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Abstract

Enterprises must manage their information risk as part of their larger operational

risk management program. Traditionally, IT security investment decisions are made

in isolation. However, as �rms that compete for customers in an industry are closely

interlinked, a macro perspective is needed in analyzing these decisions. Using the

notions of direct- and cross-risk elasticity to describe the customer response to ad-

verse IT security events in the �rm and competitor, respectively, we analyze optimal

security investment decisions. The continuous-time Markov chain (CTMC) is a nat-

ural way to examine how the combination of the expected adverse event arrival rate

and the expected duration of customer reactions to these adverse events impacts

security spending and expected pro�ts, given di�erent types of customer reaction.

Expanding this work, customer utility is modelled using a Hotelling setting in order

to examine how the introduction of minimum security spending requirements a�ect

total social welfare. Optimal IT security spending, expected �rm pro�ts, total so-

cial welfare, and the willingness of �rms to cooperate on security improvements are

highly dependent on the nature of customer response to adverse events.

Once �rms have made a decision regarding their security investment level, man-

agers must consider how to implement information security controls. The e�ective-

ness of three di�erent control placement methods is examined by de�ning a �ow risk

reduction problem and presenting a formal model using a work�ow framework. One

year of simulated attacks is used to validate the quality of the solutions, �nding that

the math programming control placement method yields substantial improvements

in terms of risk reduction and risk reduction on investment measures compared to

heuristics that would typically be used by managers to solve the problem. By us-

ing a work�ow approach to control placement, guiding the manager to examine the

entire infrastructure in a holistic manner, this research is unique in that it enables

information risk to be examined strategically.

The contribution of this body of work is to provide managers with methods for

deciding on the level and selection of information security investments, obtaining

signi�cantly better returns on these security investments.
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Chapter 1

Introduction
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This thesis presents three separate essays on information risk management de-

cision making. They include: (a) an examination of optimal security spending in

a duopoloy setting based on demand changes in reaction to security breaches, (b)

exploration of the impact of minimum security spending on �rm pro�ts, consumer

surplus and total social welfare, and (c) the potential risk reduction a�orded by

optimal placement of security controls within a work�ow.

The average cost of an information security breach was estimated to be $7.2

US million in 2010 (Ponemon and Symantec 2011). This cost, combined with in-

creased threats from highly-motivated attackers (Schwartz 2012) and pressure to

disclose breaches (Lardner 2012), suggest that �rms need to �nd the most e�ec-

tive ways to manage the risk associated with information systems. The ISO 31000

risk management standard talks of seven key elements in the risk management pro-

cess: establishing the context of risks, identifying risks, assessing risks, evaluating

potential treatments, creating a risk management plan, implementing the risk man-

agement plan, and evaluating the plan. Rolland et al. (2011), in placing information

risk management research into context, use the ISO 31000 standard combined with

identifying the focus as either on markets, policy and frameworks or decision mak-

ing and control. They suggest that much of the information security research falls

into evaluating potential risk treatments (that is, examines ways to avoid, mitigate,

transfer or accept risks). In particular, there is much market, policy and frame-

work research on the role of insurance for risk transfer with the general �ndings that

while insurance would be bene�cial to both �rms and society (Srinidhi et al. 2008,

Kesan et al. 2005), although it is under-utilized for a variety of reasons (Gordon

et al. 2003, Bandyopadhyay et al. 2009, Bohme 2005, Ogut et al. 2005). On the

decision-making and control side, Bai et al (2007) discuss the need to incorporate

risk mitigation strategies when designing business processes, a theme picked up in

Chapter 4. Chapters 2 and 3 help establish the context of risk by examining market

forces with an eye to policy decisions, an area in the literature that appears to be

less well covered. Gordon and Loeb (2002) start down this path with their work on

the economics of information security, �nding that there is a limit to investment in

security.

This collection of essays explores formal methods for determining information

security investments and implementations in order to help businesses make more
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informed choices about information risk management. Chapter 2 uses a continuous-

time Markov chain (CTMC) to examine how customer reactions to adverse events

such as information security breaches impact security spending in a duopoly. This

work demonstrates that spending is a�ected by both the riskiness of the environment

(a function of security breach arrival rates and the duration of demand changes as

a result of these breaches) as well as the nature of customer reactions. In essence,

market forces can be used to help �rms make better decisions about information

security investment levels. Chapter 3 expands on this initial model by including

customer utility and examinating the e�ect on total social welfare of a minimum

security investment above the market equilibrium identi�ed in Chapter 2.

Chapter 4 moves away from the investment decision and looks at how to best

allocate that investment. This chapter examines the placement of controls to min-

imize the damage of successful attacks by de�ning the �ow risk reduction problem

and presenting a formal model using a work�ow framework. Three di�erent control

placement methods are introduced to solve the problem, and a comparative analysis

is presented using a robust test set of 162 simulations. One year of simulated at-

tacks is used to validate the quality of the solutions. The math programming control

placement method yields substantial improvements in terms of risk reduction and

risk reduction on investment when compared to heuristics that would typically be

used by managers to solve the problem.
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2.1. Introduction

IT security spending and risk at one �rm impact other �rms through demand

changes as customers react to security incidents. Lost business as a result of security

breaches is estimated to account for 62% of the $7.2 US million average cost of an

IT security breach (Ponemon and Symantec 2011), and a study by Javelin (2007)

found that 77% of respondents intend to stop doing business with �rms who have

experienced data breaches. With laws such as California's SB 1386, HIPAA, and

DPA in the UK requiring that consumers and authorities be noti�ed of data breaches

in a timely manner (SB-1386 2002, HIPAA 1996, DPA 1998), security breaches

become public knowledge. Such an adverse IT security event for the �rm results in

both direct e�ects on the �rm and indirect e�ects on the �rm's competitors which

last for some duration. We discuss the concepts of direct- and cross-risk elasticities

of demand to capture these direct and indirect demand e�ects as we examine how

the �rm's optimal spending is a�ected by: (i) spending by competitors to prevent

adverse events in their respective �rms, (ii) the internalization of adverse events into

the customer demand, both for the �rm and its competitors, (iii) the arrival rate

and duration of adverse events, and (iv) industry standardization or regulation.

Firms can be viewed as being substitutes in loss or complements in loss to in-

dicate the e�ects of an adverse event on the una�ected �rm. Examples of such

customer reactions can be found in many industries; toy and food safety issues can

impact related products (Freedman et al. 2009, Smed and Jensen 2005), recent news

that location data is stored on both the Apple iPhone and 3GS iPad (Allan and

Warden 2011, Arthur 2011a) may lead privacy-sensitive consumers to consider other

alternatives, or security failures in the commercial banking (Acohido 2009, Krebs

2009a,b) and online gaming industries (Baker and Finkle 2011, Arthur 2011b) have

the potential to result in customer demand changes. In light of customer reactions,

our results would allow managers to answer questions such as �How are our IT secu-

rity spending and pro�ts a�ected by customer reaction to events in our own �rm and

at competitors?� and �Under what conditions should we work within our industry

to increase security spending beyond market equilibrium?�

The continuous-time Markov chain (CTMC) model is a natural way to examine

how the combination of the expected adverse event arrival rate and the expected du-

6



ration of customer reactions to these adverse events impacts security spending and

expected pro�ts, given di�erent types of customer reaction. We call this combina-

tion of expected arrival rate and expected duration the riskiness of the environment.

Using a CTMC, we demonstrate that security spending is a�ected by both the risk-

iness of the environment and the customer reactions to these adverse events. We

begin with an analytical examination of the symmetric case before extending our

work with numerical analyses for both correlated arrivals of adverse events and the

asymmetric case where customer reactions may di�er.

Customer demand is a�ected by concerns for the safety of a product (Conz 2008,

Crawford 2008, Smed and Jensen 2005). Duh et al. (2002) discuss the need for

control (which they de�ne as �expectational equilibrium between what participants

do and what others expect of them�) in eCommerce as a necessary component for

building customer trust in order to increase business activity. They also examine

how third party assurance services such as TRUSTe and BBB Online can help with

risk mitigation. Thus, customer demand is a�ected by industry security standards.

The topic of cyber security regulation is a signi�cant issue, but most of the legis-

lation currently under consideration in the United States has to do with security

of federal government systems and homeland security (Coyle 2011). What is not

under consideration is legislation over security of commercial systems. ISO 27001

speci�es best practices for an information security management system (IT Gover-

nance 2012). Some organizations are required to comply with industry standards

relating to data protection; Sarbanes Oxley, PCI DSS, and ISO 27001 ensure that

most of the necessary processes for compliance are in place (Sysnet 2012a,b). We are

able to show where �rms are able to bene�t from industry standards or government

regulation.

In one stream of literature, actual risks of an adverse event happening to a �rm

are dependent on the security at another �rm. Examples of such interdependencies

between �rms, where the success of one �rm is dependent on the e�ort of another

�rm, include the airline industry, �re protection, vaccinations and even bankruptcy

in �nancial �rms (Kunreuther and Heal 2003, Varian 2004). In another stream of

literature, the perceived risk di�ers from the actual risk. Yu and Lester (2008)

describe how adverse events can negatively impact the reputation of not only the

a�ected �rm, but may spill over onto other industry participants when they are

7



perceived to be �using the same or similar technologies (p. 95/96).� Yu and Lester

(2008) identify �proximity and structural equivalence as the in�uential drivers of

social contagion process (p. 98).� Social contagion, as described by Yu and Lester

(2008), is this spill-over e�ect and lost reputation can last for several years (Burke

2011). Incidents that harm a �rm's reputation include data theft and cyber-attacks

Burke (2011), with lost reputation one very clear way in which an adverse IT security

event can change customer demand (Burke 2011). From a managerial standpoint,

clearly reputation in�uences customer demand and IT security breaches impact the

�rm's reputation. We do not address reputation speci�cally except to say that, for

some reason, demand changes when an IT security breach occurs. However, Yu and

Lester (2008) explore the reputational impacts of adverse events of any kind (not

just IT security), and thus our work can reasonably be extended.

Researchers have considered investment decisions for a single �rm (Gordon and

Loeb 2002), �nding that it is not always the case that a �rm should increase security

investment as the vulnerability of the information being protected increases. When

considering the interaction between competitors, each �rm's choice to share infor-

mation and invest in security interact in interesting ways. Several researchers show

that there is a clear bene�t to �rms in sharing their security strategy as well as in-

formation about the success of that strategy in warding o� attacks (Cavusoglu et al.

2008, Gal-Or and Ghose 2005, Gordon et al. 2003). Costs change when information

sharing occurs between �rms (Gal-Or and Ghose 2005, Gordon et al. 2003), but the

nature of those changes depends on how the cost of a breach is viewed. Gordon

et al. (2003) consider a �xed loss for the breach of a speci�c information set and

show that when two �rms coordinate by sharing information, it is possible that they

can achieve the same level of security they had prior to information sharing, but at

a reduced cost. We incorporate costs of information sharing into the per-unit cost

of security.

Prior literature has examined cases where no �rm interaction was considered

(single �rm) (Gordon and Loeb 2002), where �rm interaction, but not spill-over ef-

fects of customer demand changes, was considered (Gordon et al. 2003), and where

�rm interaction with spill-over e�ects with some customers switching to the unaf-

fected �rm (Gal-Or and Ghose 2005, Cezar et al. 2010) were considered. Cezar et al.

(2010) consider correlated breach events in a periodic model to explore outsourcing
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the security function. The model presented in Cezar et al. (2010) captures the

e�ects of cross-risk elasticity of demand in a way that is di�erent than our model

by incorporating demand spill-over and pricing changes, which also change demand,

in reaction to the security breach. In their model, the security spending budget is

�xed. In contrast, our model focuses on how security spending has an e�ect on the

security quality and eventual changes in demand.

Another important di�erence between our paper and previous work is that we

are using a CTMC setting which enables us to analyze the e�ects of the duration of

successful attacks on important outcomes such as demand, equilibrium spending, and

�rm pro�ts in a simple way. In a related work, Yue and Çakanyildirim (2007) explore

incident response strategies to manage the expected duration of adverse events. We

also extend our initial CTMC model to take correlated arrivals into consideration

before examining the asymmetric case where customer reactions may be di�erent for

the �rms.

The remainder of this paper examines this cross-risk elasticity of demand and

how it may be used to explain several phenomena that we observe. The paper

proceeds as follows. Section 2.2 presents a model for the two-�rm case; analytical

results are presented in section 2.3; Section 2.4 presents discussion and analysis of

model extensions; and �nally, conclusions are presented in Section 2.5.

2.2. Model

In this section, we present the details of our model. We examine how the �rm's

optimal spending is a�ected by: (i) spending by competitors to prevent adverse

events in their respective �rms, (ii) the internalization of adverse events into the

customer demand, both for the �rm and its competitors, (iii) the arrival rate and

duration of adverse events, and (iv) industry standardization or regulation. We use a

CTMC process to model the evolution of the state in which �rms operate. It should

be noted that the state change process of our CTMC is a discrete-time Markov chain

(DTMC), which is a multi-period model.

We consider a game theoretical approach with two pro�t maximizing �rms (duopoly)

� �rm 1 and �rm 2. In our model, �rms decide their own IT security spending level

and with this they can alter the frequency of experiencing an adverse event, to a
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point. In this context, let:

ci = Firm i's per product spending on IT security, where i = 1, 2.

In our model, security related attacks follow a Poisson process and they happen

with rate Λi for �rm i = 1, 2, independent of the attacks against the other �rm.

We call this arrival rate, Λi, the base arrival rate. However, not all attacks are

�successful�; in order for an attack to be deemed �successful� the attack must both

compromise security and become public knowledge. That is, if customers are not

aware of the security breach, then it is not a successful attack for our modeling

purposes. We let λi for �rm i = 1, 2 be the arrival rate of successful attacks against

�rm i. A successful attack against �rm i results in an adverse event where the

demand for that �rm's product is reduced. For the remainder of the paper, we use

the terms successful security related attack and adverse event interchangeably. To

a point, each �rm can alter the arrival rate of adverse events, λi, by adjusting its

security spending level, ci; that is, λi = f(ci) where ∂f/∂ci ≤ 0 and ∂2f/∂c2i ≥ 0.

We de�ne a speci�c form for this relationship in section 2.2.1. Every time �rm

i = 1, 2 experiences an adverse event, the e�ects last for a random duration of time

that has an exponential distribution with expected length 1/µi. In Section 2.2.2, we

detail the e�ects of adverse events to �rms.

Let {S(t), t ≥ 0} be the state process for the �rms with S(t) = (S1(t), S2(t))

denoting the state of each �rm at time t. At any point in time, each �rm can either

be in a �bad� state, where the �rm is still under the e�ects of an adverse event it

has experienced, or in a �good� state, where the �rm is no longer under the negative

e�ects of its most recent adverse event. We adopt the notation Si(t) ∈ {g, b} for

each �rm i = 1, 2, where g denotes a good state and b denotes a bad state. As we

have two �rms, we have four possible states: S(t) = {gg, gb, bg, bb} (Note that we

simplify notation by using gg instead of (g, g), etc.). The possible states are shown

in Figure 2.1. Besides the states, Figure 2.1 also displays all the possible transitions

between states and corresponding transition rates.

As shown in Figure 2.1, in state gg none of the �rms are experiencing an adverse

event. From the state gg, an adverse event happening for �rm 1 (�rm 2) moves the

system to the state bg (gb), where �rm 1 (�rm 2) is in a bad state and the other

�rm is in a good state. If the system is at either of these two bad event states, bg
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Figure 2.1: State Diagram.

or gb, and an adverse event occurs for the other �rm, then the system will move to

the state bb, where both �rms are simultaneously in a bad state.

2.2.1 State Probabilities

To �nd the equilibrium spending level that maximizes the long-run expected

�rm pro�ts, we obtain the steady-state probabilities of being in each state shown

in Figure 2.1. Let Ps denote the steady-state probability of being in state s ∈ S =

{gg, gb, bg, bb}. With this notation, Pgg is the probability that both �rms are in a

good state, Pbg (Pgb) is the probability that �rm 1 (�rm 2) is in a bad state and the

other �rm is in a good state, and lastly Pbb is the probability is that both �rms are

in a bad state.

As we have modeled the system as a CTMC, the steady-state probabilities, Ps,

for the system in Figure 2.1 can be obtained from the following equations:

Pgg(λ1 + λ2) = Pbgµ1 + Pgbµ2 (2.1)

Pbg(λ2 + µ1) = Pbbµ2 + Pggλ1 (2.2)

Pbb(µ1 + µ2) = Pbgλ2 + Pgbλ1 (2.3)

Pgb(µ2 + λ1) = Pggλ2 + Pbbµ1 (2.4)∑
Pi,i∈S

Pi = Pgg + Pbg + Pgb + Pbb = 1 (2.5)

where (2.1)-(2.4) are state balance equations and (2.5) normalizes the probabilities

to 1.

In our model, the arrival rate of successful adverse events, λi, for the �rm i = 1, 2

is a function of the base arrival rate for the �rm, Λi, and the security spending
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ci; in particular, we let λi = Λi/ci. As our focus in this paper is not risk-free

environments, we are only interested in cases where Λi > 0. This functional form

provides two important properties: (i) the arrival rate of the successful adverse

events is decreasing in security spending, and (ii) the returns to security spending

are decreasing. In section 2.4.1 we show that our main results are not dependent

on this speci�c functional form, λi = Λi/ci, by repeating the analysis for alternative

functions including the ones used in Gordon and Loeb (2002).

From (2.1)-(2.5), we obtain the steady-state probabilities as follows:

Pgg =
µ1µ2c1c2

(µ1c1 + Λ1)(µ2c2 + Λ2)
, Pbb =

Λ1Λ2

(µ1c1 + Λ1)(µ2c2 + Λ2)

Pbg =
µ2c2Λ1

(µ1c1 + Λ1)(µ2c2 + Λ2)
, Pgb =

µ1c1Λ2

(µ1c1 + Λ1)(µ2c2 + Λ2)

(2.6)

Let ρi, which we call the riskiness of the environment, be the base arrival rate

times the expected duration of an adverse event for the �rm:

ρi =
Λi

µi
, for �rm i = 1, 2. (2.7)

In essence, the base arrival rate can be thought of as representing the attractiveness

of the �rm, or industry, to attackers. A defence contractor (or the defence indus-

try as a whole) would conceivably have a higher base arrival rate than, say, a �rm

that manufactures paper. How long �rms feel the e�ects of demand changes due to

successful adverse events depends greatly on how their customers view the �rm or

industry. In all, though, if either the base arrival rate is higher or the expected dura-

tion of an event is higher, then the �rms are operating in an environment with higher

�risk.� It is this fact that leads us to refer to ρ as the riskiness of the environment.

It can be seen from (2.7) that for a higher base arrival rate, Λi, the environment

is more risky and ρi will be higher. Likewise, for a longer expected duration the

environment is also riskier and thus ρi is higher. To summarize, ρ provides an

indication of how dangerous the �rms' operating environment is.

Using the relationship (2.7), the probabilities in (2.6) simplify to

Pgg =
c1c2

(c1 + ρ1)(c2 + ρ2)
, Pbb =

ρ1ρ2
(c1 + ρ1)(c2 + ρ2)

Pbg =
ρ1c2

(c1 + ρ1)(c2 + ρ2)
, Pgb =

ρ2c1
(c1 + ρ1)(c2 + ρ2)

(2.8)
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2.2.2 Modeling Demand

When a �rm experiences an adverse event, consumers may change their pur-

chasing decisions for a period of time. In our model, the expected duration of this

changed consumer behavior, 1/µ, is not the same as the duration of the attack itself.

A �rm may recover from the technical aspects of an attack before (or even after) the

consumers return to their original purchasing behavior.

Let Di,s denote the demand rate for the product of �rm i = 1, 2 in state s ∈

{gg, bg, bb, gb}. Also, let Qi > 0 denote the demand rate for the product of �rm i in

the absence of an adverse event, i.e., when both �rms are in a good state, Di,gg = Qi.

When �rm i experiences an adverse event, the demand for its product will decrease

by βi1, e.g., D1,bg = Q1 − β11. When �rm j experiences an adverse event, the

demand for the product of �rm i (i ̸= j) will change by βi2, e.g., D1,gb = Q1 − β12.

Note that, D1,gb (D2,bg) may be greater than Q1 (Q2), if the �rm gains demand

when the competitor faces an adverse event. Finally, when both �rms experience

adverse events, �rm i's demand will change by both βi1 and βi2, resulting in Di,bb =

Qi − βi1 − βi2. To summarize, we have the following:

Di,gg = Qi, Di,bb = Qi − βi1 − βi2, for i = 1, 2

D1,bg = Q1 − β11, D1,gb = Q1 − β12,

D2,gb = Q2 − β21, D2,bg = Q2 − β22.

(2.9)

Let Xi(t), be a binary variable indicating an adverse event in �rm i = 1, 2 at

time t:

Xi(t) =

{
1 Firm i = 1, 2 is under the e�ects of an adverse event at time t,
0 otherwise.

Then, the demand for �rm i's product at time t can be expressed as follows:

Di(t) = Qi − βi1Xi(t)− βi2Xj(t) for i = 1, 2 and j ̸= i. (2.10)

The cross-e�ect term, βi2, allows the model to capture the alternative ways that

�rm i = 1, 2 may be a�ected by an adverse event in the other �rm j (j ̸= i). During

the time �rm j is under the e�ects of an adverse event, �rm i may gain market share

by picking up demand, if some of the customers switch from �rm j to �rm i. This

case happens when βi2 < 0. Alternatively, when βi2 > 0, �rm i loses market share

temporarily as customers either �nd substitutes for the product o�ered by both �rm
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i and j or choose not to buy the product due to the adverse event. Lastly, when

βi2 = 0, �rm i's demand is una�ected by adverse events at �rm j.

We now focus on the symmetric duopoly case. Results for asymmetric cases are

discussed in section 2.4.3. In the symmetric setting, we can drop the index i from

Qi, βi1, βi2 and ρi. Next, we normalize the demand functions by dividing (2.9) by Q.

The normalized demand functions for �rm i in the symmetric setting are provided

below:

Di,gg = 1, Di,bb = 1− Z1 − Z2, for i = 1, 2

D1,bg = D2,gb = 1− Z1, D1,gb = D2,bg = 1− Z2.
(2.11)

where Z1 = β1

Q is the percentage change in demand due to an adverse event in own

�rm and Z2 = β2

Q is the percentage change in demand due to an adverse event in

the other �rm. In this setting, Z1 is the direct-risk elasticity of demand and Z2 is

the cross-risk elasticity of demand. The normalized version of the demand function

in (2.10) is:

Di(t) = 1− Z1Xi(t)− Z2Xj(t) for i = 1, 2 and j ̸= i.

In our model, demand cannot be negative and a �rm cannot gain demand from

its own adverse event. Therefore, we are interested in cases where Z1 ∈ [0, 1] (corre-

sponding to β1 ∈ [0, Q]). Likewise, the �rm cannot gain more than the other �rm's

demand or lose more than its own demand when other �rm has an adverse event and

thus we are interested in cases where Z2 ∈ [−1, 1] (corresponding to β2 ∈ [−Q,Q]).

We only consider the cases with Z1 + Z2 ≤ 1, which ensures that Di,bb ≥ 0 holds.

Also, we focus on the parameter region where Di,bb ≤ 1, since we do not �nd it

realistic to think that demand for �rm i will be greater after it has experienced an

adverse event, even if it takes demand from the other �rm. Hence, in this paper,

we analyze the cases with Z1 + Z2 ≥ 0, which ensures that Di,bb ≤ Di,gg = 1 holds.

Lastly, we are interested in the cases where the impact of events at a �rm is greater

than the impact from events at the competitor. Therefore, we consider the cases

with Z1 ≥ Z2. Our assumptions are listed below:

Assumption 2.1. 0 ≤ Z1 + Z2 ≤ 1

Assumption 2.2. Z2 ≤ Z1
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2.3. Analytical Results

We continue our analysis by deriving the best response functions and the equilib-

rium security spending for the �rms. In our model, each �rm maximizes its long-run

average pro�t. All �rms are price takers; price and gross pro�t margin per unit

excluding security spending, are �xed. We hereafter refer to gross pro�t margin per

unit excluding security spending simply as per unit pro�t. The long-run average

pro�t for �rm i, E[Πi], is given as:

E[Πi] = limt→∞E
[ 1
T

∫ T

0
Di(t)(π − ci)Qdt

]
(2.12)

where π > 0 denotes the per unit pro�t, excluding the security spending, ci. In this

paper we require π − ci > 0 as a long-run participation constraint, as otherwise the

�rm would not be willing to produce the product. By using Di(t) = 1− Z1Xi(t)−

Z2Xj(t), we can write (2.12) in its steady-state form as follows,

E[Πi] = E[Di](π − ci)Q =
∑
s∈S

PsDi,s(π − ci)Q

E[Πi] = (PggDi,gg + PbgDi,bg + PgbDi,gb + PbbDi,bb)(π − ci)Q (2.13)

where, E[Di] is the expected demand rate for �rm i. By substituting the probabilities

in (2.8) and demand functions in (2.11) into (2.13), we obtain the �rm's pro�t as:

E[Πi] =

(
1− Z1ρ

ci + ρ
− Z2ρ

cj + ρ

)
(π − ci)Q for i = 1, 2, and j ̸= i. (2.14)

From the �rst-order conditions, we �nd the best response of �rm i, c∗i , below:

c∗i = ρ

(√
Z1(π + ρ)(cj + ρ)

ρ(cj + ρ− Z2ρ)
− 1

)
for i = 1, 2, and j ̸= i. (2.15)

2.3.1 Best Response Spending Curves

An intuitive way to discuss the e�ects of competition on the security spending

levels is to examine the di�erent possible response curves. In this section, i denotes

the �rm under consideration and j denotes the other �rm. Figure 2.2a shows the

response curves for optimal spending for �rm i under di�erent e�ects of adverse

events on �rm j. Di�erent curves in Figure 2.2a correspond to di�erent values of Z2

in the best response function provided in (2.15).
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Figure 2.2: Best response curves

(a) (b)

Response curves are generated with the parameters Z1 = .3, π = 100, ρ = 5 and Z2 = {−0.3, 0, 0.3}.

As the partial derivative of c∗i with respect to cj (shown below in (2.16)) demon-

strates, when the cross-risk elasticity of demand, Z2, is less than 0, �rm i should

increase spending as �rm j increases spending. This is because Z1 is non-negative

and π and ρ are positive in our model. Conversely, when Z2 > 0, �rm i should

decrease spending as �rm j increases spending.

∂c∗i
∂cj

= − Z1Z2ρ(π + ρ)

2
√

Z1(cj+ρ)(π+ρ)
ρ(cj+ρ−Z2ρ)

(cj + ρ− Z2ρ)2
for i = 1, 2, and j ̸= i. (2.16)

When the cross-risk elasticity, Z2, is such that there is no change in consumer

demand for �rm i's products when �rm j experiences an adverse event, we call this

�una�ected� (Z2 = 0). In this case, as �rm j spends more on security, �rm i's

optimal security spending does not change (see horizontal line B in Figure 2.2a and

equation (2.16)). Similarly, the vertical line B in Figure 2.2a illustrates �rm j's

optimal security spending when the cross-risk elasticity, Z2, is zero. Hence, when

Z2 = 0, regardless of the other �rm's spending level, optimal spending for the �rm

is unchanging. As observed in (2.15), when Z2 = 0, the optimal spending levels for

each �rm are independent of each other and c∗i = ρ(
√

(π+ρ)
ρ Z1 − 1) for i = 1, 2.

When the cross-risk elasticity is such that consumers increase demand for �rm

i's product when �rm j experiences an adverse event, we call this is a �substitute in

loss� (Z2 < 0). As �rm j spends more on security, �rm i's optimal security spending

also increases (see horizontal response curve A in Figure 2.2a and equation (2.16)).
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Similarly, the vertical response curve A in Figure 2.2a illustrates �rm j's optimal

security spending when the cross-risk elasticity, Z2, is smaller than zero. Optimal

security spending is lowest under conditions of substitutes in loss because, all else

being equal, c∗i for both �rms in (2.15) is increasing in Z2, when Z1 > 0. This can

be observed from the partial derivative of c∗i with respect to Z2, which is provided

below.

∂c∗i
∂Z2

=
ρ2
√

Z1
π+ρ
ρ (cj + ρ)

2(cj + (1− Z2)ρ)3/2
for i = 1, 2, and j ̸= i. (2.17)

Hence, under conditions of substitutes in loss, optimal spending is always less than

the una�ected case and eventually converges to the una�ected spending level, as the

other �rm's spending level goes to in�nity.

When the cross-risk elasticity is such that consumers decrease demand for �rm

i's products when �rm j experiences an adverse event, we call this is a �complement

in loss� (Z2 > 0). As �rm j spends more on security, �rm i's optimal security

spending decreases (see horizontal response curve C in Figure 2.2a and equation

(2.16)). Similarly, the vertical response curve C in Figure 2.2a illustrates �rm j's

optimal security spending when the cross-risk elasticity, Z2, is greater than zero. As

(2.15) and (2.17) suggest, under conditions of complements in loss, optimal spending

is always greater than the una�ected case and eventually converges to the una�ected

spending level as the other �rm's spending level goes to in�nity.

2.3.2 Equilibrium Spending

We can �nd the equilibrium spending by replacing competitor's spending, cj ,

in (2.15) by ci and solving the resulting equation for ci. Due to symmetry, the

equilibrium spending (denoted as ce) will be the same for both �rms. We are only

interested in the cases where equilibrium spending, ce, is positive.

ce = ρ

(
1

2

(
Z2 +

√
Z2
2 + 4Z1 (π + ρ) /ρ

)
− 1

)
(2.18)

We now present our results regarding the e�ects of model parameters on the

equilibrium spending, ce.

Lemma 2.1. When Z1 > 0, equilibrium spending, ce, is

(i) increasing in per unit pro�t, π, direct-risk elasticity of demand, Z1, and cross-

risk elasticity of demand, Z2.
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(ii) increasing in ρ when ρ < ρt, and decreasing in ρ when ρ > ρt, where ρt is given

below:

ρt =
πZ1

2[1− (Z1 + Z2)] +
√

(Z2 − 2)2[1− (Z1 + Z2)]
, when Z1 + Z2 < 1

(2.19)

The case Z1 = 0 could be included in the Lemma but then the words `increasing'

and `decreasing' would be replaced by `non-decreasing' and `non-increasing' respec-

tively, as the derivatives (∂ce/∂π, ∂ce/∂Z1, ∂c
e/∂Z2, and ∂ce/∂ρ) are equal to zero.

Proof: Proof of Lemma 2.1 is presented in Appendix 2.6.1.

As stated in Lemma 2.1, the equilibrium spending, ce, for the �rm is increasing in

per unit pro�t, π. Keeping everything else constant, higher per unit pro�t increases

losses in an adverse event, motivating the �rm to spend more to reduce the likelihood

of such an event.
∂ce

∂π
=

Z1√
Z2
2 + 4Z1

π+ρ
ρ

(2.20)

Furthermore, (2.20) shows that the e�ect of a change in the per unit pro�t, π,

on the equilibrium spending increases when the cross-risk elasticity of demand, Z2,

decreases in magnitude.

As stated in Lemma 2.1, the equilibrium spending, ce, is increasing in ρ when ρ

is below a certain threshold value, ρt provided in (2.19), and decreasing in ρ when

ρ is above that threshold value. This e�ect is illustrated for di�erent cross-risk

elasticities of demand (Z2) in Figure 2.3. The threshold values for curves A and B

can be observed from Figure 2.3 but the threshold value for curve C (ρt = 7.08) is

outside the �gure range. This e�ect is interesting because it shows that after some

point, the environment is so risky that the �rm is nearly always in a bad state;

decreased spending to save costs provides more bene�t than increasing the security

spending. Our results echo the �nding for single �rms that security investment is

not necessarily always increasing in vulnerability (Gordon and Loeb 2002). In our

model, this extreme riskiness of the environment can be due to a very high adverse

event arrival rate, Λ, a very long e�ect duration, 1/µ, or both.

Lemma 2.1 shows that the equilibrium spending, ce, for the �rm is increasing in

direct-risk elasticity of demand, Z1. Increased percentage losses from adverse events
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Figure 2.3: Sensitivity of equilibrium spending to changes in ρ.

force the �rm to increase the level of preventative measures.

∂ce

∂Z1
=

π + ρ√
Z2
2 + 4Z1

π+ρ
ρ

(2.21)

As (2.21) shows, the change in the equilibrium spending with respect to a change

in Z1 increases when the cross-risk elasticity of demand, Z2, decreases in magnitude

or when the riskiness of the environment, ρ, increases.

As Lemma 2.1 shows, the equilibrium spending for the �rm is increasing in cross-

risk elasticity of demand, Z2. The change in the equilibrium spending with respect

to a change in Z2 is as follows:

∂ce

∂Z2
=

1

2

1 +
Z2√

Z2
2 + 4Z1

π+ρ
ρ

 ρ (2.22)

(2.22) shows that the change in the equilibrium spending with respect to a change

in Z2 increases when the direct-risk elasticity of demand, Z1, decreases or when the

riskiness of the environment, ρ, increases.

Figure 2.2b presents an enlarged section of Figure 2.2a highlighting the equilib-

rium points.In Figure 2.2b, points A, B and C represent the equilibrium spending

points. For example, point A in Figure 2.2b corresponds to the intersection (equilib-

rium) point of response curves A in Figure 2.2a. As Lemma 2.1 shows, equilibrium

spending levels increase with Z2. Therefore, equilibrium spending is always lowest

when �rms are substitutes in loss (point A) and highest when �rms are complements

in loss (point C).
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2.3.3 Expected Pro�t

In this section, we analyze the expected pro�t rate of a �rm at the equilibrium

security spending level, denoted as E[Πe]. By substituting the equilibrium spending

level, ce, given in (2.18) into (2.14), we obtain expected pro�t rate for a �rm at the

equilibrium security spending level as:

E[Πe] =

(
1− ρ(Z1 + Z2)

ρ+ ce

)
(π − ce)Q (2.23)

Without loss of generality, we now focus on �rm 1 with expected pro�t, E[Πe],

at the equilibrium spending, ce. However, let us consider what could happen if �rm

2 spent an amount not at equilibrium, ce2. For a given spending level, c2, of �rm

2, if �rm 1 follows its best response spending level, c∗1, as given in (2.15), then the

pro�t curves of �rm 1 as a function of �rm 2 spending level would look like those

presented in Figure 2.4. The di�erences are due to the nature of the parameter Z2,

that is, they depend on how �rm 1's demand is a�ected by events in �rm 2 (just

as in the optimal spending cases). The equilibrium pro�t obtained at equilibrium

spending, ce, is shown on each case by a dot. For both the cases where �rms are either

substitutes in loss or complements in loss (when Z2 ̸= 0), if the other �rm increases

its security spending, the best response of the �rm is to �move to the middle� (or

�regress to the mean�) in the sense that the �rm's security spending approaches that

of the una�ected case, where Z2 = 0. This regression to the mean phenomenon can

also be observed in Figure 2.4, functions A and C.

Figure 2.4: Expected pro�t curves under best response spending.

Expected pro�t curves are generated with the parameters Z1 = .3, π = 100, ρ = 5 and Z2 =
{−0.3, 0, 0.3}.

We now analyze the e�ects of model parameters on the expected pro�t at equi-

librium, or equilibrium pro�t, E[Πe].
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Lemma 2.2. When Z1 > 0, equilibrium pro�t, E[Πe] is

(i) increasing in per unit pro�t, π,

(ii) decreasing in direct-risk elasticity of demand, Z1, and cross-risk elasticity of

demand, Z2,

(iii) decreasing in riskiness of the environment, ρ, when Z2 ≥ 0, or when Z2 < 0

and ρ < ρT , and increasing in ρ when Z2 < 0 and ρ > ρT , where ρT is given

below:

ρT =
π(2Z1 + Z2)

2

(4Z1 + Z2
2 )(1− (Z1 + Z2))

, when Z1 + Z2 < 1 (2.24)

The case Z1 = 0 could be included in the Lemma but then the words `increasing'

and `decreasing' would be replaced by `non-decreasing' and `non-increasing' respec-

tively, as the derivatives (∂E[Πe]/∂π, ∂E[Πe]/∂Z1, ∂E[Πe]/∂Z2, and ∂E[Πe]/∂ρ)

are equal to zero.

Proof: Proof of Lemma 2.2 is presented in Appendix 2.6.2.

The equilibrium pro�t, E[Πe], for the �rm is increasing in per unit pro�t, π.

Keeping everything else constant, higher per unit pro�t increases the overall pro�t

rate. The equilibrium pro�t, E[Πe], for the �rm is decreasing in direct-risk elasticity

of demand, Z1. Increased percentage losses lead to fewer products being sold and

thus decreased total expected pro�t.

The equilibrium pro�t, E[Πe], for the �rm is decreasing in the riskiness of the

environment ρ when cross-risk elasticity is non-negative (Z2 ≥ 0; �rms are una�ected

or complements in loss). This e�ect is shown by curves B and C in Figure 2.5. The

equilibrium pro�t, E[Πe] is also decreasing when cross-risk elasticity is negative

(Z2 < 0) and the riskiness is below the threshold given by (2.24). Above that

threshold value, ρT , equilibrium pro�t is increasing in the riskiness for �rms that

are substitutes in loss. In that case, the environment becomes extremely risky and

�rms actually gain demand when their competitors have adverse events, therefore

the pro�ts can increase as each �rm spends less on security. This e�ect is shown by

curve A in Figure 2.5 where pro�ts initially decrease but begin increasing when ρ is

above the threshold value, ρT .

The equilibrium pro�t for the �rm is decreasing in cross-risk elasticity of de-

mand, Z2. Figure 2.4 presents the expected pro�ts under best response spending
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Figure 2.5: Sensitivity of equilibrium pro�t to changes in ρ.

Curves are generated with the parameters set to Z1 = .5, π = 10, Q = 100, and Z2 = {−0.4, 0, 0.4}.

levels, highlighting the equilibrium points for the example presented in Figure 2.2

for di�erent values of cross-risk elasticity of demand, Z2. In Figure 2.4, points on

functions A, B and C represent the equilibrium pro�t under equilibrium spending.

As Lemma 2.2 shows, equilibrium pro�t levels decrease with Z2. Therefore, equilib-

rium pro�t is always highest when �rms are substitutes in loss (point on function

A) and lowest when �rms are complements in loss (point on function C).

2.3.4 Pro�ts under Regulation and Industry Standardization

In this section, we analyze the e�ects of regulation or industry standardization

on expected pro�ts of the �rm. Let us de�ne R as the minimum spending require-

ment per unit product that ensures that the �rm satis�es the regulation or industry

standardization conditions. As long as the requirements of regulation or industry

standardization dictate spending below equilibrium spending level, then each �rm

will spend their equilibrium amount. However, once the required spending, R, is

above the equilibrium spending, then both �rms will have to spend more than they

would like. In this section, we are interested in cases where requirements are binding,

i.e., required spending, R, is greater than or equal to the equilibrium spending, ce.

Figure 2.6 presents the expected pro�ts of a �rm as a function of security spending

for di�erent cross-demand elasticity, Z2, values.

Proposition 2.1. When the �rms are substitutes in loss or una�ected by each other

(that is, one �rm's demand increases or is una�ected by an event at the other

�rm: Z2 ≤ 0), then pro�ts decline for both �rms when minimum mandatory se-

curity spending is introduced.
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Figure 2.6: Expected pro�t for symmetric �rms with mandatory minimum security
requirement.

(a) Substitutes and Una�ected (Z2 ≤ 0) (b) Complements (Z2 > 0)

Proof: Proof of the Proposition 2.1 is presented in Appendix 2.6.3.

Proposition 2.2. When the �rms are complements in loss (that is, one �rm's de-

mand decreases due to an event at the other �rm, Z2 > 0), then there is a region in

which pro�ts increase under minimum mandatory security spending. Pro�ts will re-

main above the equilibrium pro�t, E[Πe], while the required spending, R, is between ce

and R̃ and will be maximized when required spending is at Ropt, where c
e ≤ Ropt ≤ R̃.

Spending levels Ropt and R̃ are given as follows:

Ropt =
√

(Z1 + Z2)(π + ρ)ρ− ρ ≥ ce

R̃ = ρ

(
(Z1 + Z2)(π + ρ)

ce + ρ
− 1

)
≥ Ropt

Proof: Proof of the Proposition 2.2 is presented in Appendix 2.6.3.

Propositions 2.1 and 2.2 show that the e�ect of regulations or industry standards

on �rm pro�ts is case dependent, varying by customer response to adverse security

related events in competitor �rms. Proposition 2.1 states that when �rms are sub-

stitutes in loss or una�ected by an event at the other �rm, regulation or industry

standardization which improves industry security will decrease �rm pro�ts. Figure

2.6a depicts this result. Therefore, in this case, the bene�ts of improvements in the

industry security should be weighed against the reduction in �rm pro�ts before a

regulation or industry standard is imposed.

Proposition 2.2 states that when �rms are complements in loss, there is a range

of minimum mandatory spending beyond the market equilibrium over which �rm
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pro�ts will increase. Therefore, in this case, there is a range under which both

industry security and �rm pro�ts can be improved through a regulation or industry

standard, as illustrated in Figure 2.6b. With this proposition, we provide the range

over which this case becomes the well-known �prisoner's dilemma� from game theory.

It can easily be shown that this range is increasing in the riskiness of the environment,

ρ by considering the derivatives of R̃− ce and Ropt − ce w.r.t. ρ. Beyond the range

where �rm pro�ts increase, the bene�ts of improvements in the industry security

should be weighed against the reduction in �rm pro�ts before regulation or industry

standards are imposed.

Our study shows that we cannot ignore the impact of the competitor's state

and customer response to adverse security events. Furthermore, our results show

that the interaction between the direct-risk elasticity of demand and the cross-risk

elasticity of demand must be taken into account. We can use customer utility models

to examine how minimum mandatory spending a�ects consumer surplus and total

social welfare. Our �ndings show that consumer surplus is always increasing under

minimum mandatory spending, and that it is also possible to obtain increases in

total social welfare in all cases under appropriate conditions.

2.4. Discussion of Modeling Alternatives

In this section we relax certain assumptions to examine the robustness of our

model. We begin by examining the functional form of security breaches, consider

the impact of correlated adverse event arrivals, then look at asymmetric customer

reactions to �rms' adverse events.

2.4.1 Alternate Functional Forms for Security Breaches

We are able to obtain the same results for other functional forms for the arrival

rate, λ. In particular, we �rst consider the function λi = Λi/(ci + 1)α, where α > 0.

With this functional form, our model becomes analytically intractable when α ̸= 1,

so we obtain our results through numerical analysis. We have tried the cases where

α ∈ {.5, 1, 2, 3} and are able to obtain optimal spending response curves which follow

the same shape as those shown in Figure 2.2. In addition, this analysis shows that

the insights from Propositions 1 and 2 hold.
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In order to examine additional linear and non-linear functional forms, we need to

adapt our approach. By rede�ning the probabilities given by equations (2.8) using

the relationship

xi = 1 +
ci
ρi

we obtain the following probability functions:

Pgg =

(
1− 1

xi

)(
1− 1

xj

)
, Pbb =

1

xi

1

xj

Pbg =
1

xi

(
1− 1

xj

)
, Pgb =

(
1− 1

xi

)
1

xj

(2.25)

In this form, we can see that

Pgg = P1gP2g, Pbb = P1bP2b

Pbg = P1bP2g, Pgb = P1gP2b

(2.26)

where

Pig = 1− 1

xi
, probability that �rm i = 1, 2 is in a good state

Pib =
1

xi
, probability that �rm i = 1, 2 is in a bad state

(2.27)

As a result, we can approximate our CTMC model with a periodic model where

we denote the probability that �rm i is in a good (bad) state, Pig (Pib), as a function

of spending as given in (2.25) through (2.27).

The relationship between our CTMC model and the periodic model allows us to

employ the functional forms utilized in Gordon and Loeb (2002). Using a probability

function derived from their ��rst class of security breach probability functions�, we

set the probability that �rm i is in a bad state, Pib = 1/(ci + 1)α. The probabilities

for the four possible states given by (2.26), then become:

Pgg =

(
1− 1

(c1 + 1)α

)(
1− 1

(c2 + 1)α

)
, Pbb =

1

(c1 + 1)α(c2 + 1)α

Pbg =
1

(c1 + 1)α

(
1− 1

(c2 + 1)α

)
, Pgb =

(
1− 1

(c1 + 1)α

)
1

(c2 + 1)α

(2.28)

Numerical analysis of the model with the probabilities given by (2.28) yields

results similar to our original CTMC model. Figure 2.7 illustrates that the insights

from Propositions 1 and 2 hold for the probabilities given by (2.28).

Likewise, we use this method to consider a functional form derived from Gordon

and Loeb (2002)'s �second class of security breach probability functions� and we set
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Figure 2.7: Expected pro�t for symmetric �rms with mandatory minimum security
requirement.

(a) Substitutes and Una�ected (Z2 ≤ 0) (b) Complements (Z2 > 0)

the probability that �rm i is in a bad state, Pib = vαci+1 for a constant v ∈ [0, 1].

Once again, the probabilities for the four possible states given by (2.26) become:

Pgg = (1− vαc1+1)(1− vαc2+1), Pbb = vαc1+1vαc2+1

Pbg = vαc1+1(1− vαc2+1), Pgb = (1− vαc1+1)vαc2+1
(2.29)

Once again, numerical analysis of the model that results when using the prob-

abilities given by (2.29) yields results similar to our original CTMC model. Figure

2.8 illustrates that the insights from Propositions 1 and 2 hold for the probabilities

given by (2.29).

Figure 2.8: Expected pro�t for symmetric �rms with mandatory minimum security
requirement.

(a) Substitutes and Una�ected (Z2 ≤ 0) (b) Complements (Z2 > 0)

Our numerical analysis suggests that the insights obtained in our model are not
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dependent on the functional form λ = Λ/c but can be generalized to a broader class

of security risk functions.

2.4.2 Correlated Arrivals

In some cases, a part of the overall attack volume may be from common sources

leading to correlated arrivals of successful security attacks. Here we discuss how

such a correlation a�ects the steady state probabilities, and thus optimal spending

and expected pro�ts, for the two �rms. In this section we present a modi�ed version

of our original model from Section 2.2 which incorporates correlated arrivals, as

illustrated in Figure 2.9. Here, γ is a correlation parameter that is an increasing

function of the actual correlation between the attack arrival processes of the �rms.

When γ = 0, we obtain the model in Section 2.2.

As shown in Figure 2.9, when both �rms are in a good state (gg), the system

may move to any of the other three states. An event that moves both �rms directly

from the gg state to the bb state arrives at a rate of γ(λ1+λ2). An event that moves

the �rms from gg to bg (or gb) arrives at a rate of (1−γ)λ1 (or (1−γ)λ2). From the

bg (gb), an event may move the system into state bb with an arrival rate of λ1 (λ2).

Again, an event for the �rm lasts for an expected duration of 1
µ , independently of

the other �rm.

Figure 2.9: Correlated Arrivals State Diagram.

Each �rm can either be in a bad state, where the �rm is still under the e�ects of an adverse event

it has experienced, or in a good state, where the �rm is no longer under the negative e�ects of its

most recent adverse event.

After obtaining the steady state probabilities for this system, we are able to show

that the probabilities for the states gg, bg, and gb are all decreasing and state bb is

increasing in γ. Further, the expected pro�t at equilibrium, E[Πe] is also decreasing
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in γ. The equations and proofs of these results are given in Appendix 2.6.4.

Finding equilibrium spending analytically in the correlated arrivals case is in-

tractable. Thus, we perform a numerical analysis to learn how our propositions

regarding minimum mandatory spending would be a�ected by correlated arrivals of

adverse events. We �rst set the direct-risk elasticity at low, medium, and high val-

ues (0.25, 0.5, 0.9) with various cross-risk elasticity values (Z2 < 0). We then set the

riskiness of the environment, ρ, at low and high values (1, 5), and �nally we set the

correlation parameter, γ at values ranging from low to high (0.2, 0.4, 0.6, 0.75, 0.9).

We hold all other parameters constant throughout the test suite.

For each set of parameter combinations, we �nd equilibrium spending, ce, and

then calculate the expected pro�t at equilibrium, E[Πe], and expected pro�t under

minimum mandatory spending, E[ΠR], for R ≥ ce. We then calculate the di�erence

between the two expected pro�ts, E[ΠR]−E[Πe], and identify the situations where

this value is positive. When �rms are complements in loss (Z2 > 0), we observe

that Proposition 2 results continue to hold for the correlated arrivals case. However,

when �rms are substitutes in loss (Z2 < 0), our numerical analysis provides some

interesting observations regarding Proposition 1.

Observation 1. When �rms are substitutes in loss and adverse event arrivals

are correlated, there is opportunity window for �rms to increase pro�ts under mini-

mum mandatory spending.

Observation 2. When the correlation parameter, γ, is larger, then the oppor-

tunity window for both �rms to increase pro�ts under minimum mandatory spending

increases, everything else being constant.

Observation 3. When the riskiness of the environment, ρ, is smaller, then

the opportunity window for both �rms to increase pro�ts under minimum mandatory

spending increases, everything else being constant.

These observations lead us to the conclusion that when the arrival of adverse

events is correlated, government regulations or industry standardization is bene�-

cial to �rms for a wider range of parameters compared to the original model. In

our original model, regulation or standardization is only bene�cial when �rms are

complements in loss (Proposition 2); however, these observations show us that reg-

ulation or standardization can be quite bene�cial even when �rms are substitutes in

loss (Proposition 1) when attack arrivals are correlated. The size of this window for
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increased pro�ts at both �rms increases even further when γ is larger or the riskiness

of the environment, ρ, is smaller. Overall, we conclude that considering correlation

in arrivals extends the justi�cation for regulation or standardization.

2.4.3 Asymmetric Cases

In the asymmetric case, we allow the direct- and cross-risk elasticity of demand

parameters (Z1 and Z2) to be di�erent for each �rm. Whereas the expected pro�t

equation in the symmetric case was given by (2.14), the expected pro�t equation for

the asymmetric case is:

E[Πi] =

(
1− Zi1ρ

ci + ρ
− Zi2ρ

cj + ρ

)
(π − ci)Q for i = 1, 2, and j ̸= i.

Likewise, while the optimal spending equation in the symmetric case was given by

(2.15), the optimal spending equation for the asymmetric case is:

c∗i (cj) = ρ

(√
Zi1(π + ρ)(cj + ρ)

ρ(cj + ρ− Zi2ρ)
− 1

)
for i = 1, 2, and j ̸= i.

We use numerical analysis for the remainder of our exploration of the asymmetric

case. Our numerical analysis demonstrates that, depending on its own cross-risk

elasticity of demand, each �rm's best response curve will look like the corresponding

best response curve in the symmetric case as illustrated in Figure 2.2. That is, if �rm

1 is a substitute in loss (in reaction to adverse events at �rm 2), Z12 < 0, then �rm

1's optimal spending response curve would look like the horizontal curve A in Figure

2.2. Likewise, if �rm 2 is a complement in loss (in reaction to adverse events at �rm

1), Z22 > 0, its optimal spending response curve would look like the vertical curve C

in Figure 2.2. A �rm which is a complement in loss will still decrease its spending in

reaction to increased spending by its competitor; a �rm which is a substitute in loss

will still increase spending in reaction to increased spending by its competitor; and

an una�ected �rm will not adjust its spending in reaction to a change in spending

by its competitor.

There are three possible combinations of cross-risk elasticity that are of interest:

(a) one �rm is a complement in loss while the other is a substitute in loss, (b) both

�rms are substitutes in loss, and (c) both �rms are complements in loss. In all cases,

without loss of generality, we focus on the instance where the equilibrium spending

for �rm 1, ce1, is greater than or equal to the equilibrium spending for �rm 2, ce2,
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as shown in Figures 2.10a-2.10c (i). Firm 2 will be a�ected �rst when a minimum

mandatory spending, R, greater than market equilibrium is introduced since ce2 < ce1.

We �rst examine what happens when �rm 1 is a complement in loss (Z12 > 0) while

�rm 2 is a substitute in loss (Z22 < 0), as illustrated in Figure 2.10a. Figure 2.10a (i)

illustrates the e�ects of minimum mandatory spending, R, on each �rm by plotting

each �rm's spending as a function of R. For �rm 1, the x-axis is R, the y-axis is c1,

and the dotted curve is the maximum of c∗1 and R when �rm 2 myopically spends

R. For �rm 2, the y-axis is R, the x-axis is c2, and the solid curve is the maximum

of c∗2 and R when �rm 1 myopically spends R . It can be seen, then, that when the

minimum mandatory spending, R, greater than market equilibrium is introduced, it

will a�ect �rm 2 before �rm 1. As a result, while �rm 2 will be required to increase

its spending as soon as R > c∗2(R), �rm 1 will reduce its spending until the minimum

mandatory spending, R, exceeds c∗1(R). Pro�ts for �rm 2 always decrease and pro�ts

for �rm 1 increase for a range of R values (Figure 2.10a (ii)). In this situation, �rm

2 would oppose any move from �rm 1 to increase the minimum mandatory spending

level, R above ce2. The equilibrium pro�t for �rm 2 in Figure 2.10a (ii) is not on

�rm 2's expected pro�t under minimum mandatory spending curve because �rm 2

is required to spend R as soon as R > c∗2(R). Thus, while �rm 1 is spending c∗1(R),

�rm 2 is spending R. Since �rm 2 is a substitute in loss, pro�t is lower under R than

at equilibrium.

We next examine what happens when both �rms are substitutes in loss (Zi2 < 0,

for i = 1, 2) as illustrated in Figure 2.10b. Here, �rm 2 will be required to increase its

spending as soon as R > c∗2(R) along with �rm 1 who will also increase its spending

according to its optimal spending response curve until it must also spend R. This

results in decreased pro�ts for both �rm 1 and �rm 2 (Figure 2.10b (ii)). As in Figure

2.10a (ii), the equilibrium pro�t for �rm 2 is not on �rm 2's expected pro�t under

minimum mandatory spending curve. In this situation, both �rms would oppose any

move to increase the minimum mandatory spending level, R above ce2.

Finally, we examine what happens in the asymmetric case when both �rms are

complements in loss (Zi2 > 0, for i = 1, 2). Figure 2.10c illustrates a case where

Z12 > Z22 > 0. The result here is that �rm 1 will bene�t from a regulation or

industry standard and reduce its spending from market equilibrium, as long as the

minimum mandatory spending, R, is less than ce1 while �rm 2 will be required to
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Figure 2.10: Spending and Expected Pro�t Curves for Asymmetric Firms

(a) One �rm is a complement in loss and the other is a substitute in loss (Z12 > 0 > Z22);
generated with the parameters Z11 = .5, Z12 = .4, Z21 = .4, Z22 = −.3, ρ = 3, Q = 10,
and π = 20.

(b) Both �rms are substitutes in loss (0 > Z12 > Z22); generated with the parameters
Z11 = .8, Z12 = −.1, Z21 = .5, Z22 = −.45, ρ = 3, Q = 10, and π = 20.

(c) both �rms are complements in loss (Z12 > Z22 > 0); generated with the parameters
Z11 = .5, Z12 = .3, Z21 = .3, Z22 = .2, ρ = 3, Q = 10, and π = 20.
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increase its spending as soon as R > c∗2(R). As illustrated in Figure 2.10c (ii),

pro�ts for �rm 1 increase for a range of R values. However, pro�ts for �rm 2 may

or may not increase depending on the situation. In the case illustrated by Figure

2.10c (ii), the equilibrium pro�t for �rm 2 is above �rm 2's expected pro�t under

minimum mandatory spending curve; however, it is not necessary when both �rms

are complements in loss for equilibrium pro�t for �rm 2 to be higher than the pro�t

obtained when �rm 2 is required to spend R.

In order to understand the characteristics that may lead to increased pro�ts for

both �rms when they are complements in loss, we perform a detailed numerical anal-

ysis as described in Appendix 2.6.6. We obtain several general observations from this

numerical examination of the asymmetric model when both �rms are complements in

loss. These observations show that there is a signi�cant range for which the insights

from Proposition 2 hold even in the asymmetric case.

Observation 1. As direct-risk elasticity increases, the opportunity window for

�rm 2 to increase pro�t under minimum mandatory spending decreases, everything

else being constant.

For example, according to the speci�c parameter values we used in our numerical

analysis, when direct-risk elasticity is low and cross-risk elasticity medium, direct-

risk can vary by up to 20% between �rms and still yield opportunity for mutually

increasing pro�ts. However, if we move to a medium direct-risk elasticity (with

cross-risk elasticity still medium), then �rm 2 can only increase pro�ts when direct-

risk elasticity varies by no more than 5% between �rms. Therefore when direct-risk

elasticity increases, �rms need to be more �similar� in terms of direct-risk elasticities

in order to increase pro�ts for both �rms and provide an opportunity for �rms to

cooperate.

Observation 2. As cross-risk elasticity increases, the opportunity window for

�rm 2 to increase pro�t under minimum mandatory spending increases, everything

else being constant.

For example, according to the speci�c parameter values we used in our numerical

analysis, when cross-risk elasticity is low, a 5% di�erence in cross-risk elasticities

between �rms can yield increased pro�ts for �rm 2 but when cross-risk elasticity is

high they may di�er by as much as 35% between �rms and still increase pro�ts for

�rm 2. Therefore when cross-risk elasticity increases, �rms may be more �dissimilar�
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in terms of cross-risk elasticities and still increase pro�ts for both �rms and provide

an opportunity for �rms to cooperate.

Observation 3. The largest increases in pro�t for �rm 2 occur when the �rms

are �more similar� in terms of both their direct- and cross-risk elasticity values.

Recall that ce1 > ce2 and �rm 1 always increases its pro�ts for our numerical study.

Observation 3 states that when the di�erences in direct- and cross-risk elasticities

between �rms is small, the increase in pro�t for �rm 2 is largest. Thus, the more

similar �rms are, the better the opportunity for cooperation.

2.4.4 Signalling

Signalling theory is concerned with the use of honest and dishonest signals

(Spence 2002). Regulation and veri�able inter-�rm cooperation (such as externally

audited information sharing) can be used to enforce honest signalling regarding dis-

closure of IT security breaches. Indeed, transparent disclosure of IT security breaches

is required by law in certain situations (SB-1386 2002, HIPAA 1996), but in many

others it is not. Firms may choose to hide information regarding their IT security

spending levels. However, as our model considers the Nash equilibrium spending,

it is not dependent upon knowing the exact spending of the other �rm in order to

calculate the market equilibrium spending. Therefore, it should be noted that the

transparency is not a crucial issue for our current model where we focus on cases

where �rms are transparently symmetric and identify the Nash equilibrium spend-

ing. On the other hand, if �rms can hide information regarding the risk elasticity

parameters, this indeed would have an e�ect on the calculation of the Nash equilib-

rium spending. Without loss of generality, we focus on Firm 2 as we examine what

occurs when either there is not enough information for Firm 1 to accurately estimate

Firm 2's risk elasticities (direct or cross) or Firm 2 can deliberately mislead the other

about the nature of its elasticities. For the rest of this section, we use the phrase

�dishonest signalling� to denote both of these possibilities: dishonest signalling and

incorrect estimation of parameters due to lack of information.

To illustrate how dishonest signalling of the elasticity parameters a�ects the

behaviour of our �rms, we designed a test suite where we �rst examine symmetric

direct-risk elasticity (Z11 = Z21) at high, medium and low values (.75, .5, and .25)

with various asymmetric cross-risk elasticity values (Z12 ̸= Z22). We next examine
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the case where cross-risk elasticity is symmetric (Z12 = Z22) at a level of high,

medium or low as earlier, and direct-risk elasticity is set to various asymmetric

values (Z11 ̸= Z21). In all, we had 956 observations in each of the complements in

loss and substitutes in loss cases.

For this test suite, we use the following methodology. Starting with the assump-

tion that �rms were truly symmetric we solve for the symmetric model (referred

to as Model 1) for equilibrium spending (ce) and pro�t (E[Πe]) with a focus on

situations where Firm 1 receives a dishonest signal about Firm 2's risk elasticities.

We then solve the asymmetric model (referred to as Model 2) that results from

this inaccurate information, obtaining Firm 1's optimal response spending under the

asymmetric model (ca1). Finally, we use Firm 1's spending from Model 2 to calculate

Firm 2's optimal response spending (ca∗2 ) in Model 1 (since Firm 2 knows the correct

model) and then, using the expected pro�t function from Model 1, calculate expected

pro�t for both Firm 1 and Firm 2 using c1 = ca1 and c2 = ca∗2 . We then calculate

the di�erence between the expected pro�t with and without dishonest signalling for

each �rm. From this analysis, we make the following observations.

Observation 1. When �rms are complements in loss, if Firm 2 claims either a

lower (higher) direct- or cross-risk elasticity, it increases (decreases) Firm 2's pro�ts

while decreasing (increasing) Firm 1's pro�ts.

Observation 2. When �rms are substitutes in loss, if Firm 2 claims a lower

(higher) cross-risk elasticity, it increases (decreases) both �rms' pro�ts. Firm 2

claiming a higher direct-risk elasticity also decreases pro�ts for both �rms.

Observation 3. When �rms are substitutes in loss, if Firm 2 claims a lower

direct-risk elasticity, it increases Firm 2's pro�t and can increase Firm 1's pro�t if

the di�erence between Firm 2's claim and the real direct-risk elasticity is not too

large.

When �rms are complements in loss, observation 1 occurs because Firm 2 spends

less (more) on security while Firm 1 spends more (less) when Firm 2 claims a lower

(higher) direct- or cross-risk elasticity. Similarly, when �rms are substitutes in loss,

observations 2 and 3 occur because both �rms will spend less (more) on security

when Firm 2 claims a lower (higher) direct- or cross-risk elasticity. In summary,

when �rms are substitutes in loss, under-estimating the other �rm's direct and cross-

risk elasticities can lead to increased pro�ts for both �rms. However, when �rms are
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complements in loss, the �rm with better information can increase its pro�ts while

harming the pro�tability of the other �rm.

2.5. Conclusion

This research examines how adverse IT security events at all �rms have an impact

on customer demand, IT security spending, and pro�ts for a �rm. By understanding

how customers will react to a competitor's adverse IT security events, managers will

have a better understanding of the appropriate IT security spending to maximize

their �rm's pro�ts. Our model examines the interaction e�ects of �rms' actions when

customers react to any adverse IT security event by changing their demand for both

�rms' products. We describe the impact between �rms as the cross-risk elasticity

of demand which can be described in three ways: �rms may be substitutes in loss,

una�ected, or complements in loss. In addition to obtaining analytical results when

�rms are symmetric, we extend our examination of the symmetric case by examining

correlated arrivals of adverse events as well as examining the asymmetric case where

customer reactions may be di�erent for each �rm. We examine the impact these

demand changes have on security spending and pro�ts.

Using a CTMC model, parameters include how customers react to a successful

attack (customers go to another �rm or leave the market), the duration of the reac-

tion, and the riskiness of the environment. The continuous time model is a natural

way to examine how the riskiness of the environment impacts security spending and

expected pro�ts given di�erent types of customer reaction, and we derive several

results regarding environment risk. Importantly, in riskier environments, there is a

wider window of opportunity for �rms to increase pro�ts beyond market equilibrium

through cooperation or regulation.

With our symmetric model we demonstrate in Proposition 2.2 that, when �rms

are complements in loss, it is possible for both �rms to obtain increased pro�ts over a

range once there is a minimum mandatory spending level. With this proposition, we

provide the range over which this case becomes the well-known �prisoner's dilemma�

from game theory. When �rms are asymmetric, it is still possible to increase pro�ts,

provided �rms are su�ciently alike in direct- and cross-risk elasticities. As a result,

it is possible for �rms to cooperate, voluntarily increasing IT security spending in

an attempt to increase customer con�dence in the product. Unsurprisingly, we �nd
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that whenever regulations cause �rms to spend more on security, consumer surplus

is increasing. When we examine the impact of correlation in adverse event arrivals,

we �nd that as the degree of correlation between the �rms increases, the system is

more likely to be in a state where both �rms have experienced adverse events and,

as a result, equilibrium pro�ts decrease for both �rms.

Gal-Or and Ghose (2005) model an interaction between �rms, in the form of infor-

mation sharing, in order to obtain demand increases. Our analysis stands in contrast

in that a �rm can gain demand simply when the other �rm spends more money on

information security when the �rms are complements in loss. Our model requires no

interaction or exchange of information between the �rms in order to obtain demand

increases and increased pro�ts for all �rms. This substantial di�erence leads to very

di�erent implications regarding Information Sharing and Analysis Centers (ISACs)

under Presidential Decision Directive (PDD) 63. Although information sharing may

be a mechanism for coordinating security e�orts and thus reducing security costs

and improving e�ciency of security e�orts industry wide, the ISACs may also be a

mechanism for enforcing minimum security standards in industries where security

breaches in one �rm may result in decreased demand at other �rms (i.e., preventing

negative spill over) thereby increasing pro�ts for all participants.

Recognizing the characteristics of a �rm or industry can aid decision makers.

Sectors that fall into the complements in loss case would likely include those pro-

ducing non-essential undi�erentiated goods and services, perhaps sharing a common

technology or service provider. An example of such a case lies anywhere a breach at

a single �rm in the industry can erode con�dence in the industry itself, such as credit

card use which led to the development of the PCI DSS industry standard (Sysnet

2012b). The Maple Leaf listeriosis contamination (Crawford 2008) provided another

example of this type of customer reaction. We might also expect consumers to reduce

their enrollment in loyalty programs in light of the recent Epsilon breach a�ecting

the customers of at least 47 email marketing clients such as Best Buy, Ritz-Carlton,

and McKinsey & Company (Lennon 2011). Sectors that fall into the substitutes in

loss case would likely be producing necessities, undi�erentiated goods, or not obvi-

ously sharing a common technology or service provider. Managers do not need to

know the IT security spending amounts of other �rms to make use of our results.

Signalling theory is concerned with the use of honest and dishonest signals
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(Spence 2002). Regulation and veri�able inter-�rm cooperation (such as externally

audited information sharing) can be used to enforce honest signalling regarding dis-

closure of IT security breaches. Indeed, transparent disclosure of IT security breaches

is required by law in certain situations (SB-1386 2002, HIPAA 1996), but in many

others it is not. Our model does not require knowledge of industry security spend-

ing, but assumes that the elasticities and riskiness of the environment are common

knowledge, in order to solve for equilibrium spending. Our preliminary work in this

area shows that if �rms can hide information regarding the risk elasticity parame-

ters, then the calculated equilibria change. An interesting avenue for future research,

then, is to expand this investigation to better understand whether �rms have incen-

tives to deceive other �rms or consumers by providing false signals regarding their

demand elasticities.

In our stationary and continuous time model, we obtain a constant stationary

per unit security spending. Our numbers can be interpreted as �per unit�; demand is

per unit of time, and spending is per unit sold. Periodic settings or sequential games

could be used to investigate optimal investment timing or the e�ects of changes in

the security spending level. An interesting application of this idea is building brand

identity by spending heavily at the beginning, possibly altering customer reaction of

future adverse events.

Additionally, the demand recovery process is modeled in our paper as an in-

stantaneous recovery rather than a gradual return to normal demand levels. We

performed a preliminary numerical analysis in correlated arrivals case and found

that making the expected duration of adverse events state-speci�c does not substan-

tially alter our observations. Future research could certainly more closely examine

the impact of event duration on spending decisions as well as examining how �rms

might change the expected event duration. Incident response strategies, for example,

have been shown to have an impact on the expected duration of events (Yue and

Çakanyildirim 2007). It might be of interest to examine the trade-o�s involved in

spending to reduce arrival rates versus spending to favorably adjust event duration.

Prices in our model are �xed. In addition to changing prices in response to

changing customer demand in response to a security breach, some customers may

be willing to accept a less secure product if it came at a discounted price, thereby

allowing �rms to choose their security posture (set their IT security spending level)
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and then price the product accordingly. Such actions could segment the market -

high security �rms would sell to customers willing to pay for higher security and low

security �rms would sell to customers unwilling to pay for higher security - or could

result in the loss of either low-end or high-end security products altogether. Future

work should examine customers with di�erent risk seeking pro�les.

Our model is successful in obtaining insights for di�erent possible indirect e�ects

of adverse IT security events on customer demand and �rm IT security spending.

This paper continues the work to more fully understand the complex interaction of

�rms' actions and customer reactions to stochastic adverse events, IT security being

our primary example. By understanding the nature of these customer reactions,

managers can know when it is in their best interest to cooperate with other �rms on

security or not.

38



Bibliography

Acohido, B. 2009. Cybercrooks stalk small businesses that bank online. USA Today .

Allan, A., P. Warden. 2011. Got an iPhone or 3G iPad? Apple is record-
ing your moves. O'Reilly radar. URL http://radar.oreilly.com/2011/04/

apple-location-tracking.html.

Arthur, C. 2011a. iPhone keeps record of everywhere you go. guardian.co.uk
Technology Blog. URL http://www.guardian.co.uk/technology/2011/apr/20/

iphone-tracking-prompts-privacy-fears.

Arthur, C. 2011b. Sony su�ers second data breach with theft of 25m more user details.
guardian.co.uk Technology Blog. URL http://www.guardian.co.uk/technology/

blog/2011/may/03/sony-data-breach-online-entertainment.

Baker, L. B., J. Finkle. 2011. Sony PlayStation su�ers massive data breach. Reuters .

Burke, R. J. 2011. Corporate reputations: Development, maintenance, change and repair.
R. J. Burke, G. Martin, C. L. Cooper, eds., Corporate Reputation: Managing Oppor-
tunities & Threats. Psychological and Behavioural Aspects of Risk, Gower.

Cavusoglu, H., H. Cavusoglu, J. Zhang. 2008. Security patch management: Share the burden
or share the damage? Management Science 54 657�670.

Cezar, A., H. Cavusoglu, S. Raghunathan. 2010. Competition, speculative risks, and IT
security outsourcing. T. Moore, D. Pym, C. Ioannidis, eds., Economics of Information
Security and Privacy . Springer US, Boston, MA, 301�320.

Conz, N. 2008. Selling security � innovative carriers are nurturing a new kind of customer
loyalty by establishing themselves as IT security stalwarts. Insurance and Technology
33(3) 31.

Coyle, P. 2011. Pending cyber security bills 03-19-11. Digital Bond's
SCADA Security Portal. URL http://www.digitalbond.com/2011/03/22/

pending-cyber-security-bills-03-19-11/.

Crawford, T. 2008. Maple Leaf Foods plant reopens after listeriosis outbreak. National Post
.

DPA. 1998. Data Protection Act 1998. (UK) .

Duh, R-R., S. Sunder, K. Jamal. 2002. Control and assurance in e-Commerce: Privacy,
integrity, and security at eBay. Taiwan Accounting Review 3 1�27.

Freedman, S.M., M. Schettini Kearney, M. Lederman. 2009. Product recalls, imperfect
information, and spillover e�ects: Lessons from the consumer response to the 2007 toy
recalls. NBER Working Paper No. 15183 .

Gal-Or, E., A. Ghose. 2005. The economic incentives for sharing security information.
Information Systems Research 16 186�208.

Gordon, L. A., M. P. Loeb. 2002. The economics of information security investment. ACM
Transactions on Information and System Security 5 438�457.

Gordon, L. A., M. P. Loeb, W. Lucyshyn. 2003. Sharing information on computer systems
security: An economic analysis. Journal of Accounting and Public Policy 22 461�485.

HIPAA. 1996. Health Insurance Portability and Accountability Act of 1996. PUBLIC LAW
104-191 (US) .

39



IT Governance. 2012. PCI DSS. URL http://www.itgovernance.co.uk/iso27001.aspx.

Javelin. 2007. Data breaches and buyer behavior: Unfolding TJX Press release. Javelin
Strategy and Research Press Release .

Krebs, B. 2009a. European cyber-gangs target smal U.S. �rms, group says. Washinton Post
.

Krebs, B. 2009b. The growing threat to business banking online. Washington Post Security
Fix Blog .

Kunreuther, H., G. Heal. 2003. Interdependent security. Journal of Risk and Uncertainty
26(2) 231�249.

Lennon, M. 2011. Massive breach at Epsilon compromises customer lists of major brands.
Securityweek .

Ponemon, Symantec. 2011. 2010 annual study: U.S. cost of data breach .

SB-1386. 2002. California Senate Bill: Personal information: privacy. http:

//info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_

20020926_chaptered.html.

Smed, S., J.D. Jensen. 2005. Food safety information and food demand. British Food Journal
107 173�186.

Spence, M. 2002. Signaling in retrospect and the informational structure of markets. Amer-
ican Economic Review 92 434�459.

Sysnet. 2012a. ISO 27001 compliance services. URL http://www.sysnetglobalsolutions.

com/en/Compliance_and_Standards/ISO_27001.aspx.

Sysnet. 2012b. PCI DSS. URL http://www.sysnetglobalsolutions.com/en/

Compliance_and_Standards/PCI_DSS.aspx.

Varian, H. 2004. System reliability and free riding. L. Camp, Stephen Lewis, eds., Economics
of Information Security , Advances in Information Security, vol. 12. Springer US, 1�15.
URL http://dx.doi.org/10.1007/1-4020-8090-5_1.

Yu, T., R. H. Lester. 2008. Moving beyond �rm boundaries: A social network perspective
on reputation spillover. Corporate Reputation Review 11(1) 94�108.

Yue, W., M. Çakanyildirim. 2007. Intrusion prevention in information systems: Reactive
and proactive responses. Journal of Management Information Systems 24(1) 329�353.

2.6. Appendices

2.6.1 Proof of Lemma 2.1

Proof. Proof of Lemma 2.1 As stated in Lemma 2.1, in this proof we are only inter-

ested in cases where Z1 > 0. Part (i) follows from the respective partial derivatives,

shown below:

∂ce

∂π
=

Z1√
Z2
2 + 4Z1

π+ρ
ρ

> 0

∂ce

∂Z1
=

π + ρ√
Z2
2 + 4Z1

π+ρ
ρ

> 0 as both π > 0 and ρ > 0

∂ce

∂Z2
=

1

2

1 +
Z2√

Z2
2 + 4πZ1

π+ρ
ρ

 ρ > 0 (2.30)
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Clearly, (2.30) is true when Z2 ≥ 0. Below, we also show it to be true for Z2 < 0.

1

2

1 +
Z2√

Z2
2 + 4πZ1

π+ρ
ρ

 ρ > 0

√
Z2
2 + 4πZ1

π + ρ

ρ
> −Z2 > 0 since Z2 < 0

Z2
2 + 4πZ1

π + ρ

ρ
> Z2

2

4πZ1 > 0 which always holds since both π, Z1 > 0.
(2.31)

To show part (ii), we once again begin with the partial derivative as follows:

∂ce

∂ρ
=

1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
− πZ1

ρ
√

Z2
2 + 4Z1

π+ρ
ρ

− 1 (2.32)

∂ce

∂ρ is a continuous function of ρ when ρ > 0 and the only positive root of ∂ce

∂ρ is ρt,

as given by (2.19). Therefore, ∂ce

∂ρ in (2.32) can change sign at most once. Given this

fact, we complete the proof by �rst showing that spending is increasing in ρ when

ρ < ρt (
∂ce

∂ρ > 0 when ρ < ρt) and then showing that spending is decreasing ρ when

ρ > ρt (
∂ce

∂ρ < 0 when ρ > ρt).

To begin, we show that spending is increasing in ρ when ρ < ρt (
∂ce

∂ρ > 0 when

ρ < ρt) by considering a value, ρ∗, which is smaller than ρt. Given the Assumptions

1 and 2 on Z1 and Z2, we can �nd the smallest ρt possible, denoted by ρ∗t , as follows:

ρt =
πZ1

2[1− (Z1 + Z2)] +
√

(Z2 − 2)2[1− (Z1 + Z2)]

≥ πZ1

2[1− (1− 1)] +
√

(−1− 2)2[1− (1− 1)]

=
πZ1

5
= ρ∗t

We now pick a ρ value which is smaller than the smallest ρt possible, ρ
∗
t =

πZ1
5 . We
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shall let ρ∗ = πZ1
16 < ρ∗t and evaluate (2.32) for ρ = ρ∗.

∂ce

∂ρ

∣∣∣∣
ρ=ρ∗

=
1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ∗

ρ∗

)
− πZ1

ρ∗
√

Z2
2 + 4Z1

π+ρ∗

ρ∗

− 1

≥ 1

2

(
Z2 +

√
Z2
2 + 4Z1

π

ρ∗

)
− πZ1

ρ∗
√

Z2
2 + 4Z1

π
ρ∗

− 1

=
1

2

(
Z2 +

√
Z2
2 + 64

)
− 16√

Z2
2 + 64

− 1

≥ 1

2

(
−1 +

√
Z2
2 + 64

)
− 16√

Z2
2 + 64

− 1 since −1 ≤ Z2

≥ 1

2

(
−1 +

√
0 + 64

)
− 16√

0 + 64
− 1 = 0.5 > 0 since −1 ≤ Z2 ≤ 1

(2.33)

From (2.33), we conclude that ∂ce

∂ρ > 0 for 0 < ρ < ρt. This is because, ∂ce

∂ρ is a

continuous function of ρ > 0 and ρt is its only root. Therefore ∂ce

∂ρ has the same sign

for all 0 < ρ < ρt.

Now, we show that spending is decreasing in ρ when ρ > ρt (∂c
e

∂ρ < 0 when

ρ > ρt). First note that, as (2.19) shows, ρt → ∞ when Z1 + Z2 → 1. Therefore,

we only need to consider cases with Z1 + Z2 < 1 because of two reasons: (i) when

Z1 + Z2 = 1 the root ρt does not exist and hence there is no ρ value that satis�es

ρ > ρt and (ii) Z1 + Z2 ≤ 1 by Assumption 2.1.

We show that spending is decreasing in ρ when ρ > ρt and Z1 + Z2 < 1, by

evaluating ∂ce

∂ρ at a ρ value that is greater than ρt. We do this by considering the

sign of (2.32) in the limit as ρ goes to in�nity. That is, we want to consider

lim
ρ→∞

∂ce

∂ρ
= lim

ρ→∞

1
2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
− πZ1

ρ
√

Z2
2 + 4Z1

π+ρ
ρ

− 1


=

1

2

(
Z2 +

√
Z2
2 + 4Z1

)
− 1 < 0 when Z1 + Z2 < 1

As we are only interested in cases with Z1 + Z2 < 1, the equilibrium spending, ce is

decreasing in ρ when ρ > ρt.

2.6.2 Proof of Lemma 2.2

Proof. Proof of Lemma 2.2 As stated in Lemma 2.2, in this proof we are only inter-

ested in cases where Z1 > 0. As in Lemma 2.1, the proof of parts (i) and (ii) follow
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from the respective partial derivatives of E[Πe], shown below:

∂E[Πe]

∂π
= Q

(
1− ρ (Z1 + Z2)

ρ+ ce

)(
1− ∂ce

∂π

)
+

Qρ(π − ce) (Z1 + Z2)
∂ce

∂π

(ρ+ ce)2
> 0

(2.34)

where ∂ce

∂π is shown in (2.20)

∂E[Πe]

∂Z1
= −Q

(
1− ρ (Z1 + Z2)

ρ+ ce

)
∂ce

∂Z1
−

Qρ (π − ce)
(
ρ+ ce − (Z1 + Z2)

∂ce

∂Z1

)
(ρ+ ce)2

< 0

(2.35)

where ∂ce

∂Z1
is shown in (2.21)

∂E[Πe]

∂Z2
= −

2ρ(π + ρ)Q
(
−2Z1 − Z2 +

√
Z2
2 + 4Z1

π+ρ
ρ

)
4Z1(π + ρ) + ρZ2

(
Z2 +

√
Z2
2 + 4Z1

π+ρ
ρ

) < 0 (2.36)

Finally, the proof of part (iii) follows from the partial derivative of E[Πe] w.r.t.

ρ.

∂E[Πe]

∂ρ
=

−Q

(ρ+ ce)2

[
ce(π − ce)(Z1 + Z2) + [2ρce + ce 2 + ρ(ρ− (π + ρ)(Z1 + Z2))]

∂ce

∂ρ

]
(2.37)

As ∂E[Πe]
∂ρ is a continuous function of ρ when ρ > 0 and the only positive root of

∂E[Πe]
∂ρ is ρT , as given by (2.24), therefore, ∂E[Πe]

∂ρ in (2.37) can change sign at most

once. Given this fact, we show that when Z2 ≥ 0, ∂E[Πe]
∂ρ does not change sign and

∂E[Πe]
∂ρ < 0 always holds. On the other hand, when Z2 < 0, ∂E[Πe]

∂ρ changes sign at

ρT : total expected pro�t is decreasing in ρ when ρ < ρT (∂E[Πe]
∂ρ < 0 when ρ < ρT )

and total expected pro�t is increasing ρ when ρ > ρT (∂E[Πe]
∂ρ > 0 when ρ > ρT ).

Simplifying ∂E[Πe]
∂ρ given by (2.37), we �nd:

∂E[Πe]

∂ρ
=

−Q

(ρ+ ce)2
A where A =

Z1(π − ce)
(
ce
√

Z2
2 + 4Z1

π+ρ
ρ + Z2π

)
√

Z2
2 + 4Z1

π+ρ
ρ

(2.38)

First note that −Q
(ρ+ce)2

< 0 since Q, ce, ρ > 0. Thus we need only consider the sign

of the term A in (2.38). The denominator of A,
√

Z2
2 + 4Z1

π+ρ
ρ > 0, thus we need
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only look at the numerator. When Z2 ≥ 0, then A > 0 since ce
√

Z2
2 + 4Z1

π+ρ
ρ > 0

and Z1, π − ce > 0. Hence, ∂E[Πe]
∂ρ < 0 when Z2 ≥ 0.

Now, we focus on the case when Z2 < 0 and �nd the range of ρ for which A > 0

(and hence ∂E[Πe]
∂ρ < 0). Since Z2 < 0 in this case and Z1, π− ce > 0 in (2.38), A > 0

holds when ce
√

Z2
2 + 4Z1

π+ρ
ρ > −πZ2 > 0, as analyzed below:

ce
√

Z2
2 + 4Z1

π + ρ

ρ
> −πZ2 substituting ce given by (2.18), we �nd

4Z1 + Z2
2 (2− (Z1 + Z2))

(2Z1 + Z2)2
<

π + ρ

ρ

ρ <
π(2Z1 + Z2)

2

(4Z1 + Z2
2 )(1− (Z1 + Z2))

= ρT (2.39)

(2.39) shows that, for the Z2 < 0 case, when ρ < ρT , A > 0 holds and equilibrium

pro�t is decreasing in ρ. We know that ∂E[Πe]/∂ρ = 0 when ρ = ρT , and lastly

when ρ > ρT , A < 0 holds and equilibrium pro�t is increasing in ρ.

2.6.3 Proofs for Propositions

Proof. Proof of Proposition 2.1

Let R be the required security spending for �rms. By the de�nition of binding

regulation, we have

R− cei ≥ 0 for i = 1, 2. (2.40)

Let E[Πe
i ] denote the pro�t calculated at equilibrium spending, cei , and let E[ΠR

i ]

denote the pro�t calculated at regulation spending, R, where i = 1, 2. As we are

focusing on the symmetric case, we can drop the index i. We want to show:

E[Πe]− E[ΠR] ≥ 0 where

E[Πe]− E[ΠR] =

(
1− ρ(Z1 + Z2)

ρ+ ce

)
(π − ce)Q−

(
1− ρ(Z1 + Z2)

ρ+R

)
(π −R)Q

=
Q(R− ce)[(ρ+ ce)(ρ+R)− ρ(Z1 + Z2)(π + ρ)]

(ρ+ ce)(ρ+R)
(2.41)

Therefore, to show that E[Πe]−E[ΠR] ≥ 0, we need to prove that (2.41) is nonneg-

ative. By (2.40) we know that R − ce ≥ 0 and we know Q, ρ + ce, and ρ + R > 0.

So, to complete the proof, we need the following to hold in (2.41),

(ρ+ ce)(ρ+R)− ρ(Z1 + Z2)(π + ρ) ≥ 0

(ρ+R)(ρ+ ce) ≥ ρ(Z1 + Z2)(π + ρ) (2.42)
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We want to show that (2.42) holds. From (2.40), we know that R ≥ ce. Therefore,

the following holds

(ρ+R)(ρ+ ce) ≥ (ρ+ ce)2

Hence, we can prove (2.42) by showing that (ρ+ ce)2 ≥ ρ(Z1 + Z2)(π + ρ).

(ρ+ ce)2 ≥ ρ(Z1 + Z2)(π + ρ){
ρ+ ρ

(
1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
− 1

)}2

≥ ρ(Z1 + Z2)(π + ρ)

Z2ρ

(
1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
− 1

)
≥ Z2π

Z2c
e ≥ Z2π (2.43)

In this Proposition, we are considering the case where Z2 ≤ 0. When Z2 = 0, (2.43)

holds and when Z2 < 0 we require π ≥ ce for (2.43) to hold. Note that, π ≥ ce holds

due to the long-run participation constraint introduced in Section 2.3, as otherwise

�rms would not be willing to produce the product. Thus, we have proven that

E[Πe]−E[ΠR] ≥ 0 for �rms that are substitutes in loss or una�ected (Z2 ≤ 0).

Proof. Proof of Proposition 2.2: First, we �nd a spending level, R̃, such that the

pro�t at that spending level, E[ΠR̃], is the same as the pro�t at equilibrium spending,

E[Πe]. That is, we want to �nd R̃ such that

E[Πe] = E[ΠR̃](
1− ρ(Z1 + Z2)

ρ+ ce

)
(π − ce)Q =

(
1− ρ(Z1 + Z2)

ρ+ R̃

)
(π − R̃)Q (2.44)

Solving the equation (2.44) for R̃, we obtain the following two roots

R̃(1) = ce and R̃(2) = ρ

(
(Z1 + Z2)(π + ρ)

ce + ρ
− 1

)
As we are interested in spending levels besides the equilibrium spending, ce, we keep

R̃(2) as R̃.

Now we �nd the regulation spending level, Ropt, that maximizes the �rm pro�t.

To complete the proof, we then show that ce ≤ Ropt ≤ R̃ and the �rm pro�t between

levels ce and R̃ is greater than or equal to the equilibrium pro�t, E[Πe]. Consider
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the �rst and second partial derivatives of equilibrium pro�t provided in (2.23) with

respect to c.

∂E[Π]

∂c
= Q

ρ(Z1 + Z2)(π + ρ)− (c+ ρ)2

(c+ ρ)2

∂2E[Π]

∂c2
=

−2Qρ(Z1 + Z2)(π + ρ)

(c+ ρ)3
< 0 (2.45)

The second derivative (2.45) is negative since: (i) Q, c, π, and ρ > 0, and (ii)

Z1 + Z2 > 0 in this Proposition. To see (ii), note that Z1 + Z2 ≥ 0 by Assumption

2.1, Z1 ∈ [0, 1] by de�nition, however Z2 > 0 in this Proposition and that makes

Z1 + Z2 > 0. Therefore, E[Π] is strictly concave in c and the �rst-order condition

provided below will give us a spending level, Ropt, that maximizes the pro�t.

∂E[Π]

∂c

∣∣∣∣
c=Ropt

= Q
ρ(Z1 + Z2)(π + ρ)− (Ropt + ρ)2

(Ropt + ρ)2
= 0 (2.46)

Solving equation (2.46) for Ropt yields the following roots:

Ropt(1) = −
√

(Z1 + Z2)(π + ρ)ρ− ρ and Ropt(2) =
√

(Z1 + Z2)(π + ρ)ρ− ρ

(2.47)

It is evident that Ropt(1) ≤ 0, so we eliminate Ropt(1) and keep Ropt(2) as Ropt,

but we still need to show that Ropt(2) ≥ 0. As ce > 0, showing that ce ≤ Ropt (which

we do below as a step to show ce ≤ Ropt ≤ R̃) will also prove that Ropt = Ropt(2) ≥ 0

in (2.47). Below we show ce ≤ Ropt holds, recalling that we are only interested in

the case where Z2 > 0.

ce ≤ Ropt

ρ

(
1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
− 1

)
≤

√
ρ(Z1 + Z2)(π + ρ)− ρ

Z2
1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
≤ Z2

π + ρ

ρ

ρ
1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
≤ π + ρ as Z2 > 0

ρ

(
1

2

(
Z2 +

√
Z2
2 + 4Z1

π + ρ

ρ

)
− 1

)
≤ π

ce ≤ π

Note that, π ≥ ce holds due to the long-run participation constraint introduced

in Section 2.3, as otherwise �rms would not be willing to produce the product. Thus,
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ce ≤ Ropt holds. Now we show that ce ≤ Ropt implies Ropt ≤ R̃. This concludes the

proof of ce ≤ Ropt ≤ R̃.

ce ≤ Ropt

ce ≤
√

ρ(Z1 + Z2)(π + ρ)− ρ√
(Z1 + Z2)(π + ρ)ρ− ρ ≤ ρ

(
(Z1 + Z2)(π + ρ)

ce + ρ
− 1

)
Ropt ≤ R̃

Thus, ce ≤ Ropt ≤ R̃ holds. To summarize; when Z2 > 0, the expected pro�t

attains its maximum at Ropt and ce ≤ Ropt ≤ R̃ holds, where E[Πe] = E[ΠR̃]. We

also showed that the expected pro�t is strictly concave in spending when Z2 > 0,

therefore for any spending level between ce and R̃, non-inclusive, the expected pro�t

is larger than the equilibrium pro�t, E[Πe].

2.6.4 Correlated Arrivals

Here we present the calculations for steady state probabilities in the correlated

arrivals model. We go on to show that the steady state probabilities are decreasing

in γ for states gg, bg, and gb and increasing in γ for state bb. We then prove that

E[Πe] is also decreasing in γ.

Following our methodology from Section 2.2, we focus on the symmetric case and

substitute ρ = Λ
µ . Thus, the steady-state probabilities, Ps, for the system in Figure

2.9 can be obtained from the following equations:

Pgg(
ρ

c1
+

ρ

c2
) = Pbg + Pgb (2.48)

Pbg(
ρ

c2
+ 1) = Pbb + Pgg(1− γ)

ρ

c1
(2.49)

2Pbb = Pbg
ρ

c2
+ Pgb

ρ

c1
+ Pggγ(

ρ

c1
+

ρ

c2
) (2.50)

Pgb(1 +
ρ

c1
) = Pgg(1− γ)

ρ

c2
+ Pbb (2.51)

Pgg + Pbg + Pgb + Pbb = 1 (2.52)

Where (2.48)-(2.51) are state balance equations and (2.52) normalizes the probabil-

ities to 1. From (2.48)-(2.52), we obtain the steady-state probabilities as follows:
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Pgg =
c1c2(ρc2 + c1(ρ+ 2c2))

c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22)
,

Pbb =
ρ(γc21(ρ+ c2) + ρc2(ρ+ γc2) + c1(ρ

2 + 2ρc2 + γc22))

c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22)
,

Pbg =
ρc2(γc

2
1 + ρc2 + c1(ρ− (−2 + γ)c2))

c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22)
,

Pgb =
ρc1(c1(ρ− (−2 + γ)c2) + c2(ρ+ γc2))

c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22)
(2.53)

If we let γ = 0, (2.53) reduces to the probabilities given in (2.8).

To examine how correlated arrivals will a�ect the expected pro�ts for �rms, we

examine the partial derivatives of the steady-state probabilities with respect to γ,

below:

∂Pgg

∂γ
=

−(ρc1c2(ρc
2
2 + c1c

2
2 + c21(ρ+ c2))(ρc2 + c1(ρ+ 2c2)))

(c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22))
2

(2.54)

∂Pbg

∂γ
=

−(ρc2(−ρc31 + c1(ρ
2 + (ρ− c1)c1)c2 + (ρ+ c1)

2c22)(ρc2 + c1(ρ+ 2c2)))

(c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22))
2

(2.55)

∂Pgb

∂γ
=

−(ρc1(ρc2 + c1(ρ+ 2c2))(−ρc32 + c21(ρ+ c2)
2 + c1c2(ρ

2 + (ρ− c2)c2)))

(c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22))
2

(2.56)

∂Pbb

∂γ
=

ρ(ρc2 + c1(ρ+ c2))(ρc
2
2 + c1c

2
2 + c21(ρ+ c2))(ρc2 + c1(ρ+ 2c2))

(c21(ρ+ c2)(ρ+ γρ+ 2c2) + ρ2c2(ρ+ (1 + γ)c2) + ρc1(ρ2 + 4ρc2 + (3 + γ)c22))
2

(2.57)

We show below that the steady state probabilities for the states gg, bg, and gb

are all decreasing in γ while the steady-state probability for state bb is increasing

in γ at ce. The denominator is the same for all four partial derivatives listed in

(2.54)-(2.57) and is non-negative. We then need only show the appropriate sign for

the numerator of each partial derivative, evaluated at ce.

State gg We want to show:

−ρce2(ρce2 + ce3 + ce2(ρ+ ce))(ρce + ce(ρ+ 2ce)) ≤ 0

−4ρce5(ρ+ ce)2 ≤ 0

(ρ+ ce)2 ≥ 0 (2.58)
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It is clear that (2.58) holds, thus
∂Pgg

∂γ ≤ 0.

States bg and gb We want to show:

−
(
ρce(−ρce3 + ce(ρ2 + (ρ− ce)ce)ce + (ρ+ ce)2ce2)(ρce + ce(ρ+ 2ce))

)
≤ 0

(−ρce3 + ce(ρ2 + (ρ− ce)ce)ce + (ρ+ ce)2ce2)(ρce + ce(ρ+ 2ce)) ≥ 0

As (ρce + ce(ρ+ 2ce)) ≥ 0, we need only show:

(−ρce3 + ce(ρ2 + (ρ− ce)ce)ce + (ρ+ ce)2ce2) ≥ 0

2ρ(ρ+ ce) ≥ 0 (2.59)

It is clear that (2.59) holds as all values are non-negative. Thus
∂Pbg

∂γ ≤ 0. And, due

to symmetry, it also holds that
∂Pgb

∂γ ≤ 0.

State bb We want to show:

ρ(ρce + ce(ρ+ ce))(ρce2 + ce3 + ce2(ρ+ ce))(ρce + ce(ρ+ 2ce)) ≥ 0 (2.60)

It is clear that (2.60) holds as all values are non-negative. Thus ∂Pbb
∂γ ≥ 0.

2.6.5 Expected Pro�t

Under correlated arrivals, the expected pro�t at equilibrium is given by the equa-

tion:

E[Πe] =
Q(π − ce)

(
ce2 + ce(2 + γ)ρ+ ρ2 − ρ(ce + ceγ + ρ) (Z1 + Z2)

)
ce2 + ce(2 + γ)ρ+ ρ2

(2.61)

When γ = 0, (2.61) reduces to the expected pro�t function given by (2.23). By

examining the partial derivative of this expected pro�t function with respect to γ,

we �nd that expected pro�ts at equilibrium are decreasing in γ.

∂E[Πe]

∂γ
=

−Q(π − ce)ce2ρ(ce + ρ) (Z1 + Z2)

(ce2 + c(2 + γ)ρ+ ρ2)2
≤ 0

Since ∂E[Πe]
∂γ ≤ 0 as π−ce ≥ 0, Z1+Z2 ≥ 0, and all other parameters are non-negative.

Therefore, we can conclude that expected pro�ts at equilibrium are decreasing in the

correlation of attack arrivals.
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2.6.6 Description of Numerical Analysis in Asymmetric Case

In the asymmetric case, one �rm will have a lower equilibrium spending than

the other. Without loss of generality, we examined parameter combinations where

�rm 1 has the higher equilibrium spending (i.e. ce1 > ce2) and R thus the mandatory

minimum spending will apply to �rm 2 �rst. Here, there will always be a window

for �rm 1 to increase pro�ts once �rm 2 is required to spend R and we are interested

in cases where it may be possible for �rm 2 to also increase pro�ts.

In the �rst stage, direct-risk elasticity (Zi1) was the same for both �rms and only

the cross-risk elasticities di�ered between �rms. Direct-risk elasticity for both �rms

was set to a low, medium, and high value (that is, Zi1 ∈ {.25, .5, .75}, as shown in

Table 2.1) and cross-risk elasticity for �rm 1 was set to a value without violating

assumptions 1 or 2. It should be noted that a medium value for direct-risk elasticity

of .5 allows for the greatest range of values for cross-risk elasticity while still meeting

assumptions 1 and 2. Cross-risk elasticity for �rm 2 was then set to a value between

.025 and Z12, according to the values shown in Table 2.1, Stage 1. In total, 326

combinations of values were examined in this stage. Assumptions 1 and 2 limit the

possible combinations once direct-risk elasticity has been set.

In the second stage, cross-risk elasticity (Zi2) was the same for both �rms and

the direct-risk elasticities di�ered between �rms. Cross-risk elasticity for both �rms

was set to a low, medium, and high value (as shown in Table 2.1, Stage 2) and

direct-risk elasticity for �rm 1 was set to a value without violating assumptions 1 or

2. Direct-risk elasticity for �rm 2 was then set. In total, 152 combinations of values

were examined in this stage which met assumptions 1 and 2.

In the third stage, both direct- and cross-risk elasticity were di�ered between

the �rms, under the speci�c condition that �rm 1's direct- and cross-risk elasticity

values were greater than those of �rm 2 (i.e. Z11 > Z21 , Z12 > Z22). Here, Z11

was set to a low, medium, and high value as in the �rst stage and Z21 was then

set to a value lower than �rm 1's direct risk elasticity, as illustrated in Table 2.1,

Stage 3. Next, Z12 was set to a low, medium, or high level and �nally, Z22 was set

at a percentage of �rm 1's cross-risk elasticity. Thus, we examined cases where the

demand elasticities for the �rms di�ered by as little as 5% and by as much as 95%.

The di�erence in direct-risk elasticities varied independently from the di�erences in
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cross-risk elasticities. There were 218 combinations of values examined in this stage

which met assumptions 1 and 2 along with the conditions cei > 0 and ce1 > ce2.

Finally, we examined the case where both direct- and cross-risk elasticity di�ered

between �rms with �rm 1's direct-risk elasticity lower than �rm 2's and �rm 1's cross-

risk elasticity greater than �rm 2's (i.e. Z11 < Z21, Z12 > Z22 shown in Table 2.1,

Stage 4). Here, direct-risk elasticity for �rm 2 was set to a low, medium, and high

value as above while the direct-risk elasticity for �rm 1 was set to a value lower

than �rm 2's direct risk elasticity. Cross-risk elasticity of demand for �rm 1, again,

was set to a low, medium, or high level and cross-risk elasticity of demand for �rm

2 was set at a percentage of �rm 1's cross-risk elasticity. The di�erence in direct-

risk elasticities was varied independently from the di�erence in cross-risk elasticities.

There were 186 combinations of values examined in this stage which met assumptions

1 and 2 along with the conditions cei > 0 and ce1 > ce2.

Table 2.1: Parameter settings for numerical analysis in Asymmetrical Case

Direct Risk Cross Risk Total
Firm 1 Firm 2 Firm 1 Firm 2 Cases
(Z11) (Z21) (Z12) (Z22)

STAGE 1: Direct risk for both �rms is the same, cross risk for �rm 1 is higher than
cross risk for �rm 2.

.25, .5, .75 Z21 = Z11 .025, .05, .075, .1, .15, [.01,.50], step .01 326
.2, .25, .3, .4, .5 where plus .025 & .075
Z12 ≤ min(Z11, 1− Z11) where Z22 ≤ Z12

STAGE 2: Direct risk for �rm 1 is higher than direct risk for form 2, cross risk for both
�rms is the same.

.25, .3, .5, .65, [.1, .9] step .01 .1, .25, .45 Z22 = Z12 152
.75, .9 where where Z21 ≤ Z11

Z11 ≤ 1− Z12

STAGE 3: Vary both direct and cross risk for both �rms where Z11 > Z21 and Z12 > Z22

.25, .5, .75 Z11× { .05, .2, .1, .25, .45 where Z12×{.05, .2, .35, 201
.35, .5, .65, .8, Z12 ≤ min(Z11, 1− Z11) .5, .65, .8, .95} where

.95} Z22 ≤ min(Z21, 1− Z21)

STAGE 4: Vary both direct and cross risk for both �rms where Z11 < Z21 and Z12 > Z22

Z21× { .05, .2, .25, .5, .75 .1, .25, .45 where Z12×{.05, .2, .35, 186
.35, .5, .65, .8, Z12 ≤ min(Z11, 1− Z11) .5, .65, .8, .95} where

.95} Z22 ≤ min(Z21, 1− Z21)
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Chapter 3

Minimum Mandatory Security

Spending and Social Welfare
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3.1. Introduction

Firm value is often used in understanding of the impact of adverse events on a

�rm, especially with respect to security incidents (Cavusoglu et al. 2004, Acquisti

et al. 2006). Examining customer reaction can provide a more direct measure of the

impact. Firm value changes are often a result of the uncertainty regarding future

costs of a breach (due to litigation and �nes, for example). Customer reaction is

more immediate than litigation costs or regulatory �nes, even if demand changes are

temporary. One annual study shows the cost in lost business of IT security breaches

has held steady at over 63% of the average cost of an IT security breach for the last

three years (Ponemon and Symantec 2011); in 2010 this translated to an average

of over $4 US million per breach in lost business. If we assume that �rms invest in

information security to the extent required by existing laws already (in an attempt

to minimize the risk of litigation and �nes), what additional investments might be

necessary to reduce the negative impact of customer reactions to security breaches?

We want to examine the impact of minimum security spending on not only �rm

pro�ts, but also consumer surplus and total social welfare in order to better un-

derstand where it will be necessary to regulate this minimum spending level rather

than rely on voluntary industry standardization. By understanding the mechanisms

required to internalize the externalities of security breaches, we will be better able

to balance consumers' privacy interests with the business needs. By modeling cus-

tomer utility, we are able to answer the question: �How are consumer surplus and

total social welfare a�ected when �rms increase security spending beyond market

equilibrium?�

In this research, we continue to model �rm behaviour using the continuous-time

Markov chain (CTMC) model developed in Chapter 2. Assuming rational consumers,

we use a Hotelling setting to model customer utility for each �rm's product. Prior

work (Cezar et al. 2010, Kolfal et al. 2010), has assumed a speci�c form for customer

reaction to security breaches in a two �rm setting. However, by explicitly modeling

customer response using a utility model, we are able to examine more general forms

for demand changes. Thus, we are able to demonstrate the value in understanding

how consumers react to security breaches based on industry characteristics. Further,

understanding consumer reaction is necessary for �rms to be able to calculate both
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the direct- and cross-risk elasticities of demand introduced in Chapter 2.

We are able to link the customer utility model to �rm decision making regarding

information security investments. By using the customer utility model, we are able to

derive risk elasticity parameters for each �rm, which may then be used in the CTMC

model of information security spending in a competitive environment as proposed in

Chapter 2. By modeling consumer demand in this way, we are able to show not only

that consumer surplus is always increasing when a minimum mandatory spending

level above market equilibrium is introduced, but also that there are conditions

under which total social welfare is also increasing. This work shows that a more

�ne-grained understanding how customers react when both �rms have su�ered a

breach is important for understanding where total social welfare may be increasing

in spending. We are able to �nd an upper-bound on mandatory spending after which

regulation has a negative impact on total social welfare; that is, it is no longer in

the best interest of society to continue increasing security requirements.

Companies will �nd an equilibrium level of behaviour (Jamal et al. 2003) that

is acceptable to the customer, e�ectively balancing the risk of demand losses due to

adverse events with the cost of preventing them. Further, with respect to privacy in

eCommerce, there is no signi�cant di�erence in the actual practices between �rms

in regulated (UK) and non-regulated (US) environments, suggesting that a middle

ground can be found without regulation (Jamal et al. 2005).

In Chapter 2, we assumed an additive functional form for demand reaction when

both �rms are in the bad state, as shown in (2.11). Other researchers have made

di�erent assumptions regarding how customers react in this state; Cezar et al. (2010),

for example, assume that there are no cross e�ects on demand in the state bb, just

direct demand change e�ects. If we model consumer reactions explicitly, we see

that there are a several possibilities for customer reaction in state bb, each of which

has a di�erent impact on how minimum security spending will a�ect �rm pro�ts

and, thus, total social welfare. In this work, we are able to examine the customer

reaction possibilities more closely, identifying how this a�ects the propositions from

Chapter 2, and identify the viable functional forms for the change in demand at each

state. We may then use this information to derive the direct and cross-risk elastities,

obtaining a deeper and better understanding of how customer reaction a�ects �rm

spending.
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The paper proceeds as follows; Section 3.2 presents our model including the

Hotelling model of customer utility, Section 3.3 presents our �ndings regarding reg-

ulation and conclusions are presented in Section 3.4.

3.2. Model

In this section, we present the details of our model. As in Chapter 2, we use a

continuous-time Markov chain (CTMC) to model the evolution of �rms' operating

states. In particular, successful security related attacks follow a Poisson process and

are i.i.d. with arrival rate of λi for �rm i, i = 1, 2. The e�ects of a successful

security related attack last for a stochastic duration of time following an exponential

distribution with expected length 1/µi. Thus, at any point in time, each �rm may

be in either a `good' or `bad' state. Combining all possibilities for two �rms, we have

four possible states, as illustrated in Figure 2.1.

We model demand changes in a manner similar to that of Chapter 2, but with

one signi�cant di�erence. We introduce an additional parameter, Z3, to capture the

demand change in the state bb. With this change, the normalized demand functions

for �rm i in the symmetric setting are provided below:

Di,gg = 1, for i = 1, 2 (3.1)

D1,bg = D2,gb = 1− Z1, (3.2)

D1,gb = D2,bg = 1− Z2. (3.3)

Di,bb = 1− Z3 for i = 1, 2 (3.4)

where Z1 is the percentage change in demand due to an adverse event in own �rm

and Z2 is the percentage change in demand due to an adverse event in the other

�rm and Z3 is the percentage change in demand due to an adverse event in both

�rms. In this setting, Z1 is the direct-risk elasticity of demand, Z2 is the cross-risk

elasticity of demand and Z3 is the combined risk elasticity of demand. Note that

we can obtain the normalized demand equations given by (2.11) simply by setting

Z3 = Z1 +Z2; the demand in state bb from our model in Chapter 2 is just a special

case of this more general model.

As we are concerned with understanding the demand e�ects of security breaches,

we use customer utility models to derive the functional forms for Z1, Z2, and Z3.
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In particular, we model consumer behaviour as a Hotelling model where two �rms

are located at 0 and 1 on a horizontal axis. Consumers are located along the line

between the two �rms with unit density (total population is normalized to one) and

they will select the product from the closest �rm in the absence of adverse events.

The market share for each �rm is a function of the product's maximum utility to

the consumer, product price, transportation cost, and each �rm's state. When both

�rms are in a good state (state gg), the utility of the product o�ered by �rm 1 to a

customer at location x ∈ [0, 1] is given by the function U1 = ν− tdx, where ν = u−p

represents the products' inherent utility to the consumer, u, less the price of the

product, p, and td is the �unit transportation cost� a customer incurs by having

to travel to the �rm's location. The utility of a product o�ered by �rm 2 is then

given by U2 = ν − td(1− x). We can then solve this system of equations to �nd the

market share, di, enjoyed by �rm i, i ∈ {1, 2} in this state. If the di�erence between

the utility and the price of the product is su�ciently high, the market will be fully

covered, as shown in Figure 3.1 in the row Full Coverage and column gg, otherwise

the market is only partially covered (Figure 3.1 row Partial Coverage, column gg).

The necessary condition for full market coverage in this state is ν ≥ td
2 . In the full

coverage situation, we can solve for the location of the indi�erent customer to �nd

that the market share for each �rm is 50% (that is, d1 = d2 = .5). In the partial

market coverage situation, the market share for each is given by d1 = d2 =
ν
td
.

Figure 3.1: Utility State Diagram.

The customer utility of buying from a �rm depends on the state of both �rms.

When there is an adverse security event at �rm 1 only (state bg), there is an

additional cost to the customer of that event (Figure 3.1, column bg). The utility
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for �rm 1's product to a customer becomes U1 = ν − tdx − T1 where T1 ≥ 0 is the

cost to the consumer of an own-�rm breach (the direct-breach cost). A breach in

�rm 1 may have indirect e�ects on the utility of �rm 2's product, thus the utility

for �rm 2's product for this state is de�ned as U2 = ν − td(1 − x) − T2, where T2

is the cost to the consumer of an other-�rm breach (the cross-breach cost). There

is no restriction on the sign of T2. Once again, if the product's utility minus price

remains high enough, the market will remain fully covered. The condition for full

market coverage in this state is ν ≥ td+T1+T2
2 . Solving for the indi�erent customer

in the full coverage situation (Figure 3.1 row Full Coverage, column bg), we �nd

the market share for each �rm is given by d1 = td−T1+T2
2td

and d2 = td+T1−T2
2td

. In

the partial market coverage situation, market share for each �rm is d1 = ν−T1
td

and

d2 = ν−T2
td

. The state gb (Figure 3.1, column gb) is the mirror image of state gb,

with the same condition for market coverage.

Finally, in the state bb (Figure 3.1, column bb), customers accrue both the cost

of a direct breach (T1) and the cost of a cross-breach (T2), yielding utility functions

for each �rm of U1 = ν − tdx− (T1 + T2) and U2 = ν − td(1− x)− (T1 + T2). The

full market coverage condition in this state is ν ≥ 1
2 td + T1 + T2. Market share in

the full coverage situation for each �rm is d1 = d2 = .5 and in the partial coverage

situation is d1 = d2 = ν−(T1+T2)
td

. The market shares and coverage conditions for all

four states are given in Table 3.1.

We eliminate cases where total consumer utility increases with successful adverse

events by using the following assumption.

Assumption 3.1. Total consumer utility is not increasing when �rms move from

state gg to states bg or gb or from states bg or gb to state bb.

We can calculate the percentage change in demand that each �rm experiences as

it transitions from one state to another. This percentage change in �rm demand cor-

responds to the direct- and cross-risk elasticities (Z1 and Z2) in the model presented

in Section 2.2. In order to analyze all possible coverage combinations presented in

Figure 3.1, we allow the percentage change in demand as a result of being in state

bb (denoted as Z3) to be di�erent from Z1+Z2. Similar to our Assumption 2.1 that

Z1+Z2 ≥ 0, we now require Z3 ≥ 0 to ensure demand bb is not greater than demand

at gg. Thus, the assumptions of this model are:
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Table 3.1: Market Coverage Conditions and Market Demand for each State.

Full Coverage Demand
State Condition Full Partial

gg ν ≥ td
2 d1 = .5 d1 =

ν
td

d2 = .5 d2 =
ν
td

bg ν ≥ td+T1+T2
2 d1 =

td−T1+T2
2td

d1 =
ν−T1
td

d2 =
td+T1−T2

2td
d2 =

ν−T2
td

gb ν ≥ td+T1+T2
2 d1 =

td+T1−T2
2td

d1 =
ν−T2
td

d2 =
td−T1+T2

2td
d2 =

ν−T1
td

bb ν ≥ 1
2 td + T1 + T2 d1 = .5 d1 =

ν−(T1+T2)
td

d2 = .5 d2 =
ν−(T1+T2)

td

Assumption 3.2. 0 ≤ Z3 ≤ 1

Assumption 3.3. Z2 ≤ Z1

Given the coverage possibilities presented in Figure 3.1, there are eight possible

market coverage combinations as �rms experience the full range of security breach

states presented in Figure 2.1. For example, we might have the case FPP (where

`F' denotes full and `P' denotes partial coverage) denoting full coverage at state gg,

partial coverage at states bg and gb, and lastly partial coverage in state bb. With

this notation, the eight cases are FFF, FFP, FPF, FPP, PFF, PFP, PPF, and PPP.

Of these eight, in section 3.5.5 we show four are not possible (FPF, PFF, PFP, and

PPF). The remaining four cases are discussed in sections 3.2.1-3.2.4 below.

3.2.1 Case 1-FFF

Here the market coverage is Full in all of the states. As presented in Table 3.1,

the following case conditions must hold in order for us to have Full market coverage

in all of the states:

(i) ν ≥ td
2
, (ii) ν ≥ td + T1 + T2

2
, (iii) ν ≥ td

2
+ T1 + T2 (3.5)

Note that as demand is normalized to 1, at each state market coverage for a �rm

i, di, is the demand for that �rm. For example, at state bg, the demand for �rm 1,

Dbg, is d1 =
1
2 −

T1−T2
2td

, as presented in Table 3.1. Below we list the demand for �rm
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1 in each state.

Dgg =
1

2
Dbg =

1

2
− T1 − T2

2td

Dgb =
1

2
+

T1 − T2

2td
Dbb =

1

2

(3.6)

From the demand equations above, we can calculate the direct- and cross-risk

elasticities of demand. For �rm 1, Z1 corresponds to the percentage change in

demand between the states gg and bg, Z2 corresponds to the percentage change in

demand between the states gg and gb, and Z3 corresponds to the percentage change

in demand between the states gg and bb.

Z1 =
T1 − T2

td
, Z2 = − T1 − T2

td
= −Z1, Z3 = 0 (3.7)

From our Assumptions 3.2 and 3.3 placed on the direct- and cross- risk elasticities,

we obtain the following conditions on the direct- and cross- breach costs, T1 and T2:

0 ≤ T1 − T2 ≤ td since Z1 ∈ [0, 1]

T2 ≤ T1 from Assumption 3.3

The case conditions (3.5) can be used to further limit the direct and cross-risk

elasticities of demand. The additional limitations are:

Z1 ≥ T1 − T2

2[ν + (T1 + T2)]

Z2 ≤ − T1 − T2

2[ν + (T1 + T2)]

Z3 = 0

In this case, Assumption 3.1, which states that consumer surplus be non-increasing

in adverse security events, results in the following additional condition:

(T1 + T2) ≥ Z2
1

td
2

(3.8)

3.2.2 Case 2-FFP

Here the market coverage is Full in states gg, bg, and gb and Partial in state bb.

As presented in Table 3.1, the following conditions must hold in order for us to have

coverage as described in each of the states:
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(i) ν ≥ td
2
, (ii) ν ≥ td + T1 + T2

2
, (iii) ν <

td
2
+ T1 + T2 (3.9)

As presented in Table 3.1, we list the demand for �rm 1 in each state:

Dgg =
1

2
Dbg =

1

2
− T1 − T2

2td

Dgb =
1

2
+

T1 − T2

2td
Dbb =

ν − (T1 + T2)

td

(3.10)

From the demand equations above, we can calculate the direct- and cross-risk

elasticities of demand:

Z1 =
T1 − T2

td
, Z2 = − T1 − T2

td
= −Z1, Z3 = 1− 2(ν − (T1 + T2))

td
(3.11)

Given case condition (3.9) (iii), it is easily shown that Z3 > Z1 + Z2 = 0.

Again, from Assumptions 3.2 and 3.3, we obtain the following conditions on the

direct- and cross- breach costs:

0 ≤ T1 − T2 ≤ td since Z1 ∈ [0, 1]

T2 ≤ T1 from Assumption 3.3

ν − td ≤ T1 + T2 ≤ ν Since Z3 ≥ 0

The case conditions (3.9) can be used to further limit the direct, cross, and

combined-risk elasticities of demand as shown below:

T1 − T2

2ν − (T1 + T2)
≤ Z1 <

T1 − T2

2[ν − (T1 + T2)]

− T1 − T2

2[ν − (T1 + T2)]
< Z2 ≤ − T1 − T2

2ν − (T1 + T2)

0 < Z3 ≤ T1 − T2

2ν − (T1 + T2)

In this case, Assumption 3.1, results in the following additional condition:

T1 + T2

td
≥ 2Z2

1 ⇒ Z3 +
2ν

td
− 1 ≥ 4Z2

1 (3.12)

3.2.3 Case 3-FPP

Here the market coverage is Full in state gg and Partial in states bg, gb, and bb.

As presented in Table 3.1, the following conditions must hold in order for us to have

coverage as described in each of the states:
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(i) ν ≥ td
2
, (ii) ν <

td + T1 + T2

2
, (iii) ν <

td
2
+ T1 + T2 (3.13)

As presented in Table 3.1, we list the demand for �rm 1 in each state:

Dgg =
1

2
Dbg =

ν − T1

td

Dgb =
ν − T2

td
Dbb =

ν − (T1 + T2)

td

(3.14)

From the demand equations above, we can calculate the direct-, cross-, and

combined-risk elasticities of demand:

Z1 = 1− 2[ν − T1]

td
, Z2 = 1− 2[ν − T2]

td
, Z3 = 1− 2[ν − (T1 + T2)]

td
(3.15)

Given case condition (3.13) (i), it can be shown that Z3 ≥ Z1 + Z2. From our

Assumptions 3.2 and 3.3, we obtain the following conditions on the direct- and

cross- breach costs:

ν − td
2

≤ T1 ≤ ν since Z1 ∈ [0, 1]

ν − td ≤ T2 ≤ ν since Z2 ∈ [−1, 1]

T2 ≤ T1 From Assumption 3.3

ν − td
2

≤ T1 + T2 ≤ ν from Assumption 3.2

The case conditions (3.13) can be used to further limit the direct-, cross- and

combined-risk elasticities of demand. The additional limitations are:

T1 − T2

2ν − (T1 + T2)
< Z1 ≤ T1

ν

− T1

[ν − (T1 + T2)]
< Z2 ≤ T2

ν

T1 + T2

2ν − (T1 + T2)
< Z3 ≤ T1 + T2

ν

In this case, Assumption 3.1, results in the following additional condition:

(1− Z3)
2 ≤ 2[td(4ν − td)− 2(ν2 − 2T1T2)]

t2d

(1− Z3)
2 ≤ 2(ν2 − 2T1T2)

t2d(ν − 1
2)

(3.16)
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3.2.4 Case 4-PPP

Here the market coverage is Partial in all states. As presented in Table 3.1, the

following conditions must hold in order for us to have Partial market coverage in

each of the states:

(i) ν <
td
2
, (ii) ν <

td + T1 + T2

2
, (iii) ν <

td
2
+ T1 + T2 (3.17)

As presented in Table 3.1, we list the demand for �rm 1 in each state:

Dgg =
ν

td
Dbg =

ν − T1

td

Dgb =
ν − T2

td
Dbb =

ν − (T1 + T2)

td

(3.18)

From the demand equations above, we can calculate the direct-, cross- and

combined-risk elasticities of demand:

Z1 =
T1

ν
, Z2 =

T2

ν
, Z3 =

T1 + T2

ν
(3.19)

One again, from Assumptions 3.2 and 3.3, we obtain the following conditions on

the direct- and cross- breach costs:

0 ≤ T1 ≤ ν since Z1 ∈ [0, 1]

−ν ≤ T2 ≤ ν since Z2 ∈ [−1, 1]

T2 ≤ T1 From Assumption 2.2

0 ≤ T1 + T2 ≤ ν From Assumption that Dgg ≥ Dbb

The case conditions (3.13) can be used to further limit the direct-, cross-, and

combined-risk elasticities of demand as follows:

Z1 >
2T1

td

Z2 >
2T2

td

Z3 >
2(T1 + T2)

td

In this case, Assumption 3.1, results in the following additional condition:

Z2 ≥
1− 2Z1

2(1− Z1)
(3.20)
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3.3. Regulations and the Consumer

For each of the four possible cases (FFF, FFP, FPP, PPP) we are able to show

that consumer surplus is increasing under regulation.

Proposition 3.1. Consumer surplus is always increasing when a minimum manda-

tory spending level is introduced.

Proof: Proof of the Proposition 3.1 is presented in Appendix 3.5. We are also able

to derive the conditions under which total social welfare in increasing for each of the

four cases.

Proposition 3.2. When �rms are substitutes in loss or una�ected, (Z2 ≤ 0) condi-

tions exist under which total social welfare is increasing when a minimum mandatory

spending level is introduced. These conditions are given by equations (3.29), (3.40),

(3.48), and (3.59) in Appendix 3.5:

Proof: Proof of the Proposition 3.2 is presented in Appendix 3.5.

Figure 3.2: Total Social Welfare curves when �rms are substitutes in loss.

(a) Case 1 (FFF) (b) Case 2 (FFP)

(c) Case 3 (FPP) (d) Case 4 (PPP)

Proposition 3.3. When �rms are complements in loss (Z2 > 0), total social welfare

increases when a minimum mandatory spending level is introduced.
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Proof: Proof of the Proposition 3.3 follows directly from Propositions 2.1 and 3.1.

Figure 3.3: Total Social Welfare curves when �rms are complements in loss.

(a) Case 2 (FFP) (b) Case 3 (FPP)

(c) Case 4 (PPP)

In Chapter 2 we showed that, when �rms are complements in loss, �rm pro�ts

increase when minimum security spending levels are set appropriately. It is unsur-

prising, then, that when �rms are complements in loss, total social welfare will also

increase with minimum security spending since we have already shown that con-

sumer welfare is always increasing in this case. What is interesting, is that we can

show that despite a decrease in �rm pro�ts, total social welfare may also increase

for a range of increased spending when �rms are substitutes in loss. In general, such

results arise when the increase in consumer welfare outpaces the decrease in �rm

pro�ts as a result of mandatory spending above equilibrium.

3.4. Conclusion

By including consumer utility in our model, we are able to examine the e�ects

of regulations or standardization on consumer surplus and total social welfare. A

signi�cant contribution of this paper is to allow unique insights regarding customer

demand changes in response to adverse IT security events, and the impact these

demand changes have on security spending and pro�ts. Consumer surplus always
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increases when minimum security spending is mandated either through regulations

or voluntary industry standardization. We are able to obtain the conditions under

which total social welfare is increasing, showing that regulation and industry stan-

dardization �both activities which introduce a minimum level of security spending

�(i) will increase consumer surplus, (ii) can increase total social welfare for the

cases analyzed in Proposition 2.1, even though �rm pro�ts are decreasing, and (iii)

can increase both the �rm pro�ts and the total social welfare for the cases analyzed

in Proposition 2.2. However, increasing total social welfare is dependent on limiting

this minimum mandatory spending to a level that is not too expensive for �rms.

How restrictive the range on increased spending is depends greatly on industry char-

acteristics. Thus, it is important to consider industry dynamics when making policy

recommendations.

An interesting discovery from this work is that a more �ne-grained understanding

of how customers react in the bb state can really drive the results in terms of the

conditions for which �rms might be better o� cooperating by jointly increasing se-

curity investments, even when �rms are substitutes in loss. In all cases, however, we

can �nd an upper-bound after which point regulation has a negative impact on total

social welfare; where it is no longer in the best interest of society to continue increas-

ing security investment requirements. In our work, we weight the consumer surplus

and �rm pro�ts equally; a central planner could adjust these weights to account for

social preferences, �nding a di�erent upper-bound on mandatory spending.

A �rm may use our customer utility model to estimate the appropriate direct-

and cross-risk elasticities. We assume that �rms understand their customers' utility

functions when no �rm has experienced an adverse security event, thus the only new

information to gather is how customers assess costs for security breaches in each

�rm. Firms need only observe how market shares change after security events in

order to gather the necessary information. From this information, the direct- and

cross-risk elasticity parameters can be estimated.

Measuring the impact of cross-risk elasticity directly is more di�cult. In this case,

a �rm must correlate the customer churn and growth with events that occur outside

the �rm; information that may be hidden by their competitor. Future research

should examine whether �rms have an incentive to hide private information such as

the frequency of successful security breaches, customer churn, and the duration of
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demand change e�ects.

Firms seem unaware of the costs associated with security breaches at competitor

�rms. Governmental policy can encourage or require disclosure of security breaches

which will help companies connect the dots, understanding how adverse events at

other �rms a�ect their demand. An example of such a regulation is California's

breach disclosure law (SB-1386 2002). Enabling �rms to establish causality of de-

mand changes due to adverse events at other �rms is an important policy initiative

that must be encouraged. Given that many data breaches are transborder (e.g. the

TJX data breach a�ected customers in not only the US but also Canada and the

UK (Vijayan 2007)), international cooperation is vitally necessary.

Additional future research possibilities include an examination of asymmetric

cases where the arrival rates of IT security events and the expected duration of

these events are di�erent for each �rm. As an example of asymmetric cases, the

interaction between �rms with signi�cant market power imbalances will a�ect IT

security spending could be considered. If one �rm is a dominant player, they might

face a di�erent risk pro�le (riskiness of the environment) than a smaller player.

It is not hard to imagine there might be a di�erence - consider how Microsoft has

traditionally attracted more attention by computer attackers than Apple (Chen et al.

2005). While Chapter 2 provided a numerical analysis of asymmetric �rms, adapting

this work to a periodic setting may allow for analytical results in this area.

Our use of the Hotelling model is designed to capture the behaviour of fully

rational individuals. However, reaction to the loss of data may be more likely to be

an emotional response in many cases. How, then, to best capture the idea that it's

not rational to stop purchasing a product you need in light of a security incident -

after all, the personally identi�able information has already been lost. Further, if

�rms are in no way equally susceptible to a particular security attack, is it rational

for the customers of an unbreached �rm to stop purchasing as well (the complements

in loss case)? It would be interesting to see if customers are able to identify industries

(�rms) that are at risk of correlated events and which are not, then to examine if

they rationally react in each of these situations.
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3.5. Appendix

The appendix includes proofs of the propositions as well as additional detail

regarding the conditions under which total social welfare is increasing. Information

is organized by case.

3.5.1 Case 1-FFF

Consumer Surplus under Regulation

In case FFF, we now show that consumer surplus is increasing under regulation.
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Proof: Consumer surplus at equilibrium is given by:

CSe =
Q

4(ce + ρ)2td

[
−(ce + ρ)2t2d + 2ceρ(T1 − T2)

2 + 4(ce + ρ)td(ν(c
e + ρ)− ρ(T1 + T2))

]
(3.21)

We need to show that when R ≥ ce

CSR−CSe =
Q(ce −R)ρ

2(ce + ρ)2(R+ ρ)2td

[
(ceR− ρ2)(T1 − T2)

2 − 2(ce + ρ)(R+ ρ)td(T1 + T2)
]
≥ 0

(3.22)

We know Q(ce−R)ρ
2(ce+ρ)2(R+ρ)2td

≤ 0, so we must show

(ceR− ρ2)(T1 − T2)
2 ≤ 2(ce + ρ)(R+ ρ)td(T1 + T2)

(ceR− ρ2)Z2
1 ≤ (ceR+ ρ2 + (ce +R)ρ)2

(
Z1 +

2T2

td

)
(3.23)

(3.23) holds as:

(ceR− ρ2) ≤ (ceR+ ρ2 + (ce +R)ρ),

Z2
1 ≤ 2Z1 as Z1 ∈ [0, 1], and

(ceR+ ρ2 + (ce +R)ρ)2

(
Z1 +

2T2

td

)
≥ 0

Total Social Welfare under Regulation

In case FFF, we now provide the conditions for which total social welfare increases

for a range under regulation.

Proof: Total social welfare at equilibrium is given by

TSW e = −
Q((ce + ρ)2t2d − 2ceρ(T1 − T2)

2 + 4(ce + ρ)td((c
e − π − ν)(ce + ρ) + ρ(T1 + T2)))

4(ce + ρ)2td
(3.24)

Total social welfare under regulation, where R ≥ ce is given by

TSWR = −
Q((R+ ρ)2t2d − 2Rρ(T1 − T2)

2 + 4(R+ ρ)td((R− π − ν)(R+ ρ) + ρ(T1 + T2)))

4(R+ ρ)2td
(3.25)

The di�erence is given by

TSWR − TSW e =

−Q(ce −R)(ρ(ceR− ρ2)(T1 − T2)
2 + 2(ce + ρ)(R+ ρ)td((c

e + ρ)(R+ ρ)− ρ(T1 + T2)))

2(ce + ρ)2(R+ ρ)2td
(3.26)
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We can examine the sign of the derivative of (3.26) to determine whether total

social welfare is increasing under regulation.

∂(TSWR − TSW e)

∂R
=

Q

2(R+ ρ)3td

(
−(R− ρ)ρ(T1 − T2)

2 − 2(R+ ρ)td((R+ ρ)2 − ρ(T1 + T2))
) (3.27)

We want to show that (3.27) is positive at R = ce. By substituting (T1−T2) = Z1td

and the the non-increasing consumer surplus condition given by (3.8) into (3.27), we

�nd:

∂(TSWR − TSW e)

∂R
≥ Q

2(R+ ρ)3td

(
−(R− ρ)ρ(Z1td)

2 − 2(R+ ρ)td((R+ ρ)2 − ρZ2
1 td
2

)

)
(3.28)

If we can show that the right hand side of (3.28), evaluated at R = ce is positive,

then we know that (3.27) is positive as well, and total social welfare is increasing

under regulation.

Q

2(ce + ρ)3td

(
−(ce − ρ)ρ(Z1td)

2 − 2(ce + ρ)td((c
e + ρ)2 − ρZ2

1 td
2

)

)
≥ 0

We know Q
2(ce+ρ)3td

> 0 since Q, ρ, td > 0, and ce >= 0, thus we need only show

−(ce − ρ)ρ(Z1td)
2 − 2(ce + ρ)td((c

e + ρ)2 − ρZ2
1 td
2

) ≥ 0

Let ρC = ce + ρ. Then C2 = Z1(
π+ρ
ρ − C) in this case.

−(ce − ρ)ρ(Z1td)
2 − 2ρCtd((ρC)2 − ρZ2

1 td
2

) ≥ 0

−(C − 2)ρ2Z2
1 t

2
d − 2ρ3C3td + ρ2Ct2dZ

2
1 ≥ 0

Z2
1 td − ρC3 ≥ 0

Z2
1 td ≥ ρZ1

(
Z1(C − π + ρ

ρ
) + C

π + ρ

ρ

)
Z1td ≥ ρZ1C − ρZ1

π + ρ

ρ
+ ρC

π + ρ

ρ

Z1td ≥ ρC(Z1 +
π + ρ

ρ
)− ρZ1

π + ρ

ρ

Z1td ≥ (ce + ρ)(Z1 +
π + ρ

ρ
)− ρZ1

π + ρ

ρ

ρ

(
Z1(td + π + ρ)

ρZ1 + π + ρ
− 1

)
≥ ce (3.29)

Where (3.29) holds, total social welfare is increasing under regulation.
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3.5.2 Case 2-FFP

Consumer Surplus under Regulation

In case FFP, we now show that consumer surplus is increasing under regulation.

Proof Consumer surplus at equilibrium is given by:

CSe =

Q
(
−ce(ce + 2ρ)t2d + 4cetd(ν(c

e + 2ρ)− ρ(T1 + T2)) + 2ρ(ce(T1 − T2)
2 + 2ρ(−ν + T1 + T2)

2)
)

4(ce + ρ)2td
(3.30)

We need to show that when R ≥ ce

CSR − CSe =

Q(R− ce)ρ

4(ce + ρ)2(R+ ρ)2
(4ν(ce + ρ)(R+ ρ) + td(−2(ce + ρ)(R+ ρ)

+(−2ceR+ 2ρ2)Z2
1 + Z3(2(c

e + ρ)(R+ ρ)− ρ(ce +R+ 2ρ)Z3))
) (3.31)

Where Z1, Z2, and Z3 are given in (3.11). We know Q(R−ce)ρ
4(ce+ρ)2(R+ρ)2

≥ 0 since R−ce ≥

0, we need to show:

4ν(ce + ρ)(R+ ρ)

+ td
(
−2(ce + ρ)(R+ ρ) + (−2ceR+ 2ρ2)Z2

1 + Z3(2(c
e + ρ)(R+ ρ)− ρ(ce +R+ 2ρ)Z3)

)
≥ 0

Let A = ceR+ ceρ+ ρR+ ρ2 = (ce + ρ)(R+ ρ),

4νA+ td[−2A+ (ρ2 − ceR)2Z2
1 + Z3(2A− (ceρ+ ρR+ 2ρ2)Z3)] ≥ 0

4
ν

td
A− 2A+ (ρ2 − ceR)2Z2

1 + 2AZ3 − (ceρ+ ρR+ 2ρ2)Z2
3 ≥ 0

Let B = ceρ+ ρR+ 2ceR (Thus, A−B = ρ2 − ceR)

4
ν

td
A− 2A+ (A−B)2Z2

1 + 2AZ3 − (2A−B)Z2
3 ≥ 0,

divide by 2A

2
ν

td
− 1 +

A−B

2A
2Z2

1 + Z3 −
2A−B

2A
Z2
3 ≥ 0

2
ν

td
− 1 + Z3 +

2A−B

2A
2Z2

1 − Z2
1 − 2A−B

2A
Z2
3 ≥ 0

2
ν

td
− 1 + Z3 − Z2

1 +
2A−B

2A
(2Z2

1 − Z2
3 ) ≥ 0 (3.32)

Since −1 ≤ A−B
A ≤ 1, this implies that 0 ≤ 2A−B

2A ≤ 1.

If 2A−B
2A = 0, then 2ν

td
− 1 + Z3 ≥ Z2

1 ,which is true by (3.12) above.
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If 2A−B
2A = 1, then 2ν

td
− 1+Z3 −Z2

1 +2Z2
1 −Z2

3 ≥ 0 and, as 2ν
td

≥ 1 (Case Condition

(i)) and Z3 ≥ Z2
3 , this also holds. A complete proof follows:

If 2A−B
2A = x, x ∈ [0, 1], then 2ν

td
− 1 + Z3 − Z2

1 + 2xZ2
1 − xZ2

3 ≥ 0.

If x ≥ 1
2 , then:

2ν

td
− 1 + Z3 − xZ2

3 − (1− 2x)Z2
1 ≥ 0,

As

2ν

td
≥ 0 By Case condition (i),

1 ≥ Z3 ≥ Z2
3 , and

1− 2x ≤ 0

If x ≤ 1
2 , then:

2ν

td
− 1 + Z3 − xZ2

3 − (1− 2x)Z2
1 ≥ 0 (3.33)

By condition (3.12):

1

4
(
2ν

td
− 1 + Z3) ≥ Z2

1 ,

(1− 2x)
1

4
(
2ν

td
− 1 + Z3) ≥ (1− 2x)Z2

1 ,

thus, we can rewrite (3.33) as

(1− 2x)
1

4
(
2ν

td
− 1+Z3)− (1− 2x)Z2

1 +(1− 1− 2x

4
)(
2ν

td
− 1+Z3)−xZ2

3 ≥ 0 (3.34)

Since (1− 2x)14(
2ν
td

− 1 + Z3)− (1− 2x)Z2
1 ≥ 0 and 2ν

td
− 1 ≥ 0, it remains for us to

show:

(1− 1− 2x

4
)Z3 − xZ2

3 ≥ 0

(
3− 2x

4
)Z3 ≥ xZ2

3

Which always holds, as

(
3− 2x

4
) ≥ x ⇒ 3

2
≥ x, and

Z3 ≥ Z2
3 (3.35)
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Total Social Welfare under Regulation

In case FFP, we now provide the conditions for which total social welfare increases

for a range under regulation.

Proof: Total social welfare at equilibrium is given by

TSW e =
Q

4(ce + ρ)2
(
−4(ce + ρ)(c2e − ce(π + ν − ρ)− πρ)

+td(−c2e + 2ceρ(Z2
1 − Z3) + ρ2(−1 + Z3)

2) + 4(ce − π)ρ2Z3

) (3.36)

where Z1, Z2, and Z3 are given in (3.11). Total social welfare under regulation,

where R ≥ ce is given by

TSWR =
Q

4(R+ ρ)2
(
−4(R+ ρ)(R2 −R(π + ν − ρ)− πρ)

+td(−R2 + 2Rρ(Z2
1 − Z3) + ρ2(−1 + Z3)

2) + 4(R− π)ρ2Z3

) (3.37)

The di�erence is given by

TSWR − TSW e =
Q(ce −R)

4(ce + ρ)2(R+ ρ)2
[4(ce + ρ)(R+ ρ)(ce(R+ ρ) + ρ(R− ν + ρ))

+ρ{−4ρ(Rπ + ce(−R+ y) + 2πρ+ ρ2)Z3 + td(2(c
e + ρ)(R+ ρ)

+2(ceR− ρ2)Z2
1 + Z3(−2(ce + ρ)(R+ ρ) + ρ(ce +R+ 2ρ)Z3))}

]
(3.38)

We can examine the sign of the derivative of (3.38) to determine whether total

social welfare is increasing under regulation.

∂(TSWR − TSW e)

∂R
=

−Q

2(R+ ρ)3
(
2(R+ ρ)(R2 + 2Rρ− νρ+ ρ2) + 2(R− 2π − ρ)ρ2Z3

+ρtd(R+ ρ+ (R− ρ)Z2
1 − (R+ ρ)Z3 + ρZ2

3 )
)

(3.39)

If we let R = ce in (3.39) then solve for roots, we can show that ∂(TSWR−TSW e)
∂R ≥ 0

when

ce ≤ 1

2
(−ρ(2 + td(1 + Z2

1 − Z3))− 2ρ2Z3

+
√

ρ(ρ(2 + td(1 + Z2
1 − Z3)) + 2ρZ3)2 + 4(ν − ρ+ 2ρ(2π + ρ)Z3 + ρtd(−1 + Z2

1 + Z3 − Z2
3 )))

(3.40)

Thus, when (3.40) holds we know that total social welfare is increasing at R = ce.

3.5.3 Case 3-FPP

Consumer Surplus under Regulation

In case FPP, we now show that consumer surplus is increasing under regulation.
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Proof: Consumer surplus at equilibrium is given by:

CSe =
Q(c2e(4ν − td)td + 4ρ2(−ν + T1 + T2)

2 + 4ceρ(T 2
1 + T 2

2 − 2ν(−ν + T1 + T2)))

4(ce + ρ)2td
(3.41)

We need to show that, when R ≥ ce, CSR −CSe ≥ 0. That is, we need to show:

−Q(R− ce)

4(ce + ρ)2(R+ ρ)2
[−4ν(Rρ+ ce(R+ ρ)) + (ce(R+ ρ)

+ ρ(R− ((Z1 − 2)Z1 + (Z2 − 1)2 + 2Z3 − Z2
3 )ρ))td] ≥ 0

(3.42)

We know −Q(R−ce)
4(ce+ρ)2(R+ρ)2

≤ 0, thus we need only show

−4ν(Rρ+ce(R+ρ))+(ce(R+ρ)+ρ(R−((Z1−2)Z1+(Z2−1)2+2Z3−Z2
3 )ρ))td ≤ 0

We let A = (ce + ρ)(R+ ρ) and rearrange to get

(A− ρ2)td − ρ2td[(Z1 − 2)Z1) + (Z2 − 2)Z2 + (2− Z3)Z3 + 1] ≤ 4ν(A− ρ2)

−ρ2td[(Z1 − 2)Z1) + (Z2 − 2)Z2 + (2− Z3)Z3 + 1] ≤ (A− ρ2)(4ν − td)

We can show (A− ρ2)(4ν − td) ≥ 0 as 4ν − td = 2(2ν − td/2) ≥ 0 by case condition

(3.13) (i), thus we want to show:

−ρ2td[(Z1 − 2)Z1) + (Z2 − 2)Z2 + (2− Z3)Z3 + 1] ≤ 0 (3.43)

As we know Z3 ≥ Z1 + Z2 in this case, let us examine (3.43)

−(Z1 − 2)Z1) + (Z2 − 2)Z2 + (2− Z3)Z3 + 1 ≥ 0

Z2
1 − 2(Z1 + Z2) + Z2

2 − Z2
3 + 2Z3 + 1 ≥ 0

Z2
1 − 2(Z1 + Z2) + Z2

2 − Z2
3 + 2Z3 + 1 ≥ Z2

1 − 2Z3 + Z2
2 − Z2

3 + 2Z3 + 1

≥ 0 as Z3 ≥ Z1 + Z2, thus

1 + Z2
1 + ZZ2

2 ≥ Z2
3

1 + (Z1 + Z2)
2 − 2Z1Z2 ≥ 1 + Z2

3 − 2Z1Z2

≥ Z2
3 since Z3 ≤ 1, Z2

3 ≤ Z3, thus

1− 2Z1Z2 ≥ 0 (3.44)

Since (3.44) clearly holds for Z2 ≤ 0, let us show it is also true for Z2 > 0

1 ≥ 2Z1Z2

1 ≥ 2Z1(1− Z1) ≥ 2Z1Z2 as Z1 + Z2 ≤ 1 (3.45)
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As Z1(1− Z1) attains a maximum value of 0.25 when Z1 = .5, we know that (3.45)

holds and thus (3.43) holds. Thus, consumer surplus is increasing under regulation.

Total Social Welfare under Regulation

In case FPP, we now provide the conditions for which total social welfare increases

for a range under regulation.

Proof: Total social welfare at equilibrium is given by

TSW e =
Q

4(ce + ρ)2td

(
−8ce(ce − π)νρ+ td(−4ce3 + ceρ(td(2 + (−2 + Z1)Z1

+ (−2 + Z2)Z2)− 4(π − ρ)(−1 + Z3)) + ρ2(−4π + td(−1 + Z3))(−1 + Z3)

+ce2(−td + 4(π + ν − ρ+ ρZ3)))
)

(3.46)

Total social welfare under regulation, where R ≥ ce is given by

TSWR =
Q

4(R+ ρ)2td

(
−8R(R− π)νρ+ td(−4R3 +Rρ(td(2 + (−2 + Z1)Z1

+ (−2 + Z2)Z2)− 4(π − ρ)(−1 + Z3)) + ρ2(−4π + td(−1 + Z3))(−1 + Z3)

+R2(−td + 4(π + ν − ρ+ ρZ3)))
)

(3.47)

We can examine the sign of the derivative of TSWR − TSW e to determine

whether total social welfare is increasing under regulation.

∂(TSWR − TSW e)

∂R
=

Q

4(R+ ρ)3td
(8νρ(πρ−R(π + 2ρ))

+ td(−4(R3 +R(3R− π − 2ν)ρ+ (R+ π)ρ2 + ρ3) + 4ρ(R+ ρ)(π + ρ)Z3

+ρtd(−4R− (R− ρ)((−2 + Z1)Z1 + (−2 + Z2)Z2) + 4ρZ3 − 2ρZ2
3 ))
)
(3.48)

If we let R = ce in (3.48) then solve for roots, we can show that there is a condition

on ce that will result in ∂(TSWR−TSW e)
∂R ≥ 0. With Mathematica, we have veri�ed

that there is only one positive root and that as long as ce is less than this root, total

social welfare is increasing.

3.5.4 Case 4-PPP

Consumer Surplus under Regulation

In case PPP, we now show that consumer surplus is increasing under regulation.
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Proof: Consumer surplus at equilibrium is given by:

CSe =
Q

2(ce + ρ)2td

(
−c2e(2ν2 − 4νtd + t2d)

+2ρ2(−ν + T1 + T2)
2 + 2ceρ(2ν2 − 2νT1 + T 2

1 − 2νT2 + T 2
2 )
) (3.49)

We need to show that, when R ≥ ce, CSR − CSe ≥ 0. That is, we need to show:

Q(ce −R)ρ

(ce + ρ)2(R+ ρ)2td

[
(ce + ρ)(R+ ρ)T 2

1 − (ce + ρ)(R+ ρ)(2ν − T2)T2

+2T1(−ν(ce + ρ)(R+ ρ) + ρ(ce +R+ 2ρ)T2)] ≥ 0

(3.50)

We know Q(ce−R)ρ
(ce+ρ)2(R+ρ)2td

≤ 0 as (ce −R) ≤ 0, thus we need only show[
(ce + ρ)(R+ ρ)T 2

1 − (ce + ρ)(R+ ρ)(2ν − T2)T2

+2T1(−ν(ce + ρ)(R+ ρ) + ρ(ce +R+ 2ρ)T2)] ≤ 0

Let A = (ce + ρ)(R+ ρ), then show:

AT 2
1 +AT 2

2 + ρ(ce +R+ 2ρ)2T1T2 ≤ A2ν(T1 + T2)

A(T 2
1 + T 2

2 ) +A2T1T2(ρ
2 − ceR)2T1T2 ≤ A2ν(T1 + T2)

A(T1 + T2)
2 + (ρ2 − ceR)2T1T2 ≤ Aν(T1 + T2) +Aν(T1 + T2)

We �rst show that A(T1 + T2)
2 ≤ Aν(T1 + T2)

ν ≥ (T1 + T2) as Dbb =
ν − (T1 + T2)

td
≥ 0 in Case 4

We now need to show that:

(ρ2 − ceR)2T1T2 ≤ Aν(T1 + T2)

(ρ2 − ceR)2T1T2 ≤ (ρ2 − ce2)2T1T2 as R ≥ c

Show:(ρ2 − ce2)2T1T2 ≤ Aν(T1 + T2)

Since (ρ2 − ce2) ≤ A = ceR+ ceρ+Rρ+R2 and A ≥ 0, this means we must show:

2T1T2 ≤ ν(T1 + T2)

T1

ν

T2

ν
= Z1Z2 ⇒ T1T2 = Z1Z2ν

2, and

T1

ν
+

T2

ν
= Z1 + Z2 ⇒ T1 + T2 = ν(Z1 + Z2)

Show:

2ν2Z1Z2 ≤ ν2(Z1 + Z2)
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Above holds if Z2 < 0 (as Z1 + Z2 ≥ 0 by our assumptions and Z1Z2 ≤ 0)

When Z2 ≥ 0 (so Z1, Z2 ∈ [0, 1] and 0 ≤ Z1 + Z2 ≤ 1)

2Z1Z2 ≤ (Z1 + Z2)

Z2
1 + 2Z1Z2 + Z2

2 − (Z2
1 + Z2

2 ) ≤ (Z1 + Z2)

(Z1 + Z2)
2 + (Z2

1 + Z2
2 ) ≤ (Z1 + Z2)

(Z1 + Z2)
2 + (Z2

1 + Z2
2 ) ≤ (Z1 + Z2)

2 ≤ (Z1 + Z2), as Z1, Z2 ∈ [0, 1] and Z1 + Z2 ≤ 1

Thus, consumer surplus is increasing under regulation.

Total Social Welfare under Regulation

In case PPP, we now provide the conditions for which total social welfare increases

for a range under regulation.

Proof: Total social welfare at equilibrium is given by

Q

2(ce + ρ)2td

(
−4c3eν + 2ceνρ(2(2π + ν − ρ)− 2(π + ν − ρ)Z1

+ νZ2
1 − 2(π + ν − ρ)Z2 + νZ2

2 ) + 2νρ2(−1 + Z3)(−2π − ν + νZ3)

+c2e(4νtd − t2d − 2ν(−2π + ν + 4ρ− 2ρZ3))
) (3.51)

Total social welfare under regulation, where R ≥ ce is given by

Q

2(R+ ρ)2td

(
−4R3ν + 2Rνρ(2(2π + ν − ρ)− 2(π + ν − ρ)Z1

+ νZ2
1 − 2(π + ν − ρ)Z2 + νZ2

2 ) + 2νρ2(−1 + Z3)(−2π − ν + νZ3)

+R2(4νtd − t2d − 2ν(−2π + ν + 4ρ− 2ρZ3))
) (3.52)

We can examine the sign of the derivative of TSWR − TSW e to determine

whether total social welfare is increasing under regulation.

Q

(R+ ρ)3td

(
−2ν((R+ ρ)3 + 2Rρν) + ρ(4Rtd −Rt2d

+ν(−ν(R+ ρ)(Z2
1 + Z2

2 ) + 2(R+ ρ)(π + ν + ρ)(Z1 + Z2)− 4νρZ1Z2))
) (3.53)

As we know Q
(R+ρ)3td

> 0, we need only to show, at R = ce, the following holds.

−2ν((ce + ρ)3 + 2ceρν) + ρ(4cetd − cet2d

+ν(−ν(ce + ρ)(Z2
1 + Z2

2 ) + 2(ce + ρ)(π + ν + ρ)(Z1 + Z2)− 4νρZ1Z2)) ≥ 0
(3.54)
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Once again, we shall let ρC = (ce + ρ). Thus we need to show

−2ν((ρC)3 + 2ρ2(C − 1)ν) + ρ(ρ(C − 1)td(4− td)

+ν(−νρC(Z2
1 + Z2

2 ) + 2ρC(π + ν + ρ)(Z1 + Z2)− 4νρZ1Z2)) ≥ 0
(3.55)

Concentrating on the left hand side of (3.55), and recognizing from case condition

(i) that 4ν2 < t2d, we �nd

(C − 1)(4νtd − t2d)− 2νρC3 − 4ν(C − 1)

+ ν(2C(π + ρ+ ν)(Z1 + Z2)− νC(Z2
1 + Z2

2 )− 4νZ1Z2)

> (C − 1)(4νtd − 4ν2)− 2νρC3 − 4ν(C − 1)

+ ν(2C(π + ρ+ ν)(Z1 + Z2)− νC(Z2
1 + Z2

2 )− 4νZ1Z2)

We know Z1 + Z2 ≥ 0, thus:

(C − 1)(4td − 4ν) + 2C(π + ρ+ ν)(Z1 + Z2)− νC(Z2
1 + Z2

2 )− 4νZ1Z2 − 2ρC3 − 4(C − 1)

≥(C − 1)(4td − 4ν)− νC(Z2
1 + Z2

2 )− 4νZ1Z2 − 2ρC3 − 4(C − 1)

We know Z2
1 + Z2

2 ≤ 2, thus:

4(C − 1)(td − ν − 1)− νC(Z2
1 + Z2

2 )− 4νZ1Z2 − ρC3

≥ 2(C − 1)(td − ν − 1)− νC − 2νZ1Z2 − ρC3

Since td
2 > ν,

2(C − 1)(td − ν − 1)− νC − 2νZ1Z2 − ρC3

≥ 2(C − 1)(ν − 1)− νC − 2νZ1Z2 − ρC3
(3.56)

So, as the left hand side of (3.55) is greater than (3.56), we can show that

2(C − 1)(ν − 1)− νC − 2νZ1Z2 − ρC3 ≥ 0

C(ν − 2) + 2(1− ν(1 + Z1Z2))− ρZ2
2C − Z1(1 + Z2)(π + ρ) ≥ 0

C(ν − 2− ρZ2
2 ) + 2− 2ν(1 + Z1Z2)− Z1Z2(π + ρ)− Z1(π + ρ) ≥ 0

As Z2
2 ≤ 1,

C(ν − 2− ρZ2
2 ) + 2− 2ν(1 + Z1Z2)− Z1Z2(π + ρ)− Z1(π + ρ)

≥C(ν − 2− ρ) + 2− 2ν(1 + Z1Z2)− Z1Z2(π + ρ)− Z1(π + ρ)

≥0

77



Solving for C, we �nd

C ≥ 2ν(1 + Z1Z2) + Z1Z2(π + ρ) + Z1(π + ρ)− 2

ν − 2− ρ

Finally, substituting ρC = ce + ρ back in, we can obtain the condition in terms of
ce:

ce ≥ ρ

(
2ν(1 + Z1Z2) + Z1Z2(π + ρ) + Z1(π + ρ)− ν + ρ

ν − 2− ρ

)
(3.57)

Since we know ce ≥ 0, we can examine where the right hand side of (3.57) is non-

positive to show that there does indeed exist some region for which total social

welfare is increasing under regulation, even when �rms are substitutes in loss or

una�ected (i.e. when Z2 ≤ 0). The denominator in (3.57) is less than zero as long

as ν < 2 + ρ. First, we show that the numerator is always non-negative for Z2 > 0

below:

2ν(1 + Z1Z2) + Z1Z2(π + ρ) + Z1(π + ρ)− ν + ρ ≥ 0

Since 0 ≤ Z1Z2 ≤ 1,

2ν(1 + Z1Z2) + Z1Z2(π + ρ) + Z1(π + ρ)− ν + ρ ≥ 2ν(1) + Z1(π + ρ)− ν + ρ ≥ 0

ν ≥ −Z1(π + ρ)− ρ (3.58)

We know that (3.59) always holds as ν, Z1, π, and ρ are all non-negative values.

Thus, for 0 ≤ ν ≤ ρ + 2 and Z2 > 0, total social welfare is increasing under

regulation for some range when �rms are complements in loss (Z2 > 0). Now we

show the condition under which the numerator is also non-negative when Z2 ≤ 0.

2ν(1 + Z1Z2) + Z1Z2(π + ρ) + Z1(π + ρ)− ν + ρ ≥ 0

Since now −1 ≤ Z1Z2 ≤ 0,

2ν(1 + Z1Z2) + Z1Z2(π + ρ) + Z1(π + ρ)− ν + ρ

≥ 2ν(1− 1)− Z1(π + ρ) + Z1(π + ρ)− ν + ρ ≥ 0

ρ ≥ ν (3.59)

When �rms are substitutes in loss or una�ected, then, we require that ν ≤ ρ in order

for there to be a range for which total social welfare is increasing under regulation.
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3.5.5 Eliminated Cases

In this section, we will show that the four cases FPF, PFF, PFP, and PPF are

not possible in our Hotelling setting.

Case FPF

Here the market coverage is Full in both gg and bb states, but only Partial in

the bg and gb states. The case conditions for this state are:

(i) ν ≥ td
2
, (ii) ν <

td + T1 + T2

2
, (iii) ν ≥ td

2
+ T1 + T2 (3.60)

By considering pair-wise case conditions, we can eliminate this case from possibility:

First compare (3.60) (i) and (ii)

td
2

≤ ν <
td + T1 + T2

2
yielding T1 + T2 > 0 (3.61)

Now compare (3.60) (ii) and (iii)

td
2
+ T1 + T2 ≤ ν <

td + T1 + T2

2
yielding T1 + T2 < 0 (3.62)

Since we cannot simultaneously satisfy (3.61) and (3.62), this case is eliminated.

Case PFF

Here the market coverage is Partial in the gg state and Full in the bg, gb, and bb

states. The case conditions for this state are:

(i) ν <
td
2
, (ii) ν ≥ td + T1 + T2

2
, (iii) ν ≥ td

2
+ T1 + T2 (3.63)

It is not possible to meet both our requirement that Dgg ≥ Dbb (i.e. Z3 ≥ 0) and

case condition (3.63) (i) simultaneously, thus this case is eliminated.

Case PFP

Here the market coverage is Partial in both gg and bb states, but Full in the bg

and gb states. The case conditions for this state are:

(i) ν <
td
2
, (ii) ν ≥ td + T1 + T2

2
, (iii) ν <

td
2
+ T1 + T2 (3.64)
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By considering pair-wise case conditions, we can eliminate this case from possi-

bility:

First compare (3.64) (i) and (ii)

td + T1 + T2

2
≤ ν <

td
2

yielding T1 + T2 < 0 (3.65)

Now compare (3.64) (ii) and (iii)

td + T1 + T2

2
≤ ν <

td
2
+ T1 + T2 yielding T1 + T2 > 0 (3.66)

Since we cannot simultaneously satisfy (3.65) and (3.66), this case is eliminated.

Case PPF

Here the market coverage is Partial in gg, bg, and gb states and Full in the bg

state. The case conditions for this state are:

(i) ν <
td
2
, (ii) ν <

td + T1 + T2

2
, (iii) ν ≥ td

2
+ T1 + T2 (3.67)

It is not possible to meet both our assumption that Dgg ≥ Dbb (i.e. Z3 ≥ 0) and

(3.67) (i) simultaneously, thus this case is eliminated.
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Chapter 4

Risk Mitigation Decisions for IT

Security

A version of this chapter has been submitted for review.
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4.1. Introduction & Literature

Enterprises are under increasing pressure to better manage operational risks,

including information risks. As an example, in 2004, an accounts payable clerk used

her computer to access her �rm's accounting system and issued 127 checks payable

to herself and others. Checks written were cashed or deposited into her account or

the accounts of her accomplices. The clerk was able to alter the electronic check

registers to make it appear as if the checks had been made payable to the �rm's

legitimate vendors. The �rm lost at least $875,035. The clerk was caught, pled

guilty to two counts of computer fraud and faced a maximum sentence of �ve years

in prison and a $250,000 �ne (DoJ 2004).

Headlines in in�uential media outlets routinely recall the latest information se-

curity breach a�ecting yet another organization. Unfortunately, the costs of such

breaches add up to real money. According to the Identity Theft Resource Center,

there were 16,167,542 records reported as breached in 2010 (ITRC 2010). If the es-

timates provided by the 2010 Annual Study: U.S. Cost of a Data Breach of $214 per

record are close to accurate, the total cost in 2010 of data breaches is approximately

$3.5 Billion in the United States alone (Ponemon Institute and Symantec 2011).

This estimate only accounts for breaches of con�dential information, such as credit

card numbers, social security numbers, drivers' license data, bank account numbers,

etc. as this information is required to be reported to the state attorney general in

most US jurisdictions. Firms are also growing increasingly aware of the value of

informational assets and how attractive these assets could be to the wrong parties;

assets such as patent applications, engineering designs, chemical formulations, cor-

porate strategy documents, research and development documentation, among other

potentially high-value information.

Numerous frameworks for managing risks to information and technology re-

sources abound, ranging from the ISO series on risk management (ISO 31000, ISO

31010) and information security management (ISO 27000 series) to The Committee

of Sponsoring Organizations of the Treadway Commission (COSO) to COBiT to the

NIST standards for risk management and information security, and others. These

standards and frameworks share many similarities in that information risks must

be identi�ed, assessed, and managed. Such risks are managed by making decisions
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on which risks to accept, which to transfer via sourcing agreements, insurance or

both, and which to mitigate or reduce to a more acceptable level. Risks are typically

mitigated by placing one or more controls at a speci�c step in a business process. A

control might be a speci�c technology, for example an access control mechanism, or it

might be a procedure, such as having a supervisor signature on an override. Controls

also have varying degrees of reliability in terms of preventing or detecting erroneous

or fraudulent data moving through a system. While each framework has strengths

and weaknesses, each one defaults to a generic prescriptive approach, which can be

more or less implemented as a type of systems checklist. Despite being generic and

in theory, customizable to each organization's unique set of systems and processes,

the checklist approach becomes extremely di�cult for managers to use with today's

complex arrays of processes and technologies.

The checklist approach falls short in at least two areas. First, work�ows change

over time, as do the threats. Appropriate controls may not be used for many reasons,

such as the system complexity might be greater than anticipated by the creators of

the checklist or the introduction of new technologies might limit the e�ectiveness

controls. An example would be the introduction of a wireless access point in a ware-

house management system by an employee outside of the IT organization. Second,

managers might overspend or misallocate funds for controls because they are unable

to assess the impact of the interaction between the controls available, potential at-

tacks, and business processes. For example, an expensive control might be placed

on a check printer which limits who can pick up a printed check. The printer might

be located in a highly secured area which requires remodeling with expensive ma-

terials and a trained guard checks identi�cation of those few employees allowed to

print and pick up checks. However, if no background check is performed (a relatively

inexpensive control) on the few employees allowed to print and pick up checks, then

additional risk is introduced into the system despite the checklist.

The concept of the organizations' work�ows can be used to de�ne the focus of

security controls (Rodríguez et al. 2011). Indeed, this was the motivation behind

Section 404 of the 2002 Sarbanes-Oxley Act (SOX) in the US, which requires explicit

management of internal controls over �nancial reporting processes. By focusing

on the ways in which people, data, documents, forms, processes, etc. interact to

accomplish organizational goals, we can then make better decisions about which
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controls need to be placed in which work�ow locations, in order to better manage

the organization's overall information risk pro�le.

Not unlike physical sensor systems (for example, water�ow contamination detec-

tion systems (Watson et al. 2009)), multiple problems arise in selecting, placing, and

managing internal controls for information risk management within organizational

work�ows. The problems of selecting and placing internal controls have long been

addressed by heuristics, meaning that internal audit practitioners have developed

checklists and guidelines for the selection and placement of such controls. The same is

generally true for information security management. Good security managers follow

prescriptive practices in selecting technology and policy controls typically generated

by outside agencies and augmented by internal institutional experiences. While the

checklist approach generally meets legislative requirements, this approach is likely

sub-optimal from an enterprise information risk management perspective. Do the

controls selected in the locations in which they are placed within the organizational

work�ow provide an optimal level of risk management? There is signi�cant need

to create an integrated, contextually holistic view of information risk management

given the work�ow processes of the organization.

The orientation of this paper is to develop decision models for managers to place

controls, and then simulate the expected e�ectiveness of these controls against risk

exposures. The goal of this research is to enable decision makers to integrate the

analysis of controls into the work�ow context. We formalize a representation of

the investment and control placement problem within the overlapping and intercon-

nected work�ows of the organization, as well as propose insights and solutions to the

problem. This work falls under the category of design science modeling; we model

the organizational work�ows and place controls to mitigate information risks. We

test three solution methods to place controls, two of which are heuristics based on

checklist-style decision methods. The third method uses an integer linear program-

ming (IP) technique. We solve this problem with a budget constraint and then test

the solutions with a period of simulated incident attacks. Depending on the controls

selected, damages may or may not be mitigated. The incremental risk exposure of

the three decision methods, compared to the lowest cost control expenditures, are

used to evaluate relative e�ectiveness. This work is important because currently

there is no method to e�ectively integrate information management risks within the
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context of the organizational work�ow.

The rest of the paper is organized as follows. The literature review is in section

4.2. We present our problem statement and formulation model in section 4.3. Section

4.3 also describes two heuristic procedures for adopting controls. Section 4.4 presents

the computational experiments and results, and section 4.5 ends the paper with

discussion and conclusions.

4.2. Literature Review

Earlier, we identi�ed two central themes in risk management investment deci-

sions; the need for both controls and an integrated view of risk in the context of

work�ows. In this section we review studies related to these themes starting with

works related to making investments to manage information risk. This allows us

to then present our model of control investment and placement within work�ows in

order to manage risk.

Gordon and Loeb (2002) proposed one of the earliest models for making econom-

ically rational information security investments. Their model takes into account the

vulnerability of the information to be protected and the resources available to pro-

tect that information. They found that in certain scenarios, �rms should only spend

a fraction of their expected losses to prevent security breaches, which is contrary

to the popular belief at this time, which is that information security investments

should be continually increasing. Bodin et al. (2005) incorporate the Analytic Hi-

erarchy Process (AHP) into the earlier Gordon and Loeb (2002) model, in order to

take advantage of qualitative information in making security investments.

Other researchers have since presented more complex and detailed models. Ku-

mar et al. (2008a) use a portfolio model of information security countermeasures

to simulate the value of various portfolios against various attacks. They were able

to demonstrate through simulation experiments that the interaction e�ects of the

various security countermeasures can o�er more protection to the organization than

just the sum of each countermeasure's bene�t, which indicates that an overall strong

information security infrastructure can mitigate a weaker component of the infras-

tructure. Kumar et al. (2007) present an analytical model of investment decisions

and countermeasures for protecting against availability and con�dentiality-type at-

tacks. Their model results in guidance to managers regarding investments and al-
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locations to divisions for both availability-protecting and con�dentiality protecting

mechanisms. Herath and Herath (2008) propose a real options analysis (ROA) model

for evaluating information security investments and present a Bayesian learning and

post-audit function, in order to incorporate continuous information into their model.

Cavusoglu et al. (2008) compare game-theoretic models to decision-theoretic mod-

els of security investment and report that game-theoretic approaches can result in

better outcomes to the �rm under certain conditions, which emphasizes the need to

consider information security management a dynamic and strategic problem. While

these papers take di�erent approaches to modeling investments in information secu-

rity, they all consider the interaction e�ects among security technologies, which is

an important development in the literature.

The papers mentioned above generally tend to focus on security technologies,

such as intrusion detection systems and anti-virus protection. The more general con-

cepts of internal controls, which include access control technologies and internal audit

processes, as well as technologies used to protect the con�dentiality and integrity of

data, have also been studied in the information security context. Researchers have

examined the speci�c nature of controls used in protecting information systems.

For example, Weber (1989) examined electronic funds transfer systems, and found a

need to balance speed and ease of use with security. Wood (1990) prescribed twenty-

three principles for designing controls in software, ranging from cost e�ectiveness to

maintaining a low pro�le for the control.

Basu and Blanning (1997) de�ne a work�ow as �the �ow of information and work

through one or more organizational entities involved in business processes,� (Basu

and Blanning 1997, pp. 359-360). Work�ows are critical to organizations, as they

depict the business processes and rules within the organization, and are necessary for

systems analysis and design activities, as well as for e�ciency and control purposes.

Basu and Blanning (1997, 2000, 2003) propose using metagraphs as a formalization of

organizational work�ows, which allows for formal analysis of work�ows and business

processes.

Cernauskas and Tarantino (2009) suggested that combining business process

management and process control can improve risk transparency and reduce oper-

ational losses. Kumar et al. (2008b) examine di�erent policies for countermeasure

placement given information asymmetry between the CIO and division managers. In
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the context of auditing, Krishnan et al. (2005) provide a formal method of assessing

data reliability that helps auditors choose the controls to review, balancing the cost

and accuracy of assessment requirements. Their set covering model could be adapted

to help answer the question about which controls to implement in order to reach a

desired level of data reliability. Extensions to the work of Krishnan et al. (2005) pro-

vide a framework for managing data quality risks in accounting information systems

by modeling error propagation through the system, where the system is represented

at the business process level (Bai et al. 2007, 2011b). A Markov decision model then

allows for the determination of the optimal control policy, for speci�c control proce-

dures. This model assumes that at each error source, there is one control procedure

that will be implemented, as opposed to selecting from a portfolio of controls, which

could be a combination of technologies and procedures, each with varying costs and

bene�ts.

To our knowledge there is scant literature which provides managers with support

to establish the strategic placement of controls within work�ows. Bai et al. (2011a)

examine access control for information privacy and con�dentiality within a work�ow

context. While the problem of access control is a critical and complex issue, our work

examines the more general issue of control placement from an overall investment and

risk management perspective.

Having identi�ed the gap in the literature regarding the need for a model for

strategic placement of controls, we formalize our problem statement in the next

section. Following this, we present our model for optimal control placement within a

work�ow framework with the goal of mitigating information risk subject to budgetary

constraints.

4.3. Problem Statement & Model Development

The placement of controls is a matter of deciding on how to best guard against

potential information security breaches given constraints. For a single work�ow,

there are multiple security scenarios that must be considered, each with multiple

protection choices and implementation locations in order to address con�dentiality,

integrity, and availability concerns. Work�ow controls have costs associated with

their acquisition, implementation, and management. The multitude of choices in

multiple scenarios becomes a combinatorial problem; multiple work�ows amplify
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this combinatorial problem. Since most organizations will have clear constraints

as to the budgets that can be spent on information security, we conclude that the

resulting management problem is a combinatorial optimization problem with budget

constraints.

Consider a standard purchasing work�ow, as illustrated by Figure 4.1. We as-

sume that a security breach may occur at any node in the work�ow, although we

recognize that some nodes might be more vulnerable than others. Our goal is to

place high quality (e�cient) controls that minimize the potential damage to data

contained within the work�ow.

Figure 4.1: Process Flow Example.

In Figure 4.2 we present the work�ow illustrated in Figure 4.1 simply as the

set of nodes and edges to allow us to easily illustrate some hypothetical incidents

such as breach of con�dentiality (incident 1), loss of data integrity (incident 2),

and impaired availability of data (incident 3). Incident 1 could be an intercepted

electronic funds transfer (EFT). Incident 2 could be the deliberate altering of PO

information. Incident 3 could be the loss of access to a database server due to power

outage. To detect these incidents, many controls can be placed in many di�erent

locations, and the same control can even be placed in multiple locations. In general,

the damage of an incident is lower the earlier we detect it. This decrease in damage,

though, must be balanced by the cost of placing controls in multiple locations.

Some controls at particular locations will detect some but perhaps not all inci-

dents. Control 1, placed at node 3, can detect incident 2 whereas control 2, placed at

node 3, can detect incident 3. Control 1, placed at node 4, can detect both incidents
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1 and 2. However, if we rely on control 1 placed at location 4 to detect incident 2,

we will incur increased damages related to that incident compared to placing control

1 at location 3. Thus, it might be worthwhile placing control 1 at nodes 3 and 4,

even though there is redundant coverage for incident 2. Thus, in Figure 4.2 we see

that Control 1 has been placed at nodes 3 and 4, and Control 2 has been placed at

node 3 and all three incidents may be detected.

Figure 4.2: Incident Examples.

4.3.1 Model

Risk reduction will occur through the strategic placement of controls within the

work�ow, given the costs and bene�ts of the controls under consideration, as well

as the impact of the controls given the speci�c activities at each location within

the work�ow structure. We assume budget constraints, which limit the availability

and e�ectiveness of the controls. Our approach is similar to the approach taken in

the placement of sensors to detect contamination in water networks (Leskovec et al.

2007, Murray et al. 2009, Watson et al. 2009). Leskovec et al. (2007) also apply

the approach to model the spread of information in blogs, identifying key blogs

that quickly cover the majority of �information cascades.� We can also apply this

approach to contamination of information in organizational work�ows.

Graph Theoretic De�nition:

Given a graph with a set of location nodes (J) and edges (E), we de�ne a set

of incident scenarios (I) each describing an incident such as a security breach or

the spread of unwanted data, and a set of controls (K) to mitigate incidents. An

incident, i ∈ I, is initiated from a single node in the work�ow, and spreads through

the work�ow in a pattern described by the incident tree formed by the incident i's
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connections to other a�ected nodes; that is, a set of arcs {α, β} ∈ E. The collection

of arcs {α, β} for an incident i depict a damage dissemination �ow created by that

incident. Incidents can be detected and controlled for by installing a control k ∈ K

at any a�ected location. For each location, j ∈ J , there are zero or more control

options, where each control will apply to one or more of the incidents i ∈ I. The

use of a control at a location would incur a cost that may be location dependent.

For any location, we may elect to use zero or more controls to guard against each

incident. Each control type used for an incident at a location implies a unique level of

potential damage resulting from the incident. The �ow associated with each incident

is used as a proxy for the damage from an incident given its control location and

type. Once an incident is detected at a location, we assume that all issues related to

that incident are resolved. If, for some reason, this is not the case, then a separate

incident must be constructed.

Data:

Incident and damage data are described by several variables. First, we must

identify which incidents, i ∈ I can e�ectively be controlled by a control k ∈ K if it

is placed at location j ∈ J . We store this information in the variable aijk, de�ned

as follows:

aijk =

{
1 if incident i is covered by a control of type k at location j,
0 otherwise

Each control has a cost, cjk associated with it and the cost may vary based on its

location in the work�ow. Each incident, if not detected, will cause the �rm to incur

damages, Di. However, by placing a control k at location j, this damage may be

reduced by an amount dijk. As we assume that work�ows may be described by

spanning trees and that the �rst control along a path that can detect an incident

will detect it, we must also keep track of the set of paths, Pi, for each incident. A

budget, B, limits the total monetary resources available to purchase (and presumably

implement and manage) the controls. The goal of this paper is to select locations

and types of controls in such a manner that the total expected damage is minimized,

while complying with the budget constraint. Table 4.1 summarizes the notation used

in our IP.

Decision Variables:
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Table 4.1: Notation for IP formulation.

Term Name Description

I Incidents Set of incidents where i ∈ I

J Nodes Set of nodes within a work�ow where j ∈ J

K Controls Set of controls where k ∈ K

B Budget Limit on amount to spend for controls

aijk Applicability Denotes which incidents i are controllable by
control k at location j

cjk Control cost Cost for deploying control k at location j

Di Uncontrolled damage Damage of incident i with no controls

dijk Damage reduction Reduction in damage for incident i
for deploying control k at location j

Pi Paths Set of paths de�ning incident i

sjk Selected controls Decision variable

xijk Incident controls Decision variable

In our model for multiple coverage, there are two decision variables. It is possible

to purchase multiple controls at each and every location in our work�ows. Thus, we

de�ne:

sjk =

{
1 if control of type k is implemented at location j,
0 otherwise

We must also decide which of the controls purchased at each location will be

used for detecting a given incident. Thus, we de�ne:

xijk =

{
1 if incident i is covered by a control of type k at location j,
0 otherwise

Note that, in data generation, for every incident i we require
∑

j∈J,k∈K dijk ≤ Di

so that damage is always non-negative, even when controls are used. We accomplish

this by using the distance between nodes to calculate both Di and the discounts,

dijk. A full description of how the data variables are generated is provided in ap-

pendix 4.6.1.

Problem: Flow Risk Reduction (FRR)

Our solution is a two stage process where we �rst select controls to minimize

damage. It is possible that di�erent solutions, at di�erent costs, can result in the

same minimal damage. Thus, we perform a second stage where the value of the

objective function from stage 1 becomes a constraint in stage 2 where we �nd the

minimal cost solution.
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In this formulation for stage 1, we want to minimize the damage for not placing

controls or placing ine�ective controls:

min[
∑
i∈I

Di −
∑
i∈I

∑
j∈J

∑
k∈K

dijkxijk] (4.1)

Subject to:

Can only purchase a control of type k at location j if that control at that location

is used to detect at least one incident, i.

sjk ≤
∑
i∈I

xijk ∀j ∈ J, k ∈ K (4.2)

Breach observed only if a control exists:

xijk ≤ aijksjk ∀i ∈ I, j ∈ J, k ∈ K (4.3)

For each incident i, at most one control is active on each path p in the set of paths

Pi from the root node to each terminal node in the incident:

∑
j∈p

∑
k∈K

xijk ≤ 1 ∀i ∈ I, p ∈ Pi (4.4)

Total spending on controls must not exceed the budget amount.

∑
j∈J

∑
k∈K

cjksjk ≤ B (4.5)

sjk ∈ {0, 1}, xijk ∈ {0, 1} (4.6)

In this formulation for stage 2, we wish to minimize the total cost of controls

with the constraint that the damages from this solution must not exceed the value of

the objective function found in stage 1. Thus our new objective function becomes:

min
∑
j∈J

∑
k∈K

cjksjk (4.7)

Subject to:

Constraints (4.2) to (4.6) from stage 1 plus:

Total damage must not exceed the value of the objective function found in stage 1,

Γ. ∑
i∈I

Di −
∑
i∈I

∑
j∈J

∑
k∈K

dijkxijk ≤ θΓ (4.8)
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The parameter θ in (4.8) is a slight relaxation of the damage restriction, Γ, necessary

to accommodate for rounding errors in the solver. In our testing, we used parameter

values of 1.000004 and 1.000009 as necessary.

The knapsack problem is NP-Complete (Karp 1972, 2010). The FRR problem is

a special case of the knapsack problem, where categories of items are available but

you can pick at most one item from each category. These categories are the incidents

in the FRR problem. The FRR problem is NP-Complete.

4.3.2 Heuristic Decision Making

Current management practice is to use checklists or heuristic rules of thumb to

guide the placement of controls in work�ows. We compare our formulation with two

heuristic decision making models selected to mimic the most likely processes used

by human decision makers. The �rst heuristic selects controls for locations that

will result in the maximum reduction in damage across all incidents in an iterative

manner. If the �rst choice of a control and location exceeds the budget, the heuristic

will search through the remaining choices to see if there is a control at a location

that can be a�orded within the budget. It continues in this manner until the budget

is reached or there are no more a�ordable controls.

1. Calculate the discount across all incidents for deploying a control of type k at

location j. That is, calculate
∑

i aijkdijk∀j ∈ J, k ∈ K

2. Select the control which results in the largest discount across all incidents.

That is, set sj∗k∗ = 1 for the control k∗ at location j∗ which results in the

largest value for
∑

i aij∗k∗dij∗k∗ , if it �ts within our budget.

(a) If the �rst choice of control does not �t in the budget, look for the next

best control that is a�ordable.

3. Continue steps 1 and 2 until no more controls can be purchased within the

budget.

The second heuristic determines the incident that has the largest expected dam-

age and selects the control at a location that will minimize the damage for that

incident. It then recalculates the expected damage for all incidents given the control

and location selected, determines the incident with the highest remaining damages,
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selects the control at a location that minimizes the damage for that incident and

repeats these steps until the entire budget is exhausted. Like the �rst heuristic, if

the �rst choice of a control and location exceeds the budget, the heuristic will search

through the remaining choices to see if there is a control at a location that can be

a�orded within the budget, stopping only once it cannot purchase any more controls

within the budget.

1. Select the incident, i′, which has the highest expected damage if no controls

are selected.

2. Select the control k′ at location j′ which will result in the largest reduction in

damage for incident i′. That is, �nd the largest value of di′jk for this incident

and set sj′k′ = 1, if it �ts within our budget.

(a) If the �rst choice of control does not �t in the budget, look for the next

best control.

(b) If no control for this incident �ts within the budget, look at the incident

with the next highest expected damage and repeat step 2.

3. Recalculate the expected damages for all incidents given the control k′ at lo-

cation j′ has been deployed. Thus, for any incident for which the control

k′ at location j′ is e�ective, the expected damage should be adjusted by the

discount, di′jk.

4. Repeat steps 1 through 3 until no more controls can be purchased within the

budget.

Next, we test the e�ectiveness of each of these three control placement methods

against a barrage of simulated attacks. The relative e�ectiveness of each method is

measured as the reduction of risk achieved. The barrage of attacks will simulate a

year of attacks with di�erent distributions of realization.

4.4. Computational Experiments and Results

We created a collection of 162 unique data sets with randomly generated node

locations, incidents and controls along with all other input data for the model de�ned

in section 3. This data set embodies the manager's expectations regarding attacks
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Table 4.2: Listing of variables for IP formulation.

Variable Values

Incidents (I) 50, 100, 150

Locations (J) 50, 275, 500

Controls (K) 10, 15, 20

Budget Scale (BP ) 0.05, 0.1

Maximum cost of control (maxC) 900, 950, 1000

and control e�ectiveness as related to organizational work�ows. The data genera-

tion is explained in detail in Appendix 4.6.1. A summary of the data generation

parameters is presented in Table 4.2 below.

The IP control selection method and the two heuristics de�ned earlier are used

to select a set of controls for each data set. We refer to the solutions obtained by

each method IP, H1 and H2, respectively. Algorithms H1 and H2 will spend the

entire budgeted amount, BP. To create an apples-to-apples comparison between the

IP method and the heuristics, we restrict the budget for the heuristic algorithms

to match the cost obtained by the IP method, calling the two restricted budget

methods H1a and H2a, respectively. In every case, the cost of the IP method was

below the budget. For one data set the IP stage 1 solution was found but the IP

stage 2 solutions was too di�cult for CPLEX to solve in a timely manner and was

terminated after ten days without �nding an IP solution. This data set was replaced.

All experiments were conducted using MatLab and AMPL to call CPLEX 11.0.1

running on an IBM X-series 3550 with eight Intel Xenon processors running at

3.1GHz and 32GB of RAM. The operating system is Windows Server 2003 R2 En-

terprise x64 Edition with Service Pack 2 applied.

Finding controls is a fairly e�cient process. Each stage of this process is timed

using MatLab's TIC and TOC stopwatch functions, which records elapsed wall clock

time between the start and �nish of the code segments described in Table 4.3. The

IP method takes the longest time to solve, taking on average 6,038.912 seconds (1.68

hours). The worst case took 372,876.8 seconds (4.32 days) to �nd the solution, with

stage 2 consuming most of the time. Stage 1 �nds a solution with the lowest expected

damage in an average time of 21.63 seconds, and stage 2 �nds the cheapest solution

among all solutions with the lowest expected damage. In general, the number of

node locations in the work�ow has the most dramatic e�ect on the length of time
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Table 4.3: CPU time to �nd controls, in seconds

Average Minimum Maximum

IP stage 1 21.630 0.385 205.592

IP stage 2 6017.282 1.212 372837.500

IP total 6038.912 1.608 372876.800

H1 algorithm 0.013 0.001 0.093

H1 formulation 4.985 0.177 20.480

H1 total 4.998 0.178 20.521

H1a algorithm 0.012 0.001 0.042

H1a formulation 4.634 0.174 18.716

H1a total 4.646 0.175 18.758

H2 algorithm 0.108 0.007 0.493

H2 formulation 4.855 0.182 20.043

H2 total 4.963 0.189 20.536

H2a algorithm 0.021 0.001 0.122

H2a formulation 4.610 0.174 18.832

H2a total 4.631 0.177 18.897

it takes both stage 1 and stage 2 of the IP method to solve. In comparison, the

heuristic methods take at most 20.536 seconds in the worst case and under 5 seconds

on average. Note that the solution from each heuristic was input to a modi�ed

version of the formulation to e�ciently calculate the damages; the sjk values were

input as data and constraint (4.2) is not applicable. The time to complete this step

for each heuristic is recorded in the respective line labeled �formulation� in Table

4.3.

Each data set e�ectively serves as a training set to create controls using the �ve

alternative methods of choosing controls which will protect against future attacks.

To determine if the control placements are e�ective, the system is placed under

simulated attack. That is, to test the solutions given by the IP method and the

heuristics under di�erent attack scenarios, we generate a weekly set of attacks for

an entire year (52 sets of attacks). Descriptions of the attack scenarios are provided

in Appendix 4.6.2.

The performance of each solution against attack simulation 1 which follows a

uniform random distribution is presented in Table 4.4. To analyze the performance

of each solution against the simulated attack scenarios, the reduction of risk for each

solution is considered. The risk reduction measure is calculated as the di�erence

between the damage of the suite of attacks when no controls have been placed versus
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Table 4.4: RR and RROI for Attacks following Uniform Distribution

RR RROI

IP H1 H1a H2 H2a IP H1 H1a H2 H2a

Average 100 97.7 81.8 88.6 62.1 100 4.3 81.8 3.8 62.1

Minimum 100 74.2 33.0 39.7 6.9 100 0.2 33.0 0.2 6.9

Maximum 100 100.5 100.0 100.0 97.5 100 54.7 100.0 54.2 97.5

Table 4.5: RR and RROI for Attacks following Expected Distribution

RR RROI

IP H1 H1a H2 H2a IP H1 H1a H2 H2a

Average 100 97.6 80.5 88.2 61.1 100 4.3 80.5 3.8 61.1

Minimum 100 80.3 63.7 41.4 7.8 100 0.2 63.7 0.2 7.8

Maximum 100 100.3 100.0 100.1 89.8 100 53.6 100.0 53.0 89.8

the damage that is incurred under the solution of interest, where:

RR = damage without controls - damage given selected controls

In Table 4.4, the average, minimum, and maximum risk reduction (RR) of each

method as a percentage of the risk reduction found with the IP method is presented.

The risk reduction on investment (RROI) is calculated by dividing the risk reduction

by the cost of the solution solution method, where:

RROI = RR/cost of solution

In Table 4.4, the average, minimum, and maximum RROI of each method as a

percentage of the risk reduction on investment found with the IP method is presented.

Thus, the values for the IP method are set to 100 in every instance since this is the

baseline. A value below 100 indicates a worse solution, and a value over 100 indicates

a better result than the IP method baseline.

The same results for Attack 2 which is also random, but follows the expected

distribution, are presented in Table 4.5. Results indicate that the IP method for

�nding controls is superior for both attack scenario 1 and 2 in terms of both risk

reduction (RR) and risk reduction on investment (RROI).

Some general observations are made. Heuristic H1 may occasionally �nd the best

solution under attack, and often �nds solutions as good as IP, but at signi�cantly

higher cost. Heuristic H2 does not �nd the best solution, even at additional cost, but

occasionally �nds a better solution than the IP method. When constrained to the
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same cost as the IP stage 2 solution, the performance of both heuristic methods, H1a

and H2a, deteriorate drastically in terms of both RR and RROI. Thus, we conclude

that if the IP method is unsolvable due to excessive problem size, then the heuristics

can be utilized to solve the problem. However, signi�cantly poorer risk reductions

are likely and the cost will be higher, driving the RROI down substantially compared

to using the IP method.

The reason for the poor performance of the heuristic solutions H1 and H2 in

terms of RROI is that they drastically overspend on controls while yielding slightly

worse control con�gurations on average. The heuristics cannot make valid judgments

with respect to when the marginal bene�t of adding the next control outweighs its

cost; the stopping rule for the heuristics is to continue until all available money

is spent. As a result, while it is sometimes possible to increase the risk reduction

(e.g., H1 occasionally �nds a better solution than the IP in terms of RR), the cost

of doing so makes the overall return on the investment much smaller than the IP's

solution. Having said that, in some situations the overriding factor is risk reduction

rather than RROI. An example is when risk represents loss of life, and measuring

the RROI of reducing the loss of life is considered to be unethical.

To compare how performance changes with the various methods as the parameter

settings change, we illustrate the average performance under the simulated attacks

for the number of node locations in Figure 4.3 (a) and (b), the number of incidents

in Figure 4.3 (b) and (c), and the number of controls in Figure 4.3 (c) and (d). We

see that the IP method is superior on average for all three parameters over all values

tested. Figure 4.4 presents the equivalent results under the attacks simulated using

the second method (Attack 2) presented in Appendix 4.6.2.

Why doesn't the IP method produce the best set of controls to protect against

attack in every situation, without exception? The IP method does produce the

optimal solution for the expected incidents and attack frequency, which is why it

performs so well across the board (note that all methods use the same expected values

to produce control con�gurations). However, when the realized attacks are made,

the actual attack occurrences in the experiment deviate randomly from the expected

arrival rates. When reality di�ers from expectations, which is almost always the case,

then the sub-optimal heuristics can sometimes produce better realized solutions than

the �optimal� IP method. This is borne out in our experimental results.
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Figure 4.3: Attack 1 results relative to the IP solution by Nodes (a, b), Incidents (c,
d) and Controls (e, f).

In summary, we can say that the IP method is the overwhelmingly best overall

approach regardless of budget if the problem is small enough to be solved with this

procedure. Having said that, we found no instances where the IP method failed

to solve the problem, and we tested very large problem sizes of up to 500 control

locations, 150 incidents, and 20 controls. What if solutions using the IP method

cannot be found because the number of node locations becomes too large? Then a

solution heuristic would have to be used, and heuristic H1 is superior to H2. Reducing

the budget of the heuristics to compensate for overspending, as is done in H1a and

H2a, results in dramatically poorer solutions. Thus, if the heuristic procedures are

utilized, then arti�cially lowering the budget to prevent overspending will result in

substantially more risk being carried by the �rm. Thus, based on the experimental

results, we can conclude that the use of the heuristics is never appropriate in a
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Figure 4.4: Attack 2 results relative to the IP solution by Nodes (a, b), Incidents (c,
d) and Controls (e, f).

low budget environment. Additionally, even in a high budget environment, the IP

method results in less risk an average being carried by the �rm, and the heuristics

are much worse in the worst case scenarios.

4.5. Discussion and Conclusions

Insights from this paper are twofold: �rst, we specify the FRR control placement

decision problem using formal methods. This leads to a better understanding of

the problem, and shows important connections between security investment deci-

sions and information risk management outcomes. Second, we demonstrate how this

problem can be solved using integer programming methods as well as heuristics. We

demonstrate how trade-o�s can be made with respect to security investments within

the context of organizational work�ows.

While the model currently assumes perfect detection of an incident by a control,
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it does not assume that the cost of all controls is the same. Future work could

allow controls to detect incidents with probabilistic reliability and also could allow

for di�erentiated damage prevention, meaning some controls are more e�ective than

others against a given incident. However, our current model accommodates both the

�worst case� and �expected value� views of the world.

The decision model allows for �nding cost-e�cient ways of protection against

information security scenarios in the form of prevention or detection controls, or both

- we do not make this distinction in the paper. The controls may have future impact

on likelihoods of incidents, but this would have to be considered when preparing to

solve the model again at some future time. Also, the model assumes that all control

decisions are implemented in the current period. However, many control systems

actually evolve over time and the decision to implement controls are made in the

context of the control infrastructure that already exists and future controls that will

take some time to implement, given the high time and cost to reallocate control

resources from one task or location to another. For example, employees may need to

be relocated to di�erent cities, or new employees may need to be hired gradually over

time. Future work can look at the multi-period dimensions of the problem, helping to

identify not only optimal controls, but also optimal control implementation ordering.

There are multiple areas worth further exploration. More complex instantiations

of controls, incidents, and work�ows can all be considered, as mentioned previously.

The model could be extended to consider the additional risk reduction a�orded by

the purchase of so-called �cyberinsurance.� The model could be further tested using

actual incident data. Finally, given the extent of business process outsourcing, the

model could be extended to examine cross-organizational work�ows, building on

work by Patterson et al. (2006).

The ultimate goal of this line of research is to build improved decision support

tools for managers faced with managing the information risk in their enterprises.

While the current practice of using intuition, experience, and best practices is an

important starting point, managers who incorporate more formal methods, such

as the proposed FRR model, can further improve resource allocation decisions and

information risk management outcomes.
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4.6. Appendix

4.6.1 Data Generation

J node locations are randomly generated in a 100 by 100 space. We then ran-

domly select an incident set, I, comprised of randomly selected subsets of nodes of

a random size between 1 and J . The set of K controls is available to mitigate risk

at each node in a the work�ow. In addition, the cost of deploying a control, k ∈ K,

at node j ∈ J varies but is bounded by a value, maxC. Finally, the total budget

for all controls is a percentage, BudgetScale (BP ), of total damages associated with

the incidents when no controls are chosen. The data used for each iteration of the

problem was generated in the following steps.

Nodes (Locations)

• Select coordinates in a 100× 100 grid, randomly from a uniform distribution

• Calculate distances between each pair of nodes

Incidents
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• For each incident, randomly select nodes to include. Each node has a 70%

chance of being included in each incident.

• If an incident has no nodes chosen, randomly select one node for inclusion.

• For each incident, calculate the minimum spanning tree using Prim's algorithm

and the distance matrix calculated in the node generation routine.

• For each incident, calculate every path in the spanning tree.

• For each incident, calculate the damage discount that would apply at each

node if a control of type k was placed there, for all controls.

� Calculate the total distance along all paths in the spanning tree.

� For each node in the incident, calculate the total in�ow to the node as

the distance between the node and its upstream neighbour plus the total

distance from the node to each endpoint in the node's path(s). See Figure

4.5 for an illustration.

� The damage discount for each node is de�ned as the in�ow to that node.

That is, by placing a control k at node j, we are able to block damage

from �owing any further and thus, discount the damage of incident i by

the out�ow distance at node j.

Figure 4.5: Calculating in�ow.

Incident-Node-Control Applicability array (aijk)

For each incident, for each node, for each control, if the node is part of this incident,

then randomly decide if this control will be applicable here (i.e. set aijk = 1) by

randomly drawing from a uniform distribution. There is a 50% chance that the

control will be applicable. Otherwise, set the aijk = 0.
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Table 4.6: Intervals used for generating uncontrolled damages.

Random Draw Value P(incident i)
Interval Interval

[0, 0.0001) [100 million, 10 billion] 0.0001
[0.0001, 0.005) [10 million, 100 million] 0.0049
[0.005, 0.05) [10,000, 10 million] 0.045
[0.05, 0.95) [1000, 10,000] 0.90
[0.95, 0.995) [10, 1000] 0.045
[0.995, 0.9999) [0, 10] 0.0049
[0.9999, 1) 0 0.0001

Cost matrix (cjk) For each activity, for each location, randomly select an integer

between 0 and the maximum cost of controls, maxC.

Discount matrix (dijk) The damage discount is the reduction in damage if

the incident is detected at this node with this control. For each incident, node,

and control combination, de�ne the damage discount as the in�ow from node j in

incident i as calculated when generating the incidents as illustrated in Figure 4.5.

Total expected damages for incident (Di)

In essence, we provide a structure to the damages such that rare incidents have

extremely high (or extremely low) damages and the most common incidents have

medium damages.

• For each incident, calculate the total, uncontrolled damage realized if this

incident occurs:

� Draw a random probability from a U(0, 1) distribution and record.

� According to the break down in Table 4.6, add a value drawn from the

appropriate interval to the total damage discount recorded when generat-

ing the discount matrix and set the probability that incident i will occur,

P(incident i), accordingly.

• Sum uncontrolled damages across all incidents to use in calculating the budget

for this data set

• Calculated the expected damages (Di) for each incident by multiplying the

uncontrolled damages of incident i by the probability that incident i will occur.

Budget Calculate the budget by dividing the total expected damages for all

incidents divided by the number of controls in this data set then multiply by a budget
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scale (BP ) de�ned for this data set. That is, Budget = BP ∗
∑

i∈I E[Di]/|K| where

|K| is the magnitude of K (i.e. number of controls).

4.6.2 Attack Description

Attack Simulation 1

In the �rst simulation, we select attacks from a uniform distribution with no

consideration for the actual probability of seeing any particular incident.

1. Randomly select an integer, n from U(0, I), of attacks for this day.

2. Randomly select a set of n attacks from I, without replacement. That is, the

same attack may not be seen more than once in any given day.

3. Calculate the actual damage incurred for each solution, given this set of attacks

has occurred.

We can then total the realized damages over the entire period of 365 days and

compare solutions.

Attack Simulation 2

The attacks in this simulation are drawn such that they follow the same proba-

bility distribution as the incidents.

1. For each incident in I, if the probability of this incident is greater than or equal

to a randomly drawn value, U(0, 1), add it to the set of attacks for this day.

Once again, the same attack may not be seen more than once in any given day.

2. Calculate the actual damage incurred for each solution, given this set of attacks

has occurred.

We can then total the realized damages over the entire period of 365 days and

compare solutions.
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Chapter 5

General Discussion and

Conclusions
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The purpose of this thesis was to explore formal methods for determining the

level and location for information security investments so that managers can make

more informed choices when it comes to information risk management. In Chapter

2, market forces (in the form of customer reactions to security breaches) are used

to explore the nature of security investments in a duopoly. This approach allows

an examination of how the introduction of a minimum mandatory security spending

level would impact �rm pro�ts, �nding that under a particular customer reaction

type (i.e. when �rms are complements in loss) that a prisoner's dilemma arises where

�rms would be better o� if they cooperated, voluntarily increasing security spending

above equilibrium. Chapter 3 expands on this work by incorporating customer utility

into the model, allowing for an examination into the e�ects of mandatory spending

above equilibrium on total social welfare and pointing to areas where it would be an

appropriate policy decision to require such a minimum level of spending. Finally,

in Chapter 4, the allocation of a given information security investment is explored

by formulating the �ow risk reduction (FRR) problem then solving it to optimally

select control placements in a work�ow context.

The ultimate goal of this line of research is to build improved decision support

tools for managers faced with managing the information risk in their enterprises.

While the current practice of using intuition, experience, and best practices is an

important starting point, managers who incorporate more formal methods, such as

the proposed CTMC and FRRmodels, can further improve investment and allocation

decisions as well as information security outcomes.

In terms of theoretical implications, Chapters 2 and 3 o�er a glimpse into how

Adam Smith's `invisible hand'(Smith 1790) functions to regulate a market place. In

particular, this work begins to articulate the links between customer reactions to

information security breaches and �rm incentives to invest appropriately to guard

against risk. The goal in exploring this linkage is to challenge the notion of that

information security investment as costs only and replace it with the idea that in-

formation security is a `value add' that could lead to competitive advantage.

Practically speaking, understanding the nature of customer reactions is impor-

tant for both managers and policy makers. As �rms within an industry understand

when it is in their best interest to cooperate, they should only need a coordination

mechanism, such as the Information Sharing and Analysis Centers (ISACs) consid-
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ered in Gal-Or and Ghose (2005), to monitor compliance. However, if it is not the

case that cooperation will increase pro�ts for �rms, then a central planner will need

to step in and mandate increased security investments where there would be an

increase in total social welfare.

Along with deciding the appropriate level of investment, managers must decide

what security measures to implement. By taking a process (work�ow) view of the

�rm to consider the optimal placement of controls within those work�ows, �rms are

better able to identify the high-value controls and to focus e�orts there. By compar-

ing the optimal solution of the �ow risk reduction problem to heuristic approaches,

this work helps managers identify new measures of investment e�ectiveness - the

risk reduction and the return on risk reduction - as calculated by simulating attacks

against each solution found.
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