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ABSTRACT

This thesis studies databse achema transformations that are information
prq;ervingl In the semilattice data model, recursive type definition and four type con-
/;x(ruc(ors produce schemas useful in describing complex data. ,lnformation-preserving
transformations replace a schema with an informationally equivalent schema. The
‘transformations are essential if the semilattice data model is to have one of its apecial

features. This feature is the ability to allow each application to bave its own complex

view of the data.

Almost twenty basic transformation are described in this thesis. These transfor-
mations are used to build a finite Church-Rosser repladement system. This system
simpliﬁl(-s anjr schema in many small steps. With this svstem, other results arlc
obtained. The expressive power of the union type constructor is explored, Also some
problemg are shown to be NP-bard. These problems concern the equivalence of sche-

mas with respect to the transformations given in the thesis.

»

Although the thesis uses notation and concepts of the semilattice data model,
. AN

most sof the results have analogies in other data models and many programming

languages.
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* Chapter 1

Introduction

It is intended that the semfRtice data model deal with complex data in an

eflective manner [Arm84}. To do this, the model requires the ability to isolate applica-
. e

tions from the congeptual organization of the data. This has two major benefits,

Application dc.v.elopmcnt is simplified when the designer may assume an ideal concep-

tt;al schema for the data. Secondly, application maintenance is reduced when the

-
applications are independent of the schcma since changes to the conceptual schema do

not require changes to the applications.

This thesis contains work critical to allowing the semilattice data model to isolate
applications from the conceptual schema. In particular, this thesis describes almost
/
twenty basic information-preserving transformations. Some of the transformations are
based on the work of others, while other transformations are original work. Typically,
. A . . I . &
these transformation produces a new schema by-replacing an expression in a schema
definition by an equivalent expression. Each transformation includes a method of

; .
expressing the values of one schema as values of the other schema. To show the feasi-

bility of one class of transformations, the relationship of semilattice database schemas

to context-free grammiars is developed.
' ‘This thesis also c(;;xtains somé theoretical results. It describes a method of simpli-
fying any semilattice database schema. The n!etth, a rcpla\écment system, simplifies
a schema in ’ma'ny smalt-steps. These steps are called reductions and each is based on
. some basic informationépfeséwing' t:aﬁsﬁormations, The rep‘lace‘ment system is shown
%o have tb}e figite Church-Rosser property. Put in imprecise terms, this means that for
any s:chema] the’system always terminates and produces the same resﬁlt. Singe the

system has this property, several useful results can be shown and an interesting con-

Jecture made. v Tt °

- L 4



Although the notation and definitions used in this thesis are those of the semilat-
tice data model, the results are of interest to tho_sc working with recursively defined
data types. Data types similar to semilattice database schemas are supported by other
data models and some object-oriented and strongly-typed programming languages.

The reader will gain insight into the information capacity of data types that are recur-

sively defined with the tuple, set, sequence and union type constructors. Also, the .

reader will be introduced to a new technique to show the termrination of a replacement
system and given an appreciation of the difficulty of showing that a replacement sys-

tew has the Church-Rosser property.

The rematnder of this chapter contains some informal definitions, a discussion of

the research area, and an outline of the remainder of the thesis. The informal

definitions are those of terms used in the explanation of the researgh area. Formal

,

definitions of terms are in later parts of the thesis. The section on the rescarch area
describes the particular problems that were studied, the motivations for the research,

and the a[f‘proach that was taken.

»

al Definitions | ,
g’?/ '
. A semllattlce databgse schema i |s\a finite set of data type definitions. A data type

.,
may be basic: integer, string, et ¢ téra. Otherwise, a data type is constructed from

1.1. Informg

other types with the tuple, set, sequence and union <onstructors. Recursive definition

of types is permitted. Two scbemas‘ are informationally equivalem if there is a one-

to-one correspondence between their domains. A schema transformation i is any binfry
relation of database schemas. A transformation is information preservmg if a schema

is always transformed to an informationally equivalent one.

In thls thesis, a database schema is in normal form if it is an |rreduc|ble element

N o=

of & finite Church- Rosser replacement system A replacement system consists of a set

and a binary relation, thc reduction relation, on that set. An element of the set is
B



rgduced by replacing it by any element that the reduction relation relates to it An
clement is irreducible if it can not be reduced. If a replacement system does not have
an infinite series of reductions, it is finite, A replacement. system is finite Church-

Rosser if it is finite and all scries of reductions that start with a particular clement,

end with the same irreducible element

1.2. The Research Area

This thesis is mddeled on Richard Hull and Chee K. Yap's study of data represen-

tation [HuY82, HuY84]), Their results includdd six reductions that change a Rhema (o
.

a simplicr one with equivalent information capacity, Hull and Yap defined a replace-
ment system based on these reductions. They proved their replacement system is a
finite Church-Rosser dne. Therefore, their replacement system gives a method of test-
ing informational equivalence of schemas since two informationally equivalent schemas
must have the same normal form  From their work, it 13 straightférward to geerate a
procedure to express data in any schema whenever the data is stored in any equivalent

schema. ,
[ 4

This thesis describes the results obtained by applying Hull'and Yap's methods to

hY
the semilattice data model. Since their definition of equivalence is inadequate for sche-
mlas with data types having recursive definitions, the definition of equivalence is based
on the work of others. The problem aad the results are significantly different from
Hull and Yép's because the semilattice data model is able to construct a much broader

&

class of schemas. ,

‘This thesis describes some. basic information-preserving transformations of semi-
lattice database schﬁmas These transformations are the initial step of an important
process. When complete the process shall give the semllattlce data model a special
ability. Thls is the ability to hide the conceptual organizqtion of the data from the

. applications tl}:a_t, use that data. When the applications are independent of the

CO
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conceptual ‘.;«chcum, advantages can be realized that are similar to the advantages
found in hiding the physical organization of the ‘data from the applications, One
advantage is that the C()llC('l){llnl schema may be transformed to a compatible schema
without requiring changes to the appheations A new conceptual schema might be
desired because it is more eflicient, versatile, or reliable, Another advantage i~ that

“

application design ia simplificd since a designer can asspme any reasonable conceptual

(Y
schema,

To a degree, the universal relation data mod;l isolatescapplications from the con-
ceptual schema of the data (CH82]. It does this by giving all applications the same
structurctess repeesentation of the data Although a structureless representation s
cany to comprehend, the desfgoers of some applications require or prefer atructured
views of the data. It is intended that the semilattice data model will aliow cach apph-

»

cation to have ita own complex view of the data

The semilattice data model uses the basic information-prescrving (rnnnfornmli(:n:«
to give cach application 1ts own complex view of the data. 'l‘ht\éw,\forlna(ions pro-
vide our method of showing that some schemas are informationally equivalent, This is
important since an application’s view of the data is compatible with the conceptual
schema only if certain conditions exists, Qune of the necessary conditions is that the
application’s view is produced from a schema informationally equivalent to the con-’

.
ceptual ode. Another critical function of the transformations is their role in producing
the data for an application from the actual data. Each transformation provides a
method of producing data organized according to one schema from data organized
accordin& to the other schema. The transformations’ methods of transforming data
.

can be composed into procedures. These procedures can be used to transform the

actual data values of the gonceptual schema into values of an application’s view,

\ / w

This thesis describes a firite Church-Rosser replacement system that normalizes



(

scmilattice database schemas. The reduction relation of the replacement system s
generated from a group of information-preserving transformations, A semilattice
database schema 15 normalized by reducing it to an irreducible eJement of the replace-
ment system, If |>on;sibl<~, a schema is normalized to a collection of self-defining, non-
recursive, simple data types. In other situations, the normalization process rodl‘ncen

recursion, references and type complexity as much as powsible,

What are the motivations for normalization of semilattice database schemas?
One benefit s thad normalization induces a second valuable definition of schema
cquivalence; schemas -are normal-[br}rf eftiivalent if they have the same normal form.
Another closely related equivalence relation can be generated from the union of the
transformations but for that relation, de(c‘rmining equivalence would certainly be far
more computationally intensive and possibly undecidable. Given eithet definition of

equivalence, the propeftics of an equivalénce class are of interest,

Another advantage of aormalization is that both the process of normalization and
the characteristics of the normal f()rm yield considerable il;sighl into the expressive
power of the four type comstructors. For instance, it is shown in Chapter 5 that any
schema is informationally equivalent to one where every data type definition is either
the union of expressiohs with no union constructs or an expression with no union con-
structs. It is also shown that fo.r any schema, it is possible to detegt the types with the
empty domain, remove them and preserve informational equivalence. These properties
-of database schemas are significant in their own right and hopefully, the tasks of form-
ing and proving some theorems will be simpliﬁ'ed because schemas with union sub-
types and domainless types can be ignored.. Other results fc;und in studying the

characteristics of the normal form could have similar benefits. '

There are several advantages to northalizing with a finite Church-Rosser replace-

ment system. Hopefully, each reduction is small, Ioca!\ and intuitive and therefore the



credibility of the normalization is increased. Any heuristic technique can be used to
pick the next reduction to apply since there is never any risk of an infinite sequence of
reductions or any significant effect on the final outcome. Also when it is known that n
group of r(~(l§1cti<)nﬂ has no two with ovvrlapping‘eﬂ'ects, all‘“may be done in parallcvl,
With a finite Church-Rosser replacement system, normal-form equivalence is a decid-
able for two schemas, This may provide a method of tcslilxg informational cquivalence

of achemas as it does in Hull and Yap's replacement system (HuY82, HuY84).

It wax decided not to include constraints in the schema other than those that fol-
low from the structure. The main reason for doing 30 is that schemas are not con-
strained in the semilattice data model. Another reason for omitting constraints was to
focus the work on structure A goal of this thesis is to understand the significance of

‘ l
the donceptual structure of a database schema since relatively hittle work has been
B .‘
done on this topic. Even without constraints, the problem was challenging and the

results enlightening,

he original plan was to find as many basic information-preserving transforma-
tions of the semilattice database schel-nas as possible and then to build a finite
Church-Rosser replacement system that incorporates all those found. This system’
would reduce all informationally equivalent schemas to a common normal form. The
replacement system would show that informational equivalencg is a decidable propcrtly

and would provide the tools to navigate from any given schema to any equivalent one.

In time, it became evident that this ultimate replacement system is”probably
impossible to build because of the rich diversity of semﬁattice database schemas. -
" Nevertheless, it is possible to build a powerful finite Church-Rosser replacement sys-

tem that incorporated most of the information-preserving transformations that are

-

documented in‘t\his thesis. This was done and some useful results were obtained. -

These results are reported in this thesis.



1.3. An Outline of the Thesis .

In Chapter 2, previous work related to this research is reviewed. Mainly, this
describea the work of others on schema equivalence and transformations of database
o [ (

schemas!

Chapter 3 deals with tae semilattice data model. The first section is a description
of the semilattice data mo’del Next is a section that compares the relational and the
semilattice (l‘::(a models. The concluding section of the chapter relates semilattice

1l
database schemas to context-free grammars, This relationship provides a technique to

detect a type definition that has no domain.

Basic information-preserving transformations of the semilattice data model are
described in Chapter 4, The first sectjion precisely defines informational equivalence
and information-preserving transformation. The body of the chap(ervdescribes three
cnlcgpries of information-prescrving txransformntions. The non-structural ones are
those that cha.nge some aspect of the schema that is not related to the structure of the
data. The alrucfurc—ehangu'ng information-preserving transformations apply to a rea-
sonably designed database. The corrective transformations vapply to syntactically
correct schemas that have eonséructs with little or no information content. In the final

-~

remarks, the reasons for not accepting some other transformations as information

preserving are given.

" Chapter § describes the two replacement systems that were developed. First, pre-
cise definitions of'the terms- used to describe replacement systems are given. The
chapter then defines a replacement system based on all of the transformations of

Chapter 4. Then it is shown that the syatem is neither ﬁmte nor Church Rosser. This

—

is done by gwnng examples of schemas that the system normalizes mappropnately

These examples are followed by a description_ of the attempts to correct the problems ‘

e », v

Next a second. replacement system is defined and its possessxon of the finite Church-



4

Rosser property is proven. The proof of finiteness is based oh an \inler.c'ating new tech-
o N

nique developed for this thesis. The chapter concludes with some observations and

4

“-e 4 ! -

results, .

A summary of the major results of the thesis and some proposals for further work

arc in the final chapter, %
— L.



Chapter 2

Previous Related Work

\

This chapter reviews some publications concerned with issues that are relevant to
this thesis. Other than Hull and Yap's work, little could be found that was directly
concerned with the topic of this thesis. Some a;kicles on database schema equivalence
and general schema transformations were located. Since these articles included some
relevant p(;ints, they are reported belov.v.

E. F. Codd [Cod70] proposed the relational model and described the best known
database schema transformation, normalizatioﬂ. This transforms any schema to one
in first nor;11a1 Jorm. Essentially, normalization transforms a schema to a related one
that has po composite attributes and no physical navigation. :Fhe intention is to
prescrve the information content while putting the data in a useful form that is
machine independent and mathematically eloquent. Codd granted that normalization

, :
is applicable onlylto applications that have certain properties but he could pot con-
ceive of an application where the necessary conditions did not exist. The conditions

are that the primary keys are an aggregation of simple domains and the interrelation-

ships between non-simple domains are hierarchical.

Codd reported further schema transformatic;ns in [Cod72]. These transformations
use functional dependencies to ;ietern;ine a set of relation schemas from a single rela-
tion schema. The set of schemas implicitly enforce the same constraints that the origi-
nal schéma had to enforce explicitly. A set of projections is the corresponding data
transformation. The relations produced by the projections are less redundant than the

original relation but they have the same information.

Codd's work inspired tremendous efforts ‘that found better algorithms to

transform a relation in first normal form to a less redundant schema that enforces the

same constraints. Maier's text [Mai83] contains a thorough coverage of this area.

-

2~
<
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Moat“of the work in this area is based lon the univcrsal\relation foncept. Jeflrey
Ullman's paper [Ull&2) presented an excellent explanation and defense of the univ;:rsal_
relation concept. Ullman describes a half dozen different universal relation assump-
tions that have been published. The universal felation schema assumption is the sim-
pliest and is part of each of the other assutnptions. This assumes that if "we have
done sufficient renaming of the attributes that a unique réla(,ionship exists among any
set of attributes.” Thus it is meaningful to talk about the univcrsal"r.('lalion schema.,

This hypothetical relational schema has all the attributes of all the schema in the

database,

Supporters of the universal instances assumption made conjectures that it is pos-
sible to design a database schema for any application that supports the assumption,

This assumption holds that at any time an application’s database is the set of the

v

appropriate projections of a relation of the appropriate unjversal relation schema, A
ar

definition of database schema equivalence, based on this assumption, was presented in
[BMS81]. Two schemas are equivalent if their universal relations have, the same
schema: and they Jarthfully rcprca_cﬁl the same relations of that schema. To f:;ithfully
represent a relallpn a join of the projections of the relation onto ;;e scbema must pro-
duce the ongmal relation. Naively, a database in one schema1s transformed to one in
® K
the othcfschema by forming“the universal relation by join'i‘ng all relations of the data-
base and then doing the appropriate projections.A,R;alistically, algel;raic techniques
should be used to minimize the amount of processing required. For this definition of
eq'uivalen‘c'e, testing schema without constraints for equivalence is a.trfvial matter.
"Two schemas are equivalent if both schema have the propcrty that the att.nbutes of
each component are a subset of the attributes of some component of the other schema '

A refined definition of equivalence allows explicit cohst,ljaints. If these are functional -

and join dependencies, testing equivalence requires the exponential chase computation

\
.

but is decidablel. ) A
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In «contrast, Tim Connora‘[ConBS] presented a. definition of equivalence  of
diflerent views of the same relational schema. The query capacity of a view is the set
of all queries of the original database schema thatls.omc query of the view will answer
corrccliy for all database states. Two views are equivalent if their query capacity is

equal. He showed that thisis a de”cida'ble property,

Sheldon Borkin [Bor80] studied equivalence of data models, Itbeir application
models, and database states. He required one-to-one correspondence between various
sets in his definition of equivalence for database states. He insisted that for two a.ppli-
cation models to be equivalent the operati;ﬁs of each must be expressible by the otb-er.
His treatment included schemas with explicit ;onstraints and null values. To do so
required a partial ordering of tuples by an information measure. lo conclusion, a
"dual” semantic data model was suggested, The semantic relational model would be
used for queries and lbe semantic graph (network) mod—el‘for design of the schema and

updates of the data,

. Y. Edmond Lien [Lie82] showed the equ}vaiencé of pafts of the relational and net-
work data models. This was done by giving two functions, These ;Ixapped a c.on—'
s;rained schema in one model to the appropriate one in the other model. Restrictions
on the types of constraints apply‘ to both models. A netw‘ork schema must have a loop
free Bachman diagram. This means that n%) existence requirement can run from an
entity to itself, vRelational schemas are limited to those with contention-free and
conflict-free multivalued dependencies.’ |

Atzeni, Ausiello, and Batini [AAB82] defined weeak and strong inclusson between

.y

schemas of any data model with respect to a query language of the model.- A schema is
weakly included in andther if there is.a query that takes any value of the schema to a
value of the other. A schema is strongly included in another #4here are two queries

‘ such that the first takes any value of the schema to a value of the other and the com-
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position of the queries is the identsty mapping on Lk)c first schema. Two schemas are
cquivalent if they are each atrongly included in the other. Thus schemas are
equivalent if and only if there is one-to-one function from the set of database states of

one schema onto the set of database states of the other schema.

Most‘researchv in the database area has been based on the relational data model
and universal relation assump(ions However, the assumptions of this rescarcb have
been criticized [AtP82]. Flrst normal form is not de:ura_b; for a temporal database
[GaV85) and in other situations [SAHB84). Articles have discussed the difficulty of
using the relational model for computer aided design applications [l‘,or82, ScPS‘Z] and
for statistical applications [ShWhS]. Many new data madels have belcn proposed
[ACO8S, Arm8.4, FoV82, HuY84, KuVss, ZaH8s). A.ut.hors have also proposed vz;rious
ways of extending the relational data model {AbB84, AMM83, DGK82, Har&4, HNC84,
JaS582, KTT83, KiK82, MUS82, O2Y85. Zan83]. A review of the portions of thesc

works that deal with schema transformations and equivalence follows.

Jaeschke and Schek {JaS82] introduced the nesting and unnesting operations for
relations. These have related schema transformations. If a relation is nested on an
attribute, the result is a relation on a schema where all tuples have a set value on the
nestiné attribute. All t;nples of the 6ri#ml relation that agree on the values of all
attributes but the one being nested on are replaced by a smgle tuple having all the
information® If tbe definition of schema eqmvalence from [AABS?] is used, the nesting
t,ransformauon gives an’eqmvalent schema since every nested relation has two implicit
constraints. A nested relatlon does not allow the empty set as value of the ncstlng
attribute and has an implicit functlonal dependency that states the nested attribute is
«determined by the otltxers.‘ Unnesiing, the second operation, preforms the reverse of
the nesting operation on a relation. Some avlgebrajc properties of tliea‘evo.pcrations, by

themselves and in conjunction with the standard ones like projection, were given. The

most interesting result is that nesting a relation with a multivalued dependency on the
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attribute that is the right hand side of the dependency gives a relation with a func-
- tional dependency with the same right and left hand side as the dependency of the
unnested relation. Other research [O2Y85, FST8S5, GuFSO]. has been based on'the nest-

ing transformation but it is not relevant to this thesis,

The Format model, proposed by Hull and Yap [HuY82, HuY84), gives a different

notioa of equivalence for a restricted class of database schemas. Schemas are called
formats and each basic domain is a format. A new format (database schema) is con-
structed by applying one of three domain constructors to existing formats, The con-
structors are collection, composition and classification. Collection creates a domain -
whose values are any finite set of elements from the underlying domain. Composition

. ) ' . . .
creates a domain whose values are tuples. Each tuple has the same attributes with

.

each attribute having a value from an associated domain. Classification creates a

,

domain that corresponds to the union of the cartesian product of an identifier with

each of the underlying domains.

a

There is a format for each unconstrained first normal form relation. Since a rela-
Il .
tion is a set of homogeneous tuples with atomic attribute domains, the corresponding

format is a collettion of the composition of some basic domainé. A relational database,

a group of relations, can be described by a format that'is constructed by applymg\h

v - -

classlﬁcauon to the formats that describe the relations.

Some serious limjtations are put on ti)e formats: only hiera::c}xical and relational
Schemas have related formats; exp!icit constraints are not permitted; and domain con-
structors like recursion, sequence and ‘multi-set are not used. Later in [AbH84], Huil
said that the. Format model: "is too limited to serve as a "real” semantic. data model.”
Nonetheless, it was powerful enough to obtain some sxgmﬁcant results. A prehmmary

analysns indicates that with.a concerted effort similar results could be obtained for a -

model that incorporated functional dependéhcies ond some other constraints.

v
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N

~ (
The Format model associates a function with every format and considers two for-
mats cquivalent when their associated functions are equivalent. The function associ-
. o

ated with a format determines the number of possible data values for a format given a
particular cardinality of each of the basic domains. The:function js defined for all
combinations of all possible cardinalities, {0,1,2, - - . =} for each of the basjc domaina,
This gives som:¢ implementations independence since it does not treat the formata

integer and real as equivalent, even if the cardinalities of the intéger and real domains

are the same for a particular implementation,

. . | .
Hull and Yap gave six reductions of formats and showed that these are informa-
tion preserving since applying any of the reductions to a format yields an equivalent
format, Each reduction ‘induces_ a natural linear one-to-one function from the values of

the one format onto the values of the other. They said a f&rmat 18 in normal form if

no further reductions can be applied Further, it was shown that these reductions -

form a finite Church-Rosser replacement system. This is significant since a normal
form is always reached in a finite number of reductions and the normal form pr(;duced
after applying any one of a group of possible ’reductions is equivalent to the normal
form obi;'.\ined by applying any of the other possible reductions. "I‘bcneforc, a pormali-
zation algorithm may. select the reduction to z{pply with no concerns ghat, the choice
will lead to an infinite series of reductions or affect the final outcome. Simpie and
uniqué normalization is essential to a good procedure fo‘r t.esting if two arbitrary‘ for-
mats are equivalent. Each format is taken to its normal form and then these are com-
pared to find an isomorphis.m. This comparison has O(n) complexity where n is the
length of the expression describing the format. This follows because the normal forms

‘may be represented as trees and the tree isomorphism problems has O(n) complexity

[RND77}.

Hull did further work on information capacity. Four deﬁnmons of schema

eqmvalence were given in [Hul84). He showed the least restrictive is the one used in
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the format modcl and the most resirictive is calrulu.a equivalence. This is "a variam
of” the [AAB82] deﬁnitéon given above. One significant result, Theorem O.IA, was that
two relation schemas without dependencies are equivalent if and only if they are ident-
ical,
Gabriel Kuper and Moshe Vardi proposed the logical data model in .[KuVZM].
This has the same (\:t;nstructora as the Format model but uses them in a different
manner. The result is that schemas of the network, model as well as those of the rela.
tional and hierarchical models can b,eb\described. A database schema is an arbitrary
directed graph with the appropriate labels on its nodes. When the graph'is a tree, the
resulting schema is the same as the corresponding schema of the format model The
logi:::l data model’ allows its user to examine both the value and the location of dua,
Location is in a symbolic sense rather than a physical sense. Since the mod(‘llpermi(s
values to refer to themselves, vthe user needs the locations in order to examine recursive
values in a reasonable manner. The logical data model has logic-based query and con-
‘straint languages. Although these languages are powerful, an eflective bottom-up pro-
cedure for the evaluation of queries and the enforcement of constraints is obtained
when recursive schema dt;ﬁnition 13 restricted. Thus, the expressive power of recursive
schemas was of great interest to Kuper and Vardi. This was the subject of their work
_reported in [KuV85]. They used a deﬁpition of schema equivalence based on Hull’sj
query equivalence that is meﬁt‘ioned above. They gave an alg;)ritbm for transforming
;nost cyclic schemas to equivalent ac‘yclic ones. As Codd did with normalization,
Kuper ;nd Vardi assumed that certain structures are unnatura} and certain dependt;n-
cies are always present. Although the paper has some insiéhts into the nature of

recursive schemas, it is not definitive. The authors conc¢lude with the statement

"We believe that the issue of cycles deserve further study.”

. " @ '
Other schema transformations of nonw&\ﬂiﬂz‘g relational models have been

reported. Frequently, the authors treated structure superficially. Furthermore, using
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any of the above definition of equivalence, a schema is not transformed to an
equivalent ope. Typically, a schema is strongly included, as defined by [AAB82], in the

A

schema to which it is transformed.

Dayal, Goodman and Katz {DGKK’Z] descri{bed a transformation of a schema with
multi-$&s to one with sets only Ariswa, Moriiya and Miura [AMM83] d~escrib‘ed a
space compression technique that transforms first normal form schemas t;; onc with
sets.  Shoshani and Wong [ShWBS] described transposition. This transformation
replaces a set of tuples by a tuple of sequences and has large perfOCance benefits in

statistical applications,

In conclusion, the literature bas limited value for the purposes of this thesis. It
~a -~

guides the development of a good definition of informational equivalence, It describes
many schema transformations but few of these u‘:z:'nsform a schema 10 an information-
ally equivalent one, The work on the Format model offers a good approach to the
problem. Wilh respect to recursively defined data ;(ructures, nothing was found in a
detailed search of the database literature. A quick Teview of the literature on pro-
gramming languages also failed to find articles Apparently, no research of this topic

has been reported. ‘ ‘ &
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The Semilattice Data Model

\

W, W _{\rpﬂtropg developed the semilattice data mpdel with the intention that it
‘v%“*

would efleetiy ely store, retrieve and manipulate large, complex objects [Arm&4]. It was

felt that certain deficiencies of the relational model of E. F. Codd [€:0d70] could be

corrected without sacrificing the relational model's ability to handle data in an

abstract and eloquent manner. The first section of this chapter describes the semilat.

tice data model, A comparison between the semilattice and the relational data models

is made in the second section  The final section relates all semilattice database ache-

‘ . :
mas to a subset of the context-free languages. This is significant since it proves that

there are eficicnt techniques to detect the types of a schema with the empty domain

\
'

toa
More idformation about the semilattice data model can be found 1n other docu.

ments [Arm84, ArmB06, 5in86, Bob&5).

3.1. A Description of the Semilattice Data Model

’

The ﬁrst'?arb of this section is an introduction to the semil:\tliw model,
. !
Th. .airoduction has a semi-formal description of the data mode! and Refllustrative
o

example of a semilattice database schema. The introduction is intended o prepare the
reader for the mére formal\ description that is contained in the rest of the section.
After the introduct.iop, there is a sub-section on each of the four type constructors, A
constructor’s section describes the ngtial\ion used to define types and denotes values of
the type. This notation is used extensively in the remainder of the thesis and th.crefore
it 15 advised that particular attention be given to it. A constructor’s section also
- . ~.
describes the operations ((%f tile data type; that the constructor forms. For each opera-
tion, the section givcs its signature and a brief description of the vﬁlue it returns.

This draws heav)gr from the work of Guttag, Horning and Wing in [GHWS85]. That

manual descrlbes Larch, a state-of-the-art specification language. The description of*

>
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the semilattice data model concludes with a sub-section containing the proper

definitions of some terms used throughout this thesis.
,

l‘l is generally held that a data model must have certain properties. One text

writes that:

"A data model defines general rules for the specification of the atructures of
the data and the operations allowed on the data, " (page 10 of [T'sL&2))

The specification of a data structure is usually accomplished by giving a database
schema and a set of constraints, The schema defines the set of values that a database
with that schema may have, The constraints restrict the poasible values of a databuase

. . Y
to a subsxet of the possible values for the schema. In the semilattice data model, con-

straints are pot associated with database schemas, Therefore, they are outside the

scope of this thesis,

A semilattice database schema i a set of type schemas, Bach type schema define

)

a data type. A data type is characterized by ity domain and operations, The domain
of a data type js the set of all data values 8f that type. The operations of a data type
have a variety of purposes, ASomc subset of them must geperate all values in the
domain. One operation determines if (wo values of the domain are equal, Other
operations are defined 3o that any value gtven to a generating operation can be
retrieved by some operation ()tbeT useful operations are also included for some data
types, The operations of the, semi‘la"tticc data model are the operations of the data

types of its schemas.

A ‘datZ} type of a semilattice database schema may be a basic type of the model.
The basic types of Lbe/m'odel are string, integer, ana 30 of. The domains and opera-
tions of the basic types are the traditional ones offered in a good pfogramming
language. In this thesis, the semilattice moael is extended with an additional basic
data type. The type gingleton has only one value and two simple operation. The sin-

gle value is denoted by the symbol y. One operation generates this single value. To -
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test the equality ef two tuples, the equality the value of each attribute is tested.
N

Therefore, a trivial equality operation is defined for the asingleton data type. This

operation "always return fruc. The data type singleton was added because it is

required by some useful schema transformations.

If a data type of a semilattice database schema is not a basic type of the model, it
must be a constructed type. The constructed types are formed by the set, sequence,
tuple, and union type constructors from basic or constructed types. For every con-
structed type, both its domain and operations are determined by its type constructor
and by the types used to construct it, The generating operations of a data type only

vusc values of the constructing ;lutu types and other values of the co‘nstruc;ed data
type. Note that a restriction is placed on all operations that generate values of a type,
Even when a type is defined recursiv;‘ly, it is required that every valuc in its domain be
constructed in a finite number of operations, This means that it is not permitted that
any value of any type properly coxl:(ain itself. An analogy can’ be made., Consider a
definition of arithmetic expressions that includes a statement Lha.t an expression can
be formed from two expressionsy and an operation. Although this statement makes the
definition recursive, it does not allow infinite expressions. !n any expression, the

proper sub-expressions are required to be other expressions and not the expression

itself.

N

The set type constructor forms a type w,ith a domain that is the set of all finite
sets of elements of some type. The operations of a set data type are those ‘:hat would
be éxpected. These include the traditional mathematical set operations of unio'n,.’
intersection and sét difference. There is no operation for set complement because the
operation is infeasible for most data types. When a set data type has an infinite
domain,l the cqmplcment of every element is infinite and therefore not in the domain of

the set data type. Even when the data type has a finite domain; the complement of an

element is usually too large to manage reasonably. Section 3.1.1 has further discussion



L4

e
of sct data types,

The sequence type cohstructor forms a type that is the set of al| finite scquences
» . AN . .
of clements of some type. A variety of operations arciy: filable to build and manipu-

late sequences. A description of Me sequence data type is in Section 3.1.2

The tuple type constructor forms a type with a domain that is the sct of all (lu;)lcn
formed according to a finite mapping of attribute names to types. The attribute
names are strings used to distinguish the components of the tuple. Two tuples arc
equal if the values of corresponding attributes are equal  Values of a tupte type's
domain are esscntially the same as tuples of the relational model with one difference.
In the relational model, the domain of an attribute of a tuple is a basic type but an
attribute’s domain may be any semilattice data type in the semilattice model The

notation and operations of a tuple data type are described in Section 3.1.3.

The union type constructor is siilar to the classification domain constructor of
the Format model [HuY84] and the case statement in type definitions of the Pascal

programming language. Like the tuple type constructor, the union type constructor

‘or .s a new type from a finite mapping of tags (names) to data types. An operation is

defined for each pair in the mapping. The operation is a onc-to-one function from the

domain of the type of the pair into the domain of the union type. The union type's

.- +

domain is the union of the disjoint sets produced by these operations. Two values of a
usion type are equal if and only if both were generated in the same manner. That is

both their tags and underlying values are equal. Section 3.1.4 has more information

N
!

about the union type constructor. .

For the purposes of illustration, the type definitions of a semilattice database are
given on the next page in Table 3.1. Values of these types can describe certain aspects
of most scenes. Recall that in the semilattice model no constraints are given with a

databa.:se schema.
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Table 3.1 The Type Definitions of a Semilattice Database’ Schema

\
N

i

scene - {objec&)

object = (location:point,

\ ‘
description:(simple:simple-objectkomplex:composite-object )

simple-object -1 ( ball:(radius:real)[box:poinl‘lregular:{polygon}
prregular:(from:plane,to:plane,

~

. ‘ mapping:{(from:planar-poin(.,t.o:plauar-poim)})

. polygon | = (in:plane,vertices: <planar-point >)
plane A = (ﬁrsl:20|nt,second:point,third:point.)
point . = (x-co-ord:real,y-co-ord teal,z-co-ord:real)
planar-point = (x)-co-ord:real‘,y—l*o-ord:real)

composite-object = {components:; < object > operation:string) w

Description

The type scene is a set type with values that al:e ﬁ[{ite sets of the type object.

The type object is a tuple with atttibutes for the positiion and description of ihe

object. The type x;f the object’s description is a union of the type ssimple-object and

"the type compoasite-object. The type ssmple-object is a union of other t};‘pes of objects,
ball, boz, and so on, where each is .described in terms of simpler ‘types like point, plane

and polygon. The type cbmp‘oalilc-objcct is a tuple with two attributes. bne contains

a sequence of objec‘ts and the c;ther is a string naming the operation to be performed

on the object;, When the attribute operation has the value union, the corresponding

object is the set of points that is the union of the\@ints that make up the com-

ponent objects.
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3.1.1. The Set Type Constructor

The expression {d} is a sft type czpression whenever d is a type expression.

« Values of this type are denoted by expressions of the form {vi,0n, . ,;} where each

v, is the nota.tion for a value of the type defined by d and- 0k <w. This notation
allows many representations of the same set. Although a permutation of the order of
the elements produces a different rcpresex;lation, the set described is the same. Also,
the definition permits the notation for a set to have a repetition of the notation for an
element. Although this may seem unreasonable, it is consistent with for@al treat-
mcnts of sets by others [MaW8s, (;‘HWSS] No problems arise from the notation if

A i .
care is taken in specifying the operations of the data type..

The operations of a set data type are described below. The complete specification
of these operations is in Sections 7 a%d 8 of the Larch Shared Language Handbook in
[Gll\’\'BS]. The symbol C denotes the type of the set data type. The type of the ele-
ments i3’ denoted by E. All values o[}he data typé are genera;ed by the first two
ope.rations.

new : ~C

This operation returns the empty set.
[}
insert : C, E~C

This operation returns a set with the new element added to the given set.

Note: C, E is the Larch notation for-the cartesian product CXx E. b

isEmpty : C~boolean
This operation returns true if the set is empty and false otherwise.
size : C-~integer _ /'v

This operation returns a count of the number of elements in the set.

‘



23

#e# L C-boolean

o

This opcrallion returns truc if the given element is in the given set and falsc oth-
erwise,

#=o . C, C-boplean
This operation rctl‘.frvns truc if the two given sets are equal and false otherwise.

Two sets ¢, and c, are equal if and only if V2€E, 2€¢, if and only if 1€c,,

delete : ¢, E~-C
This dperation returns a set with the given element deleted from the given set. If

the element i3 not in the set then the given set is returned.
t

next : C-F ‘ o .

This operation returns some element of a non-empty set. This\operation is not

defined for the empty set.
rest : C-F

This operation, given a non-empty set, returns the set produced by deleting from
the set the element returned by the nezt operétion on the set. This operation is

not defined for the empty set.

#U#:CC-C

; .
. . . J .
This operation returns the union of the two given sets.

»

#N#:C C-C

-

This operation returns the intersection of the two given sets.

- : -~
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#C# :C, C-boolean

This operation returns truc if the first set is a subset of the second set and falsc
otherwise. The empty set is a subset of all sels. A non-empty set ¢, is a subset of
N

a second set ¢, if and only if next(c,)€c, and rcol(c,)C Co.
#C# :C, ('—-boolcan

This operation returns true if the first set is a proper subset of the second set and
falsc otherwise. The first set is a proper subset of the second set if and only if it a

subset of the second set but not equal to the second set.

3.1.2. The Seque;lce Type Constructor

The expression <d> is'a sequence type czpression whenever d is a type expres-
sion. Values of this type are denoted by éxpressions of the form <wv v, - v, >
where each v, is the notation for a value of the type deﬁn(l-d by d and 0sk <, This
notation has only one representation of each sequence whenever the elements are of a

type that has only one representation for each element.

N

The operations of a sequence data type are described below. The complete
‘spemﬁcatlon of these operatlons is in Sections 7 and 8 of the Larch Shared Language
‘ Handbook in [GHW85]. The symbol C denotes the type of the sequence data type.
The type of the elements is denoted by £. All values of the data type are geperated by -

\

the first two operations.
new : -C , .
This operation returns the empty sequence.

insert : C, E-C .

This operation returns a sequence with the given element added to the front of

| ~ the given sequence.
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enter : C, E-C

This operation returns a sequence with the given element added to the end of the

given sequence,

isEmpty : C~boolean

size :

This operation reiurns truc if the sequence is empty and false otherwise
C~integer

This operation returns the number of elements in the, given sequence.

t: C, E-integer

This operation returns a caunt of the number of times that the given element ap-

pears in the given sequence.
: C, C~boolcan

This operation returns true if the two given sequences are equal and falsc other-
wise. A non-empty sequence is never equal to the empty sequence. ‘Two non-

empty sequences ¢, and c, are equal if and only if first(c,)= first(c,) and

rest(c,)= rcalh(cz).

first : C-F
This operation returns the first element of a non-empty sequence. This operation
is not defined for the empty sequence.
rest. : "C-C . l,
This operation returns ‘a sequence that has all but the ﬁrst‘element of a given .
e ,
non-empty sequence. This operation is not defined for the empty sequence.
last :

C-E

!

This operation returns the last element of a non-empty sequence. This operation -

i

is'not defined for the empty sequence.

J



prefix . C-C
\
‘This operation returns a sequence that has all but the last element of a given

non-empty sequence, This operation 1s not defined for the empty sequence.
#l# . C C-C
This operation returns the sequence that is the concatenation of the two given ac-

quences,

#(#]: C, integer-£

.
This operation, given a sequence ¢ and an integer ¢, returns the ith element of the

sequence if size(c)Z 2] This operation is not defined ot herwise,
i I

3.1.3. The Tuple Type Constructor

[

-
The expression (a,-d,.a, d,, - .ag:dy) 15 a tuple type expression if cach a, is a dis-
tinct name and d, is a type expression for all i€{1,2, .. ,k} for some k, 1sk <», The

order of the pairs of an attribute name and a type expression is not significant in any
way. Thercfore any tuple data type with thttributes is defined by k! different wuple

type expressions. Values of a tuple type are denoted by expressions of the form

(a,=v,,a,=wv,, -+ ,ay=1v;) where v, is the notation for a value in type defined by d,
for cach ¢€{1.2, - . - .k}, Here there are at least k! equivalent represéntation of each
value.

The operations of a tuple data type are described below. The symbol T denotes

the type of the tuple dat.é, type.” The t:ype for the expression d; is denoted by T;.
(6,=#,a,=# .- ag=¥):T,, T, -, T~-T
This operation returns the tuple for the given values. All values of the tuple data

t);pe are generated by this operation.
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#.a,:T7T-T,
#.a,:T-T,
#.a,:T-T, '

These operations return the value of the appropriate attribute for a given tuple.
# =4 :T, T-boolcan

This operation returns (rue if the two given tuples are equal and false otherwise,

Two tuples t and ' are equal if and only if Vac€la, a, -, 0} (ta= t'.a,).

3.1.4. ‘ The Union Type Constructor

The expression (t,:d |t,:d,] *  |t,:d,) i3 a union type ezpression if each t,is a dis-
tinct name and d, is al type expression for all €{1,2, - - k} for some k 2k <o
Each p;xir of a tag name and a type expression ts called a domain of\the union. The
order of the domains is not significant in any way. Therefore any uniod data type with
k domains is defined by k! difierent union type expressibns. Values of a union type are
denoted by expressions of the form (;.ag= t,value=v) where t=¢, and v is the notation
for a value of the type defined by d, for somle s€{1,2, - - - k). Tlaler: is one representa-

tion for a value in the union domain for each representation of a"valu_c‘ in the sub-

ordinate domains.

The operations of a union data type are described below. The symbol T denotes

the type of the union data type. The type for the expression d; is denoted by T,.

- -

..
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(tag=1t, value=#). T, -T

(tag=t,value=#). T, -T

(tag=ty value=#): T, -T
These operations cach return a union value, All values of the data type are gen-
sated by the these operations,

# tag : T~ name

This operation returns the tag of a given value of the union type,

#.,:T-T,
#.0,.T-T, '
# l‘f 7“‘7“

These operations return the value of a given union value if the tag of that value is
the name of the opcration. The operation #.¢, is not defined for any union value

with a tag other than ¢,,

# =#.T, T-boolean

This operation returns true if the two given union values are equal and falac oth-

erwise. Two union values (tag=t,value=v) and (tag=1t’,valic=v’) are equal if

-and only if t=1¢’ and v=1v".

3.1.5. Deﬁnitionsl

A type definition consists of a type name and a type expression separated by an

equal sign: name= type-capression. The type expresbion is the name of a, type or it is

.

formed from otheﬁype expre;sions by one of the four type comstructors. Note that

recursive definition of types is permitted. ‘ ,
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The domain of a semilattice data type is the set of all data \;alues produced by
the generating operations of the data type. The notation used to denote the values of
basic types is the same as a conventi‘onal progrataming language. For constructed
types the notation is described in the preceding sections. Recall that all values must
be finite even though it is possible to tonstrue Athe definitions as allowing values that
are infinite recursions,

A database schema is a set of semilattice type definitions that is consistent and
complete. A set of definitions is consistent if each definition has a unique name. A set
of definitions is complete if it has'a deﬁuitior‘x for any type whose name appears in any
of the type definitions. The notation dom[$,n}! identifies the domain of the (yp‘('
named n in the database schema 5. The domain of the database schema & is denoted
by Dorx[S]_ It is the union of the domains of all types in the schema. The reference

N
g;'aph of a database schema has a node for each type definjtion and an arc (n,,n,) if n,

is a sub-expression of the expression that defines n,,

A type n rcfercnces a type n’ if there is a path n,n;,n, -+ n, n’ (s 0) in the
reference graph. A type n is recuraive if it references itself. A type is simply recursive
if it is self-referencing independent of ;ts set and seq-uence type constructors, For-
mally, a type is simply recursive if the name of the type is a sub-expression in the sim-
ple expr;essk)bx{?ssociated with the type. The ssmple ezpression associated.with a type
is the simplification of the expression that defines the type. The simplification of a
type expréssion is the 9xpression.with all set and gequenée sub-expressions replaced by

the expression singleton.

S — . ,

1 In this thesis, the parameters of functions are placed inside square brackets. This makes the
specification of functions on tuple and union values easier to read. Otherwise, the equations would
contain more parentheses and it would be more difficult to match corresponding ones.



30

d

An example of a semilattice database schema, called $1, ia

{n1 '=(a:rcal,b:atring,r'112),712-([:rcal,g:inlcgcr),
ni= ((a;rM,b:boolcan,c:<(atn'ng}>))_
nd=(th:n4|t2:n3[t3; <(a:rcal,b:rcal)>)},

The set {(a=v, b=v, c=(f= v,9=v)) | v,.vy€real, v, €atring and v € -'ntcg?r} con-
tains one represensation of each element in dom[51,n1), the domain of the type nl of
the schema 51, 1o this ('lu(;xl>anr schema, the type n3 is recursive but not simply recur-
sive.  The type n4 is simply recursive since it is in the simple expression
(tl:ndll‘z:n.’ilt(i:u‘ngldan} that is associated with the type. The rt;fcrence graph for

this database is shown below.

nl

3.2. A Comparison of the Semilattice and Relational Data Model

The semilattice data model is intended to avoid the pe;'ceivcd deficiencies of the
relational model of E. F. Codd [Cod70]. This is to be done without .sacni”ﬁciug the rela- |
tional model’s ability to handle data in an abstract and eloquent manner. The-;emi-
lattice data model, like the relational- model, has mathematical eloquence machme
independence and a method of representmg common data that eﬂectWely managés
redundancy. It is felt that the semilattice data model makes efficient use of secondary
storage. Efficiency is achieved by several techniques including using the mathematical
concept of a semilattice to eﬂicientl'y store shared data. lnf:)rmation about the physi-

cal implementation of the semilattice data model is available in Ajit Singh's thesis'
: i
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[Sin&o).
= The sharing of common data allows the semilattice data mm.i(-l to have the advan.
l,tadgcs of the relational data model with the performance of the network data model.
Some complaints about the relational model have focused on performance problems of
, ‘

implementations. A relational query may require several join operations Depending
of the data and the implementation each of these joins may require a great deal of pro-
ceasing.  Some querics require join operations to combine related data that w.:n

separated to produce a'schema in the desired normal form. This decom position is con-

o ‘ .
trary to hw database design philosophy of the semilattice data model Therefore, the

"

join operation will seldom be used in database queries,

.
Otber criticisms have been made of the relational model's requirement that data

be in first normal form. As well as losing potential performance benefits, this require-
-
ment makes it extremely difficult to describe data that is heterogeneous in uature. It

hus been pointed out that; )

"While solutions to these problems are possible, they are contrary to the rea-

son for employing a database management system in the first place. to han- i &S
dle the design information in a clean, consistent fashion, rather than employ

ad hoc techniques.” [HNC84]

.

“Hicrarchies and heterogeneous relations can be simulated in the relational
model. . . | However.simulatéd relations are more cumbersome than con-
crete ones.” [Har84] e

o

fl

These criticisms can not be made of the semilattice data model because it allows type

definitions in dv‘aﬁbase schemas that ate able to handle these situations with ease.
P31

In the semilattice data model, 4 database schema is a set of schemas that each

at

)

define a data type. The relational data model can also be viewed as having database

schemas that are set of schemas the each define a data type. If this is done, a major

, ~

difference between the two data models is apparent. Each relational schema’s set of

types is'a set of relations. Using semilattice terms, a relation is a type constructed by

)

3



applying the set constructor to any tuple type constructed from basic types. Clearly,
these are some of the simplest database schemas of the semilattice data model. In con-
trast, schemas of the scmilattice data model have an infinite vz;ricty of styles. It may
be asked if the more complea types serve any practical value, In many situations, they
do since they avoid the need to design the conceptual schema to accommodate the res-
trictions of the relational model. For Instance, at each nlﬂ) in the fabriation of an
integrated circuit, a set of polygons describes the area to procesa. A (ypiéul ‘norm.’n.-
ized rcl:x(ion.ul deseription of a set of polygons s a relation where each tuple contains
five attributes: a polygon identification number, and the 1 and y co-ordinates of both
cnd points ofnn Line forming one side of the polygon A semilattice descniption of a act
of polygons is a set where cach element deseribes a polygon by a sequence of the ver-
tices, The semilattice representation requires fess storage than the normalized rela
tional deseription since 1t ouly stores the position of czxchb vertax once and does npot
require artificial keyy like the polygon identification number, Furthermore, the semi-
lattice representation assures data of a certain quality since every sequence of vertices

3 a polygon but most seta of lines are not polygons,

Another large contrast between the two data models is seen when their need for

null values is compared. The normalized relational model uses null values when no

appropriate value exists in an attribute's domain, This happens because the value

~

does not exist, is unknown, is being changed, is confidential or is unavailable for some
other reason. A complex theory has evolved that circumvents the problems created by
using null values. It is intended Lh;xt the semilattice model have no null values. It is
believed that the model is flexible enough to handle those situations that typically
require nulls in the relational model. The semilattice type constructors can describe
data types capabie of directly holding datvarfor those situatiops. In particular, any

situation requiring the empfy set as a value is easily hAndled’ by the set type construc-
.

tor. The union type constructor allows any number of optional fields to belong to a
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type. For CX&[I'IPIC, consider a field that typically holds an integer and has several
diffcrent nulls that are used to indicate different reason why no value is present. ln the
scmilattice data model, the expression

(nosmal:integer |reason_L:aingleton |reason_2 singleton| - - - |reason_s:singleton)

could be used to define the domain of the field.

3.3. Semilattice Schema Domains

In this section, some properties of the domains of semilattice schemas are given,
These results are based on the us\e of cont.ex(:free grammars that generated a set of
strings that contains one or more representation of every value in a schema's domain
It is assumed that the set of strings used to denote the values of cach basic type of the
semilattice modcl-l is a regular set. This assumption is vahd for all proposed basic
domains. The first result shows that although the recursively defined data type of the
semilattice data model have rich domains, context-free grammars are adequate to

A

describe their notation.

Theorem 3.1

For any database schema §, there is a context-free grammar  such that

Vw€L|G] there exists an z€Dom[S] such that w is a notation for z and

VzGQbm[S] there exists an w€ L [G] such that w is a notation for z.

Proof (by construction)

A method of constructing a grammar from any database schema follows.

The grammar's sentence symbol is . All of the non-terminals are of the form
n.ij. The non-terminal n.i.j generates the notation for the ith subexpression of the
Jth subexpression of the type n. ‘ -

The grammar's set of rules is the union of the set of rules for generating values.of

‘the basic type, a set with a rule Z~g for each named type n and a set of rules for each
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type definition. The function rules determines the set of rules for each type definition
from the type name and the associated type expression. A specification of this func-
L)

tion is given below. Since the comma symbol and set braces, {}, are terminals of the

grammar, the apecification of the function denotes a set of rules {ryra oo} as
[r,;r;.: Ce ;r,].

rufr.aln,n'] = [g-n"]

. rulca[n,(d}] = fa-{}; n-{wl} ; al-nl,.all U rulca[n.l,d]
rulesn, <d>] = [u~<>;p-<nl >; ad-al, ol ]l Urules(n 1, d}
rulca[y:,(al:dlla::dg, coeLapdy)] '

5 & ‘
= lu~(al=u“l_‘a,_,=u~2_-» c,ay= k) Urulca/[n‘i,d.]

=
rules[n (t:d |t..d,]| - [ty:d,))
n~{tag=t¢ value=pn 1); R
\\ = [a~(tag=t, value=n 2}, - - - ;1 U ru'lca[n i,d,]
\ n-(tag=t, value= g k) !

Example
\

The ( ztabase schema S1 of Section 3.1.5 is used for illustration. In addition to the '
rules for generating the basic types,.a grammar derived for this schema has the rules

given below.
\

2-nl nl~{e=nll,b=nl2,c*nl3) all-rcal nl.2~string pl.3-n2
\

y

Z-n2 n2~(/-n24.,g-n2.2) n2il-real n2.2-~integer

Z-p3 n3~{} n3~{n31} ndl-ndl a3l
| nﬁ..L-(a-nﬁ.LL,b-nﬁ.er,c\-n.&.L&) 83.11-n4 n3.1.2~hoolcan
8313-<> 0313-<adldil> n3131-a3131,n3131
n3.131~{} ‘a313.1~{ A
mm-m&u,nmu\mem
, - ) » |-
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Z-n4 nd-{tag=tl,value=p41) n4.1-n4
nd~(tag=12 valve=p4.2) nd2-p3
nd~(tag= (3 value=p43) n43-<> nd3-<nildl>
043.1-n43.1 n431 p431~(e=n4311,b=0n431.2)
4.3 1. 1-real nd4.3.1.2-ycal

An important coroftary ta '1‘heor<;m 3.1 is essential to the credibility ‘of the
information-preserving transformations described in Section 4.4. These corrective
transformations only apply when a schema has a type withltheAempty domain, The
b)’})ea are called valueless in the remaider of this thesis. Although the ‘schema
{n=(a:n)} is well-formed syntactically, there is no way to create a tuple of the type n
since there is no way to create the first tuple of that type. The corollary states that

valueless types are always detectable.

Corollary g
For any data type n of any semilattice database schema S, it is decidable if
dom|[S,n|=D.
Proof ’ - :
Tybe language of the non-terminal g ?f the grammar of the previous theorem is
| empty if and énly if dom[S,n}=@. From Theorem 9.1 o;’[DDQ78], it is decidable

if the language generated by a non-terminal of a context-free grammar is empty.

Given regular grammars that generate the notation for the basi¢ domaiuns, the clo-
sure :rulcs of regular sets guarantee that there is a regular grammar related to the
domain of any semilattice schema without fecursive types. Nevertheless, it is reason-

. X
able to use context-free grammars to describe the %omains of database schemas



36

because regular grammars are. not adequate for some schemas with recursive types, In
fact, the schemas with recursive tvpes that can be described by regular grammars are
exactly those that have no recursive types when each valueless type is replaced by any

My pe not referring to other domains. .
The next result shows that there exists some semilattice schemas whose domains
-~
are not regular. The proof requires the UVW theorem. This is called the pumping
lemma for regular sets by Hopcroft and Ullman in [HoU79]. Their statement of the -
theorem is;
Lemma 3.1 - Let L be a regular set. Then there is a constant n such that if
z is any word in L, and |:]2Zn, we may write z=wuvw in such a way that
luvisn, Je]21, and for all 20, wo'wisin L,

Theorem 3.2

There is a database schema whose notation is not regular,

Proof (by exam e)
Consider the database schema S={n=(ll:(a:n,b:rcal)lt?:alring)}‘ The notation

for S is the set 4

Ng={ (tag= tl,value=(a=(tag=t1,value=(a=(tag=t1,value= . . .
(tag=t1,value=(a=(tag=12,value= Upa1)ib=v) - ) b=v,) b=y))
| k=0, v,¥, -+, €real, v, €atring)
Assume that N is regular. In that case, the pumpihg lemma of rggular sets
applies. Apply the lemma to some large string in N to generate a string that is

not in Ng because it has an improper form (mismatched parenthesis).

L4
Conclude that N is not regular.



1 - Chapter 4

Informatioh-preserving Tr;naformations

This chapter discusses information-preserving transformations of database Jsche-
mas of the semilattice dat.a model. It defines the term information-preserving transfor-
mation and describes Lhos;transforrﬁatioﬁs that have béen studigd. Since there are an
infinite number of information-preserving transformations, only a few transformations

i

are presented. The intention is to omit any transformation that cun be decomposed

into a sequence of simplier transformations. Transformations that appear to manipu-

A
late data in ap inappropriate manner are, also excluded.

’

The chapter starts with a section that defines the termls informational equivalence
and information-presen}ing transformation. Thé first section then elaborates on the
criteria used to select the transformation that are presented. In the seco:;d se.'ctiou of
ihe chapter, some non-structural transformations are briefly covered. \Ne).(t, some
structure-changing transformations are docu;nented. This is followed by the descrip-
tions of the corx;ective transformations. The corrective transformation eliminate the
portions of a semilattice database schem.a that do not generate values. The last sec-
tion explains why this chapter includes only part of ,Codd"s normalization er;\nsfortﬁa—
tion. That section also describes another schema transformation sBat was originally
included in thi;?’éapter.. Although the tr'ansfoxlmation is information preserving, it

I - . ' . -
was excluded because it uses inappropriate methods of transforming data values.

4.1. Definitions and Discussion -

To define the t.erm information~preserving transfo}mation, a definition of infor-
mational equlvalence for achemas is required. The deﬁnmon is similar i in style to some

'of the deﬁmtlons mentioned in Chapter 2 [Bor80, AAB82 Hul84].

,

Database schemas S and $' are mfarmatmnally cquwalcnt (wrltten Sm 5’ ) if

there exists two- computable functlons I: Dom[S]-Dom[S] and g: Dom[S ]-Dom[S]

-
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such that Vz€Dom|[S](g{f[z]]=1) and Vz€Dom(S’|(f[g[z]]=2). The two functions
show that the schemas are equivalent. Hereafter, the functions are called data

transformation functions An equivalence relation must have the properties of sym-

[

metty, reflexivity and tramsitivity., Symmetry follows from the symmetry of the

definition. Using the identity function for both data transformation functions gives

reflexivity., The composition of functions gives transitivity, (.3 -

A schema transfdrmation is any binary relation on ‘atabase .schemas. By

definition, a schema transformation T is snformation preserving if V(5,5S)€ET, 5= 5"

a

The definition’s symmetry guarantees that the inverse of an in{ormatigmprcscrving

“

transformation is also information preserving Since =, is an equivalence relation. the

compositidn of information-prescrving transformations is also information preserving.

By using the identity function for both of the data transformation functions, it

can be'shown that the following two schemas are equivalent.

{ I
{a1=(a:recal,b:string c:02),02=(f:real,g:integer )}
{el=(a:real.b:atring c:(f:real,g:integer)),s2=([:real,g:integer)}

This pair of schemas is an element of the transformation substitute a type s definition

for its name. This transformation is described in Section 4.2.1.

The remainder of this section discusses the definition of equivalence and how
: , . ‘

transformations were selected for this chapter.

~ For the semilattice data model, Hull and Yap’s definition of equivalence is unsa-

tisfactory. With their definition, schemas are equivalent if their domain’s cardinality

o -~

is the same for ;Lll ¢ardinalifies of the basic domains. This definition was rejected for
two r.easonsv. Requiring equivalent schemés to have the same domain size when the.
cardinality of the boolean aomain is either one ‘or a thou‘san.d. i.s unreasonable. More
importént‘ly, the deﬁﬁition treats many unrelated s'em.ilamiceb d#t‘abase schemas as

equivalent since the schemas always have a countable infinite number of possible
s ' C - ‘ :
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databases unless most of the basic domains are empty. For instance, the schemas
{n-(a:rcal,b:<rcal>)}; {n=<real >}, {n={<real >}}, and {n=(a:rcallb:n)} would
all be considered equivalent. Clearly, the definition requires some fundament

changes to handle sequences and recursion.

Instead of reworking Hull and Yap’s definition, the style of other definitions men-

tioned in Chapter 2 [Bor80, AAB82, Hul84] was adopted. These definitions require a

. one-to-one function the domain of one schema onto the domain the other schema. One

. L. e , .

value of this the function is that it provides a mechanism to transform any database of
) -

one schemas to a database of the other schema. Furthermore, the absence of some

function with the given properties is unacceptable since then a database must exists

for one of the schemas which is not represented by any database of the other schema.’

The given definition of informational equivalence has a deficiency. The definition
permits a data transformation function to be any computable function. Some comput-
able functions perform undesired manipulation of data values. For instance, some
functions encode strings as integers and ti)is is not desired. Apother problem with

- M ¢
allow. -z any computable function is that every database schema is equivalent to some

schewa with a single, simple type. From the results of Section 3.3, it follows immedi-

ately that all schemas have domains with a finite or a countably infinite number of ele-

v

© ments. By using functions based on Godel numbering, all database schemas with an

infinite number of valid databases are equivalent to the schema {n=1integer}. The

sche‘ﬁifav‘{n-(tl:u'nglctonIt‘2'ainglelon|- - tn: omglclon)} is equivalent to any data-

" base schema wnth n valid databases by the obvious function. Efficiency is another

problem result.ln\grom allowmg a data transformation’ fnnct:on to be any computable
function. Most~computable functions are intractable. In fact, most tractable func-
tions are infeasible for large databases.

"The definition of eqdiyalencc in [AAB82] is based on quefies. It requires the data
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transformation functions used to show equivalence to be a group of queriea from the
query language of the data model. This restriction may seem too demanding but it haa

two large bencfits. It guarantees that the data transformation functions are comput-

N

able in a practical way' and it fulfills Borkin's requireﬁlcnt [Bor80] that equivalent

schemas must be able to process each other's operations,

This thesis should use the query-based definition of equivalence of [AABR2].
Unfortunately, the qtlu*ry language of the semilattite data model is still in develop-

ment. The design of a databasc query language is a difficult task. For the semilattice -

}

data model, the design is more diﬂicﬁ’ because of the divg‘rse and recursive nature of
schema definitions. Siuce, at this time, a query-based definition of equivalence can not
be used, the given definition of equivalence is used. Nevertheless, the spirit of a
query-based dcﬁnifion is followed in this thesis. A subjective judgement was made
about the pagure of the data transformation functions ;)f each information-preserving

transformation considered for inclusion in this chapter. The only transformations

allowed were those that have simple data transformation functions that are query-like

.

in style.. The assessment of a function’s query-likeness was based on two commonly

referenced principles of data retrieval languages:

(1) that the vaiue produced by a query should be independent of the manper
in which the data are actually stored in the database and

(2) that a query language sheuld treat data values as essentially uninter-
preted objects, although certain properties, such as a linear ordering on cer-
tain domains can be built into the query language. [AhU79).

LI : .
4.2. Non-structural Information-preserving Transformations

Some information-preserving transformations do not change the Structure of the

data values. In fact, since distinct schemas may have the same domain, somelran\bfor-

mations do not change the data values at all. Although these transformations may

L

seem to be trivial, some are useful in simplifying a database schema. Whether trivial

or not, the transformations are documented here for completeness.

a



4.2.1. Substitute a Type’s Definition for Its Name

When the name of a constructed type is a sub-expression of a type definition,

replace the type name by the expression that defines it. Values remain unchanged,

4.2.2. Replace Tvyo Identical Types by One Type

If a schema bas two- type definitions that are jdentical ex?‘epl for name, this
lransfqrmétion produces a schema with the iwo deﬁ'nitions replaced by one. Given a
schema with two type definitions n,l== d, and n,=d, where d, and d, are equivalent
type ex}:»rchions, then remove the typ‘e definition for n, and replace each reference to
it by a reference to n,. Two tfype expressions are equivalent if one is produced from

the other by some series of permutations of its ((\xple and union sub-expressions,

4.2.3. Change a Type’s Name B
A

Any type name may be changed to any other name provided that the new name is
not the name of another type in the database schema. Any type definitions having the

»

old name are changed to have the new name.

4.2.4. Change a Tag or Attribute Name

Any attribute name in a type definition may be changed to another name pro-

- ! .
. vided that the new name is not the same as another attribute belonging to the same
tuple constructor. With similar restrictions, any tag in a union may be changed. Any

value of the tuple or union requires a straightforward update.
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4.3. Structure-changing Information-preserving Transformations

This s/?clion describes some information-preserving transformations that might be

-
made to a reasonably designed database Each description starts with an informal
description and an example of the transformation., Then a formal definition and a

proof that the transformation is information preserving is provided. Remarka about

problems or features are included for some transformations

For clarity, certain statements are omitted from the formal definitions and the
reader should assume the following points. T'h.e transformvation is from - database
P \
schema 5 to another schem.a S'. In-a few (rannform:’uions, ap entire type definition is
replaced or removed, The formai‘(l(-ﬁlnitlon is explicit in those cases. ()ll:(-rwise, the
difference between the two schemas is that some sub-exp'ression in one of the type
definitions is replaced f)y a different expression. In the definitions, any aymbol like d,
denotes some (ype expression. Auy restrictions on these expressions are explicitly

stated,
The description of each lra.nsformal'ion has a proof of information prescrvation,
The proof is a specification of the gedcrjc functions f and g. These show how to con-
struct the functions /s and g for a particular §. Since VzEDom[S}(gs[jslz]]- z) and
VyE Dom(S’)(fslgsly]l=y), it follows that S=,5". For brevity, the speéiﬁcalions of f
| and ¢ are’incomplcteA Oanly the specifications for the types gf the transformed expres-
sion are given. The specification of /s can be completed by adding an e.qualibn for
each other type expressio'n.‘ The specification of g5 can be comp'leted in the same
manner. The form of the equatlon added for a type is the appropriate one from tbe

\

: \
followxng list. \ - . .
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»/‘s[("n'”xr%.' v =yl = (e = fslv ) ay= fslvy], - a=Sslu])
[sl(tag=t,value=v)] =(tag=(,value= fs[v]) )
[sllvgvg el ={IsloLSslea], - Ssled}

[sl<onvn - u>) = <fslo Sslval, -+ Sslm) >

[slz] . =2z (zis an element of a basic type)

4.3.1. Include a Subordinate Tuple’s Attributes

A tuple with an attribute whose domain is a tuple is transformed Lo a tuple wilhw

'

that attribute rqﬂaccd by the attributes of the subordinate tuple. The two scta of
names of attributes combined by this transformation may have common elﬂ.nents. To
avoid problems, each attribute is renamed appropriatelys An example of this transfor-
mation is replacing the expression (a:rca(,b:atn'ng,c:('[;rcal,g:l'ntcgcr)) by the expres-
sion (oup__p:rcal,aup_‘,b;alrt'ng,aub;/:rcdl,aub_g:intcgcr). The basis for this transforma-
tion is Codd's pormalization [Cod70] and Hull and Yap's comp-comp reduction

[HuY84].

\Formnl Definition
Given an expression (a,:d,.a,:d,, - - a;:d})

where for some i, 1<i=k, d,is (g, :d, ,a,:d, , - - a, :
. m m

and assuming without loss of generality that s=k,
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replace the expression by (a,:d),a,:d,, - - ,a—‘_,:d‘_),&_‘l:d‘l,-fz—‘z:d‘z, e ’E“n;d‘“).

To avoid a tuple schema with duplicate attribute names, a function renames each
attribute name of the subordinate tuple and another function renames cach attri- ’
bute name of the superordinate tuple, The first function concatenates the string
sub_ and the given attribute name. The other function concatenates the atring
sup_. and the given attribute name. The notation a, denotes the r('stln‘lt‘of the

appropriate function oo a,.

Proof of information preservation

7
Specify the generic functions used to construct the data transformation functions.

fl(ay=v,a,=0, v“A—xn”A—-lv“kn(“hﬂ"l.'“lg- Vkp T »“A,.-"Am))]
=(@= o a= Sl F = Sl L= S )= Sl 5 )
gllay=v, . ay=v,, - .EA—1="A—1-E1,="”"TA,_,=' Cpp y‘TAmn "Am.” )
=(s,=yglv)},a,=g[e,}, - - »“hn“,ﬂ["k—x]-“t‘(“kl‘9[”A,]»“A.,.“9["-...]' C .“/zn"gi'%m]))
Remarks :

The inverse transfotmation creates a subordinaté tuple from a group of attri-
-butes. This would be useful in sharing data between two types with common attri-
butes. Unfortunately, the inverse transformatjon is not appropriate for a Church-

Rosser replacement system.



4.3.2. Include a Subordinate Union’s Domains

Transform a union with a domain that is also a union by replacing that domain
by all of the domains of the subordinate ynion. The two sets of domain tags combined
by this trdnsformation may have common clements. To avoid problems, each tag is
r;‘namcdlappropgiatcly. For example, this transformation replaces the expression:

“
. ('a:rcallb:atn'nglc:(/:rcalm:intcgcr )) by the equivalent expression
! ! -
(— (oup_a;rcallaup_b:atringIaubJ:r(alhub_é:inlcgcr)4
o

This transformation is based on Hull and Yap's clasa-class reduction (HuY84],

’

Formal.Definition

J
Gi'\'cn an éxprc;s;on (tp:d 1tids] - |ty dy)
where fo'r-sogu: Sisk, d s (¢,,:d, |l .,I . {l.m;d‘m)_
replace the cxpflcssion by | |
R I T N, (i ] Ty

To avoid a wnion schema with duplicate tag names, a function renames each tag

of the subordinate union and another function renames each tag of the superordi- |

nate union. Tbe first function concatenates the string sub_ and the given tag The

other funcuon concatenates the stnng agp_ and-the given tag. The notation t

\

denotes the result of the appropriate function on ¢;.

-,
Proof of information preservation

' Specify the generic functions used to construct the data transformation functions.

[[(t.ag-t value}- v)]=if, l-t then ﬂv] else (tag= ¢ value-f[v]) . o
Jl(tagm= t,values v)l=(tag=1 value-nv])



¢[(tag=t value= ¢)]=if 16{1,1‘1.2, - -‘,l,m} then (t.ag-t,,value"'(lag-l.vnluc-g[u-]))

clse (tag=t,value=g|v))

4.3.3. Change a Tuple with a Union ta a Unjon of Tuples

A tuple containing an attribute whose domain is a union is transformed to a un-
. \ . ’ . P .
ion with a tuple made for each domain of the union. This is done by modifying the
original tuple to have the union's domain as the domain of the attribute with the un-
ion. For example, replace the expression (a:rcal,b:atn‘ng,r:([frcallg:l'utcg(r)) by
([;(a:rcal,b:slring,r:rcal)|g:(a/’rcal,b:atrmy,( snteger)). This transformation is based

on Hull and Yap's comp-class reduction [HuYy 1

Forma] Definition

Given an expression, (o dpand, - - a,dy)
where for some i, 1S ¢k, d, s (l.‘-d_lll. A e id, ),
! ¥ 2 m m
replace the expression by
(lilf(_“lfdvx‘»“c:d:p T, 1-‘1- »n“.?dll-“ml:dnﬂ- e ~“A5dA)
]l.z:(alzdl,a,_.:d._., N _,,a,;d.z‘a.“:d.”, ceay.dy)
l‘a‘:(al:dl'a’.‘:d!r I, . Val‘x'dl“l'al:dih‘al";l:dl"l' et 'al:dl))'

Proof of information preservation

)

"Specify the generic functions used to construct the data transformation functions.

/[(‘h"”p“z" vy, :,a...‘,cv,—-,,b,=(tagfl,value= v),8,4,%v,,,, - "vak-vt)] ‘
=(tag= "val‘,‘c"(“l"/[011,02"/['32], - |
a...l"f[t'.-1],.0.'“[[0},0,”5/[v"”],'- L apm flvg))
‘ z

»



glitag=t,value=(a, v, 6= v, - -8, | =v,_,,8,=0,6,4 =0, a= )]
=(a,=g[v,).ay=glvo], - -+ 0, =g[v,.,],a,=(tag=t,value=g[¢]),
o, =glv, ], = g(u])
AN
Remarks

This transformation has the value of exposing unions to other transformations
that eliminate unions. la particular, in combination with the preceding and following

" A " . .
transformations, this transformation reduces the use of union constructors in most

types.

4.3.4. Eliminate a Union that is inside a Set

’

When a sct has elements from a union, the union is eliminated by transforming
the sct to a tuple with an attribute for each type of the union. The domain of each at-
tribute is a set on the appropriate type. For example, replace the expression
{(f:reallg:integer)} by (fi{real},gi{integer}). This transformation is based on Hull and

Yap's [HuY84] collect-class redugtion.

Formal Definition
Given an expression {(,:d,[t,:d,| - - - [t,:dy )},

replace the expression by (l,:{dl},l',‘,:{dz}, s ,.l‘:{cyﬂ}).

Proof of information preservation

Specify the generic functions used to construct the data transformation functions.

[[{'»’p”z- . r"p}]f‘(‘l-n{vl'va - Y, }rll]v‘2-ﬂ{vv"21 Tt r”p}»"z]r
. ‘ et "k-ﬂ{”lrvm T Y, }r‘t])
f_[{vl,vz, e ,vp},l]-([[v] | (tag= t,:ralue- v)'E{yl;vz, - ',.’v’}}

g[(t;-" sety to=asetly, - - -ty =acty)]= 0 {(tigf ti,v:;lne- g(v})) l v€aet} -
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4.3.5. Simplify a Single-attribute Tuple

A tuple having a single attribute is tranaformed to the attribute’s domain, For
example, replace the expression (f:real) by ‘cal, This transformation is based on Hull
and Yap's comp-z reduction [HuY84), .

Formal Definition
0

Given an expression (a,:d,), replace the expression by d,.
\ .

Proof of information preservation ¥

N

Specify the gencric functions used to construct the data transformation functions,

Slay=e)l=fe]

The form of g is determined by the type of the attribute's domain. It is the aAppropri-

ate one from the following group

ollay,= v =0, -0y = w)l=(a,=(a, = glv,],a, =gles]. .0, =g[e,])
g[(tag=t,value=v)] =(0,=(tag=¢,value=g[v]))

glifere -0l =(a,={g[vil.glvz], - - - glen})

gl<vivg oo 0> =(a;= <glvl.glvy], - - - ,gles] >)

9]z} =(a;=2) (zisanelement of a'basic type) |
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4.3.6. Remove Simple Recursion from a Type

If a type is simply recursive and in an appropriate form, it is transformed to a tu-

. \ ) . ' . .
ple that has less simple recursion. The resulting tuple has two attributes, one is a se-
-

quence that holds the recursive part and the other is a value for the rest of the infor-

4
mation. A type is in an appropriate form if it is a two-domain union with one domain
that is a two-attribute tuple with one attribute’s domain being the type. For example,
the type definition n=(t1:(al:real,a2:n)|t2:string) is in an appropriate form. The

transformation  replaces that type definition by the equivalent one

n=(scquence= <real >, final= atring).

Formal Definition
Given a type definition n=(t,:(a,:d),a,:n)|t,:d)),

replace the type definition by n=(acqucncc~: <d,>,final:d,).

’

Proof of informatiod preservation

Specify the generic functions used to construct the data transformation fgnctions.

.

[[v]-(ccqucncc=f,[v],ﬁnal=[;[v]) ' N
Jo[(tag=¢t,value=v)]=if t=¢, then [;,[v] els‘e [lv]

J.l(tag=t,value® v)]=if t=1¢, then f,[v] else <>

‘ ,‘f—o[("x" V1,82 vo)l=insert{f[v,],/,[v,]] .

b[(aequcncc- <>,final=y/)|=(tag= tz,va:lqe=-g[v/])
0[<0|_:"‘2,‘%. *t Y >,0/] ' ) ' ‘
-(tagf t,,value=(a,= g[v,],a,= g[(sgqucncc- <v,,04, - ¢ - v,v’>,_‘ﬁnal= v)l)
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Remarks

The strict n‘.quircmcn(s of the appropriate form of a type may seem to limit ap-
plication of this reduction. This is not the case since the other transformations and
their inverses can transform any simply recursive type to one in an appropriate form.
A more general dcﬁni(ion‘of appropriate form could be given. With that definition,
any simply recursive type can be transformed to one in an appropriate form by three
of the basic transformations given above. The given definition is pr("f(-rred because it

is consistent with the intention of presenting only basic transformations and it makes

the rest of this section comprehensible,

4.3.7. Combine Identical Domains of a Union

*
A union with two domains of the same type is transformed to a union with these

two domains combined into one domain. This new domain is a tuple with a boolcan
attribute to indicate the or;ginal tag and another attribute for the value. For exam-
ple, replace the expre;smn (a:rcalIb:alrinblc:alring) by the expression
(a:real'lb:(awilrh:boolcan,va)ue:alring)’). There is a complication in transforming a un-
ion of two domains. If one is eliminated, the result can not be a union of one domain
since that is invalid. Therefore as a special case, replace a union that has two identical

domain by a tuple constructed in the manner described above.

Formal Definition

Given an expression (¢,:d, |t,:d,] - - - |t,:d;)

where for some i and j,1<i<jsk, d; and d; are equivalent expressions

’ -

and assuming without loss of generality that ¢=1 and J=2,

°



ol

replace the expression by (awilrh;boolcan,valﬁc:dl) when k=2 and otherwise by

" (4,:(switch:boolean,value:d,)|t,:d,|t, d,} - - - [tg:dy).

Proof of information preservation

Use true to indicate that the original tag was t, and fafsc for ¢

-

Remarks

—

If intervals of integers: were basic types of the semil(ttice data model, this
trz;nsformation could be generalized to com'bine many identical domains. In that case,
it may no longer be possible to find data transformation functions that manipulate
data in an appropriate manner. The last section of this chapter discusses a transfor-

mation with that problem.

4.3.8. Combine Similar Domains of a Union

A \.mion with two similar domains is transformed to a union with one domain

: replacing these two domains.” The first domain may be'hany type. The second demain
‘must be a three-attribute tuple whose attributes’ dc;mains are the first domain, some
third domain, and a sequence on the third do'm‘ain.»The new domain is a two-attribute

tuple whose domains are the ﬁrstl domain and a se_quelx_xce on the third domaiﬁ. An

empty sequﬁnc_e indicates .? value \fi'om the first ddmain. For example, replace the

l expression (t'lﬁrcal|l2:(c:rcal,/:at'riﬁg’))I‘t‘3:(a:(c:rcal,/:atn'ng),b:intcgcr,c: <t'nlcgc;>)) ‘
by (tl:rcalllS:(a:(e:real,[:atring),é:<s'n¢egcr>)). Again asua special case, lace a

two—do,maixi union by tﬁq new domain. For the sake of brevity, on.ly the description

for the general case is given.
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Formal Definition
Given an expression (¢,:d,[t,:d,| - - - |t, dy)

where for some i and 5, 1< <k, d, is (a“:d,,a“:dlz,ala:<d,2>) .

&

and assuming without loss of gencrality that J=itl,
replace the expression by

(¢,2d,|tdy] - - - Il‘kl:d,_lIl,:(a“:d,.a,a:<dl:>)lt.,,_,:d”,_,| oty dy).

Proof of information preservation

Specify the generic functions used to construct the data transformation functions. /

uses the empty sequence for ¢, values and inserts a, onto the sequence for t, values,

’

[l(tag=t,value= v)|=if © t=¢ then ‘(tag=,l,,value=(a“=[[u],a = <>))
else if t=¢ then (tag=t, .value=f [f[v]]} -

else (tag=t,value= f[v])

10,7 008,= 01,0, = )= (6, = 01,8, = imaertog, )
[

gl(tag=t,value=v)]=if t=1t then glg[v]] else (tag=t value= glv])

gl 6, =v,,8, = <>)|=(tag=t, value= v,) S

ﬂ(al’lg v1,8,,= <vavy, < v, )]

=(tag= ll,valueﬂ*(all-= V1.8,,= 2,0, = <vg,vy, - - L, )
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4.3.9. Split an Unreferenced Union Type

If a type definition is not referenced by any type definition (including itself) and
its primary constructor is a union, the type is replaced by a group of types llha(, are
n;ore simply defined. This group has a type for each domain of the unio® This
transformation is information-preserving since there is an implicit union of all types in

\.

the database schema. For example, a database schema

{o=(a:real[b=(c:real,[:atring)|c=(c:real,[:string g:integer h: <integer >))}

is transformed to

{a_a=real,s_b=(c:real [:string\s_c=(c:real, f:alring, g:integer R:<integer > .

Formal Definition

Given a type definition n=(t,:d,[t,:d,|[- - - [t,:d;)

where n is not referepced by any type in the schema,
replace the type definition Iby ny=d, n,=d,, - -, n=d, ~

where n_ is the concatenation of n, "_", t, and enough "_™'s to make it a unique

]

type name in the schema.

rey

Px-oof,of information preservation -

Specify the géneric functions used to construct the data transfbrqaﬁon functions. f
maps from one type to 1.nany.-"g maps from xhany types to one, and for each different
type it assigns the appropriate tag.

- f[(tag; t,value=y)|= v | vg[v]'-' (tag= t;,value= v)
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4.3.10. Combine Fwo Sequences in a Tuple (

A tuple with two sequences is transformed to a tuple b sequence when a se-
°

quence of the first type is a part of every element of the other sequence. The new se-
quence is on a union bet”ween the elements of the first sequence and the elements of the
second sequence without the part that has the first sequence as a domain. For exam-
ple, replace the expression (b: <integer >, c: <(c.:aln'ny,/: <integer >)>) by
(c: <(b:integer lc:string)>). For clarity, the transformation described in Section 4.3.6
requirés that a type is in an appropriate form before the transformation can be ap-
: plie.d. For this transformation, the forl‘na! description requires lhat the expression is in
an appropriate form. Aﬂ expression js in an appropriate form if tlbc enclosing sequence

is a two-attribute tuple.

Formal Definition
Given an expression (a,:d,,a,:d,, - - - ,a,:d,)

where for some ¢ and 5, 14,5k, d, is <d.]> and 4, is <(a,l:d,l,a,2:<d,l>)5
S ‘

and assuming without loss of generality that i=1 and j=2,

replace the expression by (a,: <(“1141,Iazidzl)>»“3:ds,va4,5d4y Ceegidy).
. _ N , ‘

Proof of information preservation

S;;e,cify t'.he generic functions used to construct the data transforination functions,
fl(ay= vy, a,= vp,0,= vy, - - - .at""l:)]'(“2"'ﬂ'{x:”z]»“a’""/["3]r“4-f[”4]r e fug)

Jlc>,<>)=<> , | |
- f((v,,vz, <o ,~v,>,v,“];imcrt[(t,ag-" a,,value-f[v,]),ﬂ<vz,vs, R X |
ﬂ<>’<(a2_x' 021’022-‘022)’03\0‘45 v rvl>] o - e [

= insert|(tag= az,value-f'[vzx]),ﬂvzz, <vyvg, 93]
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gllaz= v, a,=v50,=v,, - = v)

=(a,=g,lglv;)],a2=G2lg[voll a5=glvs),a,=g[v,], - - - Lag=g[v,])
¢, builds a sequence of the leading a,’s M ~
71[<(tag=a,,value=v),v,vy, - - -,y >l=insert|v,,g, <v,,v,, - . v >
9:[<(tag=ay,value=v,),v;,v,, - - “v"l>]" <>
nl<>l=<>

g2 rebuilds the original a, sequence. For each a, in the sequence, g, uses g, to rebuild

. the sequence value for the second\attribute of the tuple.
- !

g2[ <(tag=a,,value= v hvo, s, Ly > ]E g <u, g, - v >]
7:l <(tag=a,,value=v), v, v, - - - v, >]
= snsert|( a = ”l'“22; Bl<vyvy, -0, >]), @[ <vavg v >
1

gA<>)= <>

A

{
4.4. Corrective Information-preserving Transformations

. \4
The descriptions of the corrective information-preserving transformatfons are in
this section. In some sense, these transformations correct badly designed databases.

They do not apply to }easonably designed databases but do apply to some syntacti-

cally correct schemas. Recall the earlier result that it can be determined if a certain

type is valueless. This is it has the empty domain with respect to a particular schema.
- This kixowledge, is used to eliminate all of the valueless types of a schema and simplify

any other types(of the schema that refer to a valueless type. As a group, these

transformations remove all parts of a schema that can not generate values.
SN '

.



4.4.1. Eliminate an Unreferenced Valueless Type

Any valueless type is eliminated if no other type references it,
<

Formal Definition
1

Drop a type_n=d such that dom|S,n]=@ and no other type definition references it.
Proof of information preservation

Trivial ' .

4.4.2. Simplify a Tuple with the Empty Domain

If a tuple has ap attribute whose domain is a valueless type, the tuple has the

empty domain. Thercfore transforming the tuple to the domain of the attribute is

v

information preserving,

Formal Definition
Given an expression (a,.d,,a,:d,, - - - a,:d)

where for some i, 1=isk, d, is n, the name of a type, and dom|S,n]=O,

{
to )
replace the expressjon by n.
e af .
""i,i'?& W 'Y‘".g
Proof of information preservation
Trivial .
Vs
pe

4.4.3. Simplify a Set on a Valuéless Type

B )
A set whose elements are from a valueless type has only one value (the empty set)

and- therefore is transformed to the singleton domain.

Formal Definition

Given an expression {n}



‘

-
-]

\ r
!

where n is the name of a type and dom|[S,n]=,

replace.the expression by aing/\cton.

Proof of information preservation

" Trivial

4.4.4. Simplify a Sequence on a Valueless Type

A sequence whose elements are from a valueless type has only one value (the

empty sequence) and therefore is transformed to the singleton domain.

Formal Definition
Given an expression <n >
where n is the name of a type and dom[S,n]=O,

replace the expression by aingleton.

Proof of information preservation

Trivial

‘4.4.5.. Drop an Domain on a Valueless Type from a Union
3 = - .

Similarly, a union with a domain that is on.a valueless type is transformed to

. . on-
union without that domain. This transformation is information preserving since the
union is never an element from that domain. In.the special case that the union bas

only one other domain; replace the imion by that other domain.

Formal Definition
Given an expression (¢,:d, |t,:d,] - - - 't,:d,) .
where for some l:, 1=4sk, d;is n, the name of a t.ype‘, and dom|[S,n]=0,"

replace the éxbres:sion by i{,_i when k=2 and otherwise by ’ e



(lx:dll‘;ﬁd'xl e l{n—l:d.—l|‘|4l:d101| o Ilﬁdp)"‘
PYoof of information prestrvation

Trivial,

4.4.6. Remove a Singleton Attribute from a Tuple

'

\

If a tuple has an attribute with the singleton domain and other ttributes, then
éﬂ;

replace the tuple by ope with only the other attributes.
K/_\

Formal Definition

Given an expression (a,:d,,a,:d,, - a,:dy)

where k22 and for some 1S4k, d, 13 asngleton,

replace the expression by (a,:d,,a,:d,, - - ,a,_.,:d,-,,a‘,,:éz,, Ceeaydy),

Phoof of information preservation

!

Specify the generic functions used to construct the data transformation functions,

Jl(a,=v,a,=v,, ;J' ) '“-'—1"".—1v‘f."7:“.n""’.nv T = y)]
=(ay=flv],02=f[v,), - - - r“.—x"/["’.—1]1“.“‘/[".4;]. o yap=f[ve])
gl(v“x"',’u“z"'”z- BT L Y R T L 1 B
=(ay=glv.)ar=glv,], - -0, =glo,_,],a,=y,0,, =gt 4], - - 1ap=glu,))

4.4.7. Change a Set on the Singleton Domain to a Boolean

Any set with all elements from the singleton domain is transformed to a boolean

-

domain. o ’ o

Fo’rrﬁal Definition ‘

Given an expression {singleton}, replace the expression by boolean.
iy R L . ) .

Y
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Proof of information preservation

,
[

Use true to indicate the presence of the singleton element and false for the empty set.

v

4.5'. Final Remarks - ’ .

"

A Iarg(“%roup of information-preserving transformations is generated from the
transformationa presented in this chaptér. It is felt that cach transfrmation in the
group treats data in.an appropriate mahner. It is also felt that the group contains all

known transformatians that treat dz{ta in an appropriate manner.

Traditional normalization, as described by C.n [Cod70], is not a composition
of the lransformanon;xgescnbed in this chapter. The transformation of Section 4.3. 1,

include a subordinate tuplc's attributes, is part of traditional normalization. The
CF A

remainder of normalization is not information preéerving. A typt representing a xu;xh
first normal form relation may need to be constrainefd in order that normalization
preserve the data, Fer instance, normalization of the type n=((a:rcal,b:(alru'ng})f
’ géves the type n={(a:real,b:string)}. The colrre'sponding d‘ata‘trAansformalion function

is one-to-one if and only if the non-first normal form relatign has a functional depen-

dency a-~b and the empty set is not permitted as a value of b.

Another information-preserving schema transformation was found and was
included in the preliminary drafts of this chapler.- This transf;rmation replaces any
expression_ <asngleton > by the expression natural. One data Lransforﬁ)ation function
de';.ermines the Jength of a sequence. The other produces a sequence é‘y,'y‘, Cey >-o'f.
‘Iengtii n for ahy value of%. These functjpns appear to treat data in an appro.priatc
manner but it was eventually decidéd that the transform&tion should not be included.
This decﬁi_on was made because the iti]plications of :including it were unalc(leptable. To
illustrate the problems, ‘the expression (¢t1:(a: <ssngleton >,b:singleton, c-rcal).|¢2-rcal)

:113 consndered The transformations combmc amular domains or a unson and remove a

singlefon attnbute ]rom a tuple apply to this expression If the two c%omains are

[
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combined and then the expression <eingleton> 13 replaced, ‘the resull s
(.ﬂlil&lllrﬂllffffﬂl). On the other hand, removing the singleton attribute and then
replacing the cxpression <singleton> gives (t1:(a:natural c:real)|t2:real). Recall
that the inverse of an inforumtioﬁ~pr<‘3<‘rviug lran.-«fo‘rmat,ion is information prcs(‘rying
and that the composition of information- preserving transformations is information
preserving,  Therefore, 1t s information preserﬁng to combine the two domains in
(ll:(a:nalural,r;rcal)i‘l‘z.rml). A value of zero far the attribute a would indicate a

I,
value froh}\(he second domain. A value of i+ indicates a value from the first domain

) P
by a's actual value S<:ix)g t. It s intended that this chapter's trausformaﬁon; only
generate transformations that treat data i an fxpproprialv manner. By the criteria
giyen at start of the chapter, a data transformation function

“should treat data’values as essentially uninterpreted objects ™

For this eriteria, it is difficult to accepy the function given above. If it is acceptéd then

many other coding functions must also be accepted,



Chapter 6

Normalizing Serr(\,ﬂattice Schemas

This chapter documents the evolution of a finite Church-Rosser replacement sys-
tem that normalizes database schemas of the semilattice data model. From the outset
of the research for this thesis, the goal was to incorporatc all information-preserving
transformations that had appropriate data transformation functions into a finite
Church-Rosser replacement system. A finite Church-Rosser replacement system was

. \
desired because in other situations, replacement systems with this property are of

AN .
great value. The classic case is the understanding of functions gained by describing

“them by expressions in X-calculus and reducing them using Church and Rosser's reduc-

bion system. - ‘

The chapter begins with a section on replacen;ent systems, It gives precise
definitions of some terms. includi.ng replacement system, finite, and Church-Rosser.
The second section of the chapter presents the desired replacemem' system, one includ-
ing the information-preserving transformations of Sections 4.2, 4.3, and 4.4, Examples
a:e’ given showing that this replacement system is neither finite nor Church-Rosser.
Next is a discussion of some attempts to modify the replacement system to make it

finite Church-Rosser. 1Y

In the third section of the chapter, another replacement system is defined. This is
followed by a description of a new general method of proving that a replacement sys-

tem'is finite. A proof based on this method is given that the replacement system is

-

finite. Finally, it is shown that the replacement system is finite Church-Rosser: The

proof is based on Sethi's method [Set74]. ’
. i

The concluding section of the chapter looks at the difficulty of determining if two
schemas are}equivalent and presents some observations about normal form schemas of
&

the Church-Rosser replacement system.

»

— : 6l
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Replacement Systems

These definitions are from Sethi’s work on finite Church-Roeser replacement ays-
tems [Set74]. An infix notation 1s used for all binary relations, thus zRy meana that

(r.y)f RR.

A replacement system (%,=2>,=) consiats of a set S, the replacement relation =2
any binary relation on $, and any equivalence relation = on §. T_\jpic:&l)‘, if 2oy
then y is 2 with some simplification and thus it is said that z reduces to y. Ideally,
the identity relation should be used as the e'qui\:alen(‘e relation but whea this ia inlpos-
sible a relatively aparse relation is :xccep(nl)lc: For instance, in lambda calculus, the
names of variables are insignificant 1 the evaluation of an expression aud therefore,
N ' .
the expressions Ar.r and Ay.y are equvalent. Many replacement systems change cle-
ments that are expressions by replacing a term by an equivalent but simpl(‘( term. For
this reason, some authors refer to ferm rcu'n‘t:'n’y systemna ralher than replacement sys-

tems,

An elcment 1 of the set of/a replacement system is irreducible or in normal Jorm if.
there is po y such that 2=5>y. Various relations are generated from the replacement

relation and the following notation is used
z=>'y  when 2= and 2,=> 7z, and - and 1, =5y

1=>% whenz=y

This relation is the identity relation.

2=> "y when z=% 'y for some i20 -

N

This relation is the reflexive and transitive closure of = .

-

2=> "y whenz=>"y and y is an lrrfduuble element

Thls relatlon 18 called the completion of -

A replacement system is Church- Roaacr/lf whenever w=z, w=> "y and z-> T

then y- z. A replacement system is finite or it terminates if for any elemtnt z there is
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a bound & such that the set {y{z=>*y} is empty. In particular, for ‘no z is there a
cycle 22 7, %5 7,=5> - . . =>z,=57. Also, there is no series 7=>z, =5 z,=% .. . with
all c‘l‘cmc‘nts distinct. A replacement system is finite Church-Rosser or confluent if it is

both finite and Church-Rosser.

6.2. The Desired Replacement System

This section describes a replacement system. Before that éan be done, it is neces-
¢ .

sary to define another equivalence relation on semilattice database schemas. Recall
that Sect‘ion 4.1 defined informational equivalence (denoted by =,.) That definition
allows arbitrary max:iypulations of the data and treats as equiva{cpt man:y schemas that
have no iotuitive relationship. Therefore, a mo;e useful deﬁ;ﬂ()on of equi‘valence
l’)ased,only on the transformations described in Section 4.2, 4.3 and 4.4 is used in the
remainder of this thesis. It is felt that these transformations change the data in an
appropriate manner only. The relation denoted = =, is the equivalence relation gen-
erated from the union of the transformations of Section 4.2, 4.3 and 4.4. If S=,5" it

.

is said that S and S’ are fnformatibnally equsvalent in the allowed manner.

A replacement system with certain properties is desired. The system must use all
of the t;ansformatic;ns of Chapter 4. The system should be finite Church-Rosser. It
should produce thé same normal form for S and S’ if and onll)" if 5= ,5". Itis not po.s-.
siblg to achieve all of these goals in one system. This section .de;scriﬁes a replacement
systexﬁ that used all of the tta;nsformatio‘n of Chapter 4. Although this replacement
system 'h'a‘s many desirable features, it is. unfortunately neither finite nor Church-
Rosaér.g '

The transformatnon of Section 4. 2 3 changc o lypc s na;rzc can always be applied
to any schema. The transformatnon of Sectlon 4124 changc a tag or attnbute name can

always be apphcd to any schema with a tuple or union constructor If t.hese transfor-

" mation are reducttons, some arbitrary method of cboosmgnames must be incorporated
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for any schema to have a corresponding normal form. Therefore the union of these

two transformations generate the equivalence relation of the replacement system. The
. . . L .

equivalence relation of this replacement system is called structural equivalence and

denoted by = . If SQSS', it is said that S and S* are structurally equivalent.
A

The replacement relation of the system is the union of all of the other transforma-
tions of Chapter 4. An example of a valid series of reductions for the database schema
(nl=(tll:n2[(l2:rcal),n2=(a2l:nl,a22:atr|'ng)} is given below. The section number

. ./ : . - -
of the transformation that produced the reduction is noted next to the right-hand mar-

gin,
{nl=(lll:(a2l:nf,a?‘l:atring)lll?:rcal),n2=(a21:n1,a2‘2:alring)} : 4‘.2.1
{n1=(sequence: <atring‘>,ﬁnal:rcal),n2-(a21:nl,a22:alt;ing)} 4.3.6
{nl=(acque-ncc:<atring>,ﬁnal:rcal), 4 2.1

=(a21:(sequence: <string > final:real),a22:string)}

{n1=(sequence: <string >, final:real), ) 4.3.1
n2=(sub_sequence; <\aln’ng >,aubjnal:rcal,aup_;a??:atring)}

5.2.1. How the Desired Replacement System Fails to be Finite
: |
Substituting a type's definition for its name has positive eflects in many situa-

tions, but it permits infinite series of reductions in some schemas. For instapce, sub- .
stitution has no cﬂect on a type definition like n=n and thus could applied arbitrarily
often. The database schema {n1=(a11 integer,al2: n2) n2=(a2l:real,a22:{n2})} is a
le;;y_contrived example but nonetheless, a substitution for' n2 in nl can be repeated
over and o'ver again. Arbitrarils' invol_vt_adlexamples can be deve’lopéd since an infinite

series of reductions exists for any-schema that has recursive ‘type's.-

Therefore, in order to have a finite replacement system, different replacement

.

relatlons that restrict substltutlon were. consldered Never permlttlng subst.ntutlon of a

recurs%hema was the obvnous solutlon Unfortunately that restriction ‘makes the



initial schema of the example of the previous section irreducible and yet, as was

-

demonstrated, a reasonable series of reductions is possible. Therefore a different res-
triction on substitution was developed. Substitution of a type’s definition into a
Ld
. L4 . - - n -
second type is permitted when the first type is not recursive in a manner independent

of the second type. [t can be shown that the replacement system is finite if substitu-

tion is restricted in this manner.

5.2.2. How the Desired Replacement System Fails to be Church-Rosser

The desired réplacement is not Church-Rosser because it produces more than one
irreducible form for many database schemas. A typical problem can be demonstrated™
with the schema {n={(tl:real|t2:real)}}. Applying the transformation of Section
434, climinatc‘ a union that ss inssde a sct, yields {n=(t1:{real},t2:{rcal})}. Om tlfe
other hand, the unpion in th‘e original schema could also be transformed by the
transformation of Section 4.3.8, combine identical domains én a union. Since the union
bas only two domains, combining the two identical domains of the union gives
{h-{(awilch:boolean,’)alue:rcal)}}. For either schema, no. furthes reductions are possi- N
ble and therefore the system is Church-Rosser onl)f if the two schemas are structurally

equivalent. Since they aré not, the replacement system is not.Church-Rosser.

A way was found to get the des;rec_i ‘behavior in this and similar situations.” A’
reduction was defined for tuples that combines two attributes of a tuple when both are
set domains with the same element domain. This reduction is appropriate because it is

the composition of existing reductions and their inverses.

For other situations, it was also necessary to deﬁne reductions that are series."of‘
transformauons Typlcally these require a few inverse transformatlons and then a sin-

gle transformatlon. TWO transformatlons have many problems because their apphca- :

*

tlon is lnghly resmcted " The transformation remove umplc recursion from a lype was

"generalned and its deﬁmtlon is elaborated later. The other problem transformatlon, -
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combine two sequences in a kuplc, was also generalized. In the.general form, it can
apply in any situation where one sequence is part of the elements of the other. A for-
mal definition of part of is omitted since it is involved and as is shown later, with any
definition, the transformation is unsuitable for a Church-Rosser replacement system.
In the rest of this thesis, the more general definitions of transformations are used. The

rest of this section contains examples of problems that are not correctable by defining

\

new reductions.

5.2.2.1. Substitute a Type’s Definition for Ita Name

In the database schema {nl=‘(a:alring,b:{n?}),n?ﬂ(a:rcal,b:{nl})), either type
definition ma‘yr be substituted i?fto the other. Substituting the definition of n2 into nl
gives {nl=(a:atring,b:{(a:rcal,b:(nl}))},n2=(a:rcai,b:{nl})}. The database schema
{nl=(a:alring.b:{n?}),n2=(q:rcali,b:{(a:atrfng,b:{n?})})} results from substituting the

other way. No further reductions are possible for either schema and the two are not

structurally equivalent. Therefore, the replacement system is not Church-Rosser,

Interestingly, when both substitutions are done at th%)same time, the result is
{nl=(a‘:alra'ng,b:{(a:rcal,b:{nl}))},n?ﬂ(a:rcal,b:{(a:alring,b:(n?})})}. This is an
N\

equivaledt schema where neither type now refers to the other. Clearly, only the origi-

nal schema or the one from mutual substitution is acceptable as the normal form in a

Church-Rosser replacement system.

5.2.2.2. Combine Similar Domains in a Union

Th;a tr:‘msformz_stion comb:'n? similar 'dorlnaina in a union was discovgrea to make
the replacement system have the apprﬁpﬁate behavior for-a claas of schemas. This -
section gives an example of a schema where Ithe transformation is réquiréd to make all
series of reductions gi§e ‘isomd'x""phig‘resultts. After that, three examples are given of

problems it f:auses. /77N



The transformation is required for the database schema

{ni=(t11:(all:atring,a12:n2)[t12:integer),n2=(£21:(a2l:real, a22:n1)[t22:boolean)}.

For this schema, the only two reductlons applicable are substitutions of either l_y pe
definition into the other. A complcte series of reductions is given below. The section
pumber of the transformation is listed beside the right margin. This‘is an involved ex-
ample and therefore in interest of clarity, two deviatior.ns from rigorous adherence to

the given definitions of the transformations are made. Only one reduction does tag
o

renaming although several other actually should. Also, since each reduction only

S

changes one type definition, only the changed definition is shown.
' I
. & \

Startmg with the substitution of the type definition of n2 into nl, all the reducnons to

nd’s definition are given first.

nlﬂ(lll:(all:aln‘nb,al?:(l?l:(hﬂ:rcal,a22:nI)|t22:boolcan)) ‘ 4.2:1
|t12:integer)

nl-(tll (t21;(all:string,al2: (021 rcal a22:n1))|t22:(all:atring,al2: boolcan)) 4.3.3
[t12:integer)

nl-(l2l:(all:atring,,a12:(a?l:real,a22:nl))|l?2:(all:alring,al?:boolcan) ‘ 4.3.2
[t12:integer)

nl=(121 (all string,a2l:real a22: nl)lt22 (all string,al2:boolean) ‘ 4.3.1
[t12:integer)

nl-(acqucncc <(a11 atring,a2l:real) > choice:(122: (all string,a12: boolcan) 4.3.6
: t12:integer
'3 o . | ger))

}

nl-(t22 (sequence: <(all: atrmg 62l: rcal)> choice:(all:atring,al2:boolean)) 4.3.3

Ill2 (s4cquence: <(all atrmg,a?l ‘real) >, chosce: mlcgcr))

nl-(t22 (cequcnce <(all:string,a21:real) >,all:string,a12: boolcan) 431
.[ll2.(ocqu_encc.<(qll.otrmy,a21.rcal)>,chq;ce:mtcger)) ( ‘
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This deﬁnitioln of nlis irreducible. It is substituted into n2.

n2=(t21:(a2lseal, . ‘ 4.:

N~
—

a22:(t22:(scquence: <(all.ouruny, a‘21'rcal)> all:string,al2:boolean)
[e12: (scquence: <(all:atring, a2l real) > choice: tinteger)))
Je22. boolcan)

Now n2 is reduced.

n2-';‘-(l21:(122;(021:rcal, 433
a22:(sequence: <(all:atring, a2l:real) > all:string,al?: boolcan))
[€12:(a21:real.a22: (eequence: <(all:atring a21: real) >, choice:integer)))
Je22: boolean)

n2=(oub_]22.:ia2l:rcal. 4.3.2
a22:(sequence: <(all:string,a2l.real)> all: atring,al2; boolcan))
Ioub_,tlz (a21:real,a22:(sequence: <(all: string a2l:real) > choice: integer))

|aup_}22 :boolean) ; ' i }

i ‘ ‘
n2=(aub_12‘2:“(021:rcal, 4.3.1
‘sequence: <(all:atring,a2l:real) >, a)1:atring,al?2: boolean)
Joub_t12:(a21: rcal a22:(sequence: <(all:atring,a2l:real) > choice: mtcgcr))

Jsup_£22: boolean)

*Combining the similar domains gives the-final irreducible form.

=(aub_t22:(ac.quencc:<(all:alring,a?l:rcal)),al?:boolcan) © 438
o|oub_£12:(a21:real,a22:(sequence: <(all:atring, a2l :rcal)>,chot’cc:intcgcr)))
N .

A series of reductions starting with the other subst.nutlon is similar. If all alter-
| .

native series of reductions are examined, the results are all atructurally equnvalent if

and only if a combine ssmilar domama in a union transformauon is included in eacb

series.

N -

Unfortunately, this transformation prevents the replacement system from bev

Church-Rosser. Three exéniples that follow demonstrate this: Each example gives a
: S T : ‘ S
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database schema with a single type definition. Two or three diﬂe;‘ent reductions ap;;ly
to this schema. Each of the reductions yields an irreducible schema. The system is
not Church-Rosser since the results are not structurally equivalent. Since the first
example only involves only combine ssmilar domains of a union tranafqrmations, it sug-

gests that the transformation does not belong to any Church-Rossel replacement sys-

-

tem.

Example 1
Consider the database échema

{n=(t1:(a:string b:fnteger c: <snteger >)|t2.(a:string b:real,c: <real >)|[t3: alrmg)}

ﬁ‘he domain of ¢3 is similar to both of the other domams Therefore it may be com-

rd

bined with either of them. Combining it with the domains of ¢1 yields

{n=(t1:(a:string,c: <integer >)|t2:(a:string b:real,c: <r.cal>))}.
Combining the other way gives
{n=(t1:(a:atring,b:integer,c: <integer >)|t2:(a’string,c: <real >))}.
No further reductions are possible in either case and the two forms are not structurally

equivalent. Therefore, the replacement system is not Church-Rosser,

Example 2
‘ Con'sidex.' the database schema:

{n-(tl {a: urmg,b mtcycr c: <integer >)|t2: atrmgltS atnng)}

Comblmng the :nmxlar domams of t1 and {2 yields

.

s : (n-(tl:(a;alting,c:<intcggr>)|¢3£étrin§)}.
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Combining the similar domains of 1 and ¢3 gives an equivalent form but combining
the identical domains 12 apd 3 gives

{n=(t1:(a:atring b:integer c- <snteger >)|t2:(switch :boolcan,valuc:afn'ng))}.

This schema is irreducible and not equivalent to the other two forms which are also ir-
!

reducible.

Example 3

Consider t.be database schema {n=(t1:(a:string b.n c: <n>)|l2:afrn'ng|{3:rcal)). The
schema {n=(tl:(a:string.c:<n >)|t3:real)} iy, produced by combining tixe similar
domains of (1] and'l‘l. The original type definition of n is sil;u)I‘y recursive by‘the b
attribute of the tuple-that is f1°s domain, Eliminating this sim;)le recursion gives the
schema {n={(sequence <(a:atring,c:<n>)>,ﬁnal:(l2:atring|t3:rcal))}. This can be
further reduced to

{n=(t2:(sequence <(a:atring,c: <n>)>, final:string), 4 -

[3:(sequence <(a:string,c: <n>)> final:real . N \ ) ]

Neither of the two schemas produced by eliminating simple recursion is structurally

equivalent to the one produced by combining similar domains.

5.2.2.3. Combine Two Sequences in a Tuple

The transformation combines two sequences in a tuple was also discovered to give
the replacement system appropriate behavior for a class of schemas. If a type has two
simple recursions then the;' can be removed in either order and applying this transfor-
mation gives an equ‘ivalent schema. For example, the database schema

{n=(t1:(a:integer,b:n)|e2:( a:real,b:n)|l3:atring)}‘educes to

eithy

{n=(sup_sequence: <(sequence: <integer >,a:real)>,

ub_sequence: <integer > sub_choice :atring)}

PR pt'»s, .{n=(sup_sequence: <(cequcncc:<feai>,a:intcgcr)>,

< iy - sub_sequence: <real >,sub_choice:atring)}

~ when no cor‘ﬂb{nu two sequences in a tuple transformations are done. Combining the



71

two sequences of the first of these schemas gives

n-(auchqucncc:(aup_;cqucnrc:intcgcrIaub_;cqucm‘c:rcal),choicc:alring),

Combining the two sequences of the second schema gives a structurally equivalent

scheni’a,
' ’r.

“ As was seen in Example 3 of the previous section, for some database schemas, the

I
transformation combine two scquences in a tuple in combination with others prevents
the replacement system from having the Church-Rosser property. More seriously, this

transformation causes problems without involving any other transformations. Conaid-
’ -

er S1, the database schema

(n—(al:<(a:inlcgcr,b:intcgcr,c;<(a:atring,b:olring,c:<(a:rcal,b:rcal)>)>)‘/,
a2; <(a:atn’nﬁ,b:atring,c:<(a:rcal,b,rcal)>)>,
3 ad: <(a:real b:real)>) }.

For this schema, twa reductions are possible. Once either is dobe no further reduc-
tions are possible and the two forms are .not structurally equivalent. Combining the

sequences of the al and a2 atiributes yields

{n-(al:<(al:(a:l'ntcgcr,b:intcgcr)la?:(a:atring,b:alring,r: <(a:real b:rcal)>))>,
a3:<(n:rcal,b:rcal)>) }.

Combining the sequences of the a2 and a3 attributes yields

{n=(al:<(a:integer,b:integer,c: <(a:string,b:string,c: <(a:real,b:real) >) >) >
‘ .82:<(a2:(a:atring,b:atring)|a3:(a:real,b:real)) >) }.

To demonstrate the complexity of this problem, two other schemas are presented

and reduced. The_reauctions show that all schemas aﬂa‘hfﬁmatio‘nhllyeguivalent in

the allowed manner but none are structurally equivalent. Consider 52, the database

’

schema .

.

{n=(al:<(a:integer,b:integer)>,
a2:<(a:atring,b:string,c: <(a: mtcgcr b:integer)>,d: <(a real b: M)>).},
a3: <(a:rcal,b:real)>) }.. T

.
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Combining the sequences of the attributes al and a2 yields the same schema as
the first reduction of $1 and thus shows S1= ,52 Combining the sequcnces of the at-

tributes a2 and a3 y:eld

{n=(al:<(a:integer Dbiinteger) >
a?2: <(a2:(a:atring b string, c: <(a:integer b:integer) >)
laS:(&;rcal,b:rcal))>)}

Now consider 53, the database schema

{n=(al:<(a:integer b.integer) >,
a2 <(a. <(a:a'nlcgcf,b:fr;‘.éécr)>,b:alring,'c;alring)>,
a3:<(a:real bireal,c. <(a. <(a:intcgcr,b:mlcga)')_b:aln;?ring)>)>)),
- : ¢

Combining the sequences of the attributes al and a2 yields a schefna that is not struc-
. 0 . - -
turally equivalent to any of those given above. This schema is

{n=(al:<(al:a:integer biintcger )@:(a:atring,b:ulring))),
a3: <(a:real b:real,c: <(a: <(a:u'n(cgcr,b;a'ntcgcr)>,b:atrn'ng,r;aln’ng))))' ).

Combining the sequences of the attributes a2 and a3 yields the same schema’as the

second, reduc(vio'n of $2. This shows S2= .53 and therefore Slm  S3,

b .
5.2.{. Making a Church-Rosser Replacement System

Many attempts were required to modify the desired replacement system to a ﬁl;ile
one with the Church-Rosser property. Adding new basic transformations to replace-
ment relation was and is the preferred method of modification but at this time, no
other basic transfox"matjion have- béen found. If more are found, a proof that the
resulting system i_s Church-'Rgsser will be more difficult since. all possible combinations
of reductions for all possible sc'hemas must exhibit the desfred behavior. Also, since

the two transformations discovered to correct problems caused many other pro\lems

it seems likely tbat other new basic transformauons would also do this. ‘ \

The repla'cement system behaves gppi'dpriately when the original schema does not -

have certain features. It would be possible to define a procedure to idéntify thosé

~——



schemas that the replacement system always reduces appropriate, Therefore, a
Church-Rosser replacement system for some schemas and all transformations could be

l?uilt. This approach was rejected because there is no way to defend a claim that every

.

natuml database or <‘once|vab|e apphcanon is included.

v ‘
‘Q\ o 1; st
¢ ]mlargnng the equivalence relatioi to the relation = , corrects all problems since

“then ﬁnitenes_& of the replacement relation guarantees that the Church-Rosser property
holds. This is amabsurd solution but it offered another method to modify the replace-

ment system to have the desirgd properties. Since the replacement system could use

P

any ‘equivalence relation, it was hoped that perhaps some slight enlargement of struc--
[ .

. - s . . .
tural equivalence would.corrcq{hlhe problems. Oune difficulty with enlarging the
P )
equivalence relation is that it isl more difficult to show the replacement system has the

Church-Rossg¢r properties. Thig follows from the requirement (hat all equivalent sche-
) ) P
mas must r duce to equivalent schemas. Apother undesirable aspect of. enlargmg lhe

equiv alence relatlon is that the thesis's goal of underatandmg structure is com;;nsed \

Deaplte these drawbacks, two-enlargements of the equivalence relation were tried.
s : . . '

One enlargement was generated from = and the transformation combine similar

3

domairis in a union. This deﬁnmon of eqmvalem‘e meant that &he schema

.

{n=< (tl rcal|t2 a(rmg)>} was equlvalent to all. schemas that are structurally
equivalent to {n1=(t0: ‘?mglctanltl (al:(tl:real|t2:8tring),a2: <(tl real|t2: al;mg)})

The second Scbema is egmvalent to all’ echemas structurally equivalent to the schema

. . -~ -
I~ \
.y

{n2-(10 amgletonlll (al (¢1:Feal |02 ctrmg) ~ - P
a2 {(10:singleton |¢1:(a1:(11: re&l[l? otrmg),a? <(tl real |£2: atrmg)>))))}
% ;I‘lns expanslon may be ’repeqted ovg and ‘over getting ever more complex t.ypes\ ‘

"

& ; i .
\' ermore, in a ﬁmte Church-Rosser replace,ment“‘systezg, whenever twO element,s
:
are equlvalent and the first one is u-reducnble then it must be equivalent to any m-edu- ~
'\ \ - . " R i » n ;
clhle element to whlch the second one red’ucé‘s T hie ns a dn-ect consequence of the

T

ﬁnne Church-Rosser deﬁnmon Tlrerefore a fuuher enlargement of equwaﬁence :



relation was  made. | This  had —lcrrible consequences, The  schema
(ry‘n=<(l1:rcal|l‘2:ur{ng)>) is irreducible.  The equivalence class of this schema
includes any schema structurally equivalent to any schema produced by k replace-
llncnls of a sequence sub-expression and aM irreducible schemas to which these reduced,
The equivalence class | of the Hreducible database schema
{n=(a:realb: < <(thl:reab|t2:string) > >)} was investigated briefly. It has bewildering
structural  diversity,  The equivalence class of another irreducible  schema
{n=(a:rca1,b;<<(rl;(a:n,b;rcal)[lZ:olring)) >)} is almost beyond description since
this schema is cquivalent to a schema with a simply recursive type. That schema
reduces to :'m irreducible schema that is cqui.va'k'ut to a third schema with a simply
recutsive type. The third schema reduces to an ireeducible schema. that s ecquivalent

to a fourth schems with a simply recursive type and so on,

This enlarged equivalence relation gorrected "most but not all of the problems

| .
described above. Even if it does produce a replacement system that is finite Churcip
Rosser, a replacement system with this equivalence relation is not acceptable. The

notion of equivalen®g is so broad that the relatiop = 4 might as well be used. Another
~ - !

enlargement of the equivalence relation was generated from the transformatiop dom-

binc two sequences in" a tuple. Although this equivalence relatio‘n' had less prolific

enlargements, it still was judged unacceptable for the same reaton.

.
[l . . ' e

Finally, a finite Church-Ro$ser replacement system was built. Placing a restric-
.tion on substitution had. produced a finite replacement system. Cept.amly, some of the

problems appeared to result from not appfymg the correct transfonmauon at the

correct time. It was declded t.hat restnctlpns were agceptable provided they were in '
: the apnnt of a replacement system Thcy had to be local simple and mtumve"

K
o . -

' NOnetheIess smce. t,he restncuons |ncreas.e the number of lrreduclble forms, stmpllClty'

--was con{:promlsed to lncrease the nqrmahzh:g power of the replacemem, system.

. Lot
! s ' P

K



6.3. A Finite Church-Rosser Replacement System

This section documents the best finité Church-Rosser replacement system found,
Since best is a relative term, the criteria by which the replacement system is best must
be given. It was decided that the best system would use the structural equivalence
relation = ¢ because it is consistent with the thesis's godal of studying schema structure
and the attempts to enlarge it had terrible consequences. Preference between different
definitions of the replacement relation was given to the one that gave the fewest nor-
mal forms (Medulo =) to t‘h.e schemas of an =, equivalence class. All else being

equal, the more intuitively appealing replacement relation was chosen. .

6.3.1. The Replacement Relation

Table 5.1 on the following page defines the replaccment relation. The name of a

reduction is based on the section in Chapter 4 thial describes its basic transformation.
‘ i
The reductions are identical to the transformations except as noted in the restriction’s

s

column of the table or-as deser{bed befow. Three of the basic transformations are not

jn the table because no reasonable restrictions could be found for them. ‘These are the
+ . h -

transformations combinc simslar domains in a union, combine identical domasns in a

‘

. unien, and combine two scquences in a tuple.

Since two reductions are based on ‘the substitution transformation, they are
named 2.1a and 2.1b nespeetively. Reduction 2.1a is substitution restricted to substi-

‘tutmg a‘non-recursnve type Separating a type redu?uon 2.1b, is a related non-empty
' o -
group of aubstltutlons that is use&' to make a recurslve type self-deﬁnmg in some cases.

Separatxon avoids the problems found wnth slmple substxtutlon but is restncted to:

i

A O

'avond causing other problems. Vel
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Table 5.1 The Replacement Relation

Name Description . Restriction |

2.1a  Substitute a type's definition for its name it is Dot a recursive type
2.1b  Separate a type the type is separable
2.2 Replace two isomorphic types by one types neither type is recursive
3.1 Include a subordinate tuple’s attributes '

3.2 Include a subordinate union's domains

33 Change a tuple with a union to a union af tuples

3.4 Eliminate a union that is inside a set

3.5 Simplify a single-attribute (l\lil)lc

3.6 Eliminate all simple recursion from a type the type’s form is appropriate
3.9 Split an unreferenced union type

4.1 Eliminate an unreferenced valueless type '

4.2 Simplify a tuple with the empty domain

43 Simplify a set on a valueless type
44 'Simplify a sequence on a valueless type
4.5 -Drop a domain on a valueless type from a union
46 Remove a singleton attribute from a tuple
4.7 =~ Change a set on the singleton dexl;ain to a boolean . ~ g
W/ ’
"Reduction 2.lb ' ' ©

Separatmg a'type, reduction 2 lb ls a related non-empty group of subst,ltuuons
~ that apphes to some recursive types A type is separate is it does not reference.
another type To be aeparable ‘a type must not be unseparable A type n is mﬂepar-

able if it is separate or sunply recurslve orif it references a type that ia part of a cycle

ny,ny, - - ,n,,,n, in the reference graph wbere n; *n for all }, ISJSI:
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A LypE is separated by sibstituting the definitions of other types into it until it
no longer refercnces any other type. In order to bave a Church-Rosser replacement
system, when a type is séparated, it is necessary to also separate any o.ther separable
type that it references. It is essential when separating a group of types that the
preseparation version of each type's definition is the one substituted into the other
types. .

The types nl and n3 are'separabie in the semilattice database schema
{nl=(ll:n2|l?:n3),n2=(al:rcal,02zn3),n3=((al:s'ntegcr,a?:nl.,a3:{nl})}}. The type

n2 is unseparable because of the cycle between the other two schemas. The separation

of nl changes its definition and that of n3. The reduced schema is . .

{nl-(ll:(al:real,a2:((al:inlcgcr,a?}:n1,a3:{n1))}),|l2:{(al:intcg_er,a?.nl,a(i:{nl})}),
n2=(al:real,a2:n3), A
n3={(al:integer,a2:(t1 :(all'real“bQ:nS),|t2:n3),a3:{(tl:(a]:rcal,a?:n(})‘|t2:'n3)})}},

I

RedSlon 2.2
R¥placing tw‘o?isomorpbi'c types with one type, reduction 2.2, is an extension of

- ’ B N -
the basic transformation of the same name. The reduction applies to more schemas

. , . I. PR . ' . . . .
since it colglines a pair of types with isomorphic ‘expressions as well as a pair with
: ",‘l,vf' . i .
equivalent '%xpressions Two type eipressions are isomorphic if a sequence‘ of name

changes made to one expressn&: nges an expressnon eqmvalent to the other expression.
‘ .

Y e

Reductlon 3.

Reductlon' eliminates all simple recursion from a type that isin an appropn te
form A type i¥ in an appropnate form when it is a union with at least one domam i

ones and :every domaln in one of these.two categorles A domain. i is.

X the ﬁrst category, if it is the name of the type or a tuple with the
' type as the do' b :n of o attnbute A domam is non-recuraive, the second category, if

it deﬁned by an gtprewon vhose plmphﬁcatlon d’oes not mention the. type



To illustrate the definition of appropriate form, the type
n=(t1;n|l2;(al:rcal,a2:atring)|l3:('al:atring,a2:n)
!
|l4:(a1:n,a?:(Ml:rcal|t42:n2))|t5:<aln'ng>)

is used. It is in an appropriate form for the elinfination of all simple recursion. The

domains (1, t3, and (4 are in the properly recursive category and the domains ¢2 and

t5 are insthe non-recursive category.

-

This definition of appropriate form is as general as possible without refuiring
' /’

additional restrictions on other reductions. “Although the definition is restrictive, ftis

considcrably more general than the preconditiéns for the application of the base
13 - N

-

N ) ‘ S
transformation.

The reduction that eliminates all simple recursion in a type is a sequence of
iuformalion-preéen‘ing transformations of Section 4.3.- First, a sequence of inverse
transformations produce a type that satisfies the precoonditions of the base transforma-

tion remove simple recurason from a type. All simple recursion in the type is then

removed by applying the base transformation.

The sequence of inverse transformations is: . ) .

.
»

1. For each recursive dbm?in that is the name of the type, make it a single-attribute
tuple by doing the inverse of the transformation simplify a single: attfibute tuple:
2. For each recursive domain that is a single-attribute tuple, make it a two-attribute |

" tupie by doing the inverse of the transformation remove a ﬁinglcfon attribute from i

”

. a ‘ﬂple- . ' R s

3. Foreath recurs:ve domain that isa many-attrlbute t.uple, make n a two—attrlbute
tuple. by domg t,he mverse of the transformatlon- mcludc a aubordmatc tuplc a"

- atmbutca ln the result.mg tuple one attrlbute B domam is the type and the pther- :

,attrnbute s domaxn is the tuple with all the other attnbutcs of the onglnal tuple
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4.  When necessary to make the principal union have only one recursive domain, do

the inverse of the transformation change a tuple with'a union to a union of tuples.
Al

5.  WHhen necessary, make the principal union bave only one non-recursive domain by

doing the inverse of the transformation includctx}ubordinate unien’'s domain.
.

For the definition of the type n given above, the sequence of inverse transforma-
tions produces
_.ln=(rcruru’vc:(a:n,b=(tl:afn'glcton|t3:(al:atring)lM:(aQ:(Ml:rcal|t42:n2))‘))

|non— recursive:((2:(al:real,a2:atring)|t5: <string >}).
After elimination of all simple recursion, the type definition is \ A
: . . .
re lll42 n2)))>,

n-(acquence <(f1:(a: singleton)|t3:(al: atrmg)IM (02 (Ml
[ . choice:(t2:(al:real,a2:8tring)|ts: <alrmg>))

The Reasonability of the Reduction System

There are simple algorithms that given a database schema determine the possible

-

. ’ - B . . " l‘ ." .
reductions of the schema. Most of the reductions are local and a srmpli examination

of -each type definition, can ﬁnd these reduttions. ‘Reduction 2‘2 renl \"c'e.'tvyo iso- '

A
o

morphic types wish one, requires each palr of type deﬁnmons be considered in turn.

.

' Ex&mmlng a palr is lipear in the rength of the expressrons since Chis is basic lly, a tree. ,

'lsoniorphlsm pw‘blem Some reductlons reqmre partlcular properties :)f the types |
lmvolved The:e nropemes can be determined from the reference graph of a schema.
Thls graph may be hullt in tlme hnear to the Iength of the schema A depﬁh-ﬁrst '

‘ seareh o_f the graph startmg at the node assocnated wnth a type can determlne lf the

ty.pe recurs:ve or separable. The depth—ﬁrst search need only examine each edge

once for each node nnd therefore, the complexlty of determmmg the propertles for all a

4

R

nodea is O(n‘) in the worst' case, - ) R T T E



"well-foynded partial ordering.
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i

5.3.2. A New Method to Prove Finiteness of a Replacement System

Proving that a system is finite Church-Rosser is usually difficult. In fact in the
general case, it has been shown to'be an undecidable problem [Hul78]. Nachum
Dershowitz presented several techniques of showing that a replacement system is finite

and gives a summary of related work in [Der82).

This tbesis presents and uses a new method of proving the finiteness of a replace-

ment system. It generalizes the technique that Hull and Yirp Ilsed to prove termma-,

-

A tion of the replacement syﬁtem of (hz Format data model[Hu¥B4). They specified a

function a that maps*formats into positive 1ntegers and showed that a has the pro-

perty that if f=>g then a[f] >alg] Since all monotonically decreasing sequences of &

positive integers are finite, there can be no infinite series of reductions

There are two steps in this new technique of showing that a replacement system is

- N

finite. First, an appropriate sequence of sets, partial orderings -and functions are

specified. Then Theorem 5.1 (gnen below) is applied. ‘This method is more general

than Hull and’ Ya 's since n allows a se uence of functions rather than a single func-
P q g

tion. Also the method, allows tbe domains of the functions to be any set that has a

@ . ¢

A partial ordering > of a set S is well-founded if there does not exist an infinite

. , ‘ -
sequence of elements such that 8, >4,> - - -. 4 : C

Note 1,har, the definition of a well- founded partlal ordermg does not requlre the set

be total-ordered or well ordered by t.he partial orderlng For instance the proper sub-

set relatlon is a well: founded pamal ordenng of the ﬁnlte power set of any" set.

S i ; 14

,.,ﬁ-

Allowmg a sequence of functlons is the more tmportant generallzatlon smce then ;

o

“ each function dmay concentrate on a- dlﬂ'erent aspect. of- eomplexity The relzmve :

. functions. Some reducuons may. actually merease aome aspects of complexlty hnt tlus .

L4

\lmportance of the dlﬂ’erent camplexlty aspects u ﬁxed by the order of the sequence of'
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is permitted when a more important aspect is significantly reduced. Significance is

guaranteed by requiring a well-founded partial ordering on the domain of each func-

tion in the sequence.
'

Since each function deals with only- one aspect of complexity, the technique has
the usual advantages of modularization. The funct,ions are easy to conceive and
specify since typically, a complexity aspect is easily measured by looking at syntactical‘
features. A small chnnge to the replacement system requires a small change in the
proof. The proof of finiteness is more easily‘comprehended since it has many simple
pieces tather than one incomprehensible fun‘c'tix')n.

f"‘ ‘ , P
Theorém 6.1

.
’
v

A replacement system (S,=2>,=) isdfinite if and only if there exists a sequence of sets

»

XX, - -+, X, where each X, has a well-founded partial ordering :>, and a function

' [,:.S:-X, such that'Vs,a’ €S if s=2>4" then

A

3ied1,2, - k(o] > Silo) and V€12, - ig1} (f;le)= 1, [°]).

Proof (only if) -

Given that (S;=, -) is finite, let f,:5-S be the ldenuty funcuon on S, and let == be
Tnv:ally, Vo,a €S if s=>s" then f,[s]>,f;[0°). o

Proof (if) o &

“leen a replacement system (S, - =) and X,,XQ, . Xy »w‘here' each X; has a v;vell- .

.l'ounded partlal ordermg k, and a functlon 7 -gji uch that Vs, GS |f aéa then

a.euz k}«ma1>ma nandv,em*"’“ l}uw /{a m

Allume thaﬁ the replacement syatem has an mﬁmte sequence of reductlons S

S '~‘0’_‘l->.:‘-2.’5-"’2}'“""" L ““"1
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Let 22y denotes that 2>,y or z= y. Note that

INE AN lf}[32]21

Since > is a well-founded partial order‘ing.of AX,, there exists n,, such that 1,20 and

fxl"nl]“fr[‘nlol]"fll;:lw]"

Note that

/2[‘ ] 2/4[% +I]Z2I"[’n 42]2

-~ .
Usmg the same argument again, there exist n, such that n,Zn, and

/2[‘n2]== /2[5n2+ )= /2[‘n2+ o=

Similarly, there exists ny,n,, - - n, such}hat, mME g 2 - 2n,Zn2n, and

V"G{l"z' T 'k} (Il[‘,nll-/l[,nlél]-llla",".‘]- .’ ' )
Thus for all n and i, n2 n; and 1€{1,2, - - - .k} LAlaa)=1l2,4.). Recall that o, == 204,

and for any reduction s=='s’ there is some § such that /,[o']>,f,[a'] and therefare for

L

s‘(")me i, [.ls,] >,/.[3n+\]-

This contradiction shows the assumption tha .ao infinite series of reductions existy is

~ -,

false. The replaéement system is finite.
5.3.3. Proof of Finiténess .

The. finiteness of the replacerrfent system ‘is proven by the method described
above."rTheorem_ 5.1 is‘applied a&ter some appropriatenfunctions are speciﬁed These

functions measure the complex:ty of a database schema by lookmg at syntacuc proper- '

. ties; . They Were carefully constructcd to glve every reducuon t.he property tbat S

' Theorem 5 . reqmres Three functxons map the schemas to: sets of type name3 and use
. the proper subset relatxon a8 the par‘tlal ordermg The rest of thegunctlons map sche-

" mas to non-negatlve mtegers and use the relatlon leu tlum a.s the partial orderlng
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Theorem 6.2
The replacement system of this section is finite. ’
* -
| . ‘
Proof

’For any database schema S, ecach of the fol}()wingvfunrt.ions is well defined.

(Specifications of the functions /s and f, follow the proof.)

-

- €
/i[S] is the names of all typesin S that are separable. ' |

'

f2|S] is the names of'the types in S that are simply recursive.
. /3|S] is an upper bound on the number of chtnge a tuple with a union to a union of
tuples reductions in the longest sequence of reductions that apply to S and has
- 1

- . . “ . ~ . .
no separations of types or eliminatiohs of simple recursion.

/4[S] is a measure of the complexity of references to non-recursivetypesin S. -

N
N

Js[S] is the total number of domsins of all union' constructors in S

f6lS] ip the total number of attributes of alll tuple constructors in S.
/:[S] is the number of {boolcan}'spb—expre.ssions in S. ‘ '
JslS] is the names of the'types in S. '

For the given replacement syst,em Table 5. 2 below shows the effect on t,he values
of the f unctions of applymg the varlous types of reductlons ln the table, the symbol * :
= in row zy and column f, mdloates that f,[S-]-f,[S ] for any reductlon S=2>5' of
‘ vype z. y A > mdlcates Lhe funcuon s value after theqreductlon s always‘less than .
‘béfore it. lf tﬂ value of the reduced schema is elther the same or less, the symbol 2 |
. gppem For each type of red’ucuon, no. entngs appear to the nght of a > smce the

eﬂ‘eet ol' thc reducuon on these l'unctmns is of no sngmﬁcance to t,he proof Since- the -

\t:b]e ahows tlm. thm fnnd.lons havé tl!e‘ necessary propemes to apply Theorem 5 1,
the wpllcenant systcnulute , bl L :' , R L U R -

s - B .
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Specifications of Functions used to Prove Theorem §.2

/3[5]" p [3.[5.d]

n=~d¢S

& 3 .
J3.[5.(0,:d,050d,, - - ,a,:d,)]=2/3_,[5,d,]+H(l+/3 29,d.})

£ . .
[salSAedyldy] - Ao dy)]= 2 f5,(S,d,) . o ’

SsalS ()= /31[9 4] .7
I5alS<d>]= 15,154 - |
[3 S, n]-xf nis %sic type or recursive in § thtn 0 else [, ,[S, cxpr($,n]|

where : czpr[{nl dy,n,=d, - ng=d\} n]=d

3 &
f32lS(a):dy.aydy, - - ﬂt-"ﬂ)]“ﬂ(“‘/a 2[5,d)))

' £
/s :[Sn(‘1:d||‘2342_| e I'Afdt)]"’"*z‘/s 25,4

fs2[S {d}]=0
J32l5,<d>]=0

/s f,[S n]-lf nis a basic type or'recursive in then 0 else [, ,[$,czpr(5,n]]

[S]" E fulS 41 ’ \

'/4_'1[5,(01241;021423 e rat dg)l-IIh 1S, d) ‘o

f4 s, (‘ d I‘z dzl “k dt)]'nfa S, d]

1lS, (d}]'fn[S d] “\"‘1' ‘ ,
JaalS, <d>] 14alS, d] R - C
f“[S,n]-I-i-f”[S "] a

f. 2[5 n]-tf nisa baalc type oF recufrsive in S then 0 else /4 l[S n]

a .'
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6.3.4. Prﬁf of the Finite Church-Rosser Property
-

The given replacement system is finite Church-Rosser. This is ahown by using
Theorem 2.2 frm? Sethi's work on replacement systems [Set74]) and the previous

theorem of this section. Sethi's theorem states

: ®
A replacement 3ystem R=($, == ,=) is finite Church- Rosﬂen if and euly lf R
is finite and has properties P1 and P3.

Pl If U v and u=> w :
then there exist y and z such that y= Q-b y, and 11'9 z,

- N

P3: lfu‘"—>w «mdu%z .
“then there exist y and 7 such that y=:, w=>"y and 1= "

g s

.

Theorem §.3

The replacemeént system of thiy section is finite Church-Rosser.

"Proof _ Co ' RS -

Finiteness 13 shown in Theorem 5.1. In order to conclude tbat.,t‘be system is ﬁmte

Church-%osser itis sufficient to shov» that Sethl s P1 and PS properties hold

M)

‘el‘

Sethi’s P1 property holds since if two schemas are st,ructurally equwalent and one

rreduces then the other has an almost |dent|cal reducuon The result of appl)mgwhese .
! -

two similar reductions is two schema that are spructurally eqt\lvalent This follow: )
from the fact that in every reduction, tbe names of tuple attnbutes and union domam
is ‘unimportant. The name are not- pr,_‘condmons of the redumons and have. no
: S T
significant mﬂuenc} on the results of the reducnon ' e 4
- [ N ot ’
Showing the P3 propeny reqmres a case by tase aualysx'.,} pe

'S L ‘
_ltself axid each other reductlon Table 5'5 on tbc next page summanzes the analy’ls.

- .

S A
An cntry glves tbe codes for eaoh })au' of reductloxﬁs Ea:ch code reprcacnts a atyle of

ptoof A numeric code is nsed whcn a proof style applies to’ mauy cases '_A proof

”H

N Lo

applymg in é&ly .one caSe is gwen an. alphabeuc codem*c ﬁentn i ‘ b
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(
\ '

tvo codes, oae proof s almost complete and the other handles some special eases Fol.

lowing the table 1y a section that explains the meamng of cach code

Table 53 Cases in the proof of Sethn's P23 property

Ian th | L S T S § T { ) sS4 hn 7
R U $) '
I B VR SR ‘
A PR B
.

- '4
§ 1 ST S i
; [ 66 Voo

33 6 0 ¢ dn h
» - [
34 6 6 7 3 e 0 1
35 ¢ 6 7 H 0 1 )
30 | I S| A |
3.9 | | I SR I ] 1 ’
1.1 2 1 1 22222 1 1 1

-1®

talb2 1 2 3 4 5 6 9 1 2 3 4 5 6 7
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fa3s)

Cases applying to many pairs of reductions »
¢

I The reductions alwavs commute since they apphy to different expressions or types

9, "Rhe reductions either commute or the one with the bigger scope abaorbs the other
£, absorbs Bl applang K, then /Al s (hvc‘ same as apphang K, only  bor
inatance, the reduction elimsnate a valueleas type absorbs any reduction that s
applicable to a sub-expresson of the type’s definition .

4 The reductions either commute or almost commute  f and K, alimost commute if

Capplying B then B s iomorphie to applymg J, then R where A7 s same ty pe
of reduction as B apphed to a shghdy ddfferent expression
For instance in the expresson (a (c.real d real) b sangleton), the reductions remove
a singleton attyibute from a tuple and snclude a subordinate tuple's attributea almost
¢ .
commute. The expressign reduces 1o (a (e real d real)} by removing the singleton
4 A.
attribute from the superordinate tuple and then to (sub_c real aub_d real) by
including the subordinate tuple's atteibutes  On the other hand, the expression also

‘\n-ducc.ﬂ to (sub_c real sub_d:rcal aup_b singleton) by including the aubordinate
tuple’s attributes and then to (sub_circal aub_d real) by removing the swgleton
attribute from the tuple,

4 One reduction is the separation of a type and the other deals with simplifying an
expression referring to a valueless type. The reductions usually commute. If they:
do not, the same result is achieved by doing either reduction and then the following

. . . — 4
-series of reductions. ;

o
1. For each type, simplify any expression referring to a valueless types by doing all

the 4.2, 4.3, 4.4, and 4.5 reductions possible.
"After these reductions, each valueless type is of the form n,=n, and any other

type does not refer to a valueless type.

B



2 Repeat chinmating any uareferenced valueless type as long as any exist

After these reductions, any remaining valueleas types ace separable This follows

A .

because ifnome Gy pe in not separable then there is some other type that haytno
A .
~ Uype that diceetly reference it Sincee cach valueless (ype has one reference out
-

A
<and at Jeast one . each must have exactly one iy

3 Separate cach valueless type
After these reductions, all valueless types are not referenced by any other type
o Ehminate cach valueless type ‘

The reductions  either commute  or produce  schemas  that  are atructurally

equivalent, For instance, the rvdu('liim\ nnrrt;»/:/y a singlc-attribute l‘uplr’:\nd enclude
a {1|(t»ur‘lurxr11<' tuple s attributes have somorphic effects “on the CAPression
“Ra(direal) bireal ciinteger)  After -i‘gmph‘f)'lng the single-attribute tuple, it reduces
to ({lfrt‘ﬂl;() real canteger ). After Jn(ludmg the subordinate tuple's attnibutes, the
original  expression reduces 1o the .slruc(lfmllym equivalent  expresaion

(sub_d:ircal sup b real sup_cinteger)

One of the reductions makes duplicate copies of sup-expressions For instance, the

reduction change a tuple with a union to a union of tuplea makes duphcate copies of
s .
the sub-expression for the other attnibutes of the tuple  Separation and substitu-
/
tion also make duplicate copies of expressions

An expression-duplicating reduction and most other reductions are either commuta-

~tive or distributive. When done first, the expression-duplicating reduction gives a

-

schema that requires the other reduction be done to each of the duplicate expres-
. ' $ . . . ; .
sions to get a strucluralﬁy-equnvalem result to doing the othier reduction followed by

the expression-duplicating reduction.

In the expregsion (a:(d:r‘cal),b:rcal,c:(t’l:inlcgcr [t2:8tring)), changing the tuple to a

union makes two copies of the expression (d:real). Therefore, the reduction ssmplify
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a aingle-attribute tuple must to be done to both copies if 1t is done after the redue-
tion change a tuple with a union to a union of tuples to get the same result as doing

*the climination once before the change

7 The reduction replace two tsomorphic types by onc type chiminates one of two dupli-
QO

cate type definitions, This reduction commutes with other reductions except when
the other reduction changes one of the duplicate definitions. In that cane, there in a

distributive aituation similar to general case 6 above. If the other reduction is done

first, it must be done to both types before the replacement can be done,

+

Y
For instance, in the schema {nt=(a:rcal)n?2=(a;rcal)} the result of replacing

cither type with the other and then simplifying the single-attnibute tuple is struc-
turally equivalent (0" simplifying the single-attribute tuple from both types and
then eliminating cither type o

Cases applying to (')nly one pair of reductions

 One reduction drops a domain on a valucless type from a union and ll‘;c other
changes a tuple with a union to a union of tuples. The reductions commute or l_
almost commute except when the union is subord?na(c to the tuple. In most of those
cases, dropping the.domain and then changing the tuple to a union gives a schema
t,bat-is struﬁurally equivalent to the one from changing the tuple to a union, sﬁnpli-
fying 4 tuple with the empty domain, and then dropping a domain from a union..
However, if the original union has only two domains, dropping a domain on a value-
less type gives a schema that is structurally equivalent to one from changing the
.

tuple to a union, simplifying a tuple with an émpty domain, and dropping a domain

on a valueless type from a union.. N

—

For example, when the type n is valueless in a database schema, the expression

(al:real,a2:(¢1:n|t2:8tring|t3:real)) reduces to (al‘:rqal,a2:(t2:atrir;y|t3:rcal)) or to



)

(t1:(akpreal a2 n)[t2:(al:real,a2:string)|t3.(al:real a2:real)). Both of \h(‘ﬂi{ reduce’

to (t2:(al:rcal a2:atring)|t3(al:real a2:rcal)). The first reducea directly but the
4

second <~\er<-.~\ﬁi0n must first be reduced to - tthe expreasion

(tlinft2:(alircal a2:atring)|t3:(al:real a2:real)). = '

“

b One reduction drops a domain on a valueless type from a union and the other elim-
. Y

‘ . o .
inates a union- inside a set. These commute or almost commute except when both
. ‘ B
. . . . ' ’ \ )
modify the same union. In that case, the climination of tha union folléwed by
. S
replacing the set on a valueless type by a singleton and theu dropping the singleton
. ' 1 ’

attribute out of the tuple has the same effect ax dropping the valucless domain from

the union before eliminating the union

For illustration, when the type noix valueless in a database schema, the expression
{(1l;r(a1|l2:re¢;1](:$:rn)) reduces  to .(ll:(rtal);l‘l:{rcal},l.’%,{n}): This expression
reduces to (t1:{real} e2:(real} t3:5ingleton), and (h(“u to (t1:f{real} t2:{rcal}). On the
other hand, the same result is pr(ﬂluccd if the original expression i;a reduced to

{(t1:reallt2:rcal)} and then to (t1:{real},t2:{real}).

When tl\)e' qrig';inle union has two domains, eliminating the valucless domain elim-
inates the union. A structurally-equivalent scheina is achieved by eliminating the
union, simplifying a set on a valueless domain, removing a singleton attribute from a
tuple and then simplifying a single-attribute tuple.

. 1

¢ One reduction includes a subordinate tuple’s attrib;xte and the other changes a tuple
with a'uxiion to a union of tuples. 'i‘he general case 6 applies excebt when the .subor-
dinate tuple is the one to be changed by the union. !n that case, including the
subordinate tuple's attributes and then‘c'hanging the new tuple to a union gi\;es a
structurally-eélui'valent s;:hema to t\_he one produced by changing the subordinate
tuple to a union, changing the sqpe;'ﬁrdipate tuple to a union and including a gubo_r-

dinate tuple's attributes in each tuple created by the second change.
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For instance, the expression (a:alrmg,a?:(a‘Zl:r(al,a‘Z‘Z:(ll;atr:'rug|t2;@al))) in
reduced to (a:string a2l rcal a22:(t1:string{t2:real)) by including the subogdinate
tuple’s attributes, This  expression can then be reduced to

(t1{azatring a2l real a22:8tring)|t2:(a string a2l real,a22:rcal))

7

-~

The same__pesult is achieved when the original expression is reduced  to
(a:string a2:(t1:(a2k:real,a22:string){t2:(a2l:real,a22:rcal))). This reduaes  to

(t1:(aratring a2 a‘.’l:rcal,a‘Z’Z:alriug))[1'2_( a;atring,a2:( aZl:rcal,a“lZ:rr(xl)))‘ then (o;\

-

(t1:(a:string.a2l:real a22:string)|t2:(a ptring,a2:(a2l real,a22 real))), and finally to

e
(ll:(a:alrl'rxg,a'ZI:real,af.’%:aln’ng)ll‘Z;(a:a!riug,a‘ll:rcal,a‘Z‘Z:rral)),
Oue reduction includes a subordinate union's domains and the other changes® tuple
with' a union to a union of tuples, The general case 6 applies except when the

superordinate union i2 the one that is to change the tuple. In that case, iucluding
- A

the subordinate union’s domains followed by changiog the tuple to a union gives the
o o
same result as chapging the tuple to a union of tuples, changing the new tuple wit%
. . . 1’}‘

the subordinate union to a union and then including that new union’s domains in the*
2\ '

A

union created by the first reduction.

For instance, the expression (al:alring,a‘z:(ll:rcal]l'Z:(l?l.atringlt‘l')h‘real))) is
. - , .

reduced to (al:atring,a2:(t1:real|t24:atring}{t22:real)) By including a subordinate

union’s domains. Changing the tuple to a7 union reduces this expression to
(ll:(al;alring,aZ:rcal)IlQl:(al:atring,a2:alring)|l22:ial:alring,a?:rcal)).

The same l"esult ris also achieved when the original expression is re_duce.d to
(t1:(al:atring,a2:reat)|t2:(al:atring,a2:(t21:string|t22:real))).” This reduces to
(ll:(ai_:atring,a?:rcal)|t2:(l2l:’(al:atring,a?:aln'n‘g)|t22:(al:atring,a2:rcal))), and

then to (¢t1:(al:atring,a2:real)|121 :(a1:atrihg,a2:atr'ing)]t22:(al:alring,aé:fc_al)).

¢ One reduction includes a subordinate union's domains and the other eliminates a

. ' . S
union inside a set. These commute or almost commute except when the superordi-

’
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nate union is the union to be elimmated Then the result of including the subordi-
nate union’s domain and eliminating the union is the same as eliminating both

unions in turn and then including a subordinate tuple's attributes.

For example, by including a a|nl)o;(iina!<‘ union’s demains, the expression
{(treal[t2:021 0tring |22 real))} 1s reduced to {(¢1:real |t21 atring[t22:real)}. This
expression ¢an then be reduced to (e1:{real} (21 {atring} t22:{rcal}). When the origi-
nal expression iy reduced to ((l:(rral},l‘zg((l‘zl:atrl';lg|t22:real))) and then 1o

(t1:{real}.t2:(t21:{atring} t22:{reat})). the final result is the same.

One reduction climinates simple recursion in a type and the other changes a tuple
with a union to a union of tuples  These commute or almost commute except when
changing the tuple to a union puts the type 1o an inappropriate form for the elimina- -
tion of all simple recursion. In that case, a sequence of changing the tuple to a
union, including a subordinate union’s domains and ehmin::t'fng)r(-cur.-\ion usually
hay the same result as climinating recursion, changing the tuple to a union and then
includingl a subordina(e: upnion’s domains. Changing the tuple to a union is not
needed if the original tuple bz;d two attributes, ln‘cluding a subordinate union’s

domains is not necded if the original type had only one recursive domain.

To illustrate this argument, the simply recursive type definition’
n=(ll:(a1:n}a?:rcal,ai}:(l?:rcallt3:alring))[l4:inlcg?r)

13 lconsidered. Cbangi‘ng the &uplve to a union reduces this type to
n=(l1:(l2:(¢;l:n,a?:rlcal,a3:real)[ft3:(al:n,a?:rcal,aé:'atring))IM:intcgcr), This type
is no longer in an ajppropriate form but reduces to one that is. That f-'orl‘m
n"('l2z(al:h,a?:rcal,a:}:rchl)lt"}‘:(al:n,a2:rcal,a3:ofring)|l4:inlcgcr) :cduces :éo
nﬂ(acqucnce:<(t2:(a2':rcal,a3:rcal)]t3>:(‘a2:rca‘l,‘a3:strling))>,choi;:c:inlcgcr). (5;1
the other hand, the reduction ‘that \eliminates ‘all simple recursion produces

| n-(acqucnccz<(q2:rcal,a3:(t2:rcalIt3:str€ng)j},choiqc»:intcgcr). ,Then changing
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this tuple to union gives the same type produced by the first series of reductions.

g One reduction splits an unreferenced union and the other reglaces two isomorphic
types by one type. These usually commute except when the unreferenced union is

one of the isomorphic types In that case; replacin%vo isomorphic types followed

by a series of reductions gives the same result as split(Tig the unreferenced union fol-

lowed by a series of reductions. The series following the replacement is zero or more
o ’ ' o
“substitutions that make the new union unreferenced and then a reduction to split

into a set of types. Oun the other hand, the series to follow the splitting reduction of

one of two isomorphic types is zero or more substitutions that make the other union

uarcferenced, a splitting &f that union and then a series of the reduction replace two |
. ~

Al
isomorphic types by onc type. One replacement is required for each domain in the

a

two original unions .
T

: ¢
h One reduction climinates all simple recursion in a type and the other simplifies a

Lt ; ‘
tuple with the empty domain These usually commute except when the tuple with
the emPty'(lomain is a recursive domain of the type. Simplifying the tuplc elim-

. . A
! A . , .. . . . .
inates ‘all simple fecutsion in some cases. When it does not, the two reducno?m can

]

be d'onc in cither order then dropping a domain from the appropriale union gives iso-

norphic results.

o™ .
o

Simplify the valueless tuple eliminates all simple recursion in cases where the the

valueless tuple is the only recursive domain. After eliminating all simple recursion, a
o . ﬁ ~
structurally equivalent schema can be produced by simplifying the tuple, simplifying
a sequence of a valueless type, removing a singleton attribute from a tuple, and sim-
a -‘ N 3 . N } / l
plifying a single-attribute tuple.



5.3.5. Improving the Replacement System

-

Probably, some improvements could be made to tlul- replacement syatem but these
would require intense analysis  The pli'.oof of the Church-Rosser property requires eigh-
teen new sub-cases to add a single new reduc(‘i‘on Also, a new reduction might require
more reatrictions on the ap.plicutiou of existing reductions. For example, the reatrie.
tion on separation is required so that both it and elimination (}f sigple recursion could

beancluded, ™

‘ I -

Using inverse transformations has the potential of improving the replacement xys-

tem o particular, substitution has been restricted so the inverse reduction. ertrac-

tion, would be useful, Given 14~ database schema

I
{nl=(alircal.a2:(t) atring|t2:4n2})) n2=(t1:atring L2 {n2})},

+extracting n2's definition from nl would give

{nl=(al:rral.a‘Z'.;n‘Z),n‘2=(ll;,slrir.lg|l‘2-{n‘2})}

. . . - - '
Since n) refers I() n?in both schemas, the second schema is clearly superior (F the first

. . " A
because #1's definition is simpler,

There are several reasons why extraction i3 pot included in the replacement sys-

.
.

tem. To product a finite replacement system, a restriction on extraction would have

to be found th{:’l guarapteed that ab infinite sequence of extractions and. substitutions
did pot exist. To produce a Cl{urch-R’osser replacﬂement system, two problems would -
have to be o(ercqme. The first schema above illustrates one of these. Its definition of
nl reduces to nl;(}lz(alzrca(,aQ:atring)ItQ:(al:rcal,a?:{n2})). If that reduction is

. e . R
done then an ¢xtraction is not possible. For the improved replacement system to be

Church-Rosser, the definition of extraction must be general enough to detect any Rid-

. - .
den extractions. ]t is not obvious that this detection is computable.

[
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Assuming that i{ is possible to detect hidden extractions there is another serious

problem. To demonstrated this problem, the schema

\

{n1=(al:atring,a2:rcal,a3:{n2} at:{n3}),
n2=(al:string,a3:{n2}),n3=(al:string,a4:{n3})}

Either the definition of n2 or n3 can be extracted from nl but never both. If the
f . .
replacecment system is Church-Rosser, some arbitration of this conflict by the system iy

required, Since neither is intrinsically superior to the other, it would be extremely

difficult to incorporate extraction,

6.4. Interesting Results .

a

Ny - . N . \ . .
This section contains some results obtained by studying the consequences of hav-

ing a finite Church-Rosser replacement system for normalizing database schemas,

’

6.4.1. Properties of Normal Form Schemas

A pnormal form schema has the following properties,

1. Each type has values.

2. If a type refers to another type, the other type is recursive

3. If atype's highest-level constructor is a union then the type is-recursive. This fol-
lows ‘iymediately from. the point above. Recall t'hat. reductjon 3.9 splits an
unreferenced union typ‘e.

4. A unjon co'nstructor‘is the highest-level constructor of a type or the constructor of
the elemt-;its of a sequence. In other words, a union comnstructor ﬁev;r forms a

sub-expression of any tuple, set,"or union constructor.

»

s

. -

5. A tuple constructor never forms a sub-expression of a tuple constructor.

.



5.4.2. The Expressive Power of the Union Constructor
For any database schema, the replacement saystem produces a correapouding nor-
ntal form schema that is informationally equivalent ig the allowed manner to the Origi-

nal schema. This section presents a theorem and . a startling conjecture about the

expressive power of the anion type constructor, The theorem states that any database

schema s informationally equivalent 1o the allowed manner to (mt\'\ﬂ(h cach type

o 4 . . . Y ' . N
defined by dn expression that has no union’type constructors or is the union of gxpres-

sions that haye no union type constructors, The conjecture’is that every schema i~
. . \ N -

B ' N

informationally equivalent in the allowed manner to one with cach type defined by an
expression that has po union (vpe constructors what so ever, ‘If the conjecture ix

correct, all of the explicit unions in any database schema can be replaced by the impli-

cit union of all typesin some equivalent schema

Theorem 5.4 ) M

For any schema 5. there exist a schema 7 such that $= 85" and all types of 57,
. N *

. -

are cither of the form n=d where d has wuwo union constructors or
n=(t,d,|t,;d,| - - |t,:d,) where none of the d,'s has'a union constructor, -

/ | . . . - .
Proof (by construction) C

\ .

B -

Given any schema S construct an equivalent schema by thé following algorithm,
. - . »”

1 Use the replacement system to ﬁp}i a normal form schema S with Z;E A5
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'
\

2 Construct 8 from S by r«;;la'cmg ecach  aub-expression  of the form
N :
<(t;:d,[tad |- - |ty dyy> by the equivalent expression
(rl:<(‘»l;dl‘l-{: T(eyd, . <(ty:d, \ Ay <y Ly Ay ) > boo) )i
o<(tad, by <(t, &y <l iy e <Ay > ) > ) )
G <ty dy, o <t pdy Gy <dpg ) > )

A )

~

-

~

pon < dy e <Tdy ) >

t,. <d, >),
To sce that S'= , 5, starting with the replacement expression, apply many ((O(R°
LA g p I ppt A

transformations to get the onginal expreamon with the umon  The transformations

combine two scquences in a tuple (Section 43.10) and include a subordinate union's
domainas are the only ones requured

Since .S"='A.9 and 5= 5, the transitivity property gives 5= , 8

4

Conj'ecture .

Eor any schema 5, there exint a schema 57 such that = 5" and all types of 57

>

are of the forn n=d where d has no umon constructors,

’

Argument

For any schema examined, it is possible to construct an equivalent schema that has no
. O : » -

uhion constructors.
P ' \

Given any schema S, an outline of the method to produce S’ follows,

. _ < 2 o :
1 Use'the replacement system to find a normal form schema § that is equivalent to 5.
2 Repeat as long as possible.

a Do an appropriate finite sequence of substitutions that make some type simply

" recursive.

b Normalize the schema produced by the substitutions.

v

N
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. ‘ a
3 While the form of the database schemay
- s ‘ ' “’
{ry=d . .n.=d, conge (L d‘l}l.\“d‘:| I(‘:d“)_- -,n’-d’)l
modify 1 to ‘ -
' . . L) . ‘ . N A .
1, == =d,, . =d’ =d : -d .. -d
{T i ‘{l‘". S '”ll 'l.“".‘ ‘(n,‘,' . ':I‘K W :”’ ’)
where dis d with cach sub-expression n, replaced by (00, Mon, | Jten,)
. L A “ A
\ . |
1 Normalize the schema from 3 ‘ ®

oo . .
5 1o the manner deseribed vo Theorem & 4, chiminate from cach type any expressions
. . ..

v B

of the form <(t, d, }t.:d,| Ity dy)>

Fach of the steps mmotans ipformational equivalence 1n the allowed manner

.

The output of the final step does not have any vton constructors gince every differen
tvpe of them is eliminated. The vagueness of atep 2 is the reason that this conjecture
i not a theorem  The word appropriafe appears in atep 2a because schemas enists

where inappropriate substitutions can be repeated indefinitely .

. »
5.4.3. The Equivalence Probloins
. A )

The various equivalence relations naturally 1nduce problems to be studied  beter-

’

mining if two arbitrary database schemas are structurally equivalent is one of these

and is calld ¢ structural equivalence problee&};lly relating this problem to tw® van-

ations of the problem -of determinipgiif two directed graph are isomorphic, it can be

shown that the structural equivalepce prablem is NP-complete, (JAHU74] discusses

\§he NP-completeness of various problyms includmg' some graph-ison’forphism ones.)
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Theorem 5.5

The structural equivalence problem xx NP -dard,

ot
hl
Proof_
The uplabeled directed graph isomorphism problem is reduced to the structural
equivalence problem, This shows the Jater problem is NE-hard since the former prob.
lem ia known to be Ni*-hard  The reductipn is done by constructing a ncl‘vum from a
graph such that two graphs are isomofphic if and only if their respective schemas are
structurally equivalent,
From any direceted graph, construct a schema an follows,

For each node ¢ in the graph, assign a unique type name n,

If the node ¢ has arcs to the nodes 1,0, -+ and 5,
[ ) &

then define atype n,=(a:<n, >, 3(".1)"‘...'(’5.,,)- . ,n.‘;(n_‘}) in the schema,

Clearly, two graphs are isomorphic if and only if their regpective schemas are structur

’

ally cquivalent,

Normal-form equivalence
Since the replacement system of the last section has the finite Church-Rosser pro-
perties, another definition of equivalence is possible.- Two schemas 5, and Y, are

normal-form équivalent jf their normal forms are structurally equivalent.

The proof of Theorem 5.5 transforms a graph to a schema in pormal-form,
Therefof:iz;‘.the problem of determining normal-form equivalence is also NP-hard. In
fact, the proof transforms a graph to a schema in normal form with respect to a.
hypotheucal replacement system that uses all of the transformations of Sections 4.2

re

4.36"énd 4.4, Thus, the problem of determining normal-form equivalence would prob-

b ‘iy be NP hard regardless of the definition of the replacement system.

i’;

X
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Theorem 5.6

T'he structural equivalence problem s NP -complete
1 I

I’roof \
The atructural equivalence problem is NE-hard from the previous theorem and iy
0
is now reduced to an NI' complete problem to show that itis NEP-complete, The atru¢.
tural cquivalence problem iy reduced to the labeled directed graph isomorphiam prob
lem by constructing a graphs from a achema auch that 'lw.” schemas are atructurally
equivalent if and only if their respective graphd are iwm()rphﬁ.
From ascheman, conatruct a graph as follows,
The graph has a node for cach basic (vhe of the data model The node ia labeled
wi(l; the nawme of the basie type
For cach defined type in the schema, the graph has,
a node labeled with the Literal "name”
a et of nodes and edges determned by the expression that defines the type,
an edge from the lmdcl for the type to the primary node determined by the
expression that defines the type,
The primary node for the expression (a,:d,,a,:d,, - Yoy dy) in Iabeled "tuple”
- and has edges to the primary nodes determined by each of 4,'s. The other types
of expressions determine nodes and edges in a similar manner,

Clearly, two schemas are structurally equivalent if and only if their respective graphs

are isomorphic.



Chapter 6

‘ - Conclusions

The first section of this ehapter reviews the important results contained in the

theais, 1Uis followed by a scction containing some proposals for further work,

6.1. Review of Results
It was boped that this thesis would be a complete treatment of informational

issues of the semilattice data modelas Although the thesis falls short of that ambitious

. P
goal, it containy many siguificant results

The first of these results is a method of construeting a context-free grammar from
a semilattice database scheman, The language of the grammar has a strong relationship
o the domain of the semilattice schema, The language conxists of one or more of the
notations for each value in the domain. The corollary to this result ia that for any
type in any schema, it can be decided if the type has the empty domain, Knowledge of
valucless types is required by the corrective information- preserving transformations

that are described in Section 3.4,

\ .
The use of a context-free grammar to describe the domain of a schema is

appropriate since the domains of some schemas can not be descrivb(-d by regular gram-
mars, Theorem 3.2 shows that the notation - forl‘ the sch("mn
{nf(tl:(a:n,b:r‘cal)]tQ:alring)} is not a regular set. For any sc'hema of the abproprint:‘
nature, a proof of similar style can §how that its notation is not a regular set. Most
schemas with recursive types have the appropriate nature although some with valuc—‘

less types do not.

Recall that information-preserving tra:nsformations are required by the semilat-

tice data model. Their description is the first step in giving the model the ability to

<

|
Y

make applications independent of the conceptual schema. The transformations give a

method of showing that two schemas are informatjdnally equivalent. The

102.



103

transformations also supply the required methods of transforming data values
.
Chapter 4 deseribes almost twenty basic mformation-preserving transformations The
deseriptions apecify when and how a r«ch(-m;‘\ v transformed, They also describe how
to produce two ‘full(‘(i()nn Oue function 1x from the values of the original schema to
~he values of the other. The other function is from the values of the other schema to
the values of the original one When these functions are C()lll[;()ﬂ(‘(l one way, they are
the identity function on the ;lom:xin of one of the achema, When composed the other
way, they are the identity on the other domain, 1t is felt that all of these data

transformation functions can be replaced by queries once a query language exiats

Thix will allow the use of a well known, stronger definition of equivalence.

. Some of the transformations have been documented elsewhdére  The transforma.

tons repgove simple recuravon from a type, combine asmilar domaina of a wmon and

combine two sequences in a tuple are first reported 1o this thesis, The corrective

transformations, are also original work  Collectively, they eliminate all parts of a

schema that contribute noanformation

The major result of thix thesin is the second replacement systggn of Chapter s

The sysiem incorporates most of the informh(ion~prescrvin transformations of
.

Chapter 4. A scrics of examples is given to demonstrate the reasons for c.xcludlng
some transformations and for restricting others. It is Shown that the replacement sys.
tem Las the finite Church-Rosser property. In order for the system to hm)o this pro-
perty, involved definitions are needed for the reductio% that separates a type and the
rgduction that removes all simple recursion from a type. Although it was hoped that
no reduction with an involved deﬁqition would be‘ used, these two were accepted

because of their valye. These reductions greatly increase tHe normalizing power of the

replacement system.

The existence of a finite Church-Rgsser replacement system allows other results.

. ® »
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It gives a simple method to produce from a given semilattice database schema, a

schema that has few or no unton constructors and is informationally equivalent in the

allowed manner, The techmque iy given in the proof of Theorem 5.4, That theorem is
{

significant in its own right and hopefully will simplify the task of formulating and

proving other theorems about s¢milattice database schemas,

[

Showing that two srl’xcm:m are structurally equivalent is an NP-complete prob-
lerm. ‘This is shown in the proofs of Theorems 5.5 and 5.6, Although this means that
no ﬁ_impl(- general method of determining equivalence of schemas is possible, a heuristic
techuique work reasxonably well in most cases. In linear time, a profile of cach type (;u’
a .'sch(l'm:x is developed, Then only the isomorphisms that map types to those with an

identical profile are considered, Ty pically, the set of isomorphisma is small or empty.

Fortunately, an unexpected and higniﬁc.anl result is in the thesis, A new, simple
technique of showing finiteness of a rcplncéliy’n( system is described in Section 5.3.2.
This technique has good potential for general application because of its modular style
This facilitates quick development, understanding and modification of a finiteness

prool .n the same manner that modulanity aids software development.

6.2. Prﬁposals for Further Work o

Many possibilities for further work exist. When a query language of the semilat-

-a,

tice data model exists, Chapter 4 should be rewritten. The schema equivalence
définition of [AAB82] should be used and the data transformation fun(;tions should be
rewritten as queries. Also, work co.uld be AOne with cons‘trained schemas since many
data models allow constrajnts on schemas. Additional type coﬁstructors could also be

incorporated. Other data models permit types that are multi-sets; unique sequences,

or partitions.

The replacement systems in this thesis have involved transformations and rela-

tively simple elements, Despite its complexity, the second replacement system does
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4

not make some obvious and desirable reductions. Perhaps by considering aystems with
. Y
more involved elements, a simplier system that has greater normalizing povwer can be

- s f -

developed,

Other methods of normalization should be considered. This is especially impor-.

~Lantif the goal is to produce a nice equivalent schem®rather than a simple equivalent

!

-
a

schema, From the outset, the method of normalization sought was one that required a
' v
finite Church-Rosser replacement system . In retrospect, it is ¢lear that such a method

of normalization has disadvantages as well as the advantages mentioned in the intro-

”
-

duction. For instance, in order to have the Church-Rosser groperty, the accond
replacement system of (Zhapter 5 uses some transformations rather than their inverses,
Although these transformations give the appropriate behavior to the replacement sys-

tem, the result is that the normal form of some schemas is not conaise and intaitive.

Proving the conjecture of Section 5.4.2 is the most interesting proposal for
further work. That conjecture is that any semilattice database schema is information-
ally equivalent in the allowed manner to one that has no union type constructors, The
argument for the conjecture describes: a method of transforming a schema to an

i . . . - . : -
equivalent one with the desired property. Although this method worked in every case
/J .
considered, its description is vague and requires further work~ How is an "appropriate

i

rgcquence of substitutions” determined? Closely related to this problem is the need to

i

/ " ) ST .
i show that "as long as possible” is not forever in any case.

i

\
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