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Abstract

With recent developments in the areas of data warehousing and data mining, 

there has been an increasing interest in querying multiple snapshots of data, 

often stored in temporal databases, semi-structured document collections, and 

OLAP applications. Similarity queries, in particular, is an important class of 

queries with growing applications in fields as diverse as data mining, pattern 

recognition, multimedia databases, and bioinformatics. This thesis addresses 

the problem of efficiently answering similarity queries on historical market- 

basket data and multidimensional histories.

The thesis introduces a domain-independent filter-and-refine framework for 

evaluating order-preserving similarity queries on historical market-basket data. 

For instance, given a database of customer transactions and a time period, a 

query is “find customers with similar purchasing behaviors over this period.” 

Our work is different from previous work on time-series, in that we address the 

general problem where a history cannot be modeled effectively as a time-series, 

hence the conventional relevant approaches are not applicable. We propose a 

similarity measure for histories, based on a constrained aggregation of the sim­

ilarities between their constituent observations. Given the non-metric nature 

of our measure, some upper bounds are proposed and an algorithm is devel­

oped that uses an index to prune histories that are guaranteed not to be in 

the answer set of a query. Experimental results on real and synthetic data 

confirm the effectiveness and efficiency of our approach. For instance, when 

the minimum length of a match is provided, our approach achieves up to an 

order of magnitude speed up over alternative methods.

The thesis further studies the problem in a slightly more constrained do­

main where a history is modeled as a d separate time-series. While there
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are some solutions for special cases where d < 4, none of these works scale 

up well to high-dimensional histories. To address the problem, we propose a 

class of summaries for histories with a few interesting properties. First, for 

commonly used distance functions, the summaries can be used to efficiently 

prune histories that are guaranteed not to be in the answer set of a query. 

Second, histories can be indexed based on their summaries, hence the quali­

fying candidates can be efficiently retrieved. To further reduce the number of 

unnecessary distance computations for false positives, we propose a finer level 

approximation of histories and an algorithm to find an approximation with 

the least maximum distance estimation error, before seeing queries. We also 

investigate adaptive splitting of histories and develop a few splitting schemes 

and heuristics to enhance the quality of our approximations, and to improve 

the performance of our similarity queries. Our experimental results confirm 

that the combination of our feature extraction approaches and the indexability 

of our summaries can improve upon existing methods when d < 4 and scales 

up for larger values of d and database sizes, based on our experiments on real 

and synthetic data of 17-dimensional histories.
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Chapter 1 

Introduction

Traditional databases store a single, often most recent, snapshot of a modeled 

real world. With recent developments in the areas of data warehousing and 

data mining, there has been an increasing interest in querying multiple snap­

shots of data, often stored in temporal databases, semi-structured document 

collections, and OLAP applications. Previous work on querying histories has 

mainly focused on detecting and representing changes in order to provide a 

better support for selection and projection queries over multiple versions of 

data.

Similarity queries on historical archives is important since it enables various 

forms of analysis on time evolving data. An evidence of this is the increasing 

interest in efficiently retrieving archival data, based on historical similarity, 

when the history of an object is described as a sequence of real values (time 

series). For instance in financial applications, we may want to find stocks that 

behave in similar fashion within a given time interval by providing the stock of 

another company or we may want to group together all companies with similar 

sale patterns. However, in many real-life applications, the history of an object 

is more complex and cannot be modeled as a time series. Efficient retrieval of 

objects based on historical similarity is important to understand underlying 

mechanisms, to extract behavioral patterns, and to analyze trends for decision 

support. Here are some examples of similarity queries on histories:

• In meteorology, measurements such as temperature, precipitation, wind 

speed, pressure, moisture, and snowfall are regularly collected (e.g. hourly,

1
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daily, or weekly) for many earth surfaces by weather stations. Detecting 

possible similarities between the weather conditions of two regions may 

indicate that crops successfully produced in one region may also be tried 

in the other region.

• In retail, customer transactions are often recorded in a data warehouse 

for further querying and analysis. The purchase history of a customer, in 

particular, may show changes of the needs and the preferences over time. 

It might be desired to find customers with a purchase history similar to 

a given customer, for example, to provide personal recommendations. 

Clustering customers with similar purchase history can be used to find 

trends in market segments.

• In a web archive, such as the Internet Archive1, several versions of each 

web page are crawled and stored. An interesting query over such an 

archive can be: find web pages with change histories similar to the change 

history of a given page. It is quite possible to find web pages that are 

similar in content at one or more points in time but have different change 

histories. It is also possible to find rather dissimilar web pages that show 

similar change histories2.

• In a hospital, routine observations are made about patients. These obser­

vations can be made by doctors or nurses and may include general symp­

toms, such as “high fever,” “rash,” “high blood cholesterol,” “bleeding,” 

the medications used, the medical advice given, and the responses to 

treatments. Finding patients with histories similar to the history of a 

given patient can provide assistance to a doctor in making diagnosis or 

prescribing medications.

• In financial sector, the history of a stock may be tracked using several 

indicators such as daily opening and closing prices, and trading volume. 

The similarities between the histories of two stocks may help to predict

1 www.archive.org
2This can happen for two pages, perhaps maintained by the same authority.

2
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or explain short-term and long-term trends in the market.

The problem to be addressed in this thesis is efficiently evaluating simi­

larity queries on histories where a history is a sequence of observations. Each 

observation is a point in multi-dimensional space. A timestamp may also be 

assigned to each observation to indicate the time the observation is recorded. 

Efficient support of similarity queries for histories is a difficult problem. In 

general, a history can be represented as a vector whose dimensionality is equal 

to the number of observations in the history times the dimensionality of each 

observation. Indexing vectors in high-dimensional space has been considered 

as a challenging problem in the database community [110]. Weber et al. [122] 

argue, based on a quantitative analysis, that almost all space partitioning 

and data clustering approaches to indexing exhibit a linear complexity on the 

dataset size at higher dimensionalities. They state that existing methods are 

usually outperformed by a simple linear scan when dimensionality exceeds 10. 

On the other extreme, Beyer et al. [14] argue that nearest neighbor queries 

are not meaningful for a dataset when the variance of pairwise distances of 

objects is low. They state that a similarity query becomes unstable when the 

difference in the distance between the nearest neighbor and other points in the 

dataset becomes negligible in this case and a linear scan can outperform any 

algorithm which uses an index to prune search space.

Despite the challenge, there has been a large body of work that addresses 

the similarity search problem for special types of histories. For instance, when 

each observation is a real value and only one observation is recorded at each 

time instance, a history becomes a time series and there are quite a number 

of approaches to index time series (e.g. [2], [40], and [97]). If an observation is 

the spatial position of a moving object at a time point, a history, often called 

a trajectory, may describe the trace of a moving object in a plane or space, 

and there are also works to index trajectories (e.g. [74], [119], and [64]). In a 

relatively more complex setting, an observation can be an image frame, which 

is in fact a point in high-dimensional space, and there has been some work to 

index video sequences (e.g. [73], [111])- However, we are not aware of any work

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that scales up to large databases of high-dimensional histories while satisfying 

the following requirements:

• Being robust to noise and outliers -

• Being robust to time shifting and warping,

• Being exact in returning all candidate results (no false drops), and

• Being order preserving and respecting the temporal ordering of observa­

tions.

In this thesis, we propose a filter-and-refine approach to efficiently evalu­

ate similarity queries on historical market-basket data and multi-dimensional 

histories. In particular, we develop similarity measures, lower bounds, and 

summarization techniques that can be used to support nearest neighbor and 

range queries while satisfying all the aforementioned requirements.

1.1 T hesis S tatem en t

The central thesis statement of this research is presented as follows:

Efficiently processing nearest-neighbor and range queries over large 

collection of histories, under some realistic and non-restrictive as­

sumptions, is possible.

1.2 T hesis O rganization

Chapter 2 provides the background material on similarity queries over histor­

ical archives. It presents the filter-and-refine framework that is the basis of 

most promising solutions for exact similarity search as well as our approach. 

A review of related work on indexing time series, multi-dimensional time se­

ries, and sequence data is also presented. The chapter ends with an overview 

of the problem to be addressed in this dissertation and a list of our main 

contributions.

4
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Chapter 3 presents a domain-independent framework for formulating and 

efficiently evaluating order-preserving similarity queries over historical market- 

basket data. A similarity score is derived for histories based on an aggregation 

of the similarities between observations matched in a conditional alignment. 

Two upper bounds for similarity measures are proposed that take advantage of 

the sparsity of observations and the existence of a temporal neighborhood con­

straint. Our experimental results on both real and synthetic data confirm the 

effectiveness, efficiency, and scalability of our approach. In particular, when 

the minimum length of a conditional alignment is provided, our algorithm 

achieves up to an order of magnitude speed up over alternative methods.

Chapter 4 studies the problem of efficiently evaluating similarity queries 

on multi-dimensional histories. A novel summarization technique is proposed 

with an interesting property that for a large class of order-preserving dis­

tance functions commonly used to compare sequences, the distance between 

summaries lower-bounds the distance between histories. To further reduce 

the number of unnecessary costly distance computations, a fine-level query 

independent approximation of histories is proposed based on the notion of 

commonly used Minimum Bounding hyper-Rectangles (MBRs). Also adap­

tive splitting schemes are investigated to further improve the tightness of the 

approximation for high-dimensional histories. Experimental results on real 

and synthetic data confirm that the indexability of extracted summaries com­

bined with the enhanced pruning power of our approximation improves upon 

sequential scan, which turns out to be the only competitor on high-dimensional 

histories.

Chapter 5 summarizes the main points of the thesis, highlights our main 

contributions, and provides some directions for future research.

5
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Chapter 2 

Similarity Queries on Histories

This chapter provides background material on similarity queries over historical 

archives. In particular, section 2.1 presents a formal definition of histories, our 

notion of similarity, and the set of queries being studied. Section 2.2 discusses 

some of the challenges in efficiently evaluating similarity queries, a few general 

solutions, and some of their limitations. A review of related work on indexing 

time series, multi-dimensional histories, and sequences data is presented in 

section 2.3, as well as their limitations in indexing more general histories that 

are considered in this thesis. Section 2.4 provides an overview of the problem 

to be addressed in this thesis and highlights the main contributions.

2.1 B asic D efin itions and N otation s

This section introduces a few notations and terminologies that are referred to 

in the rest of the thesis.

Definition 1 (Observation). Let I  =  { t i , . . . , t n} be a set of items. An 

observation is a set of pairs {U,Wi) such that L E I  is an item and Wi, a 

real number, is the unique weight of the item L in the observation. Given an 

ordering of the items in I , an observation can be represented as a vector:

[w1,w2, . . . , w n]T.

We assume that the weight of an item which is not in the observation is 

zero. An observation x  may be associated with a timestamp in which case 

we use ts(x) to refer to this timestamp. The set of values a timestamp can

6
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take (referred to as its domain) depends on the time granularity in which 

observations are sampled from real world.

D efin ition  2 (H isto ry ). A history is a chronologically-ordered sequence of 

observations denoted as:

X  (pc\ , X2 , • • •; xm)

such that ts(xi) < ts(xj) iff i < j . The length of history X ,  denoted by |AT|, 

is the number of observations in the history, here \X  | =  m.

An observation may describe the state of an object at a time point. Al­

ternatively, if we are interested in state transitions rather than the state de­

scriptions, an observation may only describe the changes. In a simple case, an 

observation can be a real value and the corresponding history is a time series. 

For instance, the history of a stock may be tracked using an indicator such as 

daily opening price. In this case, the set of items has only one member, the 

weight of which is equal to the scalar value recorded at each time instance. 

For a Web page, the set of items contains all possible terms that may appear 

in a web page. An observation can be either the content or the updates to a 

previous version and a timestamp can be the time the page is crawled or the 

changes are observed. The weight of each term in a web page could be assigned 

using the t f . idf  model [100]. The history of web pages can be organized in 

a temporal database [36] or a semi-structured collection [24, 29}. In spatio- 

temporal databases [92], an observation may correspond to the spatial location 

of a moving object, such as a car. In this case, the set of items correspond to 

the geometric coordinates and the weights correspond to the spatial location 

of the object at the time the observation is recorded. A sequence of these ob­

servations, referred to as a trajectory, gives the history of a moving object. In 

a customer database, an observation can be the set of items purchased within 

a transaction and the weight of each item in a transaction may indicate the 

importance of the item (e.g. quantity, price, profit) to the transaction.

7
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2.1.1 The Notion of Similarity

Given two histories, we are often interested in measuring their closeness or 

similarity. For instance, we may want to find the similarity of the medical his­

tories of two patients. In general, the notion of similarity can vary with queries 

and may be based on either exact or approximate occurrences of patterns in 

the two histories. A somewhat domain-independent approach to formulate 

similarity queries has been proposed by Jagadish et al. [62] where object A  is 

considered similar to object B  if B  can be reduced to A by a sequence of sim­

ilarity preserving transformations, for instance moving average for time series. 

In more domain-dependent settings, a similarity measure or a distance func­

tion is used to capture the degree of closeness of two histories in terms of the 

closeness of their observations. In this thesis, we make the assumption that 

the observations of two histories are comparable, i.e. there exist a function 

that measures the closeness of any pair of observations; such a function can 

be provided as a look-up table by a domain expert, or it can be stated in the 

form of a closed-form function such as the cosine measure [105], the Jaccard 

coefficient [100], or its extensions [113]. The distance of two histories can be 

formulated as an aggregation of the pairwise distances of their observations if 

the histories are of the same length. In general, the comparison of two his­

tories can be regarded as an alignment process and the score of an optimal 

alignment, as discussed in chapter 3, can be used to measure the similarity of 

two histories. A similarity measure is considered order-preserving when the 

similarity between two histories depends on the temporal order in which the 

observations of the two histories are recorded.

2.1.2 Similarity Queries

Consider a collection S  of objects (e.g. documents, time series, histories) 

that are represented in some feature space; for example, an object may be 

described as a set of terms or a set of points in multi-dimensional space. Let 

d(x ,y ) denote the distance of objects x , y  in S. A typical similarity query on 

the collection S  can be stated as follows:

8
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•  Nearest neighbors query: Given a query object q and integer k, find k 

objects in S  that have the smallest distances to q.

• Range query: Given a query object q and a distance threshold e, find all 

objects x  £ S, such that d(q, x) < e.

• All-pair query: Given a threshold e, find all object pairs (x, y) 6 S  x S, 

such that d(x,y) < e.

Similarity queries play an important role in both searching non-traditional 

data stored in relational databases and as a building block within different 

application domains. Here are some examples:

• in machine learning [35], nearest neighbor queries can be used to assign 

a class to an object using a majority vote among the class of its nearest 

neighbors. This classifier is simple to construct, compared to complex 

classifiers such as neural networks, and has shown to have high accuracy 

in many problems with arbitrary number of classes, e.g. [12] and [117]. 

Cover et al. [32] show that asymptotically the error-rate of a nearest- 

neighbor classifier is not more than twice that of the optimal Bayes 

classifier.

• in clustering [37, 9], range queries can be used to reduce the number of 

pairwise distance computations, which is 0 { n 2) for a collection of size n. 

The intuition is that often, computing a fraction of pairwise distances is 

sufficient to form clusters and some extra computations can be pruned. 

In particular, the authors of the DBSCAN algorithm [37] show that using 

an efficient evaluation of range queries reduces the average number of 

distance computations for clustering to O (nlogn). An all-pair query 

can be used to pre-compute the e-neighborhood of all data points to 

improve the performance of clustering algorithms.

•  in visualization [115], nearest neighbors queries can be used to construct 

a non-linear mapping of objects in a high-dimensional space with com­

plex distance functions into a low-dimensional space. A constraint on the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mapping is that the pairwise distances between objects, as well as the 

notion of neighborhood, must be relatively preserved in order to provide 

an intuitive representation.

Efficiently processing similarity queries on large databases is a major issue 

in many of these applications.

2.2 Efficient R etrieval o f Sim ilar H istories

A brute-force approach to evaluate similarity queries such as range and nearest 

neighbors queries is to perform a linear scan and to compare the query with 

all histories in the database. Although this approach is simple to implement, 

it is costly to scan a large database and perform a usually expensive distance 

computation for every record. Retrieving long histories can also be very ex­

pensive depending on the access methods employed and the size of the dataset 

(see Salzberg et al. survey of access methods for time evolving data [106]). 

For instance, for multi-version documents, often a reference-based scheme is 

used [29, 24] to represent document histories, where unmodified sections are 

replaced by links to the corresponding sections in previous versions. This 

representation preserves the logical structure of documents and can support 

temporal selection and structural projection queries. However, loading the 

history of a document can be quite challenging and even a linear scan needs to 

perform several random disk access to resolve links required for materializing 

each history.

On the other hand, computing the distance between two histories can be 

quite expensive, in particular for more robust and flexible distance functions 

such as dynamic time warping and longest common subsequence. Since these 

distance functions construct the best correspondence between the observations 

of two histories using a dynamic programming algorithm, distance computa­

tion time can dominate disk access time for complex distance functions and 

long histories. A solution is to prune the search space using an index structure, 

and to reduce the number of disk accesses and distance computations.

When objects are represented as points in real vector space and the dis-
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tance measure is Lp-norm, existing spatial index structures such as R-tree [50] 

and its variants (e.g. R+tree [109]) can be used to improve the performance 

of a similarity search. In a more general case where the distance measure is a 

metric, existing index structures proposed for metric space such as M-tree [31], 

MVP-tree [16], and the OMNI-family of access methods [42] may be applica­

ble; Chavez et al. [23] present a survey of access methods for metric space. 

However, in many real settings where objects are represented as points in 

high-dimensional space, the performance of existing spatial index structures 

degrades due to a phenomenon referred to as the curse of dimensionality1. 

Moreover, Lp-norm distances are not robust to noise and time-shifting and 

often more flexible distance functions (e.g. dynamic time warping) are not 

metric, hence existing metric space index structures cannot be applied directly. 

Several promising techniques have been proposed to address the problem using 

a filter-and-refine framework.

2.2.1 A General Filter-and-refine Framework

A general domain independent framework to speed up similarity search is 

the filter-and-refine framework [2] (also known as signature-based or GEM­

INI). The technique is originally proposed to index points in high dimensional 

space, but it is also applied to domains with computationally costly distance 

functions. The main component of this framework is an embedding which 

performs dimensionality reduction. A property of this mapping, referred to 

as the lower-bounding property, is that for any pair of objects, the distance of 

the objects in the transformed space must match or underestimate the true 

distance of the objects in the original space. In an offline pre-processing step, 

objects in the database are transformed into their corresponding features and 

the features are organized in an index called F-index (feature index) in [40]. 

Similarity queries are processed in two steps:

• In a filtering step, F-index is consulted to filter ideally a large fraction of 

the search space and to efficiently retrieve a superset of the answer set.

1In the context of indexing, the data structures scale poorly with data dimensional­
ity [122] making linear scan the only viable choice.
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• In a refining step, a more accurate but computationally expensive dis­

tance function is applied to the retrieved superset to further prune false 

positives2.

The lower-bounding property guarantees that the filtering step returns a su­

perset of the answer to a query [40]. For exact similarity queries, the result 

of the refining step is the exact answer to the query and no qualifying ob­

ject is missing. Seidl et al. [108] propose an algorithm which uses a priority 

queue to interleave the filter and refine steps to improve the performance of 

nearest neighbors queries. The filter-and-refine framework has also been used 

to support efficiently processing similarity queries over time-series for compu­

tationally expensive and/or non-metric distance functions such as Euclidean 

distance [2], arbitrary L^-norms [125], dynamic time warping [66], and general 

metric distance functions [55].

2.2.2 Similarity Queries w ith False Negatives

A variation of the filter-and-refine framework has also been proposed for sim­

ilarity search in domains where query response time is the main factor and 

missing a small number of qualifying objects can be tolerated. The idea is 

that the lower-bounding property of the embedding can be relaxed and there 

is a chance of having false negatives. Often there is no rigorous analysis on 

the number of false negatives and the embeddings are evaluated empirically 

based on their performance and effectiveness, measured in terms of precision 

and recall3. For instance, to index time series where distance is measured by 

dynamic time warping, Yi et al. [126] use Fastmap [39] for dimensionality re­

duction and the Euclidean distance in the feature space. To search for near 

duplicate documents, Broder et al. [18] propose to hash documents into com­

pact sketches and use the Jaccard coefficient to estimate the resemblance of 

documents in the feature space. To answer nearest neighbors queries, Gionis et

2false positives are retrieved candidates that are not in the result set of a query; false 
negatives are the answers to the query that are not retrieved.

3Given a query, let rel and ret, respectively, be the set of objects relevant to the query 
and the set of objects retrieved as the answer of the query. Precision and recall are defined

l r e l f ) r e t [ , \ r e l f [ r e t \
a S  |r e i |  a n Q  \rel \  ’
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al. [47] propose locally sensitive hashing where similar objects are hashed, with 

high probability, into the same (or close) locations. A number of methods have 

been proposed to embed arbitrary spaces into vector space for efficient search, 

visualization, and other data mining tasks (e.g. [15], [39], [54], and [102]). 

Athitsos [10] surveys embedding methods for similarity search in non-metric 

spaces; none of these embeddings satisfy the lower-bounding property.

2.3 R elated  W ork

Similarity search has received much attention in the database community and 

it is now a relatively mature area of research. The focus of this dissertation is 

efficiently evaluating similarity queries on large collection of histories. There 

has been a large body of work on indexing three specializations of histories: (1) 

time series where each observation is a real value, (2) multi-dimensional time 

series where each observation is a vector, and (3) sequence data where each 

observation is a character selected from a finite alphabet. In this section, we 

review related work on indexing these three types of histories and identify why 

existing solutions cannot be directly applied to general histories considered in 

this thesis, namely historical market-basket data and multi-dimensional histo­

ries, while satisfying the four main requirements mentioned in chapter 1. Sim­

ilarity search also has been studied for other data types including shapes [61], 

images [43], sets [1, 46], graph structures [53], and mixed types of strings and 

numeric attributes [63]; these other works will not be reviewed here.

2.3.1 Time series

We organize related work on querying time series into a few categories based 

on the distance function4 used, the support for shifting and noise, and the 

possibility of having false negatives. We should note that some categories may 

overlap and some works may relate to more than one category. Except for the 

methods that are based on symbolic representations of time series, the related 

work on time series to some extent take advantage of the numerical repre­

4Chapter 4 presents a detailed definition of the distance functions studied in this section.
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sentation of observations and cannot be generalized effectively for historical 

market-basket data. Also, the large alphabet size of historical market-basket 

data precludes the adaptation of the solutions based on string matching, as 

discussed in section 2.3.3. However, related work on indexing time series can 

be used to index history summaries that we derive from multi-dimensional his­

tories, as discussed in chapter 4; this explains our review of the related work.

Index ing  tim e  series u n d e r E uc lidean  d is tan ce  - The first indexing 

method for fast retrieval of time series is proposed by Agrawal et al. [2] where 

each time series is considered as a vector and the Euclidean distance is used to 

measure the dissimilarity of two time series. The authors use Discrete Fourier 

Transform (DFT) to extract features from time series, based on the observa­

tions that for most real time series, only the first few DFT coefficients that 

correspond to the first few frequencies are strong, i.e. have large amplitudes. 

Because the distance between DFT coefficients of two time series is equal to 

the Euclidean distance of the two time series due to Parseval’s theorem [84], 

the first few DFT coefficients can be used to derive a lower-bound of the true 

distance. The authors organize DFT coefficients in an R*-tree index for effi­

cient filtering. There are some other approaches where DFT is replaced with 

another transformation, for instance Discrete Wavelet Transform [85, 93] and 

Chebyshev coefficients [19].

Several optimizations and alternatives have been proposed for DFT-based 

indexing of time series [2], For instance, Rafiei et al. [96] take advantage of the 

symmetric property of DFT coefficients to derive a tighter lower-bound of the 

true distance without increasing the number of coefficients to be kept in the 

index. In another work, Vlachos et al. [120] argue that keeping the first DFT 

coefficients is not as effective as keeping the first few coefficients with highest 

energy for periodic time series.

Several other feature extraction approaches have been proposed to approx­

imate time series and to speed up similarity queries. The main idea is to seg­

ment time series and represent each segment using either a constant value (e.g. 

[38, 125, 67]) or a Minimum Bounding Rectangle (MBR) (e.g. [80, 75, 94]).
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In piecewise constant approximations [38], each time series is partitioned into 

s segments of equal length. Each segment is approximated by its mean; thus 

each time series is mapped into an s-dimensional vector. Yi et al. [125] use the 

same feature extraction approach and develop lower-bounds for an arbitrary 

Lp-norm distance of two time series based on the Lp-norm distance of their 

piecewise constant approximations. An improvement to the segmentation ap­

proach is proposed by Keogh et al. [67]; their idea is to adaptively divide time 

series into segments of potentially different lengths in order to derive a better 

approximation of time series.

On MBR approximation of time series, Moon et al. [80] move a sliding 

window on time series and extract MBR of the windows as features. In an­

other work, Li et al. [75] group similar segments of different time series and 

represent each group using a single MBR [75]. In both [80] and [75], the 

extracted MBRs are organized in an R-tree structure. Another organization 

for MBRs is proposed by Qu et al. [94] where a relational database stores the 

extracted MBRs and similarity search is formulated as pattern queries that 

are evaluated using relational operators.

Supporting shift and scale for Euclidean distance - Comparing two 

time series using their Euclidean distance is sensitive to shift and scale in both 

amplitude and time. Several transformations have been proposed to normalize 

time series before a comparison, in order to make Euclidean distance more 

robust to shift and scale. Goldin et al. [48] propose similarity transformations 

and normal forms for time series, where a time series is considered normal if 

it has a zero mean and a unit variance. Normalizing time series is performed 

in two steps; first the mean is subtracted from every value; second, each value 

of the resulting series is divided by the variance. We should mention that 

local shift and scale are not removed by such normalization. In another work, 

Rafiei et al. [97] propose a set of linear transformations that can model moving 

average and time scaling, in addition to the operations supported in [48].

In another work, Chu et al. [30] show how similar sequences can be effi­

ciently searched irrespective of differences in offset translation and amplitude
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scaling. The basic idea is to transform time series onto some shift-eliminated 

plane where vectors are invariant to linear transformations in time and scale. 

Another scale- and shift-invariant measure of similarity is proposed in [64] 

where the distance between two time series is the smallest Euclidean dis­

tance after scaling and shifting either one of the trajectories to make it as 

close as possible to the other one. Agrawal et al. [3] propose a model of 

similarity where two time series are considered similar if they have enough 

non-overlapping time-ordered pairs of similar subsequences. The model allows 

amplitude scaling and offset adjustment and unlike [30, 3], non-matching gaps 

are also considered while matching two subsequences. This makes the similar­

ity model more robust to noise and outliers.

M ethods based on sym bolic representations - Several past works use 

techniques from string matching to compare symbolic representations of time 

series. Unlike Lp-norm distances including the Euclidean distance, where two 

time series must have the same length to be comparable, most of the re­

lated work in this category can measure the distance of time series of different 

lengths. Agrawal et al. [4] propose a shape definition language to describe and 

to retrieve time series. They quantize the changes and represent each change 

by a distinct symbol which is assigned based on the difference of every two 

consecutive values. A query is stated very much like a regular expression pred­

icate over shape descriptions. To more efficiently support pattern matching, 

Huang et al. [56] index symbolic representations of time series using a suffix 

tree. Chen et al. [26] use string edit distance of symbolic representations to 

compare time series.

There are some works that combine a symbolic representation with the 

Euclidean distance. Lin et al. [76] apply piecewise constant approximation 

and represent each segment of time series using a symbol. They define a 

distance function for symbols that is a lower bound of the Euclidean distance 

of the time series. Megalooikonomou et al. [79] use vector quantization and 

define a weight for each symbol which is used in the distance computation. 

The weight of a symbol in a time series is determined based on its frequency
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in the time series, normalized by the number of time series in the database 

that contain the symbol.

In another approach, Perng et al. [91] model time series as a set of land­

marks. They consider each time series as a function which maps a time point 

into a single value. The n-th order landmarks are time points where the n- 

th derivative of the function is zero. For instance, first-order landmarks are 

local extrema and second-order landmarks are inflation points. Weights can 

be assigned to landmarks to show their importance. For instance, a weighting 

scheme may assign large weights to global extrema and small weights to local 

ones. An interesting observation is that for a properly chosen landmark, the 

similarity is invariant to shifting, uniform amplitude and time scaling, and 

non-uniform amplitude scaling. We should note that the concept of time scal­

ing considered by Perng et al. is different from dynamic time warping in that 

a transformation is applied as a fixed function to all time series in a database 

whereas in dynamic time warping, no assumption is made about the nature of 

warping.

Dynam ic tim e warping and its variants - Even though dynamic time 

warping (DTW) is a well-known technique in speech processing, Berndt et 

al. [13] seems to be the first in the database community reported using it. 

The first attem pt to speed up DTW queries is proposed by Yi et al. [126]. 

They use FastMap [39] to embed time-series into the Euclidean space, where 

classic multi-dimensional index structures can be used. Because the embedding 

does not satisfy the lower bounding property, this approach introduces false 

negatives. To speed up computations, Keogh et al. [69] compute DTW over 

the piecewise aggregate approximations of time series, but this approach can 

have false negatives as well.

Kim et al. [71] propose the first solution to exact indexing of DTW. The 

method extracts four features corresponding to the first, the last, the min­

imum, and the maximum of the time series. They propose a metric lower 

bound for DTW based on Loo-norm distance of features. Park et al. [89] or­

ganize symbolic representations of time series using a disk-based suffix-tree
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structure and provide a lower bound to filter dissimilar subsequences. How­

ever, the index size can be 1-2 order of magnitudes larger than the database 

size. Keogh [66] studies constrained DTW and constructs from a given query, 

an envelope which surrounds all possible matching points of a time series. 

Each time series in the database is divided into a pre-specified number of seg­

ments. An MBR is constructed for each segment and the set of MBRs are 

organized in an R-tree. A lower bound for DTW is introduced which oper­

ates on query envelope and MBR representations of time series. Later, Zhu 

et al. [128] propose an improvement by using the idea of piecewise aggregate 

approximation to encode query envelopes. Sakurai et al. [104] suggest a new 

lower bounding measure to approximate time warping distance with no warp­

ing range constraint. The idea is to construct a coarse representation of time 

series using some MBRs that approximate time series at several resolutions. 

The resolution of an MBR is determined by its temporal extent, which can 

vary from one (finest resolution) to the length of time series. Ratanamahatana 

et al. [99] develop a bit level representation of time series and a lower bound 

for DTW based on such representation, which can also take advantage of the 

run-length coding to improve compression ratio.

There are other variations of DTW which are more suitable for indexing. 

Chen et al. [25] propose a modified version of DTW called Edit distance with 

Real Penalty (ERP) which is robust to time shifting but not outliers. Because 

ERP satisfies the triangle inequality, it can be indexed using metric index 

structures such as M-tree [31]. In ERP, each point in one time series can 

be matched with either a point in another time series or a gap. The metric 

property of ERP is independent of the value assigned for the gap. However, 

the distance of the two time series depends on the value chosen for the gap. 

The authors also propose a lower bound for ERP which is metric and can be 

indexed using a R+tree. Bozkaya et al. [17] introduce a modified version of 

edit distance where two time series are considered similar if the majority of 

their points match. Fu et al. [44] combine time warping with uniform sam­

pling, a technique that allows global scaling of time series. They argue that 

such approach is useful in domains where time series are recorded by differ-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ent sampling rates and performing a global scaling would result into a better 

alignment. A continuous variant of DTW has been proposed [82] where points 

in one sequence can match an interpolated point in the other sequence.

Longest com m on subsequence and its variants - Das et al. [33] use the 

length of the longest common subsequence (LCSS) of two time series as a mea­

sure of their similarity. They propose an algorithm to estimate the length of 

LCSS, in order to speed up the queries. Vlachos et al. [119] first partition time 

series into sets according to their lengths and prove a weaker version of the 

triangle inequality for LCSS for each set. They apply hierarchical clustering 

to produce a tree structure for each set and the trees are used for pruning. In 

another work, Vlachos et al. [117] propose an approach with no false negatives 

when a constrained version of longest common subsequence is used to compare 

time series. The main idea is to extract bounding envelops that contain po­

tential matches of time series. As a variant of LCSS, Chen et al. [27] propose 

Edit Distance on Real sequences (EDR) which assigns penalties to the gaps 

between two matched subsequences.

Sim ilarity search w ith false negatives - The works in this group relax 

the lower-bounding property to improve performance. For instance, Korn et 

al. [72] keep the first few principal components of a time series as features to 

reduce database size and to speed up distance computations, when similarity 

is measured by Euclidean distance. However, since a lossy feature extraction 

approach is used and the lower-bounding property is not established, there 

might be some false negatives. Keogh et al. [70] take a probabilistic approach 

to sequence retrieval and extract characteristic features (e.g. peaks, plateaus, 

or troughs) to represent time series. Global shape information is represented by 

the prior probability of relative locations of individual features. A probabilistic 

model integrates local and global shape features to measure similarity.

There are some other works on constructing signatures from time series. 

For instance, Keogh et al. [68] hash subsequences of time series into bit strings. 

A distance function is developed such that, given a segment of a query and a
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bit string, it provides an estimate of the Euclidean distance between the seg­

ment of the query and any segment that can be presented by the bit string. In 

another work, Indyk et al. [59] transform segments of time series into sketches. 

Although the distance between the sketches of two segments is guaranteed to 

be bounded by a factor to the true distance between the original segments 

with high probability, in both [68] and [68], the lower-bounding property does 

not hold and there can be false negatives.

Stream ing tim e series - There has been several works (e.g. [45], [124],

[123], and [103]) on similarity search in data stream settings where new points 

are observed continuously and the goal is to monitor the stream and to find 

some predefined patterns.

2.3.2 M ulti-dimensional Time series

We organize related work in this section into two broad categories; (1) index­

ing trajectories where the dimensionality of each observation does not exceed 

4 and (2) retrieving video sequences where each observation is an image frame. 

There has been some work in spatio-temporal databases that do not fall into 

the aforementioned categories. These works, such as [92], [114], and [87] study 

topological and navigational queries and not the similarity between trajecto­

ries. They more concentrate on finding objects that are close to a query object 

at a time instant or during a period.

Indexing trajectories - The first reported work on indexing multi-dimensional 

data sequences is by Lee et al. [74], where they use the Euclidean distance to 

compare trajectories. The authors generalize a previous work [40] on time 

series and replace the piecewise constant approximation of segments with an 

MBR approximation. Each trajectory is represented by a number of MBRs 

which are organized in an R-tree. The index is probed for matching trajectories 

based on query MBRs. A heuristic similar to that of Kamel and Faloutsos [65] 

is used to segment the trajectories and to derive the MBRs. The main intuition 

behind this heuristic is to reduce the expected number of indexed MBRs that
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overlap with a query MBR. Reducing the number of overlaps can in turn lower 

the expected number of disk accesses when the index is used to filter distant 

trajectories. However, this heuristic does not provide a tight approximation of 

trajectories, in particular when the change scale in different dimensions is not 

the same, as discussed in Chapter 4. Experiments are conducted over datasets 

with the dimensionality of observations varied from 2 to 4; the scalability of 

the work for higher dimensionalities is not investigated. For d-dimensional 

histories, the dimensionality of indexed MBRs is equal to 2(d +  1). The per­

formance of index structures, including R-tree, degrades when dimensionality 

increases [108]. As another feature extraction approach, Cai et al. [19] decom­

pose each trajectory into a few time series, represent each time series by a few 

Chebyshev coefficients, put together the Chebyshev coefficients into a single 

vector, and organize feature vectors in an R-tree. A drawback of this approach, 

as well as the work by Lee et al. [74], is the use of Euclidean distance, which 

is sensitive to noise, time shifting, and amplitude scaling.

Kahveci et al. [64] map trajectories into a shift eliminated plane [30] to 

support uniform shifting and scaling, where all points of a trajectory are shifted 

or scaled by the same offset or scale factor. This approach is not applicable 

when shifts are not uniform or a trajectory is recorded with different sampling 

rates at different time points.

Vlachos et al. [117, 118] construct an index on trajectories that supports 

Euclidean distance, DTW, and LCSS using the same index structure. The au­

thors organize the MBRs of trajectories in an R-tree and probe the index using 

the MBRs of query envelop. The heuristic used to partition trajectories is to 

minimize total MBR volume, which is also used in an earlier work to index 

spatio-temporal trajectories [51]. The authors claim that the same heuris­

tic is also useful for filtering. Experiments are performed on 2-4 dimensional 

histories and the scalability for higher-dimensional histories is not investigated.

R etrieving video sequences - Several approaches have been proposed 

to extract high-level features from video sequences. However, such feature 

extractions are often lossy and can result in false negatives. For instance,
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Chang et al. [21] use as features of a video sequence a small number of key 

frames with the maximum fidelity to the original video sequence. Cheung et 

al. [28] select a few seed frames at random plus a small collection of closest 

frames to each seed. In another work, Indyk et al. [58] keep sequences of shot 

durations to summarize the activities in a video sequence.

There has been some work on representing and indexing video sequences. 

For instance, Lee et al. [73] propose a graph-based data structure where frames 

are segmented into regions and the spatial adjacency of regions along with their 

velocity and moving directions are used to separate object regions from back­

ground. The history of an object region is represented as an object graph. 

The authors cluster background and object regions to impose a hierarchical 

structure which also supports similarity search. Similarity is measured by an 

extension of the edit distance. However, this work is specialized to video se­

quences, since it explicitly decomposes a sequence into background and moving 

objects, and it is not clear if it can be applied to historical market-basket data 

and multi-dimensional histories.

In another work, Shen et al. [Ill] model video streams as sequences of im­

age frames, and measure the video similarity in terms of the number of similar 

frames between two video sequences, irrespective of the temporal ordering of 

the frames. This approach is not order preserving.

2.3.3 Sequence D ata

Approximate sequence matching is a problem that arises in many applications 

including text searching, computational biology, and signal processing [83]. 

The similarity between two strings is usually defined as the cost of applying 

a transformation that makes the two strings the same. In particular, the 

edit distance is defined as the minimum number of single character insertions, 

deletions, and replacements required to make two strings equal. Edit distance 

has been used for measuring the functional and evolutionary similarity of DNA 

and protein strings [112]. The weighted version of edit distance assigns costs 

to operations and/or characters. As an alternative to the edit distance, the 

block edit distance (e.g. Varre [116]) measures the minimum number of block
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edit operations.

Because computing the edit distance of two sequences requires constructing 

an optimal correspondence between the symbols of the two sequences using a 

dynamic programming algorithm, which becomes computationally expensive 

for long sequences, several heuristics have been proposed that trade precision 

for performance. In particular, FASTA [90] and BLAST [7] rely on the so- 

called hit-and-extend heuristic. The main intuition behind these approaches 

is that two similar sequences are likely to contain short identical substrings. 

A deterministic finite automaton (DFA) is constructed from one sequence and 

this automaton is run against the other sequence to find every identical sub­

string of a fixed length. Unfortunately, the size of the DFA grows exponentially 

with the size of the alphabet. For historical market basket data, for instance, 

the alphabet is the power set of the set of items I. Even when the number 

of items is as small as 1000, the alphabet size is ~  1.07e+301 which is large 

compared to 4 and 20 for DNA and protein sequences respectively.

To scale up accurate optimal alignments [112] to large databases, Hunt 

et al. [57] and Meek et al. [78] propose disk-based suffix trees that employ a 

dynamic programming A*-search to prune some extra computations. A suffix- 

tree is a PATRICIA trie [81] that stores every suffix of an input sequence in a 

tree. The branching factor of this tree is at most equal to the cardinality of the 

symbol alphabet which, as we mentioned, is very large for historical market- 

basket data. For integer alphabets, i.e. when each symbol is an integer in 

[l,n], Farach [41] constructs suffix-trees that scale up to large alphabets in 

time linear to alphabet size; this is still very large for historical market-basket 

data.

Wang et. al. [121] study the problem of retrieving similar event sequences 

where a match between two sequences is defined in terms of the matching 

events and the weights of the events. While this work does consider temporal 

aspects of sequences and might be applicable to histories, matches between 

observations are limited to exact matches and therefore the approach is not 

robust to noise.
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2.3.4 Limitations of Existing Solutions

We have grouped the past work on similarity queries on histories into three 

categories: (1) time series, (2) multi-dimensional time series, and (3) sequence 

data. For many real-life scenarios, as listed in Chapter 1, the history of an 

object cannot be effectively modeled as a time series. On the other hand, many 

of the solutions developed for efficiently retrieving time series take advantage of 

the numeric representations of observations and do not apply to more general 

settings where an observation is a set. Existing solutions developed for multi­

dimensional time series

1. are optimized for 2-4 dimensional histories, and

2. do not support warping and time shifting for high dimensional histories.

On the other hand, the solutions proposed for specific domains, such as in­

dexing video sequences and natural language translations, take advantage of 

specific features that can be extracted from histories. For instance, to index 

multimedia, features such as color, texture, background, and motion are ex­

tracted from histories. However, we are considering the problem in the general 

framework in which a similarity measure, which is domain independent, is used 

to capture the closeness of two histories. In this framework, existing solutions 

developed for sequence data

1. do not scale up for larger vocabularies, and

2. do not consider temporal aspects of histories.

These issues are the original motivations for the research conducted and 

reported in this thesis.

2.4 This D issertation

The focus of this thesis is on efficiently evaluating nearest neighbors and range 

queries on historical data. In particular, we are interested in similarity search 

with no false negatives because of the high risk and cost associated with miss­

ing potential answers in real life applications, such as disease diagnosis, drug
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discovery, and market investment. Two types of histories are considered in this 

thesis: multi-dimensional histories where each observation is a vector and his­

torical market-basket data where the set of items is large and each observation 

is represented more effectively as a set items.

2.4.1 Main Contributions

For historical market basket data, we propose a notion of similarity which 

generalizes the idea of edit distance to histories. Given the length and the 

score of an optimal alignment for two histories, our enumeration algorithm 

efficiently finds a set of common patterns that are observed in the same order 

in two histories, hence generalizing the concept of the longest common subse­

quence (commonly used for character strings) to histories. We propose a few 

upper bounds that help in efficiently processing similarity queries. In particu­

lar, one of our upper bounds that is non-metric, targets histories with sparse 

observations and uses an index structure to speed up our similarity queries.

For queries on multi-dimensional histories, we propose techniques for ex­

tracting summaries from histories. We show that a large class of distance 

functions can be more efficiently computed on history summaries, and that 

the distance between summaries under-estimates the true distance between 

corresponding histories. Furthermore, we derive a query-independent opti­

mality criterion for MBR approximations of histories. This approximation 

is significantly faster to derive, compared to a recently proposed alternative 

method and can improve upon a traditional volume-based splitting.

To further improve the tightness of our MBR approximations of multi­

dimensional histories, we propose a few adaptive splitting strategies. These 

strategies take advantage of the correlations between dimensions and the vari­

ance of the changes in different dimensions to improve upon traditional fixed 

splitting schemes. Our experiments show that the adaptive splitting schemes 

can improve the lower bounds for expensive distance functions and can be 

beneficial for pruning.
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Chapter 3 

Efficient Retrieval of Historical 
M arket-Basket D ata

In this chapter we introduce a new domain-independent framework for formu­

lating and efficiently evaluating similarity queries over historical market-basket 

data, where given a query history as a sequence of timestamped observations 

and the pair-wise similarity of observations, we want to find similar histories. 

We derive a similarity measure for histories, based on an aggregation of the 

similarities between the observations of the two histories, and propose efficient 

algorithms for finding an optimal alignment between two histories. To process 

similarity queries efficiently, we develop some upper bounds for our similarity 

measure and an algorithm that makes use of those bounds to prune histories 

that are guaranteed not to be in the answer set. Experimental results on real 

and synthetic data confirm the effectiveness and efficiency of our approach.

The rest of the chapter is organized as follows: the next section provides 

an example of historical market-basket data and motivates our work in this 

chapter. Background materials on sequence alignment are presented in sec­

tion 3.2. Section 3.3 presents conditional alignment and our similarity model 

for histories followed by Section 3.4 which presents our approach to process 

queries over large collections of histories. Experimental results are reported in 

Section 3.5. A review of related research appears in Section 3.6. Section 3.7 

is conclusion and the summary of our contributions.
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Table 3.1: An example showing three histories over a period of four days
hi h2 h3

Day 1 
Day 2 
Day 3 
Day 4

{a, b} 
{c, d}
{f> §} 
Ob i, j}

{b, c, d}
0 , g)
{g, h, i} 
{h, k}

{b, c, d} 
{a}
0 }
{g, h, i}

3.1 M otivating E xam ple

In a hospital, routine observations are made about patients. These observa­

tions can be made by doctors or nurses and may include general symptoms 

such as “high fever,” “rash,” “high blood cholesterol,” “bleeding,” the medi­

cations used, responses to the medications, and the medical advice given. If 

each sign, symptom, or medication is assigned a symbol, then an observation 

simply becomes a set of symbols, and the medical history of a patient can be 

described as a sequence of sets. The example in Table 3.1 shows this scenario 

for three histories over a period of 4 days. An interesting query is “find medical 

histories similar to h2.” Suppose the query returns the medical histories hi  

and h3. We expect to find some common patterns between similar histories 

so the next interesting query can be “in what respect are histories h2 and hi 

similar?” For day 1, the symbol b is observed in both hi  and h2. There is no 

common symbol for day 2 , but the two histories also share a symbol for days 

3 and 4. We can find a larger overlap between the two histories if we com­

pare days 2, 3 and 4 of hi respectively with days 1,2,  and 3 of h2 where the 

common pattern will be ({c, d}, { /, g}, { h ,«}}. Similarly, the common pattern 

with the largest overlap between h2 and h3 is ({b, c, d}, {g , h, ?})• We might 

be also interested in a common pattern that covers at least three days of h2 

and h3 (i.e. ({6, c, d}, {«}, {h})).
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3.2 Prelim inaries: O ptim al A lignm ent o f H is­
tories

Since a history is modeled as a sequence of observations, alignment techniques 

can be used to measure the similarity between two histories. An alignment, 

or more precisely a local alignment [49], is a way to line up subsequences of

two histories where each observation of a history is matched with either an

observation in the other history or a gap.

D efin ition  3 (A lignm en t). An alignment of two histories is a sequence of 

the following edit operations:

• (a —> e) denotes the deletion of observation a,

• (e —> jd) denotes the insertion of observation fd, and

• (a —> jd) denotes the matching of a with jd

where a  is an observation in one history, jd is an observation in the other

history and e denotes a null observation.

An alignment is assigned a score and this score may be used to compare 

two alignments.

D efin ition  4 (A lignm ent Score). Let a(a  -» fd) denote the score of match­

ing two observations a  and fd, with the constraint that at most one observation 

can be a null observation. The score of an alignment is defined as an aggregate 

score of the matches in the alignment.

If the aggregation function is fixed to sum, which is commonly used to

compare strings [49], the score of an alignment A  =  («! -* fdi,. . . ,  a^\  fd\A\)

is defined as:

(3.1)
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3.3 C onditional O ptim al A lignm ents

In general, it is possible to find multiple alignments between two histories, 

but we are often interested in an alignment with some desired properties. For 

instance, we may want to find an alignment with the highest score or the 

longest possible alignment1. Such properties of an alignment may be specified 

in a query in the form of some constraints on the length and/or the score of 

an alignment.

3.3.1 Limitations of the Existing Solutions

A related problem is string alignment which has been extensively studied in 

bioinformatics [107], approximate string matching, speech processing, etc. The 

Smith-Waterman (SW) algorithm [112] is commonly used to find an align­

ment with the highest score. This algorithm, when applied to two histories 

of lengths m  and n, can find an optimal alignment in 0 ( m n ) time using a 

dynamic programming approach, assuming that two observations can be com­

pared in constant time. However, there are two problems when the SW al­

gorithm is applied to histories. First, it may not be realistic to assume that 

two observations can be compared in constant time, in particular when the 

observations are long or the similarity function a  is not trivial. The num­

ber of possible observations is also typically huge, and it is not an option to 

pre-compute the pair-wise similarity between all observations, as the num­

ber of observations increase exponentially with the size of alphabet. Second, 

we may not be interested in an alignment with the highest score. Instead, 

we might be interested in an alignment of a specific length with the high­

est score or the longest alignment(s) with a score greater than a threshold. 

In both cases, the desired alignment is not necessarily an extension of an 

alignment found by the SW algorithm. Consider, for instance, the histo­

ries h2 and h3 in Table 3.1. Given a as the fraction of items common to 

two observations, an alignment that maximizes the score in Eq. 3.1 and can 

be found by the SW algorithm is ({b, c, d} —> {b ,c ,d} ,{g ,h , i}  —>• {g,h,i}).

1 excluding those matches that contain null observations
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However, if we are interested in an optimal alignment of length three, i.e. 

({b, c, d} —> {/>, c, d}, {g, h, z} —* {z}, {h, k] —> {g, h, z}), the result of the SW 

algorithm cannot be extended to find this alignment. Next, we discuss our al­

gorithm for finding the score of an optimal alignment of length /, here referred 

to as /-alignment.

3.3.2 Finding the Score of an Optimal /-Alignment

Given two histories, we want to find the score of an optimal alignment of a 

given length /. We can relate the problem of finding the score of an optimal 

/-alignment to the problem of finding the score of a shorter optimal alignment 

if the alignment scoring function satisfies the principle of optimality [11]. Let 

hi and h2 be two histories and denote an optimal alignment of the two histories 

with A*. An alignment scoring function /(•) satisfies the principle of optimality 

if for any pair of non-overlapping prefixes and suffixes of hi and h2:

f ( A * ) > f ( A ; ® A * s) (3.2)

where A* is an optimal alignment between the two prefixes, A* is an optimal

alignment between the two suffixes, and © is the concatenation operator. A 

large class of functions, including Eq. 3.1, satisfy the principle of optimality; 

a detailed discussion of these functions can be found in [11]. For the sake of 

presentation clarity, from now on we will use Eq. 3.1 as our scoring function, 

but the algorithm discussed here should be applicable to any function that 

satisfies the principle of optimality. Next, we propose a divide-and-conquer 

approach to find the score of an optimal /-alignment.

L em m a 1. For two histories X  and Y ,  let G\j be the score of an optimal

l-alignment of two suffixes {xi, . . . ,  xm) and {y j , . . . ,  yn). Then

<j(xi -»  e) +  G li+i j

a (e Vj) + Gli,j+i (3.3)

<?(xi -*% ■) +  G\f\ j+l

where 1 < / < min(m, n), i < m — I +  1 and j  < n — I + 1 . G\ j is zero for  

%> m — l + l or j  > n — / +  1 .
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Proof. When each history has only one observation, the score of optimal 1- 

alignment is equal to a(x i —> y{) and Eq.3.3 holds. Let the score of optimal 

/ — 1-alignment of (%i,. . .  , x m) and (yj, . . . ,  yn) be computed as GG1 ■ One of the 

following constructions gives an /-alignment of (xi}. . . ,  xm} and (yj, . . . ,  yn):

• Leave Xi unmatched and find the score of an optimal /-alignment of

(xj+i, .. •, xm) and (y j , . . . ,  yn). The score of this alignment is G\+lj plus

the penalty of leaving oq unmatched, i.e. a(xi —» e). Similar argument 

applies when yj is left unmatched.

• Match Xi with rq and find the score of an optimal (/ — l)-alignment of

(xi+i , . . . ,  xm) and (yj+i, • • •, yn)■ The score of this alignment is

plus the score of matching Xi with yj.

The score of an optimal /-alignment is the maximum of the score of possible 

/-alignments, thus Eq.3.3 holds. □

According to the definition of G* -, the score of an optimal /-alignment of 

two histories is equal to G(1;1, which can be found using a dynamic program­

ming algorithm which requires 0(mnl)  calls to cr(-) and 0(m n)  space. This 

approach, however, will become expensive for long histories. Therefore, we 

identify some special cases in which these time and space complexities can be 

reduced.

There are often scenarios in which the two observations cannot be matched 

if they are recorded far apart. For instance, when aligning the histories of two 

customers, it may not be reasonable to match purchase transactions that are 

recorded more than a month apart. Therefore, to preserve a temporal locality 

among matched observations, we may enforce a constraint similar to the Sakoe- 

Chiba band2 which was used in [13] to define the allowed range of warping in 

dynamic time warping.

D efin ition  5 (r-n e ig h b o rh o o d  co n s tra in t) . An alignment satisfies the r- 

neighborhood constraint if  for all matches (aq —» yj) in the alignment, obser-

2Other bands, e.g. Itakura Parallelogram [95], could also be considered.
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Figure 3.1: r-neighborhood constraint for r =  2

vation yj is recorded in the r-neighborhood temporal extent of observation X{,

i.e. \ts(xi) -  ts(yj)\ < r.

When r =  0, only observations that are recorded at the same time could 

be considered for a match. Increasing r  adds some flexibility in matching 

observations that are recorded within a time frame. Figure 3.1 illustrates 

the concept for two histories X  and Y,  when r =  2 and the index of each 

observation corresponds to its timestamp. Each match of the observations 

must be in the shaded area. For instance, observation x 2 can match with 

observations y\, y2, y?> and y\.

Our first improvement takes advantage of an r-neighborhood constraint, 

when it is present. Let X  and Y  be two histories of lengths m  and n  respec­

tively and let m  > n  (the role of X  and Y  can be interchanged otherwise). 

For r > 0, let m 2r denote the maximum number of observations in X  that 

are recorded in a time frame of length 2r. Since each observation of Y  can 

be matched to one of at most m 2r observations in X ,  the number of calls of 

cr(-) and the space requirement for computing G[ j reduce to 0 ( m 2rnl) and 

0 ( m 2rn), respectively. The improvement is significant when X  is long and 

m 2r <C in.

Our next improvement is useful if a minimum threshold is specified for the 

score of matches of an alignment. The idea is to remove observations that 

cannot participate in an alignment before running a dynamic programming 

algorithm. More specifically, given two histories X  and Y, X  is transformed
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into possibly a shorter history by removing all observations Xi in X  such that 

a(xi —» t/j) is less than the given threshold for all observations yj in Y ; a similar 

transformation can be applied to Y.  The transformations can be applied in 

two steps. First, for each observation of in X ,  a(xi yj) is computed for 

each observation yj in Y,  and x  ̂ is removed from X  if for all observation yj 

in y , a (xi —> yj) is less than the threshold. Removing observation Xi requires 

0(n)  calls to a(-). Removing all observations like x  ̂ from X  requires 0(m n)  

calls to <r(-). The same argument applies for removing observations from Y.  

Overall, to apply the transformation to X  and Y  requires 0 ( m n ) calls to a(-).

3.3.3 Finding Common Patterns of Two Histories

Further to finding a degree of similarity between two histories, it is interesting 

to find out in what respect two histories are similar. More specifically, we want 

to identify the common patterns that arise in two histories and may give rise 

to a similarity. Finding such patterns for histories is related to the problem of 

finding the longest common subsequence (LCS) for strings. However, the idea 

of only matching identical observations in LCS is too restrictive; we can hardly 

find any identical observation in two histories. Therefore, we generalize LCS 

by relaxing the condition that the matched observations must be identical. We 

do this in two phases: first, we find an alignment of a desired length and score; 

this is discussed in the next subsection. Then, we can identify the common 

items in the matched observations and construct a common pattern, referred 

to here as a common signature.

In our setting, an observation is a set. Therefore, given an alignment, 

a common signature can be a sequence of sets, each being the intersection 

of two observations matched in the alignment. The common signature for 

histories is a generalization of the LCS for strings. However, unlike the LCS, 

we are interested in finding optimal alignments that contain a desired number 

of matches since the alignment score depends on the number of matches in the 

alignment.
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3.3.4 Enumerating Optimal Conditional Alignm ents

Given two histories we want to enumerate all optimal /-alignments whose score 

is greater than a threshold s.

L em m a 2. Let X  and Y  be two histories with m and n observations each. 

For any 1 < p < I, if (xh ->■ y ^ , . . . ,  x ip yjp, . . . ,  x u ->■ yjt) is an optimal 

l-alignment of X  and Y , then it is necessary that

• (xix —*• yjl l . . . ,Xip_1 —> yj is an optimal (p — 1 )-alignment of two 

prefixes of X  an d Y ,  i.e. (aq, . . . ,  x ip_i) and (y1, . . . ,  yjp-i).

• (x ip+1 ~t yjp+i, ■ ■ ■, x g —■> Up) is an optimal (I — p + l)-alignment of two 

suffixes of X  and Y, i.e. (xip+1, .. , , x m) and (yjp+u . . . , y n).

This lemma is a direct result of the principle of optimality. To find desired 

alignments of two histories, we can first locate a match that is guaranteed 

to be in a desired alignment; we refer to this match as a pivot. A desired 

alignment then can be formed by concatenating the optimal (p— l)-alignment 

of the prefixes, the pivot, and the optimal (l —p + l)-alignment of the suffixes. 

By construction, a match (x^  —> yj ) is a pivot only if the score of the optimal 

(p -  l)-alignment of prefixes (a^, . . . ,  x ip„x) and (yu  . . . ,  yjp^ x) plus Gl~pjp is 

not less than the desired alignment score s. Note that for p — 1, the (p — 1)- 

alignment of prefixes will be empty and the pivot will be the first match of the 

alignment. Algorithm 1 conducts a branch-and-bound search to enumerate all 

desired alignments of two histories. In each step, the algorithm identifies pivots 

provided that Gl~Pj is computed ahead using Eq. 3.3 and the (p — l)-alignment 

of prefixes is available in A. All (I — p)-alignments of suffixes (xip, . . . ,  xm} and 

(Vjp, ■. ■ ,yn) that cannot contribute to form a desired alignment are pruned 

effectively. Algorithm 1 can be parametrized to find the following alignments:

1. All alignments of length I: call Enum (X ,  Y, 1,0, ()).

2. k alignments of length at least lx with the highest scores: call Enum(-)  

with the top k scores of G Y  such that I > lx, i < m —l+1 and j  < n —l+1.
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A lg o rith m  1: Enumerate
In p u t : X  = (aq, .. . , x m), Y  = (y1, .. . , y n), I, s, A
/* I and s are the length and the minimum score of desired alignment
respectively. A  is the alignment constructed so far:
(xh -> yh , . . . ,  x ip_x ->• yjp^ ) ,  initially empty */
O u tp u t: Enumerates desired alignments.

P ro c ed u re  Enum( X , Y, I, s, A )  
begin

if  1 = 0 th e n
if s < 0 th e n  return A  

L return 
if A = (} th e n

R\ 4r~ {1, . . . , 77T. — Z +  1}
f?2 { l , . . . , n  — Z +  l}

else
R\ i— {ip-1 +  1, . . . , 777. — Z +  1}
R 2 <— {ip-i + 1, • • ■ ?n — Z +  1} 

foreach {ip, j p) € Ri  x jR2 do 
if  (x^  -> yjp) is a pivot th e n

A! = A ®  (x ip —> /*concat A  & pivot*/
|_ Enum( X , Y ,  I — 1, s -  a(xip -> yjp) , A1)

end

3. k longest alignments with a score more than a threshold: call Enum(-)  

for k pairs of length and score, where the length varies from min(m, n ) 

to 1 and the score is greater than the given threshold.

Modifying Algorithm 1 to accommodate a gap constraint is straightforward; 

basically a match that violates the r-neighborhood constraint cannot be con­

sidered as a pivot. In the next section, we show how to process similarity 

queries efficiently over a large database of histories.

3.4 Q ueries over Large C ollection  o f H istories

We now consider the problem of efficiently evaluating similarity queries over a 

large collection of histories where the query is a history with two parameters r 

and Z, which respectively specify the r-neighborhood constraint and the mini­

mum length for desired alignments. A history in the database is a candidate if
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it can form an alignment with the query history such that the alignment con­

tains at least I matches and satisfies the r-neighborhood constraint. Histories 

may be regarded as points in high-dimensional space, where the dimension­

ality depends on the cardinality of the itemset /  and the length of histories. 

Since the performance of the structures proposed to index high-dimensional 

spaces degrades when the number of dimensions increases [108], ideally, we 

want to construct an index on histories using metric space structures (e.g. 

VP-tree [127] and M-tree [31]). However, this requires a metric distance3 

function. In an attempt to form a distance function from the alignment score 

in Eq. 3.1, we first define the similarity of two histories as a normalized score of 

their optimal alignments. Let A  denote an optimal /-alignment of two histories 

X  and Y,

s imAX, Y)  =   TT̂ FTTTTK- (3.4)K ’ '  min{\X\ ,\Y\)  v '
The similarity of two histories is guaranteed to be in [0,1] provided that the 

score of matching two observations always lies in [0,1]. Under this condition, 

the distance between two histories can be defined as d[(X, Y )  =  1—simi(X, Y ). 

This function in general is not metric, except under very specific settings. For 

instance when 1 — <j(-) is a metric and there is no constraint on the length of a 

match and also there is no r —neighborhood constraint, the distance function 

becomes the edit distance and is a metric. We are not sure if the distance 

function can be modified into a metric while still keeping its generality. In 

particular, the function is not a metric when 1 — cr(-) is not a metric. This can 

be proved using a counterexample; consider the case where each history has 

only one observation. Even if 1 — cr(-) is a metric, there are other cases where 

the function di(X ,Y)  is not a metric. For instance, let the score of matching 

two sets R  and S  be a(R  —> S) =  here 1 — cr(-) is a metric [107].

Consider hi = ({a},{b, c}), h2 =  ({a}, {&, c}, {d}), and h3 = ({b, c}, {d, e}).

3 A distance function d is metric if for any three objects o i, o2, and 03

1. it is symmetric, i.e. d(o i ,o 2) =  d(o2,Oi),

2. it is non-negative and d(oi,c>2) =  0 iff o\ =  o2, and

3. it satisfies the triangle inequality, i.e. d(os , 03) <  d(o \ . o2) +  d(o2, 03).
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Because hi and h2 have two equal observations in common, d2(hi,h2) = 0. 

Also, d2(h2, h3) =  and d2{h\, h3) =  1, the triangle inequality does not hold. 

Therefore, the distance between histories, as discussed above, cannot be in­

dexed, for instance using a spatial access method, in general. A straightforward 

alternative is to do a sequential scanning; but this is not efficient due to the 

large number of disk access required to read all histories and the complexity of 

comparing two histories. A B+tree index on the length of histories can filter 

those histories of length less than I which cannot be candidates. This will 

save a fraction of disk accesses and computations; however, the similarity is 

still computed for non-qualifying histories. To prune some of those similarity 

computations, we propose two upper bounds for s im i(X ,Y )  in the next sub­

section. The first upper bound is quick to compute but requires reading the 

histories. The second upper bound can be evaluated efficiently for a subset 

of the database using an index structure. In what follows, we assume that X  

is the query history and Y  is a data history in the database, with m  and n 

observations each.

3.4.1 A General Upper Bound

For each observation yi of Y . let x> be an observation with the highest similar­

ity to yi among all observations of X  that are recorded in the r-neighborhood 

of yi. In case no such observation exists, we assume that re** is the null ob­

servation (i.e. e) and have cr(xi* yj) =  0. Let Si be a set that contains I 

observations of Y,  such that for every pair of observations yt and yj , if y.t E Si 

and ijj (j S):

a(xi* -> y^ > a(xj .  -> • yj)

E xam ple  1. For two histories X  =  (x \ ,x2, x 3) and Y  =  (j/i,2/2, 2/3)5 let E jj 

be the score of matching Xi with yj, and

E -
0.2 0.5 0.3
0.4 0.1 0.1
0.8 0.2 0.3

The two observations of Y  having highest matching scores with any observa­

tion of X  are y% and y2, therefore S2 — {yi, 2/2}- For yi, aq. =  x3 and for yi,
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L em m a 3. For two histories X  and Y, u s im i(X ,Y )  defined as

f v  H i )  / o  r \us tm i(X ,Y )  — — -— -— ------r  (3.5)
mm[m, n)

provides an upper bound for simi (X , Y ) .

Informally, usimfiX, Y)  can be seen as the score of an optimal relaxed l- 

alignment. Each observation in X  could be potentially matched with more 

than one observation of Y.  The order of observations in individual histories 

may not be preserved completely in the alignment, i.e. there could be two 

observations and Xi2 in X  that are respectively matched with yj2 and yj1 

of y , such that %\ < i2 and j \  < j 2.

Compared to s im i(X ,Y •), usimfiX^Y)  can be computed in less time. Let 

ra2r be the maximum number of observations recorded for X  in a time interval 

of length 2r. The upper bound can be computed in 0 (n (ra2r +  log £) +  /) time, 

compared to 0(m2rnl) which is required to compute the actual similarity. The 

upper bound can be used to prune non-qualifying histories before a similarity 

computation.

In the case of a A; nearest neighbor (fc-NN) query X ,  a data history Y  can 

be filtered out safely when the upper bound usimfiX, Y)  is less than the score 

of the k-th best candidate found so far. Otherwise, the similarity of the history 

and the query is computed and the list of k best candidates is updated if the 

similarity is more than the score of the k-th best candidate. After processing 

all histories, the result of the query is the list of k best candidates.

In the case of a range query X ,  a data history Y  can be filtered out safely 

if its upper bound u s im i(X ,Y )  is less than the threshold of the range query. 

Otherwise, the similarity of the history and the query must be computed and 

the data history is included in the result of the query if the similarity is greater 

than the threshold.

For both types of queries, every history must be read before we can decide 

if a history can be pruned or not. In fact, the upper bound is computed
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even for histories that have no observation similar to any observation of the 

query. An interesting question is if it is possible to filter some histories prior to 

computing the upper bound. We believe that an exact answer to this question 

depends on functions a(-) and /(■). Next, we provide an affirmative answer to 

this question under conditions defined in the next section when observations 

are normalized to have a unit norm.

3.4.2 An Index-based Upper Bound for Sparse Obser­
vations

Our proposed upper bound in this section is aimed at sparse observations that 

are common, for instance, in market basket data where a transaction typically 

consists of a few items (out of the set of all possible items). Let x[t] denotes 

the weight of item t € I  in observation x. We propose an upper bound for 

simi(’) that takes advantage of the sparsity of the observations to reduce the 

number of histories that need to be scanned or compared to the query. Unlike 

usimi(-), this new upper bound can be efficiently computed using an inverted 

index on observations. In many real-life applications where only a small subset 

of the histories in the database are similar to a query, our approach turns out 

to be more efficient than a sequential scan (as shown in our experiments).

Lem m a 4. Let xffi] denote the weight of item t £ I  in observation Xj of 

history X . For history X , let I x  C I  denote the set of all items that appear in 

at least one observation of X  with a non-zero weight. cr*(xi* —* yf), defined as

coefficient.

Proof. The cosine measure and the extended Jaccard coefficient of two vectors

max

m m

overestimates a(xi* —> yf), when cr(-) is the cosine or the extended Jaccard
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x  and y are defined as
- q  ->

c  ^  _  x v
S c os i n e y E t  V )  n - > n  11 - h i

I M I 2 I M I 2
- q  -*

-a .. x y
S J ac ca rd y E  1 V ) x 1 x  +  y1 y — x 1 y

where | |f  ||2 denotes the L2-norm of vector x. For two vectors $  and Xi* of unit 

norm:

SJaccard(Xi* TVi) — Scosine(Xi* iVi)

= ^2xi*[t] ■ yt[t] (3.6)
tel

For any observation x^*:

[t] < maxj  j  £)•[£] |ts(yi) — ts(x j )| < r |  (3.7)

and similarly,

Xi*[t] > mirtj | Xj[t\ \£s(y)) — ts(xj)\ < r |  (3.8)

Replacing Xj« [£] in Eq.3.6 with the right hand side of Eq.3.7(Eq.3.8) when $[£] 

is positive(negative) and zero otherwise results into an upper-bound for Eq.3.6 

and establishes the proof. □

Lem m a 5. For two histories X  and Y , if \Y\ > I,

/  n  cr*(xi* —y u f )  .  .
Usim(X, Y ) =  — 7—- - ^ --- (3.9)

mm{m, n)

provides an upper bound for sirrii(X,Y).

Proof. While usimi{Xy Y )  considers the score of I best matches for the optimal 

relaxed /-alignment, U s im ( X ,Y ) considers |F | > I best matches. Further­

more, for each match, an upper bound of the score is considered. Therefore,

U sim (X ,Y )  > u s im i ( X ,Y ) > s im i(X ,Y) .  □

Intuitively, this upper bound is the score of an optimal relaxed alignment

that matches each observation $  with the best observation that can be con­

structed from all observations of X  in the r-neighborhood of Indeed,
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U s i m ( X ,Y ) can be computed efficiently using an inverted index that maps 

each item t € I  to a list of (h^, ts, w) triplets. Each such triplet indicates that 

item t has a non-zero weight of w in the observation recorded at timestamp ts 

for history h^.  For each query X , first the set of items I x  is extracted from 

the query and Usim(X, Y ) is set to zero for all histories Y  in the database. 

Next, for each item t e Ix , the list associated with t is scanned from the in­

verted index. For each triplet (Y,ts(yi),yi[t\) in this list, Xi*[t], the maximum 

value of Xj[t\ for all observations of X  in the r-neighborhood of is identified 

and Usim(X, Y )  is updated accordingly. To use this upper bound for a range 

query, it is necessary to retrieve a history Y  only if Usim(X , Y )  is greater than 

the threshold of the range query where X  is a query history. Similarly, for a k- 

NN query, it is necessary to retrieve a history Y  only if Usim(X, Y )  is greater 

than the similarity of the query and the A;-th best candidate found so far. In 

both cases, U s i m ( X ,Y ) can be computed using an inverted index that maps 

items to observations. Both queries can also use usimi to further prune some 

histories not already filtered by Usirn, since it overestimates usimi and there 

can be still false positives. The correctness of this approach is guaranteed by 

the fact that both U sim (X ,Y )  and u s im i ( X ,Y ) overestimate s im i(X ,Y) .

3.5 E xperim ental E valuation

We present the result of an experimental study of our approach on both real 

and synthetic data sets. We also examine some of the solutions developed for 

time series data and show why they are not applicable to the problem discussed 

in this chapter. We ran experiments to investigate both the effectiveness of our 

scheme and the efficiency of our approach of processing queries. The results 

show that our similarity measure is effective to retrieve histories with similar 

patterns and that our algorithms are efficient and scalable with the number of 

histories and the number of items. Experiments were performed on a machine 

with a single AMD/XP2600 CPU running Red Hat Linux, and all algorithms 

were implemented in C.
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3.5.1 Datasets

We used three data sets in our experiments: a real dataset (the DBLP collec­

tion) and two synthetic datasets. One synthetic dataset was generated based 

on a simple model for changes between consecutive observations of a history 

and the other synthetic dataset was generated using a modified version of the 

data generator for sequential market basket data [6].

The DBLP collection [34] contains bibliography of publications in computer 

science since 1936. We considered each journal or conference as a sequence 

of observations, each containing the set of terms in the table of contents of 

the corresponding journal issue or a conference proceeding (excluding author 

names). Terms were assigned weights using the tf.idf scheme [105]. The times­

tamp of each observation was the year that the journal was published or the 

conference was held. The history for the VLDB conference, for instance, had 

29 observations(as of March 20, 2004). From this dataset, we could extract ex­

tract 2,784 histories; we used this dataset to provide anecdotal examples of the 

naturalness of our similarity measure in finding conferences/journals related 

to a query. Each query is stated as the history of a conference or journal.

The Synthl collection contains histories of synthetic documents. We mod­

eled each document as a set of terms, which in turn, was represented using 

a bit string of length n, with a one in position i indicating the presence of 

term i and with a zero indicating the absence of the corresponding term in the 

document. We further assumed that the number of changes between two con­

secutive versions of a document (i.e. the insertion of new terms or the removal 

of some existing terms) follows a Poisson distribution [88], and that the num­

bers of changes in non-overlapping intervals were independent for all intervals. 

To make the next version of a document predictable from the current version, 

we assumed that changes follows the Gray code order, although other orders 

could also be considered. In other words, if the number of changes between 

version u* and Vi+1 is k , the bit string representation for ui+i corresponds to the 

k-th bit string that follows Vi in the gray code order. This dataset contained 

20,000  histories, n =  8 , and the first observation of each history was selected
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uniformly at random from the first 16 gray codes. For each history, the pa­

rameter for the Poisson distribution that generated the number of changes 

was selected uniformly from { 1 ,. . . ,  10}. The number of observations in each 

history was uniformly distributed in the range [32,64]. We used this dataset 

to evaluate the effectiveness of our similarity measure in retrieving histories 

that were generated using nearly the same parameters.

The Synth2 collection simulates a database of customer purchase histories. 

We used the synthetic data generator introduced in [6], but also assigned a 

hypothetical timestamp to each transaction and a weight to each item in a 

transaction. This dataset contained 8,000 histories. The number of distinct 

items was 1,000. The average number of observations in each history and 

the average number of items in each observation was 10, which is the default 

setting used in data mining experiments, e.g. [5] and [6]. For each history, 

the timestamp for the first transaction, as well as the difference in timestamps 

for two consecutive transactions, was a natural number, chosen uniformly at 

random from {1,2, 3,4, 5}. The weight for each item in a transaction was a 

uniformly distributed random number in [0,1]. Each observation was normal­

ized to have a unit norm, so that we could use the upper bound we proposed in 

Section 4.2. We used this dataset to measure the performance and scalability 

of our algorithms.

3.5.2 Effectiveness of simi

We conducted some experiments to examine the effectiveness of our similarity 

measure on the DBLP collection. We posed publications, either conferences 

or journals, as queries and retrieved a ranked list of similar publications as 

reported by our similarity measure. Similar publications share one or several 

topics of interest that change in time. Likewise, new approaches and ideas 

are mostly introduced and developed in similar publications. Therefore it is 

likely that similar change trends are observed in publications that belong to 

the same or related communities. Table 3.2 lists the result of 10-NN query 

for the VLDB, the KDD, and the AAAI conferences. As it can be seen, the 

publications are focused on topics related to databases for the VLDB, topics
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Table 3.2: 10-NN query for the VLDB, the KDD, and the AAAI conferences
VLDB KDD AAAI
VLDB
ICDE
SIGMOD
DEXA
IDEAS
IEEE TKDE
DASFAA
CIKM
EDBT
DEXA Workshop

KDD
PKDD
DaWak
ICML
CIKM
FLAIRS
IEEE TKDE
ICTAI
ICDE
ISMIS

AAAI
IJCAI
ECAI
AAAI/IAAI
FLAIRS
PRICAI
Artificial Intelligence
ICTAI
IEA/AIE
GECCO

related to data mining for the KDD, and topics related to artificial intelligence 

for the AAAI. However, this result cannot be used as a strong evidence of the 

effectiveness of simi; two similar publications may have a larger overlap in 

their sets of terms, compared to two publications which are not similar. Thus 

a question that still remains is whether the result reported in Table 3.2 can be 

obtained from the static similarity of two publications, which is solely based 

on the overlap between their term sets.

To further investigate this issue and to objectively compare simi with other 

possible alternatives in retrieving similar histories, we designed another exper­

iment where the set of terms was the same for all histories but the change 

pattern of histories were different. We generated 2, 000 queries using the same 

mechanism used to generate Synthl. We retrieved 3 ranked lists using a k-NN 

query with k =  10, based on simi (Eq.3.4) and two other measures; (1) L a s t , 

which measures the similarity between the last observations of two histories as 

bag of words, and (2) U n io n  A l l  which measures the similarity between two 

observations each formed by performing a union of all observations in the cor­

responding history. We used the Jaccard coefficient to measure the similarity 

between two observations and selected I, the desired length of an alignment, 

uniformly at random from { 3 2 ,..., 64}. Let Xq € { 3 2 ,...,  64} be the param­

eter used to generate the query and A*, i =  1, , k,  be the parameter used 

to generate the history that is ranked i-th in the answer set. Since Xq and 

Ai are responsible for the change pattern of the corresponding histories, the
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Table 3.3: Mean and Stand. Dev. of MD(Xq, k ) for 1-NN and 10-NN queries
Similarity
measure

MD(Xq, 1) MD(Xq, 10)
Mean Stand. Dev. Mean Stand. Dev.

simi 0.30 0.49 0.30 0.29
U n i o n A ll 1.81 1.69 1.90 1.14
L a s t 3.05 2.36 3.12 1.03

difference between Xq and Ai must be small for two histories having similar 

change patterns. Therefore, we evaluated the mean deviation of Aj from Xq, 

defined as

MD(Xq, k) =  S - i  1^ ~ A?l

to assess the effectiveness of the similarity measures. Table 3.3 shows the av­

erage and standard deviation of MD(Xq, k ) for the best and top 10 results. 

According to the results, A* is expected to be closer to Xq for simi, which 

in turn confirms the effectiveness of simi. Since L a s t  only considers the last 

observation of each history, there is a high chance that two histories with differ­

ent initial observations and generating parameters have exactly the same last 

observations. The major drawback of U n i o n A l l  is that the union of observa­

tions may include all the terms, which makes a history pretty much similar to 

any other history independent of the generating parameter. Moreover, L a s t  

is not sensitive to the order of observations, i.e. all the permutations of a given 

history will be treated as if they are identical.

3.5.3 Pruning Power and Efficiency

We conducted experiments to evaluate the performance of processing similarity 

queries on Synth2 dataset. Each query was a history selected randomly from 

the dataset. The parameters for each query (either &-NN or range query) are r 

and I, which specify the r-neighborhood constraint and the minimum number 

of desired matches in an alignment between a query and a data history, re­

spectively. We compared a naive scan, which reads and computes simi for all 

histories in the database, with three pruning schemes; (1) Lp uses a B+tree and 

evaluates similarity for histories that have more than I observations, (2) LUBp 

uses usimi (Eq.3.5) in addition to the number of observations to prune unnec-
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Figure 3.2: Pruning power and average query processing time for k-NN (top) 
and range (bottom) queries

essary computations, and (3) LINDp uses Usim (Eq.3.9), an inverted index 

on items, and the length of histories to read and evaluate the similarity only 

for a fraction of the histories of the dataset. Since our proposed approaches 

guarantied the returning of all qualifying histories (our upper bounds overesti­

mate simi), we measure only pruning power (the fraction of dataset for which 

actual similarity is evaluated) and query response time. In each case, the re­

ported result is the average of preforming each experiment for 200 queries with 

the cosine measure used to quantify the similarity of observations; we obtained 

very similar results when the extended Jaccard coefficient was used, hence the 

results are not reported.

In the first experiment, we selected r and I randomly from { 1 , . . . ,  4} and 

{ ! , . . . ,  20}, respectively. Figure 3.2(a) compares the pruning power for k-
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NN queries when k varies from 1 (i.e. the nearest neighbor) to 1,024 (which 

returns approximately 12% of the dataset). Using the length of the history 

results in pruning about 45% of the histories safely. Using the proposed upper 

bounds in addition to length results in a remarkable pruning. The pruning 

decreases as k increases since the similarity needs to be evaluated for a larger 

fraction of the database. The pruning reduces the response time for fc-NN 

queries (Figure 3.2(b)). Note that although we observe a better pruning for 

LUBp compared to LINDp when k < 1924, LINDp has a better response 

time showing up to an order of magnitude speed-up over the naive scan for 

nearest-neighbor queries. This speedup occurs because LINDp avoids reading 

some of the non-qualifying histories. However, the speedup comes with the 

extra cost of performing random disk accesses, which dominates the cost of 

sequential scan in LUBp when k > 192 and query selectivity5 is high.

Figure 3.2(c) compares the pruning power for a range query when the 

threshold of the query is increased from 0.005 to 0.2. Note that LU B p always 

shows a better pruning power compared to LIN D p  since LIN D p  uses an 

over-estimation of the upper bound used by LU B p . However, LIN D p  reads 

a smaller fraction of the database, and shows a better response time as the 

number of histories to be scanned decreases (Figure 3.2(d)), making it more 

efficient than LU B p when the threshold is greater than 0.05, i.e. smaller 

selectivity.

We next investigate how the parameters r  and I could affect the perfor­

mance of our proposed methods. We report only the results for nearest- 

neighbor queries; we obtained very similar results for /c-NN and ranges queries. 

First we varied r from 0 to 16 and for each r, we selected I randomly from 

[1, 20] and picked (randomly) a history that had more than I observations as 

a query. Figure 3.3(a) shows that increasing r increases the response times for 

both LUBp and LINDp. However, LINDp slows down more quickly. Note 

that both methods overestimate simi using the score of a relaxed alignment. 

The chance of matching an observation of a data history with more than one

4This is expected since Usim overestimates usimi
5Defined as the fraction of records referenced by a query (i.e. satisfying a condition)
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Figure 3.3: Average time for processing nearest neighbor queries varying (a) 
the size of the r-neighborhood (b) the desired minimum number of matches I

observation of a query increases with r, making the upper bound less tight 

and consequently increasing the response time for both approaches. However, 

LINDp is more influenced since U sim (X ,Y )  > us im i(X,Y) .

Next we changed I from 1 to 20 and selected r  randomly from [0,4], For 

each I, we randomly selected a history (from the database) with at least I 

observations as a query. Figure 3.3(b) compares the running time of a nearest 

neighbor query using LUBp and LINDp for pruning. The upper bounds em­

ployed in both methods are close to actual similarity when I is small. However, 

the number of histories with more than I observations decreases as I increases, 

which helps LUBp to reduce the number of sequential disk accesses and re­

dundant computations. For LINDp, the number of random disk accesses (due 

to using an index) does not change, but the time required for computing sim­

ilarity for histories not pruned increases, which justifies the observed trend.

3.5.4 Scalability Test

To compare the scalability of LUBp and LINDp to a naive scan, we increased 

the number of histories in the collection from 8 ,000 to 64,000 and measured 

the average query processing time for a nearest neighbor query. Both r  and 

I were selected randomly from ranges [1,4] and [1,20] respectively. As shown 

in Figure 3.4(c), both LUBp and LIN D p scale linearly, but the performance
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Figure 3.4: Average time for processing nearest neighbor queries varying (a) 
the size of the collection (b) the number of distinct items

gap between these methods and the naive scan increases with the number 

of histories in the database. In another experiment, we kept the number of 

histories fixed at 8 , 000 and varied the number of items from 256 to 4, 096. 

Figure 3.4(d) depicts the average response time of a nearest neighbor query. 

Although LUBp is not significantly affected by this increase, the response 

time for LINDp decreases when the number of items increases from 256 to 

1,024 and remains unaffected after that. This is mainly because the dataset 

becomes sparse as the number of items increases. For instance, the probability 

that two observations, each with 10 random items, have a non-zero similarity 

is 1 — n “ i- ^25?  ~  0-44 for 256 items and 0.13 for 1,024 items; LINDp takes 

advantage of this sparsity to reduce the query response time.

3.6 O ther R elated  W ork

Related research includes the work on detecting, representing, and querying 

changes. Chawathe et al. [24] propose a framework to represent changes by 

annotating the changed data using tags. A tag contains the type of change, a 

timestamp, and a reference to the modified values. Both data and annotations 

are modeled as nodes edges of a graph. The queries supported in this frame­

work have the familiar select-from-where syntax over the annotated-graph. 

Chien et al. [29] represent the history of an evolving XML document using
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another XML document. Temporal and content-based queries are supported 

on the versions or the changes of XML documents. Our work differs from the 

aforementioned work in that we focus on similarity queries on historical data.

3.7 C onclusions

We have introduced a new domain-independent framework to both formulate 

and efficiently evaluate similarity queries over historical data. Our work gen­

eralizes a few concepts including the edit distance and the longest common 

subsequence to histories. This generalization is helpful; for instance, it en­

ables us to find a common signature between histories based on their optimal 

alignments. We have developed some upper bounds for our similarity queries 

and one of our upper bounds has this interesting property that it makes use 

of an index even though it is not metric. Finding similar histories over order 

preserving data has many potential applications, of which we have considered 

historical market basket data and multi-version documents in our experiments. 

Our experiments on real and synthetic data confirm the effectiveness of our 

proposed scheme and the efficiency of our algorithms. For instance, when the 

minimum length of a match is provided, our algorithm achieves up to an order 

of magnitude speed-up over linear scan. Our contributions may be summarized 

as follows:

• A measure of similarity which generalizes the idea of an edit distance to 

histories and is useful in many practical settings. We propose the notion 

of an optimal alignment between two histories and an efficient dynamic 

programming algorithm that finds the score of an optimal alignment of 

any given length.

• An enumeration algorithm which finds a set of common signatures, given 

the length and the score of an optimal alignment for two histories. The 

common signature shows the common patterns that are observed in the 

same order in two histories, hence generalizing the concept of the longest 

common subsequence from character strings to histories.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• Two upper bounds that help in effective pruning of non-qualifying his­

tories. In particular, one of the upper bounds targets the cases of sparse 

observations where only a small fraction of items from the set of all pos­

sible items appear in each observation; such cases are common in many 

real-life applications and datasets that we have been experimenting with.
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Chapter 4

Similarity Search over 
M ulti-dim ensional Archival 
D ata

In this chapter we study efficient retrieval of similar histories where each his­

tory is modeled as a multi-dimensional time series. Our framework is based 

on the traditional filter-and-refine paradigm. We first propose a class of his­

tory summaries for filtering and then give a finer representation of histories 

for refinement. Our summaries have two important properties. First, for 

any distance function which is formulated as an aggregation of the distances 

between the observations of two histories, the summaries can be used to effi­

ciently prune histories that cannot be in the answer set of the queries. Second, 

histories can be indexed based on their summaries, hence the qualifying candi­

dates can be efficiently retrieved. To further reduce the number of unnecessary 

distance computations for false positives, we propose an approximation of his­

tories which is finer than a summary. This approximation satisfies some notion 

of optimality for pruning. Our experiments show that the combination of our 

feature extraction approaches and the indexability of our summaries can im­

prove upon existing methods for 2-4 dimensional histories and scales up for 

large databases.

This chapter is organized as follows: the next section motivates the work by 

discussing examples of similarity search over high-dimensional histories. Sec­

tion 4.2 presents a generalization of few distance functions, commonly used
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for time series, that can be used to compare histories. Section 4.3 and 4.4, re­

spectively, present our techniques to extract summaries and to derive fine-level 

approximations of histories. Our adaptive splitting techniques, which improve 

history approximations, are presented in section 4.5. We develop our algo­

rithm to process nearest-neighbors queries in section 4.6. Performance evalu­

ation and experimental results are reported in section 4.7. Related research 

is reviewed in section 4.8. Section 4.9 concludes the chapter and summarizes 

our contributions.

4.1 M otivating E xam ples

In the financial sector, the history of a stock may be tracked using indicators 

such as daily opening and closing prices, trading volume, etc. In health and 

medicine, changes to body temperature, blood pressure, heart beat rate and 

blood sugar may be recorded to monitor the recovery history of a patient. In 

meteorology, measurements such as temperature, precipitation, wind speed, 

pressure, moisture and snowfall are regularly collected (e.g. daily or hourly) 

for many earth surfaces by weather stations. Similarities between histories can 

be useful for exploratory analysis, clustering, and prediction. For instance, the 

similarities between the histories of two stocks may explain or predict short­

term and long-term trends. Finding patients with similar recovery histories 

may be useful for treatments or the trial of a new drug. Detecting possible 

similarities between the weather conditions of two regions may indicate that 

crops successfully produced in one region may also be tried in the other region.

4.2 Prelim inaries: D istan ce betw een  H istories

Let Dbase(x, y) denote a function that measures the distance between two 

points x  and y; for instance the weighted I/p-norm distance of two points 

x  and y, defined as

(4 . 1)
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where W{ is a real number, referred to as normalizing coefficient. While =  1 

for i =  1, ,d  gives the standard Lp-norm, the normalizing coefficients can 

be set to other values, for instance, to make the range of variations of all 

dimensions equal and therefore numerically comparable, or to emphasize the 

significance of some dimensions over others. The distance of two histories 

A = {d\ . . .  an) and B  = (bi. . .  bm) can be formulated as a combination of 

the pairwise distances of their points. A simple way to measure the distance 

of two histories A  and B  of the same length n is to aggregate the distances 

between their corresponding points as

Two histories may be considered similar, even if they are out-of-phase (i.e. 

one is shifted in time) or are of different lengths, for example, when histories 

are collected at different rates. The dynamic time warping [13] between two 

histories extends the histories by replicating some of their points such that 

the extended histories are of the same lengths. An aggregation of the pairwise 

distances between the matching points of the extended histories can be used 

to measure the distance of the two histories (as defined for time series [126]):

of DTW where two points can be matched only if they are recorded within a 

time interval, also called warping range [13].

An alternative measure to compare two histories is their Longest Common 

Subsequence Score (LCSS) [119]. LCSS addresses the problems associated with 

excessive matching in DTW; each point of a history can either be matched with

(4.2)

0 if both A  and B  are empty 
oo if exactly one of A  or B  is empty

D b a s e ^ b p n A l  h.pnrK  R A -+ -

m i n l  Ddtw(rest(A),B),
{ Ddtw(rest(A),rest(B))  

otherwise.V

where head(A) denotes the first point of history A  and rest(A) denotes a

history which is derived from A  by removing head(A). There is also a variant
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a similar point of the other history or remain unmatched. The similarity is 

thus proportional to the number of matched points. Given e as the threshold 

for matching points, the LCSS of two histories is defined as

otherwise.V

Similar to DTW, a constrained variant of LCSS can be introduced. A distance 

function can be defined for histories based on LCSS:

Dicss(A, B,e) = 1 -  Sicss{A, B, e)/min(m, n ).

4.3 H istory  Sum m aries

Let /  be a function from the domain of d-dimensional points to real values. 

For instance, /  may transform a point to its norm. We refer to /  as a kernel 

function, and use it to construct summaries from histories.

D efinition 6 (H Sum ). The summary of history A  =  (cq,. . . ,  an), with re­

spect to a kernel function f , is a time series denoted by hsf (A)  and defined 

as

The idea of HSum is illustrated in Fig.4.1 for 2-dimensional histories A  and 

B, when the kernel function f (x )  returns the average value of the coordinates 

of vector x. An HSum is actually a feature extracted from a history, in the 

form of a time series. Although any function can replace the kernel to extract 

an HSum from a history, we are interested in kernels that generate history 

summaries that can be used for filtering purpose without introducing false 

negatives. This requires that the distance of two HSums be bounded from 

above by the distance between their respective histories. It can be proved

/ 0 if A  or B  is empty

1 +  Sicss(rest(A),rest(B),e)
. . if Dbase(head(A), head(B)) < e

oicss{A, B, e) =

max

hsf(A)  =  [f(di)} , i = l , . . . , n . (4.3)
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Figure 4.1: 2-d histories A  and B  and their HSums

by contradiction that only the class of functions that perform non-expansive 

mapping can be used as kernel functions.

D efinition 7 (Non-Expansive M apping). Let fa and fa be distance func­

tions defined respectively in M.d and R. A function f  from to K is a non- 

expansive mapping if for all x  and y in Rd

fa ( f ( x ) , f ( y ) ) <k - f a { x , y )

where 0 < k < 1 is a constant.

If the above condition is satisfied for 0 < k < 1, then the mapping is 

said to be contractive and the constant k shows the maximum size of a con­

traction. For instance, in Fig.4.1, when the distance between two points is 

measured using L2-norm, the average function described earlier is contractive 

and k = \ j \ f2 .  The choice of a kernel function and a distance function for 

points in R depends on the distance function used for points in Rd and its
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properties. For the brevity of our presentation in the rest of this chapter, we 

assume that the distance between two points (i.e. 4>d) is measured using the 

weighted Lp-norm, which is a metric distance. We outline two possible choices 

for kernel function /  and corresponding distance function (f)

W eighted  sum. Given a weight vector w , the weighted sum of a point x  is 

the scalar wTx. If we assume that each weight re, gives the importance of a 

variable Xi, then the weighted sum would give a collective assessment of the 

variables. For instance, in the case of patients, the weighted sum may give the 

overall condition of a patient. When Wi — 1/d for i =  1 , . . . ,  d, the weighted 

sum becomes the average and measures the central tendency of a point. In this 

case, the weighted sum can be used to construct an approximation of the point 

in d-dimensional space and such approximation is guaranteed to be optimal, 

in terms of the sum of squared error. The weighted sum can also be used to 

classify points by a classifier such as Perceptron [101]. For our purpose, the 

weighted sum of a point is a kernel function that can reflect the changes along 

the dimensions of a history.

Lem m a 6. The weighted sum performs a non-expansive mapping from Rd to 

R if  f  i is set to the weighted Li-norm.

Proof. To show that weighted sum is a non-expansive mapping, we use one of 

the properties of convex functions. Let gc be a convex function defined on real 

numbers, i.e. for real numbers A1;. . . ,  Xd such that =  1> the following

inequality holds

for any set of real numbers a i , . . . ,  ad. Let x  and y be arbitrary d-dimensional 

points. Replacing gc(x) with \x\p, a convex function (p > 1), A * with 1 /d  for 

all i, and a; with Wi(xi — yf) in Eq.4.4 yields

d d
(4.4)

i=  1
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The left hand side is equal to | \  (wTx — wTy) |P; therefore the above inequality 

can be written as

The left hand side is the weighted Li-norm of the weighted sum of f  and y,
1 ~p

where the normalizing coefficient is d p .  □

M etric  space em beddings. Since tfd is a metric, we can use a large class of 

metric space embeddings as kernel functions. In particular, given a reference 

point f, the kernel can be defined as / ( f )  '=  (f>d(x,r) [55]. In the case of 

patients, the reference can be the conditions of a normal healthy person. Given 

two reference points, the kernel function can be defined as the projection of 

a point on the line that connects the two references [39]. Again in the case 

of patients, the reference points can be the conditions of two patients: one 

a normal healthy person and the other a patient in some critical condition. 

More generally, one can select a set of reference points R  and define the kernel 

function as

/ ( f )  =  minv^R{(t)d{x, y)} 

which is a special case of Lipschitz embedding [15].

P ro p o sitio n  1. All the above functions perform a non-expansive mapping 

from Rd to R i f 4>i is set to Li-norm.

4.3.1 Properties of HSums

The next theorem states an interesting property of HSums, when the kernel 

function is a non-expansive mapping.

T heorem  1. Let f  be a non-expansive kernel function. The distance between 

two HSums with respect to f  provides a lower-bound for the distance between 

their respective histories formulated as any aggregation of the distance between 

points of the corresponding histories.
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Proof. (Sketch) Because a non-expansive kernel reduces the distance between 

any two points of two histories, any aggregation of distances is also reduced.

□

The property is useful for filtering histories efficiently as the distance be­

tween two HSums can be computed more efficiently, compared to the distance 

between two histories. For instance, in Dp, for two histories A  and B  of the 

same length n,

Dp( hSf ( A) ,  hSf ( B) )  =  ( £ > i  ( / ( S , ) . / ( ? ,

\i= l

which is obtained by replacing D(,ase in Eq.4.2 with fa. Since /  is non- 

expansive, we can rewrite the right hand side as

Dp(hsf (A),hs f (B)) < y
Vi=l 

=  k ■ DP(A, B )

Therefore, the lower-bounding property holds for Dp since 0 < k < 1. For 

two d-dimensional histories of the same length n, Dp can be computed in 

O(dn) time, whereas Dp for can be computed in 0 ( n ) time for their HSums. 

Likewise, because Ddtw aggregates the distances between matched points of 

two histories, the lower-bounding property also holds. The case for Dicss is 

slightly different, because a threshold e is used to decide if two points can 

be matched. We show that the similarity of two HSums upper-bounds the 

similarity between histories, which implies the lower-bounding property for 

Dicss• When points a* and bj are matched, from the definition of Sicss and the 

non-expansive property of / ,

the reverse is sometimes not true. Sicss( A ,B ,e ) < Sicss(hsf(A), hs /(H ), k • e), 

and since the length of HSums is the same as the length of the respective histo­

ries, the lower-bounding property is established. Since HSums are time series, 

Ddtw and Dicss are computed in 0 ( m n ) time for HSums and in 0 (d m n ) time
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for the respective histories. The property holds for other distance functions 

such as ERP [25] and EDR [27].

4.3.2 Pruning Histories by HSums

HSums have two interesting properties for the purpose of pruning. First, 

because of the lower-bounding property, if the distance between two HSums is 

not less than a threshold, the distance between their respective histories also 

cannot be less than a scaled threshold. Therefore, the distance between the 

HSums of a query history and a data history can be used to avoid computing 

a more expensive distance between the query and the data history. Fig.4.1 

illustrates the lower bounding property for Ddtw and 2-d histories.

Second, since HSum is a time series, each history can be indexed based 

on its HSum using any indexing technique developed in the domain of time 

series, and there is a rich collection of such indexes. Though it should be noted 

that an HSum gives a coarser representation of a history and some patterns 

may show in the history but not in its HSum. For instance, with the weights 

set the same for all dimensions, a weighted sum remains unchanged for any 

permutations of the dimensions. This is a type of distortion that cannot be 

detected using HSums. The amount of this distortion directly depends on 

the kernel function used. The next section presents a finer representation of 

histories; we will use this finer representation to further prune false positives 

that cannot be pruned based on their HSums.

4.4 A  Finer A pproxim ation  o f H istories

We consider approximating a history using a set of MBRs which encloses all 

points of the history. This representation, also commonly used for organiz­

ing spatial and spatio-temporal objects ([86, 40, 74, 51]), provides a concise 

abstraction for histories. The set of MBRs of a history, in general, preserves 

trends in individual dimensions of a history with a higher resolution than its 

HSum. Moreover, for a large class of distance functions, including Dp, Ddtw, 

and Dicss, the distance between two histories can be underestimated efficiently
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by the distance between their MBR representations (e.g. [74, 66, 117]). In

this section, we propose a criterion to derive a finer approximation of histories 

optimized for pruning.

4.4.1 M BR-based Approximation of Histories

To approximate a history A = (a \ , . . .  ,an) as a sequence of k MBRs spread

along the time axis, a splitting algorithm must be used to divide A  into k

consecutive and non-overlapping segments. Let s* and e*, respectively, denote

the indexes of the first and the last points of segment i. By construction,

Si =  1, efc =  n, and s;+i =  ej +  1. Let at[r] be the value of point t of the history
—* *—̂

at dimension r. Segment i of the history is approximated by A  =  (si,ei,li,hi) 

where

li[r] = min{at [r}} s{ < t < e*

hi[r] =  max{at [r]} < t < e*

for 1 < r < d. A{ is a hyper-rectangle which tightly encloses all points 

falling in segment i. There are Q lj)  possible ways to decompose A  into 

k consecutive and non-overlapping segments, and as a result there are that 

many representations of the history. Among all possible representations, we 

are interested in the one which can be used more effectively for the purpose of 

filtering. Let A k denote an arbitrary representation of A as a set of k MBRs. 

Because the distance between the MBRs of two histories is a lower-bound of 

the distance between the two histories, finding the optimal approximation A k 

can be stated as an optimization problem: find A k which minimizes distance 

approximation error.

When the query history is provided, a straightforward approach to find
A k can be developed as a dynamic programming algorithm. However, often 

the splitting is performed in a pre-processing step; therefore the algorithm 

to derive A k must be independent of the query. Another approach, which 

has been used extensively for indexing spatial and spatio-temporal objects 

(e.g. [51, 117, 74]), would consider total volume of the MBRs as a criterion 

for an optimal splitting. However, this approach produces MBRs that are
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optimal for indexing but not for pruning. Anagnostopoulos et al. [8] give a 

more effective solution for this problem under the assumption that queries are 

selected from the set of histories to be indexed. They propose a global distance- 

based segmentation algorithm to approximate histories aiming at preserving 

all pairwise distances. However, the splitting is both costly to derive and is 

only optimal for static collections; it is not possible to predict the effectiveness 

of this approach in a more realistic setting where queries are not selected from 

the given dataset.

4.4.2 Our Optim ality Criterion (uDAE)

Suppose the distance between two histories is measured using D(-) .  Given 

a query history Q,  an MBR approximation A k of history A  is optimized for 

pruning if it minimizes the distance approximation error defined as

where D ( A k, Q)  is the minimum distance between Q  and any history that can 

be approximated using A k\ therefore D ( A k, Q ) is a lower-bound of the true 

distance of A  and Q.  Because finding an A k that optimizes Eq.4.5 requires 

knowledge of query Q,  we propose an upper-bound for D A E ( - )  which can 

be minimized independent from Q  and therefore can provide a near-optimal 

approximation of history A.  For the brevity of our discussion, we assume that 

the distance between two histories is evaluated using their Li-norm, however, 

our approach should be generalized to Lp-norm distances as well. Replacing 

D(-)  in Eq.4.5 with Li-norm gives

where D base(Aj ,  cfc) denotes the distance of point g* to MBR A y  Let N c(x, Aj )  

and N f ( x , Aj )  be two points inside MBR A j  with respectively the closest and 

the farthest distances to x,  in terms of D base (as depicted in Fig.4.2 for two 

points qi and a, and MBR Aj ) .  For any query point qt and any MBR A y  the

D A E ( A ,  A “, Q )  =  D ( A , Q )  -  D ( A ‘ , Q) (4.5)

k e?
(4.6)
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N f a t,A]}

Figure 4.2: N c(qi,Aj) and N f(d i ,A j ) for two points qi and cq and MBR Aj  

metric property of Dbase implies that

Dbase(Aj, qi) Dbase (iVc(5jj Aj) , qi)

^  Dbase{^ij Qi) Dbase {Nc{,Qii ■^■3)1 ® i )

^  Dbase(, îi Qi) Dbase (iVj(cij, ®i) •

Note that Dbase (Nc{qh Aj),qi) > \ D base(di,qi)- D base (Nc(qi, Aj),di)  |, but be­

cause Dbase(ai,qi) is not less than Dbase(Nc(qi,Aj),di), it is safe to remove 

| • |. Replacing Dbase(Aj,qi) in Eq.4.6 with its lower-bound derived in Eq.4.7 

provides an upper-bound for distance approximation error, denoted by uDAE1 

for short
k ej

u D A E ( A ,A k)  =  £ £  D b a se  Aj), di) .
j=1 i=Sj

The same criterion can be used to derive a near-optimal splitting when the 

distance function is D^w and Dicss: we consider D(u/W here and omit the ar­

gument for Dicss f°r brevity. From Eq.4.7, the error of matching point di in 

history A  with any point of history Q is at most Dbase(Nf(di,Aj),di).  Let 

n(di,Q) > 1 denote the number of points in history Q which are matched 

with point o* in history A. An upper-bound for distance approximation error 

can be formulated as a weighted sum of the errors of individual matches, i.e.

k ej

T ,  y  n(di, Q) ■ DbaSc (Nf{di, Aj), di) (4.8)
j=1 i-sj

Often a warping constraint is employed to restrict n(di,Q) from above to a 

warping range to. This is because a full length warping is not often desired

*uDAE is pronounced Yoda as in the Star Wars movie.
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Figure 4.3: MBRs of a 2-d history; one with minimum volume (left) and one 
with minimum uDAE (right)

and might result into unrealistic matches [95]. Thus, n(a,,<3) could be mod­

eled as a discrete random number that takes its value uniformly at random 

from We replace n(ai,Q)  in Eq.4.8 by E\n(di,Q)\ to derive the

expected value of Eq.4.8 as (^4^) • uDAE(A,  A k), which can be optimized for 

A k independent from u>.

An interesting property of uDAE is that a near-optimal MBR approxima­

tion of a history can be derived for Dpi Ddtw, and Dicss distance functions, 

independent from a query. Similar to volume, uDAE can be computed locally 

for each history and therefore, it is straightforward to develop a dynamic pro­

gramming algorithm similar to DPSplit [51] to find optimum A k in 0 ( k n 2) 

time where n is the length of history A. On the other hand, uDAE has some 

interesting properties, when compared to volume, as discussed next.

4.4.3 uDAE Compared to  M B R  Volume

Minimizing total volume, in general, does not lead to an optimal representation 

of a history in terms of approximation error. Fig.4.3 presents two approxima­

tions of the same history, one derived by minimizing total volume and the 

other derived by minimizing uDAE. If a history shows no change along one or 

more dimensions within an interval, an optimal strategy with respect to total 

MBR volume is to assign a single MBR for the whole interval. This is because 

the total volume for any possible splitting of the history in that interval is the 

same (i.e. zero); this is shown for MBR 1 in Fig.4.3(left). This is a serious
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problem for approximating histories in particular when d is relatively large and 

points are sparse. Each history often has segments where the points are not 

distributed along all dimensions, hence the intrinsic (or real) dimensionality of 

the history within those intervals is less than d. The same intervals are approx­

imated by more tight MBRs when uDAE is minimized in Fig.4.3(right). The 

same problem is observed for histories when changes happen in all dimensions 

but there is a big variance in the degree of the changes; this is shown for MBRs 

7 and 10 in Fig.4.3(left). A representation that minimizes the total volume is 

expected to give a more accurate description of the changes in dimensions with 

smaller variance. Unlike volume, uDAE is minimized only when the MBRs are 

as tight as possible; hence uDAE generally provides a better approximation 

of histories and it is not affected by intervals which produce trivial splittings 

when volume is used. A better approximation of histories is expected to im­

prove both the tightness of the lower-bounds and the effectiveness of pruning, 

as shown in our experiments (Sec.4.7).

4.5 A d aptive Sp litting  o f H istories

The MBR approximation presented in the previous section adopts a fixed 

splitting policy where the same splitting intervals are considered for all dimen­

sions of a history. With a fixed splitting policy, we need to maintain for each 

segment, the minimum and the maximum values along each dimension, and 

the ending point of the segment. Because the MBRs of each history are stored 

sequentially in our scheme, there is no need to keep the starting points. There­

fore, an approximation A k requires k(2d + 1) features to maintain. Naturally, 

increasing k will result into a better approximation of the history, measured in 

terms of uDAE. However, given a fixed amount of space for an approximation, 

a major concern for high-dimensional histories is to make a clever use of the 

space by finding the best possible approximation. A straightforward approach 

is to apply data compression techniques [129] to reduce the space requirement 

of Ak, hence increasing k indirectly. However, if we could find a better split­

ting of a history, without increasing k, we would also benefit from compression
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algorithms.

A fixed splitting policy would be a desirable property if MBRs are to be 

stored in a spatial index structure. For histories of higher dimensionality, 

MBRs generally cannot be efficiently indexed due to the large number of fea­

tures [108], and there is no justification for a fixed splitting. Fixed splitting 

may even be ineffective, for instance, when changes are observed on a subset 

of the dimensions or the absolute values of the changes on several dimensions 

are not correlated. For instance, in our patient example, the body temper­

ature may remain constant within a time interval while heart beat rate and 

blood pressure change similarly. In such cases, a fixed splitting is not a clever 

strategy. This motivates us to look for more adaptive and data-aware splitting 

strategies.

Let D =  ( l , . . . , d )  denote the set of dimensions and M  be the space 

available to store the MBRs of each history. The adaptive splitting can be 

stated as an optimization problem: find an approximation A  of history A, 

such that A could be stored using M  features and uDAE(A,  A) is minimized. 

An approach closely related to our adaptive splitting is Adaptive Piecewise 

Constant Approximation (APCA) [20] where the split points are adjusted to 

derive an optimal approximation of time series. However, we consider a more 

general case for high-dimensional histories where the number and the position 

of split points can change for different groups of dimensions of a history, thus 

we can improve upon APCA, if extended to histories. Our heuristics consider 

the correlation between dimensions and the similarity of their change trends 

to improve upon an optimal fixed splitting scheme.

4.5.1 Variable Splitting

When the variances of the changes along all dimensions are not the same, a 

fixed splitting may over-allocate the split points to dimensions with less or no 

changes; this is typically for the cost of under-allocating the split points to 

dimensions that can use more split points. Our first heuristic partitions the 

set of dimensions and considers a different number of splitting points for each 

partition. Moreover, split points are placed in each partition independent from
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Figure 4.4: Optimal fixed splitting, change trend, and variable splitting

other partitions. We illustrate the main idea of this heuristic in Fig.4.4 where 

an optimal splitting of a 4-d history using 8 MBRs is shown. The change 

trends, or more precisely the magnitude of significant changes, depicted in 

Fig.4.4 (explained later in this section) indicate that dimensions { w , y }  ex­

hibit similar change patterns. Likewise, dimensions {x,z} have similar change 

trends. Our first heuristic is to examine the projections of a history on disjoint 

subsets of dimensions, and split each projection independently. For instance, 

the history shown in Fig.4.4 can be projected on two subsets {re, y }  and {x, z } ,  

because of the similarities in change trends of the respective dimensions. We 

use the following definitions to formalize our variable splitting heuristic.
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D efin ition  8 (Induced  H is to ry ). Let Di be a non-empty subset of D. The 

induced history i r ( A, Di )  is a history derived from history A by removing all 

dimensions in P  — D i .

D efin ition  9 (V ariable S p littin g ). Let { D i , . . . ,  Dp} be a partitioning of the 

set B; i.e. Di fl Dj = 0  for i ^  j  and lfi=lDi — P. A variable splitting of 

history A is defined as a set P  =  {(Rfi, Aq),. . ., ( Dp, kp)} where ki is a natural 

number and the pair (Di,ki ), 1 < i < p, indicates that the induced history 

iv(A,Di) is approximated using ki MBRs.

With this definition, a fixed splitting becomes a special case of variable split­

ting where P  — {(B, k)}. Each pair (Di, kf) specifies the number of MBRs to 

be allocated for induced history n(A, Df). The split points for each induced 

history have to be determined independently from other induced histories by a 

splitting algorithm that minimizes a cost, such as uDAE or volume. A variable 

splitting P  could be used to derive A(P),  a unique approximation of history A, 

in 0(\P\k)  time where k is the average number of MBRs of induced histories. 

The optimal variable splitting policy must minimize uDAE(A,  A(P)), subject 

to space constraint, i.e.

£  ki(2\Di\ + l) = M. (4.9)
(Di,ki)£P

It should be noted that extra space must be allocated to store (Di, kf) infor­

mation; we consider this extra space in more details in section 4.7.4.

L em m a 7. An optimal adaptive splitting is guaranteed not to do worse than 

a fixed splitting policy.

Proof. (Sketch) Since the search space for an optimal adaptive splitting policy 

is a superset of the space searched for the fixed splitting, the claim follows. □

An exhaustive search to find an optimal variable splitting is computation­

ally prohibitive, since all possible partitioning of B into nonempty subsets need 

to be constructed and for each partitioning, the optimal number of splittings 

dedicated for each partition must be determined. The number of possible par­

titioning of B into non-empty subsets is B d, the bell number2, which is equal 

2 Bo =  B 1 =  1 an d  for d >  1, B d+l -  £ t o  Bi( f )
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to 115, 975 for d — 10. Because performing an exhaustive search becomes in­

efficient when d > 10 for large databases, we exploit a simple heuristic which 

considers only one partitioning of O. To form this partitioning, we use a clus­

tering that groups the dimensions that are likely to benefit from the same 

splitting points into the same group. As the criterion of clustering, we use the 

similarity between the change trends of dimensions.

Extracting Change Trends

Extracting change trends involves three steps. First, for each dimension, the 

sequence of changes is extracted as a time series. The value of this time series 

at time f * is the value of the change for the corresponding dimension from time 

U to ti+1- Second, a change at time is considered significant if the magnitude 

(i.e. absolute value) of change is a  standard deviation greater than the average 

magnitude of changes in a window of length w centered at otherwise we set 

the change to zero. Finally, significant changes are smoothed using a moving 

average window of length w to derive change trends. Fig.4.4 illustrates this 

process for a 4-d history. We used a sliding window of length 7 (resembling a 

week) and set a — 1.5, as set by Vlachos et al. [120] in a similar experiment.

Finding an O ptim al A ssignm ent

Given a partitioning {D \ , . . . ,  Dp} of B, we want to assign the number (and 

the position) of splitting points for each induced history. The brute-force 

approach would consider all possible assignments of kh i = which

satisfy Eq.4.9. For each assignment, a separate dynamic programming algo­

rithm, which we refer to as DPSplit(uDAE), must be performed to find the 

positions of the splits. After the split points for each induced history is de­

termined, the corresponding A (P ) must be constructed and uD A E(A , A(P)) 

must be evaluated to identify and keep an optimal variable splitting. Since 

each call to DPSPlit(uDAE) algorithm requires 0 (k in 2) time, the brute-force 

approach is not efficient as it calls DPSplit(uDAE) once for every assignment. 

The search can be formulated as a dynamic programming algorithm where the
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optimal splitting of n( A,  Di) into k i ~ \  MBRs can be computed directly from 

the matrix which was computed for finding the optimal splitting of n( A,  Di )  

using ki points. By induction, only one call is required for each induced history 

tt(A  A)> f°r ki set to

M -  E '= ,m i + 1)
.-------2|g,| + 1 J  '  3 ( 4 M )

which is the maximum number of MBRs that could be allocated to 7r(A,Di), 

when only one MBR is assigned for each induced history 7r(A, Dj ) ,  j  ^  i. A 

branch-and-bound algorithm could be developed to find an optimal assignment 

of MBRs for a given partitioning. This, combined with our heuristic used to 

examine only one partitioning of B as discussed earlier, gives a near-optimal 

variable splitting of a history. We omit the details of the algorithm here for 

brevity.

4.5.2 Superimposed Encoding

With a variable splitting strategy, each induced history 7r ( A, Di )  is approxi­

mated by a sequence of MBRs corresponding to |A|-dimensional segments. 

In some cases, however, there is a high similarity among the dimensions of 

an induced history and this similarity could be used to significantly reduce 

the size of encoding. Note that such similarity may have a low support over 

the whole dataset, therefore traditional dimensionality reduction techniques 

might not consider it significant. However, an adaptive splitting scheme can 

take advantage of such, rather local, similarity to reduce the space required 

to encode the MBRs of induced histories. In Fig.4.5, for instance, dimensions 

{ w,  y }  show a great degree of similarity. In order to reduce the number of 

required features, i r ( A , { w , y } )  can be represented by a set of MBRs, where 

each MBR has one minimum, one maximum, and one temporal extent, as 

depicted in Fig.4.5(bottom and left). As a comparison, a fixed splitting of 

7t(A, { w ,  y } )  using ki MBRs requires 5ki features whereas in our superimposed 

encoding, only 2>ki features need to be kept. The saving is the result of impos­

ing similar dimensions into one representative which is decided adaptively for 

different MBRs. This saving would allow us to virtually increase the number
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Figure 4.5: Optimal fixed splitting and superimposed encoding

of splits while keeping the space requirement the same. Increasing the number 

of splits is expected to produce a better approximation of the induced history. 

For instance, in Fig.4.5, an improvement is observed in the representation of 

dimension x(z) in interval [30 — 52],

The approach discussed for variable splitting can be easily modified to im­

plement our superimposed encoding; since similar dimensions are represented 

by one dimensional MBRs, |_Dj| in Eq.4.9 is replaced by one to derive space 

constraint. The setting of maximum value for ki in Eq.4.10 should be modi­

fied, alternatively, to j and the partitioning of D must be performed

based on the similarities of dimensions instead of their change trends3.

Our idea of superimposed encoding has similarities with Skyline Bounding 

Regions (SBR) of Li et al. [75], but the two are different. While SBRs are built

3Note that two time series with similar change trends might not show a strong correlation, 
in general.
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on multiple time series that are similar but may have no other relationships, a 

superimposed encoding is done on a partition, which includes similar dimen­

sions, of a single history. Also Li et al. use the area of SBRs to find their best 

approximations while we use uDAE because of its advantages for pruning as 

discussed earlier and confirmed by our experiments.

4.6 Sim ilarity Search for H istories

We are now ready to present our algorithm for processing nearest-neighbors 

queries. Our algorithm uses an index over HSums which are 1-d time series. 

Leaf nodes of the index contain both HSum and uDAE-MBR approximation of 

data histories, whereas internal nodes are built based on HSums. Fig.4.6 gives 

an example of a multi-step nearest-neighbors search algorithm [108] which 

performs filtering using the index (line 1-5) and pruning based on uDAE-MBRs 

(line 8). The algorithm first retrieves k histories that have most similar HSums 

to the HSum of the query. For each retrieved history, r is computed as an 

upper-bound of the distance of the query and potential candidates. Given the 

non-expansive property of the kernel function, for all histories H  in the answer 

set of the original query, it must hold that D (hsf(H ), hsf(Q )) < r; hence, the 

algorithm performs a range query on the index on HSums to retrieve a superset 

of the qualifying histories. Some false positives are pruned by comparing H  

with Q using £>«,, where H(Q) is the uDAE-MBR approximation of history 

H(Q) and Dib(H,Q) is a lower bound of the distance between H  and QA. 

True distance are computed to prune false positives which are not pruned 

using HSum index and uDAE-MBR approximations.

4.7  E xperim ental Evaluations

This section presents the result of an experimental evaluation of our algo­

rithms on both real and synthetic data. First we compare the efficiency of our 

splittings and the quality of our generated MBRs with a related and recently 

proposed splitting algorithm [8]. Second, we compare our splitting algorithm 

can be any function that lower-bounds D(-)  e.g. [117].
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A lgorithm  2: K-NN Search
Input: A d-dimensional history Q as query 

An index constructed on HSums 
Output: k most similar histories to Q

Pre-processing:
Apply kernel function /  on Q to extract hsf(Q). 
Apply adaptive splitting to obtain Q.

Search:
(1
(2
(3
(4
(5
(6
(7
(8
(9

(10
(11
(12
(13
(14

Find &-NN of hsj(Q ) using the index.
Let % be all records in the result set.
Let r  be the largest value of D {H , Q), H  G H. 
Perform a range search for hsf(Q) and range r. 
Read H  for all records in the result set.
Initialize Topk list to the first k records.
For each H  in the result set 

If Dlb(H ,Q ) > Topk.dist 
Prune H  

Else
Read H  the full history corresponding to H. 
Compute D(H, Q); update Topk list if required 

Endlf 
EndFor

Figure 4.6: Algorithm for k-NN search

with the traditional volume based splitting in terms of the tightness of the 

lower bounds. Third, we investigate the effectiveness of our adaptive splitting 

heuristics in improving the quality of MBRs measured by uDAE. Finally, we 

study the efficiency of our algorithm in terms of its pruning power, running 

time, and scalability with database size. Experiments are performed on a 

machine with a single AMD/XP2600 CPU, 512MB RAM, running Red Hat 

Linux.

4.7.1 D atasets

Four dataset collections were used in our experimental study:

The Reall collection contains a number of real datasets from UCR time
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Table 4.1: Summary of ReaI2 datasets
ASL Marine VT1 VT2 Word

Dimension 3 2 2 2 4
Size 6,756 4 15 23 2,381
Avg. length 58 128 151 543 178

series archive5, including those used in [8], spanning over a wide range of areas 

including computer networks, medicine, robotics, and random walk. Each 

dataset consists of 50 time series of length 512 each.

The Real2 collection consists of a few datasets of 2-4 dimensional histories. 

Table 4.1 provides a summary of the datasets in this group. These datasets 

have been used in the related work on indexing multi-dimensional time series 

(e.g. (117]).

The Web collection contains the history of a sample of the Web as a collec­

tion of 17-dimensional histories. We used Google Directory6 to get a sample 

of highly ranked web pages. Google Directory organizes web sites by their 

categories in a hierarchical structure. Each node in the structure contains a 

set of links to other nodes, as well as a list of web pages and a descriptive 

text for each page. In each node, the web pages are ordered according to their 

PageRank. We crawled the first five levels of this directory and extracted a set 

of descriptive terms for each of the 17 categories (e.g. Art, Business, Sports, 

etc.). The set of descriptive terms for each category included all terms that 

appeared in the text description of any node that descended from the cate­

gory within the crawled data. From the crawled data, we collected the URL of 

11, 328 web sites; these are links to external web sites within the first five levels 

of Google Directory. We checked the change history of these pages in Internet 

Archive [60}. For most of the web pages, either the page did not change in 

the specified period or few versions of it (less than 50) were stored in Internet 

Archive. To focus our experiments on pages that changed more often, we de­

cided to crawl those with at least 50 different versions in the first six months 

of 2004 from Internet Archive. This provided us with 1,191 histories of web

5h ttp ://w w w . cs.ucr.edu/~eam onn/T SD M A /
6http ://directory.google.com/
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pages. We crawled all versions of these pages and mapped each version into a 

point in a 17-dimensional space. The mapping showed the degree of overlap 

between the content of each version of a page and the descriptive terms of each 

category. The result after this mapping was a set of 17-dimensional histories 

that showed the change patterns of 1,191 pages over this interval. The average 

number of versions for each web site was 81.

The Synthetic dataset simulates a large archive of 17-dimensional histo­

ries, which was constructed to investigate the scalability of our approach on a 

large and realistic dataset. We used the Web dataset as a seed set and gener­

ated multiple copies of the histories in the seed by applying a combination of 

four operations: permutation, time shifting, compression and insertion of new 

points, thus increasing the number of histories in the dataset. Permutation 

randomly changes the order of dimensions of a history. Time shifting intro­

duces a random shift r  in time. Compression selects a random segment and 

replaces it with a single point which is the average value of that segment. New 

points are inserted at index t. The inserted point was set to the average of 

the points at index [t — w, t). A combination of compression and insertion can 

increase or decrease the length of histories. We selected r  from [1,5], t from 1 

to the history length, and w from [1,10], all uniformly at random.

In a pre-processing step, we normalized all histories so the mean for each 

dimension was zero.

4.7.2 uDAE-based vs. Distance-based Splitting

We investigated how a splitting algorithm which minimizes uDAE could be 

compared with a related algorithm [8] which performs a global distance-based 

segmentation of histories, aiming at maximizing pairwise distance preserva­

tion. Since the exact solution of the proposed approach in [8] could not be 

applied to even a database of moderate size, due to its intractable complex­

ity, Anagnostopoulos et al. propose a greedy solution that preserves closely 

the sum of pairwise distances; we refer to this approach as AVHKY and com­

pare it with a dynamic programming algorithm based on DPSplit [51] which 

minimizes total uDAE for histories (our approach). To be in-line with the ex-
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Figure 4.7: Average tightness and split time

periments performed in [8], we used the same datasets (Reall) and Euclidean 

distance to compare histories.

To imitate a real similarity search in which queries are not selected directly 

from the indexed data, we partitioned each dataset and used one-fourth of 

data as queries and the rest as data to be indexed. For each query, we set the 

number of MBRs to 10% of the length of the query. Similar to AVHKY, we 

set the number of MBRs for the collection to be split equal to 10% of the total 

sum number of observations in the collection. We wished to split each query 

using the same approach used to split the corresponding dataset. However, 

since AVHKY could not be used to independently split a query, we split each 

query by minimizing volume, to avoid being biased to any of the two methods. 

For each query and data history pair, we measured tightness as the ratio of 

estimated distance over true distance; a tightness closer to one indicates a 

more distance preserving splitting.

Fig.4.7 shows average tightness and split time for Reall collection. In
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general, our approach performed very close to AVHKY in terms of average 

tightness. However, as we expected, uDAE-based splitting had a significantly 

better running time. This is because uDAE is a local measure which, for each 

history, can be computed independently from other histories, whereas AVHKY 

computes the distances for the corresponding segments of all pairs of histories 

in the dataset in order to make a decision on merging consecutive segments of 

each history.

4.7.3 uDAE-based vs. Traditional Splitting  
Tightness o f Lower-bounds

We investigate how a uDAE-based splitting scheme could be compared with a 

volume-based approach [51], w.r.t. the tightness of the lower-bounds proposed 

in [117]. The only similar comparison, which we are aware of, is reported by 

Anagnostopoulos et al. [8] for time series and Euclidean distance; we consid­

ered high dimensional histories in Real2 and Web datasets with more flexible 

distance functions. We split each history individually; the number of splitting 

points for each history was set to 10% of its length. To measure Euclidean 

distance between histories of different lengths, we truncated the longer history 

at the end. For Ddtw, the warping range was set to 5% of query length and 

for D[CSS, e was set to 25% of the query standard deviation, as both are sug­

gested in [117]. Table 4.2 reports average tightness computed for fifty histories 

selected uniformly at random from each dataset. Even though uDAE mini­

mizes an upper bound (instead of the exact value) of distance approximation 

error, we observed that for most datasets and distance functions, using uDAE 

made estimated distances closer to true distances, thus it is more effective for 

pruning.

Right N um ber of M BRs

Finding the right number of MBRs is an important issue in MBR approxi­

mation of histories. A heuristic for finding this number is proposed by Had- 

jieleftheriou et al. [52]. The main idea is to increase the number of partitions 

of a history and monitor the reduction in the total volume of MBR approxi-
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Table 4.2: Average tightness of lower bounds
Asl Marine VT1 VT2 Word

Deuc volume 0.42 0.73 0.87 0.84 0.50
uDAE 0.49 0.75 0.90 0.89 0.56

Ddtw volume 0.50 0.64 0.76 0.75 0.44
uDAE 0.54 0.65 0.77 0.77 0.46

Dlcss volume 0.53 0.69 0.82 0.70 0.48
uDAE 0.58 0.71 0.82 0.75 0.54

mation and fix the number of MBRs to a point where volume reduction is no 

longer strong. The same heuristic can be used to find a proper value for the 

number of MBRs when uDAE is used because uDAE, like volume, is a mono- 

tonically decreasing function of the number of MBRs. In this experiment, we 

investigated how the history approximation improved with k 1 the number of 

MBRs, for Web and Word (Real2) datasets. Let Vi and u\ be, respectively, 

the total volume and uDAE of the histories in the dataset when a single MBR 

is assigned to each history. We increased k from 20 to 450 and for each k , 

we derived an optimal approximation of the histories using k MBRs, where 

optimality was measured using total volume and total uDAE.

Fig.4.8 shows the total volume and uDAE, normalized respectively by v\ 

and ui for 20 randomly picked histories of Word and Web datasets, varying 

the number of MBRs. As expected, both volume and uDAE decreased with 

k. However, volume decreased with a faster rate and became zero earlier. For 

instance, in Web dataset, total volume was zero when as few as 30 MBRs were 

assigned to all histories, which means that increasing the number of MBRs 

beyond this point does not increase the accuracy of the approximation. In 

contrary, uDAE was much higher which indicates that increasing the number of 

MBRs beyond 30 resulted in a better approximation and more pruning. While 

increasing the numbers of MBRs beyond 30 did not reduce total volume in Web 

dataset, it reduced total uDAE and resulted into more distance preserving 

MBRs.
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Figure 4.8: Sensitivity of volume and uDAE to the Number of MBRs

4.7.4 Effectiveness of Adaptive Splitting

We measured average uDAE reduction for high-dimensional histories when our 

heuristics are employed. For each d-dimensional history, we derived an optimal 

fixed splitting using k MBRs; k was set to 10% of the length of the history. 

Such an optimal splitting requires M  =  k(2dnm + nt) bytes to store where 

nm and nt are, respectively, the space required to store the extents of each 

dimension (min. and max.) and the temporal length of each MBR. We im­

plemented an adaptive splitting scheme given the same amount of space as M  

and measured uDAE reduction compared to optimal fixed splitting. Since find­

ing an optimal adaptive splitting is computationally expensive (section 4.5.1), 

an approximate adaptive splitting is used to divide the dimensions of each 

history into np partitions. To store ki MBRs of induced history rr(A,Di ) ,  

where A is a history and Di is a partitioning of its dimensions, we allocated 

ki(2\Di\nm +  nt) + rid bytes in Variable Splitting (VS) and ki(2nm + n t) +  rid 

bytes in Superimposed Encoding (SE); here rid is the extra space required to 

store (Dt, ki). We set nm — 4, nt =  1, and rid = 2 bytes.

Table 4.3 reports average uDAE reduction over optimal fixed splitting for 

Web dataset when VS and SE were used and np varied from 2 to 5. Although 

approximate adaptive splitting was used, our heuristics were still effective and 

improved upon optimal fixed splitting. In particular, more reduction was ob­

served for SE; after examining this dataset we found that for affected histories,
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Table 4.3: Average uDAE reduction for adaptive splitting over optimal fixed 
splitting for Web dataset _______ ___________

VS,2 VS,3 VS,4 SE,2 SE,3 SE,4 SE,5
0.30% 0.82% 1.33% 3.8% 5.0% 6.0% 7.2%

Table 4.4: Average tightness of lower bounds for Web dataset
volume uDAE SE,2 SE,3 SE,4 SE,5

Deuc 0.45 0.53 0.70 0.76 0.78 0.78
Ddtw 0.44 0.48 0.53 0.57 0.57 0.61
Dlcss 0.53 0.56 0.64 0.69 0.69 0.75

there were two or more similar dimensions which were grouped together in SE, 

but not in VS.

We also measured the effect of adaptive splitting on the tightness of lower 

bounds for the Web dataset; Table 4.4 reports the results. As we expected, 

not only uDAE-based fixed splitting improved the lower bounds over the vol­

ume based scheme, taking advantage of the redundancy and the sparseness 

present in Web dataset, our adaptive splitting could improve up to 25%(33%) 

upon uDAE-(volume-) based fixed splitting, which confirms the effectiveness 

of adaptive splitting.

4.7.5 Performance Evaluation

We compared our algorithm with the framework proposed in [?], henceforth 

VHGK. Two indices were constructed, one for organizing the MBRs of d- 

dimensional histories (for VHGK) and one for the MBRs of HSums. For each 

history, we set s*, the number of splits, to 10% of its length for the first index 

and to 2̂ 1') Si for the second index, to make the index sizes equal. Fig.4.9 

reports results averaged over fifty 10-NN queries. Marine, VT1, and VT2 

were relatively small and a linear scan could outperform an index. Since our 

approach uses two pruning steps, once by HSum and once by uDAE-MBRs, 

it shows a better overall pruning and performance compared to VHGK, even 

though it uses the index twice to answer each query.
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4.7.6 Scalability Test

We measured the performance of our algorithm over 17-dimensional histories. 

To the best of our knowledge, no experiment has been reported on efficiently 

retrieving histories with more than 4 dimensions, using Euclidean distance, 

DTW, and LCSS as distance functions. Therefore, we compared our approach 

to the only candidate, i.e. naive scan. We used synthetic datasets with 1 k, 

2k, 4k, and 8k histories constructed from our Web dataset as discussed in 

section 4.7.1. Fig.4.10 reports pruning and relative query processing time over 

linear scan averaged over fifty 10-NN queries. Our synthetic data included 

pairs of histories where one was formed after a random permutation of the 

dimensions of the other. Pruning these histories using HSum was a challenge 

because average is not sensitive to the order of dimensions; thus random per­

mutation generated dissimilar histories with equal HSums. However, still our 

approach had a strong pruning power for a wide range of database sizes, which 

made it superior to linear scan and scalable with database size.
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4.8 R elated  W ork

Several approaches have been proposed to extract features from time series, in­

cluding DFT [2], DWT [93], and APCA [20] for Euclidean distance, PAA [125] 

for arbitrary Lp-norm, and edit distance with real penalty [25]. In each ap­

proach, the features could be used to estimate one type of distance function, 

unlike our HSum, as it was shown in Theorem 1. Compared to PAA and the 

work in [25], the length of an HSum is the same as the length of the history it 

represents, hence, it can better preserve trends. Compared to the work in [20], 

the APCA representation of a query needs to be computed for every history 

that is compared with the query while in our approach, one representation of 

the query is required.

4.9 C onclusion

We have addressed the problem of efficiently evaluating similarity queries on 

histories, proposed techniques for finding summaries of histories at different 

levels of detail, and investigated the use of these summaries for indexing and 

pruning. We have developed uDAE as a measure of the tightness of history ap­

proximations and empirically evaluated its effectiveness on real and synthetic 

historical datasets of high dimensionalities for fixed and adaptive splitting 

policies. Our contributions may be summarized as follows:
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• Techniques for extracting compact HSums from histories with some in­

teresting properties: (1) for a large class of distance functions, the same 

distance function that operates on histories can be computed more effi­

ciently using HSums; (2) the distances between HSums can be used to 

prune histories that are far from a query; (3) HSums can be indexed, 

hence the pruning and retrievals can be done efficiently.

• uDAE-based MBR approximations of histories to further prune false pos­

itives not pruned based on their HSums. Two important features of a 

uDAE-based MBR approximation are: (1) the maximum distance ap­

proximation error is minimized independent of the queries and distance 

function, and (2) it resolves some of the limitations of previous MBR- 

based techniques for approximating histories in higher dimensions.

• Two adaptive splitting strategies to further improve the tightness of 

uDAE-based MBR approximations while keeping the same space require­

ments. To adjust the splitting policy, our heuristics targets cases where 

there is a large difference, in terms of the degree of changes, between 

dimensions or where two or more dimensions are correlated and it might 

be possible to reduce the dimensionality of uDAE-based MBRs without 

increasing the maximum distance estimation error.
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Chapter 5 

Conclusions

In this chapter the main points of the thesis are summarized, our contributions 

are highlighted, and possible directions of future work are proposed.

5.1 Sum m ary

In general, our work addresses the problem of efficiently retrieving similar 

histories which are in the form of either historical market-basket data or 

multi-dimensional time series. We have introduced a new domain-independent 

framework to both formulate and efficiently evaluate similarity queries over 

historical market-basket data. Our work generalizes a few concepts including 

the edit distance and the longest common subsequence to histories. This gen­

eralization is helpful; for instance, it enables us to find a common signature 

between histories based on their optimal alignments. Our experiments on real 

and synthetic data confirm the effectiveness of our proposed scheme and the 

efficiency of our algorithms.

We have also addressed the problem of efficiently evaluating similarity 

queries on high-dimensional histories, by developing techniques for finding 

summaries of histories at different levels of detail. We have investigated the 

use of these summaries for indexing and pruning. Our techniques for deriving 

summaries make use of a kernel function that maps a d-dimensional point to 

a real number. We have identified a class of functions that can be used as 

kernels; hence a spectrum of summaries can be obtained.

We have developed uDAE as a measure of the tightness of history ap-
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proximations and proposed adaptive splitting strategies to further improve 

the tightness of uDAE-based MBR approximations and to resolve some of the 

limitations of previous MBR-based techniques for approximating histories in 

higher dimensions. Our experiments show that (1) uDAE-based MBR ap­

proximations give a more accurate estimate of the true distances, compared 

to a traditionally used volume-based scheme, (2) uDAE-based MBR approx­

imations are comparable, in terms of distance preservation, to a related ap­

proach [8] but are at least two orders of magnitude faster to derive. This makes 

our approach applicable to large databases.

5.2 C ontributions

Our contributions can be listed as follows:

• A domain-independent measure of similarity, using optimal conditional 

alignment, which generalizes the idea of an edit distance to histories.

• An efficient enumeration algorithm to find a set of common patterns that 

are observed in the same order in two histories, given the length and the 

score of an optimal conditional alignment. This is a generalization of the 

concept of the longest common subsequence to histories.

• Techniques for extracting compact summaries from histories and the ob­

servation that the summarization is independent of the distance function 

that may be used. Therefore, for a large class of distance functions, the 

same distance function that operates on histories can be computed more 

efficiently using summaries, under-estimating the true distance of the 

histories.

• Proposing the uDAE-based MBR approximations of histories and inves­

tigating whether such approximations are more effective for pruning than 

the traditionally proposed volume based MBRs. An interesting obser­

vation is that uDAE-based MBR approximations can be derived inde­

pendently from queries and that the same representation can provide a
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near optimal approximation of histories, in terms of distance estimation 

error, for three commonly used distance functions: Lp-norm, dynamic 

time warping, and longest common subsequence.

• An adaptive splitting scheme to improve the tightness of history approx­

imations; we observe that variable splitting and superimposed encoding 

can improve MBR-approximations of high-dimensional histories. This is 

the case in real-life applications where often there is a correlation be­

tween the dimensions of histories or there is a large difference, in terms 

of the degree of changes, between the dimensions.

• Integration within a filter-and-refine framework of our similarity mea­

sures, lower-bounds, summarization and feature extraction techniques, 

and algorithms to support exact similarity queries on historical market- 

basket data and multi-dimensional histories. Our extensive experiments 

confirm the naturalness of our similarity measure, the advantages of our 

feature extraction approaches, and the efficiency and scalability of our 

algorithms on both real and synthetic datasets.

5.3 Future W ork

• We have considered nearest-neighbors and range queries in this thesis. 

All-pair queries is another interesting problem with many potential appli­

cations in clustering and data cleaning. Related work includes the work 

of Ramasamy et al. [98] on set containment joins, that of Mamoulis [77] 

on set equality, containment, and overlap joins, and the work of Chaud- 

huri et al. [22] on string similarity join for several similarity measures 

including the Jaccard coefficient, the Edit distance, and the hamming 

distance. One straightforward approach to process all-pair queries on his­

tories is to perform a range query for all histories in the database. Future 

work may investigate improvements over this base, for instance, using 

the summaries and the indexes we have proposed for nearest-neighbor 

and range queries.
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• Many data mining tasks such as clustering and pattern recognition re­

quire a large number of distance computations. We believe that HSum 

and uDAE-based approximations can improve the efficiency of such data 

mining tasks without much affecting their accuracies; further work may 

examine the relationships between these tasks and our approximations.

• We have observed that history summaries and uDAE-based MBR ap­

proximations are useful to derive compact features for multi-dimensional 

histories. These techniques may have applications in summarizing histor­

ical market-basket data as well. For instance, instead of presenting the 

history of changes of a web page, we could divide the history into some 

meaningful segments and present these episodes. Generalizing HSum 

and uDAE MBRs to historical market-basket data is an open future 

work.

• For the problem of efficiently retrieving histories, there are very few 

works that can scale up to 3- or 4- dimensional histories; our work opens 

up the door for further research in this area.
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