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Abstract

This thesis is concerned with the design and realization of higher-order high-resolution oversampled
¥-A analog-to-digital (A/D) converter configurations. The design and realization of a set of hitherto
feedforward and multiple-feedback X-A A/D converters is first reviewed. This is followed by an
investigation of the achievable signal-to-quantization-noise ratio, dynamic range, and stability of the
corresponding switched-capacitor (SC) hardware implementation for this set of X-A A/D converter
configurations. A novel statistical approach for the estimation of the maximum DC input signal
level for stable A/D converter operation is then presented. The hitherto X-A A/D converters
are usually based on, a) complementary signal and noise transfer functions, and/or b) unit-circle
noise transfer function zeros. This thesis is further concerned with the development of novel £-A
A./D converters having, instead, magnitude-squared or magnitude complementary signal and noise
transfer functions. The proposed A/D converters exhibit resolution and dynamic range properties
similar to those of the existing feedforward and multiple-feedback X-A A/D converters, but offer
increased stability performance in the presence of capacitor mismatches in the corresponding SC
hardware implementations. In addition, the SC hardware implementation of the resulting A/D
converters leads to a capacitance spread which is comparable to that of hitherto £-A A /D converters.
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Chapter 1

Introduction

In its most general sense, a signal is used to convey information. One can distinguish between two
classes of signals. The signals within the first class have a value defined at all times and are referred
to as continuous-time signals. An example of such a signal is the reading from a thermometer which
can be taken at any time. The signals within the second class have values defined only at specified
time instances and are referred to as discrete-time signals. A typical example of this type of signal
is a graph of daily precipitation as functions of time.

One can further characterize continuous-time and discrete-time signals in terms of their range of
values. If a signal can take on any value within a specified range, it is referred to as a continuous-
amplitude (non-quantized) signal. On the other hand, if the signal can take on only a finite number
of values from a specified range, it is referred to as a discrete-amplitude (quantized) signal. An
example of a continuous-amplitude signal is the reading taken from a mercury thermometer. If the
temperature reading was taken from a thermometer with a digital display, then this would be a
discrete-amplitude signal.

Two important types of signals exist, namely, analog signals and digital signals. An analog signal
is a signal which is both continuous in time and amplitude, whereas a digital signal is a signal which
is both discrete in time and amplitude. The images, sounds, and smells that we perceive everyday
are examples of analog signals. An example of a digital signal is a photograph taken with a digital
camera as the photograph is stored in memory inside the camera.

With the invention of transistors and eventually the modern-day digital computers (digital signal
processors (DSP)), digital signals are found in a wide variety of applications. Given that all perceived
signals are analog signals and that they are to be processed digitally (using a digital signal processor),
some type of conversion between the two types of signals is required. The process of converting an
analog signal to a digital signal is referred to as analog-to-digital (A/D) conversion. The digital
output of such a system is then processed by a DSP and may then be converted to an analog signal
through the reverse process called digital-to-analog (D/A) conversion. Figure 1.1 shows a simple
block diagram of a typical digital signal processing system.



Analog — A/D DSP D/A |— Analog
Input Signal / / Output Signal

Figure 1.1: Typical Digital Signal Processing System

One can distinguish between two types of A/D converters!, namely, Nyquist-rate and oversam-
pled A/D converters. Nyquist-rate converters are used in high-speed applications, such as video and
radar signal processing, as they convert the minimum possible number of analog input signal sam-
ples to their corresponding digital counterparts. However, the precision of the analog components
constituent in the hardware implementation of the Nyquist-rate A/D converters limits the resolution
(i.e. the number of bits) in the digital output signal samples. Further difficulties are encountered
with the anti-aliasing filter as it must realize a sharp transition band to bandlimit the input signal
spectrum. Oversampled converters, on the other hand, find application in lower speed applications
such as digital hearing aids, as they convert a larger number of analog input signal samples to their
corresponding digital representations. As a result of taking more input signal samples, the anti-
aliasing filter can be realized in a straightforward fashion. Moreover, oversampled A/D converters
can achieve high-resolution by using even low tolerance analog components, making them easier to
implement than their Nyquist-rate counterpart.

The present thesis is concerned with a practical representative type of oversampled A/D con-
verters, namely, the £-A A /D converters. Section 1.1 introduces the process of sampling and quan-
tization. Section 1.2 is concerned with Nyquist-rate A/D converters while Section 1.3 is concerned
with oversampled A/D converters. Section 1.4 introduces the basic concepts of oversampled Z-A
A/D converters. The hardware implementation of £-A A/D converters is then considered in Section
1.5. Section 1.6 is concerned with a discussion of some existing problems associated with ©-A A/D

converters. Finally, an overview of this thesis is presented in Section 1.7.

1.1 A/D Conversion

All A/D converters must convert a continuous-time continuous-amplitude (analog) signal to a
discrete-time discrete-amplitude (digital) signal. The first task may be accomplished through a
process called sampling, while the second task may be accomplished through a process called quan-
tization. The general process is shown in Fig. 1.2, where an analog input signal u(t) is first sam-
pled by a switch which opens and closes at the sampling frequency f, to produce a discrete-time
continuous-amplitude signal u*(n). The signal u*(n) is then quantized to produce the digital signal
u(n).

The function of the quantizer is to map a signal defined over a continuous range of amplitudes
to a signal defined over a discrete set of amplitudes. The simplest quantizer is the one-bit quantizer

!The same considerations apply to the corresponding D/A converters.
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Figure 1.2: Generalized A/D Converter

Vout

Figure 1.3: One-Bit Quantizer

shown in Fig. 1.3, having only two output levels V and —V corresponding to the digital output
‘1’ and ‘0, respectively. When the quantizer input signal is less than zero, the quantizer generates
an output —V, and when the quantizer input signal is greater than or equal to zero, the quantizer
generates an output V.

The quantizer is characterized by the number of output bits N and the quantization step size
A. The number of bits N produced by the quantizer determines the number of quantizer levels Q

in accordance with
Q=2". (1.1)

The quantization step size A is in turn determined by the maximum output (input) signal amplitude

V and the number of quantization levels Q in accordance with

2
A= o-1 (1.2)
By replacing Q in Eqn. 1.2 from Eqn. 1.1, one obtains
2V 2V
A"gn_1~§W for N>1. (L.3)

The process of quantization may be most easily described by example.
Ezample: A quantizer which produces a two-bit (N = 2) output has four output levels Q (Q = 23,
c.f. Eqn. 1.1) corresponding to the quantizer shoum in Fig. 1.4, where the quantizer step size A can



Table 1.1: Quantizer Output Signal Levels

v(n,) Output Level { Output Code
-V<v(n)<-V+A -V 00
-V+A<vyn)<0 -V+A 01
0<v(n)<V-A V-A 10
V-A<v(n)<V v 11
Vout
|4
-V -Vv+A V-A
—— ——t— Vi
-V+A Vv-A V
Vv —

Figure 1.4: Four-Bit Quantizer

be determined from Egn. 1.3 as

2V
A= s (1.4)
2V
= T. (1.5)

Consider the quantizer input signal v(n) at sample time n,. The corresponding output of the quan-
tizer may be determined from Table 1.1.
As far as the sampling process is concerned, one may distinguish between two classes of A/D

converters, namely Nyquist-rate A/D converters and oversampled A/D converters.

1.2 Nyquist-rate A/D Converters

Nyquist-rate A/D converters sample the analog input signal at the Nyquist-rate f, = 2f,, where
fo is the highest frequency component of the input signal (Oppenheim et. al., [1]). If the input
signal is not bandlimited to f;, an anti-aliasing filter must be used before the sampling process takes
place (to prevent aliasing). Figure 1.5 shows the spectrum of the sampled input signal. A typical
frequency response of the anti-aliasing filter is shown in Fig. 1.6. Notice that the response of the
anti-aliasing filter must have a very narrow transition band to ensure that the filtered signal is not
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Figure 1.6: Anti-Aliasing Filter Requirement for Nyquist-Rate A/D Converters

magnitude distorted and does not contain any frequency components above 12'- The necessity of a
narrow transition band makes the anti-aliasing filter difficult to realize.

Due to the nonlinear nature of the quantizer, any system employing a quantizer becomes compli-
cated to analyse. Since the quantizer is introducing an error into the system, one may regard it as an
additive white noise source, characterized by a quantization noise signal e(n), with equal probability
of lying anywhere in the range :t%. As a result of this characterization, one may determine the
quantization noise power to be (Candy et. al., [2])

=5 (1.6)

An important performance measure of any A/D converter is the signal-to-quantization-noise ratio

(SQNR). It is most generally defined as the ratio between the signal power o2 and the quantization

noise power o2, as

SQNR =

@ o)

By substituting Eqn. 1.3 into Eqn. 1.6, one may find the quantization noise power o2, as

2 __V?

Tog = m. (1.8)

By substituting Eqn. 1.8 into Eqn. 1.7, one is led to the well known result

SQNR4p = lmoglo% +6.02N +4.77. (1.9)
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Figure 1.7: Successive Approximation Search Path

It is easily noticed from the above equation that each additional bit of quantization increases the
SQNR by 6 dB.
Ezample: Consider a standard compact disc which requires a sampling frequency of 44.1 kHz (to
sample the 20 kHz bandlimited input signal) and 96 dB of SQNR. Using the largest sinusoidal input
signal possible (with an amplitude of V and the power VT’ ) and solving for N in Egn. 1.9, one finds
that a 16-bit quantizer is required (i.e. N =16).

Nyquist-rate A/D converters can fall into one of two broad categories, namely serial and parallel
(J. M. Demler (3]). Typical examples of serial converters include successive approximation, bit-serial
pipelined, and algorithmic A/D converters. The most popular type of Nyquist-rate A/D converter
is a parallel converter known as a flash A/D converter. The basic operation of the successive

approximation and flash A/D converters will be discussed in the following two subsections.

1.2.1 Successive Approximation A/D Converters

The most widely used type of Nyquist-rate A/D converter is the successive approximation converter
(J. M. Demler, [3]). After each clock period, one bit of the digital word is resolved with the most-
significant-bit first. This type of conversion is best described as a tree-type search as shown in Fig.
1.7 (J. M. Demler, (3]). In this example, at the start of the conversion cycle, the input voltage level
Vin is compared to half the reference voltage V. If V;, is greater than half of V,.;, then B, is set
to 1 and the search continues up the tree. Otherwise, B, is set to 0 and the search continues down
the tree. In this way, if B; was set to one, then in the next iteration the input voltage level V;, is
compared to three quarters of the reference voltage V;.s to determine B;. A N-bit result requires

N comparisons of this nature.
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Figure 1.8: Flash A/D Generalized Architecture

1.2.2 Flash A/D Converters

The flash A/D converter outputs a digital word every clock period, making it the fastest A/D
converter (J. M. Demler, [3]). The basic flash A/D converter configuration is as shown in Fig. 1.8.
For a N-bit output word, (2¥ — 1) comparators are required making this type of A/D converter
very expensive in terms of hardware. Every additional bit of resolution that is added doubles the
amount of circuitry required, thus increasing power consumption (J. M. Demler, {3]). The resistor
string is responsible for generating each quantizer voltage level from the reference voltage V;.s. Each
comparator compares the input voltage V;,, level to the corresponding quantizer voltage level. If the
input voltage V;, is less than the quantizer voltage level, the comparator outputs the voltage level
corresponding to the digital bit 0. Otherwise, the comparator outputs the voltage corresponding to
the digital bit 1. The input to the encoder and decoder logic is a (2 — 1) bit thermometer code

which is then coded into N-bits.
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Figure 1.10: Anti-Aliasing Filter Requirement for Oversampled A/D Converter

1.3 Oversampled A/D Converters

Oversampled A/D converters sample the input signal at a rate higher than the Nyquist-rate. The
degree to which the input signal is oversampled is referred to as the oversampling ratio (OSR) defined

in accordance with

=S
OSR =3t (1.10)

The spectrum of the sampled input signal in oversampled A /D converters is shown in Fig. 1.9. Notice
that to ensure the analog input signal is bandlimited to f,, an anti-aliasing filter with a frequency
response as shown in Fig. 1.10 is required. One may notice from the figure that the transition band
of the anti-aliasing filter can be significantly relaxed as compared to that of Fig. 1.6 for the Nyquist-
rate A/D converter. In the remainder of this thesis, it is assumed that the analog input signals to all
A/D converters have been filtered by an appropriate anti-aliasing filter to avoid undesirable aliasing
effects.

The noise power 02, in the case of Nyquist A/D converters was given by Eqn. 1.6. In the case
of oversampled A/D converters, the noise power o3, is given by (Candy et. al., [2])

2
%= T osE

By substituting for A from Eqn. 1.3 into Eqn. 1.11, and, in turn, by substituting the result into the

(1.11)

expression for SQNR from Eqn. 1.7, one gets

SQNR4p = 1010910% + 6.02N + 10log100SR + 4.7712. (1.12)
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Figure 1.11: Generic A-Modulator

This result implies that the noise power is inversely proportional to the sampling frequency f,.
Consequently, a doubling of the sampling frequency leads to a 3 dB increase in SQNR.
Ezample: Consider a standard 20 kHz audio signal. In order to achieve 96 dB of SQNR, Eqn.
1.12 implies that a N = 12-bit quantizer employing an oversampling ratio of OSR = 160 is required
(assuming a sinusoidal signal with amplitude V and with the power VT’- )-

Two widely used types of oversampled A/D converters exist, namely, a) A-modulators, and b)
¥-A A/D converters.

1.3.1 Oversampled A-Modulators

A widely used oversampled A /D converter is known as a A-modulator. A simple block diagram of a
A-modulator is shown in Fig. 1.11 (B. P. Lathi et. al., [4]). In this configuration, the quantizer is in
the feedforward path while the integrator is in the feedback path. The difference between the input
signal u(t) and feedback signal i(t) is quantized. The signal 4i(t) tries to follow the input signal.
A-modulation suffers from a condition known as slope overload. In this condition, the input signal
u(t) changes too fast for the feedback signal i(t) to follow it. The maximum change that i(t) can
track is given by f,A, where f, is the sampling frequency and A is the quantizer step size. As an

example consider a sinusoidal input signal
u(t) = Acoswt. (1.13)

Then, the maximum slope of the input signal u(t) may be determined as

d:—?) = —Awsin(wt), (1.14)
du(t)| _
T = Aw. (1.15)

In order to avoid the slope overload condition, it is required that
Aw < f,A. (1.16)

The next section is concerned with oversampled £-A A/D converters, the main theme of the

present thesis.



1.4 X-A A/D Converters
1.4.1 First-Order -A A/D Converter

The general configuration of an oversampled £-A A/D converter contains a loop filter H(z) and
a one-bit quantizer embedded in a feedback loop as shown in Fig. 1.12, where u(n) represents the

u(n) £ H(z) ;F y(n)

Figure 1.12: Generic £-A A/D Converter Configuration

input signal and y(n) represents the corresponding output signal. In its simplest form, H(z) is an
integrator as indicated in Fig. 1.13. By inspection of this X-A A/D converter one may obtain an
expression for the output signal y(n) in terms of the input signal u(n) and quantizer noise signal
e(n) (defined in Section 1.2) (Candy et. al., [2]) as

y(n) =u(n—1) +e(n) —e(n—-1). (1.17)
Through the application of the z-transform, one may obtain the expression
Y(z) =2z"WU(z) + E(z)(1 - z71) (1.18)

where Y (z) represents the z-transformed output signal, U(z) represents the z-transformed input
signal, and E(z) represents the z-transformed quantization noise.

Let us define the signal transfer function as

Y(2)
STF(z) = . 1.19
()= (1.19)
and the noise transfer function as
Y (2)
= —. 1.
NTF(z) = & ) (1.20)
Then, from Eqn. 1.18 it follows that
STF(z) =z71, (1.21)
e(n)
u(n) z! + y(n)

Figure 1.13: Single-loop %-A A/D Converter Configuration
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Figure 1.14: Signal and Noise Transfer Function for Single-Loop £-A A/D Converter Configuration

and
NTF(z)=1-z"1. (1.22)

This A/D converter is referred to as a first-order £-A A/D converter as the maximum power of 27!
in the noise transfer function is 1. A magnitude-frequency plot of STF(z) and NTF(z) is shown
in Fig. 1.14. As is evident from Fig. 1.14, the noise gain is very small at low frequencies (in the
signal band) and becomes larger at higher frequencies. For this reason, £-A A/D converters are
known as noise shaping converters, meaning that the noise is shaped away from the signal band.
Furthermore, since the noise has a highpass characteristic, this converter is known as a lowpass =-A
A/D converter. As explained in the previous section, the quantizer may be replaced by a uniformly
distributed additive white noise source e(n). An analysis of the first-order £-A A/D converter
reveals that the quantization noise is given by (Candy et. al., [2])

o2, = %2%2 2%)3- (1.23)

Substituting the definition of OSR given by Eqn. 1.10 into the definition of SQNR given by Eqn.
1.7 results in

SQNRyp = 1010910% + 30‘091005}! —-04. (1.24)

11
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Figure 1.15: Theoretical SQNR versus Input Signal Amplitude

From the above equation, each doubling of the oversampling ratio improves the SQNR by 9 dB.
A plot of Eqn. 1.24 is shown in Fig. 1.15 for OSR = 256. As evident from Fig. 1.15 the peak-
SQNR (PSQNR) of 68.8 dB is achieved with an input amplitude of 1. It is expedient at this time
to define the dynamic range (DR) as the negative of the input amplitude where 0 dB SQNR is
achieved (Norsworthy et. al., [5}). In this case a DR of 68.8 dB is observed.
Ezample: Consider a standard 20 kHz audio signal. If a SQNR of 96 dB is to be achieved, Eqn. 1.2
implies a sampling frequency of 81.92 MH: is required (assuming a sinusoidal signal of amplitude V
and the power ‘Vz_’ ).

1.4.2 Motivation for ¥-A A/D Converters

The main motivation behind employing £-A A/D converters is the ability to obtain high SQN Rs
by using a very simple (coarse) one-bit quantizer. Furthermore, the A/D converter may be imple-
mented using high tolerance analog components, implying that they are not sensitive to noise and

interference.

1.4.3 Disadvantages of ¥-A A/D Converters

From the generic £-A A/D converter shown in Fig. 1.12, it is possible to rearrange the loop filter
H(z) and produce the equivalent model shown in Fig. 1.16. Notice that the A-modulator is exactly
the same as the X-A A/D converter with the exception that the input signal u(t) is filtered by H(z)
before the summing block.

Given that X-A A/D converters are based on A-modulators, a similar phenomenon to slope

12
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a(t)

H(z)

Figure 1.16: Generic £-A A/D Converter Configuration

e(n)
}
+ y(n)

Figure 1.17: A Second-order £-A A/D Converter

overload is observed, namely, instability. In (Borsodi, [6]), the quantizer is said to be overloaded

when
gin(n)| > Q%, (1.25)

where g;,(n) represents the input signal to the quantizer. As a result it was shown in (Borsodi, [6])
that in the case of a first-order £-A A/D converter, the maximum input amplitude A, is defined in

accordance with
A <@-13. (1.26)

When this relationship is not satisfied, the X-A A/D converter exhibits unstable operation. In
higher-order £-A A/D converters, no analytic solution of the maximum input signal exists and
must be discovered through extensive simulations. Therefore, the design of stable higher-order £-A

A/D converters is usually done through a trial-and-error process by experienced designers.

1.4.4 Higher-Order X-A A/D Converters

The motivation to employ higher-order %-A A/D converters is to obtain an improvement in the
noise attenuation in the signal band without increasing the sampling frequency. As a result of
this improved noise attenuation, the SQNR is increased as compared to the first-order £-A A/D
converter. The simplest case of a higher-order converter is the second-order £-A A/D converter

shown in Fig. 1.17.
The output of this type of £-A A/D converter can be determined to be (Candy et. al., [2])

y(n) = u(n - 1) + (e(n) — 2¢e(n — 1) + e(n — 2)). (1.27)

13
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Figure 1.18: Cascaded £-A A/D Converter Configuration

A further analysis of this A /D converter reveals that the quantization noise power is given by (Candy
et. al., [2])

a2, = %2%‘%5. (1.28)

By employing a one-bit quantizer, the following expression is obtained for SQNR
SQNRyp = lOlogm% + 1.82 + 50l0g,0OSR. (1.29)
This result implies that the SQNR is increased by 15 dB for every doubling of the oversampling

ratio (OSR).

Ezample: Consider a standard 20 kHz audio signal. If a SQNR of 96 dB is to be achieved, Eqn.
1.29 implies that a sampling frequency of only 3.52 MH: is required (assuming a sinusoidal signal of
amplitude V and the power -‘%’- )

1.4.5 Cascaded -A A/D Converters

A very widely used form of £-A A/D converters is the cascaded configuration shown in Fig. 1.18
(Aziz et. al., [7]). In this configuration, the quantization error from the first converter is the input
to the second converter. The output signal from each converter is then summed in an attempt to
cancel the noise from the first converter. A simple analysis of the configuration leads to the following
expressions for the two quantizer output signals Y;(z) and Ya(z)

Yi(z) = U(2)z™! + Ea(2)(1 - z71), (1.30)

Ya(z) = Er(2)z7! + Ea(2z)(1 - z7Y). (1.31)
The overall output of the system is given by

Y(z) =Yi(z)z7! - Ya(2)(1 - 27}) (1.32)

=U(z)z72 - Ea(z)(1 - z7 1) (1.33)

14



Notice from Eqn. 1.33 that the noise term E;(z) has been eliminated. In this way, the noise in the
output signal Y'(z) has been reduced without resorting to higher order structures where stability may
be a problem. However, this type of configuration is highly susceptible to component mismatches
(Aziz et. al., [7]).

1.4.6 Bandpass £-A A/D Conversion

Thus far, only lowpass £-A A/D converters have been discussed. In particular, the noise transfer
function has had a highpass magnitude-frequency characteristic while the signal transfer function
has had a lowpass magnitude-frequency characteristic. Another type of converter is known as a
bandpass £-A A/D converter, as first introduced in (Schreier et. al., [8]). This type of converter
features a bandstop noise transfer function and a bandpass signal transfer function. Such converters
find applications in AM digital radios or receivers for digital cellular mobile radios (Aziz et. al., [7]).
Recall that in the case of lowpass £-A A/D converters, the oversampling ratio is a function of
both the sampling frequency f, and the bandlimiting frequency f, of the input signal. In order to
have a large oversampling ratio with a high bandlimiting frequency f;, the sampling frequency f,
must also be large.
Ezample: Assume OSR = 64 and f, = 400 kHz. In accordance with the definition of OSR from
Egn. 1.10, a sampling frequency of f, = 51.2 M Hz must be employed.
In the case where the input signal does not have frequency content in the region 0 to f, (fo < fi),
noise may be shaped into this region. The oversampling ratio is then defined as

_ fs
OSR = AL (1.34)

In this way, the oversampling ratio is a function of the sampling frequency f, and the signal band-
width f, — f, (as opposed to the bandlimiting frequency f, only). As a result, if the bandlimiting
frequency f; is large, as long as f, > 0, the sampling frequency does not need to be excessively
large.

Ezample: Assume OSR = 64, f, = 400 kHz, and f, = 300 kHz. In accordance with the definition
of OSR' from Eqn. 1.34, a sampling frequency of f, = 12.8M Hz must be employed.

In the case of lowpass A/D converters, the noise was attenuated at frequencies in the range 0
to f». This was done by placing the zeros of the noise transfer function in this frequency range. In
the case of bandpass A/D converters, on the other hand, the signal occupies a frequency range f,
to fu, where f; < f,. In this way, the noise may occupy the frequencies from 0 to f, and from f to
fs/2. To facilitate this characteristic, the zeros of the noise transfer function must be moved to the
frequency region f, to f;.

Feedforward and multiple-feedback X£-A A/D converters are a class of converters which are
capable of realizing bandpass signal transfer functions and bandstop noise transfer functions. Typ-
ical examples include the cascade-of-integrators, the cascade-of-resonators, and their combination,

namely the cascade-of-resonators/integrators (see Section 3.2).
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Figure 1.19: First-Order £-A A/D Converter SC Hardware Implementation

1.5 Switched-Capacitor Hardware Implementation of Over-
sampled -A A/D Converter Configurations

For the most part, £-A A/D converters are implemented using switched-capacitor (SC) circuits
(Candy et. al., [2]). Such circuits are widely used in digital signal processing and are relatively
cheap to manufacture as compared to continuous-time implementations. Furthermore, SC circuit
hardware implementations are advantageous for low-power low-voltage applications (Shahriar et.
al., [9]).

Consider the SC hardware implementation of the first-order £-A A/D converter shown in Fig.
1.19. An analysis of this circuit reveals that

Y) &
6 e (1.35)
Y __z-1 (1.36)

E(z) z-1-8°

When C) =1, C; =1, and C3 = —1, the signal and noise transfer functions are equivalent to those
previously determined for the first-order £-A A/D converter. However, during the manufacturing
process, these capacitors may differ from their nominal values by up to 0.5% (Schreier et. al., [10]).
As a result, different signal and noise transfer functions are realized which may affect the achievable
SQNR and dynamic range performance of the A/D converter. In fact, the effect of capacitor

tolerances may even result in unstable A/D converter operation.
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1.6 Open Problems in £-A A/D Conversion
1.6.1 Design

The design of £-A A/D converters is heavily based on a trial-and-error process. After a signal and
noise transfer function have been obtained (by approximation), extensive simulations are required to
ensure that the A/D converter provides adequate SQN R and DR performance. In addition, Monte-
Carlo analysis is required to determine the effect of capacitor mismatches in a corresponding SC
hardware implementation on the achievable SQNR, DR, and stability performance of the resulting
A/D converter. Several attempts have been made to address the problem of achieving a desired
SQNR and DR performance level. These attempts rely on extensive simulations to determine a set
of guidelines relating the oversampling ratio and the order of the converter to the achievable SQVR.
The most notable set of guidelines was made by (Kuo et. al., [11]). Other attempts by (Lee, [12])
and (W. M. Snelgrove et. al., [13]) amount to limiting the out-of-band noise transfer function gain so
as to achieve high stability. However, the design of high-resolution, high-dynamic range oversampled
E-A A/D converters having low sensitivity to capacitor mismatches in a corresponding SC hardware

implementation still remains an open problem.

1.6.2 Stability Prediction

As mentioned in the previous subsection, the successful design of -A A/D converters is heavily
dependent on extensive simulations to determine the achievable SQNR and dynamic range. The
problem of predicting dynamic range has also been studied in the hitherto literature, the most
notable was the statistical estimation technique by (Ardalan et. al., [14]). This technique provides
an estimation of the maximum DC input signal to the A/D converter. However, this technique is
suitable for ¥-A A/D converters having Gaussian distributed quantizer input signals. Extending
this technique to arbitrarily distributed quantizer input signals still remains an open problem.

1.7 Overview of the Thesis

Chapter 2 is concerned with the characterization of five practical feedforward and multiple-feedback
2-A A/D converter configurations. These configurations are characterized in terms of two important
features, namely, a) the location of their noise transfer function zeros with respect to the unit-circle
in the complex z-plane, and b) the relationship between their constituent signal and noise transfer
functions.

Chapter 3 presents a design procedure for feedforward and multiple-feedback £-A A/D converter
configurations. This design procedure is based on a set of high-level system design specifications
and proceeds in a step-by-step manner. Each of the five feedforward and multiple-feedback A/D
converters are then designed and simulated to determine, a) the effect of the noise transfer function
zeros on the achievable SQN R and dynamic range (DR), and b) the effect of capacitor mismatch on
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the SQNR and DR in a corresponding SC hardware implementation using Monte-Carlo analysis.
To estimate the maximum DC input signal level, a hitherto statistical technique is employed. This
statistical technique is based on several assumptions, the most restricting of which is that the
quantizer input signal is Gaussian distributed. A novel statistical approach is then presented which
generalizes the hitherto technique to the case of arbitrary quantizer input signal distributions. Design
examples are presented to demonstrate and compare the hitherto and proposed statistical techniques.

Chapter 4 is concerned with the design and realization of a novel class of -A A/D converters
based on magnitude-squared or magnitude complementary signal and noise transfer functions. These
novel £-A A/D converter configurations are obtained by modifying the existing configurations.

Chapter 5 is concerned with an investigation of the proposed class of Z-A A/D converters. It is
demonstrated that the A/D converters in this class exhibit a high degree of stability in the presence
of capacitor mismatches in their corresponding SC hardware implementation when compared to the
existing converters. It will further be demonstrated that the achievable SQN R and DR remain very
similar to that achieved by the feedforward and multiple feedback converters.

Chapter 6 presents the final conclusions of this thesis and presents some research topics suitable

for future work.
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Chapter 2

Feedforward and Multiple-feedback
¥-A A/D Converter Configurations

2.1 Introduction

A generic £-A A/D converter is shown in Fig. 2.1, where U(z) represents the z-transformed input

signal, and where Y'(z) represents the :-transformed output signal. In design situations, the

U(z) — G(2) z H(z) _]J— Y(z)

Figure 2.1: Generic £-A A/D Converter Configuration

E(z)

U(z) G(z) > H(2) > Y(z)

Figure 2.2: Generic Linear $-A A/D Converter Configuration

constituent quantizer is usually replaced by a uniformly distributed additive white noise source
(Candy et. al., [2]) as shown in Fig. 2.2, where E(z) represents the (z-transformed) quantization
noise. Then, the A/D converter may be characterized by the signal transfer function STF(z) and
the noise transfer function NTF(z) in accordance with

S(2)

STF(z) = %}% =G() 50, 1)
_ 1 _ N(=)
NTF@) = t—pr= = 5 2.2)
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From the definition of NTF(z) given in Eqn. 2.2, one may express H(z) in accordance with

H(z) = %Z)D(‘). (23)
By substituting this expression for H(z) into Eqn. 2.1, one gets

D(z)

If G(z) is assumed to be a polynomial in z, then one may note from Eqns. 2.4 and 2.2 that the
signal and noise transfer functions share a common denominator. Furthermore, if G(z) = 1 then,
the numerator of the signal transfer function may be formed in accordance with,

S(z) = N(z) — D(z). (2.5)

A relationship between the signal and noise transfer functions may then be formed in accordance
with

NTF(z) - STF(z) =1. (2.6)

When a given signal and noise transfer function satisfy Eqn. 2.6, they are said to be complementary

transfer functions. One of the main practical advantages of such a pair of transfer functions is that

by deriving the noise transfer function (or the signal transfer function) the signal transfer function

(or the noise transfer function) can be easily obtained from Eqn. 2.6, thus eliminating the need to

derive both transfer functions.

It is expedient to recast the polynomial D(z) in the form
D(z) = 27D, (2.7)
and the polynomials N(z) and S(z) in the forms
N(z) = 27N, (2.8)
S(z) = 27, 2.9

where ZT = [2°,271,2-2,...  2~N], where D, NV, and S are column vectors of length (N +1) whose
entries depend on the system parameters of the £-A A/D converter, and where N is the order of
the A/D converter. In this way, by invoking Eqns. 2.7, 2.8, and 2.9 in Egn. 2.5, one obtains

D=N-38. (2.10)

In addition to the relationship between the signal and noise transfer functions, the position of the
noise transfer function zeros is also of particular practical interest. The zeros of the noise transfer
function NTF(z) are directly related to the poles of the loop transfer function H(z). For maximum

noise attenuation, the zeros of the noise transfer function must be located directly on the unit circle.
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Figure 2.3: Cascade-of-Integrators £-A A/D Converter Configuration

This chapter is concerned with characterization and practical realization of five widely used
feedforward and multiple-feedback ©-A A/D converter configurations. In particular, Section 2.2
introduces these £-A A/D converter configurations, and characterizes them in terms of the com-
plementarity of their signal and noise transfer functions and in terms of the location of their noise
transfer function zeros. It will be shown that three cases exist with respect to the complementarity
of the signal and noise transfer functions and that three different cases exist with respect to the
location of the noise transfer function zeros. In addition, a technique is presented to determine the
parameters of each ¥-A A/D converter configuration starting from given signal and/or noise trans-
fer functions. Finally, a simple method is described for obtaining the corresponding SC hardware
implementation associated with each ©-A A/D converter configuration.

2.2 Five Widely Used Feedforward and Multiple-Feedback
£-A A/D Converter Configurations

2.2.1 Cascade-of-Integrators -A A /D Converter Configuration

The cascade-of-integrators (COI) ©-A A/D converter configuration, developed in (Lee et. al., [15])
and shown in Fig. 2.3, features both feedforward and feedback signal paths. In order to determine
the contribution of the multiplier coefficients A;_x and B;_n on the signal and noise transfer
functions, a detailed analysis of the COI £-A A/D converter configuration can be undertaken. The
results of this analysis show that the numerator of the signal transfer function is given by

N
S(z) =) Az - 1)V, (2.11)

=1
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the numerator of the noise transfer function is given by

N
N(z)=(z-1)" =) Bi(z- )V, (2.12)

=1

and the denominator of the signal and noise transfer functions is given by
D(z) = N(z) - S(2). (2.13)

Evidently, the COI £-A A/D converter configuration guarantees the complementarity of the signal
and noise transfer functions (c.f. Eqns. 2.13 and 2.5). Furthermore, the multiplier coefficients B;_
determine the location of the noise transfer function zeros and the multiplier coefficients 4,_n
determine the location of the signal transfer function zeros (c.f. Eqns. 2.12 and 2.11, respectively).

To realize a given signal or noise transfer function, one must determine the corresponding A and

B multiplier values. It can be shown that these multiplier values are given in accordance with

AT =CtorS (2.14)
BT = C3loiN, (2.15)

where A = [0,A,,A2,--- ,An], where B = [1,B,,Bs,--- ,By], and where C;cor and Cacor are
(N + 1) x (N + 1) matrices. Moreover, the matrices Cicor and Cacos may be determined as
described in the following.

First, let us form the polynomials L;(z) = (1 — z7!)® for i = 1,2,---,N. Then, by recasting
these polynomials in the form L;(z) = Z7L;, one obtains the column vectors £; of length (i + 1).

It can be shown that the matrices Cicor and Cacor have the forms

[0 o 0 ]
0 Ly 0
0 Ly_2 - 0 0
Ccor=| . N-2 . o (2.16)
Ly 0
| Lo |
[ Ly 0 o - 0 ]
—Ln_y 0 eee 0
Cacor = —Ly_2 - O (2.17)
I -Lo |

The salient features of these matrices are, a) they are lower triangular, reducing the computational
cost required for their inversion, and b) they are independent of the multiplier coefficients A and B.
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As an example, by considering the case of N = 4, one has

Cicor =

and

Cacor =

[

- O @ ©

-0 O O ©

o © o o

-1

-l

(2.18)

(2.19)

The COI £-A A/D converter configuration must be replaced to its corresponding SC hardware
implementation for practical realization. By inspection of the COI A /D converter configuration, one
may note that the configuration is composed of three primary elements, namely, a) an integrator, b)
a multiple weighted input adder, and c) a combined adder (with multiple weighted inputs !) and an
integrator. The corresponding SC hardware implementation of each of these elements is shown in

Fig. 2.4. As an example consider the 2-nd order COI A/D converter configuration shown in Fig. 2.5,

where the each primary element has been enclosed in a dashed box. Then, by replacing the primary

elements by their corresponding SC hardware implementations as shown in Fig. 2.4, one obtains the

overall SC hardware implementation of the second-order COI A/D converter configuration as shown

in Fig. 2.6, where the dashed boxes enclose the corresponding SC hardware primary elements.

1Later in this chapter it will be shown that some inputs to the adder are weighted by a constant and a unit-advance

term z.
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Figure 2.5: Identification of the Primary Elements in a 2-nd Order COI A /D Converter
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Figure 2.6: Corresponding SC Hardware Implementation of a 2-nd Order COI £-A A/D Converter
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Table 2.1: Cascade-of-Integrator Nominal Capacitor Values

Capacitor | Value || Capacitor | Value | Capacitor | Value || Capacitor | Value
CB, B, CA A cX, 1 CHh 1
ChB, B, CA, A, CcX, 1 CF,; 1
CBn By CANn AN CXn41 1 CFni 1

Applying the building blocks in Fig. 2.4 to a 6-th order COI A/D converter, one arrives at the SC
hardware implementation shown in Fig. 2.7 where the nominal capacitor values are given in Table
2.1 2. In this way, (N + 1) operational amplifiers are required for the implementation of an N-th
order COI £-A A/D converter.

2.2.2 Cascade-of-Resonators =-A A/D Converter Configuration

The cascade-of-resonators (COR) Z-A A/D converter configuration shown in Fig. 2.8 first appeared
in (Adams et. al., [16]), where it was used as a lowpass £-A A/D converter. This type of con-
figuration is commonly referred to as an inverted configuration (due to the nature of the feedback
path) and offers the advantage of no additional summing element (op-amp) which exists in the
non-inverted COI £-A A/D converter 3. This configuration was later successively employed for the
realization of bandpass £-A A/D converters in (R. Schreier et. al., [10]) and subsequently in (W.
M. Snelgrove et. al., [13]).

The COR E-A A/D converter configuration automatically places the zeros of NTF(z) on the

unit-circle in accordance with (Botteron et. al., [17])

&
Nz =] [1-@+Re)z? +277, (2.20)
k=1
for even orders N and
L5]
Nz =0-z"]J]1-@+Re)z" +272) (2.21)
k=1

for odd orders N. Evidently, the zeros of NTF(z) depend on the values of multiplier coefficients Ry
(for k=1,2,..., [%’-J) only.
Further analysis of the COR £-A A/D converter configuration leads to the expressions for S(z)

2In the practical realisation of the SC hardware implementation, the capacitor values are scaled and will not
directly correspond to the multiplier coefficients to be discussed in Chapter 3.

3This summing element also appears in the non-inverted CRI and FF E-A A/D configurations to be discussed
later.
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U(z)

Figure 2.8: Cascade-of-Resonators £-A A/D Converter Configuration
and D(z) as

¥
5(z) = E(Azi-lz + (—Azi-1 + A2))

ﬁ (2-(2+R;)z+1),
=i+l

L §
D) =J[(*- @+ R)z+1) - g(&i—lz + (= Bzi-1 + B3i))

i=1
&
IT *-(Q2+R;j)z+1).
J=i+1
for even orders N, and
%] %]
S(2) =) Aun (2 -2:+1) J] (- @+Rj)z+1)
=0 J=i+2
L¥] 4]
+Z.42,'(Z—1) II (22—(2+Rj)2+1),
=1 Jj=i+l
1£) L¥]
D(z) = N(2) - z Byit1 (22 -2z +1) H (2*-(2+Rj)z+1)
i=0 j=i+2
L4] 1£)
+Y Bu(z-1) J] (2*-(2+Ry)z+1)
=1 J=i+l

Y(z2)

(2.22)

(2.23)

(2.24)

(2.25)

for odd orders N. From Eqns. 2.20, 2.22, and 2.23 (and Eqns. 2.21, 2.24, and 2.25), the signal and
noise transfer functions can be forced to be complementary by ensuring that the A,_n and B,_x

multiplier values are pairwise equal.

As was the case for the COI £-A A/D converter configuration, one must be able to determine the
R, A and B multiplier values given desired signal and/or noise transfer functions. The R multiplier
values may be determined from the frequencies of the noise transfer function zeros fo in accordance
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with
Ry = 2cos (2«%) ~2 for k=0 to l%‘l ) (2.26)
where f, represents the sampling frequency. The multiplier values 4,_x and B;_x can be deter-

mined in accordance with

AT = CigorS: (227)
BT =C;2oRD, (2.28)
where A = [0,A,,Ay,--+ ,Ax], where B = [1,B,, B,,--- , By] and where Cycor and Caconr are

(N +1) x (N + 1) matrices as discussed in the following.
The following expression can be derived for the numerator of the signal transfer function S(z),

S(z) = KM (2.29)
where K =[A; A;--- Ay], and where M is a column vector with N rows in accordance with

[ (2= D[P pjlz~1)? — (z — )R - Ri |
H?:N/z(z -132-(z—-1)R; - Ri

M=% | (-Di-17 (- 1)Rujp - Bua] |- (2:30)
(z-1)*-(z—1)Rny2 — Rnj2
(z~1)
1

Then, by factoring out the z coefficients from M to form M in accordance with
M=2TM, (2.31)

the matrix C,cor can be expressed in terms of M as

0 0
Cicor = - (2.32)
0 M
For example, by considering the case of N = 4, the matrix C;cor is obtained as
[ 0 0 0 0 0
0 1 0 0 0
Cicor=|0 —(3+Ry) 1 0 0 (2.33)
0 (3+R) —-(R2+2) 1 0
0 -1 1 -1 1
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Similarly, the matrix Cocor can be expressed in terms of M in accordance with

20
Cicor = (2.34)

L: -M
where £ is a column vector with (N + 1) rows determined from
L(z)= 27¢, (2.35)

where

N/2

L) =[[1-@+R)z""+277. (2.36)

i=1

For example, the matrix C;cor is given by

[ 1 0 0 0 0 ]
—4-R, - R -1 0
Ciccor=| 6+2R +2R; +R\R;, 3+R; -1 0 (2.37)
—4-R -R ~3+R2) 2+R; -1 0
i 1 1 -1 1 -1 ]

for the case of N = 4. Evidently, the matrices C;cor and C2cor are lower triangular matrices
having elements independent of the A and B multiplier values.

The practical implementation of the COR E-A A/D converter configuration involves its SC
hardware realization. By inspection of the COR A/D converter configuration, one may note that it is
composed of summing elements (having inputs weighted by constants or constants and unit-advance
term z) followed by integrators. Therefore, the SC hardware implementation may be determined
by applying the building blocks in Fig. 2.4 to obtain the SC circuit shown in Fig. 2.9, where the
capacitor values are determined in accordance with Table 2.2. One may note that only N operational
amplifiers are required to implement an N-th order COR A/D converter.

2.2.3 Cascade-of-Resonators/Integrators -A A/D Converter Configura-
tion

The cascade-of-resonators/integrators (CRI) £-A A/D converter configuration in Fig. 2.10 was de-
veloped in (Botteron et. al., [17]) and combines the salient practical features of the COR and CRI
Z-A A/D converter configurations, namely it ensures that the signal and noise transfer functions
STF(z) and NTF(z) are made complementary by the A/D converter configuration proper, and that
the zeros of NTF(z) are automatically placed on the unit-circle, again by the configuration proper
itself. This is a non-inverted configuration and thus requires an additional summing element.

The polynomials N(z), S(z), and D(z) may be formed in terms of the multiplier coefficients



Figure 2.9: Cascade-of-Resonators SC Hardware Implementation
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Table 2.2: Cascade-of-Resonators Nominal Capacitor Values

Capacitor | Value || Capacitor | Value | Capacitor | Value
CB, B, CA A cxy 1
CB, B, CA, Ay CX, 1
CBy By CAx Ay CXni1 1
CF 1 1 CR[ —Rl
CF, 1 CR; ~R,

CFn4y 1 CR X -R y

U(a) ~E-{ e

Figure 2.10: Cascade-of-Resonators/Integrators £-A A/D Converter Configuration

..........
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Ai_Nn, Bi_n, and Rl—lN/2J in accordance with

¥
Niz) =J](*- @+ Rz +1), (2.38)
i=1
¥
5(z) = g(Azi—lz + (—A2i—1 + A2)) (2.39)

ﬁ (22— (R; +2)z + 1),
j=it1

J=i+

D(z) = N(z) - 8(z), (2.40)

for an even order N, and in accordance with

L4)
N@z) =(z-1) [[ (2*- @ +R)z+1), (2.41)
i=1
L] 4]
S(z) = A ]'[ (2-Q+R)z+1)+ 3 (Aziz + (—Aai + Azisa)) (2.42)
=1 l_—g-,
M (22— (R; +2)z+1),
=i+l
D(z) = N(z) - 8(2). (2.43)

for an odd order N.

The multiplier coefficients of the CRI £-A A/D converter configuration may be determined based
on a given signal and noise transfer function as discussed in the following.

The determination of the R;_|n/7; multiplier coefficients may be achieved by employing Eqn.
2.26. Furthermore, it can be shown that the multiplier coefficients A,y may be determined in

accordance with

where A = [0, A}, A2, -+, An], and where Ccry is a (N + 1) by (N + 1) matrix. Furthermore, it
can be shown that Ccrr = Cicor- As a result Cop; is a lower triangular matrix of order (N + 1)
with unity diagonal elements and off diagonal elements independent of the multiplier coefficients A.

For example, the matrix Ccg; for the case of N = 4 is given by

(0 o 0 0 0]
0 1 0 0 0
Ccrr={0 -(3+Ry) 1 00 (2.45)
0 B+R) —(R+2) 1 0
(0 -1 1 -1 1|

The CRI Z-A is composed of both summing elements followed by integrators and summing
elements. Employing the building blocks shown in Fig. 2.4 for a 6-th order CRI A/D converter
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Table 2.3: Cascade-of-Resonators-Integrator Nominal Capacitor Values

Capacitor | Value || Capacitor | Value || Capacitor | Value || Capacitor | Value
cA A cxX, 1 CF, 1 CR, -R
CA, Az CX, 1 CF, 1 CR; -R;
CAy AN CXn+1 1 CFn+1 1 CRy -Ry

configuration, one may arrive at the SC hardware implementation shown in Fig. 2.11, where the
nominal capacitor values are determined in accordance with Table 2.3. One may note that (N + 1)
operational amplifiers are required to implement an N-th order CRI A/D converter.

2.2.4 Feedforward X-A A/D Converter Configuration

The feedforward (FF) Z-A A/D converter was presented in (Norsworthy et. al., [5]) and is as
shown in Fig. 2.12. The FF X-A A/D converter is a non-inverted configuration and thus requires
an additional summing element. This configuration is identical to the CRI £-A A/D converter
configuration with the exception that the R multiplier coefficients are not multiplied by a unit-
advance term 2. For an even-order NN, the numerator o the noise transfer function can be expressed

in terms of the R multiplier coefficients in accordance with

¥
N(z)=][[1-2:7" + (1 - Re)2 77, (2.46)
k=1
and for an odd order N, in accordance with
¥
N@)=Q-z"Y][[1 -2+ (1 - Re)z72. (2.47)
k=1

Evidently, the zeros of N(z) are guaranteed to be located on the line Re(z) = 1 by the configuration
proper. The numerator S(z) of the signal transfer function can be written in terms of the multiplier

coefficients 4,_p in accordance with

& &

§(z) = E[Azi—lz + (—Azi—1 + Agi)] H [22 — 2z + (1 - R;)). (2.48)
i=1 j=i+l
for even orders N, and in accordance with
4] 4]
$@) =4 [I* -22+ 0 -R)+ 3 (Anz + (- An + Aain)) (2.49)
i=1 =
Lﬁj (22 -2z + (1 - Ry)),

j=i+l

(2.50)
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Figure 2.12: Feedforward £-A A/D Converter Configuration

for odd orders N. Moreover, the denominator D(z) of the signal and noise transfer functions can
be determined in accordance with Eqn. 2.5. As a result, the FF X-A A/D converter configuration
proper guarantees the complementarity of the signal and noise transfer functions.

Given a signal or noise transfer function, the multiplier coefficients R (for k =0 to [N/2])
and A;_y may be determined as discussed in the following.

The R; multiplier coefficients may be expressed in terms of the angles of the zeros 6 of NTF(z)

in accordance with
Ry = tan?(6,). (2.51)

Moreover, through a detailed analysis of the FF X-A A/D converter configuration, it can be shown
that if A = [0, 41, Az,--- , ANn|, then S = Cpr.AT. To determine Cgp, let the numerator S(z) of the
signal transfer function be given by

S(z) = KM (2.52)

where K = [A; A;--- Ay], and where M is a certain column vector with N rows. First, let us define

M in accordance with

[ (2 - )1 pja(z2 —2:+ (1~ Ry)) |
[Min2(z -224 (1- Ry)

M= ,,LN (z-1)(z2 - 22+ (1 - Ry)3)) (2.53)
22 -2z 4+ (1- Rn2)
(z-1)
1
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Table 2.4: Feedforward Nominal Capacitor Values

Capacitor | Value || Capacitor | Value || Capacitor | Value || Capacitor | Value
CA, A cXy 1 CF, 1 CR, R
CA, A, CX; 1 CF; 1 CR; Ry
CAnN Ay CXnis1 1 CFn41 1 CR{, R‘}
Then, by factoring out the z coefficients from M to form M
M=2TM, (2.54)
it is possible to form the matrix Crp in terms of the matrix M in accordance with
0 0
Crp = _ (2.55)
oM
For example, in the case of N = 4, one has
[0 o 0 o
0 1 0 0 o
CrP,=]0 -3 1 0o o0]- (2.56)
0 3-R; -2 1 0
0 -1+R, 1-R;, -1 1

Evidently, Crr is a lower triangular matrix of order (N + 1) having unity as its diagonal elements,

and having its off-diagonal elements as being independent of the multiplier coefficients 4;_n 4.

The similarity between the CRI and FF I-A A/D converter configurations aids in the deter-
mination of the corresponding SC hardware implementation of the FF A/D converter. Due to the
absence of the unit-advance terms z multiplying the R; coefficients, the phasing of the corresponding
switches reverses resulting in the SC hardware implementation shown in Fig. 2.13 for a 6-th order
converter configuration. The nominal capacitor values are given in Table 2.4. One may note that
(N +1) operational amplifiers are required to implement an N-th order FF E-A A/D converter.

2.2.5 Multiple-Feedback £-A A /D Converter Configuration

The multiple-feedback (MF) I-A A/D converter configuration in Fig. 2.14 was presented in (Nor-

sworthy et. al., [5]) and is an inverted configuration (not requiring an additional summing element).

The polynomial N(z) may be expressed in terms of the coefficients Ry (for k = 0 to [N/2]) in
4The off-diagonal elements depend solely on the multiplier coeficients Ry.
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Figure 2.14: Multiple-Feedback £-A A/D Converter Configuration

accordance with

¥
N(z)= 1 -2z7" + (1 - Re)z7?] (2.57)
k=1

for even orders N, and in accordance with

&
N =(1-z"][[1 -2 +(1- Re)z7? (2.58)
k=1

for odd orders N. As a result, the zeros of N(z) are guaranteed to be located on the line Re(z) =1
by the configuration proper. Further analysis of the MF A/D converter configuration leads to

S(z) =gz~ ", (2.59)
and
&
D(z)=[[1-2:"+( - R)z"3 + (2.60)
i=1
g %
Z[Bm'—lz—zi+l +(—Bzi—1 + By)z™ %] H [1-2:71 +(1- Ri)27? (2.61)
i=1 j=i+l
for even orders N and
(4] | 4]
D(z)=N(z)~ | Y Bun (2 -22+1) [[ (*-2:+(1-Ry)
i=0 j=i+2
|4) L¥)
+3 Bau(z-1) [[ *-2:+(1-Ry) (2.62)
i=1 J=i+1

for odd orders N. This configuration cannot be designed to have complementary signal and noise
transfer functions STF(z) and NTF(z).

Starting from given signal and noise transfer functions, the multiplier coefficients g, Rx for k =0
to | N/2|, and B,_n may be determined as discussed in the following.
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The gain element of value g is placed at the signal input to the A/D converter to reduce the
signal transfer function passband gain to (approximately) unity, where

9= ISTF(ejw)[—l |w=w, ’ (263)

where w,, is a representative frequency in the input signal passband®. The R; multiplier coefficients
may be expressed in terms of the angles of the zeros 6, of NTF(z) in accordance with

Ry = tan®(6,). (2.64)

Moreover, through a detailed analysis of the MF £-A A/D converter configuration it can be shown
that if B = (1, B,, By,--- , By], then

BT =C;\.D (2.65)

where Cpr is a matrix of order (/V + 1) determined as described in the following.

First, let us express the denominator D(z) of the signal and noise transfer functions as
D(z) =BM (2.66)

where M is a certain column vector with (IV + 1) rows. Then, let M be defined in accordance with

[ 3222+ (1~ Ry)) |
~(z-1)N1
1 :
M=% —(z—-1) (2.67)
—(z~1)?
~(z-1)
L -1 o

In this way, by factoring out the z coefficients from M, one forms

M=2ZTM, (2.68)
leading to the determination of the matrix Cpp as

Cur =M. (2.69)

As an example, for the case of N = 4, the matrix CpsF is given as

1 0 0 0 o0
—4 -1 0 0 0
Cur = 6— R, - R; 3 -1 0 0 (2.70)
-4-2R,-2R; -3+R; 2 -1 0
| 1+RiR;~Ri~R; 1-R; -1+R 1 -1|

5Since the gain in the input signal passband is almost constant, any frequency in the passband should serve the
purpose.
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Table 2.5: Multiple-Feedback Nominal Capacitor Values

Capacitor | Value || Capacitor | Value || Capacitor | Value {| Capacitor | Value
CB, B, cX, 1 CF, 1 CR, R
CB, B, CX, 1 CF, 1 CR; R
CBx By CXnp1 1 CFnpy 1 CR* Ri

Evidently, the matrix Capp is a lower triangular matrix having unity as its first diagonal element and
-1 as its remaining diagonal elements, and having its off-diagonal elements as being independent of
the multiplier coefficients By.

Inspection of the MF X-A A/D converter configuration reveals that it is composed of summing
elements followed by integrators. Using the corresponding SC hardware building blocks shown in
Fig. 2.4 one arrives at the SC hardware implementation shown in Fig. 2.15 for the case of N = 6. The
nominal capacitor values are given in Table 2.5. One may note that only N operational amplifiers
are required to implement an N-th order MF A /D converter.

2.2.6 Concluding Remarks

This chapter has been concerned with the characterization and practical realization of five widely
used feedforward and multiple-feedback ©-A A/D converter configurations. It was shown that, in
so far as the complementarity of the signal and noise transfer functions is concerned, one can dis-
tinguish between three different cases, namely, a) the converter configuration proper guarantees the
complementarity of the signal and noise transfer functions (COI,CRI,FF), b) the complementarity
of STF(z) and NTF(z) is no longer guaranteed by the £-A A/D converter configuration proper,
but it can be forced through a judicious choice of parameters for the A/D converter as obtained
by numerical optimization (COR), and c) the complementarity of STF(z) and NTF(z) is neither
guaranteed by the X-A A/D converter configuration proper nor can it be forced through numerical
optimization (MF). Furthermore, it was shown that three cases exist as far as the location of the
noise transfer function zeros are concerned, namely, a) the noise transfer function zeros are guaran-
teed to be on the unit-circle by the configuration proper (COR,CRI), b) the noise transfer function
zeras are not guaranteed to be on the unit-circle but may be placed there through a judicious choice
of parameters for the A/D converter as obtained by numerical optimization (COI), and c) the noise
transfer function zeros are guaranteed to be on the line Re(z) = 1 by the configuration proper
(FF.MF).

A detailed procedure was given to determine the parameters of each =-A A/D converter config-
uration given a signal and/or a noise transfer function.

Finally, the SC hardware implementation of each A/D converter configuration was presented
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along with their corresponding nominal capacitor values. It was shown that the non-inverted con-
figurations (COI, CRI, and FF) required an additional operational amplifier as compared to the
inverted configurations (COR and MF).

The next chapter is concerned with the design and empirical analysis and investigation of each
of the above five ©-A A/D converter configurations in order to determine the significance of the
complementarity of the signal and noise transfer functions and the location of the noise transfer
function zeros on their achievable SQNR and DR. This will then be followed by an investigation of
the SQNR and DR performance in the presence of capacitor tolerances in corresponding switched-

capacitor hardware implementations.
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Chapter 3

Design of Feedforward and
Multiple-Feedback ¥-A A /D
Converter Configurations

3.1 Introduction

The previous chapter was concerned with the characterization of five different practical feedforward
and multiple-feedback X-A A/D converters in terms of two important features, namely, a) the
location of their constituent noise transfer function zeros with respect to the unit-circle in the
complex z-plane, and b) the complementarity (or lack thereof) of their constituent signal and noise
transfer functions. This chapter, on the other hand, is concerned with the design and empirical
analysis and investigation of each of the five 5-A A/D converter configurations in order to determine
the significance of the aforementioned features on their achievable signal-to-quantization-noise ratio
(SQNR) and their dynamic range (DR). This is followed by an investigation of the SQNR and DR
performance in the presence of capacitor mismatches in corresponding switched-capacitor hardware
implementations.

Section 3.2 is concerned with the approximation of the signal and noise transfer functions from
a set of high-level system design specifications. Section 3.3 presents a hitherto statistical technique
to estimate the maximum DC input signal for stable £-A A/D converter operation. This statistical
technique is based on several assumptions, the most restricting of which is that the quantizer input
signal is Gaussian distributed. Section 3.4 is concerned with the design and simulation of each
of the five hitherto £-A A/D converters to determine the achievable SQNR and DR. A Monte-
Carlo analysis is also performed to determine the SQNR and DR performance in the presence of
capacitor mismatches. A novel statistical approach is then presented in Section 3.5 which generalizes
the hitherto technique to the case of arbitrary quantizer input signal distributions. A demonstration
of the accuracy of the proposed statistical approach is then presented in Section 3.6. Finally, the
main conclusions of this chapter are given in Section 3.7.
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Table 3.1: System Design Specifications

Sampling Frequency | f, Hz
Signal Bandwidth BW Hz

Signal Center

Frequency f- Hz
SQNR SQNR dB
Order N

3.2 Design Procedure
3.2.1 System Design Specifications

The design of feedforward and multiple-feedback £-A A/D converters starts from a set of high-level
system design specifications. This set of design specifications includes the sampling frequency f,,
the signal bandwidth BW, the signal center frequency f., the desired SQNR and the order N of
the converter, as tabulated in Table 3.1. In the case of lowpass £-A A/D converter design, the
bandlimiting frequency of the input signal f; is used in place of the bandwidth BW and the signal
center frequency f..

3.2.2 Approximation of Signal and Noise Transfer Functions

The approach to the design of £-A A /D converters as advocated in this thesis is first to obtain a noise
transfer function NTF(z) through conventional approximation, and then obtain a complementary
signal transfer function STF(z) by invoking Eqn. 2.6 (or from S(z) = z~V in the case of the MF
X-A A/D converter configuration). In general, one must resort to a constrained optimization to
approximate the noise transfer function NTF(z) (except if a classical transfer function is used !)
as discussed in the following (Fraser et. al., [18]). To develop this optimization, let us express the

denominator of the signal and noise transfer function D(z) in accordance with
D(z)=(1-pz7")A-piz7") - (1 -pyz")1 - pyz7"), (3.1)
for the case of even order N, or
D(z) = (1 -prz7 )1 - piz™") - (L —pgpz')(1 ~ p 27 )L — ez ™), (3.2)

for the case of odd order N, where p; = rie?“»* represents the k-th complex pole, and where

represents complex conjugation.
Moreover, in the case of the COR, COI, and CRI £-A A/D converters, let us express the

numerator of the noise transfer function N(z) in accordance with

N@)=Q01-znz")(1-2z{z7Y---(1- zq_z‘l)(l - z%z'l), (3.3)

le.g. Butterworth, Chebyshev, Elliptic
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for the case of even order N, or
N(z)=(1-2zz"" )1 -zz7")--(1-2g2z7")(1 - 27,\:2—1)(1 -z, (34)

for the case of odd order N, where z; = e/":* represents the k-th zero. Otherwise, i.e. in the case

of the FF and MF E-A A/D converters, express N(z) as

¥
N(@) =1 -2+ (1 - Re)z7?] (3.5)
k=1
for the case of even order N, or
¥
N@)=@1-z")][1-2"+(1-Re)z7? (3.6)
k=1

for the case of odd order N. The purpose of the optimization is to determine the noise transfer
function subject to certain constraints on [NTF(e”)| (c.f. Eqns. 3.8 and 3.10 in the following).
The variables of optimization include either, (a) the zero frequencies w.x and the pole radii r, and
pole frequencies wp, or (b) the coefficients Ry and the pole radii r, and pole frequencies wyi. The
optimization constraints are determined as discussed in the following.

The SQNR is determined by the amount of noise attenuation in the signal band. In (W. M.
Snelgrove et. al., [13]) it was shown that the SQNR may be determined from

SQNR = 20logyq (;"’"!) _ 10log1o (;) + 10logso (OSR) - 20log1o (NTFin—sana),  (3.7)
re

where V;;, is the maximum input signal level (usually chosen as v—';l, where V. is the quantizer
output level, and NT F;;,_panq refers to the in-band noise (assumed to be constant). In this way,
the desired SQNR may be obtained by constraining the noise gain in the signal band to be below
NTFin—sand;

INTF(e*™)|, _pwiacs<srowsa < NTFin-band- (3.8)

It has been shown in (Lee, [12]) that a good rule of thumb is to ensure that the magnitude of the
noise transfer function is constrained by

INTF(e?)[ < 2 (3.9)

throughout the whole frequency band (so as to reduce the likelihood of the ¥£-A A/D converter
becoming unstable). It was further demonstrated in (W. M. Snelgrove et. al. [13]) that

INTF(e?*)| <16 (4.1dB) (3.10)

leads to better stability results. In this thesis, |[NTF(e*)| is constrained in accordance with
Eqn. 3.10 since it provides a more stable converter operation. One may also constrain the ze-

ros of NTF(z) to stay within the input signal band so as to limit the optimization search space,
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Figure 3.1: Illustration of Noise Transfer Function Constraints

and, ultimately, achieve higher in-band noise reduction. To illustrate the constraints, consider the
magnitude-response of the optimized noise transfer function NTF(z) as shown in Fig. 3.1.

Upon the successful completion of the optimization process, the resulting N(z) and D(z) may
be substituted into Eqn. 2.5 to obtain the polynomial S(z) (except in the case of the MF X-A A/D
converter, where S(z) = gz~V). The next step in the design process involves the synthesis of a =-A
A/D converter configuration for nonlinear simulation. The nonlinear simulation is at present the
only practical approach for determining the actual performance of the designed £-A A/D converter.

3.2.3 Realization of Signal and Noise Transfer Functions

By employing one of the five £-A A/D converter configurations described in the previous chapter,
the constituent multiplier coefficients can be determined as follows:
Case a) COR XE-A A/D converters: The multiplier coefficients R are obtained from the zero

frequencies w,, in accordance with (Botteron et. al., [17])

Ri = 2cos(‘%") -2 (3.11)

Then, A = C;doxS and B = C32opD-

Case b) COI £-A A/D converters: A = Ci3o,S and B = C3lo N

Case c) CRI Z-A A/D converters: The multiplier coefficients R, are determined in much the same
way as for the COR £-A A/D converters. Then, A =C;},S.

Case d) FF £-A A/D converters: The multiplier coefficients R; are determined directly through
the optimization of the noise transfer function NT'F(z). Then, A = CzpD.

Case e) MF Z-A A/D converters: The multiplier coefficients R, are determined in the same way as
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for the FF -A A/D converters. Then, B = C;,‘FD. The multiplier coefficient g can be determined
from Eqn. 2.63 with w, = 0 rad/s.

3.3 Hitherto Stability Estimation Technique

As is obvious from the above design procedure, limiting the out-of-band noise gain (c.f. Eqn. 3.10) is
the only precaution taken to attempt to ensure that the resulting -A A/D converter exhibits stable
operation. However, the exact point of instability remains unknown until extensive simulations are
performed. It would be beneficial to know at what DC input signal level instability occurs (without
recourse to extensive and time consuming simulations). To address this problem, in (Ardalan et. al.,
[14]) and (L. Risbo, [19]) a statistical technique was developed to estimate the maximum DC input
signal amplitude for stable £-A A/D converter operation. The details of this statistical technique
are discussed in the following.

In control theory, nonlinear systems are often analysed using the describing function method.
In this method, the nonlinear element is replaced by an accurate linear model. Booton (Booton,
[20]) suggested to replace the nonlinear element by an equivalent gain element. Consider the system
shown in Fig. 3.2, here z(t) represents a DC signal and v(t) represents a zero mean stochastic
signal. The two gain elements K; and K, are chosen to minimize the mean squared error between
the output of the nonlinearity p(t) and the output of the linear approximation r(t). Although the
error €(t) generated by the appraximation is usually ignored in control theory, when applying this
method to the analysis of £-A A/D converters, ¢(t) becomes an important quantity which cannot
be ignored (Ardalan et. al., [14]). If ¢(t) is assumed to have a white spectrum, then the quantizer
may be replaced by a variable gain element k and a white additive noise source ¢(t). In this way,
one obtains the new linear £-A A/D converter model as shown in Fig. 3.3, where Q(z) represents
the (z-transformed) error €(t).

In the design of feedforward and multiple-feedback £-A A/D converters, having determined
the noise transfer function NTF(z) = %f% (starting from a set of system design specifications), a
modified noise transfer function can be defined in terms of the variable gain element k in accordance
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with
N(z)
kD(z) — kN(z) + N(z)

This gives rise to the definition of the noise power gain (NPG) in accordance with (L. Risbo, [19])

NTF(z) = (3.12)

NPG=2 / |NTF(eT)2dw. (3.13)

-x
From this equation, one can obtain a graphical representation of NPG versus k, leading to an
important empirical result for higher order £-A A/D converters, namely that NPG is a convex
function of & with a minimum occurring, say, at NPGp;,. For example, consider the NPG versus
k curve shown in Fig. 3.4. This NPG,;, point is of interest as it demonstrates a very important
relationship between the variable gain element k and the stability of the £-A A/D converter. The
case when k is such that NPG corresponds to NPG,,;, is referred to as the point of equilibrium.
When k increases slightly, this causes an increase in NPG resulting in more noise appearing at the
quantizer input. This in turn causes a decrease in k which returns the system to the equilibrium
point. Now consider the case when k decreases slightly from the equilibrium point. A decrease
in k causes an increase in NPG which results in an increase in the noise at the quantizer input.
This in turn causes k to decrease even more. As is evident, k£ will never return to the point of
equilibrium and the system becomes unstable. Thus, one may conclude that NPG,in corresponds
to the minimal allowable value of k for stable operation. In the statistical technique, a relationship
is derived between NPG,in and the maximum DC input signal amplitude m,,, based on the
following three assumptions, a) that the input signal u(n) is a DC signal of amplitude m,,, b) that
the quantizer input signal e(n) is the sum of a zero mean Gaussian distributed component G. and
a DC bias m,, and c) that the quantization noise Q(z) is a uniformly distributed white noise with
zero mean.

Based on the above assumptions, the variance of the output signal y(n) can be calculated in two

ways, namely,
oy = E{y(n)’} - E* {y(n)} =1-mi, (3.14)
or

o? = o} NPG, (3.15)

Q(z)

Figure 3.3: Linearized £-A A/D Converter
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Figure 3.4: Noise Power Gain versus k

where E {-} is the expectation operator. By combining Eqns. 3.14 and 3.15, one obtains the rela-
tionship
1-ml

NPG = )

(3.16)

Next, it is desired to determine 0% in terms of the DC input signal amplitude m,. To this end,
from Fig. 3.3, the output signal y(n) can be expressed

y(n) = ke(n) + g(n). (3.17)
But, since g(n) has zero mean, and since the mean of y(n) is m,,, y(n) can be written in the form
y(n) = my + kle(r) - m] + g(n). (3.18)

Moreover, in (Ardalan et. al., [14]) it was argued that since the quantizer input signal e(n) is an
integration of the white noise g(n), its distribution can be assumed to be Gaussian. In this way,
let G. represent the zero mean Gaussian distributed component of the quantizer input signal e(n)

given by G. = e(n) — m.. Then, Eqn. (3.18) can be written as
y(n) = my + kG, + q(n). (3.19)
The variance of y(n) may be determined from Eqn. (3.18) as

a3 = E {[my + kG + q(n)]*} - E? {m, + kG, + q(n)}

= kzaz-‘ + o%. (3.20)



By substituting o2 from Eqn. (3.14) into (3.20) (L. Risbo, [19]), one gets
ok =1-ml - kol . (3.21)

To determine the value of k in terms of the DC input amplitude m,,, it is convenient to ensure
that the white noise g(n) is uncorrelated with the Gaussian component of the quantizer input G.,
yielding E {G.N(n)} = 0. The variable gain k may then be determined from

Cov {G.,y(n)} = E{(G. — E {G.})(y(n) — mu)}

= ko, . (3.22)
By rearranging Eqn. 3.22, one can write
Cov{G.,y(n)} _ /‘ Gey(n) 3t
k= ————=—22 ’0 dG 3.23
0?;. 02 -o0 0G, \/21r (3.23)

(by taking into account the fact that G, has a Gaussian distribution). This integral can be simplified
if one realizes that y(n) will be —1 if the input to the quantizer is negative and +1 if the input to
the quantizer is positive, leading to

™ o o 1
_ “o. dG. + G 8. dG, 3.24
aé [ / —m. e UG. me e ( )

=-1—[/m.G

By carrying out the integration, one arrives at the same result reported in (Ardalan et. al., [14])

2 >
€"7Ge, 3.26
oc, Ver (3.26)

Next, the mean of the output m, can be determined as the probability that the quantizer input is

“a. dG ] (3.25)

Q

k=

positive (leading to +1 output) minus the probability that the quantizer input is negative (leading
to -1 output) (Vogels et. al., [21])

m, = P(e(n) > 0) — P(e(n) < 0) (3.27)
= P(G, > -m.) — P(G. < -m,). (3.28)

But, since G. has a Gaussian distribution, m, may be expressed as

my, = ; [ +erf( poy \/_] 3 [l +er,f( \/_)J (3.29)
=erf( \/_ ) (3.30)
By substituting m,, for m, in Eqn. 3.30, one obtains the relationship
Me
my = erf( V2o, (3.31)
= = erf}(m.). (3.32)

V2oc,
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By substituting Eqn. 3.32 into Eqn. 3.26, one gets

2 -1 2
k= ~2fers " (ma)? 3.33
oG, v 2 € ( )

By substituting k from Eqn. 3.33 into Eqn. 3.21, the following expression is obtained for o3

02~ =1- m: — %e—z[“!-‘(mu)]z_ (3.34)

Now o%; is a function of the DC input level m,, only. Substituting aﬁ, from Eqn. 3.34 into Eqn. 3.16

2

= 1-mg
NPG = 1-m2 - %e—ﬁ[erf—‘(m,,)]’ (3.35)

which is the same as the result reported in (L. Risbo, [19]). A graphical representation of NPG
versus m,, can be obtained from 3.35 and is shown in Fig. 3.5. By using the method presented in

(L. Risbo, [19]), the maximum DC input signal amplitude m,,__, corresponds to NPGpin.
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Figure 3.5: NPG versus m, Curve

3.4 Application to the Design and Investigation of Feedfor-
ward and Multiple-Feedback X-A A/D Converter Con-

figurations

This section presents the design and computational investigation of the FF, MF, COR, COI, CRI
Z-A A/D converters satisfying the high-level system design specifications given in Table 3.2. This
investigation includes the determination of the impact of the complementarity of the signal and noise
transfer functions and the relative position of the noise transfer function zeros with respect to the
unit-circle on the achievable SQINR and the stability of the £-A A/D converter.
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Table 3.2: Lowpass £-A A/D Converter Design Specifications

Sampling Frequency 640 kHz
Passband Edge Frequency | 20 kHz
Desired SQNR 60 dB
Order 6

Table 3.3: COI, COR, CRI Noise and Signal Transfer Function Coefficients

ay | —5.94328676651853 | a; | 14.77398202742605
a3 | —19.66138848176253 | a4 | 14.77398202742605
as | —5.94328676651853 | ag 1

b, | —5.01674259948316 | b, | 10.60088164334243
by 1 ~12.06101474655878 | b, | 7.78768867203415
bs | —2.70579462641319 | bg | 0.39572200430432
ca | —0.92654416703537 | c; | 4.17310038408362
c3 | —7.60037373520375 | cq | 6.98629335539190
cs | —3.23749214010534 | cg | 0.60427799569568

The signal and noise transfer functions STF(z) and NT F(z) were determined using the design
procedure outlined in the previous section, leading to

l+a1z7 ' +az7 2 +a327% + a2~ + asz% + agz~®
14+b1z27  +bpz=2 +b32~3 + bez—4 + bsz—5 + bgz~8 ’

O+c1z ' +cez72+c3z 3 +cqz 4 + 5275 + cg278
1+b1z7 1 + b2z 2 +b32~3 + bez—4 + bsz—5 + bgz~ 8’

NTF(z) = (3.36)

STF(z) = (3.37)

where the coefficients a; through ag, b; through bg, and ¢; through cg are shown for the COI, COR,
CRI A/D converters in Table 3.3, for the FF A/D converter in Table 3.4, and for the MF A/D
converter in Table 3.5. A plot of the magnitudes of the signal and noise transfer functions STF(z)
and NTF(z) is shown in Figs. 3.6, 3.7, and 3.8 for the COI, COR, CRI A/D converters, for the FF
A/D converter, and for the MF A/D converter, respectively.

The multiplier coefficients associated with each of the five £-A A /D converters can be determined
as tabulated in Tables 3.6 to 3.10.

An estimation of the maximum DC input signal amplitude can be made for each the five £-A
A/D converter configurations as discussed in (Fraser et. al., [22]). The plot of noise power gain
NPG versus k is as shown in Fig. 3.4 for the COI, COR, and CRI Z-A A/D converters, and in Fig.
3.9 for the FF and MF A/D converters. In the case of the COI, COR, and CRI A/D converters,
the minimum noise power gain is NPGpin = 2.3139, and in the case of the FF and MF converters

the minimum noise power gain is NPGpmin = 2.3201. Using the NPG versus m,, curve shown in

53



Table 3.4: FF Noise and Signal Transfer Function Coefficients
a —6 az | 15.05450564724798
a3 | —20.21802258899191 | a, | 15.32783163869487
as | —6.21961809940591 | ag | 1.05530528079727
b | —5.06741976440183 | b, | 10.80969686910854
by | —12.41401211472861 | b, | 8.09073970446889
bs | —2.83633028749370 | bg | 0.41770386131672
¢ | —0.93258023559817 | c; | 4.24480877813944
c3 | —7.80401047426331 | c, | 7.23709193422597
cs | —3.38328781191221 | cg | 0.63760142948055
Table 3.5: MF Noise and Signal Transfer Function Coefficients
a —6 a; | 15.05450564724798
a3 | —20.21802258899191 | a, | 15.32783163869487
as | —6.21961809940591 | ag | 1.05530529079727
b ~5.06741976440183 | b, | 10.80969686910854
by | -12.41401211472861 | b, | 8.09073970446889
bs | —2.83633028749370 | bg | 0.41770386131672
c1 | .0003782682700190776 | c; 0
c3 0 cq 0
Cs 0 Cg 0

Table 3.6: Cascade-of-Integrators Nominal Multiplier Coefficients

A,
As
As
B
Bs
Bs

-0.92654416703537
-0.17341386922298
-0.00634593377516
-0.05671323348147
-0.00167196275635
-0.00000612015753

Az
A,
As
B,

B,
Bg

-0.45962045109323
-0.04166721607133
-0.00073830717325
-0.05754819483339
-0.00084108150945
-0.00000204005251
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Table 3.7: Cascade-of-Resonators/Integrators Nominal Multiplier Coefficients
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Figure 3.8: MF NTF(z) and STF(z)

A
Az
Ag
Rj
R,

-0.92654416703537
-0.14206827654349
-0.00571151995615
-0.03378914270000
-0.00303574683789

Az
Ay
As
R

-0.43838026849507
-0.03104811402208
-0.00061758532218
-0.01988834394359

35
x 10

Table 3.8: Cascade-of-Resonators Nominal Multiplier Coefficients

A
A;
As
B,
Bs
Bs
R,
Rj

-0.92654416703537
-0.14206827654349
-0.00571151995615
-0.92654416703537
-0.14206827654349
-0.00571151995615
-0.03378914270000
-0.00303574683789

Az
Ay
Ag
B,
By

Bs
R;

-0.43838026849507
-0.03104811402208
-0.00061758532218
-0.43838026849507
-0.03104811402208
-0.00061758532218
-0.01988834394359
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Table 3.9: Feedforward Nominal Multiplier Coefficients

A; | -0.93258023559817 | A2 | -0.41809239985141
Az | -0.10246763078235 -0.01032056324723
As | -0.00111897652411 0.00020433107546
R, | -0.00291749958148 | R, | -0.02154114106385
R; | -0.03004700660265

A4
Ae

Table 3.10: Multiple-Feedback Nominal Multiplier Coefficients

Bg | -0.93258023559817 | Bs | -0.41809239985141
B, | -0.10246763078235 | B; | -0.01032056324723
B; | -0.00111897652411 | B, | 0.00020433107546
R3 | -0.00291749958148 | R; | -0.02154114106385
R, | -0.03004700660265 | g | 0.93570000000000

s 08 1 12 14 18 18 2 22 24

Figure 3.9: Noise Power Gain versus k for FF and MF Z-A A/D Converters
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Table 3.11: Maximum Stable DC Input Signal Amplitude mymoz

COI | COR | CRI | FF | MF
Simulated Results | 0.41 | 0.41 | 0.41 | 0.46 | 0.44
Predicted Results | 0.42 | 0.42 | 0.42 | 0.42 | 0.42

Fig. 3.5, NPGin corresponds to myma.: = 0.4226 ~ 0.42 in the case of the COl, COR, and CRI
A/D converters, and t0 Mymaz = 0.4193 ~ 0.42 in the case of the FF and MF converters. To verify
the accuracy of these estimations for the maximum DC input signal, an empirical investigation was
undertaken. Each of the five A/D converters was simulated with a DC input signal which was swept
from a value of 0 to a value of 1 in increments of 0.01 to determine their maximum input signal level
for stable converter operation. The results of these simulations are as shown in Table 3.11. These
results show that the statistical estimation technique did not accurately estimate the maximum DC
input signal level and led to a maximum error of 0.04 between the simulated and estimated results.

The achievable SQN R as a function of the amplitude of a sinusoidal input signal was determined
for each of the five £-A A/D converters by selecting the input signal frequency as 3 kHz. Repeated
simulations reveal that the COR, COI, and CRI A/D converters features a SQNR performance
level of 61.124 dB and a dynamic range of 69.5 dB (as shown in Fig. 3.10 for FF, MF, and CRI
A/D converters). From Fig. 3.10, the FF and MF A/D converters gave significantly poorer SQNR
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Figure 3.10: SQNR versus Sinusoidal Input Signal Level

performance of 52.9 dB and 52.8 dB, respectively. The dynamic range of 62.4 dB and 61.2 dB
for the FF and MF A/D converters was also significantly lower as compared to the COR, COI,
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Table 3.12: COI £-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value
CB, —28.298395211164 CA —13.59099104581705
CB; ~122.151584192600 CcA,; —28.67968286343373
CB; —15.096768574766 CA; —46.03083238002003
CB, —32.306170732969 CA4 —47.04890115108366
CB;s -1 CAs —30.48179483135976
CBg —1.417975557543 CAg ~15.08592999114161
cX, 34.01671711982564 CF, 498.973404865214
CX, 1 CF, 4.253926678031
CX, 1 CF; 4.253926678031
CX, 1 CF, 4.253926678031
CX;s 1 CF; 4.253926678031
CXe 1 CF; 4.253926678031
CFG 34.01671711982564 CF, 1

and CRI A/D converters and failed to satisfy the system specifications completely. This poorer
SQNR performance can be attributed to the noise transfer function zeros being located outside the
unit-circle. However, the complementarity of the signal and noise transfer functions STF(z) and
NTF(z) does not seem to have a direct impact on the achievable SQNR or DR.

3.4.1 Investigation of the Effect of Capacitor Mismatches

This subsection is concerned with the simulation of the corresponding switched-capacitor hardware
implementation of each of the five Z-A A/D converters. First, the capacitors will be scaled for both
minimum spread and minimum total capacitance. A Monte-Carlo analysis will then be performed to
determine the SQ N R characteristic of each of the five A/D converters in the presence of capacitor
mismatches.

The nominal capacitor values for the COI £-A A/D converter may be determined as given in
Table 2.1, where the multiplier values are as given in Table 3.6. These capacitor values result in a
capacitance spread of C,preqqd = 490183.5 and a total capacitance of 1531338.15 units. The nominal
capacitor values were then scaled using the technique presented in (Gregorian et. al., [23]), resulting
in the scaled capacitor values as given in Table 3.12. These new capacitor values lead to a reduction
of the capacitor spread to C,pread = 498.97 and a reduction of the total capacitance to 975 units.

Similarly, the nominal capacitor values for the other four A/D converters were determined and
scaled, resulting in the capacitor values given in Tables 3.14 to 3.16. The capacitor spread values
and total capacitance for both the nominal and scaled capacitors are given in Table 3.17 for each
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Table 3.13: CRI £-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value
CR, 1 cA, —8.22169054385137
CR; 1 CA; —16.54763749373107
CR; 1.27544628443914 CA; —35.63872118651384
CA4 —33.13219621383988
CAs —27.43447783210772
CAg —12.61920413533742
CX, 1 CF, 8.87350094724358
CcX; 1 CFh 4.25392667803142
CX; 1.77857170152340 CF; 11.81983402160172
CX, 1 CF, 4.25392667803142
CXs 17.20340639147583 CF; 77.43627414646043
CXs 1 CFg 4.25392667803143
CFG 1 CF; 1

of the five A/D converters. It is easily observed that the COR A/D converter satisfied the design
specifications with the smallest amount of capacitor spread and total capacitance. The COI A/D
converter had the largest amount of spread and total capacitance. This is caused by the fact that
the configuration has all of the B coefficients feedback to the same op-amp.

Monte-Carlo simulations of 1000 different samples of each of the five £-A A/D converters led
to the determination of the actual SQN Rs as shown in Fig. 3.11, and as summarized in Table
3.18, where the capacitor values were individually perturbed around their nominal values with a
Gaussian distributed white random variable ¢ of zero mean and standard deviation of o = 0.00333
2, Under capacitance perturbations, the COI A/D converter gave rise to more unstable samples
and the highest amount of SQNR variance among the stable samples than the FF, MF, COR,
and CRI A/D converters. Since the noise transfer function zeros for the COI A/D converter are
nominally forced to be on the unit-circle by numerical optimization, the zeros of NT F(z) may move
off the unit-circle significantly due to capacitor mismatches, affecting the achievable SQNR, and
thus resulting in more SQNR variance among the samples, and, ultimately, more unstable samples.
The lowest amount of SQNR variance was observed when the £-A A/D converter configuration
proper guaranteed the location of the noise transfer function zeros on the unit-circle. Conclusion
cannot be drawn concerning the number of unstable samples and the location of the noise transfer
function zeros either on or off the unit-circle. Similarly, no direct impact can be observed between
the complementarity of the signal and noise transfer functions and the stability of the X-A A/D

2The samples with substantially low SQNR imply unstable £-A A/D converter operation and were discarded.
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Table 3.14: COR X-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value
CB, —1.46678387304306 CA, —1.46678387304306
CB; -12.97399796104120 CA; —12.97399796104128
CB; —2.08198267851292 CA; —2.08198267851306
CB, —~5.67533631781905 CA, —5.67533631781965
CB;s —3.69115003623503 CAsg --3.69115003624335
CBg —13.58583746209491 CAg —13.58583746210956
cX, 1 CH 34.03920815734993
CX; 2.73716752109054 CF, 9.67731772479131
CX; 1 CF; 12.47315669015196
CX, 8.14081390370671 CF, 4.03111325572408
CX;s 1 CF; 18.69488625077205
CF; 1.58306956670644
CR, 1 CR; 1
CR; 1

Table 3.15: FF X-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value
CR, —1.11398979509243 CA, —3.69033852569051
CR; -1 CcA; —7.03796775824170
CR; -1 CA3 —-11.69153932402205
CA, —5.00931566255049
CAs —4.73353916965130
CAg 3.67696436403021
cX, 20.36170764795855 CF, 80.57386519017499
CcX; 1 CFh 4.25397565345412
CX; 1.61002009005616 CF; 10.91292813509342
CX, 1 CF; 4.25392667803142
CX;s 1 CFy 8.71545369831970
CXs 1 CFg 4.25392667803142
CFG 20.36170764795855 CF,; 1
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Table 3.16: MF Z-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value

CB, -1 CR, -1

CB; —143.304198800343 CR; -1

CB; —1.210686601624 CR; —~1.77582015990610

CB, —1.212134792913 CcG 1.85127000440464

CBs -1

CBg 1

cXx, 1.791945980779 CFH 9.813476006909

CX, 1.418270727298 CF,; 10.791949724806

CX; 1 CF3 9.940177492839

CX, 135.485910822408 CF, 4.670248611563

CXs 1.002441188223 CF; 320.430712361000
CFg 1.072294065925

Table 3.17: Comparison of Capacitance Spread and Total Capacitance

Nominal Capacitors | Scaled Capacitors
Total Spread | Total | Spread
COI | 1531338.15 | 490183.5 | 975.47 | 498.97
COR | 2189.35 1619.21 | 176.33 | 34.04
CRI 4376.50 1619.21 | 272.74 | 77.44
FF 13887.64 | 4894.02 | 199.25 | 80.57
MF 7882.61 9060.20 | 651.77 | 320.43
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Figure 3.11: Monte-Carlo Simulation Results

Table 3.18: Monte-Carlo Simulation Results

SQNR (¢maz=1%) | FF | MF | COR | coI | CRI
Nominal (dB) 52.927 | 52.321 | 61.124 | 61.124 | 61.124
Variance (dB) 0.820 | 0.757 | 0.565 | 1.175 | 0.591
Max. (dB) 55.853 | 55.307 | 63.599 | 63.072 | 63.188
Min. (dB) 50.005 | 50.081 | 57.455 | 50.320 | 56.069
Mean (dB) 52.880 | 52.690 | 61.388 | 61.180 | 61.404

converter.

Finally, the above Monte-Carlo simulations were repeated for several other standard deviations.
The main results of these simulations are as summarized in Table 3.19. Both the MF and FF
£-A A/D converters exhibited low sensitivity to capacitor mismatches compared to the COR, COI,
and CRI A/D converters. These A/D converters did not give the best overall performance, but
gave the most consistent performance in terms of the number of unstable samples. The COI A/D
converter was more sensitive to capacitor mismatches than the other A/D converters, but gave very
good performance relative to the other A/D converters with a tolerance level of 0.1%. The COR
and CRI A/D converters were more insensitive to the capacitor mismatches than the COI A/D
converter, but showed a consistent increase in the number of unstable samples as a function of
capacitor mismatches. The main advantage of the complementarity of the signal and noise transfer
functions STF(z) and NTF(z) is the reduction in the complexity of the design and optimization



Table 3.19: Percentage of Unstable Samples

€maz | FF | MF | COR | COI | CRI
0.1 (248326 184 | 16.6 | 23.4
05 | 254 (31.8 | 22.0 | 24.7 | 25.0
1.0 | 266 )33.1) 249 | 374 | 284
1.5 | 269|336 | 33.3 | 43.7 | 36.2
20 (298343 | 394 | 51.8 | 42.3

of the X-A A/D converter. However, in the design of feedforward and multiple-feedback bandpass
E-A A/D converters, the complementarity of the transfer functions leads to a significant reduction
in both capacitance spread and total capacitance (Fraser et. al., [24]).

3.5 A Novel Statistical Approach for the Estimation of Sta-
bility in Feedforward and Multiple-Feedback Oversam-
pled £-A A/D Converter Configurations

This section presents a novel statistical approach (Fraser et. al., [25]) employing the Gram-Charlier
series to model the quantizer input signal. This approach makes no recourse to the assumption that
the quantizer input signal has a Gaussian distribution.

The Gram-Charlier series is well known for its application to the approximation of probability
density functions based on the normal distribution and its derivatives. This series is defined as
(Springer, [26])

N
fn(z) = Y CiHy(2)é(2), (3.38)
ar
where
1= (3.39)
Oz

where N represents the number of terms in the series expansion (controlling the precision). Moreover,

@(z) represents the characteristic function of z,

é(z) = \/—12=we“;, (3.40)
H,(z) represents the n-th Hermite polynomial,
Hy=1 (3.41)
Hy=z (3.42)
Hy=22-1 (3.43)
Hp = zHp_1(2) — (n — 1)Hp—2(2), (3.44)
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and c, represents the n-th Hermite coefficient,

|.?.| E o a
Cn ot Z ( 2 ) k!(n — 2k)V’ (3.45)
with v, representing the n-th normalized central moment of z,

_Ellz—m)"] (3.46)

n 02

From Section 3.3, the distribution of the quantizer input enters into the derivation of the sta-
tistical technique in Eqns. 3.23 and 3.30. Therefore, Eqn. 3.23 can be modified to include the
Gram-Charlier series leading to a new expression for k (Fraser et. al. [25]):

2 ’,. zaa
k= aG.\/2_1re [a(,-, m, +Cl\/‘erf (\/-UG )

+ Z C; [-meH;_1(—m.) + o H;-2(—m. )]] . (3.47)

A complete derivation of this expression for k can be found in Appendix A.2. In practical situations,
it so happens that C) is approximately zero, yielding the simplified expression for k,

k= 02-' 21re;—:‘? [oe. — me
N
+ ZC.' [-meHi_1(—m,) +UG.Hi-2(—me)]] . (3.48)
=2

Similarly, Eqn. 3.30 can be modified to the following form (Fraser et. al., [25])

,—f
my = m [\/_ 20.,) +Groue

+§:c. Hi_y(—me)e ™ ] . (3.49)

=2
A complete derivation of this expression for m, can be found in Appendix A.3. Again, in practical

situations, it so happens that C; is approximately zero, leading to the simplified equation

cerf () T
m,,—erf(ﬁau)-i- rgoa_,( -m,). (3.50)

As in the case of the existing statistical technique, m, can be replaced by m,. However, due to the
complexity of Eqn. 3.50, it is very difficult to solve for m,. in terms of m, analytically. The easiest
approach to this problem is to solve for m, through an iterative optimization technique, e.g. by
using the interval halving optimization (Ravindran et. al., [27]). In this way, let

;= M et (7"?":) = e;:g‘. (3.51)

7’,—, SN, CiHiy(-m.)
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Then
m.; =/ —203In(a;). (3.52)

From Eqn. 3.52, it is observed that amin = a; = 0 and ame: = a; = 1, making it possible to calculate
m,., and m,,. Then, the interval length L can be defined in accordance with L = m,, —m,,. In this
way, one can proceed to calculate m., = (m,, + m.,)/2, m,, = m,_, + L/4, and m., = m,, — L/4,
leading to the determination of ag, a;, and a3 in Eqn. 3.51. In this process, if ag is greater than
a1, then set m., = m., and m., = m,,. Otherwise, if aq is greater than a3, then set m., = m,,
and m,, = m,,, and else, if agp is less than a3, then set m., = m,, and m., = m,,. Subsequently
re-calculate the interval length L, m,., and m.,, and repeat the process. Once the interval length L
has become sufficiently small, one can terminate the process by setting m. = m,,.

Having determined m,, one can invoke its value in Eqn. 3.48 to obtain a corresponding value
for k. Moreover, having determined k, one can invoke its value in Eqn. 3.21 to obtain o%. Finally,
having determined o%, one can invoke its value in Eqn. 3.16 to obtain NPG. In this way, 2 value
for NPG can be obtained for a corresponding value of m,, and a graphical representation of NPG

versus m, can be obtained.

3.6 Demonstration of the Accuracy of the Proposed Statis-
tical Approach

This section is concerned with an investigation of the improvements achieved by using the proposed
statistical approach over the hitherto statistical technique. The starting point in this investigation is
an actual (nonlinear) Matlab simulation of the 6-th order COI X-A A/D converter in Section 3.4 in
order to determine the relationships between k and m, on the one hand, and between NPG and m,,
on the other. Recall that the COI A/D converter was designed with an NPGpin = 2.3139 and was
unstable with a DC input amplitude of 0.41. These relationships will then be obtained by employing
the hitherto statistical technique and the proposed statistical approach. The results obtained using
the two statistical techniques will then be compared to the Matlab simulation results.

Fig. 3.12 shows the relationship between k and m,, with particulars as indicated in the following:
Curve A: Obtained through Matlab simulation,

Curve B: Obtained by employing Eqn. 3.33 of the hitherto statistical technique, and

Curves C and D: Obtained by employing Eqn. 3.48 3 of the proposed statistical approach for N = 6
and N = 20, respectively.

The moments of the quantizer input signal, which are required in the Gram-Charlier series, were
obtained through (nonlinear) Matlab simulation of the A/D converter. A Matlab simulation is
required as no analytic technique for the estimation of the moments exists at present for higher-order
E-A A/D converters. For the case of the first and second-order Z-A A/D converters, the moments of

3Using the optimisation technique outlined in the previous section.



the quantizer input signal may be appraximated very accurately as detailed in Appendices B.2 and
B.3. As is evident from Fig. 3.12, the result obtained from the hitherto statistical technique differs
substantially from the Matlab simulation result, whereas, the result obtained from the proposed
statistical approach more closely approximates the Matlab simulation result. It is also evident
that a more accurate result may be obtained in the proposed statistical approach by increasing the
number of terms N in the Gram-Charlier series approximation. Choosing 15 < N < 30 is usually

sufficient for an accurate approximation of the quantizer input signal distribution.
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Fig. 3.13 shows the relationship between NPG and m, with particulars as indicated in the
following:
Curve A: Obtained through Matlab simulation,
Curve B: Obtained by employing Eqn. 3.35 of the hitherto statistical technique, and
Curves C and D: Obtained by employing Eqn. 3.48 of the proposed approach using Eqns. 3.21 and
3.16 as described in the previous section for N = 6 and N = 20, respectively.
From Fig. 3.13, the difference between the result obtained through the hitherto statistical technique
and the result obtained using Matlab simulation leads to a mean squared error of 0.4070. Figure
3.14 shows a more detailed plot of the NPG versus m, curve. The most important error is at the
instability point m, = 0.41, where the Matlab simulation result falls below NPGmn;n, whereas the
result obtained through the hitherto statistical technique maintains its value. The estimation of
the noise power gain from the proposed statistical approach (for N = 20) differs from the Matlab
simulation result by a mean squared error of 0.0857, indicating an improvement of 80% as compared
to the hitherto statistical technique. Furthermore, the proposed statistical approach successfully
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predicts the instability point found at m,, = 0.41. Investigations into other feedforward and multiple-
feedback A/D converters have resulted in similar improvements.
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3.7 Concluding Remarks

This chapter has presented a detailed step-by-step procedure for the design and realization of five
feedforward and multiple-feedback £-A A/D converter configurations. An empirical investigation
and Monte-Carlo analysis of the feedforward and multiple-feedback oversampled £-A A/D converters
for corresponding switched-capacitor (SC) hardware implementations has been performed. This
investigation has included the determination of the impact of the complementarity of the signal and
noise transfer functions and the relative position of the noise transfer function zeros with respect to
unit-circle on the achievable SQNR ard on the stability of the X-A A/D converters. It has been
shown that A/D converters having noise transfer function zeros on the unit-circle exhibit superior
performance in terms of the achievable SQNR, regardless of whether the noise transfer function
zeros are located on the unit-circle by the A/D converter configuration proper or by numerical
optimization. However, it has been shown that if the noise transfer function zeros are located on the
unit-circle by numerical optimization, then the £-A A/D converter exhibits a high level of stability
at low capacitor mismatches, but that the A/D converter becomes highly prone to instability as the
capacitor mismatches are increased. The A/D converters which guarantee the location of the noise
transfer function zeros on the line Re(z) = 1 have shown low sensitivity to capacitor mismatches in
terms of the number of unstable samples produced as a function of capacitor mismatches. It has been
observed that the main advantage of the complementarity of the signal and noise transfer functions
is the reduction in the complexity of the design and optimization of the £-A A/D converter.

A hitherto statistical approach for the estimation the maximum DC input signal for stable con-
verter operation has been reviewed and extended to the case of arbitrary quantizer input signal
distributions. The proposed statistical approach employs Gram-Charlier series to model the distri-
bution of the quantizer input signal. A typical application example has been given demonstrating
that the proposed statistical approach leads to an 80% increase in the accuracy of estimating the
noise power gain as compared to the hitherto statistical technique. This in turn gave rise to an
improved accuracy in the estimation of the maximum DC input signal amplitude for stable A/D

converter operation.
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Chapter 4

A Novel Class of Highly Stable
High-Resolution ¥-A A/D

Converters

4.1 Introduction

The previous two chapters dealt with the characterization, design, and investigation of five widely
used hitherto feedforward and multiple-feedback £-A A/D converter configurations. The present
chapter is concerned with the development of novel £-A A/D converter configurations capable of
realizing magnitude-squared and magnitude complementary signal and noise transfer functions (in
addition to being capable of realizing complementary signal and noise transfer functions). The
resulting Z-A A/D converters embody three important practical advantages as compared to the
hitherto feedforward and multiple-feedback A/D converters, including a) their noise transfer function
can be obtained without any recourse to numerical optimization, simplifying the design process, b)
their noise transfer function is guaranteed to be bounded below 1, resulting in a highly stable A/D
converter operation, and c) in the signal band, where the magnitude of the signal transfer function
is 1, the magnitude of their noise transfer function is automatically 0 resulting in high SQNR in an
actual (nonlinear) converter operation.

Section 4.2 presents a method for obtaining magnitude-squared complementary or magnitude
complementary signal and noise transfer functions STF(z) and NTF(z). Section 4.3 presents five
novel X-A A/D converter configurations capable of realizing magnitude-squared and magnitude
complementary signal and noise transfer functions. A systematic procedure is given in Section 4.4 for
the design of the proposed magnitude-squared and magnitude complementary £-A A/D converters.
Section 4.5 presents the practical advantages of the proposed £-A A/D converter configurations.
Finally, the main conclusions of the chapter are given in Section 4.6.
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4.2 Magnitude-Squared Complementary and Magnitude Com-
plementary Transfer Functions

Let us consider a rational transfer function H(z) of order N, where N is odd for lowpass (or
highpass) H(z), and where N is even for bandpass (or bandstop) H(z). Moreover, let H(z) satisfy
a relationship of the form (Nowrouzian et. al., [28]), (Nowrouzian et. al., [29])

1
4H(z)H(z_l) = T (4.1)
1-[a8]
where P(z) is an antisymmetric polynomial, and Q(z) is a symmetric polynomial in z. In addition,

let zy;, (for iy =1,2,---,n;) denote those roots of
P(z) +Q(z) =0, 42)

which are inside the unit circle, and let z3;, (for iz = 1,2,--- ,n2 = N — n,;) denote those roots
which are outside the unit circle. Then, form the polynomials Pi(z), Q,(z), and P(z), Q2(2) in

accordance with

Pi(2) +Qi(2) = H (z - 214,) (4.3)
and
Py(z) + Qa(2) = ﬁ (z-2z30) (4.4)
ia=1

where P;(z), P;(z) are antisymmetric polynomials, and Q1(z), Q2(z) are symmetric polynomials in
z. Finally, let Hy(z) and Hz(z) be all-pass transfer functions formed in accordance with (Nowrouzian
et. al., (28]), (Nowrouzian et. al., [29])

1— Zx!z! 1- Zziz!

Hl(z) = -@, 2(2) T (45)
where
Zl(z) 1—1(2 z'll) -2z™ nu—l(z—l - ztll) (4 6)
R I (z—z0) + 20 [y (27 = 2iy1) '
Z2(2) = n:;—l(z 332) + 2™ nl:—l e 123) 4.7
R :=l(z -,2) —zm H?::l(z_l l:!) )

Subsequently, a pair of magnitude-squared complementary transfer functions H4(z) and Hp(z) may

be formed in accordance with

Ha®) = 5 [H(2) - Baf)] (48)

Ha(z) = 5 [Hi(2) + Fa(2)]. (49)
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Moreover, a pair of magnitude complementary transfer functions may be formed in accordance with

Hy(z) = Ha(2)?, (4.10)
Hp(z) = Hp(2)>. (4.11)

Example:
As an ezample, consider a 3-rd order highpass elliptic transfer function H(z) defined in accordance
with

_ 0.746482 — 2.2363462z ! + 2.23634622 — 0.746482z~3

= 4.1
H(z) 1 — 2.424510z-1 + 1.995130z~2 — 0.546015z—3 (4.12)
Then, by solving Eqn. 4.1 for Q(z) and P(z) it may be shoun that
Q(z) = 1.492964 — 44726912 + 4.47269127% — 1.49296423 (4.13)
P(z) =0.105927 — 0.0936242! — 0.093624z~2 + 0.1059272~3 (4.14)
(4.15)

Having found P(z) and Q(z), the roots of P(z) + Q(z) = 0 may then be determined and the all-pass
transfer functions Hy(z) and H;(z) may then be determined to be

~0.368273 + 1.162690z % — 1.212406z~2 + 0.42452323
2 — 5.071994z -1 + 4.3488492-2 — 1.2507232-3
—0.424523 + 1.212406z ! — 1.162690z~2 + 0.368273z 3
2 — 5.071994z1 + 4.3488492—2 — 1.25072323

Hy(z) = (4.16)

Hy(z) = (4.17)

The magnitude-squared complementary transfer functions are then formed in accordance with Eqns.
4.8 and 4.9 resulting in

0.056249 — 0.049716z ! — 0.0497162~2 + 0.056249z~3
1 —2.535997z-1 + 2.1744242-2 — 0.625362z 3
0.792796 — 2.375095z ! + 2.375095z2 — 0.792796z 3
1 —-2.535997z-1 + 2.1744242-2 — 0.6253622 3

Ha(z) = (4.18)

Hpg(z) = (4.19)

A plot of the magnitude-frequency responses of Ha(z) and Hp(z) are shoun in Fig. 4.1. One
may note from the figure that the two responses intersect at a magnitude of -\g—i Furthermore, by
invoking Eqns. {.18 and 4.19 in Eqns. .10 and {.11, respectively, one may obtain the magnitude
complementary transfer functions H A(z) and Hp (z) having magnitude-frequency responses as shoun
in Fig. 4.2. In this case, the two transfer functions intersect at a magnitude of %

In this way, the signal transfer and noise transfer functions may be obtained as

STF(z) = Ha(z) (or Ha(2)), (4.20)
NTF(z) = Hp(z) (or Hp(2)). (4.21)

The resulting signal and noise transfer functions may be decomposed into N(z), D(z), and S(z) in
accordance with Eqns. 2.1 (with G(z) =1) and 2.2.
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Figure 4.1: Magnitude-Frequency Plot of H4(z) and Hpg(z2)
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Figure 4.2: Magnitude-Frequency Plot of H4(z) and Hp(z2)

As before, it is expedient to recast the polynomial D(z) in the form

D(z)=Z'D, (4.22)
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and the polynomials N(z) and S(z) in the forms

N@) =ZN, (4.23)
Siz)=Z2's, (4.24)

where 2’ = [29,27,272,... ,z~ V], where D, N, and S are column vectors of length (N + 1) whose
entries depend on the system parameters of the £-A A/D converter, and where N is the order of
the A/D converter.

In the hitherto feedforward and multiple-feedback X-A A/D converters, the configuration proper
imposes two restricting conditions on the signal and noise transfer functions, namely 1) the z? coef-
ficient of S(z) must be zero and 2) the z° coefficient of N(z) must be unity. However, magnitude-
squared or magnitude complementary signal and noise transfer functions require that the z° coeffi-
cient of S(z) be non-zero and that the z° coefficient of N(z) be unconstrained.

In this thesis, five novel £-A A/D converter configurations are proposed which do not make
any recourse to the above problem. This is achieved through suitable modifications of the hitherto
cascade-of-integrators (COI), cascade-of-resonators (COR), cascade-of-resonators/integrators (CRI),
feedforward (FF), and multiple-feedback (MF) £-A A/D converter configurations.

4.3 Proposed X-A A/D Converter Configurations

4.3.1 Modified Cascade-of-Integrators £-A A /D Converter Configuration

The modified cascade-of-integrators (MCOI) Z-A A/D converter configuration is as shown in Fig.
4.3 (Fraser et. al., [30]). The modification includes the addition of (N + 1) multipliers in the
feedforward path and the addition of 1 multiplier after the quantizer.

U(z)

:} ~ Y(z)

.......

Figure 4.3: Modified Cascade-of-Integrators £-A A/D Converter Configuration
As before, it is necessary to be able to determine the multiplier values of the configuration given a
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signal and noise transfer function. Through a detailed analysis of this A/D converter configuration,
the G multiplier coefficient corresponds directly to the z° coefficient of N(z) as is evident from

N
N(z)= z—Gi [(z -1)N - ZA.'(Z —-1)N-¢| . (4.25)

=1

Next, to determine the multiplier coefficients A1-n, B1_n, and R;_(n41), it is convenient to let

A=[14; Ay--- AN},
B=[1 By Bz---BN],
R=[R Ry - Rni]

Then, it can be shown that

N =CuconAG, (4.26)
D =CumcornB, (4.27)
S =CumconRG, (4.28)

where Cycomn is a lower triangular matrix of order (N + 1) whose elements are independent of
the A multiplier coefficients, Cyrcorz is a lower triangular matrix of order (N + 1) whose elements
depend solely on the A and G multiplier coefficients, and Cycor3 is a matrix of order (N +1) whose
elements are solely dependent on the A and B multiplier coefficients. For example, by considering

the case of N = 3, one has

1 0 0 o
-3 -1 0 o
Cmcon = (4.29)
3 2 -1 0
-1 -1 1 -
1 0 0 0
-3-A4 -G 0 0
Cmcon = (4.30)
3+24; - Ay 2G -G 0

-1-A+4-43 -G G -G
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Cumcorn =

0 0 0
Bl Bz B3

2B, + B -~ —-B3(2- A
1+ B2 B, 32(2 + Al) 3( l) C.1 (4.31)
+B, A +B, A3
B, — B, -B3(1+ Al) 83(1 - A+ Al)
+B3 +By(1+ 4) +B2A3 + B1 A3
+B1 (A3 — Az)

where C.; represents the first column of the matrix Cycorz.

In this way, once NV, D, and S have been obtained, the coefficient G may be obtained from A/,
and the multiplier coefficients A, B, and R may be obtained through the inversion of Eqns. 4.26,
4.27, and 4.28, respectively.

Also, as before, the SC hardware implementation may be obtained by first sectioning the con-
figuration into its primary components then substituting these components in terms of their corre-
sponding SC hardware counterparts shown in Fig. 2.4. In doing so, for a 6-th order MCOI converter
configuration, one arrives at the corresponding SC hardware implementation shown in Fig. 4.5. It
is convenient to factor out the CRy., and G coefficients to obtain the equivalent system shown in

Fig. 4.4, where M = CRn ). The nominal capacitor values are given in Table 4.1.

u(n) [@u SC Circuit ll> y(n)

Figure 4.4: Equivalent SC system

4.3.2 Modified Cascade-of-Resonators £-A A/D Converter Configuration

The modified cascade-of-resonators (MCOR) configuration is as shown in Fig. 4.6 (Fraser et. al.,
(31]). The modification includes the addition of 1 feedforward multiplier and the addition of 1
multiplier after the quantizer.
Through a detailed analysis of this A/D converter configuration it can be shown that
| %)

N@z)=G[] 1+(-2-Ra)z" +27%]. (4.32)
k=1
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Table 4.1: Modified Cascade-of-Integrators Nominal Capacitor Values

CR, | Ry/Rn+1 cA -4, | CB, | By
CR; | R2/Rny1 CA; -A2 || CB; | B2

CRy41 1 CAxn —-Ax || CBy | By

CF, 1 cX, 1
CF, 1 CX; 1
CFni -1 Cxn1| 1 |cFe| @

U(z) :

Figure 4.6: Modified Cascade-of-Resonators £-A A/D Converter Configuration
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The above equations reveal that the A/D converter configuration automatically places the zeros
of NTF(z) on the unit-circle. Evidently, the zeros of NTF(z) depend on the values of multiplier
coefficients Ry (for k =1,2,..., %'-) only.

Given the signal and noise transfer functions, the coefficient G may be obtained as the z0 coeffi-
cient of N(z) (c.f. Eqn. 4.32), and the coefficients R;_|n/7) may be obtained from Eqn. 2.26 using
the zero frequencies fo of N(z). Further analysis of the MCOR I-A A/D converter configuration
reveals that the A;_n and B;_n coefficients may be obtained as discussed in the following.

First, let AT = [A;,A2,--- ,An+1| and BT =1, By, -, Bn]. Then it can be shown that

S =CimcorA, (4.33)
and
D =CamcorB, (4.34)

where Ciarcor and Capcor are lower triangular matrices of order (N + 1) having elements as being
independent of the multiplier coefficients Ay and B, respectively!. As an example, consider the

case when N = 3. Then,

[ 1 0 0 ]
—-(Bh+3) 1 0 O
Cimcor = (B +3) (4.35)
(Ri+3) -2 1 o0
I -1 1 -11 J
[ 1 o 0o o |
-(Ri+3) -G 0 0
Camcor = (Ri+3) (4.36)
(Ri+3) 26 -G 0
-1 -G G -G ]
(4.37)

In this way, once N/, D, and S have been obtained, the coefficient G and R may be obtained from
N, and the multiplier coefficients, .A, and B may be obtained through the inversion of Eqns. 4.33,
4.34, respectively.

The corresponding SC hardware implementation can once again be obtained by decomposing
the converter configuration into its primary components and then replacing those components by
their SC capacitor hardware counterparts. As a result, the MCOR SC hardware implementation is
as shown in Fig. 4.7 for the case of a 6-th order converter. Moreover, it is convenient to factor out
the G coefficient to obtain the equivalent system as shown in Fig. 4.4, where M = 1. The nominal
capacitor values are given in Table 4.2.

!The elements depend solely on the multiplier coeflicients R, and G.
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Table 4.2: Modified Cascade-of-Resonators Nominal Capacitor Values

CAI Al C Bl B]_ G C F 1 1
CA; Az CB, BG CF, 1

CAni1 | A | CBy | BNG || CFyi |1

CX; 1 CR] "Rl
C Xz 1 C Rz —Rz
CXn

U(z)

G>-Y(2)

Figure 4.8: Modified Cascade-of-Resonators/Integrators £-A A/D Converter Configuration

4.3.3 Modified Cascade-of-Resonators/Integrators X-A A/D Converter
Configuration

The modified cascade-of-resonators/integrators (MCRI) is as shown in Fig. 4.8. The modification
of the CRI A/D converter includes the addition of (N + 1) multiplier coefficients in the feedforward
path and the addition of 1 multiplier after the quantizer.

Having obtained the signal and noise transfer function, the multiplier coefficients G, R;_|n/2,
A;_n, and B;_(n41) may be determined as discussed in the following.

First, an analysis of this A/D converter reveals that,

¥
N(z) =G H [1+(-2-Re)z +272]. (4.38)

k=1
Evidently, the G multiplier corresponds directly to the z° coefficient of N(z), and the multipliers

R, _|n72) may be determined from the zero frequencies fo of the noise transfer function in accordance
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with Eqn. 2.26. Next, it is convenient to let

A=[14, Ay---Ap], (4.39)
B=[1 B, By---Bn4i], (4.40)
Then, it can be shown that
D =CucrnA, (4.41)
S = CymcriBG, (4.42)

where Cyrcrpn is a lower triangular matrix of order (N + 1) whose elements are independent of the
A muitiplier coefficients, and Caycry2 is a matrix of order (N + 1) whose elements depend solely on

the A and R multiplier coefficients. As an example, by considering the case of N = 3, one has

1 0 0 0
~-(3+R -G 0 0
Ccrn = ( 1) (4.43)
3+ Ry MG -G 0
~-1 -G G -G
and
0 0 0 1
A A Az + A2R -(3+R
Ccrn2 = ' 2 s AR ( 1 . (4.44)
-A; (2 +R1)+ A2 —24A;+A; —-A;R, —2A; 3+R
A — A2+ Ay A — Az As -1

In this way, once NV, D, and S have been obtained, the coefficient G and R may be obtained from
N, and the multiplier coefficients A and B may be obtained through the inversion of Eqns. 4.41 and
4.42, respectively.

The corresponding SC hardware implementation is as shown in Fig. 4.9 for the case of a 6-th order
MCRI A/D converter and was obtained by replacing the primary blocks of the MCRI configuration
by their SC hardware counterparts. It is convenient to factor out the CByy, and G coeflicients
to obtain the equivalent system as shown in Fig. 4.4, where M = CBy4;. The nominal capacitor
values are given in Table 4.3.

4.3.4 Modified Feedforward X-A A/D Converter Configuration

The next configuration is the modified feedforward £-A A/D converter as shown in Fig. 4.10. The
modification includes the addition of (N +1) feedforward multipliers and the addition of 1 multiplier
after the quantizer.

The numerator N(z) of the noise transfer function can be expressed in terms of the G and

Ry _|n/2; multiplier coefficients in accordance with

&
NE@)=G]J[1-2:"+(1 - Re)z7?], (4.45)

k=1
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Table 4.3: Modified Cascade-of-Resonators/Integrators Nominal Capacitor Values

CB, B,/Bx+1 CA, A; CFHh 1
CB, B3/Byn+, CA; Ay CF 1
CByy: | Bny1/Bhsr || CAN Av || CFyq1 | -1

CX1 1 CRI -Rl
CXg 1 CRz _R2
CXn_1 1 CR[#J -RH"J CFG G

~Y(2)

Figure 4.10: Modified Feedforward £-A A/D Converter Configuration



for even orders N. Evidently, the parameter G corresponds directly to the 2° coefficient of N(z),
and the R,_|x/2; multiplier coefficients may be expressed in terms of the angles of the zeros 6 of
NTF(z) in accordance with

R, = tan®(6x). (4.46)
Then, the multiplier coefficients A;_x and B;_(n+1) may be determined as discussed in the follow-

ing.
First, is convenient to let

A=[1A; Az---An], (4.47)
B = [B]_ Bz s BN+1] 3 (448)
Then, it may be shown that
D = Cyrr A7, (4.49)
S = Curr2BTG, (4.50)

where Casrr) is a lower triangular matrix of order (IV + 1) whose elements are independent of the
A multiplier coefficients, and Cps 2 is a matrix of order (N + 1) whose elements depend solely on

the A and R multiplier coefficients. As an example, consider the case N = 3. Then,

1 0 0 o |
-3 -G 0 0
CMFF1 = (4.51)
3-R; 2G -G 0
-1+R, G(R, - 1) G -G

and
-
0 0 0 1
A —
CmFF2 = ! 42 4s 3 . (4.52)
Ay — 24, A3 —2A; -2A3+A:R, 3-R
i Az — A + A1(1 - Rl) —-A3; + Ay Az — AR, Ry -1

In this way, once the vectors A/, D, and S have been obtained, the coefficient G and R may be
obtained from AN, and the multiplier coefficients, .A and B may be obtained through the inversion
of Eqns. 4.49 and 4.50, respectively.

The corresponding SC hardware implementation can once again be obtained by decomposing the
converter configuration into its primary components and then replacing those components by their
SC capacitor hardware counterparts. The resulting SC hardware implementation is as shown in Fig.
4.11 for the case of a 6-th order MFF E-A A/D converter. It is convenient to factor out the By 4y
and G coefficients to obtain the equivalent system as shown in Fig. 4.4, where M = CBn1. The
capacitor values are given in Table 4.4.
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Table 4.4: Modified Feedforward Nominal Capacitor Values

CB, B, CA, A4 CHh 1
CB; B, CA; A; CF; 1

CBny1 | Bn+1 || CAN An CFyy | 1
CcX, 1 CR, -R
CX; 1 CR: -R;

CXn- 1 CRHLJ _R[’H CFG | G

Figure 4.12: Modified Multiple-Feedback X-A A/D Converter Configuration

4.3.5 Modified Multiple-Feedback ¥-A A/D Converter Configuration

The modified multiple-feedback (MMF) £-A A/D converter configuration is as shown in Fig. 4.12
(Fraser et. al., [32]). The modification includes the addition of N feedforward multipliers and the
addition of 1 multiplier after the quantizer. Given a signal and noise transfer function, the constituent
parameters of the MMF £-A A/D converter configuration can be determined as discussed in the
following.

First, through a detailed analysis of the A/D converter configuration, the numerator of the noise
transfer function can be expressed in terms of the G and R multiplier coefficients in accordance with

L4]

Nz =G[] 1-2:"+1-Re)z7?]. (4.53)
k=1

The above equation reveals that the A/D converter configuration automatically places the zeros of
NTF(z) on the real line Re(z) = 1. Then, the G coefficient may determined as the z® coefficient of
N(z), and the R coefficients may be obtained from the angles of the zeros of the noise transfer func-
tion in accordance with Eqn. 4.46. Moreover, it may be shown that if AT = [A4,, 42, , AN, AN41]
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and BT =1, B,,--- , By], then

S =CimmFA, (4.54)
and P =CommrB, (4.55)

where Cpyar and Copgaer are lower triangular matrices of order (N + 1) having elements as being
independent of the multiplier coefficients A, and By, respectively?>. As an example, by considering
the case of N = 3, one has

1 0 0
-3 1 0 0
CMMF1L = (4.56)
3-R;, -2 1 0O
-1+R; 1 -11

and

1 0 0 0
-3 -G o0 0
3-R, 2G -G 0O

RR-1 -G G -G

In this way, once the vectors A, D, and S have been obtained, the coefficient G and R may be
obtained from A, and the multiplier coefficients .4 and B may be obtained through the inversion of
Equs. 4.54 and 4.55, respectively.

Applying the basic building blocks from Fig. 2.4 to a 6-th order MMF A /D converter, one arrives
at the SC hardware implementation shown in Fig. 4.13. Moreover, it is convenient to factor out the
G multiplier coefficient to obtain the equivalent system as shown in Fig. 4.4, where M = 1. The
nominal capacitor values are given in Table 4.5.

Using the above relationships for the various multiplier coefficients, one may proceed to a sys-
tematic design of magnitude-squared complementary and magnitude complementary X-A A/D con-
verters as discussed in the following design procedure.

4.4 Design Procedure

This section presents a systematic procedure for the design of the magnitude-squared and mag-
nitude complementary oversampled £-A A/D converters starting from a set of high-level system
specifications. In the case of lowpass £-A A/D converters, these specifications include, the sampling
frequency f,, the signal bandwidth BW, the desired SQNR, and the order N. These specifications
can be extended to the case of bandpass £-A A/D converters by including the corresponding center
frequency associated with the input signal passband.

3The elements depend solely on the multiplier coefficients Rj and G.




(u)f A
”_“.A_mw X g i «mw tg il vmw ‘q il em.v._m
A1 AA A1 A1 AA A
iTlﬂvﬂ,_,%V? JNV g mjw i
W |9x0| %D X0 mswﬂ X0 |%d0 X m&m« X0 |30 X0 WQ
Do ﬁﬂo \V_M_.w| m_uv..o .F_,Jo \Vﬂu_cl u_u«...u 4.:6 VVM.W m_ubv,.ﬂ.\w\l_.?va

89

Figure 4.13: Modified Multiple-Feedback SC Hardware Implementation



Table 4.5: Modified Multiple-Feedback Nominal Capacitor Values

cA,y A CB, B:G CF |1
CA; Az CB, B,G CFh, (1

CANs1 | Ans1 || CBy BNG || CFyyr | 1
CX; 1 CRI _Rl
C Xz 1 CR! —Rz

CAv | 1 1Ry | Ry

4.4.1 Design of Magnitude-squared Complementary ¥-A A /D Converters

The design of the magnitude-squared complementary £-A A/D converter proceeds in a step-by-step
manner as discussed in the following.

Step 1) Choose NTF(z) to be an odd N-th order highpass transfer function or an even 2N-th order
bandstop classical transfer function 3.

Step 2) Set the stopband loss A, of NTF(z) to SQNRumin.

Step 3) Set the passband ripple A, of NTF(z) to be as large as possible. Note that as A, increases,
the achievable SQNR increases but the stability margin decreases. It is important to have A, as
large as possible while still maintaining a stable converter operation.

Step 4) Set the cutoff frequency Wy, of NTF(z) to BW.

Step 5) Calculate ST F(z) as detailed in Section 4.2. The constituent multiplier coefficients may be
determined as detailed in Sections 4.3.1 to 4.3.5.

Step 6) Simulate the nonlinear magnitude-squared complementary converter and test for stability.
If unstable, then lower A, and go to Step 5.

4.4.2 Design of Magnitude Complementary -A A/D Converters

The design of magnitude complementary £-A A/D converters proceeds similarly in a step-by-step
manner as discussed in the following.
Step 1) Choose H(z) to be an odd N-th order highpass filter or an even 2N-th order bandstop
classical transfer function.
Step 2) Set the stopband loss A, of H(z) to SQNRpin/2.
Step 3) Set the passband ripple A, of H(z) to be as large as possible. Note that as before, as A,
increases, the achievable SQN R increases but stability margin decreases.
Step 4) Set the cutoff frequency W, of H(z) to BW.

3Butterworth, (inverse) Chebyschev, or elliptic.




Step 5) Calculate the magnitude complementary NTF(z) and STF(z) as detailed in Section 4.2.
The constituent multiplier coefficients may be determined as detailed in Sections 4.3.1 to 4.3.5.
Step 6) Simulate magnitude complementary converter and test for stability. If unstable, then lower
Ap and go to Step 5.

4.5 Advantages of the Proposed X-A A/D Converters

The resulting Z-A A /D converters embody three important practical advantages as compared to the
hitherto feedforward and multiple-feedback A/D converters, including a) their noise transfer function
can be obtained without any recourse to numerical optimization, simplifying the design process, b)
their noise transfer function is guaranteed to be bounded below 1, resuiting in a highly stable A/D
converter operation, and c) in the signal band, where the magnitude of the signal transfer function
is 1, the magnitude of their noise transfer function is automatically 0 resulting in high SQNR in an
actual (nonlinear) converter operation.

Subsequently, the next chapter presents a detailed empirical investigation of the proposed -A
A/D converter configurations to determine the significance of magnitude-squared complementary
signal and noise transfer functions on a) their achievable SQNR and DR performance, and b)
their stability performance in the presence of capacitor mismatches in corresponding SC hardware

implementations.

4.6 Concluding Remarks

This chapter has introduced five novel feedforward and multiple-feedback £-A A/D converter con-
figurations for the realization of magnitude-squared and magnitude complementary signal and noise
transfer functions (in addition to complementary signal and noise transfer functions). The result-
ing Z-A A/D converters embody three important practical advantages as compared to the hitherto
feedforward and multiple-feedback A/D converters, including a) their noise transfer function can be
obtained without any recourse to numerical optimization, simplifying the design process, b) their
noise transfer function is guaranteed to be bounded below 1, resulting in a highly stable A/D con-
verter operation, and c) in the signal band, where the magnitude of the signal transfer function is
1, the magnitude of their noise transfer function is automatically 0 resulting in high SQNR in an
actual (nonlinear) converter operation.
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Chapter 5

Design, Investigation, and Analysis
of the Proposed ¥-A A/D
Converter Configurations

The previous chapter was concerned with the realization of five modified £-A A/D converter con-
figurations capable of realizing magnitude-squared and magnitude complementary signal and noise
transfer functions. This chapter presents an empirical investigation and analysis of the MCOR,
MCOI, MCRI, and the MFF, MMF Z-A A/D converters satisfying a set of high-level system spec-
ifications. This investigation includes the determination of the impact of magnitude-squared com-
plementary signal and noise transfer functions on the achievable SQNR, DR, and the stability of
the X-A A/D converters in a corresponding SC hardware implementation.

Section 5.1 presents the design, investigation, and analysis of the MCOI, MCOR, and MCRI 2-A
A/D converter configurations. Section 5.2 presents a similar investigation for the MFF and MMF
A /D converter configurations. Then, Section 5.3 compares the results obtained for MCOI, MCOR,
MCRI, MFF, and MMF Z-A A/D converters to those obtained for the corresponding COI, COR,
CRI, FF, and MF A/D converters in Section 3.4. Finally, the main conclusions of the chapter are

presented in Section 5.4.

5.1 Design and Simulation of the MCOI, MCOR, and MCRI
2-A A/D Converter Configurations

The design specifications for the MCOI, MCOR, and MCRI Z-A A/D converters are given in Table
5.1. These design specifications are very similar to those given in Table 3.2 for the A/D converter

design in Section 3.4.
The noise and signal transfer functions NTF(z) and STF(z) were determined using the design

92



Table 5.1: £-A A/D Converter Design Specifications

Sampling Frequency 640 kHz
Passband Edge Frequency | 20 kHz
Desired SQNR 56 dB
Order 5

Table 5.2: MCOI, MCOR and MCRI £-A A/D Converter Noise and Signal Transfer Function
Coefficients

ay | —4.94731925395907 | a; | 9.84254945217749
a3 | —9.84254945217749 | a¢ | 4.94731925395907
as -1 0.65636818432169
b | —4.11722967144513 | b, | 6.88281044847699
bs | —5.81956791049806 | b, | 2.48256347017200
bs | —0.42576340605744
co | 0.07110405988635 | c; | —0.19176810930984
cz | 0.12207051474767 | c3 | 0.12207051474767

cs | —0.19176810930984 | cs | 0.07110405988635

@

procedure outlined in the previous chapter, leading to

l4+a1z7 ' +az7 % +a3z73 +aez~ 4 +agz™5

1401271 +byz=2 + byz=3 + byz~4 + bsz—5 '
5

NTF(z) =G (5.1)

co+c1z +c2z 2+ 3z 3 egz +es2”
1+b1z7  + bz~ 2 + byz—3 + byz~4 + bgz=5 "’
where the coefficients a; through as, b, through bs, and ¢, through cs are shown for the MCOI,
MCOR, MCRI 2-A A/D converters in Table 5.2. A magnitude-frequency plot of the resulting
noise and signal transfer functions is as shown in Fig. 5.1 for the MCOI, MCOR, and MCRI A/D

converters. It is important to notice that the noise transfer function is bounded from above by unity

STF(z) = (5.2)

gain.

Next, the nominal multiplier values were determined for each of the five magnitude-squared
complementary A/D converters as tabulated in Tables 5.3 to 5.5.  Then, the achievable SQNR
as a function of the amplitude of a 3 kHz sinusoidal input signal was determined. By sweeping the
sinusoidal input signal amplitude from —90 dB to 0 dB, the SQNR plot was obtained as shown in
Fig. 5.2. As is evident from the plot, the same achievable peak-signal-to-quantization-noise ratio
(PSQNR) of 56.5 dB and the same DR of 70.7 dB was observed for the three A/D converters.

The capacitor values were then determined and scaled for both maximum dynamic range and
minimum capacitance spread and total capacitance, leading to the capacitor values given in Tables
5.6 to 5.8. An inspection of the values in these tables reveals that the MCOI £-A A/D converter
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Table 5.3: MCOI £-A A/D Converter Nominal Multiplier Values

R, | —0.02015398572478 | Rz | 4.74676139057003
R3 | —25.00099446810740 | Re | 45.92088354320634
Rs | 80.46955965472353 | Re | 0.10832953452768
A, | —0.05268074604093 | Az | —0.05327243634120
Az | —0.00118338060054 | A¢ | —0.00059169030027
A 0
B, | —1.26467065641181 | B, | —0.54941621938598
B3 | —0.18937850528210 | B4 | —0.03404890587307
Bs | —0.00428559871662 | G | 0.65636818432169
Table 5.4: MCOR X-A A/D Converter Nominal Multiplier Values
Ay | 0.10832953452768 | Az | 0.24377533680415
Az | 0.08595661541496 | A, | 0.06207186806802
As | 0.00751711911847 | Ag | 0.00428559871662
B, | —1.26467065641180 | B, | —0.50332395418071
B3 | —0.12494206401594 | B4 | —0.01570472981218
Bs | —0.00428559871662 | G | 0.65636818432169
Ry | —0.01623468399972 | R, | —0.03644606204120
Table 5.5: MCRI £-A A/D Converter Nominal Multiplier Values
B, | —0.99999999999945 || B, | 4.24998538281488
B; | —22.94908556211249 || B, | 47.22728141561618
Bs | 80.46955965373127 || Bs { 0.10832953452768
A, | —1.26467065641180 | Az | —0.48279242571014
As | —0.11416843577696 (| A¢ | —0.02286084820574
As | —0.00168381687860 || G | 0.65636818432169
R, | -0.03644606204120 (| Rz | —0.01623468399972
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Table 5.6: MCOI £-A A/D Converter Scaled Capacitor Values
Capacitor Value Capacitor Value

CR, —1.30918078968271 CH 46.66814671183060

CR; 6.60717065373864 CF; 5.08217949946317

CR; —6.84739540310877 CF; 3.56291121334064

CR, 3.52998905210302 CF, 2.82458728638623

CRs 2.18997797821535 CF; 3.97960529465630

CRg 1 CFg -1

CcA —2.45851278512665 ChB, —8.38711198816223

CA; —12.63493795433773 CB; —18.51767578981508

CA; -1 CB; —22.74158261258900

CA, ~1.41229364319179 CB, —11.54910050741024

CAs 0 CBs —5.78490862268652

cX, 1

CcX; 1

CX; 1

CX4 1 CG 4.61884167940045

Table 5.7: MCOR E-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value
C4A, 1 CB, —3.40514177273324
CA; 1 CB; —20.23374543515793
CA; 5.26454044940471 CB; —1.32117814810544
CA, 1 CB, —1.37128131530488
CAg 1 CB;s -1
CAg 1.52353514976254
CF, 6.99932202577311 cX, 2.61916927665205
CF; 8.75958573648249 CX, 1.06081629986459
CF; 5.64722620574069 CX; 21.46896758558008
CF, 53.78499843047843 CX,4 3.60238590632573
CF; 4.12558210728489 CXs 9.28385017162211
CF; —9.23109292733515
CR, 1
CR, 1.69953134125228




Table 5.8: MCRI Z-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value

cA —5.87736201648536 CB, —14.06389454551282

CA; —14.13319815524053 CB; 10.78648513173512

CA; -11.39347098869816 CB; —7.23666565615489

CA4 —17.75420609981015 CB, 19.89377628814851

CAs —2.27289753990933 CBs 2.18997797818835
CBg 1

CF, 7.08039486375152 CcX, 1.27774558754309

CF, 8.04858231159930 CcX; 1

CF; 3.40902353897281 CX; 4.55387557524139

CF, 15.47804697153920 CX, 1

CF; 3.97960529465630

CFg -1

CRy 1 CcG, 1

CR; 1

has a total capacitance of 177.706 units and a spread of 46.668, the MCOR A/D converter has a
total capacitance of 167.40 units and a spread of 53.785, and the MCRI A/D converter has a total
capacitance of 146.43 units and a spread of 19.894.

Monte-Carlo simulations of 1000 different samples of each of the three £-A A/D converters led
to the determination of the actual SQNRs as shown in Fig. 5.3 and summarized in Table 5.9,
where the capacitor values were individually perturbed around their nominal values with a Gaussian
distributed white random variable € of zero mean and of ¢ = 0.00333 standard deviation'. Under
capacitance perturbations, the MCOI A/D converter gave rise to slightly fewer unstable samples
and the highest amount of SQNR variance among the stable samples than the MCOR, and MCRI
A/D converters. Since the noise transfer function zeros for the MCOI A/D converter are nominally
forced to be on the unit-circle, the zeros of NTF(z) may move off the unit-circle significantly due
to capacitor tolerances, affecting the achievable SQN R, and thus resulting in more SQ N R variance
among the samples. The lowest amount of SQNR variance was observed when the £-A A/D
converter configuration proper guaranteed the location of the noise transfer function zeros on the
unit-circle.

Finally, the above Monte-Carlo simulations were repeated for several other standard deviations.
The main results of these simulations are as shown in Table 5.10. As €42 increased, the MCOI and
MCRI A/D converters produced more unstable samples whereas the MCOR A/D converter showed

1The samples with substantially low SQNR imply unstable £-A A/D converter operation and were discarded.
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Figure 5.3: MCOI, MCOR, and MCRI Z-A A/D Converters Monte-Carlo Simulation Results

Table 5.9: Monte-Carlo Simulation Results

SQNR (€mae=10%) | MCOI | MCOR | MCRI
Nominal (dB) 56.099 | 56.099 | 56.099
Variance (dB) 0.190881 | 0.15481 | 0.15293
Max. (dB) 57.781 | 57.568 | 57.257
Min. (dB) 54.322 | 54.439 | 54.571
Mean (dB) 56.192 | 56.204 | 56.216

less sensitivity to €pq2-

5.2 Design and Simulation of the MFF and MMF X-A A/D
Converter Configurations

The MFF and MMF converters are well suited for the implementation of Butterworth and Chebyshev
type I noise transfer functions because they guarantee the noise transfer function zeros to remain
at z = 1 (by appropriately setting the R, multiplier coefficients to 0). However, by not moving the
noise transfer function zeros in-band, achieving a high SQNR with a low oversampling ratio (i.e. an
oversampling ratio of 16) becomes very difficult. In order to facilitate a 20 kHz signal bandwidth as
called for by the previous system specifications, it was determined (through many simulations) that
the required oversampling ratio must be doubled from 16 to 32 to achieve the desired SQNR and
DR performance. The updated system design specifications are as shown in Table 5.11. This result
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Table 5.10: Percentage of Unstable Samples

€maz (%) | MCOI | MCOR | MCRI
0.1 1.7 22 | 19
0.5 2.3 1.7 21
1.0 2.1 3.0 3.2
15 3.3 2.2 24
2.0 4.2 2.6 4.6

agrees reasonably well with the result given in (Welland et. al., [33]), where it was concluded that
an 11 dB increase in SQN R can be obtained by placing the noise transfer function zeros in-band as
opposed to leaving them at DC.

Table 5.11: MFF and MMF Z-A A/D Converter Design Specifications

Sampling Frequency 1.28 MHz
Passband Edge Frequency | 20 kHz

Desired SQNR 55 dB

Order 5

Filter type Chebyshev Type 1

The noise and signal transfer functions NTF(z) and STF(z) were determined by using the design
procedure outlined in the previous chapter, 2 leading to

_Alt a1z +azz 2 +azz 3 +agz"4 + asz™3
NTF(z) =G 14+b1z7l +bpz=2 4+ b323 + bez—4 + bgz—5 "’ (53)
-1 -2 -3 —4 -5
STF(z) - Co+crz 4z 4327 +cqz27 % +c52 (5.4)

1+bz7t +byz=2 + b3z~3 + bgz4 + bgz—5’

where the coefficients a; through ag, b; through bg, and c; through cg are shown for the MFF and
MMF A/D converters in Table 5.12. The resulting magnitude-frequency plots for NTF(z) and
STF(z) are shown in Fig. 5.4

Next, the multiplier values were found as given in Tables 5.13 and 5.14. Then, the achievable
SQNR as a function of the amplitude of a 3 kHz sinusoidal input signal was determined for the MFF
and MMF Z-A A/D converters. By sweeping the sinusoidal input signal amplitude from —90 dB to
0 dB, the SQNR plot shown in Fig. 5.5 was obtained. The MFF A/D converter had a PSQNR of
64.2 dB and a DR of 79.8 dB. The MMF A/D converter had a PSQNR of 63.8 dB and a DR of
77.9 dB. The slight difference between the PSQNR for the MFF and MMF A/D converters arises

2Note that only the cutoff frequency wy, and the passband ripple A; must be set in the design of Chebyshev noise
transfer functions NT F(z)




Table 5.12: MFF and MMF X-A A/D Converter Noise and Signal Transfer Function Coefficients

a1
as
as

by

-5
-10
-1
—4.28513808220955
—6.37692775131968
—0.47720493933595
0.08673685668687
0.16167512584936
—0.24806972533326

az

F Q

by

51
C3

Cs

10

5
0.69622426102791
7.38058688599618
2.75936840127495

—0.24806972533326
0.16167512584936
0.08673685668687
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Figure 5.4: Magnitude-Frequency Plot of NTF(z) and STF(z) for MFF and MMF Z-A A/D

Converter Configurations

Table 5.13:

3 4
Frequency (Hz)

MFF Z-A A/D Converter Nominal Multiplier Values

B,
Bs
Bs
A
As
As
R

—0.999999999999
—30.443161819708
427.322394607792
—1.02676961692633
—0.07756755464369
—0.00098318091493
0

B,
B,
Be
Az
A
G
R,

7.318972000369
18.448700452976
0.124581778519
—0.34476614877450
—0.00965382587501
0.69622426102791
0
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Table 5.14: MMF E-A A/D Converter Nominal Multiplier Values

A
As
As
B,
B;
Bs
Ry

0.12458177851892
0.05280596130161
0.00245795228732
—-1.02676961692633
—0.07756755464369
—0.00098318091493
0

L

B,

R

0.26660168065255
0.03684260905929
0.00098318091493
~0.34476614877450
—0.00965382587501
0.69622426102791
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Figure 5.5: SQNR versus Sinuscidal Input Signal Level for MFF and MMF X-A A/D Converters

from the Matlab based matrix inversion that is required to calculate the corresponding two sets of

coefficient values.

By making use of the scheme in 4.4 to factor out the common pre and post multiplier values, the
capacitor values for the SC hardware implementations of the MFF and MMF A/D converters can be
determined. In the case of the MFF A /D converter, M was appropriately set to Bg whereas in the
case of the MMF A/D converter, M was set to A;. By employing the capacitor scaling technique
in (Gregorian et. al., [23]), the scaled capacitor values are obtained as given in Tables 5.15 and
5.16 for the MFF and MMF A/D converters, respectively. The resulting MFF A/D converter has
a capacitance spread of 14.908 and a total capacitance of 118.1908 units, while the resulting MMF
A/D converter has a capacitance spread of 11.529 and a total capacitance of 64.5800 units.

Monte-Carlo simulations of 1000 different samples of the MFF and MMF Z-A A/D converters
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Table §.15: MFF I-A A/D Converter Scaled Capacitor Values

Capacitor Value Capacitor Value
CA —6.96486990897411 Cch —11.52912427538410
CA, —14.90835128905212 CB, 8.66075113038160
CA; —13.23686380227860 CB; —5.65106404931460
CA, —8.64071063006752 CB, 1
CAs —~4.91777256301217 CB;s 3.83222612195165
CBg 1
CF, 9.74295837509670 cX, 1
CF, 6.37477704331629 CX; 1
CF, 3.94638998209865 CX; 1.15237478550747
CF, 6.04419889530963 CX, 1
CF; 5.58836803681210
CFs -1
CR, CG, 1
CR;
Table 5.16: MMF %-A A/D Converter Scaled Capacitor Values
Capacitor Value Capacitor Value
CA 1.02110405297256 ChB: -1
CA, 2.99354778092600 CB; -1
CA; 1.76585344150512 CB; —1.23863758261587
CA, 6.78282873302369 CB, —1.00808839243507
CAs 2.95916322923003 CB;s -1
CAq 11.52912427536204
CF, 9.74018952510051 cX, 1
CF, 6.53935628866278 CX; 1
CF; 5.58547355575507 CXs 1.01454480064048
CF, 3.00276420077574 CX, 1.00826069657033
CF; 1.36995984626725 CXs 1
CFs —1.02110405297256 “
CR, 0
o | o
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Figure 5.6: MFF and MMF Z-A A/D Converters Monte-Carlo Simulation Results

led to the determination of the actual SQN Rs as shown in Fig. 5.6 and summarized in Table 5.17,
where the capacitor values were individually perturbed around their nominal values with a Gaussian
distributed white random variable ¢ of zero mean and of o = 0.00333 standard deviation®. Under
capacitance perturbations, the MMF £-A A/D converter gave rise to more unstable samples and
the highest amount of SQN R variance among the stable samples than the MFF A /D converters.
However, by eliminating the Monte-Carlo samples resulting in SQNR < 60 dB, one finds that the
MMF A/D converter produced 8% unstable samples with a variance of 0.8712 dB, while the MFF
A /D converter produced 6% unstable samples with a very similar variance of 0.9644 dB. One would
expect the variances to be similar since both configurations guarantee the location of the noise
transfer function zeros.

Finally, the above Monte-Carlo simulations were repeated for several other standard deviations.
The main results of these simulations are as shown in Table 5.18. The MMF X-A A/D converter
shows less sensitivity to €4, a8 compared to the MFF A/D converter as €, is increased.

By comparing the above simulation results, one can observe that converters which guarantee
the noise transfer function zeros on the unit-circle provide the least amount of SQNR variance.
Furthermore, the MCOR and MMF A/D converters show the least amount of sensitivity to €ma- as
compared to the MFF, MCOI, and MCRI A/D converters. The MCRI, and MFF converters show
very similar sensitivity to €mqz. The MFF and MMF converters resulted in the highest number of
unstable samples. Since the noise transfer function zeros are constrained to lie at DC, any shift in
the pole locations will result in a reduction of signal bandwidth resulting in lower SQNR values.

3The samples with substantially low SQNR imply unstable £-A A/D converter operation and were discarded.
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Table 5.17: Monte-Carlo Simulation Results

SQNR (€naz=1%) | MFF MMF
Nominal (dB) 64.1560 | 64.4820
Variance (dB) 1.0680 | 1.1250
Max. (dB) 67.0627 | 66.9272
Min. (dB) 54.0004 | 52.4945
Mean (dB) 63.9104 | 63.9207

Table 5.18: Percentage of Unstable Samples

€maz | MFF | MMF
0.1 7.5 5.0
05 | 6.5 6.9
1.0 5.9 7.8
1.5 7.9 6.1
20 10 7.8

5.3 Comparison of the Modified ¥-A A/D Converters to the
Hitherto A/D Converters

This section is concerned with a comparison of the key performance features of the five modified £-A
A/D converters presented in Chapter 5 and the corresponding hitherto A/D converters discussed in
Chapter 3. This comparison is based on the achievable SQNR, DR, stability performance under
capacitor mismatches, total capacitance, and capacitance spread.

Achievable SQNR: The COI, COR, and CRI Z-A A/D converters gave the highest SQ N R perfor-
mance levels followed by the MCOI, MCOR, and MCRI A/D converters. All six of these converters
have their constituent noise transfer function zeros on the unit-circle. The FF and MF £-A A/D
converters gave slightly lower SQN R performance levels compared to the other converters as a result
of their constituent noise transfer function zeros being on the real line Re(z) = 1. The MMF and
MFF Z-A A/D converters gave a high level of SQNR but for an oversampling ratio of 32.
Dynamic Range: The COI, COR, CRI, MCOI, MCOR, and MCRI £-A A/D converters featured
identical DR performance. The FF and MF A/D converters gave slightly lower DR performance
while the MFF and MMF A/D converters gave a larger DR performance level due to the higher
oversampling ratio. One can attribute the location of the noise transfer function zeros to the dy-
namic range performance.

Stability: The MCOI, MCOR, MCRI, MFF, and MMF Z-A A/D converters gave substantially
higher stability performance in the presence of capacitor mismatch as compared to the hitherto A/D
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Table 5.19: Comparison of X-A A/D Converter Configurations

Configuration PSQNR | DR | % Unstable | Variance | Total Cap | Cap Spread
CcoI 61.1 70.0 37.4 1.18 975.0 499.0
COR 61.1 70.0 249 0.57 176.3 34.0
CRI 61.1 70.0 28.4 0.59 272.7 774
FF 52.9 65.0 26.6 0.82 199.3 80.6
MF 52.9 64.0 3.1 0.76 651.8 3204
MCOI 56.5 70.7 21 0.19 177.7 46.7
MCOR 56.5 70.7 3.0 0.15 167.4 53.8
MCRI 56.5 70.7 3.2 0.15 146.4 19.9
MFF (OSR=32) | 642 |79.8 5.9 1.06 118.2 149
MMF (OSR = 32) 63.8 77.9 7.8 1.13 64.6 11.5

converter configurations. One can attribute this increase in stability to the choice of magnitude-
squared complementary signal and noise transfer functions.

Variance of SQNR: The MCOI, MCOR, MCRI, MFF, and MMF 2-A A/D converters gave sub-
stantially less SQNR variance than the other converters. In particular, converter configurations
which guarantee the noise transfer function zeros on the unit-circle gave less variance than configu-
rations which did not.

Total capacitance and capacitance spread: The COR Z-A A/D converter featured the lowest
capacitance spread and total capacitance among the hitherto -A A/D converters. The distribu-
tion of the feedforward and feedback paths of this A/D converter lends itself very well to capacitor
scaling. The MF £-A A/D converter features a similar topology to that of the COR A/D converter,
but led to a much larger capacitor spread and total capacitance due to the very small R coefficients.
The MCOR %-A A/D converter featured higher capacitance spread and total capacitance as a result
of the noise transfer function having slightly smaller R coefficients than found in the COR design.
The MMF, on the other hand, offered the lowest amount of capacitor spread and total capacitance
among the COR, MCOR, and MMF X-A A/D converters due to the absence of the CR capacitors
(as a result of the noise transfer function zeros being located at DC).

The CRI Z-A A/D converter featured almost identical spread to that of the FF £-A A/D
converter configurations. However, the CRI A/D converter configuration resulted in much higher
total capacitance as compared to the FF A/D converter. The MCRI £-A A/D converter featured
much smaller spread and total capacitance as compared to the CRI =-A A/D converter. This can
be attributed to the elimination of the small CRs capacitor associated with the CRI £-A A/D
converter. Furthermore, the MFF X-A A/D converter gave rise to a very small spread and total
capacitance. This can also be attributed to the elimination of the CR capacitors.
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The COI Z-A A/D converter gave rise to the largest amount of capacitor spread and total
capacitance as compared to the other £-A A/D converters. This can be attributed to the fact that
all of the feedforward capacitors sum at the same op-amp and all of the feedback capacitors sum at
the same op-amp. The MCOI - A A/D converter substantially improved the capacitor spread and
total capacitance due to the substantially increased nominal B multiplier coefficients. Thus, when
scaling for minimum capacitance, the CF; value remains reasonably small.

5.4 Concluding Remarks

This chapter has been concerned with the an empirical investigation of the proposed L-A A/D
converter configurations. It was demonstrated that the proposed £-A A /D converter configurations
not only give rise to an achievable SQN R and DR comparable to that obtained by the existing X-A
A/D converter configurations, but also give rise to very high stability performance in the presence
of capacitor mismatches in a corresponding SC hardware implementation.

A comparison of the key performance features of the five modified £-A A/D converters presented
in Chapter 5 and the corresponding hitherto A/D converters discussed in Chapter 3 was presented.
This comparison was based on the achievable SQNR, DR, stability performance under capacitor
mismatches, total capacitance, and capacitance spread.
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Chapter 6

Conclusion

This thesis has been concerned with the design and analysis of ten different feedforward and multiple-
feedback £-A A/D configurations.

Chapter 2 was concerned with the characterization of five practical existing feedforward and
multiple-feedback £-A A/D converter configurations. These configurations were characterized in
terms of two important features, namely, a) the location of their noise transfer function zeros with
respect to the unit circle in the complex z-plane, and b) the relationship between their signal and
noise transfer functions.

Chapter 3 presented a design procedure for the above feedforward and multiple-feedback X-A
A/D converter configurations. This design procedure was based on a set of high-level system design
specifications and proceeded in a step-by-step manner. Each of the five feedforward and multiple-
feedback A/D converters were then designed and simulated to determine, a) the effect of the noise
transfer function zeros on their achievable SQN R and DR, and b) the effect of capacitor mismatches
on their SQNR and DR in a corresponding SC hardware implementation. The effect of capacitor
mismatch was investigated through Monte-Carlo analysis. It has been shown that A/D converters
having noise transfer function zeros on the unit-circle exhibit superior performance in terms of the
achievable SQN R, regardless of whether the noise transfer function zeros are located on the unit-
circle by the A/D converter configuration proper or by numerical optimization. However, it is has
been shown that if the noise transfer function zeros are located on the unit-circle by numerical opti-
mization, then the £-A A/D converter exhibits a high level of stability at low capacitor tolerances,
but that the A/D converter becomes highly prone to instability as the capacitor mismatches are
increased. The A/D converters which guarantee the location of the noise transfer function zeros on
the line Re(z) = 1 have shown low sensitivity to capacitor mismatches in terms of the number of
unstable samples produced as a function of capacitor tolerances. It has been observed that the main
advantage of the complementarity of the signal and noise transfer functions is the reduction in the
complexity of the design and optimization of the £-A A/D converter. A hitherto statistical approach
for the estimation of the maximum DC input signal level for stable A/D converter operation was
discussed. The main limiting assumption of the hitherto statistical approach was that the quantizer
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input was Gaussian distributed. A proposed statistical approach was then developed for arbitrary
quantizer input signal distributions by employing the Gram-Charlier series. A typical application
example was been given demonstrating that the proposed statistical approach leads to an 80% in-
crease in the accuracy of estimating the noise power gain as compared to the hitherto statistical
technique. This in turn gave rise to an improved accuracy in the estimation of the maximum DC
input signal amplitude for stable A/D converter operation.

Chapter 4 was concerned with the development of a novel class of £-A A/D converters based on
magnitude-squared or magnitude complementary signal and noise transfer functions. In particular,
five different configurations were introduced which were capable of realizing magnitude-squared
and magnitude complementary signal and noise transfer functions (in addition to being capable of
realizing complementary signal and noise transfer functions).

Chapter 5 was concerned with an investigation and comparison of the proposed Z-A A/D convert-
ers to the corresponding existing A/D converters. It was shown that the proposed A/D converters
exhibit a high degree of stability in the presence of capacitor mismatches in a corresponding SC
hardware implementation as compared to the existing converters. It was further shown that the
achievable SQNR and DR remain very similar to that achieved by the feedforward and multiple
feedback converters.

6.1 Original Contributions
The following lists the original contributions presented in this thesis.

6.1.1 Chapter 2
e Procedure to determine the constituent multiplier coefficients for a set of N-th order £-A A/D

converter configurations.

o General equations for the numerator of the signal and noise transfer function S(z) and N(z)
and for the denominator of the signal and noise transfer function D(z) for a set of £-A A/D

converter configurations.

6.1.2 Chapter 3

e Statistical approach based on Gram-Charlier series expansion to estimate the maximum DC
input signal amplitude for a set of feedforward and multiple-feedback X-A A/D converter

configurations.

e A procedure to determine the statistical moments of the quantizer input signal for first- and
second-order £-A A/D converter configurations with DC input signals without recourse to

nonlinear simulations.
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6.1.3 Chapter 4

e The application of magnitude-squared and magnitude complementary signal and noise transfer
functions to X-A A/D converters.

o The development of five novel £-A A/D converter configurations and their corresponding

switched-capacitor hardware implementations.

¢ A design procedure for magnitude-squared and magnitude complementary £-A A/D convert-

€rs.

6.1.4 Chapter 5

¢ An empirical investigation of the novel Z-A A/D converter configurations.

6.2 Future Work

In Section 3.5 a novel approach was presented for the estimation of the maximum DC input signal
for higher order feedforward and multiple-feedback ¥-A A/D converter configurations. In this
approach, knowledge of the higher-order moments of the quantizer input signal are required to
model its corresponding distribution. A procedure to determine the quantizer input signal moments
was presented for first- and second-order £-A A/D converters. Future work may focus on developing
techniques to determine these moments for higher-order £-A A/D converters without recourse to
non-linear simulations.

In Section Chapter 4, five modified feedforward and multiple-feedback £-A A/D converter con-
figurations were presented which were capable of realizing magnitude-squared and magnitude com-
plementary signal and noise transfer functions. Future work may focus on developing other configu-
rations for this purpose which may perform better in a corresponding SC hardware implementation.

Switched-capacitor hardware implementations rely on three key components, namely a) capaci-
tors, b) transistors, and c) operational amplifiers. Each one of these devices contributes noise to the
circuit and ultimately to the degradation of signal-to-quantization-noise ratio and dynamic range of
the resulting $-A A/D converter. Moreover, these circuit nonidealities become more problematic
as the power supply of the circuit is reduced for low-voltage low-power applications. Future work
may focus on characterizing these noise sources and determining their effect on SQN R and dynamic

range.
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Appendix A

Appendix

A.1 Important Properties of Hermite Polynomials

Property 1.
/::cze;::dz ao,e ST —bo e BT +a,‘/—[ (fz)a,) —erf (-\/%’:)] (A1)

Property 2.
/ 265 Hy(2)dz = —z0 He_r(2)e 5T — 02 Hy_y(z)e o7 (A2)

Property 3.
e Hy(z) = (-1)¥ —-e“li (A3)

Property 4.
e Hy_1(z) = (-1)V* %1:—__1—13:51 (A4)

Property 5.
2 By (@t = () S (A5)

Property 6.
e Hy(z) = —%Hy-l(z)e:!'i (A6)

Property 7.
/ e Hy(z)dz = ~Hy_y(z)e T (A7)

Property 8.

(Sl ()] e

113



Property 9.

C e"- de=C, |- ;:g + aﬁe;_";] (A.Q)
Property 10.
Cn / 5% Hy(z)de = Cyo, [-Hu_l(b)e =¥ 4 Hy_y(a)e™ ] (A.10)

A.2 Derivation of k£ Using Gram-Charlier Series

Starting from the general expression for k, namely

Cov{z,y(n)}
k= —03 (A.11)
an expression for k can be obtained in terms of the Gram-Charlier series as
— 1 > 1 20
k= 7). .'I:y(n)az ‘/2_1Fe 7 G(z)dz, (A.12)

where G(z) = Z;v:o CjHj(z). Then, noting that y(n) = —1 when —o0o < z < 0, and that y(n) =1

when —m,. < z < 00, one obtains

1 Tme 1 s= * 1 s=
k== o7 [—./:m zazmewfy(z)dz+/;m. zdz‘/z_”emfu(z)dz] . (A.13)
Then, by factoring out ;.712—;, one can write
k= 03\1/5; [— /_ T 26T fu(e)dz + / ze3ot fN(z)dz] (A.14)
Using the fact that CoHp(z) =1, C’lHl(z) = C\z, and from Eqn. A.2,
= AN A .
k= 03‘/27 ale )_w Cl/;m z%e?: dz (A.15)
- 2 C; (—za,H.-_l(z)e’-—;; - o-:H.-_z(z)e’-_:;) I (A.16)
=2 -0
+ (—a:e—;;.;) +C /‘°° z’e’;:;dz (A.17)
n T3 - 2] e
+ZC.— (—za,H.-_l(a:)eW - aﬁH-_g(z)e;?) ] (A.18)
i=2 -m.

Then, by invoking Property A.1l into the above equation, one obtains,

k= as\l/ﬁ 2¢y3e—’_:'"’-"L - [m,a,e :‘: +Cla,‘/§ (erf (‘;5";:) + 1)] (A.19)

- ZC [m,a,ﬂ._l(—me)e’—:? a:Hi_g(—m,)e_'_:;] (A.20)
=2

+ [—m,a,e;_:'? + Cla,\/g (l —erf (‘;;:l: ))] (A.21)

N m3

ZC. [—m¢¢7z ._1(—m,) " o2 H;_3(-m. )e’_'?]] . (A.22)

=2
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By collecting terms, one obtains the following expression for k&

-2 e T org (e
k= e 0% —medi +C, 2erf (\/fa,) (A.23)
N —m3 —m3
+Z -m,H.-_l(—m,)ez? +U,H.-_3(—me)e$?” . (A.24)
=2

A further simplification yields the final result

m3 N
02\2/2—”8 203 [ -m.+ Cl\/-'eff ( M, ) e;;! + ZC. [—m,H.-_l(—me) + dzHi—z(—mg)]] .

(A.25)
A.3 Derivation of m, Using Gram-Charlier Series
Starting from the general expression for m,
my=P(z>-m.)-P(z<-m.), (A.26)
one may determine m,, in terms of the Gram-Charlier series as
my = /_ N ‘/2_; 5T fu(z)dz - / e”- ful2), (A27)
where G(z) = Z,—o C;Hj(z). Factoring out 72—""— yields,
1 * = /' ]
- og 20 dz .2
| - [ e puta (A28)
Then, by invoking Properties A.8, A.9, and A.10 in Eqn. A.28 one obtains the expression
1 T 2 T
my = m [ﬂzﬁ [1 (fa )] +C [ e 3. ] (A-29)
N —m —m3
+a,§ HN_l(—me)eE’-"] ‘/_[erf (\/fcr,) + 1] -G [—-c:ezf] (A.30)
N —m3
~o: Y [—HN_I(-m,)e'ﬁ!‘H (A.31)
=2
A further simplification yields the final result
2
m, = ‘/2_” [‘/- +Cla,e + gC iHi—1(—m )e eg ] . (A.32)
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Appendix B

Appendix

B.1 Calculation of Minimum Oversampling Ratio

Consider a DC input signal u(n) = 5. It is known that the output of the quantizer will consist of
a stream of +1’s and —1’s in proportion to the input amplitude. Let a represent the proportion of
+1’s, then 1 — a represents the proportion of —1’s. The input signal amplitude can then be written

as,
a()+(1-a)(-1)=%  then, (B.1)
2a-1=E (B.2)
q
From Eqn. B.2 one can write,
Qqa=p+gq and 2g(1-a)=q~p (B.3)

From the above equation it can be noted that both 2ga and 2g(1 — a) are integer values which
represent the number of +1's and —1’s in one cycle of the quantizer output stream. Therefore, the
cycle has a length of 2 samples and the g — p —1’s are interleaved among the +1’s as regularly as
possible, resulting in smaller cycles within 2q samples. Consequently,

2
=4 B.4
prpp (B.4)
is the average length of the smaller cycles yielding a period

1 2q
Fione - (g-p)F, (B.5)

where F, is the sampling frequency. Rearranging Eqn. (B.5) gives
F,
Fione = (1= 2)5 (B.6)

B.2 Estimation of Quantizer Input Signal Distribution for
First-Order X-A A/D Converter Configuration

Consider the first-order £-A A/D converter configuration as shown in Fig. 1.13. One may decompose
this system into an equivalent system with two inputs as shown in Fig. B.1. Here u(n) is a DC input
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1 ] inl (n)

u(n) =
E}::J" Gin (n)

i) 22 Gina(n)

Figure B.1: Decomposed First-Order £-A A/D Converter Configuration

signal represented by u(n) = 2 and y(n) is simply the quantizer output stream of +1 and —1 values.
Since, the system H(z) = -1; is simply an accumulator, gin1(n) = n€ and gina(n) = X7 o —¥(i)-
If one could determine the first 2q samples of y(n), then the quantizer input signal g;,(n) could be
estimated. Since the mean of the output y(n) must be equal to the mean of the input signal f, the
output y(n) can be easily determined using the following procedure.
Procedure:
v()=1
fori=2:2q

if E {y(n)} > E then

y(@)=-1
else
y(i)=1

end
end

As an example, let 2 = .. Then 2q = 200 samples of y(n) may be obtained using the above
procedure. Once y(n) has been obtained, ¢;,;(n) and g;n2(n) can be generated and combined to
form gin(n). The distribution of gin(n) was then determined and is shown in Fig. B.2. A simulation
was then conducted and the actual gin(n) was determined leading to the distribution shown in
Fig. B.3. Next, the moments of the estimated ¢;,(n) were calculated and compared to the actual
moments of the gin(n) (determined through simulation). The results are as shown in Table B.1. The
estimated and actual moments of the quantizer input signal g, (n) agree very well thus verifying the

correctness of the moment estimation technique.

B.3 Estimation of Quantizer Input Signal Distribution for
2-nd Order X-A A/D Converter Configuration

The 2-nd order X-A A/D converter may be decomposed into the system shown in Fig. B.4. Here,
u(n) is a DC input signal represented by u(n) = 5, and y(n) is simply the quantizer output stream
of +1 and -1 values. An analysis of the unit-impulse response of the system H,(z) = 9{;(‘;89- reveals

that hi(n) = n. This result implies that ¢in;(1) = 1 and gin1(n) = ( : ) Furthermore, an
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Table B.1: Actual and Estimated First-Order £-A A/D Converter Quantizer Input Signal Moments

Moment Actual Q;n(n) Estimated Q;,(n)
Mean 0.23494659749757 0.22500000000000
Variance 0.33333823109576 0.33500000000000
3 1.088653087316250e-006 | -6.588479761759913e-017
4 0.19998646816484 0.19998333362500
5 -2.912090907281327e-006 | 9.107298248878238e-019
6 0.14283795922983 0.14283214431545
7 -6.357723224730307¢-006 | 4.793501750047224e-017
8 0.11108302236725 0.11107778186090
9 -8.676749033897683e-006 | 7.357511562483933e-017
10 0.09087102165545 0.09086743299146

analysis of the unit-impulse response of the system Ha(z) = 9‘7"-(7;85)- reveals that hz(r) = —n — 1.
This result implies that gina(n) = Y + (i + 1). If one could determine the first 4q samples of y(r),
then the quantizer input signal g;, (n) could be estimated. Since the mean of the output y(n) must be
equal to the mean of the input signal 5, the output y(n) can be easily determined using a procedure
identical to that outlined in the previous subsection with the exception that the procedure must be
run for 4g samples. As an example, let ‘qf = %. Then 4q = 32 samples of y(r) may be obtained
using the above procedure. Once y(n) has been obtained, gin1(n) and gin2(n) can be generated and
combined to form g;n(n). The distribution of ¢;,(n) was then determined and is shown in Fig. B.5.
A simulation was then conducted and the actual ¢;,(n) was determined leading to the distribution
shown in Fig. B.6. Next, the moments of the estimated g;n(n) were calculated and compared to
the actual moments of the g;,(n) determined through simulation. The results are as shown in Table
B.2.

The estimated and actual moments of the quantizer input signal g;n(n) agree very well thus
verifying the correctness of the moment estimation technique.
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Figure B.5: Estimated 2-nd Order £-A A/D Converter Quantizer Input Signal Distribution
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Figure B.6: Actual 2-nd Order £-A A/D Converter Quantizer Input Signal Distribution
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Table B.2: Actual and Estimated 2-nd Order £-A A/D Converter Quantizer Input Signal Moments

Moment Actual Q;,(n) Estimated Q;n(n)
Mean 2.56234360695758 2.56250000000000
Variance 2.31680700717122 2.39112903225806
3 -3.08764217571444 -3.08789062500000
4 16.15646712164779 16.15675354003906
5 -43.16980298888438 -43.17832946777344

6 1.680128184791371e+002 | 1.680463095307350e+002

7 -5.523298488147996e+002 | -5.525032440125942e+002

8 2.019997630257215¢+003 | 2.020698650136823e+003

9 -7.086740033699986e+003 | -7.089725682546850e-+003

10 2.565241444105976e+004 | 2.566432110141348e-+004
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