used.

A form of the individual TCP model3,12 that is equivalent to Eq. (5-1), but written 

in terms of the geometric parameters, yso and Dso, is given by:
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The notion of normalized slope, y, was first introduced by Brahme33 for the purpose of 

dosimetric precision quantification. Later, Kallman et al? 4 used the maximum value of 

y  at the inflection point of the TCP curve and derived an expression similar to Eq. (5-3), 

but, as pointed out by Bentzen and Tucker,35 a slight inconsistency is present in their 

formula. In general, the Poisson TCP expression given by Eq. (5-1), may be transformed 

and parameterized in terms of the normalized slope # a t any dose point Df.

exp

(5-4) TCPind = f

-rf
/In / 1- 2 -

D
f  J

From Eqs. (5-1) and (5-4), the following relationships between the two different sets of 

parameters (//, Df )  and (No, d )  may be derived:

(5-5)

(5-6)

D f  = — In 
a

- N n

v In/ 

Yf  ~ - / l n / l n
f - N  '-;vo

In/

and for (y5o, />so) in particular:

(5-7)

(5-8)

a In 2

Y 50
In 2

In
vln 2 y

5.2.2 The population-based TCP model

Carlone et al.n showed that the population TCP model for the case of dominant 

heterogeneity in radiosensitivity may be written as:

(5-9) TCPm  = X-e r fc
D
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The parameters in Eq. (5-9) -  D50 and / 50 -  have the same geometric meaning as 

the corresponding parameters in Eq. (5-3). The geometric parameters may be expressed 

in terms of the population-based radiobiological parameters, a ' , o ' and In N 0 i11

(5-10) Dx  = '  0
_ r  + lnA£

'50

(5-11) 7 50

a

a '
-J27To '

Here a ' = a  + fid  + — and (o ' ) 2 = o 2 + d 2 o /  +——  where a  , f t , X’ and ln7V0̂ 
d d

are the population averages of the corresponding individual parameters and o a , o p , o x,

and o lnN() are their standard deviations. The symbol T represents Euler’s gamma

constant, which has an approximate value of 0.577.

The general form of the Carlone et al.n population TCP model takes both 

heterogeneity in radiosensitivity and heterogeneity in clonogen number into account. 

However, this form of the model has three parameters, and was shown11 to be almost 

identical to the one that only takes heterogeneity in radiosensitivity into account. Hence, 

the latter will be used for this analysis.

2

5.2.3 Functional form comparison between individual and population-based 
TCP models

Since both the individual and the population TCP models may be written in terms 

of the same two parameters, y5o and Z)5o, it seems natural to assume that the two models 

may display similarity in functional form. In order to explore the functional similarity of 

these models, Eqs. (5-3) and (5-9) are evaluated for a given range of /so and £>50 values. 

Subsequently, the individual and population TCP curves obtained for equal sets of /5 0  

and £ > 5 0  values are plotted for visual comparison.
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The functional closeness of the individual and the population TCP curves may be 

more rigorously estimated by calculating the normalized difference between the areas 

under the two TCP curves,

as a function of y5o-

5.3 Results

The individual and the population TCP curves were calculated according to Eqs.

reported a mean Z)5o for all tumours investigated in their work of 50 Gy, with values 

ranging from 10 to 90 Gy. We therefore chose a value of Dsa = 50 Gy for our 

investigation.

Figure 5-1 shows eight pairs of individual and population TCP curves calculated 

for the following parameter values: D50 = 50 Gy and /so = [0.5, 1, 1.5, 2, 2.5, 3, 4, 6 ]. 

This figure was reproduced for different values of D50, to determine whether this 

parameter had any influence on functional equivalency. The location of the TCP curves 

along the dose-axis did not influence their positions relative to each other or the shapes of 

the curves. Hence, the results shown in Figure 5-1 are transferable to any D 50 value.

The quantity — ——( j50) [Eq. (5-12)] is plotted in Figure 5-2. The largest area
^TCP^

difference between the two TCP curves is -17.7% at /50  = 0.5.

Next, we investigated the impact of the slope of the observed clinical dose 

response on model interpretation. For this purpose, we constructed a comparative table 

of the biological parameter values for each of the two studied TCP models that 

correspond to a dose response curve characterized by given geometric parameter values.

(5-3) and (5-9) for values of the parameters 750 and D 50 reported by Okunieff et al.36 

Based on their estimates of 750, we chose a range of y50 e[0.5,6 ]. These authors also
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Figure 5-1: Individual (solid) and population-averaged (dotted) TCP curves for D50 = 50 
Gy and the 750 values shown in each sub-plot.
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The individual parameters, d  and No, were calculated from Eqs. (5-5) and (5-6) for the 

Z)5o and /50 values used to generate the graphs in Figure 5-1. We also calculated the 

values of the population parameters a ' and cr' for an assumed value of N 0 , using Eqs.

(5-10) and (5-11). For this purpose, we chose an average clonogen number of N 0 = 108. 

The results are shown in Table 5-1.

|  -10 

-12

-14

-16

-18

r 5 0

Figure 5-2: The ratio of the area difference, AA = ATCPpop -  ATCPind, between the two TCP 

curves, to the total area under the population TCP curve ( ATCPpop), plotted for the values 
of 750 used to generate the curves shown in Figure 5-1.
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Table 5-1: Individual parameters ( d and No) calculated for the y50 values listed and Dso = 
50 Gy. A set of population-based parameters ( a ' , cf), calculated for the same values 
of yso and Z)50, is also listed. The population-based parameters were calculated assuming 
a value of N 0 = 108 for the average number of clonogens.

Tbo d  (G y1) -/Vo a' (G y1) d  (Gy
0.5 0.029 3 0.380 0.303
1 .0 0.058 1 2 0.380 0.152
1.5 0.087 53 0.380 0 .1 0 1

2 .0 0.115 2 2 2 0.380 0.076
2.5 0.144 941 0.380 0.061
3.0 0.173 3.98E+03 0.380 0.051
4.0 0.231 7.13E+04 0.380 0.038
5.0 0.289 1.28E+06 0.380 0.030
6 .0 0.346 2.29E+07 0.380 0.025

5.4 Discussion

Based on Figure 5-1(d) -  (h) and Figure 5-2, one may conclude that the functional 

forms of the individual and the population models are almost identical for y50 e [2 , 6 ].

Indeed, for this range of y5o the index \tsAjATCP is less than 0.5%. Although |A4/ ATCP

is higher ( AAjArcp e [- 0.5, -  6.7]%) for the interval y50 e [l, 2), the plots in Figure 5-1

(b) and (c) indicate that the individual and population TCP curves are still sufficiently 

close to each other, especially for the clinically-relevant high dose range. The individual

and population models differ considerably at y:50 = 0.5 ( |a Aj Atcp̂  = 17.7%). As can be

seen from Figure 5-1, the individual curves overread TCP everywhere except at 50% 

control when compared with the population-based TCP curves for y5o less than 2.5. For 

normalized slopes above 750 = 2.5, the individual curves tend to slightly underread the 

population TCP. The overreading and underreading tendencies are clearly demonstrated 

by Figure 5-2.
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The considerable closeness in functional form of both models explains the 

observation that the individual TCP model produces a reasonable fit to clinical 

datasets.4,10

In spite of this, the observed equivalence in functional form of the two TCP 

models should not be regarded as an endorsement to use the individual TCP model to fit 

clinical data. Indeed, as can be seen from Table 5-1, the variance in d  is relatively small 

(o' = 0.025 G y 1) only for the case of a very steep response (i.e. 750 = 6 ). From this 

observation, one may deduce that the individuals in a group that displays a steep response 

are nearly identical. In addition, the values of the individual parameters d  and N0 (Table

5-1) corresponding to /so = 6 are remarkably close to the population mean values of N 0

and a ',  which confirms the deduction of nearly identical individuals in this case. 

Therefore, the use of the individual model to describe data corresponding to a very steep 

response may be justified. Moreover, judging by the parameter values shown in Table 

5-1, the biological meaning of the model parameters d  and No in this case is retained, 

assuming that the population TCP model gives a correct description of tumour control.

However, a very steep dose response is unusual for clinical data sets. Shallower 

responses are much more typical for populations of patients. As can be seen from Table 

5-1, in the cases where /so is smaller (i.e., shallower responses), d  is larger. This 

corresponds to greater differences in the responses of individuals that comprise a given 

population of patients. Table 5-1 also shows that, as the normalized slope decreases, 

the values of the individual parameters d  and No start to differ considerably from the

population mean values N 0 and a ' , becoming increasingly inaccurate (No < 222 and

d  <0.11 Gy' 1 for / 50 < 2). Thus, a shallow dose response, which is usually observed 

clinically, can be explained by the presence of considerable inter-patient heterogeneity. 

Therefore, it would conceptually be more correct to use the population TCP model, 

which accounts for inter-patient heterogeneity, to fit such data. If, however, the 

individual TCP model is used, one should take into account that the fitted parameter 

values have lost any biological meaning and should be interpreted simply as 

phenomenological coefficients.
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As can be seen from Figure 5-1 (a) and (b), both models start to differ in 

functional form for the clinically observable range of fio < 1. In addition, for these 

values of y50, the individual model leads to TCP > 0 for D = 0. Therefore, fits using the 

individual model may distort the best-fit estimates of y5o and Dsq.

We advocate the use of the population model in regards to clinical data. 

However, the demonstrated equivalence in functional form of the individual and 

population models can be utilized for the case of heterogeneous tumour irradiation. In 

this case, the individual TCP model with existing {^o, £>50} estimates (e.g. Okunieff et 

al?6) can be used for the evaluation of TCP37 according to the following expression:38

2 y,
Z j vi e x P

(5-13) TCP = 0.5 ' In 2
i - A

Ao j

Equation (5-13) is a simple, straightforward generalization of Eq. (5-3) for the case of 

heterogeneous irradiation. However, the generalization of Eq. (5-9) for the case of 

heterogeneous irradiation, without introducing extra model parameters, presents a 

complicated mathematical problem, and has not yet been solved.

Strictly speaking, the ability to use Eq. (5-13) as a population TCP descriptor has 

not yet been proven theoretically. Nevertheless, our experience with the TCP/NTCP 

estimation module37 shows that it produces reasonable TCP estimates.

Another approach to the problem of taking dose heterogeneity into account for the 

population TCP model is to replace the homogeneous dose, D, with the equivalent 

uniform dose, EUD. It may then be assumed that the EUD is equal to the generalized 

mean dose (GMD), as is usually done.39’40 Unfortunately, this approach introduces a 

third model parameter, and knowledge of its value for each tumour type would then be 

needed in order to use this model to calculate TCP for a heterogeneously-irradiated 

tumour. Therefore, until more comprehensive parameter estimates are produced through 

fits of the population TCP model to clinical data for the case of heterogeneous irradiation, 

we propose that Eq. (5-13) be used for evaluation of treatment plans in terms of TCP 

based on the functional form equivalency of both models.
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5.5 Conclusions

It is thus concluded that:

• The population and the individual TCP responses are almost identical in functional 

form for belonging to the interval [1,6]. If each of these models were fit to the

same clinical dataset, they would produce statistically indistinguishable values of the

parameters and y5o.

• It is conceptually incorrect to use the individual TCP model to fit clinical data.

• Until reliable estimates of the population TCP parameters for the case of

heterogeneous tumour irradiation are obtained, the individual TCP model [Eq. (5-13)] 

with existing D5o and /so estimates could be used for TCP evaluations in this 

situation.

• The case of a shallow dose-response relationship, which is usually observed 

clinically, can be explained by the presence of significant inter-patient heterogeneity. 

The population TCP model should be used to fit such data, as it accounts for this 

heterogeneity. If, however, the individual TCP model is used, the estimated parameter 

values should be interpreted simply as phenomenological coefficients.

• A steep dose-response relationship can be attributed to the presence of a relatively 

small inter-patient heterogeneity. Though it is highly improbable to observe such 

dose-responses clinically, the individual TCP model may be applied to such data for 

the purpose of estimating biological parameters, as the individual parameters would 

retain some biological meaning.
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Chapter 6 An analytic investigation into the 
effect of population heterogeneity on parameter 
ratio estimates

A version of this chapter has been submitted for publication:

C. Schinkel, M. Carlone, B. Warkentin, and B. G. Fallone, “An analytic investigation into 
the effect of population heterogeneity on parameter ratio estimates,” IJROBP, in press 
(2007)

6.1 Introduction

Parameter ratios are clinically important radiobiological quantities. Individual 

radiobiological parameters such as a, /3, and X of the linear quadratic model have 

importance in cell survival analysis, but have less clinical significance due to the 

difficulties involved in accurately determining these parameters. The ratios a!ft and XIa, 

however, are related to clinically important issues, such as the effect of dose per fraction 

on biologically effective dose (BED), and the amount of dose per day that is needed to 

combat tumour growth. The importance of these quantities has been explained in detail. 1

The accepted paradigm regarding fractionation for most tumour types is that a 

dose per fraction of about 2 Gy is a good compromise of delivering dose to the tumour 

sufficiently quickly, while keeping the dose per fraction low enough to avoid excessive 

normal tissue complications. This is based on the observation that tumours are early 

responding tissues and typically have an al(3 of about 10 Gy, while late responding 

normal tissues have an al(3 of about 3 Gy. One o f the most interesting recent innovations 

in clinical radiobiology was suggested by Brenner and Hall in their landmark paper.2
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Based on the current understanding of the relationship between the cell cycle and 

response to fractionation (which is still limited), they suggested that prostate cancer may 

be atypical of other cancers. Since prostate cancer progresses slowly, they argued that it 

may respond to fractionation in a similar manner as do late responding normal tissues. If 

this is indeed the case, then the 2 Gy per fraction paradigm should be revisited for 

prostate cancer because the differential response to fractionation between tumour and 

normal tissues would disappear, and so sparing normal tissues by reducing the dose per 

fraction would become less important, as long as the total dose was adjusted accordingly 

for larger dose per fraction. As a supporting argument, Brenner and Hall2 analyzed 

clinical outcomes from low dose rate 125I brachytherapy treatments along with standard 

extemal-beam 2 Gy per fraction treatments to arrive at the now well-known estimate of 

1.5 Gy for the a ip  ratio of prostate cancer. Subsequently, Fowler et al? and others4' 9 

have made additional estimates of the al(5 ratio for prostate cancer based on clinical 

tumour control data. To date, numerous clinical trials10' 14 have also been initiated to look 

at the equivalence of hypofractionation vs. standard fractionation for prostate cancer. If 

hypofractionation becomes the new standard of care for prostate cancer, it will represent 

one of the most successful translations of linear quadratic theory into clinical practice.

It should be emphasized that the driving principle behind Brenner and Hall’s 

initial publication, and subsequent publications by Brenner and colleagues, is a biological 

one. Nonetheless, the ensuing discussion regarding hypofractionation for prostate cancer 

has centered on estimates of the al(3 ratio, and not the underlying biological reasoning. 

Fitting tumour control models to clinical dose-response data to estimate radiobiological 

parameters (such as aJP) is a significant departure from conventional methods of 

estimation based on in-vitro cell survival analysis. Of course, for this new method to 

yield credible results, the TCP model used must also be credible. However, the most 

common form of the tumour control probability (TCP) model, which is based on the 

single clonogen hypothesis and Poisson statistics, may be tenuous at best. For example, 

it is possible that tumour control may not require that all clonogens be killed by radiation, 

but only enough so that the immune system can remove the rest. It may also be the case 

that control depends on the effects of radiation on the tumour vasculature, and not only 

on the damage to the tumour cells.
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Two forms of the common TCP model have been used in parameter ratio 

estimation: the non-averaged, individual TCP model, and the population averaged TCP 

model. The individual model assumes that all tumours have identical radiobiological 

characteristics, i.e. the same radiobiological parameters. The population averaged model 

is also based on the single clonogen hypothesis; however, it averages the result of a 

population distribution of radiobiological parameters amongst different tumours.

It is reasonably well accepted15' 18 that neither form of the TCP model can be used 

to estimate reliable and credible radiobiological parameters. However, it has been 

assumed that the clinically significant parameter ratios are somewhat insensitive to the 

type of model used (individual or population), and thus the choice of model is not 

particularly critical. This argument has been invoked to defend the use of the individual 

TCP model to estimate radiobiological parameters (Fowler et al.3 and Brenner and 

Hall19).

Recently, Carlone et al.16 published a theoretical development of population TCP 

modeling. They showed that, in the large heterogeneity limit, the Poisson based 

population-averaged TCP model expressed in linear quadratic parameters can be exactly 

reparameterized in terms of the geometric parameters D50 and y50. They also provided an 

analytic relationship between the linear quadratic and geometric model parameters. Their 

results could be expressed in both extremes of inter-patient heterogeneity, when the 

dominant source of heterogeneity is that of tumour radiosensitivity, or when it is due to 

variation in clonogen number. These population TCP model expressions provide a new 

framework from which to investigate the impact of population heterogeneity on 

parameter ratio estimates.

The purpose of this chapter is to use the analytic forms of the individual and 

population TCP models to generate mapping relationships between parameter ratio 

estimates obtained from fits using each of these two different types of TCP model. 

Numerical simulations are then carried out in order to confirm the derived mapping 

relationships.
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6.2 Background -  TCP models

6.2.1 The individual TCP model

A common form of the individual TCP model is based on Poisson statistics along 

with a simple description of clonogen repopulation that occurs over the duration of a 

treatment: 1’16’20' 34

(6-1) TCP" = exp[- N0Ps(D)eu ],

where No is the initial number of clonogens in the tumour, Ps(D) is the probability of cell 

survival after a uniform dose D, X is the repopulation constant, and T is the treatment 

time. If it is assumed that the treatment consists of n fractions of equal dose, d, cell 

survival probability is given by the linear-quadratic formula, and the repopulation 

constant, X, can be scaled by the number of days per fraction, X' = XTln, then the 

individual TCP model may be written as: 16

(6-2) TCPind = exp - N 0e
a + p d ~  |D

= exp -  e~{a'D+\n V 0) l
J5

where a  and p  are the linear quadratic radiosensitivity parameters.

The individual TCP model may be re-written in terms of the dose at 50% control, 

£ > 5 0 ,  and the normalized slope at that dose point, y 5 0  ( y 50 = A<Ao > where 

6>50 = \d(TCPmd )/dD]D ). The reparameterized form of this model is: 35

(6-3) TCPind = ( - ]
exp 2nd

l n 2 ( — 11 %> J.

^ 2 ,

where the geometric parameters (Z) 5o, /so) are related to the original radiobiological 

parameters (o', ln/Vo) as follows:

A o “ M 0 - l n ( l n 2 ) ](6-4)

(6-5) £50 —'

a

In 2 [in jV0 - ln ( ln 2 )].
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6.2.2 The population-based TCP model

Recently, Carlone et al.16 derived a fundamental form (equation) of the population 

TCP model. In the limit of low heterogeneity in clonogen number and no restriction on 

heterogeneity in radiosensitivity, the fundamental form of the population-based TCP 

model is : 16

(6-6) TCPnnn = -erfcpop 2 J 0 D

The parameters D50 and y50 in Eq. (6 -6 ) are related to the population-based 

radiobiological parameters:

(6-7)

(6-8)

r  + lnAT0
so — —;a

y  50
( X

V^rcr' ’

2       __
where (rr' ) 2 = cra2 + d 2a p2 + and a ' = a  + fid  + — . The quantities a  , fi , A' and

In ̂  are the population averages of the corresponding individual parameters. 

Heterogeneity in each of these parameters is represented by their standard deviations: 

<ra , <Tp, a x, and crlnA,(i. Finally, T is Euler’s gamma constant (approximately equal to

0.577).

In the case where heterogeneity in clonogen number dominates heterogeneity in 

radiosensitivity, the population TCP model is given by : 16

(6-9)

with:

(6-10)

(6- 11)

TCP = -e r fcpop 2 J so i
D

D,so y

^  T + ln7V0
50 — —a

y so
T + lnN n

\nNa
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Based on differing arguments, two publications have arrived at the conclusion that 

heterogeneity in radiosensitivity is the dominant form in a clinical tumour dose-response 

dataset. 16,25 Other evidence from studies involving in-vitro radiosensitivity parameters 

and modeling also supports this finding.36'39 Although it conceivably is possible that 

other forms of inter-tumour heterogeneity affect the dose-response curve of a clinical 

dataset, radiosensitivity is often assumed to have the greatest influence.40 Thus, we 

suggest that the population TCP model given by Eq. (6 -6 ) is best suited for the analysis 

of dose-response data.

6.3 Functional similarity o f the individual and population TCP models

It is known that the dependence of the shape of the TCP curve on fundamental 

radiobiological parameters describing radiosensitivity, repopulation and clonogen number 

is different for the individual and population models. The population model produces a 

shallower TCP response than the individual one for a given set of radiobiological 

parameters, due to averaging over the variability in parameter values. From Eq. (6 -8 ) it is 

clear that the population model predicts that the normalized slope of the TCP dose- 

response is in fact dictated by the relative heterogeneity, a '/a ' ; in contrast, the 

individual model suggests that clonogen number is the determining factor [Eq. (6-5)]. 

This discrepancy likely explains why it is commonly found that fits using the individual 

model require unphysical radiobiological parameters to produce a slope of the dose 

response that is consistent with population measurements. 17

A new method of comparing the individual and population models is facilitated 

by Eqs. (6-3) and (6 -6 ), which show that both TCP models may be written in terms of the 

same two parameters,41 / 5o and D5o- Similarities between the two functions were 

identified by generating TCP curves for each model, using clinically-relevant D50 and /so 

values. Clinical parameter values were chosen for this purpose based on the work of 

Okunieff et al.42 In that work, a phenomenological two-parameter TCP model was fit to 

a variety of different tumour datasets in order to determine estimates for Dso and /so- It 

was found that most curves had a shallow slope (i.e. a low y50 value of less than 4), and

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that the mean Z) 50 for all tumours investigated was 50 Gy, with values falling in the 

interval [10 Gy, 90 Gy]. Thus, to investigate the functional equivalency of the individual 

and population TCP models, Eqs. (6-3) and (6 -6 ) were evaluated with Dso = 50 Gy and 

y50 ranging from 1 to 4. These curves are plotted in Figure 6 -1(a) -  (d). For all /so 

values shown, the shapes of the individual (dotted line) and population (solid line) TCP 

curves are similar, and, for / 50 greater than 2 , the two functions are essentially identical. 

Changing the value of D5o only influenced the location of these curves along the dose- 

axis; the position and shape of the population curve relative to the individual curve are 

independent of this parameter. Though not a rigorous proof, Figure 6-1 shows that the 

geometric form of Eqs. (6-3) and (6 -6 ) is very nearly equivalent. When the large 

statistical errors associated with typical clinical dose-response data are taken into 

account, any difference between the two geometric forms would likely have an 

insignificant impact on fitting results.

The same procedure was used to compare the individual TCP model with the 

population model in the limit of dominant heterogeneity in clonogen number [Eqs. (6-3) 

and (6-9)]. Plots of these functions are shown in Figure 6-1 (e) -  (h) for Z) 50 = 50 Gy and 

/so = 1, 1.5, 2 and 4. Again, the geometric forms of the two models are nearly equivalent.

6.4 Mapping relationships between parameter ratios for the individual 
and population models

6.4.1 Analytic relationship between individual and population
radiobiological parameters

Based on the functional similarity41 that was suggested in the previous section as 

well as in Chapter 5, the clonogen estimate obtained from the individual model can be 

expressed in terms of parameters based on the population model using Eqs. (6-5) and 

(6-8):
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Figure 6-1: (a) -  (d) Individual TCP curve (dotted) and population TCP curve for the 
limit of dominant heterogeneity in radiosensitivity (solid) -  Eq. (6 -6 ) -  with parameter 
values £ ) 50 = 50Gy and the y5o’s shown in each sub-plot, (e) -  (h) Individual TCP curve 
(dotted) and population TCP curve for the limit of dominant heterogeneity in clonogen 
number (dashed) -  Eq. (6-9) -  for the same geometric parameter values as (a) -  (d).
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Similarly, the radiosensitivity estimate from the individual model can be expressed by 

combining Eq. (6-4) with (6-7):

Equations (6-12) and (6-13) give analytic relationships between the individual and 

population TCP model parameters that would be obtained in fitting the same dose 

response data. These equations clearly demonstrate that the parameters acquired by 

means of an individual TCP model are not equivalent to those obtained from a population 

TCP model for the same data. Note again that Eq. (6-12) implies that the individual 

prediction of the clonogen number is unrelated to the corresponding population clonogen 

parameter, but rather to the level of relative heterogeneity of the dataset, ar'/cr'.

6.4.2 Analytic relationship between individual and population a/p in the
limit of dominant heterogeneity in radiosensitivity

Although the meaning of the individual TCP model parameter estimates is lost 

when this model is applied to a clinical dataset, 18 it is often assumed that estimates of 

parameter ratios remain reliable.3,19 Dubray and Thames43 investigated the effect of 

heterogeneity on parameter ratios, and found that they are much less sensitive to the 

presence of interpatient heterogeneity when compared with single radiobiological 

parameters, unless the heterogeneity is extremely large, or there exists a significant 

amount of correlation between total dose delivered and treatment time. This observation 

was based on numerical simulation experiments in which the amount of heterogeneity in 

clonogen number was varied. Dubray and Thames also investigated the effect of 

heterogeneity in radiosensitivity on the ratio AJ(a + fid). They found that heterogeneity

(6-13)
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in radiosensitivity had a more pronounced effect than heterogeneity in clonogen number 

on A!(a + /3d) (their Fig. 2). The ratio was found to be insensitive to the presence of 

heterogeneity in radiosensitivity only when the amount of heterogeneity is small and/or 

when the total dose and treatment time exhibit little or no correlation.

Equations (6-12) and (6-13) offer the opportunity to improve upon the results of 

Dubray and Thames. These equations were developed with no assumptions about 

correlation between total dose and treatment time, and allow a reasonably straightforward 

investigation of the effect of inter-patient heterogeneity on parameter ratio estimates to be 

made using analytic methods.

For treatments where the dose rate is low enough for sub-lethal lesions to be 

repaired before they have a chance to interact (such as treatments involving permanent 

brachytherapy implants), the beta term of the linear quadratic model can be ignored, and 

the individual TCP model can be expressed in terms of the parameters a  and ln/Vo. When 

fitting the same model to extemal-beam radiation therapy (EBRT) dose-response data, 

estimates for d  = a  + f3d and ln/Vo can be determined. From the estimates for a  and d , 

al/3 may then be calculated using the following formula:44

(6.14) £  =
f3 a ' - a

In deriving Eq. (6-14), it was assumed that clonogen repopulation can be ignored 

over the duration of a treatment. This is the same assumption that Brenner and Hall made 

when they estimated alf3 for prostate,2 and is a reasonable one for slowly-proliferating 

tumours. Equation (6-13) gives an expression for the individual radiosensitivity 

parameter in terms of population parameters. The heterogeneity parameter, d ,  can be

written in terms of y5o and the average radiosensitivity parameter, a ' ,  by means of Eq.

(6 -8 ). By combining Eqs. (6 -8 ) and (6-13), one can derive the following relationship 

between the individual and population radiosensitivity parameters:

(6-15) a '=  2  / 750 { d .
In2 (r + ln/V0)

Equations (6-14) and (6-15) may then be combined to give an expression for the 

individual aJ/3 estimate in terms of population al/3 estimate:
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where a //?  is the ratio of the average radiosensitivity parameters from the population 

TCP model for the case where heterogeneity in clonogen number may be neglected, Y5o,e 

is the normalized slope of the EBRT dataset, 750,2, is the normalized slope of the

brachytherapy dataset, In N 0e is the population TCP model average ln/Vo estimate for the

EBRT dataset, and In N 0h is the same parameter for the brachytherapy dataset.

Henceforth, the subscript V  will refer to the extemal-beam dataset and ‘b’ will refer to 

the brachytherapy dataset.

We now assume that the parameter In jV0 is the same for both the EBRT and 

brachytherapy datasets. This is equivalent to assuming that the tumours used to 

determine the dose-response points for the brachytherapy dataset are at approximately the 

same stage (and thus are about the same size) as those used to obtain the EBRT dose- 

response data. Under this assumption, Eq. (6-16) can be rewritten as:

(6-17) P\ r J y

y 50,e 

y  50,b

{  —  
a  J=  + d a

J

The consequence of Eq. (6-17) is that the similarity of the individual and population 

estimates is a function of the ratio / 50J / 50,b, which, from Eq. (6 -8 ), can be seen to depend 

on the relative amount of radiosensitivity heterogeneity (a'/cr') represented in the two 

datasets. The alfi estimated by means of the individual TCP model will only be 

equivalent to the population model estimate for this ratio if  y50 is identical for both the 

extemal-beam and brachytherapy dose-response curves.
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6.4.3 Analytic relationship between individual and population a/p  in the 
limit o f dominant heterogeneity in clonogen number

The same process may be used to determine the relationship between the 

population and individual TCP model estimates of aip  for the case where heterogeneity 

in clonogen number is dominant [Eqs. (6-9), (6-10) and (6-11)]. Here, we have made the 

assumption that the individual TCP curve is approximately functionally equivalent to the 

population TCP curve in the limit of dominant heterogeneity in clonogen number. We 

verified that this assumption was reasonable [Figure 6 -1(e) -  (h)]. In this case, the 

relationship between the oilP ratio estimates from the population and individual models 

is:

Assuming that the dose-response data for each of the treatment protocols are based on 

approximately the same stage of disease, the amount of heterogeneity in clonogen 

number should be approximately the same for each dataset, and thus the a ip  ratio should 

not be sensitive to heterogeneity in clonogen number.

6.4.4 Results

Figure 6-2 shows the mapping relationship between the individual aip  estimate 

and the population aip  estimate for a number of different values for the ratio fio j/so t, 

assuming that heterogeneity in radiosensitivity is dominant [Eq. (6-17)]. For the EBRT 

treatment, the dose per fraction was set equal to the standard value of 2 Gy. As fioj/so,b 

increases, a given value for the population aip  estimate maps to an increasingly smaller 

individual aip  estimate. Since y5o is not generally expected to be identical for EBRT and 

low dose rate brachytherapy dose-response curves, the presence of radiosensitivity 

heterogeneity could potentially have an effect on the al(5 estimates. For example, even a 

moderate difference of 25% in the normalized slope (or equivalently in the relative

when c IlnAf0,i °"ln V„,e •P Q'toVp.ft ( a  , a  
°inAT0,e \ P  J P

a  P
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heterogeneity, a'/cr ')  results in significant differences in the aip  estimates: population 

values of 10 and 3 would map to individual values of 4 and 1.8, respectively.

Y50,e/y50,b=1

Y50,e/Y50,b= 1 -°£

y50 e/y50 b=1 -1£

 Y50,e/Y50,b= 1 ’2£

Y50,e^Y50,b= ^

y50,e/y50,b=2 

Y5 0  e/y50 b=2.5

 Y50,e/Y50,b=3

a j p  [Gy] (population)

Figure 6-2: The aip  ratio estimated from clinical dose-response data by means of the
individual TCP model as a function of the same ratio estimated by means of the 
population TCP model for the case of dominant heterogeneity in radiosensitivity. 
Equation (6-17) defines the relationship between the individual and population-based 
estimates for aip, and is plotted here for a value of d = 2 Gy/fraction for each of the 
Y5ojY5Q,b values shown. For the case of yso^/soj, = 1, Eq. (6-17) gives a straight line; that 
is, the estimate for alp  from the individual model is identical to that from the population 
model. As ysojfto ,b increases, a given population aip  maps to a smaller individual alp.

6.5 Investigation ofparameter estimates from the individual and 
population TCP models

In this section we will use numerical simulations to verify our analytical result 

that the normalized slopes of the TCP curves affect the mapping of a/p  estimates
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obtained using the individual or population models. Specifically, we will fit the 

individual and population models to two different sets of pseudo-data and compare the fit 

results to our analytical predictions. Using pseudo-data for this purpose has the following 

advantages. First, pseudo-clinical data may be generated from a TCP curve with a known 

£>50 and /so, so the ability of a TCP model to accurately estimate these parameters from a 

dataset can be evaluated. In addition, with pseudo-data we are not limited by the quality 

of the dose-response data; TCP points may be generated over a sufficiently large dose 

and TCP range such that the quality of the data will not significantly affect the results of 

the analysis.

6.5.1 Generation o f pseudo-data

6.5.1.1 Using assumed radiobiological (a  , lniV0 cra) parameters

The first sets of pseudo-data that were generated are based on theoretical dose- 

response curves representing brachytherapy and EBRT treatments. The theoretical TCP 

curves were derived by assigning values to the radiobiological parameters of the 

population TCP model: a  , cra, a /f}  , ajcrp, and In Af0 . In doing so, we are assuming 

that the population TCP model gives a correct description of the tumour dose-response 

relationship. The geometric parameters for the TCP curves, £>50 and y50, were calculated 

from the assumed biological parameters by means of Eqs. (6-7) and (6 -8 ) and then used 

with Eq. (6 -6 ) to generate pseudo-clinical dose-response points.

To define a theoretical brachytherapy curve, values for the population 

radiobiological parameters were taken from the literature. Based on the assumptions 

made by Roberts and Hendry,25 the average radiosensitivity, a  , was assumed to be equal 

to 0.3, and the heterogeneity in this parameter, cra, was assumed to be equal to 0.14. The 

dose at 50% control was estimated based on previous fits to clinical brachytherapy dose- 

response data. Specifically, D5o,b was calculated from the data in Appendix C of Carlone 

et al. 44 for the Stock 45 prostate data, which resulted in the value of 84.3 Gy. The

parameter In N 0 was then determined by means of Eq. (6-7). Finally, the normalized
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slope for this theoretical curve was calculated from the assumed radiobiological 

parameter values by means of Eq. (6 -8 ), resulting in y50,* = 0.855.

Two theoretical EBRT TCP curves were defined -  one with an assumed a )  ft  of 

3 Gy and one with an a j( i  of 10 Gy. In each case, the dose per fraction, d, was set 

equal to the standard value of 2 Gy, and the values for a  , cra, and In N 0 that were used 

to derive the brachytherapy curve were again assumed. To determine an estimate for the 

heterogeneity in /?, it was assumed that a /f3  = cra/cr^ . This is the same assumption as

was made in Carlone et al.46 For the a /  = 3 Gy EBRT curve, the geometric parameters 

were calculated by means of Eqs. (6-7) and (6 -8 ) -  D ^ e = 50.6 Gy and y5o,e = 1.19. For 

the a / p  = 10 Gy curve, the geometric parameters evaluated to Z)5o,e = 70.2 Gy and /sote = 

1.01. Using Eq. (6 -8 ), it can be shown that the assumption a / f t  = cr^/cr^ leads to

r 5o,e (d + a / p )

Yn* -\]d2 + (a / ’

in which case the normalized slope of the EBRT curve is always greater than that of the 

brachytherapy curve. For a/J3 = 3 and 10 Gy, the corresponding ftojysofi ratios are 1.39 

and 1.18.

Pseudo-data were generated following the method outlined in Appendix D for the 

two theoretical EBRT curves and the brachytherapy curve. In each case, 30 points were 

generated over a dose range of 2Z)50. The number of patients per point was chosen to be

50. These statistics were selected in order to produce large enough uncertainties in the 

generated dose-response points so that the individual and population-based TCP curves 

defined by the geometric parameters (Dso,b, V50,b) and (Z)50,e, yso,e) are equivalent within 

error. These pseudo-datasets are intended for the purpose of estimating the alfi ratio 

from each of the two models for the purpose of verifying Eq. (6-17). As this expression 

was derived based on the assumption that the individual and population curves are 

equivalent for a given set of geometric parameters, it is essential that this equivalency 

holds within the precision of the data points. Each pseudo-dataset is shown in Figure 6-3, 

along with the theoretical TCP curve used for its generation and the individual TCP curve 

corresponding to the assumed D50 and y50 values.
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Figure 6-3: Pseudo-data generated from theoretical brachytherapy and EBRT dose-
response curves. The theoretical population-based TCP curve from which the points 
were generated is also shown (solid line), along with the individual TCP curve that 
corresponds to the same /so and Dso values (dotted line). The value of a  was assumed to 
be equal to 0.3, <Ja was assumed to be equal to 0.14, and the D$o for the brachytherapy 
curve was taken to be 84.9 Gy. Pseudo-data and the assumed TCP curves for permanent 
implant brachytherapy are shown in (a), (b) shows the pseudo-data and curves for a /  f i  = 
3 Gy, and (c) corresponds to a /f3  =10 Gy.

6.5.1.2 Using the geometric (Dso, ^o) parameters

A set of TCP pseudo-data was also generated for the purpose of calculating the 

aJfl ratio for different, pre-defined /so,el/so,b values -  1.05, 1.15 and 1.50. These
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particular normalized slope ratios were selected in order to investigate the validity of Eq. 

(6-17) over a large region of Figure 6-2. For these curves, no assumptions about 

radiobiological parameter values were made. Instead, values for D5o,b, / 50,b, and D5o,e 

were assumed, based on fits to clinical dose-response data for permanent-implant and 

EBRT treatments for prostate.44

A theoretical brachytherapy curve was defined based on the Stock fitting results 

reported in Carlone et al.44 (/so and Z)5o were calculated from the data in Table VII of 

their Appendix C) -  D5o,b = 84.3 Gy and /so,b = 1.35. For each of the theoretical EBRT 

curves, Dso,e was chosen to be equal to 69.5 Gy (the best-fit value for the Pinover47 

dataset from Carlone et al.44). The normalized slopes for the EBRT curves were assigned 

the values of / 5o,e = 1-42, 1.56, and 2.03, based on the three pre-defined /soj/so.b ratios 

defined above.

Again, for the purpose of generating pseudo-data from each curve, the method in 

Appendix D was used with a dose range of 2D50. A total of 30 points were generated 

from each curve, with the number of patients per point chosen such that the individual 

and population-based TCP curves could be considered equivalent within error (this time, 

a value of N  = 70 was used for the brachytherapy dataset, and a value of N  = 80 was used 

for each of the EBRT datasets). These datasets are plotted in Figure 6-4, along with the 

population TCP curves used for their generation, and the individual TCP curves 

corresponding to identical D50 and /so values.

6.5.2 Method -  estimating a/p from the individual and population-based
TCP models

To estimate alp  for the pseudo-datasets by means of the individual TCP model,

the Poisson form given by Eq. (6-2) was fit to the brachytherapy and EBRT datasets to

first determine a  and d  (along with ln/Vo,* and ln/V0,e). Equation (6-14),

a  _ ad 
P a ' - a '

was then used to estimate aip, and the Monte Carlo procedure described in Carlone et 

al.44 was used to determine confidence intervals.
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Figure 6-4: Pseudo-data generated from theoretical population TCP curves (solid line).
In each case, the individual TCP curve corresponding to the same D$o and y5o values is 
also shown, (a) shows the pseudo-data corresponding to a theoretical brachytherapy 
curve with D50,b = 84.3 Gy and y5oj> = 1-35. (b), (c) and (d) show the pseudo-data 
corresponding to theoretical EBRT curves with Dso>e = 69.5 and ysoj/so,b ratios of 1.05, 
1.15 and 1.50, respectively.

A slightly different approach was taken to estimate a / f t  by means of the 

population TCP model. Following Carlone et al. 44, an expression that is similar to Eq. 

(6-14) was used to express the population alf) ratio in terms of average radiosensitivity 

parameters:

a  ad(6-19)
P a ' - a
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Equation (6-10) can be used to express average radiosensitivity in terms of D50 and

\nN 0

(6 -2 0 ) a ' = — ^ N ° .
Ao

If Eq. (6-20) is combined with Eq. (6-19) and we once again assume that

In N 0e = In N 0b, a  I  f t  for the population TCP model may be expressed in terms of the 

D5o values for the brachytherapy and EBRT datasets:

77 ZXn ad 
( 6-21)  - =  =  ^  .

P D$o,b ~ D50 e

This approach is equivalent to rewriting Eq. (6 -6 ) in terms of radiobiological parameters

and using Eq. (6-19) directly to determine an estimate of a /  f t  for different, fixed, lnjV0 

values (the latter method is described in Carlone et a/.44). For one of the generated 

pseudo-datasets, a / (3 was calculated using both methods, and it was found that 

parameter estimates were identical. As it is more computationally efficient to use Eqs. 

(6 -6 ) and (6-21) to estimate 77/(3 , we used this approach.

6.5.3 Results

6.5.3.1 Results using assumed radiobiological parameters

For each EBRT-brachytherapy dataset pair generated from curves with assumed 

radiobiological parameters, the aip  ratio and its 95% confidence interval (Cl) were 

estimated from the individual and population TCP models, as described above. The aip  

estimates and 95% CIs are shown in the first two rows of Table 6-1 for the theoretical 

tumours with assumed a  jP  values of 3 and 10 Gy. In each case, the individual model 

aip  ratio is lower than the estimate from the population model. The a / p  estimates from 

the population TCP model agree with the theoretical values within error, while the 

individual TCP model underestimates the alp  ratio in each case.
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Table 6-1: Estimates for the population and individual aip  ratio, along with 95%
confidence intervals, from the pseudo-datasets shown in Figure 6-3. Also shown are 
estimates and 95% CIs for the ratio ysoj/so^, calculated by means of each TCP model. 
Finally, Eq. (6-17) was used to calculate an estimate and 95% Cl for the individual aip  
ratio based on the population estimate for the same parameter. All of these quantities 
were calculated for the EBRT-brachytherapy dataset pairs that were generated from 
assumed values for the population radiobiological parameters (Sec. 6.4.1) and the 
theoretical population a ip  ratios shown.

{ a /p  )th = 3 Gy { a /p  ),* = 10Gy

a /P  estimate from TCPpop 3.15 [2.76, 3.65] 12.10 [8.85, 19.16]
aip estimate from TCPind 1.45 [1.17, 1.85] 4.97 [3.30, 8.38]

IsaMsaj, from TCPpop 1.50 [1.30, 1.75] 1.23 [1.05, 1.43]

"fsojysaj, from TCPind 1.45 [1.27, 1.65] 1.20 [1.05, 1.37]

(a!p)ind from Eq. (6-17) 1.37 [1.05, 1.77] 4.64 [2.92, 9.10]

For each of the theoretical pseudo-data pairs (EBRT plus brachytherapy), a 

Monte-Carlo method was used to estimate the yso,ely5o,b ratios from the individual and 

population model fitting results. The estimates for this quantity are shown in Table 6-1, 

in the third and fourth rows. In both cases, the individual and population-based ratios 

agree within error. This result is not surprising, considering the equivalency of the 

individual and population-based TCP models as described in Section 6.2.

Finally, the individual aip  was calculated from the population a  I p  estimates for 

each EBRT-brachytherapy dataset pair by means of Eq. (6-17). These values, along with 

their 95% confidence intervals, are shown in the fifth row of Table 6-1. In each case, the 

estimates for alp  obtained directly from the individual TCP model agree with the 

estimates calculated by means of Eq. (6-17), within error.

The relationship between Eq. (6-17) and the model predictions for the individual 

and population-based alp  estimates is illustrated for these two theoretical datasets in 

Figure 6-5(a). In this figure, Eq. (6-17) is plotted for the best-fit population-based 

y.'so,el750,b ratios from Table 6-1 (the solid line corresponds to the {a /P  ),h = 3 Gy data and

the dotted line corresponds to the ( a / p \ h = 10 Gy data). A point representing the best-fit
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Figure 6-5: (a) Plot of the best-fit value of a l(3 as estimated from the individual TCP
model vs. the best-fit value of a f  p  from the population TCP model for the pseudo
datasets generated from assumed radiobiological population parameters. The diamond 
point corresponds to the pseudo-data for a theoretical a f p  of 3 Gy, and the circular 
point corresponds to the pseudo-data for a theoretical a / p  of 10 Gy (Figure 6-3). The
95% confidence intervals for the individual and population-based aip  ratios are also 
shown. The solid line represents the relationship given by Eq. (6-17) for the best-fit 
value of /soJ/sojo as estimated from the population TCP model for the ( a /p \ h = 3 Gy 
data -  1.50 (Table 6-1). The dotted line represents Eq. (6-17) for the best-fit normalized 
slope ratio corresponding to the ( a /p \ h= 10 Gy data (/soj/so,b = 1-23, Table 6-1). 
(b) This plot shows the same data as (a), for the pseudo-data generated from theoretical 
TCP curves with assumed values for the geometric parameters D50 and /so. The solid line 
represents the relationship given by Eq. (6-17) for (/so,el/so,b)th = 1-05, the dashed line 
corresponds to (/soJ/so,b)th = 1.15, and the dotted line corresponds to to (/so,J/so,b)th = 
1.50. The triangle point represents the best-fit aip  ratios and 95% confidence intervals 
from the individual and population-based models for the dataset generated assuming 
(/so,J/so,b)th = 1-05, the circular point corresponds to (/so,J/so,b)th = 1-15, and the square 
point corresponds to (/so J/so,b)th = 1-50.

a ip  values from the individual and population models is shown for each pseudo-dataset 

pair, along with the 95% CIs (the diamond point corresponds to {a /p ) th= 3 Gy and the
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circular point corresponds to (a/p  )(/i = 10 Gy). In each case, the model estimates for aip 

agree with the predictions based on Eq. (6-17).

6.5.3.2 Results using geometric parameters

Table 6-1 was reproduced for the pseudo-data generated from theoretical TCP 

curves based on assumed D 5o, fto, and f to ,e/ fto ,6  values. The alP ratios calculated from 

the individual and population-based TCP models are shown in the first two rows of Table

6-2 for the theoretical TCP curves with f to ,e/ f to ,6  ratios of 1.05, 1.15 and 1.50. Again, the 

individual estimates are lower than the population estimates. The a /P  estimates for 

each EBRT-brachytherapy data pair agree with one another within error. According to 

Eq. (6-21), this ratio should depend only on the values for the EBRT and 

brachytherapy curves, along with the dose per fraction. As the same D50 e value was 

assigned to each theoretical EBRT curve in this case, it is not unexpected that the a l p  

values agree.

As can be seen in rows 3 and 4 of

Table 6-2, the estimates for f to ,e/ f to , *  obtained from the individual and population- 

based TCP models agree within error. In addition, the ratios obtained from fitting the 

pseudo-data agree with the assumed values of 1.05, 1.15 and 1.50, within error.

Table 6-2: This table shows the same information as for Table 6-1, but for the EBRT- 
brachytherapy dataset pairs illustrated in Figure 6-4.

( f to ^ f to ^ h *  - 1.05 (fto,<7ftô )f* = 1.15 ( f t o ^ f t o A *  = I-50
a/P estimate from TCPpop 11.00 [8.80, 14.06] 10.30 [8.43,12.72] 10.20 [8.52, 12.69]
aip estimate from TCPini 8.67 [5.27, 19.70] 5.49 [3.77, 9.17] 2.17 [1.67, 2.85]
Yso/yso,* from TCPpop 1.03 [0.92, 1.15] 1.13 [1.00, 1.27] 1.54 [1.37, 1.74]

YsoVYsô  from TCPini 1.04 [0.92, 1.17] 1.14 [1.02, 1.28] 1.62 [1.43, 1.87]

(alp)i„d from Eq. (6-17) 9.09 [5.46, 23.05] 5.77 [3.95, 10.02] 2.38 [1.86, 3.10]
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Row 5 of Table 6-2 shows estimates for the individual aip  ratio calculated by 

means of Eq. (6-17) from the population a / p  estimates. Once again, the estimates for 

aip  obtained directly from the individual TCP model agree with those calculated directly 

from Eq. (6-17). The agreement between Eq. (6-17) and the individual and population- 

based model predictions is also illustrated in Figure 6-5(b) for these three dataset-pairs. 

Equation (6-17) is plotted for each theoretical /so,e/750,6 ratio (solid -  1.05, dashed -  1.15 

and dotted -  1.50). As in Figure 6-5(a) a point representing the best-fit a!P ratios from 

the individual and population models is also shown, along with the estimated 95% CIs 

[triangle -  (y5o J /5o,b)th = 1-05, circle -  (y5o j/s o th  = 1.15, and square -  (y5oJyso,b)th = 

1.50]. In each case, the model predictions agree with that of Eq. (6-17).

Thus, we have verified the theoretical relationship between the population and 

individual aip  ratios that was derived in Section 6.3.2 by means of numerical 

simulations.

6.6 Discussion

Based on the functional similarities between the individual and population-based 

TCP models for given values of Z)50 and 750, analytic expressions were derived that relate 

the aip  ratio that would be obtained from a fit of the individual model to the ratio that 

would be estimated by the application of the population-based TCP model to the same 

dataset. These expressions were derived for the population model in the case of 

dominant heterogeneity in clonogen number [Eq. (6-18)] and in the case of dominant 

heterogeneity in radiosensitivity [Eq. (6-17)]. For the case where heterogeneity in 

clonogen number dominates, Eq. (6-18), it was seen that the presence of heterogeneity 

should not have a large impact on the estimate of the aip  ratio. This result is consistent 

with Dubray and Thames.43

For the case where heterogeneity in radiosensitivity among a population of 

patients is the dominant form, the mapping relationship between the a ip  ratios as 

determined from the population and individual TCP models, Eq. (6-17), suggests that the
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relationship between these parameters is dependent on the ratio of y5o values for each 

dose-response dataset. Based on Eq. (6-17) and the numerical simulations carried out in 

the previous section, we expect that the presence of heterogeneity in radiosensitivity will 

have an effect on the estimated a l(5 ratio. For example, Figure 6-2 shows that for a 

y so,e I  y  5o,b rati° ° f  1-25, a population al f t  of 10 Gy, which is typical for early-responding

tissues, maps to an individual value of 4 Gy, which is more typical of late-responding 

tissues. The analytic result represented by Eq. (6-17) is also consistent with the Dubray 

and Thames paper -  their numerical simulations showed that parameter ratios are more 

sensitive to the presence of heterogeneity in radiosensitivity, particularly for the case 

where total dose and treatment time are correlated. It should be noted here that the 

conclusions of Dubray and Thames are based on numerical simulations carried out for the 

AJ(a+ fid) ratio, as opposed to al p.

The effect of heterogeneity on the aip  ratio has previously been debated by King 

and Mayo6 and Brenner and Hall. 19 King and Mayo postulated that Brenner and Hall’s 

extremely low value of 1.5 Gy for the aip  ratio of prostate may be a result of using a 

TCP model that neglects the effects of inter-tumour heterogeneity. They estimated the 

ratio using a population-averaged TCP model in which a  and P  are correlated, and came 

up with a value of a/p -  4.5 Gy. Brenner and Hall19 re-did King and Mayo’s calculation, 

making use of a TCP model that assumed independent Gaussian distributions for a  and P, 

and arrived at a slightly increased value of aip=  2.1 Gy (compared to the original 1.5 Gy 

estimate). Although Brenner and Hall concluded that the “estimated value of the ratio 

aip  changed very little, ” 19 confidence intervals for this new parameter ratio estimate were 

not given. This result is consistent with the prediction of Eq. (6-17), even though the 

increase in aip  observed by Brenner and Hall when they used a population TCP model 

was small.

Nahum et al? calculated the alp  ratio for prostate cancer using a method that 

incorporates measurements for tumour hypoxia. The incorporation of variations in the 

level of tumour hypoxia among a patient population corresponds to taking heterogeneity 

in radiosensitivity into account. Their calculations for aip  yielded a value that was much
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closer to the 10 Gy typically assumed for cancers. This result also supports the idea that 

the presence of heterogeneity in radiosensitivity affects the estimated a!P ratio.

In Figure 6-2 and the numerical simulations based on the pseudo-data described in 

Section 6.4.1, we only considered cases where 750 for an EBRT dose-response curve is 

steeper than for a brachytherapy dose-response curve. For the theoretical EBRT and 

brachytherapy datasets shown in Figure 6-3 and described in Section 6.4.1.1, the 

normalized slope of the former turned out to be greater than that of the latter. To further 

show that /so,e > 7 5 0 ,b  is a reasonable choice, the clinical datasets for prostate utilized by 

Brenner and Hall2 and Carlone et al.44 were fit with the population TCP model [Eq. (6 -6 )] 

and 750 was estimated. Two EBRT datasets were fit -  Hanks48 and Pinover,47 along with 

one brachytherapy dataset -  Stock 45 Each of the EBRT datasets yielded 750 values that 

were greater than that of the brachytherapy dataset within a confidence level of 6 8 %. In 

both cases, however, the 95% CIs were found to overlap, but this is most likely due to the 

relatively poor quality of the Hanks and Pinover datasets. While the quality of the EBRT 

prostate datasets prevents us from determining with certainty whether 750 for a 

brachytherapy dose-response is lower, it is unlikely that 750 would be exactly identical for 

both datasets, and thus the presence of heterogeneity in radiosensitivity among a patient 

population will likely have an effect on the estimated aip ratio.

In this chapter, we used simulated brachytherapy and EBRT datasets to 

investigate the dependence on the TCP model used to obtain estimates for ajp. The 

method of using simulated datasets avoids the practical difficulties associated with 

estimating parameter ratios by combining brachytherapy and external beam datasets. The 

relative biological effectiveness (RBE) of 125I implants may be greater than 1 due to 

Auger electrons associated with the relatively low energies of these sources 49,50 There 

may also be other problems due to inconsistencies between the two dose-response 

datasets, and the heterogeneous nature of the brachytherapy dose distribution within the 

treatment volume.44 However, the results of this chapter were derived on the basis of 

theoretical and numerical simulation investigations based on generated data. In doing so, 

we have effectively assumed that any such difficulties as described above can be ignored, 

as our synthetic datasets were constructed using well-defined assumptions (which 

effectively forced a uniform dose distribution and equivalent a  parameter for low dose
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rate and high dose rate therapy). This allowed us to directly investigate the 

analytical/numerical process of estimating parameter ratios from TCP models.

Given the difficulties associated with estimating radiobiological parameters from 

either form of the TCP model, 15' 18 it seems that the most reliable way to estimate the aip  

ratio from clinical dose-response data is by first finding y5o and D50, and then making use 

of Eq. (6-21). If the average clonogen number is expected to be different for the EBRT 

and brachytherapy datasets (that is, if the dose-response data in each case represent 

tumours at different stages), a modified form of Eq. (6-21) may be used to determine 

a / p i :

(6-22) “  d  
P ( D  )50,b fr + iniv0J

\ D 5 0 ,e ) [r + lniV0J
- 1

In this case, the ratio of average log clonogen numbers could conceivably be estimated.

This chapter concerns the precision of aip  estimates that have previously been 

given based on radiobiological modeling. The original biological argument put forth by 

Brenner and Hall is still viable and credible. Our center and others are currently 

engaging in randomized clinical trials to establish the clinical effectiveness of 

hypofractionated prostate radiotherapy. Only these clinical trials will have the ability to 

determine the validity of Brenner and Hall’s hypothesis. Our results are meant to show 

that the supporting argument of estimating the prostate aip  ratio by means of a TCP 

model is problematic. This should only reflect on our ability to accurately determine the 

absolute value of the aip  ratio for prostate cancer, not to determine if  hypofractionation is 

a suitable therapy for this disease. While early evidence from the hypofractionation trials 

suggests that prostate cancer responds to fractionation in a manner similar to late 

responding tissues, 11 the fact that inter-tumour heterogeneity has an effect on parameter 

ratio estimates may indicate that the value of a ip  =1 .5  [0.8, 2.2] Gy as reported by 

Brenner and Hall is inaccurate. In addition, Carlone et al.44 showed that the individual 

TCP model may underestimate the 95% confidence interval of the aip  ratio -  if the 

population model is used to estimate this ratio, the confidence intervals increase 

markedly. Thus, we caution against the creation of treatment protocols that are based on
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the assumption of prostate aip  being equal to exactly 1.5 Gy, and thus lower than the aip  

ratio of the surrounding normal tissues, as suggested by Fowler et a / . 51,52

6.7 Conclusion

Both the individual and population TCP models can be expressed in a form where 

the parameterization is in terms of £ ) 50 and y50. The functional form of these models is 

very similar. Based on this equivalence of functional form, it was shown that both 

individual parameters and parameter ratios do not map identically if  these are obtained by 

fitting the models to clinical data. In the case where the low dose rate TCP curve has a 

shallower slope, the individual model always underestimates the aip  from the population 

model. This result was also demonstrated numerically. The only exception is the case 

where the dominant form of heterogeneity is due to clonogen number, and in this case, it 

was found that parameter ratios do map on a one to one basis if they are estimated using 

either the individual or population TCP model.

6.8 References

1. J. F. Fowler, "The linear-quadratic formula and progress in fractionated
radiotherapy," British Journal of Radiology 62, 679-694 (1989).

2. D. J. Brenner and E. J. Hall, "Fractionation and protraction for radiotherapy of
prostate carcinoma," Int J Radiat Oncol Biol Phys 43, 1095-1101 (1999).

3. J. Fowler, R. Chappell, and M. Ritter, "Is alpha/beta for prostate tumors really
low?," Int J Radiat Oncol Biol Phys 50, 1021-1031 (2001).

4. H. B. Kal and M. P. Van Gellekom, "How low is the alpha/beta ratio for prostate
cancer?," Int J Radiat Oncol Biol Phys 57, 1116-1121 (2003).

5. C. R. King and J. F. Fowler, "A simple analytic derivation suggests that prostate
cancer alpha/beta ratio is low," Int J Radiat Oncol Biol Phys 51, 213-214 (2001).

6 . C. R. King and C. S. Mayo, "Is the prostrate alpha/beta ratio of 1.5 from Brenner
& Hall a modeling artifact?," Int J Radiat Oncol Biol Phys 47, 536-539 (2000).

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7. A. E. Nahum, B. Movsas, E. M. Horwitz, C. C. Stobbe, and J. D. Chapman, 
"Incorporating clinical measurements of hypoxia into tumor local control 
modeling of prostate cancer: implications for the alpha/beta ratio," Int J Radiat 
Oncol Biol Phys 57, 391-401 (2003).

8 . J. Z. Wang, M. Guerrero, and X. A. Li, "How low is the alpha/beta ratio for 
prostate cancer?," Int J Radiat Oncol Biol Phys 55,194-203 (2003).

9. J. Z. Wang, X. A. Li, C. X. Yu, and S. J. DiBiase, "The low alpha/beta ratio for 
prostate cancer: what does the clinical outcome of HDR brachytherapy tell us?," 
Int J Radiat Oncol Biol Phys 57, 1101-1108 (2003).

10. G. S. Higgins, D. B. McLaren, G. R. Kerr, T. Elliott, and G. C. Howard, 
"Outcome analysis of 300 prostate cancer patients treated with neoadjuvant 
androgen deprivation and hypoffactionated radiotherapy," Int J Radiat Oncol Biol 
Phys 65, 982-989 (2006).

11. P. A. Kupelian, V. V. Thakkar, D. Khuntia, C. A. Reddy, E. A. Klein, and A. 
Mahadevan, "Hypoffactionated intensity-modulated radiotherapy (70 gy at 2.5 Gy 
per fraction) for localized prostate cancer: long-term outcomes," Int J Radiat 
Oncol Biol Phys 63,1463-1468 (2005).

12. J. E. Livsey, R. A. Cowan, J. P. Wylie, R. Swindell, G. Read, V. S. Khoo, and J. 
P. Logue, "Hypoffactionated conformal radiotherapy in carcinoma of the prostate: 
five-year outcome analysis," Int J Radiat Oncol Biol Phys 57, 1254-1259 (2003).

13. A. Pollack, A. L. Hanlon, E. M. Horwitz, S. J. Feigenberg, A. A. Konski, B. 
Movsas, R. E. Greenberg, R. G. Uzzo, C. M. Ma, S. W. McNeeley, M. K. 
Buyyounouski, and R. A. Price, Jr., "Dosimetry and preliminary acute toxicity in 
the first 1 0 0  men treated for prostate cancer on a randomized hypofractionation 
dose escalation trial," Int J Radiat Oncol Biol Phys 64, 518-526 (2006).

14. E. E. Yeoh, R. H. Holloway, R. J. Fraser, R. J. Botten, A. C. Di Matteo, J. Butters,
S. Weerasinghe, and P. Abeysinghe, "Hypoffactionated versus conventionally 
fractionated radiation therapy for prostate carcinoma: Updated results of a phase 
III randomized trial," Int J Radiat Oncol Biol Phys 6 6 , 1072-1083 (2006).

15. D. J. Brenner, "Dose, volume, and tumor-control predictions in radiotherapy," Int 
J Radiat Oncol Biol Phys 26, 171-179 (1993).

16. M. Carlone, B. Warkentin, P. Stavrev, and B. G. Fallone, "Fundamental form of 
the population TCP model in the limit of large heterogeneity," Med. Phys. 33, 
1634-1642 (2006).

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17. A. Dasu, I. Toma-Dasu, and J. F. Fowler, "Should single or distributed parameters 
be used to explain the steepness of tumour control probability curves?," Phys Med 
Biol 48, 387-397 (2003).

18. B. Warkentin, P. Stavrev, N. A. Stavreva, and B. G. Fallone, "Limitations of a 
TCP model incorporating population heterogeneity," Phys Med Biol 50, 3571- 
3588 (2005).

19. D. J. Brenner and E. J. Hall, "In response to Drs King and Mayo: Low a/p values 
for prostate appear to be independent of modeling details," Int J Radiat Biol 
Oncol Phys 47, 538-539 (2000).

20. R. G. Dale, "Radiobiological assessment of permanent implants using tumor 
repopulation factors in the linear-quadratic model," Br J Radiol 62, 241-244 
(1989).

21. R. G. Dale, "Time-dependent tumour repopulation factors in linear-quadratic 
equations-implications for treatment strategies," Radiother Oncol 15, 371-381 
(1989).

22. B. Maciejewski, H. R. Withers, J. M. Taylor, and A. Hliniak, "Dose fractionation 
and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: 
tumor dose-response and repopulation," Int J Radiat Oncol Biol Phys 16, 831-843 
(1989).

23. B. Maciejewski, H. R. Withers, J. M. Taylor, and A. Hliniak, "Dose fractionation 
and regeneration in radiotherapy for cancer of the oral cavity and oropharynx. 
Part 2. Normal tissue responses: acute and late effects," Int J Radiat Oncol Biol 
Phys 18, 101-111 (1990).

24. S. A. Roberts and J. H. Hendry, "The delay before onset of accelerated tumour 
cell repopulation during radiotherapy: a direct maximum-likelihood analysis of a 
collection of worldwide tumour-control data," Radiother Oncol 29, 69-74 (1993).

25. S. A. Roberts and J. H. Hendry, "A realistic closed-form radiobiological model of 
clinical tumor-control data incorporating intertumor heterogeneity," Int J Radiat 
Oncol Biol Phys 41, 689-699 (1998).

26. J. M. Taylor, H. R. Withers, and W. M. Mendenhall, "Dose-time considerations of 
head and neck squamous cell carcinomas treated with irradiation," Radiother 
Oncol 17, 95-102 (1990).

27. H. D. Thames, S. M. Bentzen, I. Turesson, M. Overgaard, and W. Van den 
Bogaert, "Time-dose factors in radiotherapy: a review of the human data," 
Radiother Oncol 19, 219-235 (1990).

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28. E. L. Travis and S. L. Tucker, "Isoeffect models and fractionated radiation 
therapy," Int J Radiat Oncol Biol Phys 13, 283-287 (1987).

29. S. L. Tucker and E. L. Travis, "Comments on a time-dependent version of the 
linear-quadratic model," Radiother Oncol 18, 155-163 (1990).

30. J. Van Dyk, K. Mah, and T. J. Keane, "Radiation-induced lung damage: dose- 
time-ffactionation considerations," Radiother Oncol 14, 55-69 (1989).

31. J. van de Geijn, "Incorporating the time factor into the linear-quadratic model," 
British Journal of Radiology 62, 296-298 (1989).

32. T. E. Wheldon and A. E. Amin, "The Linear Quadratic Model," British Journal of 
Radiology 61, 700-702 (1988).

33. H. R. Withers, J. M. Taylor, and B. Maciejewski, "The hazard of accelerated 
tumor clonogen repopulation during radiotherapy," Acta Oncol 27, 131-146 
(1988).

34. R. J. Yaes, "Linear-quadratic model isoeffect relations for proliferating tumor 
cells for treatment with multiple fractions per day," Int J Radiat Oncol Biol Phys 
17, 901-905 (1989).

35. P. Stavrev, N. Stavreva, A. Niemierko, and M. Goitein, "Generalization of a 
model of tissue response to radiation based on the idea of functional subunits and 
binomial statistics," Phys Med Biol 46,1501-1518 (2001).

36. S. M. Bentzen, "Steepness of the clinical dose-control curve and variation in the 
in vitro radiosensitivity of head and neck squamous cell carcinoma," Int J Radiat 
Biol 61,417-423 (1992).

37. S. M. Bentzen and H. D. Thames, "Tumor volume and local control probability: 
clinical data and radiobiological interpretations," Int J Radiat Oncol Biol Phys 36, 
247-251 (1996).

38. S. M. Bentzen, H. D. Thames, and J. Overgaard, "Does variation in the in vitro 
cellular radiosensitivity explain the shallow clinical dose-control curve for 
malignant melanoma?," Int J Radiat Biol 57, 117-126 (1990).

39. A. A. Khalil, S. M. Bentzen, and J. Overgaard, "Steepness of the dose-response 
curve as a function of volume in an experimental tumor irradiated under ambient 
or hypoxic conditions," Int J Radiat Oncol Biol Phys 39, 797-802 (1997).

40. S. M. Bentzen, "Dose-response relationships in radiotherapy", in Basic Clinical 
Radiobiology edited by G. Steel (Hodder Arnold, London (Gr. Britain), 2002), pp. 
94-104.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41. C. Schinkel, N. Stavreva, M. Carlone, P. Stavrev, and B. G. Fallone, "On the 
equivalence of the population and individual TCP models [Abstract]," Med Phys 
33, 2125 (2006).

42. P. Okunieff, D. Morgan, A. Niemierko, and H. D. Suit, "Radiation dose-response 
of human tumors," Int J Radiat Oncol Biol Phys 32,1227-1237 (1995).

43. B. M. Dubray and H. D. Thames, "The clinical significance of ratios of 
radiobiological parameters," Int J Radiat Oncol Biol Phys 35, 1099-1 111 (1996).

44. M. Carlone, D. Wilkins, B. Nyiri, and P. Raaphorst, "Comparison of alpha/beta 
estimates from homogeneous (individual) and heterogeneous (population) tumor 
control models for early stage prostate cancer," Med Phys 30,2832-2848 (2003).

45. R. G. Stock, N. N. Stone, A. Tabert, C. Lannuzzi, and J. K. DeWyngaert, "A 
dose-response study for 1-125 prostate implants," Int J Radiat Oncol Biol Phys 41, 
101-108 (1998).

46. M. Carlone, D. Wilkins, B. Nyiri, and P. Raaphorst, "TCP isoeffect analysis using 
a heterogeneous distribution of radiosensitivity," Med Phys 31, 1176-1182 
(2004).

47. W. H. Pinover, A. L. Hanlon, E. M. Horwitz, and G. E. Hanks, "Defining the 
appropriate radiation dose for pretreatment PSA < or = 10 ng/mL prostate 
cancer," Int J Radiat Oncol Biol Phys 47, 649-654 (2000).

48. G. E. Hanks, T. E. Schultheiss, A. L. Hanlon, M. Hunt, W. R. Lee, B. E. Epstein, 
and L. R. Coia, "Optimization of conformal radiation treatment o f prostate cancer: 
report of a dose escalation study," Int J Radiat Oncol Biol Phys 37, 543-550 
(1997).

49. R. Taschereau, R. Roy, and J. Pouliot, "Relative biological effectiveness 
enhancement of a 1251 brachytherapy seed with characteristic x rays from its 
constitutive materials," Med Phys 29, 1397-1402 (2002).

50. C. S. Wuu and M. Zaider, "A calculation of the relative biological effectiveness of 
1251 and 103Pd brachytherapy sources using the concept of proximity function," 
Med Phys 25, 2186-2189 (1998).

51. J. F. Fowler, R. J. Chappell, and M. A. Ritter, "The prospects for new treatments 
for prostate cancer," Int J Radiat Oncol Biol Phys 52, 3-5 (2002).

52. J. F. Fowler, M. A. Ritter, R. J. Chappell, and D. J. Brenner, "What 
hypoffactionated protocols should be tested for prostate cancer?," Int J Radiat 
Oncol Biol Phys 56, 1093-1104 (2003).

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 Statistical quality of clinical dose- 
response data required to resolve TCP model 
parameters

7.1 Introduction

Despite the developments in clinical radiobiology that have occurred over the past 

few decades, TCP and NTCP models have seen limited clinical use. The main reason for

this is the scarcity and limited quality of available clinical dose-response data (e.g.
1 2 Moiseenko et al. and Zaider & Amols ).

Many dose-response datasets suffer from relatively poor statistics (e.g., Hanks et 

al.,3 Choi & Doucette4) or, in some instances (e.g., Emami et al.5), are not even statistical 

in nature. These datasets also tend to cover a narrow range in dose-TCP/NTCP space 

(e.g., about 8  -  10 Gy for prostate dose-escalation trials3,6'8) because the delivered dose 

must be at least equal to the current curative standard, and, at the same time, must remain 

low enough to limit normal tissue complications. For the accurate estimation of model 

parameters, data points should ideally span the entire dose-response curve. While it is 

true that older dose-response datasets (e.g., Bedwinek et al.9 and Bataini et al.10) cover 

relatively wide dose and response ranges, they may suffer from other uncertainties, such 

as uncertainty in dose distribution and delivered dose.
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The lack of high-quality dose-response data is the main reason for the inherent 

uncertainty of TCP and NTCP model predictions. This in turn limits the use of these 

models in the evaluation and ranking of treatment plans, and in the planning process 

itself. For example, in Chapter 2 it was demonstrated that physical inverse planning 

optimization excludes a large number of DVHs with acceptable NTCP. However, in 

spite of this limitation, modem treatment planning systems still utilize physical constraint 

points, instead of biological ones, for optimization.

The currently-available clinical data are not of a sufficient quality to distinguish 

between different TCP (or NTCP) models. In Chapter 2, the Lyman and critical volume 

population models behaved similarly when they were used to estimate physical dose- 

volume constraint points. In Chapter 5, it was shown that the individual and population- 

averaged TCP models would produce nearly identical D50 and y50 values when fit to a 

clinical dataset. Even in the case o f /so < 1, where the two models differ most in 

functional form, both would fit existing clinical data equally well.

The poor quality of existing clinical data leads to model parameter and ratio 

estimates with large confidence intervals. For example, the prostate a l(3 estimates that 

Carlone et al.n obtained using a population-averaged TCP model had 95% CIs of ~[2, 

40]. Because of this, pseudo-data were used to test the derived mapping relationships for 

al(3 estimates from two different TCP models in Chapter 6 .

It is clear that the available dose-response data are, for the most part, insufficient 

for the purpose of clinical TCP and NTCP modeling. In this chapter, the minimum 

number of patients per point that must be analyzed during a clinical trial to estimate 

reasonably accurate model parameters from the collected dose-response data is 

determined. Pseudo-datasets, with different numbers of patients per point, that conform 

to current clinical limitations (with regard to dose range and minimum TCP values) are 

generated from TCP curves with differing /so,th and D so,th values. A TCP curve is then fit 

to each dataset to obtain parameter estimates. The impact of the quantities /so,th, £ > 5 0 , /a ,  

dose range, number of patients per point (i.e., statistical error), and minimum TCP value 

on the 95% confidence intervals (CIs) of the fitted parameters is assessed. From these 

results, the values that would be required to produce a reasonably narrow 95% Cl for 

each of the fitted parameters are estimated.
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7.2 Method

7.2.1 Generation of pseudo-data

The method used to generate pseudo-data for this numerical experiment is similar 

to the one described in Appendix D, with one exception. Using the notation of this 

appendix, Dx is the dose at the specified TCP value, TCPX. Here, this point is designated 

as the first in the series of np points -  they are assigned dose values that are evenly spaced 

over the interval of [Dx, Dx + AD].

For the purpose of data generation, it was assumed that the population-averaged 

TCP model for the limit of dominant heterogeneity in radiosensitivity, 12

(7-1) TCP = ~erfc 50,th
1

v D J

gives a correct description of the tumour dose-response relationship.

A series of datasets were generated to investigate the effect of variations in the 

following quantities on the model parameter estimates that would be obtained by fitting 

Eq. (7-1) to the pseudo-data:

(i) the number of patients per point, N,

(ii) the dose range encompassed by the points, AD,

(iii) the normalized slope of the theoretical TCP curve, /so,th,

(iv) the dose at 50% control of the theoretical TCP curve, D50jh, and

(v) the location of the dataset in dose-TCP space, TCPX.

Each dataset was assumed to consist of a total of np = 5 points. (Varying np between 3 

and 7 did not have a significant effect on the accuracy of the estimated parameters). The 

value for np was selected based on the number of points that are typically considered in 

modem dose escalation trials. The dose range of clinical datasets, which is limited by 

clinical concerns, is quite small and therefore only covers a narrow portion of the TCP 

curve. Thus, it is expected that the inclusion of more than 7 points over a typical dose 

range will likewise not affect the accuracy of the estimated parameters. If, however, it
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were possible to collect clinical dose-response data over a larger dose range, more than 

five points would be required to fully define the dose-response curve.

The values for all quantities associated with the pseudo-datasets are shown in 

Table 7-1. Each row represents the series of datasets generated to determine the effect of 

variations in that particular quantity.

The / 50,th and Dso,th parameters in Table 7-1 were assigned ranges of values that
1 Tare characteristic of clinical dose-response data, based on the results of Okunieff et al. 

The ‘standard’ starting TCP level for the generated data was set to TCPX = 70%, which is 

about the same as the TCP of the lowest dose point in the EBRT prostate datasets of
^ o

Hanks et al. and Pinover et al. The ‘standard’ value for AD of 10 Gy was selected 

based on these same two datasets.

Table 7-1: Values for all quantities that characterize each of five series of generated 
pseudo-datasets. The leftmost column gives the main varied quantity of each series, and 
blue cells represent the specific values chosen for the varied quantity o f interest. To 
assess the impact of a certain quantity on the accuracy of estimated model parameters, 
each pseudo-dataset in the series was fit with Eq. (7-1), and the corresponding change in 
the 95% Cl width of each parameter was assessed.

Varied quantity
Assumed values for all quantities

np AD (Gy) N /SO,th Dsojh (Gy) TCPX (%)

Dose range of data 
points, AD 5 10,20,30

50,100, 
200, 500, 
1 0 0 0 , 2 0 0 0

1 50 70

Number of patients per 
point, N 5 10, 20, 30

50,100, 
200, 500, 
1 0 0 0 ,2 0 0 0

1,1.5, 2 30, 50, 70 60, 70, 80

50, 100,
Normalized slope, y50̂ 5 10, 20, 30 200, 500, 

1 0 0 0 , 2 0 0 0
1,1.5,2 50 70

Dose at 50% control, 
Dsojh

5 1 0 , 2 0
50,100, 
200, 500, 
1 0 0 0 , 2 0 0 0

1 30,50,70 70

Location of data in C 10
50, 100, 
200, 500, 
1 0 0 0 , 2 0 0 0

1 50 60, 70, 80dose-TCP space, TCPX D
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Examples of some pseudo-datasets with different numbers of patients per point, 

N, are shown in Figure 7-1. They were each generated from a population-averaged TCP 

curve with theoretical parameter values of y5o,  ̂= 1 and D5o,  ̂= 50 Gy, and they all span a 

dose range of AD =10 Gy. The error bars shown in Figure 7-1 represent the 6 8 % Cl for 

each point, and were calculated assuming binomial statistics,

(7.2) g  iT C P .M l - T C P ,M
N

where TCPth(D) is the theoretical TCP value for the point at dose, D, and er is the 

standard deviation.

7.2.2 Determination of parameters o f best fit and their confidence intervals

The TCP model [Eq. (7-1)] parameters of best fit were obtained for each of the 

generated dose-response datasets using maximum likelihood estimation, and the 

confidence intervals were calculated using the Monte Carlo procedure11,14 described in 

Appendix E. The relative size of the 95% Cl was used to assess the accuracy of model 

parameters estimated from a given pseudo-dataset. The effect of varying a given quantity 

on the certainty of the resulting parameter estimates was measured by observing the 

corresponding change in the width of the 95% CIs. A decrease in the width of the 95% 

Cl means that the estimated parameter may be determined with greater certainty.

7.3 Results

The D50 and y5o parameter values of best fit, along with their upper and lower 95% 

confidence limits, are shown in Appendix F for each of the generated datasets described 

in Section 7.2.1. Also shown for each dataset is the minimum negative log likelihood 

value that corresponds to the best-fit parameters, and its 95% CL

The remainder of this section begins with an overview of the general results for 

the numerical experiments described in Table 7-1. This is followed by more detailed 

results for each experiment, complete with figures and tables.
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Figure 7-1: Pseudo-datasets with np = 5 points over a dose interval of AD = 1 0  Gy 
generated from a population-averaged TCP curve with Dso,th  = 50 Gy and /so,//! = 1 • Each 
dataset was generated assuming a different number of patients per point (TV); the selected 
values of N  are shown in each sub-plot. The error bars represent the 6 8 % Cl for each 
point, and were calculated assuming binomial statistics.

7.3.1 General results

Table 7-2 summarizes the effect of an increase in each of the quantities outlined 

in Table 7-1 on the width of the 95% CIs of the fitted parameter estimates: D50 and /so.

Improvements in the certainty of the estimated parameters were found to occur 

with increases in the dose range of the data points (AD), the number of patients per point
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(N), and the normalized slope of the TCP curve from which the pseudo-data are generated 

(/so,th)- The certainty of the estimated parameters became worse with increases in the 

dose at 50% control of the theoretical TCP curve (£>50,a) and the TCP level at which the 

data points are located (TCPX). One does not generally have control over the properties 

of the theoretical TCP curve (D50,th and y5ojh)- The dose range is limited by clinical 

concerns, but the results in Table 7-2 indicate that it is desirable to select as large a dose 

range as possible for clinical dose-response trials. The location of the data in dose-TCP 

space tends to be site-specific, and therefore the value of TCPX cannot be influenced. The 

quantity that may be controlled to the greatest degree is the number of patients per point, 

N. For clinical trials, N  should be assigned as large a value as possible to reliably 

estimate TCP model parameters.

Table 7-2: Illustrates the effect of an increase in each quantity in the leftmost column on 
the width of the 95% Cl for parameters obtained from fitting. Up-arrows in the rightmost 
column indicate an increase in the 95% Cl width (and correspondingly, a decrease in the 
accuracy of the estimated parameters), and down-arrows indicate a decrease in the 95% 
Cl width (i.e., an increase in the accuracy of the parameter estimates).

Varied quantity Effect on 95% Cl width of fitted 
parameters: Ds0, fio

Dose range of data points AD T 4

Number of patients per point N 't I
Normalized slope TAtoJh ^ 4

Dose at 50% control DsOfh t t
Location of data in dose-TCP space TCP A t

7.3.2 Effect of dose range and statistics per point on 95% Cl

The effect of dose range, AD, and the number of patients per point, N, on the 

accuracy of each estimated parameter can be seen in Table 7-3, Figure 7-2 and Figure

7-3. The table shows the absolute width of the 95% Cl, Cu -  Q, for the fitted parameters
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£>50 and 750, along with the relative width, (Cu -  Ci)/Dso,th, for each of the pseudo-datasets 

described in the first row of Table 7-1. Figure 7-2 shows the relative 95% CIs of both 

fitted parameters as functions of N  for each of the three dose intervals, and Figure 7-3 

shows the dependence on AD alone (for N  = 1000).

The 95% Cl for each fitted parameter narrows as N  increases and as AD increases. 

For a dose interval of 10 Gy, at least 1000 patients per point are required to estimate £ > 5 0  

with a relative 95% Cl of around 25%. According to these simulations, it is not possible 

to resolve /so to the same degree of accuracy as D$o -  for a dose interval of 1 0  Gy, a 

dataset with 2000 patients per point will yield an estimate for y50 with a relative 95% Cl 

of around 40%.

The relationship between the relative 95% Cl of /5 0  and the number of patients per 

point is linear on a log-log scale. This is also generally true for the relative 95% Cl of 

£>50 as a function of N, although this Cl is subject to considerably more statistical 

variation than that of /so. In each case, the relative 95% Cl is roughly proportional to 

(i.e., on a log-log scale, the relative Cl as a function of N  is linear with a slope of 

approximately -0.5).

Table 7-3: 95% confidence intervals (absolute, Cu -  Q, and relative, %) for the
parameters Dso and /so obtained from fits to pseudo-datasets with np -  5 and TCPX = 70% 
generated from a TCP curve with Dso,th  = 50 Gy and /so,th  =  1 •

N AD —*■ 10 Gy 20 Gy 30 Gy
Cu - Ci (%) Ctt - Ci (%) Cu - Ci (%)

50 Dso 95% Cl 1 22 .1 244.3% 62.5 125.0% 27.8 55.6%
no 95% Cl 2.30 230.1% 1.43 142.9% 1.13 113.3%

200 Dso 95% Cl 115.8 231.6% 26.4 52.9% 17.7 35.3%
no 95% Cl 1 .2 2 121.5% 0.72 71.7% 0.55 55.4%

500 Dso 95% Cl 16.7 33.4% 15.2 30.5% 8.0 16.0%
no 95% Cl 0 .8 6 85.7% 0.45 45.0% 0.33 32.6%

1000 Dso 95% Cl 12.3 24.5% 6.8 13.7% 5.4 10.8%
no 95% Cl 0.57 57.2% 0.31 31.2% 0.24 24.0%

2000 Dso 95% Cl 6.2 12.3% 5.0 10.0% 4.7 9.4%
no 95% Cl 0.40 40.4% 0.23 22.5% 0.16 16.5%
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Figure 7-2: The relative 95% CI for Dso (a) and y5o (b) from Table 7-3 plotted as a 
function of the number of patients per point (N) on a log-log scale for the three dose 
intervals 10, 20 and 30 Gy.
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Figure 7-3: The relative 95% CI for D50 (O ) and y50 (□ ) as a function of dose range, 
AD, corresponding to the pseudo-datasets with TCPX = 70%, N=  1000, D5o ,h = 50 Gy and
750,th = 1 •
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7.3.3 Effect of ŷ 4h on 95% CI

Table 7-4 and Table 7-5 show the same information as Table 7-3, but for the 

datasets that were generated to quantify the effect of varying /so,th  on parameter estimates 

(represented by the third row of Table 7-1). The dependence of the relative 95% CI on 

normalized slope is illustrated in Figure 7-4 and Figure 7-5.

As before, the 95% CIs for each fitted parameter decrease with increasing N  and 

AD. The normalized slope of the TCP curve from which the pseudo-data are generated 

clearly has an influence on the 95% CIs for the estimated parameters. Figure 7-5 shows 

that a steeper slope leads to a smaller relative 95% CI, and a correspondingly more 

accurate parameter estimate. This trend is mostly independent of the number of patients 

per point in the dataset, as can be seen in Figure 7-4.

Table 7-4: 95% confidence intervals (absolute, Cu -  Ci, and relative, %) for the
parameters Dso and /so obtained from fits to pseudo-datasets with np = 5 and TCPX = 70% 
generated from a TCP curve with Dso,th = 50 Gy and /so ,th = 1.5.

N AD —> 10 Gy 20 Gy 30 Gy
C„ - Ci (%) C„ - Ci (%) Cu - Ci (%)

50 Dso 95% CI 25.2 50.3% 10.2 20.4% 24.6 49.3%
Mo 95% CI 2.56 170.5% 1.56 103.8% 1.16 77.3%

200 Dso 95% CI 18.8 37.6% 6.8 13.6% 6.2 12.4%

*o 95% CI 1.25 83.3% 0.75 49.9% 0.56 37.6%
500 Dso 95% CI 8.2 16.4% 6.3 12.6% 4.6 9.2%

/so 95% CI 0.80 53.1% 0.45 30.3% 0.35 23.5%
1000 Dso95%CI 5.2 10.4% 3.3 6.7% 3.2 6.3%

* o 95% CI 0.55 36.4% 0.34 2 2 .6 % 0.24 16.1%
2000 Dso 95% CI 3.6 7.2% 2.8 5.7% 2.5 5.1%

*o 95% CI 0.39 26.3% 0.24 15.8% 0.18 1 2 .1%
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Table 7-5: 95% confidence intervals (absolute, Cu -  Q, and relative, %) for the
parameters Z)5o and y5o obtained from fits to pseudo-datasets with np = 5 and TCPX = 70% 
generated from a TCP curve with Dso,th = 50 Gy and /so,th = 2.

N AD —* 10 Gy 20 Gy 30 Gy
Ctt - Ci (%) C„ ■ Ci (%) C„ - C, (%)

50 D #  95% CI 35.3 70.5% 6 .2 12.4% 9.3 18.5%
Mo 95% CI 2.47 123.4% 1 .8 6 92.9% 1.34 67.2%

2 0 0 Dso 95% CI 9.6 19.1% 6.1 12.3% 4.7 9.5%
Mo 95% CI 1.24 62.2% 0.77 38.6% 0.74 36.8%

500 Dso 95% CI 2 .8 5.7% 2 .8 5.6% 3.0 5.9%
Mo 95% CI 0.80 39.8% 0.49 24.7% 0.42 2 0 .8 %

1 0 0 0 Dso 95% CI 2.9 5.8% 2.7 5.3% 2.4 4.8%
Mo 95% CI 0.55 27.7% 0.35 17.6% 0.31 15.5%

2 0 0 0 Dso 95% O 2.4 4.8% 1.5 3.1% 1 .8 3.6%
Mo 95% CI 0.39 19.6% 0.26 1 2 .8 % 0 .2 0 1 0 .0 %
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Figure 7-4: The relative 95% CIs for the parameters D$o (a) and y5o (b) plotted as a 
function of the number of patients per point (TV) on a log-log scale for three theoretical 
normalized slope values -  yso,th — 1, 1.5 and 2. The estimated parameters correspond to 
datasets where np = 5, TCPX = 70%, AD =10 Gy, and D$ojh = 50 Gy.
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Figure 7-5: The relative 95% CI for D50 (O ) and 750 (□ ) as a function of the assumed 
normalized slope, ysojh, corresponding to the pseudo-datasets with np = 5, TCPX = 70%, N  
= 1000, Dso,th ~ 50 Gy and AD =10 Gy.

7.3.4 Effect o f Ds(i4h on 95% CI

The effect of varying D50,j/, on the accuracy of estimated TCP model parameters 

can be seen in Table 7-6, which shows the absolute and relative 95% CIs for the fitted 

parameters from the datasets corresponding to the fourth row of Table 7-1. Figure 7-6 

shows the relative 95% CIs for the fitted parameters as a function of the number of 

patients per point, for each of three D^) th values -  30, 50 and 70 Gy, and Figure 7-7 

shows the relative 95% CI for each fitted parameter as a function of Dsojh alone, for 

datasets with N  = 1000 and AD =10 Gy.

Generally, the width of the 95% CI increases (i.e., the certainty of the estimated 

parameters decreases) as the assumed dose at 50% control increases. As before, 

increasing N  also increases the certainty of the parameter estimates.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 7-6: 95% confidence intervals (absolute, C u -  Q ,  and relative, %) for the
parameters Dso and /so obtained from fits to pseudo-datasets with np =  5 and T C P X -  70% 
generated from TCP curves with D 5o,th = 30 and 70 Gy and /so,th ~  1-

Dajh ~ 30 Gy Dajh~ 70 Gy

AZ> — 10 Gy 20 Gy 10 Gy 20 Gy
N cu-

c, (%)
cu-
C, (%)

cu-
c, (%)

cu-
c, (%)

50 D »  95% CI 55.8 186.0% 17.6 58.8% 248.5 354.9% 170.6 243.7%

y 95% CI 1.64 164.5% 1.10 110.0% 2.75 275.4% 1.75 174.6%
200 D a  95% CI 20.0 66.5% 7.1 23.6% 54.3 77.5% 34.0 48.6%

Xso 95% CI 0.82 81.6% 0.51 50.8% 1.74 174.4% 1.01 101.3%
500 D a  95% CI 8.1 27.0% 4.6 15.3% 20.0 28.6% 24.2 34.5% ;

Ya 95% CI 0.51 50.9% 0.31 31.3% 1.06 106.2% 0.60 60.3%
1000 D a  95% CI 3.8 12.7% 4.4 14.5% 39.3 56.2% 11.5 16.5%

M. 95% CI 0.38 38.1% 0.22 22.5% 0.80 80.2% 0.41 40.7%
2000 D a  95% CI 3.2 10.6% 2.4 8.1% 19.3 27.5% 8.8 12.6%

Ym 95% CI 0.26 26.3% 0.15 14.8% 0.54 53.9% 0.29 29.5%
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Figure 7-6: The relative 95% CIs for the parameters Dso (a) and /so (b) plotted as a 
function of the number of patients per point (N) on a log-log scale for three theoretical 
D so  values -  D 5o,th = 30, 50 and 70 Gy. The estimated parameters correspond to datasets 
where np = 5, T C P X = 70%, AO =10 Gy, and /so,th =  1.
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Figure 7-7: The relative 95% CI for Dso (O ) and /so (□ ) as a function of the assumed 
dose at 50% control, Dso,th-, corresponding to the pseudo-datasets with TCPX = 70%, N  = 
1000, /so,th = 1 and AD =10 Gy.

7.3.5 Effect o f data location (TCPX) on 95% CI

To illustrate the effect of varying TCPX on the 95% CIs for the fitted parameters, 

the generated datasets from a TCP curve with Dso,th = 50 Gy and /so,th = 1 were examined 

(fifth row of Table 7-1). The absolute and relative 95% CIs for the fitted parameters of 

each dataset are shown in Table 7-7. Figure 7-8 illustrates the relationship between the 

relative 95% CI of each fitted parameter and N  for TCPX values of 60, 70 and 80%. As 

before, the size of the relative 95% CI decreases with increasing N. The dependence of 

relative 95% CI on TCPX is shown in Figure 7-9 for the parameters estimated from fits to 

the datasets with 1 0 0 0  patients per point.

An examination of these figures and Table 7-7 reveals that, regardless of the 

number of patients per point, N, the 95% CI for each fitted parameter increases as TCPX 

increases. In all cases, D50 may be determined with greater certainty than 750 for a given 

dataset, as before.
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Table 7-7: 95% confidence intervals (absolute, Cu -  Q, and relative, %) for the
parameters D5o and y5o obtained from fits to pseudo-datasets with np -  5 and TCPX = 60% 
and 80% generated from TCP curves with D$o,th = 50 Gy and = 1.

N TCPX- 60% 80%
Cu - C/ (%) C„ - Ci (%)

50 Dso 95% CI 27.5 54.9% 256.3 512.7%
Kn 95% CI 2 .11 211.3% 2.46 246.2%

2 0 0 D50 95% CI 34.8 69.6% 33.3 66.5%
Mo 95% CI 1.14 114.2% 1 .68 167.6%

500 D50 95% CI 18.1 36.3% 28.2 56.3%
Mo 95% CI 0.70 70.0% 1.03 103.1%

1 0 0 0 D50 95% CI 6.4 12.9% 18.8 37.6%
Mo 95% CI 0.49 48.5% 0.77 76.7%

2 0 0 0 D50 95% CI 4.6 9.3% 15.0 30.0%
Mo 95% CI 0.35 35.0% 0.53 53.2%
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Figure 7-8: The relative 95% CIs for the parameters Dso (a) and /so (b) plotted as a 
function of the number of patients per point (N) on a log-log scale for three TCPX values -  
60%, 70% and 80%. The estimated parameters correspond to datasets generated from a 
curve with Dsojh = 50 Gy and y5o,M = 1 where np -  5 and AD =10 Gy.
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Figure 7-9: The relative 95% CI for D50 (O ) and y5o (□ ) as a function of TCPX, 
corresponding to the pseudo-datasets with D$o,th = 50 Gy, y5o,th = I, N =  1000, and AD = 
10 Gy.

7.4 Discussion

The number of patients per point required to estimate parameters with a particular 

degree of certainty depends on the inherent shape of the dose-response curve that is 

characteristic of a particular site and treatment regime, i.e., /so,th and Dsojh- It would be 

beneficial if one could get a rough estimate for these parameters before designing a 

clinical trial to collect dose-response data, and this is possible to do if data have 

previously been published for a given site. Otherwise, the worst-case scenario of a 

relatively high D5o,th and a relatively low ysojh may be assumed to determine a sufficiently 

large value for N. For example, if  it is assumed that Dsojh is relatively high (around 70 

Gy), the normalized slope is around 1, and the first dose-response point has an expected 

TCP value of 70%, then for a dose interval of AD = 1 0  Gy, a value of N  = 2000 would 

allow one to estimate D50 with an accuracy (i.e., with a relative 95% CI) of around 27.5% 

and y5o with an accuracy of around 54%.

The dependence of the 95% CIs on D50̂  and y5o,th arises because both parameters 

are functions of the non-normalized slope, 05O =y50/ D50. A larger 05o<th means that the
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difference between the measured TCP at subsequent dose-response points will be greater, 

and the fitted parameters will be more accurate. As can be seen in Table 7-8, an increase 

in /so,th corresponds to an increase in 0so,th, and thus more certain parameter estimates. 

On the other hand, an increase in Dsojh for a fixed /50,th value corresponds to a decreasing 

#50,th, and thus the fitted parameters become less certain.

Table 7-8: Non-normalized slope, #50,,a, corresponding to the D5o,th and values 
listed.

^ 50, th [Gy] yso.th 6k ,a  [Gy-1]
50 1 .0 0.020
50 1 .5 0.030
50 2 .0 0.040
30 1 .0 0.033
70 1 .0 0.014

The certainty of estimated model parameters was found to increase with the dose 

interval, AD, spanned by the dose-response points. The maximum dose interval is limited 

by clinical concerns, such as the tolerance of the surrounding normal tissues to 

irradiation, but the simulations in this chapter indicate that the largest possible dose 

interval should be chosen for dose escalation trials.

The effect of varying TCPX on the accuracy of the estimated parameters is related 

to the changing slope of the TCP curve with dose. For a given AD, a set of dose-response 

points starting at a TCPX of 60% lies on a steeper portion of the TCP curve than a set of 

points starting at TCPX = 80%. Generally, the expected TCP of the lowest dose point in a 

clinical trial is known. If this quantity is relatively low, fewer patients per point will be 

needed to determine parameter estimates to the desired degree of accuracy.

In most of the cases investigated in this chapter, the number of patients per point 

required to adequately resolve D50 and y5o was found to be greater than 1000. In 

comparison, published clinical datasets from dose escalation trials tend to have fewer 

than 100 patients per point, and it is often the case that the number of patients is not the 

same for each point. These statistics are far from sufficient: the dataset with 200 patients
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per point that was generated from a TCP curve with theoretical parameter values of D$o,th 

-  50 Gy and /so,th = 1 starting at TCPX = 70% and spanning a dose interval of 10 Gy 

resulted in estimated parameters with relative 95% CIs that were greater than 100% 

(Table 7-3).

The TCP model considered in this chapter [Eq. (7-1)] was derived under the 

assumption of homogeneous tumour irradiation to dose D. In most cases, especially for 

IMRT treatments, tumours are irradiated heterogeneously, so a TCP model such as Eq. 

(5-13) should be used with full tumour DVHs to estimate model parameters. If it is 

assumed that the results of this chapter are applicable to the heterogeneous case, then the 

number of patients per point required to estimate parameters with a given degree of 

accuracy would be equivalent to the total number of clinical tumour DVHs that 

correspond to different prescription doses in a clinical trial.

This chapter concentrated on estimating parameters for tumours by means of TCP 

models. A similar type of analysis may be carried out for NTCP models. However, it is 

often the case that TCP and NTCP information is collected simultaneously from a clinical 

trial.

7.5 Conclusions

For dose-response datasets subject to clinical restrictions (with respect to starting 

TCP level, dose range, and number of points), a large number of patients per point must 

be chosen for fitted parameters to be resolved with reasonable certainty. The required 

statistics depend on the intrinsic slope of the dose-response curve. For a situation that is 

typical for prostate dose escalation trials (TCPX = 70%, np = 5 points, AD = 1 0  Gy), the 

number of patients for each prescription dose (i.e., each dose-response point) must be 

sufficiently large -  between 1000 and 2000 at least. This is a significantly larger number 

than what is typical of previously-published dose escalation datasets (e.g. Hanks et al.,3 

Pinover et al}).

If TCP model parameters are ever to be resolved with a reasonable accuracy, a 

sufficient amount of data must be collected through clinical trials. This will most likely
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be achievable only if  multiple institutions become involved, and conduct trials according 

to a strict protocol. The determination of model parameters for both tumours and normal 

tissues to a reasonable degree of accuracy has the potential to lead to more widespread 

clinical use of TCP/NTCP models.
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Chapter 8 Summary and general discussion

8.1 The incorporation of NTCP models and parameters into inverse 
planning

In Chapters 2 and 3 of this thesis, a method for calculating physical dose-volume 

constraints based on existing biological models and datasets was developed. It allows 

one to incorporate biological information in the physical inverse planning optimization 

process, which is used almost exclusively in modem treatment planning systems. A 

number of constraint points were calculated for each of 16 organs, based on the Lyman 

and critical volume population NTCP models and parameters derived from the Emami et 

al} data.

It was found that the application of two or more of these constraint points for 

inverse planning optimization can sufficiently restrict NTCP. However, when a single 

‘raw’ Emami dose-volume point is applied as a constraint, all resulting DVH solutions 

will have an undesirably large NTCP. In Chapter 4, it was shown that this occurs 

because the Emami points lie on a curve called the iso-NTCP envelope. Thus, the 

practice of applying ‘raw’ dose-response data points for the purpose of inverse planning 

optimization should be avoided.
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In Chapter 2 it was observed that the physical dose-volume constraint points 

calculated for rectum coincide with the average non-bleeder DVH deduced from a 

previous work2 for relative volumes less than ~0.4. This is a good indication of their 

usefulness for inverse planning optimization. On the other hand, it was demonstrated that 

the application of physical dose-volume constraints excludes a large number of 

acceptable DVH solutions. Thus, biological or physico-biological optimization is 

theoretically a better option for inverse planning.

However, biological optimization is currently not being used, mainly because of 

the uncertainty associated with NTCP models and parameters. Nevertheless, some 

authors have shown that even the use of the Lyman3 NTCP model with the Burman et al.4 

parameters for physico-biological inverse planning “allows the generation of clinically 

acceptable plans similar to or better than the ones produced with standard forward or 

inverse planning techniques. In addition, the use of NTCP-based objective function 

eliminates the need for numerous dose and dose-volume prescriptions and distributes the 

integral dose to the various critical organs in a pattern that minimizes the probabilities of 

radiation-related complications.” 5

Because physical optimization suffers from certain limitations (as shown in 

Chapter 2), biological optimization should be implemented for the purpose of inverse 

planning as soon as NTCP models and parameters are reliable enough to be used 

clinically. The reverse mapping method could potentially be useful as an intermediate 

inverse planning method until this occurs.

8.2 Functional similarity o f the individual and population-based TCP 
models

In the second part of this thesis, it was demonstrated that the individual (non

averaged) and population-averaged TCP models are functionally similar. Hence, if  both 

models are fit to the same clinical dataset, the Dso and /so parameter estimates should be 

statistically indistinguishable. For y50 < 1, the difference between the two models 

becomes more pronounced.
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Despite this functional similarity, it is conceptually incorrect to fit the individual 

model to clinical data, which represents a population response. In Chapter 5, it was 

demonstrated that the individual model parameters lose their biological meaning when fit 

to population data and in Chapter 6 , it was analytically shown that the biological 

parameters obtained from fits of both models to the same dataset do not exhibit a one-to- 

one relationship. Because the population TCP model explicitly takes the effects of inter

patient heterogeneity into account, it is recommend that this model be used to fit clinical 

dose-response data.

While the population TCP model is conceptually more accurate than the 

individual model, it still has its shortcomings. As demonstrated in Carlone et a l6 and 

Warkentin et al.,7 it is not possible to obtain unique estimates for the radiobiological 

parameters exclusively from modeling. In addition, the derivation of the population 

model makes use of several assumptions that may be called into question.8 It is subject to 

the same assumptions as the Poisson-based individual model, along with others (e.g., the 

population distribution functions of individual radiobiological parameters).

Even the assumption that all tumour clonogens must be killed to achieve control 

may not be completely correct. For example, tumour control may depend on the 

destruction of the tumour vasculature,9' 13 or it may only be necessary to destroy all but a 

finite number of clonogens, while the rest are taken care of by the immune system. 

However, TCP models based on the zero-clonogen assumption and Poisson statistics are 

expected to adequately describe tumour control in these cases.

Consider the assumption that the immune system is capable of eliminating the 

final m tumour clonogens, and thus only No -  m must be destroyed by irradiation to 

achieve control. This assumption could easily be incorporated by replacing the Poisson- 

based individual TCP model with a cumulative binomial distribution. Individual TCP 

will then be equal to the probability that m or fewer cells survive irradiation to dose, D,
m

(8-1) TCP„,  = I  l >
£ S N 0\{N0 - i}
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where Ps(D) is the probability that a single clonogen will survive irradiation to dose D. If 

Ps(D) is given by the linear quadratic formula, PS(D ) = exp(-a 'D ), then Eq. (8-1) will

yield a TCP curve with a similar shape as the standard model [Eq. (1-12)].

A disadvantage to using Eq. (8-1) for the individual model is the difficulty in 

determining analytic expressions for Dso and /so in terms of the radiobiological 

parameters of, m and No. However, this difficulty can be overcome by noting that, under 

certain conditions (m >~ 30, according to initial simulations), Eq. (8-1) is well- 

approximated by a cumulative Gaussian curve,

(8-2) ' ind
1 m - N „ f j D )
2

i t  t?ry

Equation (8-2) is also advantageous because it would not be overly difficult to derive the 

corresponding population TCP model following the method of Carlone et al.6 Such a

model would have an extra set of population-based parameters, In m and and the 

relationships between the radiobiological and geometric (Dso, /so) parameters would be 

different than Eqs. (1-14) and (1-15). However, the form of this model would likely be 

similar to that of Carlone et al. [Eq. (1-13)]. Therefore, Eq. (1-13) could provide a good 

description of the clinical dose-response relationship in the case where tumour control is 

achieved when m or fewer clonogens remain at the end of a treatment.

The destruction of tumour vasculature by radiation fundamentally involves cell 

killing, and thus the Poisson TCP model should provide a reasonable macroscopic 

description of this process. The dependency of tumour control on the destruction of 

vasculature may partially account for the difference between in vitro and in vivo 

parameter estimates; the latter could be characteristic of the tumour vasculature, or they 

may represent an average of tumour and vasculature cells.

The assumption about vasculature destruction could potentially be incorporated 

into TCP models. One possible way to do so is to include intra-tumour heterogeneity in 

the model parameters. Alternatively, one may attempt to derive a model that considers 

the vasculature and the rest of the tumour (i.e., clonogens) as two separate ‘structures’. In 

this case, there would be separate parameters for both cell types, and assumptions would 

have to be made about the fraction of the tumour that consists of vessels. However, it is
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likely that the biological parameters of such a model would exhibit relationships similar 

to those inherent to the population TCP model,6,7 which would make it impossible to 

extract their values from clinical data.

Another disadvantage to the population TCP model used in this thesis is that it 

neglects the heterogeneous nature of tumour dose distributions. For a model to be useful 

for purposes such as treatment plan evaluation, it should take this heterogeneous 

irradiation into account. In Chapter 5, it was suggested that the heterogeneous individual 

TCP model [Eq. (5-13)] may be used as a phenomenological population TCP model in 

this case. Another possibility would be to use a modified version of the homogenous 

population model, with dose D replaced with EUD,

(8-3) T C P ^= ± erfc

8.3 The effect o f inter-tumour heterogeneity on parameter ratio estimates

In Chapter 6 , it was analytically shown that the individual and population- 

averaged TCP models do not yield identical a!ft estimates when fit to the same dose- 

response data. Therefore, the assumption that inter-tumour heterogeneity has no effect on 

parameter ratios is invalid, implying that estimates for the al(3 ratio obtained by fitting 

the individual model to clinical data may not be accurate.

On the other hand, the accuracy of a l(3 estimates from the population-averaged 

model is limited by the quality of clinical data used for their extraction.8 The confidence 

intervals are typically too large to determine whether a l(3 is consistent with early or late- 

responding tissues.

Even if  alfi could be estimated from fitting the population TCP model to high- 

quality clinical data, the obtained value would still be subject to a degree of uncertainty 

based on the potential inaccuracy of the assumptions invoked in this process. For

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

yfx/so
D,50

(  N  ~\a

Z v,d ,v-
V V 1=1

—1



example, one assumption is that cell survival curves are accurately described by the LQ 

model. In a recent paper by Garcia et al.,14 detailed cell survival curves were measured 

for a number of different cell lines. The LQ model [Eq. (1-1)] was then fit to different 

dose ranges (low, intermediate, and high doses), yielding estimates for a, /?, and alfi for 

each dose range. It was found that the selected dose range had an impact on the 

estimated LQ parameters, which implies that this model does not accurately describe cell 

survival curves. The Garcia et al. paper supports the idea that absolute values of the alfi 

ratio cannot be determined through fitting models to clinical data (as discussed in Chapter 

6 ), even at the in-vitro level.

In the low-dose region of cell survival curves, effects such as hypersensitivity and 

the adaptive response result in deviations from the predictions of LQ theory. 

Experimental cell survival curves are also characterized by a final slope in the high-dose 

region, while the LQ model predicts a continuous curve. Ideally, a cell survival model 

that describes both the low-dose and high-dose effects should be developed and 

implemented. Unfortunately, this would require the inclusion of additional model 

parameters, and would likely make it difficult to isolate the alfi ratio.

The results of Chapter 6  indicate that the original estimate for the value of a lfio i  

prostate cancer that was obtained by Brenner and Hall15 from fits of the individual TCP 

model to clinical data, aJfi = 1 . 5  [0.8, 2.2], is likely incorrect. However, specific 

treatment protocols based on the assumption that {alP ) pr0state = 1.5 Gy and (al/J)orgam = 

3.0 Gy have recently been proposed by Fowler et al.16'11 Because the exact alfi values 

for both prostate cancer and normal tissues are unknown, the use of these protocols 

should be avoided, as they may lead to underdosing of the tumour or overdosing of 

organs at risk. Instead, a conservative approach should be taken when designing 

hypoffactionation trials, and they should not deviate too drastically from the standard 2  

Gy/fraction treatment regime.

For prostate cancer, only the clinical hypoffactionation trials that are currently 

underway will reveal whether the alfi ratio for this tumour type is, in fact, low. Early 

evidence from these trials indicates that this is indeed the case.
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8.4 Quality of available clinical dose-response data

A significant drawback to existing radiobiological models that is apparent 

throughout the work in this thesis is the poor quality of the dose-response data on which 

they are based. In Chapter 7, pseudo-data (subject to clinical limitations) were utilized to 

determine the number of patients per point that would be required to resolve the TCP 

model parameters and /5 0  with reasonable certainty. It was found that, in the worst 

case, at least 1 0 0 0  -  2 0 0 0  patients per point would be needed to estimate parameters with 

relative confidence intervals of -25% or less for D50 and -40% or less for y50. This 

number is much greater than the - 2 0  -  1 0 0  patients per point that constitute typical 

published clinical dose-response data. As a result, parameters estimated from published 

clinical datasets generally have unsuitably large 95% CIs, which translates into a 

corresponding uncertainty in TCP model predictions and parameter ratio (e.g., alfi) 

estimates.

The collection of a sufficiently large amount of DVH-response data is thus a 

necessary step which must be taken before TCP (and NTCP) models can be utilized to a 

greater extent in the clinical setting.
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Chapter 9 Conclusions and future work

9.1 Concluding remarks

Using the method of reverse mapping, physical dose-volume constraints were 

calculated based on biological models and parameters. It was shown that these constraint 

points are capable of limiting the radiation dose to organs at risk if they are used for 

inverse planning optimization. However, direct biological optimization is theoretically a 

better choice because the application of physical constraint points results in the exclusion 

of a significant number of DVHs with acceptable NTCP.

It was demonstrated that the individual and population-based TCP models are 

functionally similar, and thus should produce identical D5o and /so estimates when fit to 

clinical dose-response datasets. The individual model should be treated as 

phenomenological when fit to clinical data.

Based on this functional similarity, it was analytically shown that fitting the 

population model to clinical data yields an alfl ratio that is different from that which 

would be obtained from fitting the individual model to the same dataset. Thus, the
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assumption that inter-tumour heterogeneity has no effect on parameter ratio estimates is 

invalid. This implies that alft ratio estimates based on the individual model are most 

likely incorrect.

A limitation that is apparent throughout the work in this thesis is the relatively 

poor quality of existing dose-response data. This prevents the widespread use of TCP 

and NTCP models for treatment planning and parameter estimation. It was demonstrated 

that the number of patients per dose point in clinical trials should be equal to 1 0 0 0  or 

more in order to adequately estimate TCP model parameters. Most current clinical trials 

are not designed for TCP/NTCP parameter estimation, however. TCP and NTCP models 

have the potential to become valuable tools in the treatment process, but before this can 

happen, clinical data of sufficient quality must be collected.

9.2 Future work

The work described in Chapters 2 - 4  was mainly theoretical in nature; the next 

step in the reverse mapping project would be to apply the idea in the clinic. The 

calculated constraint points have yet to be tested in an actual treatment planning system, 

which is an essential step that must be taken before they may be used clinically. This 

project may thus be extended by using the reverse mapping method of constraint 

determination to optimize a clinical IMRT plan for a specific site (e.g., prostate) or a 

number of different sites. The method could be used to calculate constraints for all 

relevant OARs, subject to a user-specified NTCP range and maximum organ dose. The 

selection of maximum dose would be based on prescribed dose and the proximity of the 

OAR to the PTV, or knowledge from previously-optimized IMRT plans. Either the 

Lyman or critical volume NTCP model could be used, with parameter values based on 

Emami et al., for the calculation of constraint points. Two or more of these constraints 

may then be applied to all relevant OARs, and the treatment plan optimized. The DVHs 

obtained from this process could then be compared with those from IMRT plans with 

conventional clinical constraints. If the plans based on the reverse mapping constraints 

consistently produce equivalent or better results than conventional plans, then it may be 

possible to deliver IMRT treatments optimized using these reverse mapping constraints.
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If more clinical dose-response data become available in the future, leading to 

increased reliability of NTCP models, then the reverse mapping method may be used as a 

transitional means to bridge the gap between purely physical inverse planning 

optimization and physico-biological optimization.

One limitation to the population TCP model used in this thesis is the assumption 

of homogeneous tumour irradiation. Given that the dose distribution of a tumour is not 

entirely uniform, it is necessary to develop a heterogeneous population TCP model. The 

best way to do so would be to analytically derive such a model, using a similar process as 

described in Carlone et al.x However, this is not easy to do; hence the suggestion of two 

alternate heterogeneous TCP model forms in Chapter 5. Before either of these simpler 

heterogeneous models can be implemented, however, their ability to describe population 

TCP in the case of heterogeneous irradiation should be explored. One way to do this is 

through pseudo-numerical experiments. First, heterogeneous tumour DVHs can be 

generated using a mathematical expression that very closely mimics clinical DVHs. The 

TCP of each DVH can then be calculated using the population TCP expression of Nahum 

and Webb2 with assumed parameter values. In this way, a pseudo DVH-response dataset 

can be obtained. Each of the proposed alternative heterogeneous population TCP models 

may then be fit to the pseudo-data, and the fits can be compared, along with each model’s 

ability to predict TCP.

The heterogeneous individual model [Eq. (5-13)] has been used previously3 to 

evaluate TCP, with Z)5o and 750 estimates4 from fits to clinical data representing 

homogeneously-irradiated tumours, with reasonable results. Currently, this appears to be 

the best (and only) option to evaluate TCP in the case of heterogeneous irradiation. The 

heterogeneous population TCP model based on the EUD formalism has three parameters: 

£>50, /so, and a volume parameter, a. If this model proves to more accurately represent 

heterogeneous irradiation according to the simulations described above, clinical datasets 

that contain tumour DVH information will be needed to estimate parameters. Thus, 

before a heterogeneous population TCP model can be used clinically, a sufficient amount 

of clinical DVH-TCP data must be collected and analyzed.
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It is apparent from the work in this thesis that the currently-available clinical 

dose-response data are not of a sufficient quality to facilitate the regular clinical use of 

TCP and NTCP models. A significant effort should therefore be made to collect DVH- 

response data by means of clinical trials. In most cases, it is impractical to conduct 

clinical trials of the required magnitude within a single institution, and thus multi- 

institutional trials that are designed to collect a large amount of data should be 

implemented. A few such organizations, such as the RTOG (Radiation Therapy 

Oncology Group), have already made efforts in this direction. However, the clinical 

trials that have been conducted by existing organizations suffer from several limitations. 

Some of these include limitations on the types and amount of data that may be stored in 

databases, unclear specifications on volume definition for standard structures of interest 

(leading to DVH differences), and differences in the characterization of normal tissue 

complications.5

Efforts should be made to overcome these limitations. Specific multi-institutional 

trials could potentially be designed with clear protocols to ensure that the information 

collected from such an effort is useful for TCP/NTCP modeling. With an adequate 

process in place for collecting, storing and accessing DVH-response data, more accurate 

information could be extracted from radiobiological modeling, and TCP and NTCP 

modeling may very well be used with increasing frequency in the clinic.

Assuming that a sufficient amount of clinical data can be collected, it is likely that 

models with geometric parameters, like the TCP models discussed and investigated in 

this thesis, will be the first used regularly in the clinic. These types of models could be 

used for biological optimization and treatment plan ranking, and could potentially 

simplify the process by removing the need to rely on previous clinical knowledge in order 

to assess the ‘goodness’ of a dose-distribution.

In Chapter 6  [Eq. (6-21)], it was demonstrated that it may be possible to estimate 

biological parameter ratios, such as alfi, from geometric parameters (in this case, Dso). 

Assuming appropriate data could be collected for such a calculation, the ability to obtain 

parameter ratios from clinical datasets could lead to insights as to the optimal 

fractionation regime to treat different tumour types.
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The development and clinical utilization of detailed TCP and NTCP models that 

incorporate more complicated radiobiology likely cannot be achieved using clinical dose- 

response data alone. Even the radiobiological parameters of the relatively simple 

population-averaged TCP model given by Eq. (1-13) are interrelated. Other experimental 

methods will have to be employed in order to obtain more radiobiological information 

from TCP and NTCP modeling. Perhaps, in future, this will be accomplished by 

combining information from animal experiments and/or biological imaging with data 

from clinical trials. The existing TCP and NTCP models provide a good starting point 

for this type of research.

It is important to continue the radiobiological modeling work discussed in this 

thesis because this is the only method that can, in future, be used to determine, with 

certainty, which treatment methods and protocols are best suited for each site. Once an 

appropriate amount of clinical data has been collected, TCP and NTCP models have the 

potential to provide the quantitative justification for the best regimen for modem 

radiation treatments.
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Appendix A NTCP model parameters

A list of parameters for the NTCP models used in Chapter 2 is presented for each 

of 16 organs. Both sets of parameters were calculated based on the Emami et al? 

estimates. The Lyman model parameters are those of Burman et a l, and the CV 

population model parameters are from Stavrev et al?

Organ/Endpoint

Lyman model 
parameters

CV population model 
parameters

a m Pso Mcr Gficr 2>50FSU « .  FSU

lung/pneumonitis 0.87 0.18 24.5 0.0793 0.1162 2 2 0 .0 0 0 0.2720
liver 0.32 0.15 40.0 0.0372 0.1060 180.599 0.4582
brain 0.25 0.15 60.0 0.0763 0.3060 106.001 1.0428
heart/pericarditis 0.35 0 .1 0 48.0 0.1421 0.1701 83.000 0.7992
kidney/nephritis 0.70 0 .1 0 28.0 0.2167 0.1412 59.119 0.4420
esophagus 0.06 0 .1 1 6 8 .0 0.0147 0.3644 96.674 2.4401
stomach 0.15 0.14 65.0 0.0206 0.3761 94.000 2.2117
brachial plexus 0.03 0 .1 2 75.0 0.0148 0.8532 86.501 6.0417
bladder 0.50 0 .1 1 80.0 0.2619 0.1926 108.000 0.8050
mandible 0.07 0 .1 0 72.0 0.0724 0.4725 85.788 3.1533
brain stem 0.16 0.14 65.0 0 .1 2 0 2 0.3302 97.404 1.1484
larynx/necrosis 0 .1 1 0.08 80.0 0.0688 0.2270 108.159 1.9095
small intestine 0.15 0.16 55.0 0.0423 0.2803 96.750 1.1561
colon 0.17 0 .1 1 55.0 0.0329 0.1699 107.731 1.0632
spinal cord 0.05 0.18 66.5 0.0849 0.7529 81.000 2.5664
skin 0 .1 0 0 .1 2 70.0 0.1009 0.4216 92.974 1.7154
rectum 0 .1 2 0.15 80.0 . . . . . .
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Appendix B Determination of the number of 
trajectories connecting two points in DVH 
space

Let the number of steps necessary to reach point E  (m, r) from point D  (0, 0) be p  

steps in the forward direction and q steps in the downward direction. Then, the total 

number of steps is p+q. As can be seen, it is also equal to m, the x  coordinate of point E, 

since each step increases the x  coordinate with +1. Therefore, we have Ex = m = p  + q .

On the other hand, each step in the forward direction increases they coordinate with +1 

while each step down decreases the ordinate with -1. Therefore, they coordinate of point 

E, r, is equal to Ey =r = p - q . We can determine p  and q from these two relations: 

p=(m+r)/2 and q=(m-r)/2.

The number of ways in which p  out of a total of p+q steps can be realized in the 

forward direction is given by the corresponding binomial coefficient:

BP+9,P

p  + q f m 1
< P , m + r ) /2 ,

Alternatively, the number of ways in which q out of a total of p+q steps can be realized in 

the downward direction is given by

B
P+9.9

(  .A p  + q m '

K 11

'N 3 l ro

Either of these numbers equals the number of trajectories connecting the two points. 

Therefore, we have proven that

N mr =  m,r

\m .1 m
(m + r ) /2 )  { ( m - r ) /  2 y

The right-hand equality can also be proven directly.
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It can also be seen that point E2 (x2, y2) can be reached from point E\ (xi, .yi) via a 

total number of steps equal to x2 -  xx out of which p  = [(x2 -  x ,) + (y2 -  y x)] / 2  are in the

forward direction and q = [(x2 - x , ) - ( y 2 -  >-,)]/ 2  are in the downward direction. 

Therefore,

N E\(x„yi),E2(x2,y2)

'  x2 -  Xj ^ f  m \
J(x2 - x x)± (y2 - T i ) ] / 2 , Jm ±r)/2 ;
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Appendix C Special cases for the number of 
trajectories connecting two points in DVH 
space

It is possible that in certain cases part of the vertical segment FQ' protrudes out of 

square ABCD as shown in Figure C-l. This can happen when the point (7) chosen in the 

previous step has a y  coordinate such that 2R > 2N  -  2nK -  4n . Indeed, in this case the y  

coordinate of point F , P'y =2R + 2n, is bigger than the y  coordinate of point W (the

cross point of FQ' and BC), Wy = 2 N - 2 n K - 2 n  . As a result segment F W  lies outside

ABCD and only curves from T to B passing through WQ' should be counted. Therefore, 

we should count now the reduced number of curves from T  to B  according to the 

following formula:

£ , ( 2 n \ ( 2 N - 2 n K - 2 n \

k=O ' XN  - n K  + R - k j
k ' = - n K - R  + N ,

where k ' labels the dividing point Pk, which coincides with W. Indeed, for Pk, = W , we 

have Pk,y = 2 R -2 n  + 2k' -W y = 2N - 2nK - 2n => k ' -  -n K  - R  + N . This expression 

should be substituted in Eq. (3-4),

2 n

^ T , B  ~  ~
k ' =0

2 N -2 n K  V  
N - n K  + R ) h

2 2 N - 2 n K - 2 n  
N - n K  + R - k '

and used instead of
2 N - 2 n K ^  

N - n K  + R
for the number of curves from T to B. Also, all cases

in the random number generation for which L > k '  should be disregarded.

The mirror symmetric case when the vertical segment P"Q" protrudes out of 

square ABCD from beneath is also examined and shown in Figure C-l. Applying the 

same reasoning as above one finds that the reduced number of curves from point T  to 

point B, i.e., the number of curves from point T  to point B passing through VP" is:
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2n (  9 m

* S - I j
k=k"\ K  /

k" = nK + R - N  + 2n.
- 2 n K - 2 n  

N - n K  + R - k )

This expression should now be substituted in Eq. (3-4) and used for the number of curves 

from T  to B. Also, all cases in the random number generation for which L < k " should be 

disregarded.

D

A

Figure C-l: Consideration of the special cases when the random walk created by the 
generator may leave the unit square.
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Appendix D Generation of pseudo-clinical 
dose-response data

This section outlines the process used to generate dose response data from a TCP 

curve with known (or assumed) D50 and yso values.

(i) Specify the TCP curve and parameters from which the dose-response points will be 

generated. We used the fundamental form of the population model [Eq. (6 -6 )],

T C P „‘ \erfc

for this purpose.

(ii) Let Dx be the dose at TCP = x. Choose a value for Dx that represents the mean 

delivered dose for the set of dose-response data to be generated. Specifically, select 

a TCP level, x, and then calculate Dx from the TCP curve in (i).

(iii) Select a dose range, AD, that the simulated dose-response points will fall within, 

and choose the total number of points to be generated, np. The minimum dose in 

the simulated dataset is Dx -  AD/2 and the maximum is Dx + AD/2, and the points 

are spaced equally between these two limits.

(iv) For each of the np dose points, Df. i = 1.. ,np, assign a value for the total number of 

‘patients’, Nt, treated to a dose of D,. This is done by generating a uniform random 

value between selected lower and upper limits, Niow and Nhigh. Alternatively, one 

could assign specific values of TV, for each point, based on existing dose-response 

data.

(v) Generate a value for the number of patients cured, n„ for each dose point, D,. The 

value rii is randomly sampled from a binomial distribution where n, is the number of 

successes (cures), Nt is the number of trials (patients), and the probability of a 

success is />, = TCP(D/)\

(E-l) P(n,)= *■' . p ’ f r - p f ' - ' .
n ^ N i-n J .
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Specifically:

(a) Generate a random number, r, distributed uniformly in the interval [0,1].

(b) Find a number, for which the following identity is satisfied:

Z p (m) < r - X p (m)-
m=0 m=0

where F* is the binomial distribution. In this way, any uniform random 

number, 0  < r < 1 , is transformed into another number, 0  < «, < Ni that 

follows a binomial distribution. 1
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Appendix E Determining best-fit TCP 
parameters and their confidence limits

The following Monte Carlo procedure1,2 was used in this thesis for the purpose of 

fitting a TCP model represented by TCPth (ft) to a dataset consisting of np dose-response 

points, (Di, rii, Ni).

(i) For each clinical data point, generate a random number of cures, nJgen., by sampling

from a binomial distribution where the number of trials (patients) is TV,-, and the 

probability of a successful outcome on any one trial, p t, is equal to the measured 

TCP value: p t = TCP,(Z);) = nJNi. To generate a random number of cures for each 

data point, the same procedure as outlined in step (v) of Appendix D is used.

(ii) Determine the best-fit parameters for the chosen TCP model, TCP,/,, by minimizing 

the negative of the log likelihood function (or equivalently, maximizing the log 

likelihood function):

i=1

where ft j represents the TCP model parameters of best fit for the / h set of 

randomly-generated dose-response points.

(iii) Store the parameters of best fit, ft j , for the current iteration, and the minimum of

the negative log likelihood function, Lj.

(iv) Repeat the process many times (we used 1000 iterations).

(v) Use the stored values for the best-fit parameters and of the minimum negative log 

likelihood function to generate distributions for these quantities.

(vi) Determine the 95% and 6 8 % confidence intervals (CIs) for the parameters of best 

fit, f t , along with the minimum of the negative log likelihood function, L, directly 

from their distributions. This may be accomplished by sorting each quantity in 

ascending order, and then finding the cutoff value for the lowest and highest 16%
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of the values for the 6 8 % Cl, and similarly for the lowest and highest 2.5% of the 

values for the 95% CL
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Appendix F Fitted parameter values for 
pseudo-data

This appendix contains tables of estimated parameter values from fits of the 

population TCP model [Eq. (7-1)] to each of the pseudo-datasets generated in Chapter 7. 

The minimum negative log likelihood corresponding to the best-fit parameters is also 

shown in each case.

Table F -l: Fitted parameter values (D50, / 50) and 95% confidence intervals for the 
pseudo-datasets generated from a TCP curve with theoretical parameter values of Dso,th = 
50 Gy and 5̂0,th = 1 • The minimum negative log likelihood value is also shown, with its 
95% confidence interval, for each fitted pseudo-dataset. Each dataset consisted of a total 
of np = 5 points, with the first point at a dose corresponding to TCPX = 70%.

N AD —* 10 Gy 20 Gy 30 Gy
50 D50 50.0 [-61.9, 60.2] 47.9 [-4.3, 58.2] 53.8 [33.7,61.5]

yso 1.03 [0.14, 2.45] 0.98 [0.30,1.73] 1.15 [0.60, 1.74]
Lmin 139 [122, 153] 125 [107, 1411 122 ri02, 1361

2 0 0 D50 43.0 [-60.6, 55.2] 46.7 [27.8, 54.2] 48.1 [36.9, 54.5]

rso 0.70 [0.13, 1.34] 0.85 [0.49, 1.22] 0.97 [0.70, 1.26]
^min 571 [539, 5981 530 [495, 562] 471 T433, 5071

500 D50 50.6 [38.8, 55.5] 46.5 [36.7,51.9] 51.5 [46.9, 54.9]
n  0 1.08 [0.64, 1.50] 0.84 [0.61, 1.06] 1.03 [0.87, 1.20]

^min 1382 ri330, 14281 1330 [1276, 13791 1230r i177, 12791
1 0 0 0 D50 49.4 [41.4, 53.6] 51.1 [46.9, 53.7] 51.5 [48.4, 53.8]

0.96 [0.66, 1.24] 1.07 [0.90, 1.22] 1.08 [0.96, 1.20]
-̂ min 2835 [2774,28951 2582 [2499, 26521 2378 [2302, 2450]

2 0 0 0 D50 51.8 [48.2, 54.4] 50.3 [47.5, 52.6] 49.5 [47.0,51.6]
5̂0 1.10 [0.90, 1.30] 1.02 [0.91, 1.13] 0.96 [0.87, 1.04]

Dmin 5655 [5558, 5742] 5191 [5088,52881 4925 [4817, 50301
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Table F-2: Shows the same information as does Table F-l, but in this case the data were 
generated from a TCP curve with theoretical parameter values of Dsojh = 50 Gy and 
= 1.5. Each dataset consisted of a total of np = 5 points, with the first point at a dose 
corresponding to TCPX = 70%.

N AD > 10 Gy 20 Gy 30 Gy
50 Dso 52.4 [31.5, 56.6] 55.4 [48.7, 58.9] 47.1 [29.5, 54.1]

1.89 [0.62,3.18] 1.92 [1.22, 2.78] 1.26 [0.71, 1.87]
Lmia 129 ri010, 143] 120 [102, 1351 10 2  [80.0, 1181

2 0 0 Dso 47.1 [33.5, 52.3] 51.4 [47.4, 54.2] 51.7 [48.1,54.3]
Yso 1.32 [0.71, 1.96] 1.67 [1.31, 2.06] 1.63 [1.36, 1.92]

2'min 501 [467, 5331 438.7 [399.1, 474.21 386 [347, 4221
500 ^ 5 0 48.8 [43.8, 52.0] 48.4 [44.7,51.0] 49.7 [47.1,51.7]

1.40 [1.02, 1.82] 1.40 [1.17, 1.62] 1.55 [1.38, 1.73]
-^min 1297 [1244, 1348] 1104 [1042,1158] 921[858, 9751

1 0 0 0 ^ 5 0 49.4 [46.3,51.5] 51.1 [49.3,52.6] 50.1 [48.4,51.6]
1.45 [1.18, 1.73] 1.57 [1.39, 1.73] 1.47 [1.35, 1.59]

-^min 2610 T2534,26771 2263 [2183,23391 1471 [1353, 15951
2 0 0 0 Ao 49.6 [47.6, 51.2] 49.2 [47.7, 50.6] 49.0 [47.7, 50.2]

^50 1.46 [1.26, 1.65] 1.43 [1.32, 1.55] 1.44 [1.36, 1.54]
^m iii 5232 [5126, 5332] 4473 [4362, 4578] 3831 [3707, 3945]
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Table F-3: Shows the same information as Table F-l and Table F-2, but in this case the 
data were generated from a TCP curve with theoretical parameter values of Dsojh = 50 Gy 
and fiojh = 2. Each dataset consisted of a total of np = 5 points, with the first point at a 
dose corresponding to TCPX = 70%.

N AD > 10 Gy 20 Gy 30 Gy
50 ^50 47.4 [17.7, 52.9] 53.6 [49.8, 56.0] 51.3 [45.6, 54.9]

n o 1.71 [0.53,3.00] 2.78 [1.99,3.85] 2.10 [1.53, 2.88]
Lm\n 116 [97.0, 1311 89.2 [72.3, 1051 78.9 T61.3, 96.31

200 T>50 48.7 [42.2,51.8] 49.4 [45.7,51.9] 51.0 [48.3,53.0]
no 1.75 [1.14,2.39] 1.94 [1.57, 2.35] 2.12 [1.79, 2.52]
-̂rnin 489 [456, 5201 372 [334, 4071 303 [266, 3361

500 ^50 52.1 [50.4, 53.3] 51.1 [49.5, 52.3] 51.2 [49.6, 52.5]

n  o 2.46 [2.07, 2.87] 2.11 [1.88,2.37] 2.05 [1.84, 2.26]
-̂ min 1203 [1149, 12581 957 [895, 10091 802 [746, 8571

1000 ^50 50.0 [48.4,51.2] 49.0 [47.6, 50.2] 49.7 [48.5, 50.9]
no 2.02 [1.73, 2.28] 1.91 [1.74,2.09] 2.01 [1.85,2.16]

T-min 2394 [2317, 2472] 1842 [1760, 1920] 1489 [1406, 1567]
2000 D$o 49.1 [47.8, 50.1] 50.8 [50.0,51.5] 48.9 [47.9, 49.7]

no 1.86 [1.67, 2.06] 2.10 [1.97, 2.23] 1.83 [1.74, 1.94]
7'min 4789 [4676, 48961 3777 [3664, 3889] 3151 [3033,32611
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Table F-4: Fitted parameters and 95% confidence intervals for datasets generated from 
TCP curves with D5o,th = [30, 70] Gy and ysojh = 1. Each dataset consisted of a total of np 
= 5 points over a dose interval (AD) of either 10 or 20 Gy, with the first point at a dose 
corresponding to TCPX = 70%.

N AD —
Dso.th -  30 Gy Dso.th -  70 Gy

10 Gy 20 Gy 10 Gy 20 Gy

50 D 50

no
tmin

29.9 [-19.9,35.9] 
0.93 [0.18, 1.82] 
138 [119, 1511

31.4 [18.6, 36.3] 
1.10 [0.59, 1.69] 
118 [96.4, 1321

66.6 [-163.6, 84.9] 
0.92 [0.10, 2.85] 
142 [125,154]

67.2 [-86.8, 83.8] 
0.87 [0.16, 1.90] 
139 [122, 1521

2 0 0 5̂0
^0

-̂ min

27.5 [12.6, 32.6] 
0.81 [0.42, 1.23] 
546 [510, 574]

30.9 [26.7, 33.8] 
1.13 [0.88, 1.38] 
448 [411,481]

74.8 [28.5, 82.8] 
1.20 [0.36,2.10] 

586 T556, 6101

69.4 [45.0, 79.0] 
1.03 [0.54, 1.55] 
531 [496, 560]

500 D 50

no
^min

28.8 [23.7,31.8] 
0.91 [0.67, 1.18] 
1340 [1286,13851

30.7 [28.1,32.7] 
1.03 [0.88, 1.19] 
1191 [1132,1246]

74.4 [60.3, 80.3] 
1.23 [0.71, 1.77] 
1444 r i4 0 0 ,14871

66.6 [50.2, 74.4] 
0.88 [0.57, 1.17] 
1371 [1318, 14161

1 0 0 0 5̂0
no

Zimin

31.3 [29.1,32.9] 
1.13 [0.94, 1.33] 
2649 [2571,2722]

28.5 [26.0, 30.3] 
0.94 [0.83, 1.06] 
2317 [2235, 23951

64.5 [34.6, 73.9] 
0.81 [0.41,1.21] 
2892 [2829,29511

70.8 [63.7, 75.2] 
1.02 [0.81,1.22] 
2735 [2663,28021

2 0 0 0 P50
no

L min

30.3 [28.4,31.6]
1.03 [0.89, 1.15] 
5323 [5225, 5420]

30.0 [28.7,31.2]
1.00 [0.93, 1.08] 
4720 [4607,48211

66.5 [53.7, 73.0] 
0.86 [0.58, 1.12] 
5809 [5720, 58891

69.7 [64.6, 73.4] 
0.99 [0.84, 1.14] 
5461 T5363, 55551
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Table F-5: Fitted parameters and 95% confidence intervals for datasets generated from 
TCP curves with D5o,th = 50 Gy and y5o,th = 1 • Each dataset consisted of a total of np = 5 
points over a dose range of AD = 1 0  Gy, with the first point at a dose corresponding to 
TC PX = 60% in one case and 80% in the other.

N TCPr > 60% 80%
50 5̂0 53.5 [29.8, 57.3] 41.7 [-188.5, 67.9]

no 1.26 [0.30, 2.41] 0.80 [0.12, 2.58]
Lnun 161 [149, 1681 113 [91.7, 1301

2 0 0 ^50 47.3 [17.9, 52.7] 59.9 [33.6, 66.8]

no 0.81 [0.25, 1.39] 1.52 [0.66,2.34]
^min 632 [609, 6521 454 [416,4891

500 ^50 46.0 [32.4, 50.6] 55.4 [34.3, 62.4]

no 0.75 [0.40, 1.10] 1.19 [0.64, 1.67]
Lmin 1575 [1541, 16071 1172 [1114,12291

1 0 0 0 48.7 [44.7,51.1] 53.6 [41.3,60.1]
no 0.95 [0.71, 1.20] 1.17 [0.80, 1.57]

^min 3127 T3076, 31761 2249 [2163, 23301
2 0 0 0 5̂0 48.5 [45.8, 50.4] 51.5 [42.2, 57.2]

no 0.92 [0.74, 1.09] 1.07 [0.81, 1.34]
Lmin 6278 [6210, 63441 4551 [4430,46681
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