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Abstract  

 

The field of organic chemistry has seen remarkable advances throughout the decades. Of all 

advances, catalysis is playing a crucial role, since it can lower the activation energy of normally 

inert starting materials for further chemical reactions. In this context, the catalytic direct 

activation and transformation of hydroxyl groups (ïOH) is of significant value since hydroxyl 

groups exist in numerous commodity chemicals, pharmaceutical agents and natural products. 

Arylboronic acids can form covalent bonds with hydroxyl groups in a reversible manner, thus 

providing transient activation, which bypasses the need for wasteful, expensive and often toxic 

stoichiometric activating reagents. As an emerging mode of catalysis, boronic acid catalysis 

(BAC) has the potential to be developed into a versatile strategy for direct hydroxyl group 

functionalization. To this end, BAC has been applied to the direct activation of carboxylic acids, 

alcohols and oximes. Several new catalytic methods employing novel arylboronic acids are 

presented in this thesis.  

Chapter 2 describes the development of a direct Friedel-Craft alkylation using ˊ-activated 

alcohols via BAC. Owing to their high Lewis acidity, electron deficient arylboronic acids activate 

alcohol substrates though polarization of the CïO bond. Mechanistic investigation revealed that 

the catalytic reactivity of arylboronic acids is influenced by their ortho-substituents. Moreover, 

this chapter also details the discovery of a novel cationic ferrocenium boronic acid salt for the 

efficient Friedel-Crafts benzylation of challenging substrates.  

Due to its broad functional group tolerance, BAC can potentially be employed cooperatively with 

other types of catalytic systems. Chapter 3 describes the development of a dual catalytic 

methodology, merging boronic acids and chiral amines, for the direct asymmetric allylation of 

branched aldehydes with allylic alcohols. Through the optimization of boronic acids and various 
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chiral amines, compounds containing valuable all-carbon quaternary centers can be accessed 

in good yield and high enantioselectivity. This research was also applied in the first catalytic and 

asymmetric synthesis of a key building block for the synthesis of a NK1/NK3 receptor antagonist.   

Other functional groups containing hydroxyl units may also be amenable to BAC. Chapter 4 

describes the discovery of a unique class of arylboronic acids with ortho-carboxyesters for 

catalysis of the Beckmann rearrangement of oximes. A broad substrate scope of oximes with 

various functional groups is achieved. Further investigations strongly suggest a two-step 

mechanism comprised of a novel boron induced oxime transesterification and a boron assisted 

Beckmann rearrangement. 
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Chapter 1  Introduction: Recent Advances in Cataly sis 

for Direct Alcohol C ïO bond Activation  

 

1.1 Definition and introduction  of alcohol functional group  

The term hydroxyl group refers to the functional entity ïOH. Unlike hydroxyl, which represents 

the radical OH according to IUPAC rules,1 the hydroxyl group widely exists in a variety of 

compounds such as water, alcohol, phenol, oxime, hydroxamic acid, carboxylic acid and mineral 

acid (Figure 1 -1). For instance, when the hydroxyl group is attached to saturated carbon atoms 

(sp3CïOH or RïOH), alcohols are formed.  

The chemistry of alcohols is vital and popular owing to their ready availability, prevalence in 

bioactive motifs, low toxicity and relatively high stability. Various alcohol products can be 

obtained through partial petroleum oxidation, biomass deoxygenation and other industrial 

processes directly from raw materials.2 For instance, over 2.5 billion gallons of ethanol fuel was 

produced worldwide in 2015.3 From there, hundreds of thousands of industrial chemicals and 

daily commodities can be produced via further chemical transformations.4 According to the Alfa 

Aesar catalog, it is estimated that more than 2500 different alcohol compounds are 

commercially available.5 Furthermore, approximately 65% of the biologically relevant natural 

products and 40% of the commercial pharmaceutical agents contain alcohol units.6  

Chemical reactions with alcohol substrates are fundamental for many important carbon-carbon 

and carbon-heteroatom bond formation reactions, such as oxidation, reduction, dehydration, 

nucleophilic substitution, rearrangements, and many others. Versatile installation, manipulation 

and transformation of the alcohol functional group lie at the heart of modern synthetic organic 

chemistry.  

 

Figure 1-1. Functional entities that contain a hydroxyl group. 
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1.2 Traditional methods for CïO bond  activation of alcohol s  

As one of the most important aspects of alcohol chemistry, the alcohol CïO bond activation has 

received great attention as it is often the key step in many widely used transformations such as 

nucleophilic substitutions, eliminations, and rearrangement reactions. However, the relatively 

inert property of the CïO bond has rendered its activation and transformation rather challenging. 

Research on alcohol CïO bond activation for chemical synthesis has come a long way. One of 

the earliest documented alcohol activation of this kind dates back to as far as 1860 when the 

pinacol rearrangement was reported to produce tert-butyl methyl ketone.7 The use of excess 

strong acids certainly allows substitution or elimination to occur, however, only with structurally 

simple alcohols under harsh conditions. Since then, more effort has been placed on the 

development of methods with broader substrate scope and more controllable conditions. 

Common strategies follow the idea to first convert the hydroxyl group into activated species (e.g. 

halide, sulfonate, oxyphosphonium, etc.), then to effect the desired reactions (Scheme 1 -1). 

These activation methods include, but are not limited to, the Appel reaction, 8  Mitsunobu 

reaction, 9  Zaitsev elimination, 10  Chugaev reaction 11  and the Grieco elimination. 12  These 

traditional transformations deliver great efficiency and wide applicability in the pharmaceutical 

industry. A survey in 2006 showed that 2% of the reactions performed in the synthesis of active 

pharmaceutical ingredients (APIs) directly related to the interconversion of alcohols to 

sulfonates or halides for further manipulation.13 These traditional methods for alcohol CïO bond 

functionalization, however, are undesirable. Significant drawbacks come from the production of 

large amounts of waste though the activation process involving stoichiometric reagents. These 

activators also often display safety and toxicity problems for manufacturing. Overall, the strategy 

of multistep functional group interconversion exhibits fairly low atom economy and greatly 

increases production costs. Consequently, since 2005, the ACS Green Chemistry Institute 

Pharmaceutical Roundtable has ranked the activation of alcohol as one of the most important 

research areas.14 

 

Scheme 1-1. Traditional methods for alcohol CïO bond activation and associated drawbacks. 
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1.3 Catalysis development for direct alcohol activation  

The use of catalysis in direct CïO bond activation would be an ideal solution for the alcohol 

functionalization since the only by-product is water. However, reactions of this kind have proven 

to be highly challenging. The difficulty lies in several thermodynamic and kinetic pitfalls in the 

activation-transformation process. The CïO bond dissociation energy is ~95 kcal/mol.15 The 

energy required to break such a strong bond is rarely compensated by the formation of the new 

bonds, which are often weaker. Even though external energy can be supplied, the activation 

process faces intrinsically high activation barriers as hydroxyl groups are poor leaving groups 

regardless of reaction type. Furthermore, generation of water can potentially undermine the 

catalyst and renders the entire activation process sluggish. Successful catalytic systems must 

be very carefully designed. Despite all the challenges, significant progress has been made in 

the area of direct alcohol activation.  

 

1.3.1 Direct alcohol activation via  catalytic nucleophilic substitutions  

1.3.1.1 Catalytic direct alcohol activatio n via  SN1 and other cationic reactions  

Lewis- or Brønsted acid catalysis is one of the most popular methods for direct functionalization 

of tertiary and ˊ-activated alcohols. The canonical reaction mechanism involves transient 

polarization of the CïO bond by coordination or protonation of the alcohol unit, formation of a 

relatively stable carbocation and attack of a nucleophile or other downstream cationic reaction. 

The use of acids, especially Lewis acids, may seem counterintuitive for direct alcohol activation 

where water is generated as the by-product. On the contrary, certain Lewis acids express 

moderate to excellent catalytic activity in the presence of water, providing that they exhibit 

suitable hydrolysis constant and water exchange rate constant as described by Kobayashi.16 In 

fact, as Rueping and co-workers stated in their review, a number of elements, including but not 

limited to H, Sc, Fe, Nb, In, La, Nd, Sm, Yb, Hf, W, Ir, Pt, Au, and Bi, have shown to be able to 

direct Friedel-Crafts alkylation of certain alcohols.17 Moreover, a broad range of nucleophiles are 

suitable such as arenes, alkenes, 1,3-diketones, nitriles, azides, amines and even boronic acids 

(Scheme 1 -2a).18  However, Lewis- or Brønsted acid catalyzed alcohol activation generally 

shares some limitations, namely the need to use ˊ-activated or tertiary alcohols in most cases 

and the lack of methods for enantioselective control over the short-lived prochiral carbocation 

species. Only recently, a rare catalytic system with FeCl3/AgSbF6 was reported by Cook and co-
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workers, where cyclohexanol was activated for direct Friedel-Crafts alkylation of simple arenes 

such as p-xylene (Scheme1 -2b), affording the product 1-1 in high yield. 19  Nevertheless, 

transformations of the ˊ-activated alcohols through carbocation intermediates have been 

extensively used to construct numerous carbon-carbon and carbon-heteroatom bonds for 

organic synthesis.20  

 

Scheme 1-2. (a) Catalytic direct alcohol activation via SN1 and other cationic reactions. (b) A 

challenging Friedel-Crafts alkylation of p-xylene using a non- -́activated secondary alcohol. 

 

1.3.1.2 Catalytic methods for S N2 and SN2ô reactions  

In comparison with ionization of alcohol substrates in SN1 reactions, direct catalytic dehydrative 

SN2 and SN2ô reactions are much less developed. Several catalytic variants of the Mitsunobu 

and Appel reactions have been reported by Toy, 21  Taniguchi, 22  Aldrich, 23  Denton 24  and 

Lambert,25  respectively. For example, the optically pure alcohol 1-2 could be transformed to the 

chloride 1-3 with cyclopropenone 1-4 as the catalyst (Scheme 1 -3a).25 However, stoichiometric 

reagents were used to regenerate the active species for catalyst turnover in these reactions. 

The reported systems of this kind are not truly catalytic direct activation of alcohols and they are 

not discussed in detail in this section. In 2015, Samec and co-workers reported a remarkable 

Brønsted acid catalyzed SN2 type reaction (Scheme 1 -3b).26 Starting from optically pure alcohol 

substrates 1-5, the direct intramolecular nucleophilic substitution occurred with a high degree of 

chirality transfer in the presence of catalytic phosphinic acid. The reaction is thought to occur 

through a well-organized hydrogen bonding network where the phosphinic acid is associated 

with both the nucleophile and the leaving alcohol simultaneously. Compared with the relatively 
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simple SN2 reactions, the case of SN2ô reactions are less straightforward. A gold (I) complex is 

known to catalyze the direct allylic alcohol substitution in a stereospecific manner as reported 

independently by Aponick, 27  Widenhoefer 28  and Bandini 29  (Scheme 1 -3c). The accepted 

general mechanism involves the complexation of gold (I) to the alkene moiety followed by anti-

addition of the internal nucleophile and anti-elimination of gold (I) and the alcohol. Thus, the 

cyclized product 1-8 can be obtained in high enantiomeric purity.27 

 

Scheme 1-3. Catalytic direct alcohol activation via SN2 and SN2ô reactions: (a) cyclopropenone 

catalyzed chlorination of a chiral alcohol; (b) phosphinic acid catalyzed intramolecular SN2 

reaction; (c) gold catalyzed intramolecular SN2ô reaction. 

 

1.3.2 Direct alcohol activation via  transition metal ˊ-allyl intermediate  

Transition metal catalyzed ˊ-allyl chemistry has received enormous attention since the 1970s 

when the Tsuji-Trost reaction was first introduced.30 Variants were soon developed: use of 

different metals, examination of leaving groups, stereochemical control with novel ligands and 

construction of new carbon-carbon and carbon-heteroatom bonds.31 Despite great progress, the 

direct use of allylic alcohol substrates for transition metal ˊ-allyl chemistry is still challenging. 
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While a number of transition metals (Ni, Mo, Ru, Pd, Ir and Pt) were reported to be able to 

activate allylic alcohols directly, these methods share similar strategies (Scheme 1 -4a).32 The 

use of aqueous or protic media was shown to be beneficial for the activation process.33 Oshima 

and co-workers proposed that elimination of the ïOH was accelerated due to efficient hydration 

of the allylic alcohol in the protic environment. The newly formed hydroxide anion is thought to 

be sufficiently stabilized by a hydrogen-bonding network.33 The other common strategy is the 

addition of Lewis- and Brønsted acids (p-toluenesulfonic acid, CO2, Et3B, Ti(OiPr)4, As2O3, etc) 

to activate the alcohol unit in situ.34 Polarization of the CïO bond by acidic additives enhances 

the rate of formation of the ˊ-allyl intermediate. Last but not least, the use of special ligands 

was also proven beneficial.35 However, most of the designed ligands display a lack of generality 

and dubious potential for asymmetric variants. A nice example of direct amination featuring 

alcohol 1-11 with an iridium catalyst combining the addition of lithium iodide and the use of 

special ligand 1-13 is shown in Scheme 1 -4b.36 Direct allylic alcohol activation via transition 

metal ˊ-allyl chemistry remains a popular method; however, it is only applicable to this specific 

class of substrates. 

 

Scheme 1-4. Direct alcohol activation via transition metal ˊ-allyl intermediate: (a) general 

strategies; (b) a specific example of direct allylic alcohol amination with Lewis acid additive and 

special ligand by iridium ˊ-allyl chemistry. 
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1.3.3 Direct alcohol activation via  borrowing hydrogen strategy  

The borrowing hydrogen methodology offers a different perspective for direct alcohol activation 

compared to the nucleophilic substitution. For an example of the alkylation of amines with 

alcohols, a traditional SN2 reaction generally involves a two-step sequence: activation of the 

alcohols into halides followed by the nucleophilic substitution from the amines. Over alkylation is 

a severe problem in a regular SN2 process. In contrast, the borrowing hydrogen strategy 

bypasses this problem by exploiting the redox active metal complexes and their ability to 

temporarily remove hydrogens from alcohols. The corresponding aldehydes or ketones can then 

undergo other reactions that result in new unsaturated moieties. Eventually, the reduced metal 

complex transfers the hydrogens back to the newly formed unsaturated species. A general 

reaction mechanism of the transfer hydrogenation strategy for the direct amination of alcohols 

with amines is described in Scheme 1 -5a.37  

While certain metals such as Al, Ni, Cu, Pd and Pt, were shown to be able to catalyze the 

reactions under heterogeneous conditions, the use of homogeneous Ru and Ir complexes is of 

great interest as various ligands can be introduced for asymmetric catalysis.38 As depicted in 

Scheme 1 -5b, the direct asymmetric amination of alcohols was achieved with a chiral iridium 

catalyst 1-20 and a chiral phosphoric acid, reported by Zhao and co-workers.39 Recently, due to 

the abundance and low toxicity of iron, more research on the iron based cyclopentadienone 

complexes for alcohol activation with a similar mechanism was also reported.40  

As an extension of the borrowing hydrogen strategy, direct construction of CïC bonds from 

alcohols can be also achieved by using carbon nucleophiles,37 such as Wittig reagents 1-19 

(Scheme 1 -5a). Remarkably, further modification of the borrowing hydrogen method to alkenes 

and other unsaturated functional groups by Krische and co-workers has led to great progress in 

the construction of tertiary carbon centers for natural product synthesis.41 As shown in Scheme 

1-5c, transfer hydrogenation from alcohol 1-22 to alkene 1-21 results in homoallylic alcohol 1-23 

in high yield and enantioselectivity with chiral phosphoric acid 1-24.  

The borrowing hydrogen strategy has become a popular method for direct functionalization of 

alcohols, in particular the direct amination of alcohols. However, as one of the drawbacks, this 

strategy cannot be applied to the activation of tertiary alcohols, since they cannot be oxidized 

into the corresponding aldehydes or ketones.  
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Scheme 1-5. Direct alcohol activation via borrowing hydrogen strategy: (a) a general reaction 

mechanism; (b) an example of direct asymmetric amination of alcohols; (c) transfer 

hydrogenation from alcohols to alkenes for the synthesis of chiral homoallylic alcohols. 

 

1.3.4 Direct alcoho l activation via  radical process  

To this day, there has been very little exploration on the direct catalytic activation of alcohols via 

radical pathways. Alcohols as alkylating reagents activated via a radical mechanism have only 

recently been reported by MacMillan and co-workers. Their approach, which combines iridium 

photoredox catalysis and thiol organocatalysis, mimics the key step of spin-center shift during 

the enzymatic reduction of ribonucleoside diphosphates into deoxyribonucleoside in DNA 
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biosynthesis.42 This complicated dual catalytic system features several interesting mechanistic 

aspects, which are simplified as follows: (a) generation of the Ŭ-hydroxyl radical 1-27 from 

methanol or other alcohols by thiol 1-26 along with photocatalysis; (b) subsequent Minisci 

reaction of radical 1-27 to pyridinium 1-25, affording the Ŭ-amino radical 1-28; (c) facile spin-

center shift of radical 1-28, eliminating a molecule of water, resulting in a benzyl radical 1-29; (d) 

reduction of radical 1-29 via photocatalysis in the presence of acids eventually leading to the 

alkylated product 1-30 (Scheme 1 -6).43 Despite the scarcity of literature precedent, alcohol 

activation via radical processes appears to be a promising area.   

 

Scheme 1-6. Direct alcohol activation via radical process merging photocatalysis and 

organocatalysis. 

 

1.4 Boronic acid catalysis (BAC)  

1.4.1 Overview of boronic acid catalysis  

Boronic acids or dihydroxy boranes refer to the trivalent boron containing compounds with two 

hydroxyl groups and one carbon substituent attached to the boron center. Boronic acids have 

become important building blocks for organic synthesis in recent decades. They are the key 

components in many important transformations such as the Nobel Prize-winning Suzuki-

Miyaura cross-coupling, Matteson homologation, Chan-Lam coupling, Liebeskind-Srogl coupling, 

conjugate addition, stereo-retentive oxidation, amination and many other processes.44  More 

recently, boronic acids have also found a unique application in drug discovery. For instance, 
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Bortezomib, a small molecule with an alpha-amino alkyl boronic acid unit, was approved by the 

FDA in 2003 for the treatment of multiple myeloma.45 Shadowed by its spectacular versatility in 

organic synthesis, medicinal chemistry and material science, the potential of boronic acids in 

green catalysis has long been overlooked. Boronic acids are considered environmental friendly 

as they eventually decompose into boric acid, which possesses low toxicity. While alkylboronic 

acids suffer from facile aerobic decomposition, arylboronic acids express a higher degree of 

stability and serve as an ideal candidate for the catalytic activation of hydroxyl groups.44 

Comprised of a Lewis acidic oxophilic boron center, arylboronic acids can form covalent bonds 

with hydroxyl groups in a reversible manner, 46  thus providing transient polarization and 

activation of the CïO bond from alcohols, carboxylic acids, carbonyl groups, etc. Downstream 

reactions can be achieved by fine tuning the structure and properties of the aromatic ring. In 

addition, different ortho-substituents can be introduced to provide secondary directing or 

activating effect along with the boronic acid (Scheme 1 -7). Herein, an overview of boronic acid 

catalysis (BAC) for the transformation of hydroxyl containing functional groups is presented.  

 

Scheme 1-7. The concept of boronic acid catalysis (BAC). 

 

1.4.2 BAC as reaction template  

Boronic acids can reversibly bind to certain substrates with hydroxyl groups via boronic ester or 

boronate formation. Taking advantage of this unique property, boronic acid catalysts can be 

designed as reaction templates for hydroxyl group containing compounds. In fact, the first 

boronic acid catalyzed reaction was discovered in this context. In 1963, Letsinger and co-

workers reported that 8-quinolineboronic acid BAC-1 could serve as a bifunctional catalyst for 

the hydrolysis of 2-chloroethanol. It was proposed that a tetrahedron boronate was formed 

which brought the substrates in close proximity. The nearby nitrogen then facilitated the 
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hydroxide substitution through hydrogen bonding (Scheme 1 -8a).47 Similarly in 1991, Philipp 

and co-workers reported a phenyl boronic acid catalyzed hydrolysis of salicylaldehyde imine. 

The ortho-hydroxyl group not only associated with the boronic acid but also enhanced its 

nucleophilicity for hydrolysis of imine 1-31 (Scheme 1 -8b).48  

 

Scheme 1-8. BAC as reaction templates for hydrolysis reactions: (a) hydrolysis of 2-

chloroethanol; (b) hydrolysis of salicylaldehyde imine. 

 

1.4.3 Activation of carboxylic acids  

Boronic acid catalysis for carboxylic acid activation has received great attention in the past two 

decades. It is generally proposed that, when a carboxylic acid and a boronic acid interact, a 

mono-acyl boronic ester (1-33) is formed upon the removal of water, which is then activated for 

nucleophilic displacement (Scheme 1 -9).46  

 

Scheme 1-9. General activation mode of carboxylic acid via BAC. 
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The use of amines as nucleophiles is prevalent due to their potential for catalytic direct amide 

coupling. In 1996, Yamamoto and co-workers reported the first boronic acid catalyzed direct 

amidation. In their report, different electron poor boronic acids were examined as they 

potentially increased the electrophilicity of the mono-acyl boronic ester 1-33 for direct amidation 

(Scheme 1 -10). As a result, 3,4,5-trifluoropehnyl boronic acid BAC-3 was identified as the best 

catalyst and displayed a high performance for amide coupling in non-polar solvent.49 Later, the 

same group introduced pyridiniumboronic acid BAC-4, which exhibited higher activity in polar 

solvents. 50  Reactions with these electron poor boronic acids, however, required very high 

temperatures (> 110 °C) and azeotropic reflux conditions (Scheme 1 -10).  

 

Scheme 1-10. Yamamotoôs boronic acids for direct carboxylic acid amidation. 

 

In 2006, Whiting and co-workers described an amino boronic acid BAC-5 as catalyst for direct 

amidation. Reactions were performed at lower temperature (~ 85 °C) but still under azeotropic 

reflux. Even though the exact mechanism is unclear, it was suggested that the amino boronic 

acid was acting as a bifunctional catalyst which could connect the ammonium or carboxylic acid 

to the boronic acid by hydrogen bonding (Scheme 1 -11).51 This study was also significant 

because it showed that electron-poor boronic acids were not necessary for catalyzing the direct 

amidation. Shortly thereafter, the same group identified a ferrocene derived amino boronic acid 

BAC-6 for the asymmetric kinetic resolution of racemic amines 1-34 via direct amidation 

(Scheme 1 -11). Amide 1-35 was isolated with low yield but significant enantiomeric purity.52  
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Scheme 1-11. Whitingôs boronic acids for direct carboxylic acid amidation. 

 

In 2008, Hall and co-workers introduced the ortho-iodophenyl boronic acid BAC-7 as a superior 

catalyst. Direct amidation of aliphatic carboxylic acids and amines could be achieved at room 

temperature with the use of molecular sieves. 53  Later, 5-methoxy-2-iodophenylboronic acid 

BAC-8 was discovered to be a more reactive catalyst by the same group.54 DFT calculations 

showed that the unique reactivity probably came from the basic character of the ortho-iodo 

substituent, which may facilitate the elimination of water from orthoaminal intermediate 1-36 via 

halogen-hydrogen bonding (Scheme 1 -12).55  

 

Scheme 1-12. Hallôs boronic acids for direct carboxylic acid amidation. 
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Despite great progress, boronic acid catalyzed direct amidation still faces significant limitations. 

The process needs water removal either by azeotropic reflux or with molecular sieves. Moreover, 

reactions with hindered substrates, such as Ŭ-branched carboxylic acids, acyclic secondary 

amines and amino acid derivatives, do not proceed well. In 2016, Ishihara and co-workers 

designed a cooperative catalytic system with boronic acid and an extra nucleophile DMAPO, 4-

dimethylaminopyridine N-oxide, to address the limited substrate scope of direct amidation. The 

proposed idea featured the attack of the DMAPO to the mono-acyl boronic ester 1-33, which 

resulted in a more active cationic acyl intermediate 1-37. Indeed, the optimized system with 

boronic acid BAC-9 and DMAPO performed well for a variety of challenging hindered substrates, 

such as 1-38 and 1-39, affording the amide products in high yields. However, removal of water 

by azeotropic reflux remains an unsolved challenge (Scheme 1 -13).56  

 

Scheme 1-13. Use of DMAPO for direct amidation of challenging substrates via BAC. 

 

Apart from amines, other nucleophiles can also be used in the electrophilic activation of 

carboxylic acid via boronic acid catalysis. In 2002, Tale and co-workers reported that the mono-

acyl boronic ester 1-33 could be trapped by azide anion in the presence of Na2SO4. A variety of 

acyl azide products were obtained in high yield at room temperature (Scheme 1 -14a).57 Later, 

the same group described the reduction of carboxylic acids to the corresponding alcohols by 

NaBH4. In both cases, as low as 1 mol% of boronic acid catalyst was used. Although no 

mechanistic studies were performed, the author suggested that the hydride could serve as a 

nucleophile for the reduction of the mono-acyl boronic ester 1-33 (Scheme 1 -14a). 58 Similarly in 

2004, as described by Yamamoto and co-workers, urea was examined for the direct substitution 

of carboxylic acid with boronic acid (Scheme 1 -14b).59 In 2005, Yamamoto also discovered that 
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pyridiniumboronic acid BAC-4 could be used to catalyze the direct esterification of Ŭ-

hydroxycarboxylic acids with alcohols as the nucleophile. The presence of the Ŭ-hydroxyl group 

to the carboxylic acid was vital to the success of this esterification. An anionic acyloxyborate 

intermediate 1-40 was proposed for this transformation (Scheme 1 -14c).60 

 

Scheme 1-14. Direct carboxylic acid activation for reactions with other nucleophiles via BAC: (a) 

with azide and hydride; (b) with urea; (c) with alcohol. 

 

Interestingly, even carboxylic acids could act as nucleophiles in certain cases with a well-

designed boronic acid. In 2011, Ishihara and co-workers introduced a bifunctional boronic acid 

BAC-10 with bulky Brønsted basic sites at the 2,6-positions for intramolecular carboxylic acid 

dehydration (Scheme 1 -15). The authors described the mechanistic picture shown as 1-41, 

where one of the amines deprotonated the carboxylic acid as a carboxylate, rendering it more 

nucleophilic. The other amine unit acted as a hydrogen shuttle for the attack of the carboxylate 

to the mono-acyl boronic ester, which led to the intermediate 1-42. After another proton transfer 
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assisted by the amine units and subsequent dehydration, the anhydride product was formed 

and the boronic acid was regenerated.61  

 

Scheme 1-15. Direct carboxylic acid activation for anhydride formation via BAC. 

 

As an extension of the BAC concept, direct activation of Ŭ,ɓ-unsaturated carboxylic acids was 

also explored. In 2010, Hall and co-workers identified ortho-nitrophenyl boronic acid BAC-11 as 

a general catalyst for the dipolar cycloadditions of Ŭ,ɓ-unsaturated carboxylic acids. 

Cycloadditions between acrylic/propiolic acid derivatives and azides, nitrile oxides, nitrones and 

dienes could be performed under mild conditions. Inspired by the common mono-acyl boronic 

ester intermediate 1-33 in direct amidation, it was proposed that the polarizing effect was 

extended to the unsaturated moieties. A LUMO-lowering transition state was proposed and 

further supported by NMR spectroscopic studies (Scheme 1-16).62  

 

Scheme 1-16. Direct activation of Ŭ,ɓ-unsaturated carboxylic acids for various dipolar 

cycloadditions via BAC. 
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Recently in 2014, Takemoto and co-workers described a boronic acid catalyzed intramolecular 

oxa-Michael addition of Ŭ,ɓ-unsaturated carboxylic acids. The asymmetric variant of the reaction 

was achieved with a chiral base 1-45. In their dual catalytic system, Ŭ,ɓ-unsaturated carboxylic 

acid 1-43 tethered with a nucleophilic moiety was able to cyclize under BAC activation and 

provide product 1-44 in high yield and high enantioselectivity. Although the exact mechanism is 

not clear, the authors proposed that the chiral base 1-45 was more likely to be associated to the 

boronate via hydrogen bonding rather than chelating with the boronic acid directly. (Scheme 1 -

17).63 

 

Scheme 1-17. Asymmetric oxa-Michael addition of Ŭ,ɓ-unsaturated carboxylic acid via BAC. 

 

1.4.4 Activation of carbonyl groups  

Boronic acid catalyzed carbonyl group functionalization involves the formation of boron enolates 

(e.g.1-46) and their nucleophilic addition to electrophiles. As early as 2006, phenyl boronic acid 

was identified as an efficient catalyst for the Biginelli reaction by Carboni and co-workers 

(Scheme 1 -18). In their communication, a dual activation mode of the catalyst was proposed. In 

the key mechanistic steps, it was suggested that phenylboronic acid not only promoted the 

enolate formation of ethyl acetoacetate but also activated the acylimine intermediate 1-47 for 

nucleophilic addition. This catalytic system provided the desired 3,4-dihydropyrimidinone 

product 1-49 in good yield.64  
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Scheme 1-18. Direct carbonyl activation for Biginelli condensation via BAC. 

 

In 2008, Whiting and co-workers reported that the bifunctional aminoboronate BAC-12 was able 

to catalyze the syn-aldol reaction of Ŭ-hydroxyl ketones such as 1-50 and aldehydes in water 

(Scheme 1 -19). In their report, it was proposed that the imidazole not only helped accelerate 

the boron enolate formation but also held the aldehyde in position via hydrogen bonding for the 

nucleophilic attack by the enolate.65  

 

Scheme 1-19. Direct carbonyl activation for aldol reaction via BAC. 

 

In 2010, a boronic acid catalyzed ene carbocyclization of acetylenic dicarbonyl compounds was 

introduced by Dixon and co-workers.66 As described in the report, this interesting discovery 

arose from the failed attempt of a transesterification with cyclohexanol and 1-53 catalyzed by 3-

nitrophenyl boronic acid BAC-13 as previously reported by Tale (Scheme 1 -20a).67 Instead, a 

cyclized ketoester 1-54 was formed. It was suggested that 3-nitrophenyl boronic acid BAC-13 



19 
 

accelerated enolization of the 1,3-dicarbonyl compound. The corresponding enol then 

underwent an ene reaction with the alkyne moiety as described in transition structure 1-55 

(Scheme 1 -20b).66 

 

Scheme 1-20. Direct carbonyl activation for transesterification and ene carbocyclization via 

BAC. 

 

1.4.5 Activation of hydroxamic acid s 

The boronic acid catalyzed direct transformation of hydroxamic acid is relatively underexplored. 

To the best of the authorôs knowledge, there is only one reported example for a reaction of this 

kind. In 2015, Maruoka and co-workers reported the asymmetric aza-Michael addition of 

hydroxamic acid to a quinone imine ketal facilitated by boronic acid catalysis. In their protocol, 

the chiral 3-borono-BINOL BAC-14 was used to promote the aza-Michael addition. During this 

process, a rigid dimeric catalytic species 1-57, which was comprised of a dioxazaborole and a 

boronate half-ester, was claimed to form based on NMR observation and MS study. It was 

further suggested that this dimeric species also activated the quinone imine ketal 1-56 via 

hydrogen bonding for the addition of the dioxazaborole unit, providing the Michael adduct 1-58. 

In the presence of ortho-nitrobenzoic acid as a co-catalyst, a bicyclic product 1-60 was 

eventually formed with high enantioselectivity after a series of rearrangements (Scheme 1 -

21).68  




























































































































































































































































































































































































































































































































































































































































