
U niversity o f A lberta

E f f i c i e n t l y S e a r c h in g A r c h iv a l D a t a f o r H i s t o r i c a l S i m i l a r it ie s

by

R eza Sherkat

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D octor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33064-7
Our file Notre reference
ISBN: 978-0-494-33064-7

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

With recent developments in the areas of data warehousing and data mining,

there has been an increasing interest in querying multiple snapshots of data,

often stored in temporal databases, semi-structured document collections, and

OLAP applications. Similarity queries, in particular, is an important class of

queries with growing applications in fields as diverse as data mining, pattern

recognition, multimedia databases, and bioinformatics. This thesis addresses

the problem of efficiently answering similarity queries on historical market-

basket data and multidimensional histories.

The thesis introduces a domain-independent filter-and-refine framework for

evaluating order-preserving similarity queries on historical market-basket data.

For instance, given a database of customer transactions and a time period, a

query is “find customers with similar purchasing behaviors over this period.”

Our work is different from previous work on time-series, in that we address the

general problem where a history cannot be modeled effectively as a time-series,

hence the conventional relevant approaches are not applicable. We propose a

similarity measure for histories, based on a constrained aggregation of the sim­

ilarities between their constituent observations. Given the non-metric nature

of our measure, some upper bounds are proposed and an algorithm is devel­

oped that uses an index to prune histories that are guaranteed not to be in

the answer set of a query. Experimental results on real and synthetic data

confirm the effectiveness and efficiency of our approach. For instance, when

the minimum length of a match is provided, our approach achieves up to an

order of magnitude speed up over alternative methods.

The thesis further studies the problem in a slightly more constrained do­

main where a history is modeled as a d separate time-series. While there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are some solutions for special cases where d < 4, none of these works scale

up well to high-dimensional histories. To address the problem, we propose a

class of summaries for histories with a few interesting properties. First, for

commonly used distance functions, the summaries can be used to efficiently

prune histories that are guaranteed not to be in the answer set of a query.

Second, histories can be indexed based on their summaries, hence the quali­

fying candidates can be efficiently retrieved. To further reduce the number of

unnecessary distance computations for false positives, we propose a finer level

approximation of histories and an algorithm to find an approximation with

the least maximum distance estimation error, before seeing queries. We also

investigate adaptive splitting of histories and develop a few splitting schemes

and heuristics to enhance the quality of our approximations, and to improve

the performance of our similarity queries. Our experimental results confirm

that the combination of our feature extraction approaches and the indexability

of our summaries can improve upon existing methods when d < 4 and scales

up for larger values of d and database sizes, based on our experiments on real

and synthetic data of 17-dimensional histories.

with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

During the time that I have been at the University of Alberta, I have been

extremely fortunate to have the guidance, support, and friendship of a number

of people who have helped me grow both academically and personally. This

thesis would have been much different or would not exist at all if it were not

for them.

My deepest thanks and appreciations go to my parents for always providing

me with unconditional love, support, and encouragement. At the end of my

formal education, I can tell that it was their informal education that taught

me most.

Special thanks to my supervisor Dr. Davood Rafiei for his guidance and

patience during my PhD program. From the very beginning, Davood provided

me with immeasurable assistance and unsparing support to settle in Edmonton

and pursue my studies and research. Most importantly, he gave me the freedom

to pursue my own interests and the opportunity to learn from my own mistakes.

My gratitude and appreciation to my examiners Dr. Lisa M. Given, Dr.

Russell Greiner, Dr. Jorg Sander, and Dr. Raymond T. Ng for carefully

reading my thesis and providing valuable comments that helped to improve

the quality of this document. Also, thanks to Dr. Greg Kondrak, Dr. Paul R.

Messinger, and Dr. Dekang Lin for reading my research proposal and providing

valuable suggestions and feedbacks in early stages of this research.
M any th a n k s to all th e ex trem ely p erson ab le and su p p ortive p eop le who

make the Department of Computing Science into an essentially perfect work

environment. My gratitude to Edith Drummond, whose dedication in helping

graduate students goes well beyond her regular job duties. Also, thanks to

Prances Moore and Karen Berg for their administrative assistance and support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

during my PhD program. Many thanks to Steve Sutpen for answering my

technical questions.

Besides research, I had the opportunity to perform as a teaching assistant

for undergraduate courses. Many thanks to Dr. Joseph Culberson for pro­

viding mentorship and invaluable advice which helped me improve my skills

as a teaching assistant. Many thanks to the instructional support group, spe­

cially Chris Helmers and Roman Fedoriw. They provided me with invaluable

guidance in lab tutoring, dealing with students, preparing and delivering lab

materials, and more. Furthermore, Roman introduced me to the wonderful

world of Tai Chi to relax after a day at work.

My friends in Edmonton made a big difference in my life and supported me

during my PhD studies. There is not enough space and time to list everyone

who deserves to be mentioned here. However, I should especially thank Dr.

Ali Aghazadeh, Mazyar and Baharak, Reza and Laleh, Stanley and Deise, Dr.

Carol Boliek and Dr. Paul Hagler, Alireza and Parastoo, and Mohammad

Reza and Nasimeh for their friendship and kind attention.

I have very much enjoyed being a member of the Database Research Group

at the University of Alberta. I am thankful to the professors and other fellow

students - Stanley Oliveira, Fan Deng, Alex Coman, Luiza Antonie, Pirooz

Chubak, Gabriella Moise, Baljeet Malhotra, Amit Satsangi, Vahid Jazayeri,

Jianjun Zhou, and Pouria Pirzadeh. I had fruitful discussions with Fan and

Stanley on many topics ranging from research projects to future plans.

A special thanks goes to my lovely wife, Leila, for always being with me

through the good and bad times. Her unlimited support and unconditional

love gave me energy and endurance throughout every step of this unforgettable

journey and I cannot thank her enough for that.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

1 Introduction 1
1.1 Thesis S ta te m e n t.. 4
1.2 Thesis Organization....................... 4

2 Sim ilarity Queries on H istories 6
2.1 Basic Definitions and N o ta tio n s 6

2.1.1 The Notion of S im ila rity 8
2.1.2 Similarity Q ueries.. 8

2.2 Efficient Retrieval of Similar H istories... 10
2.2.1 A General Filter-and-refine Framework 11
2.2.2 Similarity Queries with False N egatives........................... 12

2.3 Related W o r k ... 13
2.3.1 Time series ... 13
2.3.2 Multi-dimensional Time se r ie s ... 20
2.3.3 Sequence Data .. 22
2.3.4 Limitations of Existing S o lu tio n s 24

2.4 This D isse rta tio n .. 24
2.4.1 Main C ontributions.............................. 25

3 Efficient R etrieval of H istorical M arket-Basket D ata 26
3.1 Motivating Example .. 27
3.2 Preliminaries: Optimal Alignment of H is to rie s 28
3.3 Conditional Optimal Alignments ... 29

3.3.1 Limitations of the Existing S o lu tio n s 29
3.3.2 Finding the Score of an Optimal /-Alignment................. 30
3.3.3 Finding Common Patterns of Two H is to r ie s 33
3.3.4 Enumerating Optimal Conditional A lignm ents.............. 34

3.4 Queries over Large Collection of Histories 35
3.4.1 A General Upper Bound 37
3.4.2 An Index-based Upper Bound for Sparse Observations 39

3.5 Experimental Evaluation 41
3.5.1 D a ta se ts .. 42
3.5.2 Effectiveness of sirrii 43
3.5.3 Pruning Power and E ffic iency ... 45
3.5.4 Scalability T e s t 48

3.6 Other Related W o r k 49
3.7 C onclusions... 50

4 Sim ilarity Search over M ulti-dim ensional Archival D ata 52
4.1 Motivating E xam ples.. 53
4.2 Preliminaries: Distance between Histories.................................... 53
4.3 History S u m m aries ... 55

4.3.1 Properties of H S u m s ... 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Pruning Histories by H S u m s.............................. 60
4.4 A Finer Approximation of H isto ries .. 60

4.4.1 MBR-based Approximation of H istories........................... 61
4.4.2 Our Optimality Criterion (uD A E)..................................... 62
4.4.3 uDAE Compared to MBR Volume 64

4.5 Adaptive Splitting of H istories.. 65
4.5.1 Variable S p littin g .. 66
4.5.2 Superimposed E n c o d in g ... 70

4.6 Similarity Search for H is to rie s .. 72
4.7 Experimental E v a lu a tio n s . . . 72

4.7.1 D a ta se ts .. 73
4.7.2 uDAE-based vs. Distance-based Splitting 75
4.7.3 uDAE-based vs. Traditional Splitting 77
4.7.4 Effectiveness of Adaptive Splitting 79
4.7.5 Performance E v a lu a tio n 80
4.7.6 Scalability T e s t ... 81

4.8 Related W o rk 82
4.9 Conclusion.. 82

5 Conclusions 84
5.1 Summary ... 84
5.2 C on tribu tions.. 85
5.3 Future W ork .. 86

Bibliography 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 An example showing three histories over a period of four days 27
3.2 10-NN query for the VLDB, the KDD, and the AAAI conferences 44
3.3 Mean and Stand. Dev. of MD(Xq,k) for 1-NN and 10-NN queries 45

4.1 Summary of Real2 datasets ... 74
4.2 Average tightness of lower b o u n d s 78
4.3 Average uDAE reduction for adaptive splitting over optimal

fixed splitting for Web d a ta s e t ... 80
4.4 Average tightness of lower bounds for Web dataset 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.1 r-neighborhood constraint for r = 2 ..
3.2 Pruning power and average query processing time for fc-NN

(top) and range (bottom) q u e r ie s ..
3.3 Average time for processing nearest neighbor queries varying (a)

the size of the r-neighborhood (b) the desired minimum number
of matches I ...

3.4 Average time for processing nearest neighbor queries varying
(a) the size of the collection (b) the number of distinct items .

4.1 2-d histories A and B and their H S um s.......................................
4.2 N c(qi,Aj) and N f (a ^ A j) for two points ql and a* and MBR Aj
4.3 MBRs of a 2-d history; one with minimum volume (left) and

one with minimum uDAE (right) ..
4.4 Optimal fixed splitting, change trend, and variable splitting .
4.5 Optimal fixed splitting and superimposed e n c o d in g
4.6 Algorithm for k-NN sea rch ...
4.7 Average tightness and split t im e ..
4.8 Sensitivity of volume and uDAE to the Number of MBRs . . .
4.9 Pruning and relative query processing time averaged for fifty

10-NN q u e rie s
4.10 Average pruning and relative query processing time; bars for

each distance from left to right are for synthetic data of lk, 2k,
4k and, 8k histories..

32

46

48

49

56
63

64
67
71
73
76
79

81

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Traditional databases store a single, often most recent, snapshot of a modeled

real world. With recent developments in the areas of data warehousing and

data mining, there has been an increasing interest in querying multiple snap­

shots of data, often stored in temporal databases, semi-structured document

collections, and OLAP applications. Previous work on querying histories has

mainly focused on detecting and representing changes in order to provide a

better support for selection and projection queries over multiple versions of

data.

Similarity queries on historical archives is important since it enables various

forms of analysis on time evolving data. An evidence of this is the increasing

interest in efficiently retrieving archival data, based on historical similarity,

when the history of an object is described as a sequence of real values (time

series). For instance in financial applications, we may want to find stocks that

behave in similar fashion within a given time interval by providing the stock of

another company or we may want to group together all companies with similar

sale patterns. However, in many real-life applications, the history of an object

is more complex and cannot be modeled as a time series. Efficient retrieval of

objects based on historical similarity is important to understand underlying

mechanisms, to extract behavioral patterns, and to analyze trends for decision

support. Here are some examples of similarity queries on histories:

• In meteorology, measurements such as temperature, precipitation, wind

speed, pressure, moisture, and snowfall are regularly collected (e.g. hourly,

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

daily, or weekly) for many earth surfaces by weather stations. Detecting

possible similarities between the weather conditions of two regions may

indicate that crops successfully produced in one region may also be tried

in the other region.

• In retail, customer transactions are often recorded in a data warehouse

for further querying and analysis. The purchase history of a customer, in

particular, may show changes of the needs and the preferences over time.

It might be desired to find customers with a purchase history similar to

a given customer, for example, to provide personal recommendations.

Clustering customers with similar purchase history can be used to find

trends in market segments.

• In a web archive, such as the Internet Archive1, several versions of each

web page are crawled and stored. An interesting query over such an

archive can be: find web pages with change histories similar to the change

history of a given page. It is quite possible to find web pages that are

similar in content at one or more points in time but have different change

histories. It is also possible to find rather dissimilar web pages that show

similar change histories2.

• In a hospital, routine observations are made about patients. These obser­

vations can be made by doctors or nurses and may include general symp­

toms, such as “high fever,” “rash,” “high blood cholesterol,” “bleeding,”

the medications used, the medical advice given, and the responses to

treatments. Finding patients with histories similar to the history of a

given patient can provide assistance to a doctor in making diagnosis or

prescribing medications.

• In financial sector, the history of a stock may be tracked using several

indicators such as daily opening and closing prices, and trading volume.

The similarities between the histories of two stocks may help to predict

1 www.archive.org
2This can happen for two pages, perhaps maintained by the same authority.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.archive.org

or explain short-term and long-term trends in the market.

The problem to be addressed in this thesis is efficiently evaluating simi­

larity queries on histories where a history is a sequence of observations. Each

observation is a point in multi-dimensional space. A timestamp may also be

assigned to each observation to indicate the time the observation is recorded.

Efficient support of similarity queries for histories is a difficult problem. In

general, a history can be represented as a vector whose dimensionality is equal

to the number of observations in the history times the dimensionality of each

observation. Indexing vectors in high-dimensional space has been considered

as a challenging problem in the database community [110]. Weber et al. [122]

argue, based on a quantitative analysis, that almost all space partitioning

and data clustering approaches to indexing exhibit a linear complexity on the

dataset size at higher dimensionalities. They state that existing methods are

usually outperformed by a simple linear scan when dimensionality exceeds 10.

On the other extreme, Beyer et al. [14] argue that nearest neighbor queries

are not meaningful for a dataset when the variance of pairwise distances of

objects is low. They state that a similarity query becomes unstable when the

difference in the distance between the nearest neighbor and other points in the

dataset becomes negligible in this case and a linear scan can outperform any

algorithm which uses an index to prune search space.

Despite the challenge, there has been a large body of work that addresses

the similarity search problem for special types of histories. For instance, when

each observation is a real value and only one observation is recorded at each

time instance, a history becomes a time series and there are quite a number

of approaches to index time series (e.g. [2], [40], and [97]). If an observation is

the spatial position of a moving object at a time point, a history, often called

a trajectory, may describe the trace of a moving object in a plane or space,

and there are also works to index trajectories (e.g. [74], [119], and [64]). In a

relatively more complex setting, an observation can be an image frame, which

is in fact a point in high-dimensional space, and there has been some work to

index video sequences (e.g. [73], [111])- However, we are not aware of any work

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that scales up to large databases of high-dimensional histories while satisfying

the following requirements:

• Being robust to noise and outliers -

• Being robust to time shifting and warping,

• Being exact in returning all candidate results (no false drops), and

• Being order preserving and respecting the temporal ordering of observa­

tions.

In this thesis, we propose a filter-and-refine approach to efficiently evalu­

ate similarity queries on historical market-basket data and multi-dimensional

histories. In particular, we develop similarity measures, lower bounds, and

summarization techniques that can be used to support nearest neighbor and

range queries while satisfying all the aforementioned requirements.

1.1 T hesis S tatem en t

The central thesis statement of this research is presented as follows:

Efficiently processing nearest-neighbor and range queries over large

collection of histories, under some realistic and non-restrictive as­

sumptions, is possible.

1.2 T hesis O rganization

Chapter 2 provides the background material on similarity queries over histor­

ical archives. It presents the filter-and-refine framework that is the basis of

most promising solutions for exact similarity search as well as our approach.

A review of related work on indexing time series, multi-dimensional time se­

ries, and sequence data is also presented. The chapter ends with an overview

of the problem to be addressed in this dissertation and a list of our main

contributions.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 presents a domain-independent framework for formulating and

efficiently evaluating order-preserving similarity queries over historical market-

basket data. A similarity score is derived for histories based on an aggregation

of the similarities between observations matched in a conditional alignment.

Two upper bounds for similarity measures are proposed that take advantage of

the sparsity of observations and the existence of a temporal neighborhood con­

straint. Our experimental results on both real and synthetic data confirm the

effectiveness, efficiency, and scalability of our approach. In particular, when

the minimum length of a conditional alignment is provided, our algorithm

achieves up to an order of magnitude speed up over alternative methods.

Chapter 4 studies the problem of efficiently evaluating similarity queries

on multi-dimensional histories. A novel summarization technique is proposed

with an interesting property that for a large class of order-preserving dis­

tance functions commonly used to compare sequences, the distance between

summaries lower-bounds the distance between histories. To further reduce

the number of unnecessary costly distance computations, a fine-level query

independent approximation of histories is proposed based on the notion of

commonly used Minimum Bounding hyper-Rectangles (MBRs). Also adap­

tive splitting schemes are investigated to further improve the tightness of the

approximation for high-dimensional histories. Experimental results on real

and synthetic data confirm that the indexability of extracted summaries com­

bined with the enhanced pruning power of our approximation improves upon

sequential scan, which turns out to be the only competitor on high-dimensional

histories.

Chapter 5 summarizes the main points of the thesis, highlights our main

contributions, and provides some directions for future research.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Similarity Queries on Histories

This chapter provides background material on similarity queries over historical

archives. In particular, section 2.1 presents a formal definition of histories, our

notion of similarity, and the set of queries being studied. Section 2.2 discusses

some of the challenges in efficiently evaluating similarity queries, a few general

solutions, and some of their limitations. A review of related work on indexing

time series, multi-dimensional histories, and sequences data is presented in

section 2.3, as well as their limitations in indexing more general histories that

are considered in this thesis. Section 2.4 provides an overview of the problem

to be addressed in this thesis and highlights the main contributions.

2.1 B asic D efin itions and N otation s

This section introduces a few notations and terminologies that are referred to

in the rest of the thesis.

Definition 1 (Observation). Let I = { t i , . . . , t n} be a set of items. An

observation is a set of pairs {U,Wi) such that L E I is an item and Wi, a

real number, is the unique weight of the item L in the observation. Given an

ordering of the items in I , an observation can be represented as a vector:

[w1,w2, . . . , w n]T.

We assume that the weight of an item which is not in the observation is

zero. An observation x may be associated with a timestamp in which case

we use ts(x) to refer to this timestamp. The set of values a timestamp can

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

take (referred to as its domain) depends on the time granularity in which

observations are sampled from real world.

D efin ition 2 (H isto ry). A history is a chronologically-ordered sequence of

observations denoted as:

X (pc\ , X2 , • • •; xm)

such that ts(xi) < ts(xj) iff i < j . The length of history X , denoted by |AT|,

is the number of observations in the history, here \X | = m.

An observation may describe the state of an object at a time point. Al­

ternatively, if we are interested in state transitions rather than the state de­

scriptions, an observation may only describe the changes. In a simple case, an

observation can be a real value and the corresponding history is a time series.

For instance, the history of a stock may be tracked using an indicator such as

daily opening price. In this case, the set of items has only one member, the

weight of which is equal to the scalar value recorded at each time instance.

For a Web page, the set of items contains all possible terms that may appear

in a web page. An observation can be either the content or the updates to a

previous version and a timestamp can be the time the page is crawled or the

changes are observed. The weight of each term in a web page could be assigned

using the t f . idf model [100]. The history of web pages can be organized in

a temporal database [36] or a semi-structured collection [24, 29}. In spatio-

temporal databases [92], an observation may correspond to the spatial location

of a moving object, such as a car. In this case, the set of items correspond to

the geometric coordinates and the weights correspond to the spatial location

of the object at the time the observation is recorded. A sequence of these ob­

servations, referred to as a trajectory, gives the history of a moving object. In

a customer database, an observation can be the set of items purchased within

a transaction and the weight of each item in a transaction may indicate the

importance of the item (e.g. quantity, price, profit) to the transaction.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 The Notion of Similarity

Given two histories, we are often interested in measuring their closeness or

similarity. For instance, we may want to find the similarity of the medical his­

tories of two patients. In general, the notion of similarity can vary with queries

and may be based on either exact or approximate occurrences of patterns in

the two histories. A somewhat domain-independent approach to formulate

similarity queries has been proposed by Jagadish et al. [62] where object A is

considered similar to object B if B can be reduced to A by a sequence of sim­

ilarity preserving transformations, for instance moving average for time series.

In more domain-dependent settings, a similarity measure or a distance func­

tion is used to capture the degree of closeness of two histories in terms of the

closeness of their observations. In this thesis, we make the assumption that

the observations of two histories are comparable, i.e. there exist a function

that measures the closeness of any pair of observations; such a function can

be provided as a look-up table by a domain expert, or it can be stated in the

form of a closed-form function such as the cosine measure [105], the Jaccard

coefficient [100], or its extensions [113]. The distance of two histories can be

formulated as an aggregation of the pairwise distances of their observations if

the histories are of the same length. In general, the comparison of two his­

tories can be regarded as an alignment process and the score of an optimal

alignment, as discussed in chapter 3, can be used to measure the similarity of

two histories. A similarity measure is considered order-preserving when the

similarity between two histories depends on the temporal order in which the

observations of the two histories are recorded.

2.1.2 Similarity Queries

Consider a collection S of objects (e.g. documents, time series, histories)

that are represented in some feature space; for example, an object may be

described as a set of terms or a set of points in multi-dimensional space. Let

d(x ,y) denote the distance of objects x , y in S. A typical similarity query on

the collection S can be stated as follows:

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Nearest neighbors query: Given a query object q and integer k, find k

objects in S that have the smallest distances to q.

• Range query: Given a query object q and a distance threshold e, find all

objects x £ S, such that d(q, x) < e.

• All-pair query: Given a threshold e, find all object pairs (x, y) 6 S x S,

such that d(x,y) < e.

Similarity queries play an important role in both searching non-traditional

data stored in relational databases and as a building block within different

application domains. Here are some examples:

• in machine learning [35], nearest neighbor queries can be used to assign

a class to an object using a majority vote among the class of its nearest

neighbors. This classifier is simple to construct, compared to complex

classifiers such as neural networks, and has shown to have high accuracy

in many problems with arbitrary number of classes, e.g. [12] and [117].

Cover et al. [32] show that asymptotically the error-rate of a nearest-

neighbor classifier is not more than twice that of the optimal Bayes

classifier.

• in clustering [37, 9], range queries can be used to reduce the number of

pairwise distance computations, which is 0 { n 2) for a collection of size n.

The intuition is that often, computing a fraction of pairwise distances is

sufficient to form clusters and some extra computations can be pruned.

In particular, the authors of the DBSCAN algorithm [37] show that using

an efficient evaluation of range queries reduces the average number of

distance computations for clustering to O (nlogn). An all-pair query

can be used to pre-compute the e-neighborhood of all data points to

improve the performance of clustering algorithms.

• in visualization [115], nearest neighbors queries can be used to construct

a non-linear mapping of objects in a high-dimensional space with com­

plex distance functions into a low-dimensional space. A constraint on the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mapping is that the pairwise distances between objects, as well as the

notion of neighborhood, must be relatively preserved in order to provide

an intuitive representation.

Efficiently processing similarity queries on large databases is a major issue

in many of these applications.

2.2 Efficient R etrieval o f Sim ilar H istories

A brute-force approach to evaluate similarity queries such as range and nearest

neighbors queries is to perform a linear scan and to compare the query with

all histories in the database. Although this approach is simple to implement,

it is costly to scan a large database and perform a usually expensive distance

computation for every record. Retrieving long histories can also be very ex­

pensive depending on the access methods employed and the size of the dataset

(see Salzberg et al. survey of access methods for time evolving data [106]).

For instance, for multi-version documents, often a reference-based scheme is

used [29, 24] to represent document histories, where unmodified sections are

replaced by links to the corresponding sections in previous versions. This

representation preserves the logical structure of documents and can support

temporal selection and structural projection queries. However, loading the

history of a document can be quite challenging and even a linear scan needs to

perform several random disk access to resolve links required for materializing

each history.

On the other hand, computing the distance between two histories can be

quite expensive, in particular for more robust and flexible distance functions

such as dynamic time warping and longest common subsequence. Since these

distance functions construct the best correspondence between the observations

of two histories using a dynamic programming algorithm, distance computa­

tion time can dominate disk access time for complex distance functions and

long histories. A solution is to prune the search space using an index structure,

and to reduce the number of disk accesses and distance computations.

When objects are represented as points in real vector space and the dis-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tance measure is Lp-norm, existing spatial index structures such as R-tree [50]

and its variants (e.g. R+tree [109]) can be used to improve the performance

of a similarity search. In a more general case where the distance measure is a

metric, existing index structures proposed for metric space such as M-tree [31],

MVP-tree [16], and the OMNI-family of access methods [42] may be applica­

ble; Chavez et al. [23] present a survey of access methods for metric space.

However, in many real settings where objects are represented as points in

high-dimensional space, the performance of existing spatial index structures

degrades due to a phenomenon referred to as the curse of dimensionality1.

Moreover, Lp-norm distances are not robust to noise and time-shifting and

often more flexible distance functions (e.g. dynamic time warping) are not

metric, hence existing metric space index structures cannot be applied directly.

Several promising techniques have been proposed to address the problem using

a filter-and-refine framework.

2.2.1 A General Filter-and-refine Framework

A general domain independent framework to speed up similarity search is

the filter-and-refine framework [2] (also known as signature-based or GEM­

INI). The technique is originally proposed to index points in high dimensional

space, but it is also applied to domains with computationally costly distance

functions. The main component of this framework is an embedding which

performs dimensionality reduction. A property of this mapping, referred to

as the lower-bounding property, is that for any pair of objects, the distance of

the objects in the transformed space must match or underestimate the true

distance of the objects in the original space. In an offline pre-processing step,

objects in the database are transformed into their corresponding features and

the features are organized in an index called F-index (feature index) in [40].

Similarity queries are processed in two steps:

• In a filtering step, F-index is consulted to filter ideally a large fraction of

the search space and to efficiently retrieve a superset of the answer set.

1In the context of indexing, the data structures scale poorly with data dimensional­
ity [122] making linear scan the only viable choice.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• In a refining step, a more accurate but computationally expensive dis­

tance function is applied to the retrieved superset to further prune false

positives2.

The lower-bounding property guarantees that the filtering step returns a su­

perset of the answer to a query [40]. For exact similarity queries, the result

of the refining step is the exact answer to the query and no qualifying ob­

ject is missing. Seidl et al. [108] propose an algorithm which uses a priority

queue to interleave the filter and refine steps to improve the performance of

nearest neighbors queries. The filter-and-refine framework has also been used

to support efficiently processing similarity queries over time-series for compu­

tationally expensive and/or non-metric distance functions such as Euclidean

distance [2], arbitrary L^-norms [125], dynamic time warping [66], and general

metric distance functions [55].

2.2.2 Similarity Queries w ith False Negatives

A variation of the filter-and-refine framework has also been proposed for sim­

ilarity search in domains where query response time is the main factor and

missing a small number of qualifying objects can be tolerated. The idea is

that the lower-bounding property of the embedding can be relaxed and there

is a chance of having false negatives. Often there is no rigorous analysis on

the number of false negatives and the embeddings are evaluated empirically

based on their performance and effectiveness, measured in terms of precision

and recall3. For instance, to index time series where distance is measured by

dynamic time warping, Yi et al. [126] use Fastmap [39] for dimensionality re­

duction and the Euclidean distance in the feature space. To search for near

duplicate documents, Broder et al. [18] propose to hash documents into com­

pact sketches and use the Jaccard coefficient to estimate the resemblance of

documents in the feature space. To answer nearest neighbors queries, Gionis et

2false positives are retrieved candidates that are not in the result set of a query; false
negatives are the answers to the query that are not retrieved.

3Given a query, let rel and ret, respectively, be the set of objects relevant to the query
and the set of objects retrieved as the answer of the query. Precision and recall are defined

l r e l f) r e t [, \ r e l f [r e t \
a S |r e i | a n Q \rel \ ’

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

al. [47] propose locally sensitive hashing where similar objects are hashed, with

high probability, into the same (or close) locations. A number of methods have

been proposed to embed arbitrary spaces into vector space for efficient search,

visualization, and other data mining tasks (e.g. [15], [39], [54], and [102]).

Athitsos [10] surveys embedding methods for similarity search in non-metric

spaces; none of these embeddings satisfy the lower-bounding property.

2.3 R elated W ork

Similarity search has received much attention in the database community and

it is now a relatively mature area of research. The focus of this dissertation is

efficiently evaluating similarity queries on large collection of histories. There

has been a large body of work on indexing three specializations of histories: (1)

time series where each observation is a real value, (2) multi-dimensional time

series where each observation is a vector, and (3) sequence data where each

observation is a character selected from a finite alphabet. In this section, we

review related work on indexing these three types of histories and identify why

existing solutions cannot be directly applied to general histories considered in

this thesis, namely historical market-basket data and multi-dimensional histo­

ries, while satisfying the four main requirements mentioned in chapter 1. Sim­

ilarity search also has been studied for other data types including shapes [61],

images [43], sets [1, 46], graph structures [53], and mixed types of strings and

numeric attributes [63]; these other works will not be reviewed here.

2.3.1 Time series

We organize related work on querying time series into a few categories based

on the distance function4 used, the support for shifting and noise, and the

possibility of having false negatives. We should note that some categories may

overlap and some works may relate to more than one category. Except for the

methods that are based on symbolic representations of time series, the related

work on time series to some extent take advantage of the numerical repre­

4Chapter 4 presents a detailed definition of the distance functions studied in this section.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sentation of observations and cannot be generalized effectively for historical

market-basket data. Also, the large alphabet size of historical market-basket

data precludes the adaptation of the solutions based on string matching, as

discussed in section 2.3.3. However, related work on indexing time series can

be used to index history summaries that we derive from multi-dimensional his­

tories, as discussed in chapter 4; this explains our review of the related work.

Index ing tim e series u n d e r E uc lidean d is tan ce - The first indexing

method for fast retrieval of time series is proposed by Agrawal et al. [2] where

each time series is considered as a vector and the Euclidean distance is used to

measure the dissimilarity of two time series. The authors use Discrete Fourier

Transform (DFT) to extract features from time series, based on the observa­

tions that for most real time series, only the first few DFT coefficients that

correspond to the first few frequencies are strong, i.e. have large amplitudes.

Because the distance between DFT coefficients of two time series is equal to

the Euclidean distance of the two time series due to Parseval’s theorem [84],

the first few DFT coefficients can be used to derive a lower-bound of the true

distance. The authors organize DFT coefficients in an R*-tree index for effi­

cient filtering. There are some other approaches where DFT is replaced with

another transformation, for instance Discrete Wavelet Transform [85, 93] and

Chebyshev coefficients [19].

Several optimizations and alternatives have been proposed for DFT-based

indexing of time series [2], For instance, Rafiei et al. [96] take advantage of the

symmetric property of DFT coefficients to derive a tighter lower-bound of the

true distance without increasing the number of coefficients to be kept in the

index. In another work, Vlachos et al. [120] argue that keeping the first DFT

coefficients is not as effective as keeping the first few coefficients with highest

energy for periodic time series.

Several other feature extraction approaches have been proposed to approx­

imate time series and to speed up similarity queries. The main idea is to seg­

ment time series and represent each segment using either a constant value (e.g.

[38, 125, 67]) or a Minimum Bounding Rectangle (MBR) (e.g. [80, 75, 94]).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In piecewise constant approximations [38], each time series is partitioned into

s segments of equal length. Each segment is approximated by its mean; thus

each time series is mapped into an s-dimensional vector. Yi et al. [125] use the

same feature extraction approach and develop lower-bounds for an arbitrary

Lp-norm distance of two time series based on the Lp-norm distance of their

piecewise constant approximations. An improvement to the segmentation ap­

proach is proposed by Keogh et al. [67]; their idea is to adaptively divide time

series into segments of potentially different lengths in order to derive a better

approximation of time series.

On MBR approximation of time series, Moon et al. [80] move a sliding

window on time series and extract MBR of the windows as features. In an­

other work, Li et al. [75] group similar segments of different time series and

represent each group using a single MBR [75]. In both [80] and [75], the

extracted MBRs are organized in an R-tree structure. Another organization

for MBRs is proposed by Qu et al. [94] where a relational database stores the

extracted MBRs and similarity search is formulated as pattern queries that

are evaluated using relational operators.

Supporting shift and scale for Euclidean distance - Comparing two

time series using their Euclidean distance is sensitive to shift and scale in both

amplitude and time. Several transformations have been proposed to normalize

time series before a comparison, in order to make Euclidean distance more

robust to shift and scale. Goldin et al. [48] propose similarity transformations

and normal forms for time series, where a time series is considered normal if

it has a zero mean and a unit variance. Normalizing time series is performed

in two steps; first the mean is subtracted from every value; second, each value

of the resulting series is divided by the variance. We should mention that

local shift and scale are not removed by such normalization. In another work,

Rafiei et al. [97] propose a set of linear transformations that can model moving

average and time scaling, in addition to the operations supported in [48].

In another work, Chu et al. [30] show how similar sequences can be effi­

ciently searched irrespective of differences in offset translation and amplitude

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scaling. The basic idea is to transform time series onto some shift-eliminated

plane where vectors are invariant to linear transformations in time and scale.

Another scale- and shift-invariant measure of similarity is proposed in [64]

where the distance between two time series is the smallest Euclidean dis­

tance after scaling and shifting either one of the trajectories to make it as

close as possible to the other one. Agrawal et al. [3] propose a model of

similarity where two time series are considered similar if they have enough

non-overlapping time-ordered pairs of similar subsequences. The model allows

amplitude scaling and offset adjustment and unlike [30, 3], non-matching gaps

are also considered while matching two subsequences. This makes the similar­

ity model more robust to noise and outliers.

M ethods based on sym bolic representations - Several past works use

techniques from string matching to compare symbolic representations of time

series. Unlike Lp-norm distances including the Euclidean distance, where two

time series must have the same length to be comparable, most of the re­

lated work in this category can measure the distance of time series of different

lengths. Agrawal et al. [4] propose a shape definition language to describe and

to retrieve time series. They quantize the changes and represent each change

by a distinct symbol which is assigned based on the difference of every two

consecutive values. A query is stated very much like a regular expression pred­

icate over shape descriptions. To more efficiently support pattern matching,

Huang et al. [56] index symbolic representations of time series using a suffix

tree. Chen et al. [26] use string edit distance of symbolic representations to

compare time series.

There are some works that combine a symbolic representation with the

Euclidean distance. Lin et al. [76] apply piecewise constant approximation

and represent each segment of time series using a symbol. They define a

distance function for symbols that is a lower bound of the Euclidean distance

of the time series. Megalooikonomou et al. [79] use vector quantization and

define a weight for each symbol which is used in the distance computation.

The weight of a symbol in a time series is determined based on its frequency

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the time series, normalized by the number of time series in the database

that contain the symbol.

In another approach, Perng et al. [91] model time series as a set of land­

marks. They consider each time series as a function which maps a time point

into a single value. The n-th order landmarks are time points where the n-

th derivative of the function is zero. For instance, first-order landmarks are

local extrema and second-order landmarks are inflation points. Weights can

be assigned to landmarks to show their importance. For instance, a weighting

scheme may assign large weights to global extrema and small weights to local

ones. An interesting observation is that for a properly chosen landmark, the

similarity is invariant to shifting, uniform amplitude and time scaling, and

non-uniform amplitude scaling. We should note that the concept of time scal­

ing considered by Perng et al. is different from dynamic time warping in that

a transformation is applied as a fixed function to all time series in a database

whereas in dynamic time warping, no assumption is made about the nature of

warping.

Dynam ic tim e warping and its variants - Even though dynamic time

warping (DTW) is a well-known technique in speech processing, Berndt et

al. [13] seems to be the first in the database community reported using it.

The first attem pt to speed up DTW queries is proposed by Yi et al. [126].

They use FastMap [39] to embed time-series into the Euclidean space, where

classic multi-dimensional index structures can be used. Because the embedding

does not satisfy the lower bounding property, this approach introduces false

negatives. To speed up computations, Keogh et al. [69] compute DTW over

the piecewise aggregate approximations of time series, but this approach can

have false negatives as well.

Kim et al. [71] propose the first solution to exact indexing of DTW. The

method extracts four features corresponding to the first, the last, the min­

imum, and the maximum of the time series. They propose a metric lower

bound for DTW based on Loo-norm distance of features. Park et al. [89] or­

ganize symbolic representations of time series using a disk-based suffix-tree

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structure and provide a lower bound to filter dissimilar subsequences. How­

ever, the index size can be 1-2 order of magnitudes larger than the database

size. Keogh [66] studies constrained DTW and constructs from a given query,

an envelope which surrounds all possible matching points of a time series.

Each time series in the database is divided into a pre-specified number of seg­

ments. An MBR is constructed for each segment and the set of MBRs are

organized in an R-tree. A lower bound for DTW is introduced which oper­

ates on query envelope and MBR representations of time series. Later, Zhu

et al. [128] propose an improvement by using the idea of piecewise aggregate

approximation to encode query envelopes. Sakurai et al. [104] suggest a new

lower bounding measure to approximate time warping distance with no warp­

ing range constraint. The idea is to construct a coarse representation of time

series using some MBRs that approximate time series at several resolutions.

The resolution of an MBR is determined by its temporal extent, which can

vary from one (finest resolution) to the length of time series. Ratanamahatana

et al. [99] develop a bit level representation of time series and a lower bound

for DTW based on such representation, which can also take advantage of the

run-length coding to improve compression ratio.

There are other variations of DTW which are more suitable for indexing.

Chen et al. [25] propose a modified version of DTW called Edit distance with

Real Penalty (ERP) which is robust to time shifting but not outliers. Because

ERP satisfies the triangle inequality, it can be indexed using metric index

structures such as M-tree [31]. In ERP, each point in one time series can

be matched with either a point in another time series or a gap. The metric

property of ERP is independent of the value assigned for the gap. However,

the distance of the two time series depends on the value chosen for the gap.

The authors also propose a lower bound for ERP which is metric and can be

indexed using a R+tree. Bozkaya et al. [17] introduce a modified version of

edit distance where two time series are considered similar if the majority of

their points match. Fu et al. [44] combine time warping with uniform sam­

pling, a technique that allows global scaling of time series. They argue that

such approach is useful in domains where time series are recorded by differ-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ent sampling rates and performing a global scaling would result into a better

alignment. A continuous variant of DTW has been proposed [82] where points

in one sequence can match an interpolated point in the other sequence.

Longest com m on subsequence and its variants - Das et al. [33] use the

length of the longest common subsequence (LCSS) of two time series as a mea­

sure of their similarity. They propose an algorithm to estimate the length of

LCSS, in order to speed up the queries. Vlachos et al. [119] first partition time

series into sets according to their lengths and prove a weaker version of the

triangle inequality for LCSS for each set. They apply hierarchical clustering

to produce a tree structure for each set and the trees are used for pruning. In

another work, Vlachos et al. [117] propose an approach with no false negatives

when a constrained version of longest common subsequence is used to compare

time series. The main idea is to extract bounding envelops that contain po­

tential matches of time series. As a variant of LCSS, Chen et al. [27] propose

Edit Distance on Real sequences (EDR) which assigns penalties to the gaps

between two matched subsequences.

Sim ilarity search w ith false negatives - The works in this group relax

the lower-bounding property to improve performance. For instance, Korn et

al. [72] keep the first few principal components of a time series as features to

reduce database size and to speed up distance computations, when similarity

is measured by Euclidean distance. However, since a lossy feature extraction

approach is used and the lower-bounding property is not established, there

might be some false negatives. Keogh et al. [70] take a probabilistic approach

to sequence retrieval and extract characteristic features (e.g. peaks, plateaus,

or troughs) to represent time series. Global shape information is represented by

the prior probability of relative locations of individual features. A probabilistic

model integrates local and global shape features to measure similarity.

There are some other works on constructing signatures from time series.

For instance, Keogh et al. [68] hash subsequences of time series into bit strings.

A distance function is developed such that, given a segment of a query and a

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bit string, it provides an estimate of the Euclidean distance between the seg­

ment of the query and any segment that can be presented by the bit string. In

another work, Indyk et al. [59] transform segments of time series into sketches.

Although the distance between the sketches of two segments is guaranteed to

be bounded by a factor to the true distance between the original segments

with high probability, in both [68] and [68], the lower-bounding property does

not hold and there can be false negatives.

Stream ing tim e series - There has been several works (e.g. [45], [124],

[123], and [103]) on similarity search in data stream settings where new points

are observed continuously and the goal is to monitor the stream and to find

some predefined patterns.

2.3.2 M ulti-dimensional Time series

We organize related work in this section into two broad categories; (1) index­

ing trajectories where the dimensionality of each observation does not exceed

4 and (2) retrieving video sequences where each observation is an image frame.

There has been some work in spatio-temporal databases that do not fall into

the aforementioned categories. These works, such as [92], [114], and [87] study

topological and navigational queries and not the similarity between trajecto­

ries. They more concentrate on finding objects that are close to a query object

at a time instant or during a period.

Indexing trajectories - The first reported work on indexing multi-dimensional

data sequences is by Lee et al. [74], where they use the Euclidean distance to

compare trajectories. The authors generalize a previous work [40] on time

series and replace the piecewise constant approximation of segments with an

MBR approximation. Each trajectory is represented by a number of MBRs

which are organized in an R-tree. The index is probed for matching trajectories

based on query MBRs. A heuristic similar to that of Kamel and Faloutsos [65]

is used to segment the trajectories and to derive the MBRs. The main intuition

behind this heuristic is to reduce the expected number of indexed MBRs that

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overlap with a query MBR. Reducing the number of overlaps can in turn lower

the expected number of disk accesses when the index is used to filter distant

trajectories. However, this heuristic does not provide a tight approximation of

trajectories, in particular when the change scale in different dimensions is not

the same, as discussed in Chapter 4. Experiments are conducted over datasets

with the dimensionality of observations varied from 2 to 4; the scalability of

the work for higher dimensionalities is not investigated. For d-dimensional

histories, the dimensionality of indexed MBRs is equal to 2(d + 1). The per­

formance of index structures, including R-tree, degrades when dimensionality

increases [108]. As another feature extraction approach, Cai et al. [19] decom­

pose each trajectory into a few time series, represent each time series by a few

Chebyshev coefficients, put together the Chebyshev coefficients into a single

vector, and organize feature vectors in an R-tree. A drawback of this approach,

as well as the work by Lee et al. [74], is the use of Euclidean distance, which

is sensitive to noise, time shifting, and amplitude scaling.

Kahveci et al. [64] map trajectories into a shift eliminated plane [30] to

support uniform shifting and scaling, where all points of a trajectory are shifted

or scaled by the same offset or scale factor. This approach is not applicable

when shifts are not uniform or a trajectory is recorded with different sampling

rates at different time points.

Vlachos et al. [117, 118] construct an index on trajectories that supports

Euclidean distance, DTW, and LCSS using the same index structure. The au­

thors organize the MBRs of trajectories in an R-tree and probe the index using

the MBRs of query envelop. The heuristic used to partition trajectories is to

minimize total MBR volume, which is also used in an earlier work to index

spatio-temporal trajectories [51]. The authors claim that the same heuris­

tic is also useful for filtering. Experiments are performed on 2-4 dimensional

histories and the scalability for higher-dimensional histories is not investigated.

R etrieving video sequences - Several approaches have been proposed

to extract high-level features from video sequences. However, such feature

extractions are often lossy and can result in false negatives. For instance,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chang et al. [21] use as features of a video sequence a small number of key

frames with the maximum fidelity to the original video sequence. Cheung et

al. [28] select a few seed frames at random plus a small collection of closest

frames to each seed. In another work, Indyk et al. [58] keep sequences of shot

durations to summarize the activities in a video sequence.

There has been some work on representing and indexing video sequences.

For instance, Lee et al. [73] propose a graph-based data structure where frames

are segmented into regions and the spatial adjacency of regions along with their

velocity and moving directions are used to separate object regions from back­

ground. The history of an object region is represented as an object graph.

The authors cluster background and object regions to impose a hierarchical

structure which also supports similarity search. Similarity is measured by an

extension of the edit distance. However, this work is specialized to video se­

quences, since it explicitly decomposes a sequence into background and moving

objects, and it is not clear if it can be applied to historical market-basket data

and multi-dimensional histories.

In another work, Shen et al. [Ill] model video streams as sequences of im­

age frames, and measure the video similarity in terms of the number of similar

frames between two video sequences, irrespective of the temporal ordering of

the frames. This approach is not order preserving.

2.3.3 Sequence D ata

Approximate sequence matching is a problem that arises in many applications

including text searching, computational biology, and signal processing [83].

The similarity between two strings is usually defined as the cost of applying

a transformation that makes the two strings the same. In particular, the

edit distance is defined as the minimum number of single character insertions,

deletions, and replacements required to make two strings equal. Edit distance

has been used for measuring the functional and evolutionary similarity of DNA

and protein strings [112]. The weighted version of edit distance assigns costs

to operations and/or characters. As an alternative to the edit distance, the

block edit distance (e.g. Varre [116]) measures the minimum number of block

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

edit operations.

Because computing the edit distance of two sequences requires constructing

an optimal correspondence between the symbols of the two sequences using a

dynamic programming algorithm, which becomes computationally expensive

for long sequences, several heuristics have been proposed that trade precision

for performance. In particular, FASTA [90] and BLAST [7] rely on the so-

called hit-and-extend heuristic. The main intuition behind these approaches

is that two similar sequences are likely to contain short identical substrings.

A deterministic finite automaton (DFA) is constructed from one sequence and

this automaton is run against the other sequence to find every identical sub­

string of a fixed length. Unfortunately, the size of the DFA grows exponentially

with the size of the alphabet. For historical market basket data, for instance,

the alphabet is the power set of the set of items I. Even when the number

of items is as small as 1000, the alphabet size is ~ 1.07e+301 which is large

compared to 4 and 20 for DNA and protein sequences respectively.

To scale up accurate optimal alignments [112] to large databases, Hunt

et al. [57] and Meek et al. [78] propose disk-based suffix trees that employ a

dynamic programming A*-search to prune some extra computations. A suffix-

tree is a PATRICIA trie [81] that stores every suffix of an input sequence in a

tree. The branching factor of this tree is at most equal to the cardinality of the

symbol alphabet which, as we mentioned, is very large for historical market-

basket data. For integer alphabets, i.e. when each symbol is an integer in

[l,n], Farach [41] constructs suffix-trees that scale up to large alphabets in

time linear to alphabet size; this is still very large for historical market-basket

data.

Wang et. al. [121] study the problem of retrieving similar event sequences

where a match between two sequences is defined in terms of the matching

events and the weights of the events. While this work does consider temporal

aspects of sequences and might be applicable to histories, matches between

observations are limited to exact matches and therefore the approach is not

robust to noise.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.4 Limitations of Existing Solutions

We have grouped the past work on similarity queries on histories into three

categories: (1) time series, (2) multi-dimensional time series, and (3) sequence

data. For many real-life scenarios, as listed in Chapter 1, the history of an

object cannot be effectively modeled as a time series. On the other hand, many

of the solutions developed for efficiently retrieving time series take advantage of

the numeric representations of observations and do not apply to more general

settings where an observation is a set. Existing solutions developed for multi­

dimensional time series

1. are optimized for 2-4 dimensional histories, and

2. do not support warping and time shifting for high dimensional histories.

On the other hand, the solutions proposed for specific domains, such as in­

dexing video sequences and natural language translations, take advantage of

specific features that can be extracted from histories. For instance, to index

multimedia, features such as color, texture, background, and motion are ex­

tracted from histories. However, we are considering the problem in the general

framework in which a similarity measure, which is domain independent, is used

to capture the closeness of two histories. In this framework, existing solutions

developed for sequence data

1. do not scale up for larger vocabularies, and

2. do not consider temporal aspects of histories.

These issues are the original motivations for the research conducted and

reported in this thesis.

2.4 This D issertation

The focus of this thesis is on efficiently evaluating nearest neighbors and range

queries on historical data. In particular, we are interested in similarity search

with no false negatives because of the high risk and cost associated with miss­

ing potential answers in real life applications, such as disease diagnosis, drug

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

discovery, and market investment. Two types of histories are considered in this

thesis: multi-dimensional histories where each observation is a vector and his­

torical market-basket data where the set of items is large and each observation

is represented more effectively as a set items.

2.4.1 Main Contributions

For historical market basket data, we propose a notion of similarity which

generalizes the idea of edit distance to histories. Given the length and the

score of an optimal alignment for two histories, our enumeration algorithm

efficiently finds a set of common patterns that are observed in the same order

in two histories, hence generalizing the concept of the longest common subse­

quence (commonly used for character strings) to histories. We propose a few

upper bounds that help in efficiently processing similarity queries. In particu­

lar, one of our upper bounds that is non-metric, targets histories with sparse

observations and uses an index structure to speed up our similarity queries.

For queries on multi-dimensional histories, we propose techniques for ex­

tracting summaries from histories. We show that a large class of distance

functions can be more efficiently computed on history summaries, and that

the distance between summaries under-estimates the true distance between

corresponding histories. Furthermore, we derive a query-independent opti­

mality criterion for MBR approximations of histories. This approximation

is significantly faster to derive, compared to a recently proposed alternative

method and can improve upon a traditional volume-based splitting.

To further improve the tightness of our MBR approximations of multi­

dimensional histories, we propose a few adaptive splitting strategies. These

strategies take advantage of the correlations between dimensions and the vari­

ance of the changes in different dimensions to improve upon traditional fixed

splitting schemes. Our experiments show that the adaptive splitting schemes

can improve the lower bounds for expensive distance functions and can be

beneficial for pruning.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Efficient Retrieval of Historical
M arket-Basket D ata

In this chapter we introduce a new domain-independent framework for formu­

lating and efficiently evaluating similarity queries over historical market-basket

data, where given a query history as a sequence of timestamped observations

and the pair-wise similarity of observations, we want to find similar histories.

We derive a similarity measure for histories, based on an aggregation of the

similarities between the observations of the two histories, and propose efficient

algorithms for finding an optimal alignment between two histories. To process

similarity queries efficiently, we develop some upper bounds for our similarity

measure and an algorithm that makes use of those bounds to prune histories

that are guaranteed not to be in the answer set. Experimental results on real

and synthetic data confirm the effectiveness and efficiency of our approach.

The rest of the chapter is organized as follows: the next section provides

an example of historical market-basket data and motivates our work in this

chapter. Background materials on sequence alignment are presented in sec­

tion 3.2. Section 3.3 presents conditional alignment and our similarity model

for histories followed by Section 3.4 which presents our approach to process

queries over large collections of histories. Experimental results are reported in

Section 3.5. A review of related research appears in Section 3.6. Section 3.7

is conclusion and the summary of our contributions.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: An example showing three histories over a period of four days
hi h2 h3

Day 1
Day 2
Day 3
Day 4

{a, b}
{c, d}
{f> §}
Ob i, j}

{b, c, d}
0 , g)
{g, h, i}
{h, k}

{b, c, d}
{a}
0 }
{g, h, i}

3.1 M otivating E xam ple

In a hospital, routine observations are made about patients. These observa­

tions can be made by doctors or nurses and may include general symptoms

such as “high fever,” “rash,” “high blood cholesterol,” “bleeding,” the medi­

cations used, responses to the medications, and the medical advice given. If

each sign, symptom, or medication is assigned a symbol, then an observation

simply becomes a set of symbols, and the medical history of a patient can be

described as a sequence of sets. The example in Table 3.1 shows this scenario

for three histories over a period of 4 days. An interesting query is “find medical

histories similar to h2.” Suppose the query returns the medical histories hi

and h3. We expect to find some common patterns between similar histories

so the next interesting query can be “in what respect are histories h2 and hi

similar?” For day 1, the symbol b is observed in both hi and h2. There is no

common symbol for day 2 , but the two histories also share a symbol for days

3 and 4. We can find a larger overlap between the two histories if we com­

pare days 2, 3 and 4 of hi respectively with days 1,2, and 3 of h2 where the

common pattern will be ({c, d}, { /, g}, { h ,«}}. Similarly, the common pattern

with the largest overlap between h2 and h3 is ({b, c, d}, {g , h, ?})• We might

be also interested in a common pattern that covers at least three days of h2

and h3 (i.e. ({6, c, d}, {«}, {h})).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Prelim inaries: O ptim al A lignm ent o f H is­
tories

Since a history is modeled as a sequence of observations, alignment techniques

can be used to measure the similarity between two histories. An alignment,

or more precisely a local alignment [49], is a way to line up subsequences of

two histories where each observation of a history is matched with either an

observation in the other history or a gap.

D efin ition 3 (A lignm en t). An alignment of two histories is a sequence of

the following edit operations:

• (a —> e) denotes the deletion of observation a,

• (e —> jd) denotes the insertion of observation fd, and

• (a —> jd) denotes the matching of a with jd

where a is an observation in one history, jd is an observation in the other

history and e denotes a null observation.

An alignment is assigned a score and this score may be used to compare

two alignments.

D efin ition 4 (A lignm ent Score). Let a(a -» fd) denote the score of match­

ing two observations a and fd, with the constraint that at most one observation

can be a null observation. The score of an alignment is defined as an aggregate

score of the matches in the alignment.

If the aggregation function is fixed to sum, which is commonly used to

compare strings [49], the score of an alignment A = («! -* fdi,. . . , a^\ fd\A\)

is defined as:

(3.1)

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 C onditional O ptim al A lignm ents

In general, it is possible to find multiple alignments between two histories,

but we are often interested in an alignment with some desired properties. For

instance, we may want to find an alignment with the highest score or the

longest possible alignment1. Such properties of an alignment may be specified

in a query in the form of some constraints on the length and/or the score of

an alignment.

3.3.1 Limitations of the Existing Solutions

A related problem is string alignment which has been extensively studied in

bioinformatics [107], approximate string matching, speech processing, etc. The

Smith-Waterman (SW) algorithm [112] is commonly used to find an align­

ment with the highest score. This algorithm, when applied to two histories

of lengths m and n, can find an optimal alignment in 0 (m n) time using a

dynamic programming approach, assuming that two observations can be com­

pared in constant time. However, there are two problems when the SW al­

gorithm is applied to histories. First, it may not be realistic to assume that

two observations can be compared in constant time, in particular when the

observations are long or the similarity function a is not trivial. The num­

ber of possible observations is also typically huge, and it is not an option to

pre-compute the pair-wise similarity between all observations, as the num­

ber of observations increase exponentially with the size of alphabet. Second,

we may not be interested in an alignment with the highest score. Instead,

we might be interested in an alignment of a specific length with the high­

est score or the longest alignment(s) with a score greater than a threshold.

In both cases, the desired alignment is not necessarily an extension of an

alignment found by the SW algorithm. Consider, for instance, the histo­

ries h2 and h3 in Table 3.1. Given a as the fraction of items common to

two observations, an alignment that maximizes the score in Eq. 3.1 and can

be found by the SW algorithm is ({b, c, d} —> {b ,c ,d} ,{g ,h , i} —>• {g,h,i}).

1 excluding those matches that contain null observations

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, if we are interested in an optimal alignment of length three, i.e.

({b, c, d} —> {/>, c, d}, {g, h, z} —* {z}, {h, k] —> {g, h, z}), the result of the SW

algorithm cannot be extended to find this alignment. Next, we discuss our al­

gorithm for finding the score of an optimal alignment of length /, here referred

to as /-alignment.

3.3.2 Finding the Score of an Optimal /-Alignment

Given two histories, we want to find the score of an optimal alignment of a

given length /. We can relate the problem of finding the score of an optimal

/-alignment to the problem of finding the score of a shorter optimal alignment

if the alignment scoring function satisfies the principle of optimality [11]. Let

hi and h2 be two histories and denote an optimal alignment of the two histories

with A*. An alignment scoring function /(•) satisfies the principle of optimality

if for any pair of non-overlapping prefixes and suffixes of hi and h2:

f (A *) > f (A ; ® A * s) (3.2)

where A* is an optimal alignment between the two prefixes, A* is an optimal

alignment between the two suffixes, and © is the concatenation operator. A

large class of functions, including Eq. 3.1, satisfy the principle of optimality;

a detailed discussion of these functions can be found in [11]. For the sake of

presentation clarity, from now on we will use Eq. 3.1 as our scoring function,

but the algorithm discussed here should be applicable to any function that

satisfies the principle of optimality. Next, we propose a divide-and-conquer

approach to find the score of an optimal /-alignment.

L em m a 1. For two histories X and Y , let G\j be the score of an optimal

l-alignment of two suffixes {xi, . . . , xm) and {y j , . . . , yn). Then

<j(xi -» e) + G li+i j

a (e Vj) + Gli,j+i (3.3)

<?(xi -*% ■) + G\f\ j+l

where 1 < / < min(m, n), i < m — I + 1 and j < n — I + 1 . G\ j is zero for

%> m — l + l or j > n — / + 1 .

30

max

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. When each history has only one observation, the score of optimal 1-

alignment is equal to a(x i —> y{) and Eq.3.3 holds. Let the score of optimal

/ — 1-alignment of (%i,. . . , x m) and (yj, . . . , yn) be computed as GG1 ■ One of the

following constructions gives an /-alignment of (xi}. . . , xm} and (yj, . . . , yn):

• Leave Xi unmatched and find the score of an optimal /-alignment of

(xj+i, .. •, xm) and (y j , . . . , yn). The score of this alignment is G\+lj plus

the penalty of leaving oq unmatched, i.e. a(xi —» e). Similar argument

applies when yj is left unmatched.

• Match Xi with rq and find the score of an optimal (/ — l)-alignment of

(xi+i , . . . , xm) and (yj+i, • • •, yn)■ The score of this alignment is

plus the score of matching Xi with yj.

The score of an optimal /-alignment is the maximum of the score of possible

/-alignments, thus Eq.3.3 holds. □

According to the definition of G* -, the score of an optimal /-alignment of

two histories is equal to G(1;1, which can be found using a dynamic program­

ming algorithm which requires 0(mnl) calls to cr(-) and 0(m n) space. This

approach, however, will become expensive for long histories. Therefore, we

identify some special cases in which these time and space complexities can be

reduced.

There are often scenarios in which the two observations cannot be matched

if they are recorded far apart. For instance, when aligning the histories of two

customers, it may not be reasonable to match purchase transactions that are

recorded more than a month apart. Therefore, to preserve a temporal locality

among matched observations, we may enforce a constraint similar to the Sakoe-

Chiba band2 which was used in [13] to define the allowed range of warping in

dynamic time warping.

D efin ition 5 (r-n e ig h b o rh o o d co n s tra in t) . An alignment satisfies the r-

neighborhood constraint if for all matches (aq —» yj) in the alignment, obser-

2Other bands, e.g. Itakura Parallelogram [95], could also be considered.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.1: r-neighborhood constraint for r = 2

vation yj is recorded in the r-neighborhood temporal extent of observation X{,

i.e. \ts(xi) - ts(yj)\ < r.

When r = 0, only observations that are recorded at the same time could

be considered for a match. Increasing r adds some flexibility in matching

observations that are recorded within a time frame. Figure 3.1 illustrates

the concept for two histories X and Y, when r = 2 and the index of each

observation corresponds to its timestamp. Each match of the observations

must be in the shaded area. For instance, observation x 2 can match with

observations y\, y2, y?> and y\.

Our first improvement takes advantage of an r-neighborhood constraint,

when it is present. Let X and Y be two histories of lengths m and n respec­

tively and let m > n (the role of X and Y can be interchanged otherwise).

For r > 0, let m 2r denote the maximum number of observations in X that

are recorded in a time frame of length 2r. Since each observation of Y can

be matched to one of at most m 2r observations in X , the number of calls of

cr(-) and the space requirement for computing G[j reduce to 0 (m 2rnl) and

0 (m 2rn), respectively. The improvement is significant when X is long and

m 2r <C in.

Our next improvement is useful if a minimum threshold is specified for the

score of matches of an alignment. The idea is to remove observations that

cannot participate in an alignment before running a dynamic programming

algorithm. More specifically, given two histories X and Y, X is transformed

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into possibly a shorter history by removing all observations Xi in X such that

a(xi —» t/j) is less than the given threshold for all observations yj in Y ; a similar

transformation can be applied to Y. The transformations can be applied in

two steps. First, for each observation of in X , a(xi yj) is computed for

each observation yj in Y, and x ̂ is removed from X if for all observation yj

in y , a (xi —> yj) is less than the threshold. Removing observation Xi requires

0(n) calls to a(-). Removing all observations like x ̂ from X requires 0(m n)

calls to <r(-). The same argument applies for removing observations from Y.

Overall, to apply the transformation to X and Y requires 0 (m n) calls to a(-).

3.3.3 Finding Common Patterns of Two Histories

Further to finding a degree of similarity between two histories, it is interesting

to find out in what respect two histories are similar. More specifically, we want

to identify the common patterns that arise in two histories and may give rise

to a similarity. Finding such patterns for histories is related to the problem of

finding the longest common subsequence (LCS) for strings. However, the idea

of only matching identical observations in LCS is too restrictive; we can hardly

find any identical observation in two histories. Therefore, we generalize LCS

by relaxing the condition that the matched observations must be identical. We

do this in two phases: first, we find an alignment of a desired length and score;

this is discussed in the next subsection. Then, we can identify the common

items in the matched observations and construct a common pattern, referred

to here as a common signature.

In our setting, an observation is a set. Therefore, given an alignment,

a common signature can be a sequence of sets, each being the intersection

of two observations matched in the alignment. The common signature for

histories is a generalization of the LCS for strings. However, unlike the LCS,

we are interested in finding optimal alignments that contain a desired number

of matches since the alignment score depends on the number of matches in the

alignment.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.4 Enumerating Optimal Conditional Alignm ents

Given two histories we want to enumerate all optimal /-alignments whose score

is greater than a threshold s.

L em m a 2. Let X and Y be two histories with m and n observations each.

For any 1 < p < I, if (xh ->■ y ^ , . . . , x ip yjp, . . . , x u ->■ yjt) is an optimal

l-alignment of X and Y , then it is necessary that

• (xix —*• yjl l . . . ,Xip_1 —> yj is an optimal (p — 1)-alignment of two

prefixes of X an d Y , i.e. (aq, . . . , x ip_i) and (y1, . . . , yjp-i).

• (x ip+1 ~t yjp+i, ■ ■ ■, x g —■> Up) is an optimal (I — p + l)-alignment of two

suffixes of X and Y, i.e. (xip+1, .. , , x m) and (yjp+u . . . , y n).

This lemma is a direct result of the principle of optimality. To find desired

alignments of two histories, we can first locate a match that is guaranteed

to be in a desired alignment; we refer to this match as a pivot. A desired

alignment then can be formed by concatenating the optimal (p— l)-alignment

of the prefixes, the pivot, and the optimal (l —p + l)-alignment of the suffixes.

By construction, a match (x^ —> yj) is a pivot only if the score of the optimal

(p - l)-alignment of prefixes (a^, . . . , x ip„x) and (yu . . . , yjp^ x) plus Gl~pjp is

not less than the desired alignment score s. Note that for p — 1, the (p — 1)-

alignment of prefixes will be empty and the pivot will be the first match of the

alignment. Algorithm 1 conducts a branch-and-bound search to enumerate all

desired alignments of two histories. In each step, the algorithm identifies pivots

provided that Gl~Pj is computed ahead using Eq. 3.3 and the (p — l)-alignment

of prefixes is available in A. All (I — p)-alignments of suffixes (xip, . . . , xm} and

(Vjp, ■. ■ ,yn) that cannot contribute to form a desired alignment are pruned

effectively. Algorithm 1 can be parametrized to find the following alignments:

1. All alignments of length I: call Enum (X , Y, 1,0, ()).

2. k alignments of length at least lx with the highest scores: call Enum(-)

with the top k scores of G Y such that I > lx, i < m —l+1 and j < n —l+1.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m 1: Enumerate
In p u t : X = (aq, .. . , x m), Y = (y1, .. . , y n), I, s, A
/* I and s are the length and the minimum score of desired alignment
respectively. A is the alignment constructed so far:
(xh -> yh , . . . , x ip_x ->• yjp^) , initially empty */
O u tp u t: Enumerates desired alignments.

P ro c ed u re Enum(X , Y, I, s, A)
begin

if 1 = 0 th e n
if s < 0 th e n return A

L return
if A = (} th e n

R\ 4r~ {1, . . . , 77T. — Z + 1}
f?2 { l , . . . , n — Z + l}

else
R\ i— {ip-1 + 1, . . . , 777. — Z + 1}
R 2 <— {ip-i + 1, • • ■ ?n — Z + 1}

foreach {ip, j p) € Ri x jR2 do
if (x^ -> yjp) is a pivot th e n

A! = A ® (x ip —> /*concat A & pivot*/
|_ Enum(X , Y , I — 1, s - a(xip -> yjp) , A1)

end

3. k longest alignments with a score more than a threshold: call Enum(-)

for k pairs of length and score, where the length varies from min(m, n)

to 1 and the score is greater than the given threshold.

Modifying Algorithm 1 to accommodate a gap constraint is straightforward;

basically a match that violates the r-neighborhood constraint cannot be con­

sidered as a pivot. In the next section, we show how to process similarity

queries efficiently over a large database of histories.

3.4 Q ueries over Large C ollection o f H istories

We now consider the problem of efficiently evaluating similarity queries over a

large collection of histories where the query is a history with two parameters r

and Z, which respectively specify the r-neighborhood constraint and the mini­

mum length for desired alignments. A history in the database is a candidate if

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it can form an alignment with the query history such that the alignment con­

tains at least I matches and satisfies the r-neighborhood constraint. Histories

may be regarded as points in high-dimensional space, where the dimension­

ality depends on the cardinality of the itemset / and the length of histories.

Since the performance of the structures proposed to index high-dimensional

spaces degrades when the number of dimensions increases [108], ideally, we

want to construct an index on histories using metric space structures (e.g.

VP-tree [127] and M-tree [31]). However, this requires a metric distance3

function. In an attempt to form a distance function from the alignment score

in Eq. 3.1, we first define the similarity of two histories as a normalized score of

their optimal alignments. Let A denote an optimal /-alignment of two histories

X and Y,

s imAX, Y) = TT̂ FTTTTK- (3.4)K ’ ' min{\X\ ,\Y\) v '
The similarity of two histories is guaranteed to be in [0,1] provided that the

score of matching two observations always lies in [0,1]. Under this condition,

the distance between two histories can be defined as d[(X, Y) = 1—simi(X, Y).

This function in general is not metric, except under very specific settings. For

instance when 1 — <j(-) is a metric and there is no constraint on the length of a

match and also there is no r —neighborhood constraint, the distance function

becomes the edit distance and is a metric. We are not sure if the distance

function can be modified into a metric while still keeping its generality. In

particular, the function is not a metric when 1 — cr(-) is not a metric. This can

be proved using a counterexample; consider the case where each history has

only one observation. Even if 1 — cr(-) is a metric, there are other cases where

the function di(X ,Y) is not a metric. For instance, let the score of matching

two sets R and S be a(R —> S) = here 1 — cr(-) is a metric [107].

Consider hi = ({a},{b, c}), h2 = ({a}, {&, c}, {d}), and h3 = ({b, c}, {d, e}).

3 A distance function d is metric if for any three objects o i, o2, and 03

1. it is symmetric, i.e. d(o i ,o 2) = d(o2,Oi),

2. it is non-negative and d(oi,c>2) = 0 iff o\ = o2, and

3. it satisfies the triangle inequality, i.e. d(os , 03) < d(o \ . o2) + d(o2, 03).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because hi and h2 have two equal observations in common, d2(hi,h2) = 0.

Also, d2(h2, h3) = and d2{h\, h3) = 1, the triangle inequality does not hold.

Therefore, the distance between histories, as discussed above, cannot be in­

dexed, for instance using a spatial access method, in general. A straightforward

alternative is to do a sequential scanning; but this is not efficient due to the

large number of disk access required to read all histories and the complexity of

comparing two histories. A B+tree index on the length of histories can filter

those histories of length less than I which cannot be candidates. This will

save a fraction of disk accesses and computations; however, the similarity is

still computed for non-qualifying histories. To prune some of those similarity

computations, we propose two upper bounds for s im i(X ,Y) in the next sub­

section. The first upper bound is quick to compute but requires reading the

histories. The second upper bound can be evaluated efficiently for a subset

of the database using an index structure. In what follows, we assume that X

is the query history and Y is a data history in the database, with m and n

observations each.

3.4.1 A General Upper Bound

For each observation yi of Y . let x> be an observation with the highest similar­

ity to yi among all observations of X that are recorded in the r-neighborhood

of yi. In case no such observation exists, we assume that re** is the null ob­

servation (i.e. e) and have cr(xi* yj) = 0. Let Si be a set that contains I

observations of Y, such that for every pair of observations yt and yj , if y.t E Si

and ijj (j S):

a(xi* -> y^ > a(xj . -> • yj)

E xam ple 1. For two histories X = (x \ ,x2, x 3) and Y = (j/i,2/2, 2/3)5 let E jj

be the score of matching Xi with yj, and

E -
0.2 0.5 0.3
0.4 0.1 0.1
0.8 0.2 0.3

The two observations of Y having highest matching scores with any observa­

tion of X are y% and y2, therefore S2 — {yi, 2/2}- For yi, aq. = x3 and for yi,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L em m a 3. For two histories X and Y, u s im i(X ,Y) defined as

f v H i) / o r \us tm i(X ,Y) — — -— -— ------r (3.5)
mm[m, n)

provides an upper bound for simi (X , Y) .

Informally, usimfiX, Y) can be seen as the score of an optimal relaxed l-

alignment. Each observation in X could be potentially matched with more

than one observation of Y. The order of observations in individual histories

may not be preserved completely in the alignment, i.e. there could be two

observations and Xi2 in X that are respectively matched with yj2 and yj1

of y , such that %\ < i2 and j \ < j 2.

Compared to s im i(X ,Y •), usimfiX^Y) can be computed in less time. Let

ra2r be the maximum number of observations recorded for X in a time interval

of length 2r. The upper bound can be computed in 0 (n (ra2r + log £) + /) time,

compared to 0(m2rnl) which is required to compute the actual similarity. The

upper bound can be used to prune non-qualifying histories before a similarity

computation.

In the case of a A; nearest neighbor (fc-NN) query X , a data history Y can

be filtered out safely when the upper bound usimfiX, Y) is less than the score

of the k-th best candidate found so far. Otherwise, the similarity of the history

and the query is computed and the list of k best candidates is updated if the

similarity is more than the score of the k-th best candidate. After processing

all histories, the result of the query is the list of k best candidates.

In the case of a range query X , a data history Y can be filtered out safely

if its upper bound u s im i(X ,Y) is less than the threshold of the range query.

Otherwise, the similarity of the history and the query must be computed and

the data history is included in the result of the query if the similarity is greater

than the threshold.

For both types of queries, every history must be read before we can decide

if a history can be pruned or not. In fact, the upper bound is computed

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

even for histories that have no observation similar to any observation of the

query. An interesting question is if it is possible to filter some histories prior to

computing the upper bound. We believe that an exact answer to this question

depends on functions a(-) and /(■). Next, we provide an affirmative answer to

this question under conditions defined in the next section when observations

are normalized to have a unit norm.

3.4.2 An Index-based Upper Bound for Sparse Obser­
vations

Our proposed upper bound in this section is aimed at sparse observations that

are common, for instance, in market basket data where a transaction typically

consists of a few items (out of the set of all possible items). Let x[t] denotes

the weight of item t € I in observation x. We propose an upper bound for

simi(’) that takes advantage of the sparsity of the observations to reduce the

number of histories that need to be scanned or compared to the query. Unlike

usimi(-), this new upper bound can be efficiently computed using an inverted

index on observations. In many real-life applications where only a small subset

of the histories in the database are similar to a query, our approach turns out

to be more efficient than a sequential scan (as shown in our experiments).

Lem m a 4. Let xffi] denote the weight of item t £ I in observation Xj of

history X . For history X , let I x C I denote the set of all items that appear in

at least one observation of X with a non-zero weight. cr*(xi* —* yf), defined as

coefficient.

Proof. The cosine measure and the extended Jaccard coefficient of two vectors

max

m m

overestimates a(xi* —> yf), when cr(-) is the cosine or the extended Jaccard

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x and y are defined as
- q ->

c ^ _ x v
S c os i n e y E t V) n - > n 11 - h i

I M I 2 I M I 2
- q -*

-a .. x y
S J ac ca rd y E 1 V) x 1 x + y1 y — x 1 y

where | |f ||2 denotes the L2-norm of vector x. For two vectors $ and Xi* of unit

norm:

SJaccard(Xi* TVi) — Scosine(Xi* iVi)

= ^2xi*[t] ■ yt[t] (3.6)
tel

For any observation x^*:

[t] < maxj j £)•[£] |ts(yi) — ts(x j)| < r | (3.7)

and similarly,

Xi*[t] > mirtj | Xj[t\ \£s(y)) — ts(xj)\ < r | (3.8)

Replacing Xj« [£] in Eq.3.6 with the right hand side of Eq.3.7(Eq.3.8) when $[£]

is positive(negative) and zero otherwise results into an upper-bound for Eq.3.6

and establishes the proof. □

Lem m a 5. For two histories X and Y , if \Y\ > I,

/ n cr*(xi* —y u f) . .
Usim(X, Y) = — 7—- - ^ --- (3.9)

mm{m, n)

provides an upper bound for sirrii(X,Y).

Proof. While usimi{Xy Y) considers the score of I best matches for the optimal

relaxed /-alignment, U s im (X ,Y) considers |F | > I best matches. Further­

more, for each match, an upper bound of the score is considered. Therefore,

U sim (X ,Y) > u s im i (X ,Y) > s im i(X ,Y) . □

Intuitively, this upper bound is the score of an optimal relaxed alignment

that matches each observation $ with the best observation that can be con­

structed from all observations of X in the r-neighborhood of Indeed,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U s i m (X ,Y) can be computed efficiently using an inverted index that maps

each item t € I to a list of (h^, ts, w) triplets. Each such triplet indicates that

item t has a non-zero weight of w in the observation recorded at timestamp ts

for history h^. For each query X , first the set of items I x is extracted from

the query and Usim(X, Y) is set to zero for all histories Y in the database.

Next, for each item t e Ix , the list associated with t is scanned from the in­

verted index. For each triplet (Y,ts(yi),yi[t\) in this list, Xi*[t], the maximum

value of Xj[t\ for all observations of X in the r-neighborhood of is identified

and Usim(X, Y) is updated accordingly. To use this upper bound for a range

query, it is necessary to retrieve a history Y only if Usim(X , Y) is greater than

the threshold of the range query where X is a query history. Similarly, for a k-

NN query, it is necessary to retrieve a history Y only if Usim(X, Y) is greater

than the similarity of the query and the A;-th best candidate found so far. In

both cases, U s i m (X ,Y) can be computed using an inverted index that maps

items to observations. Both queries can also use usimi to further prune some

histories not already filtered by Usirn, since it overestimates usimi and there

can be still false positives. The correctness of this approach is guaranteed by

the fact that both U sim (X ,Y) and u s im i (X ,Y) overestimate s im i(X ,Y) .

3.5 E xperim ental E valuation

We present the result of an experimental study of our approach on both real

and synthetic data sets. We also examine some of the solutions developed for

time series data and show why they are not applicable to the problem discussed

in this chapter. We ran experiments to investigate both the effectiveness of our

scheme and the efficiency of our approach of processing queries. The results

show that our similarity measure is effective to retrieve histories with similar

patterns and that our algorithms are efficient and scalable with the number of

histories and the number of items. Experiments were performed on a machine

with a single AMD/XP2600 CPU running Red Hat Linux, and all algorithms

were implemented in C.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.1 Datasets

We used three data sets in our experiments: a real dataset (the DBLP collec­

tion) and two synthetic datasets. One synthetic dataset was generated based

on a simple model for changes between consecutive observations of a history

and the other synthetic dataset was generated using a modified version of the

data generator for sequential market basket data [6].

The DBLP collection [34] contains bibliography of publications in computer

science since 1936. We considered each journal or conference as a sequence

of observations, each containing the set of terms in the table of contents of

the corresponding journal issue or a conference proceeding (excluding author

names). Terms were assigned weights using the tf.idf scheme [105]. The times­

tamp of each observation was the year that the journal was published or the

conference was held. The history for the VLDB conference, for instance, had

29 observations(as of March 20, 2004). From this dataset, we could extract ex­

tract 2,784 histories; we used this dataset to provide anecdotal examples of the

naturalness of our similarity measure in finding conferences/journals related

to a query. Each query is stated as the history of a conference or journal.

The Synthl collection contains histories of synthetic documents. We mod­

eled each document as a set of terms, which in turn, was represented using

a bit string of length n, with a one in position i indicating the presence of

term i and with a zero indicating the absence of the corresponding term in the

document. We further assumed that the number of changes between two con­

secutive versions of a document (i.e. the insertion of new terms or the removal

of some existing terms) follows a Poisson distribution [88], and that the num­

bers of changes in non-overlapping intervals were independent for all intervals.

To make the next version of a document predictable from the current version,

we assumed that changes follows the Gray code order, although other orders

could also be considered. In other words, if the number of changes between

version u* and Vi+1 is k , the bit string representation for ui+i corresponds to the

k-th bit string that follows Vi in the gray code order. This dataset contained

20,000 histories, n = 8 , and the first observation of each history was selected

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uniformly at random from the first 16 gray codes. For each history, the pa­

rameter for the Poisson distribution that generated the number of changes

was selected uniformly from { 1 ,. . . , 10}. The number of observations in each

history was uniformly distributed in the range [32,64]. We used this dataset

to evaluate the effectiveness of our similarity measure in retrieving histories

that were generated using nearly the same parameters.

The Synth2 collection simulates a database of customer purchase histories.

We used the synthetic data generator introduced in [6], but also assigned a

hypothetical timestamp to each transaction and a weight to each item in a

transaction. This dataset contained 8,000 histories. The number of distinct

items was 1,000. The average number of observations in each history and

the average number of items in each observation was 10, which is the default

setting used in data mining experiments, e.g. [5] and [6]. For each history,

the timestamp for the first transaction, as well as the difference in timestamps

for two consecutive transactions, was a natural number, chosen uniformly at

random from {1,2, 3,4, 5}. The weight for each item in a transaction was a

uniformly distributed random number in [0,1]. Each observation was normal­

ized to have a unit norm, so that we could use the upper bound we proposed in

Section 4.2. We used this dataset to measure the performance and scalability

of our algorithms.

3.5.2 Effectiveness of simi

We conducted some experiments to examine the effectiveness of our similarity

measure on the DBLP collection. We posed publications, either conferences

or journals, as queries and retrieved a ranked list of similar publications as

reported by our similarity measure. Similar publications share one or several

topics of interest that change in time. Likewise, new approaches and ideas

are mostly introduced and developed in similar publications. Therefore it is

likely that similar change trends are observed in publications that belong to

the same or related communities. Table 3.2 lists the result of 10-NN query

for the VLDB, the KDD, and the AAAI conferences. As it can be seen, the

publications are focused on topics related to databases for the VLDB, topics

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: 10-NN query for the VLDB, the KDD, and the AAAI conferences
VLDB KDD AAAI
VLDB
ICDE
SIGMOD
DEXA
IDEAS
IEEE TKDE
DASFAA
CIKM
EDBT
DEXA Workshop

KDD
PKDD
DaWak
ICML
CIKM
FLAIRS
IEEE TKDE
ICTAI
ICDE
ISMIS

AAAI
IJCAI
ECAI
AAAI/IAAI
FLAIRS
PRICAI
Artificial Intelligence
ICTAI
IEA/AIE
GECCO

related to data mining for the KDD, and topics related to artificial intelligence

for the AAAI. However, this result cannot be used as a strong evidence of the

effectiveness of simi; two similar publications may have a larger overlap in

their sets of terms, compared to two publications which are not similar. Thus

a question that still remains is whether the result reported in Table 3.2 can be

obtained from the static similarity of two publications, which is solely based

on the overlap between their term sets.

To further investigate this issue and to objectively compare simi with other

possible alternatives in retrieving similar histories, we designed another exper­

iment where the set of terms was the same for all histories but the change

pattern of histories were different. We generated 2, 000 queries using the same

mechanism used to generate Synthl. We retrieved 3 ranked lists using a k-NN

query with k = 10, based on simi (Eq.3.4) and two other measures; (1) L a s t ,

which measures the similarity between the last observations of two histories as

bag of words, and (2) U n io n A l l which measures the similarity between two

observations each formed by performing a union of all observations in the cor­

responding history. We used the Jaccard coefficient to measure the similarity

between two observations and selected I, the desired length of an alignment,

uniformly at random from { 3 2 ,..., 64}. Let Xq € { 3 2 ,..., 64} be the param­

eter used to generate the query and A*, i = 1, , k, be the parameter used

to generate the history that is ranked i-th in the answer set. Since Xq and

Ai are responsible for the change pattern of the corresponding histories, the

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.3: Mean and Stand. Dev. of MD(Xq, k) for 1-NN and 10-NN queries
Similarity
measure

MD(Xq, 1) MD(Xq, 10)
Mean Stand. Dev. Mean Stand. Dev.

simi 0.30 0.49 0.30 0.29
U n i o n A ll 1.81 1.69 1.90 1.14
L a s t 3.05 2.36 3.12 1.03

difference between Xq and Ai must be small for two histories having similar

change patterns. Therefore, we evaluated the mean deviation of Aj from Xq,

defined as

MD(Xq, k) = S - i 1^ ~ A?l

to assess the effectiveness of the similarity measures. Table 3.3 shows the av­

erage and standard deviation of MD(Xq, k) for the best and top 10 results.

According to the results, A* is expected to be closer to Xq for simi, which

in turn confirms the effectiveness of simi. Since L a s t only considers the last

observation of each history, there is a high chance that two histories with differ­

ent initial observations and generating parameters have exactly the same last

observations. The major drawback of U n i o n A l l is that the union of observa­

tions may include all the terms, which makes a history pretty much similar to

any other history independent of the generating parameter. Moreover, L a s t

is not sensitive to the order of observations, i.e. all the permutations of a given

history will be treated as if they are identical.

3.5.3 Pruning Power and Efficiency

We conducted experiments to evaluate the performance of processing similarity

queries on Synth2 dataset. Each query was a history selected randomly from

the dataset. The parameters for each query (either &-NN or range query) are r

and I, which specify the r-neighborhood constraint and the minimum number

of desired matches in an alignment between a query and a data history, re­

spectively. We compared a naive scan, which reads and computes simi for all

histories in the database, with three pruning schemes; (1) Lp uses a B+tree and

evaluates similarity for histories that have more than I observations, (2) LUBp

uses usimi (Eq.3.5) in addition to the number of observations to prune unnec-

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Naive sc an

60

*o

No. of N earest Neighbors

(a)

100^ Naive sc an

LUBp
LINDp

~0

0.05
Threshold

0.1 0.15
Threshold of Range Query

0.2

(c)

600
Naive sc an

500 LUBp
LINDp

200

100

No. of N earest Neighbors

(b)
600

N aive sc an

500 LUBp
LINDp

100

0.05
Threshold

0.1
Threshold of Range Query

0.15 0.2

(d)

Figure 3.2: Pruning power and average query processing time for k-NN (top)
and range (bottom) queries

essary computations, and (3) LINDp uses Usim (Eq.3.9), an inverted index

on items, and the length of histories to read and evaluate the similarity only

for a fraction of the histories of the dataset. Since our proposed approaches

guarantied the returning of all qualifying histories (our upper bounds overesti­

mate simi), we measure only pruning power (the fraction of dataset for which

actual similarity is evaluated) and query response time. In each case, the re­

ported result is the average of preforming each experiment for 200 queries with

the cosine measure used to quantify the similarity of observations; we obtained

very similar results when the extended Jaccard coefficient was used, hence the

results are not reported.

In the first experiment, we selected r and I randomly from { 1 , . . . , 4} and

{ ! , . . . , 20}, respectively. Figure 3.2(a) compares the pruning power for k-

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NN queries when k varies from 1 (i.e. the nearest neighbor) to 1,024 (which

returns approximately 12% of the dataset). Using the length of the history

results in pruning about 45% of the histories safely. Using the proposed upper

bounds in addition to length results in a remarkable pruning. The pruning

decreases as k increases since the similarity needs to be evaluated for a larger

fraction of the database. The pruning reduces the response time for fc-NN

queries (Figure 3.2(b)). Note that although we observe a better pruning for

LUBp compared to LINDp when k < 1924, LINDp has a better response

time showing up to an order of magnitude speed-up over the naive scan for

nearest-neighbor queries. This speedup occurs because LINDp avoids reading

some of the non-qualifying histories. However, the speedup comes with the

extra cost of performing random disk accesses, which dominates the cost of

sequential scan in LUBp when k > 192 and query selectivity5 is high.

Figure 3.2(c) compares the pruning power for a range query when the

threshold of the query is increased from 0.005 to 0.2. Note that LU B p always

shows a better pruning power compared to LIN D p since LIN D p uses an

over-estimation of the upper bound used by LU B p . However, LIN D p reads

a smaller fraction of the database, and shows a better response time as the

number of histories to be scanned decreases (Figure 3.2(d)), making it more

efficient than LU B p when the threshold is greater than 0.05, i.e. smaller

selectivity.

We next investigate how the parameters r and I could affect the perfor­

mance of our proposed methods. We report only the results for nearest-

neighbor queries; we obtained very similar results for /c-NN and ranges queries.

First we varied r from 0 to 16 and for each r, we selected I randomly from

[1, 20] and picked (randomly) a history that had more than I observations as

a query. Figure 3.3(a) shows that increasing r increases the response times for

both LUBp and LINDp. However, LINDp slows down more quickly. Note

that both methods overestimate simi using the score of a relaxed alignment.

The chance of matching an observation of a data history with more than one

4This is expected since Usim overestimates usimi
5Defined as the fraction of records referenced by a query (i.e. satisfying a condition)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LUBp
LINDp225;

2001

175

<D 150

S 125<D
§ 100

75

50

r

200
LUBp
LINDpO— ®"

150

w 100

50

2010 15

(a) (b)

Figure 3.3: Average time for processing nearest neighbor queries varying (a)
the size of the r-neighborhood (b) the desired minimum number of matches I

observation of a query increases with r, making the upper bound less tight

and consequently increasing the response time for both approaches. However,

LINDp is more influenced since U sim (X ,Y) > us im i(X,Y) .

Next we changed I from 1 to 20 and selected r randomly from [0,4], For

each I, we randomly selected a history (from the database) with at least I

observations as a query. Figure 3.3(b) compares the running time of a nearest

neighbor query using LUBp and LINDp for pruning. The upper bounds em­

ployed in both methods are close to actual similarity when I is small. However,

the number of histories with more than I observations decreases as I increases,

which helps LUBp to reduce the number of sequential disk accesses and re­

dundant computations. For LINDp, the number of random disk accesses (due

to using an index) does not change, but the time required for computing sim­

ilarity for histories not pruned increases, which justifies the observed trend.

3.5.4 Scalability Test

To compare the scalability of LUBp and LINDp to a naive scan, we increased

the number of histories in the collection from 8 ,000 to 64,000 and measured

the average query processing time for a nearest neighbor query. Both r and

I were selected randomly from ranges [1,4] and [1,20] respectively. As shown

in Figure 3.4(c), both LUBp and LIN D p scale linearly, but the performance

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4500
Naive sc an
LUBp
LINDp

4000

3500

^ 3000

2500

2000

1500

1000

500r

64,0008,000 16,000 32,000
Number of histories

220
LUBp
LINDp200

175(

"o' 150

125

0) 100

25

256512 1024 2048
Number of items

4096

(a) (b)

Figure 3.4: Average time for processing nearest neighbor queries varying (a)
the size of the collection (b) the number of distinct items

gap between these methods and the naive scan increases with the number

of histories in the database. In another experiment, we kept the number of

histories fixed at 8 , 000 and varied the number of items from 256 to 4, 096.

Figure 3.4(d) depicts the average response time of a nearest neighbor query.

Although LUBp is not significantly affected by this increase, the response

time for LINDp decreases when the number of items increases from 256 to

1,024 and remains unaffected after that. This is mainly because the dataset

becomes sparse as the number of items increases. For instance, the probability

that two observations, each with 10 random items, have a non-zero similarity

is 1 — n “ i- ^25? ~ 0-44 for 256 items and 0.13 for 1,024 items; LINDp takes

advantage of this sparsity to reduce the query response time.

3.6 O ther R elated W ork

Related research includes the work on detecting, representing, and querying

changes. Chawathe et al. [24] propose a framework to represent changes by

annotating the changed data using tags. A tag contains the type of change, a

timestamp, and a reference to the modified values. Both data and annotations

are modeled as nodes edges of a graph. The queries supported in this frame­

work have the familiar select-from-where syntax over the annotated-graph.

Chien et al. [29] represent the history of an evolving XML document using

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

another XML document. Temporal and content-based queries are supported

on the versions or the changes of XML documents. Our work differs from the

aforementioned work in that we focus on similarity queries on historical data.

3.7 C onclusions

We have introduced a new domain-independent framework to both formulate

and efficiently evaluate similarity queries over historical data. Our work gen­

eralizes a few concepts including the edit distance and the longest common

subsequence to histories. This generalization is helpful; for instance, it en­

ables us to find a common signature between histories based on their optimal

alignments. We have developed some upper bounds for our similarity queries

and one of our upper bounds has this interesting property that it makes use

of an index even though it is not metric. Finding similar histories over order

preserving data has many potential applications, of which we have considered

historical market basket data and multi-version documents in our experiments.

Our experiments on real and synthetic data confirm the effectiveness of our

proposed scheme and the efficiency of our algorithms. For instance, when the

minimum length of a match is provided, our algorithm achieves up to an order

of magnitude speed-up over linear scan. Our contributions may be summarized

as follows:

• A measure of similarity which generalizes the idea of an edit distance to

histories and is useful in many practical settings. We propose the notion

of an optimal alignment between two histories and an efficient dynamic

programming algorithm that finds the score of an optimal alignment of

any given length.

• An enumeration algorithm which finds a set of common signatures, given

the length and the score of an optimal alignment for two histories. The

common signature shows the common patterns that are observed in the

same order in two histories, hence generalizing the concept of the longest

common subsequence from character strings to histories.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Two upper bounds that help in effective pruning of non-qualifying his­

tories. In particular, one of the upper bounds targets the cases of sparse

observations where only a small fraction of items from the set of all pos­

sible items appear in each observation; such cases are common in many

real-life applications and datasets that we have been experimenting with.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Similarity Search over
M ulti-dim ensional Archival
D ata

In this chapter we study efficient retrieval of similar histories where each his­

tory is modeled as a multi-dimensional time series. Our framework is based

on the traditional filter-and-refine paradigm. We first propose a class of his­

tory summaries for filtering and then give a finer representation of histories

for refinement. Our summaries have two important properties. First, for

any distance function which is formulated as an aggregation of the distances

between the observations of two histories, the summaries can be used to effi­

ciently prune histories that cannot be in the answer set of the queries. Second,

histories can be indexed based on their summaries, hence the qualifying candi­

dates can be efficiently retrieved. To further reduce the number of unnecessary

distance computations for false positives, we propose an approximation of his­

tories which is finer than a summary. This approximation satisfies some notion

of optimality for pruning. Our experiments show that the combination of our

feature extraction approaches and the indexability of our summaries can im­

prove upon existing methods for 2-4 dimensional histories and scales up for

large databases.

This chapter is organized as follows: the next section motivates the work by

discussing examples of similarity search over high-dimensional histories. Sec­

tion 4.2 presents a generalization of few distance functions, commonly used

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for time series, that can be used to compare histories. Section 4.3 and 4.4, re­

spectively, present our techniques to extract summaries and to derive fine-level

approximations of histories. Our adaptive splitting techniques, which improve

history approximations, are presented in section 4.5. We develop our algo­

rithm to process nearest-neighbors queries in section 4.6. Performance evalu­

ation and experimental results are reported in section 4.7. Related research

is reviewed in section 4.8. Section 4.9 concludes the chapter and summarizes

our contributions.

4.1 M otivating E xam ples

In the financial sector, the history of a stock may be tracked using indicators

such as daily opening and closing prices, trading volume, etc. In health and

medicine, changes to body temperature, blood pressure, heart beat rate and

blood sugar may be recorded to monitor the recovery history of a patient. In

meteorology, measurements such as temperature, precipitation, wind speed,

pressure, moisture and snowfall are regularly collected (e.g. daily or hourly)

for many earth surfaces by weather stations. Similarities between histories can

be useful for exploratory analysis, clustering, and prediction. For instance, the

similarities between the histories of two stocks may explain or predict short­

term and long-term trends. Finding patients with similar recovery histories

may be useful for treatments or the trial of a new drug. Detecting possible

similarities between the weather conditions of two regions may indicate that

crops successfully produced in one region may also be tried in the other region.

4.2 Prelim inaries: D istan ce betw een H istories

Let Dbase(x, y) denote a function that measures the distance between two

points x and y; for instance the weighted I/p-norm distance of two points

x and y, defined as

(4 . 1)

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where W{ is a real number, referred to as normalizing coefficient. While = 1

for i = 1, ,d gives the standard Lp-norm, the normalizing coefficients can

be set to other values, for instance, to make the range of variations of all

dimensions equal and therefore numerically comparable, or to emphasize the

significance of some dimensions over others. The distance of two histories

A = {d\ . . . an) and B = (bi. . . bm) can be formulated as a combination of

the pairwise distances of their points. A simple way to measure the distance

of two histories A and B of the same length n is to aggregate the distances

between their corresponding points as

Two histories may be considered similar, even if they are out-of-phase (i.e.

one is shifted in time) or are of different lengths, for example, when histories

are collected at different rates. The dynamic time warping [13] between two

histories extends the histories by replicating some of their points such that

the extended histories are of the same lengths. An aggregation of the pairwise

distances between the matching points of the extended histories can be used

to measure the distance of the two histories (as defined for time series [126]):

of DTW where two points can be matched only if they are recorded within a

time interval, also called warping range [13].

An alternative measure to compare two histories is their Longest Common

Subsequence Score (LCSS) [119]. LCSS addresses the problems associated with

excessive matching in DTW; each point of a history can either be matched with

(4.2)

0 if both A and B are empty
oo if exactly one of A or B is empty

D b a s e ^ b p n A l h.pnrK R A -+ -

m i n l Ddtw(rest(A),B),
{ Ddtw(rest(A),rest(B))

otherwise.V

where head(A) denotes the first point of history A and rest(A) denotes a

history which is derived from A by removing head(A). There is also a variant

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a similar point of the other history or remain unmatched. The similarity is

thus proportional to the number of matched points. Given e as the threshold

for matching points, the LCSS of two histories is defined as

otherwise.V

Similar to DTW, a constrained variant of LCSS can be introduced. A distance

function can be defined for histories based on LCSS:

Dicss(A, B,e) = 1 - Sicss{A, B, e)/min(m, n).

4.3 H istory Sum m aries

Let / be a function from the domain of d-dimensional points to real values.

For instance, / may transform a point to its norm. We refer to / as a kernel

function, and use it to construct summaries from histories.

D efinition 6 (H Sum). The summary of history A = (cq,. . . , an), with re­

spect to a kernel function f , is a time series denoted by hsf (A) and defined

as

The idea of HSum is illustrated in Fig.4.1 for 2-dimensional histories A and

B, when the kernel function f (x) returns the average value of the coordinates

of vector x. An HSum is actually a feature extracted from a history, in the

form of a time series. Although any function can replace the kernel to extract

an HSum from a history, we are interested in kernels that generate history

summaries that can be used for filtering purpose without introducing false

negatives. This requires that the distance of two HSums be bounded from

above by the distance between their respective histories. It can be proved

/ 0 if A or B is empty

1 + Sicss(rest(A),rest(B),e)
. . if Dbase(head(A), head(B)) < e

oicss{A, B, e) =

max

hsf(A) = [f(di)} , i = l , . . . , n . (4.3)

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D . (A,B) = 171.9, k.D. (A, B) =121.5
rltiA/ v ' ' 3 rtt\n/ ' ’ '

3

1

1

-3
4

60 6£
-2 4030

-4 Time

£4
p
+

X

II

p
x

^rttJ hsf (A) , hs (B)) = 84.8 h s (A)
3

1

1

■30 10 20 30 40 50 60 65
Time

Figure 4.1: 2-d histories A and B and their HSums

by contradiction that only the class of functions that perform non-expansive

mapping can be used as kernel functions.

D efinition 7 (Non-Expansive M apping). Let fa and fa be distance func­

tions defined respectively in M.d and R. A function f from to K is a non-

expansive mapping if for all x and y in Rd

fa (f (x) , f (y)) <k - f a { x , y)

where 0 < k < 1 is a constant.

If the above condition is satisfied for 0 < k < 1, then the mapping is

said to be contractive and the constant k shows the maximum size of a con­

traction. For instance, in Fig.4.1, when the distance between two points is

measured using L2-norm, the average function described earlier is contractive

and k = \ j \ f2 . The choice of a kernel function and a distance function for

points in R depends on the distance function used for points in Rd and its

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

properties. For the brevity of our presentation in the rest of this chapter, we

assume that the distance between two points (i.e. 4>d) is measured using the

weighted Lp-norm, which is a metric distance. We outline two possible choices

for kernel function / and corresponding distance function (f)

W eighted sum. Given a weight vector w , the weighted sum of a point x is

the scalar wTx. If we assume that each weight re, gives the importance of a

variable Xi, then the weighted sum would give a collective assessment of the

variables. For instance, in the case of patients, the weighted sum may give the

overall condition of a patient. When Wi — 1/d for i = 1 , . . . , d, the weighted

sum becomes the average and measures the central tendency of a point. In this

case, the weighted sum can be used to construct an approximation of the point

in d-dimensional space and such approximation is guaranteed to be optimal,

in terms of the sum of squared error. The weighted sum can also be used to

classify points by a classifier such as Perceptron [101]. For our purpose, the

weighted sum of a point is a kernel function that can reflect the changes along

the dimensions of a history.

Lem m a 6. The weighted sum performs a non-expansive mapping from Rd to

R if f i is set to the weighted Li-norm.

Proof. To show that weighted sum is a non-expansive mapping, we use one of

the properties of convex functions. Let gc be a convex function defined on real

numbers, i.e. for real numbers A1;. . . , Xd such that = 1> the following

inequality holds

for any set of real numbers a i , . . . , ad. Let x and y be arbitrary d-dimensional

points. Replacing gc(x) with \x\p, a convex function (p > 1), A * with 1 /d for

all i, and a; with Wi(xi — yf) in Eq.4.4 yields

d d
(4.4)

i= 1

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The left hand side is equal to | \ (wTx — wTy) |P; therefore the above inequality

can be written as

The left hand side is the weighted Li-norm of the weighted sum of f and y,
1 ~p

where the normalizing coefficient is d p . □

M etric space em beddings. Since tfd is a metric, we can use a large class of

metric space embeddings as kernel functions. In particular, given a reference

point f, the kernel can be defined as / (f) '= (f>d(x,r) [55]. In the case of

patients, the reference can be the conditions of a normal healthy person. Given

two reference points, the kernel function can be defined as the projection of

a point on the line that connects the two references [39]. Again in the case

of patients, the reference points can be the conditions of two patients: one

a normal healthy person and the other a patient in some critical condition.

More generally, one can select a set of reference points R and define the kernel

function as

/ (f) = minv^R{(t)d{x, y)}

which is a special case of Lipschitz embedding [15].

P ro p o sitio n 1. All the above functions perform a non-expansive mapping

from Rd to R i f 4>i is set to Li-norm.

4.3.1 Properties of HSums

The next theorem states an interesting property of HSums, when the kernel

function is a non-expansive mapping.

T heorem 1. Let f be a non-expansive kernel function. The distance between

two HSums with respect to f provides a lower-bound for the distance between

their respective histories formulated as any aggregation of the distance between

points of the corresponding histories.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. (Sketch) Because a non-expansive kernel reduces the distance between

any two points of two histories, any aggregation of distances is also reduced.

□

The property is useful for filtering histories efficiently as the distance be­

tween two HSums can be computed more efficiently, compared to the distance

between two histories. For instance, in Dp, for two histories A and B of the

same length n,

Dp(hSf (A) , hSf (B)) = (£ > i (/ (S ,) . / (? ,

\i= l

which is obtained by replacing D(,ase in Eq.4.2 with fa. Since / is non-

expansive, we can rewrite the right hand side as

Dp(hsf (A),hs f (B)) < y
Vi=l

= k ■ DP(A, B)

Therefore, the lower-bounding property holds for Dp since 0 < k < 1. For

two d-dimensional histories of the same length n, Dp can be computed in

O(dn) time, whereas Dp for can be computed in 0 (n) time for their HSums.

Likewise, because Ddtw aggregates the distances between matched points of

two histories, the lower-bounding property also holds. The case for Dicss is

slightly different, because a threshold e is used to decide if two points can

be matched. We show that the similarity of two HSums upper-bounds the

similarity between histories, which implies the lower-bounding property for

Dicss• When points a* and bj are matched, from the definition of Sicss and the

non-expansive property of / ,

the reverse is sometimes not true. Sicss(A ,B ,e) < Sicss(hsf(A), hs /(H), k • e),

and since the length of HSums is the same as the length of the respective histo­

ries, the lower-bounding property is established. Since HSums are time series,

Ddtw and Dicss are computed in 0 (m n) time for HSums and in 0 (d m n) time

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for the respective histories. The property holds for other distance functions

such as ERP [25] and EDR [27].

4.3.2 Pruning Histories by HSums

HSums have two interesting properties for the purpose of pruning. First,

because of the lower-bounding property, if the distance between two HSums is

not less than a threshold, the distance between their respective histories also

cannot be less than a scaled threshold. Therefore, the distance between the

HSums of a query history and a data history can be used to avoid computing

a more expensive distance between the query and the data history. Fig.4.1

illustrates the lower bounding property for Ddtw and 2-d histories.

Second, since HSum is a time series, each history can be indexed based

on its HSum using any indexing technique developed in the domain of time

series, and there is a rich collection of such indexes. Though it should be noted

that an HSum gives a coarser representation of a history and some patterns

may show in the history but not in its HSum. For instance, with the weights

set the same for all dimensions, a weighted sum remains unchanged for any

permutations of the dimensions. This is a type of distortion that cannot be

detected using HSums. The amount of this distortion directly depends on

the kernel function used. The next section presents a finer representation of

histories; we will use this finer representation to further prune false positives

that cannot be pruned based on their HSums.

4.4 A Finer A pproxim ation o f H istories

We consider approximating a history using a set of MBRs which encloses all

points of the history. This representation, also commonly used for organiz­

ing spatial and spatio-temporal objects ([86, 40, 74, 51]), provides a concise

abstraction for histories. The set of MBRs of a history, in general, preserves

trends in individual dimensions of a history with a higher resolution than its

HSum. Moreover, for a large class of distance functions, including Dp, Ddtw,

and Dicss, the distance between two histories can be underestimated efficiently

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by the distance between their MBR representations (e.g. [74, 66, 117]). In

this section, we propose a criterion to derive a finer approximation of histories

optimized for pruning.

4.4.1 M BR-based Approximation of Histories

To approximate a history A = (a \ , . . . ,an) as a sequence of k MBRs spread

along the time axis, a splitting algorithm must be used to divide A into k

consecutive and non-overlapping segments. Let s* and e*, respectively, denote

the indexes of the first and the last points of segment i. By construction,

Si = 1, efc = n, and s;+i = ej + 1. Let at[r] be the value of point t of the history
—* *—̂

at dimension r. Segment i of the history is approximated by A = (si,ei,li,hi)

where

li[r] = min{at [r}} s{ < t < e*

hi[r] = max{at [r]} < t < e*

for 1 < r < d. A{ is a hyper-rectangle which tightly encloses all points

falling in segment i. There are Q lj) possible ways to decompose A into

k consecutive and non-overlapping segments, and as a result there are that

many representations of the history. Among all possible representations, we

are interested in the one which can be used more effectively for the purpose of

filtering. Let A k denote an arbitrary representation of A as a set of k MBRs.

Because the distance between the MBRs of two histories is a lower-bound of

the distance between the two histories, finding the optimal approximation A k

can be stated as an optimization problem: find A k which minimizes distance

approximation error.

When the query history is provided, a straightforward approach to find
A k can be developed as a dynamic programming algorithm. However, often

the splitting is performed in a pre-processing step; therefore the algorithm

to derive A k must be independent of the query. Another approach, which

has been used extensively for indexing spatial and spatio-temporal objects

(e.g. [51, 117, 74]), would consider total volume of the MBRs as a criterion

for an optimal splitting. However, this approach produces MBRs that are

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal for indexing but not for pruning. Anagnostopoulos et al. [8] give a

more effective solution for this problem under the assumption that queries are

selected from the set of histories to be indexed. They propose a global distance-

based segmentation algorithm to approximate histories aiming at preserving

all pairwise distances. However, the splitting is both costly to derive and is

only optimal for static collections; it is not possible to predict the effectiveness

of this approach in a more realistic setting where queries are not selected from

the given dataset.

4.4.2 Our Optim ality Criterion (uDAE)

Suppose the distance between two histories is measured using D(-) . Given

a query history Q, an MBR approximation A k of history A is optimized for

pruning if it minimizes the distance approximation error defined as

where D (A k, Q) is the minimum distance between Q and any history that can

be approximated using A k\ therefore D (A k, Q) is a lower-bound of the true

distance of A and Q. Because finding an A k that optimizes Eq.4.5 requires

knowledge of query Q, we propose an upper-bound for D A E (-) which can

be minimized independent from Q and therefore can provide a near-optimal

approximation of history A. For the brevity of our discussion, we assume that

the distance between two histories is evaluated using their Li-norm, however,

our approach should be generalized to Lp-norm distances as well. Replacing

D(-) in Eq.4.5 with Li-norm gives

where D base(Aj , cfc) denotes the distance of point g* to MBR A y Let N c(x, Aj)

and N f (x , Aj) be two points inside MBR A j with respectively the closest and

the farthest distances to x, in terms of D base (as depicted in Fig.4.2 for two

points qi and a, and MBR Aj) . For any query point qt and any MBR A y the

D A E (A , A “, Q) = D (A , Q) - D (A ‘ , Q) (4.5)

k e?
(4.6)

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N f a t,A]}

Figure 4.2: N c(qi,Aj) and N f(d i ,A j) for two points qi and cq and MBR Aj

metric property of Dbase implies that

Dbase(Aj, qi) Dbase (iVc(5jj Aj) , qi)

^ Dbase{^ij Qi) Dbase {Nc{,Qii ■^■3)1 ® i)

^ Dbase(, îi Qi) Dbase (iVj(cij, ®i) •

Note that Dbase (Nc{qh Aj),qi) > \ D base(di,qi)- D base (Nc(qi, Aj),di) |, but be­

cause Dbase(ai,qi) is not less than Dbase(Nc(qi,Aj),di), it is safe to remove

| • |. Replacing Dbase(Aj,qi) in Eq.4.6 with its lower-bound derived in Eq.4.7

provides an upper-bound for distance approximation error, denoted by uDAE1

for short
k ej

u D A E (A ,A k) = £ £ D b a se Aj), di) .
j=1 i=Sj

The same criterion can be used to derive a near-optimal splitting when the

distance function is D^w and Dicss: we consider D(u/W here and omit the ar­

gument for Dicss f°r brevity. From Eq.4.7, the error of matching point di in

history A with any point of history Q is at most Dbase(Nf(di,Aj),di). Let

n(di,Q) > 1 denote the number of points in history Q which are matched

with point o* in history A. An upper-bound for distance approximation error

can be formulated as a weighted sum of the errors of individual matches, i.e.

k ej

T , y n(di, Q) ■ DbaSc (Nf{di, Aj), di) (4.8)
j=1 i-sj

Often a warping constraint is employed to restrict n(di,Q) from above to a

warping range to. This is because a full length warping is not often desired

*uDAE is pronounced Yoda as in the Star Wars movie.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V o l : 1 0 8 , 0 8 . 0 0
uDAE: 4 , 962 ...0.2.. .

5 00 -

400 -

>
3 0 0 .

2 00 -
7 0 0 '

600

500 150
100

400

Time

V o l : 1 4 , 8 5 4 . 00
uDAE: 11, 974 . 9.1.

>-
.. i-o

100

Time

Figure 4.3: MBRs of a 2-d history; one with minimum volume (left) and one
with minimum uDAE (right)

and might result into unrealistic matches [95]. Thus, n(a,,<3) could be mod­

eled as a discrete random number that takes its value uniformly at random

from We replace n(ai,Q) in Eq.4.8 by E\n(di,Q)\ to derive the

expected value of Eq.4.8 as (^4^) • uDAE(A, A k), which can be optimized for

A k independent from u>.

An interesting property of uDAE is that a near-optimal MBR approxima­

tion of a history can be derived for Dpi Ddtw, and Dicss distance functions,

independent from a query. Similar to volume, uDAE can be computed locally

for each history and therefore, it is straightforward to develop a dynamic pro­

gramming algorithm similar to DPSplit [51] to find optimum A k in 0 (k n 2)

time where n is the length of history A. On the other hand, uDAE has some

interesting properties, when compared to volume, as discussed next.

4.4.3 uDAE Compared to M B R Volume

Minimizing total volume, in general, does not lead to an optimal representation

of a history in terms of approximation error. Fig.4.3 presents two approxima­

tions of the same history, one derived by minimizing total volume and the

other derived by minimizing uDAE. If a history shows no change along one or

more dimensions within an interval, an optimal strategy with respect to total

MBR volume is to assign a single MBR for the whole interval. This is because

the total volume for any possible splitting of the history in that interval is the

same (i.e. zero); this is shown for MBR 1 in Fig.4.3(left). This is a serious

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem for approximating histories in particular when d is relatively large and

points are sparse. Each history often has segments where the points are not

distributed along all dimensions, hence the intrinsic (or real) dimensionality of

the history within those intervals is less than d. The same intervals are approx­

imated by more tight MBRs when uDAE is minimized in Fig.4.3(right). The

same problem is observed for histories when changes happen in all dimensions

but there is a big variance in the degree of the changes; this is shown for MBRs

7 and 10 in Fig.4.3(left). A representation that minimizes the total volume is

expected to give a more accurate description of the changes in dimensions with

smaller variance. Unlike volume, uDAE is minimized only when the MBRs are

as tight as possible; hence uDAE generally provides a better approximation

of histories and it is not affected by intervals which produce trivial splittings

when volume is used. A better approximation of histories is expected to im­

prove both the tightness of the lower-bounds and the effectiveness of pruning,

as shown in our experiments (Sec.4.7).

4.5 A d aptive Sp litting o f H istories

The MBR approximation presented in the previous section adopts a fixed

splitting policy where the same splitting intervals are considered for all dimen­

sions of a history. With a fixed splitting policy, we need to maintain for each

segment, the minimum and the maximum values along each dimension, and

the ending point of the segment. Because the MBRs of each history are stored

sequentially in our scheme, there is no need to keep the starting points. There­

fore, an approximation A k requires k(2d + 1) features to maintain. Naturally,

increasing k will result into a better approximation of the history, measured in

terms of uDAE. However, given a fixed amount of space for an approximation,

a major concern for high-dimensional histories is to make a clever use of the

space by finding the best possible approximation. A straightforward approach

is to apply data compression techniques [129] to reduce the space requirement

of Ak, hence increasing k indirectly. However, if we could find a better split­

ting of a history, without increasing k, we would also benefit from compression

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms.

A fixed splitting policy would be a desirable property if MBRs are to be

stored in a spatial index structure. For histories of higher dimensionality,

MBRs generally cannot be efficiently indexed due to the large number of fea­

tures [108], and there is no justification for a fixed splitting. Fixed splitting

may even be ineffective, for instance, when changes are observed on a subset

of the dimensions or the absolute values of the changes on several dimensions

are not correlated. For instance, in our patient example, the body temper­

ature may remain constant within a time interval while heart beat rate and

blood pressure change similarly. In such cases, a fixed splitting is not a clever

strategy. This motivates us to look for more adaptive and data-aware splitting

strategies.

Let D = (l , . . . , d) denote the set of dimensions and M be the space

available to store the MBRs of each history. The adaptive splitting can be

stated as an optimization problem: find an approximation A of history A,

such that A could be stored using M features and uDAE(A, A) is minimized.

An approach closely related to our adaptive splitting is Adaptive Piecewise

Constant Approximation (APCA) [20] where the split points are adjusted to

derive an optimal approximation of time series. However, we consider a more

general case for high-dimensional histories where the number and the position

of split points can change for different groups of dimensions of a history, thus

we can improve upon APCA, if extended to histories. Our heuristics consider

the correlation between dimensions and the similarity of their change trends

to improve upon an optimal fixed splitting scheme.

4.5.1 Variable Splitting

When the variances of the changes along all dimensions are not the same, a

fixed splitting may over-allocate the split points to dimensions with less or no

changes; this is typically for the cost of under-allocating the split points to

dimensions that can use more split points. Our first heuristic partitions the

set of dimensions and considers a different number of splitting points for each

partition. Moreover, split points are placed in each partition independent from

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40 100 120 1401

0
20 40 60 80 100 120 140

P f i x e d {(tr(4, {w, x , y , z }) , 8)}, uDAE{Pflxed) = 28.3
- Sequence of Changes ■ Magnitude of Significant Changes (smoothed)

1

0

1
0 20 40 60 80 100 120 140

1

0 20 40 80 100 120 140 0 20 40 80 100 120 140

100 120 14020 40 601

0 0
20 40 60 80 100 120 140

20 40 60 80 100 120 140

20 40 60 80 100 120 140

P„ { (t t(A, { w , y }) , 10), (tt(A, { x , z }), 4)}, uDAE(Pvs) = 24.7

Figure 4.4: Optimal fixed splitting, change trend, and variable splitting

other partitions. We illustrate the main idea of this heuristic in Fig.4.4 where

an optimal splitting of a 4-d history using 8 MBRs is shown. The change

trends, or more precisely the magnitude of significant changes, depicted in

Fig.4.4 (explained later in this section) indicate that dimensions { w , y } ex­

hibit similar change patterns. Likewise, dimensions {x,z} have similar change

trends. Our first heuristic is to examine the projections of a history on disjoint

subsets of dimensions, and split each projection independently. For instance,

the history shown in Fig.4.4 can be projected on two subsets {re, y } and {x, z } ,

because of the similarities in change trends of the respective dimensions. We

use the following definitions to formalize our variable splitting heuristic.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 8 (Induced H is to ry). Let Di be a non-empty subset of D. The

induced history i r (A, Di) is a history derived from history A by removing all

dimensions in P — D i .

D efin ition 9 (V ariable S p littin g). Let { D i , . . . , Dp} be a partitioning of the

set B; i.e. Di fl Dj = 0 for i ^ j and lfi=lDi — P. A variable splitting of

history A is defined as a set P = {(Rfi, Aq),. . ., (Dp, kp)} where ki is a natural

number and the pair (Di,ki), 1 < i < p, indicates that the induced history

iv(A,Di) is approximated using ki MBRs.

With this definition, a fixed splitting becomes a special case of variable split­

ting where P — {(B, k)}. Each pair (Di, kf) specifies the number of MBRs to

be allocated for induced history n(A, Df). The split points for each induced

history have to be determined independently from other induced histories by a

splitting algorithm that minimizes a cost, such as uDAE or volume. A variable

splitting P could be used to derive A(P), a unique approximation of history A,

in 0(\P\k) time where k is the average number of MBRs of induced histories.

The optimal variable splitting policy must minimize uDAE(A, A(P)), subject

to space constraint, i.e.

£ ki(2\Di\ + l) = M. (4.9)
(Di,ki)£P

It should be noted that extra space must be allocated to store (Di, kf) infor­

mation; we consider this extra space in more details in section 4.7.4.

L em m a 7. An optimal adaptive splitting is guaranteed not to do worse than

a fixed splitting policy.

Proof. (Sketch) Since the search space for an optimal adaptive splitting policy

is a superset of the space searched for the fixed splitting, the claim follows. □

An exhaustive search to find an optimal variable splitting is computation­

ally prohibitive, since all possible partitioning of B into nonempty subsets need

to be constructed and for each partitioning, the optimal number of splittings

dedicated for each partition must be determined. The number of possible par­

titioning of B into non-empty subsets is B d, the bell number2, which is equal

2 Bo = B 1 = 1 an d for d > 1, B d+l - £ t o Bi(f)

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to 115, 975 for d — 10. Because performing an exhaustive search becomes in­

efficient when d > 10 for large databases, we exploit a simple heuristic which

considers only one partitioning of O. To form this partitioning, we use a clus­

tering that groups the dimensions that are likely to benefit from the same

splitting points into the same group. As the criterion of clustering, we use the

similarity between the change trends of dimensions.

Extracting Change Trends

Extracting change trends involves three steps. First, for each dimension, the

sequence of changes is extracted as a time series. The value of this time series

at time f * is the value of the change for the corresponding dimension from time

U to ti+1- Second, a change at time is considered significant if the magnitude

(i.e. absolute value) of change is a standard deviation greater than the average

magnitude of changes in a window of length w centered at otherwise we set

the change to zero. Finally, significant changes are smoothed using a moving

average window of length w to derive change trends. Fig.4.4 illustrates this

process for a 4-d history. We used a sliding window of length 7 (resembling a

week) and set a — 1.5, as set by Vlachos et al. [120] in a similar experiment.

Finding an O ptim al A ssignm ent

Given a partitioning {D \ , . . . , Dp} of B, we want to assign the number (and

the position) of splitting points for each induced history. The brute-force

approach would consider all possible assignments of kh i = which

satisfy Eq.4.9. For each assignment, a separate dynamic programming algo­

rithm, which we refer to as DPSplit(uDAE), must be performed to find the

positions of the splits. After the split points for each induced history is de­

termined, the corresponding A (P) must be constructed and uD A E(A , A(P))

must be evaluated to identify and keep an optimal variable splitting. Since

each call to DPSPlit(uDAE) algorithm requires 0 (k in 2) time, the brute-force

approach is not efficient as it calls DPSplit(uDAE) once for every assignment.

The search can be formulated as a dynamic programming algorithm where the

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal splitting of n(A, Di) into k i ~ \ MBRs can be computed directly from

the matrix which was computed for finding the optimal splitting of n(A, Di)

using ki points. By induction, only one call is required for each induced history

tt(A A)> f°r ki set to

M - E '= ,m i + 1)
.-------2|g,| + 1 J ' 3 (4 M)

which is the maximum number of MBRs that could be allocated to 7r(A,Di),

when only one MBR is assigned for each induced history 7r(A, Dj) , j ^ i. A

branch-and-bound algorithm could be developed to find an optimal assignment

of MBRs for a given partitioning. This, combined with our heuristic used to

examine only one partitioning of B as discussed earlier, gives a near-optimal

variable splitting of a history. We omit the details of the algorithm here for

brevity.

4.5.2 Superimposed Encoding

With a variable splitting strategy, each induced history 7r (A, Di) is approxi­

mated by a sequence of MBRs corresponding to |A|-dimensional segments.

In some cases, however, there is a high similarity among the dimensions of

an induced history and this similarity could be used to significantly reduce

the size of encoding. Note that such similarity may have a low support over

the whole dataset, therefore traditional dimensionality reduction techniques

might not consider it significant. However, an adaptive splitting scheme can

take advantage of such, rather local, similarity to reduce the space required

to encode the MBRs of induced histories. In Fig.4.5, for instance, dimensions

{ w, y } show a great degree of similarity. In order to reduce the number of

required features, i r (A , { w , y }) can be represented by a set of MBRs, where

each MBR has one minimum, one maximum, and one temporal extent, as

depicted in Fig.4.5(bottom and left). As a comparison, a fixed splitting of

7t(A, { w , y }) using ki MBRs requires 5ki features whereas in our superimposed

encoding, only 2>ki features need to be kept. The saving is the result of impos­

ing similar dimensions into one representative which is decided adaptively for

different MBRs. This saving would allow us to virtually increase the number

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

2

0

-2

-4
20 30 400 10 50

r-̂ PTI
, S —

10 20 30 40 50

y

-2-2

-4 0 10 20 30 40 5020 30 40 50

P ' f i x e d — { w , X , y , z }) , 7)}, uD A E (P fixed) = 70.2

w, y X , z

-2 -2

-40 10 20 30 40 50 0 10 20 30 40 50

Pse = {{k (A, {io,j/}),13),(7r(4, { x ,z }) ,n) } ,u D A E (P se) = 55.3

Figure 4.5: Optimal fixed splitting and superimposed encoding

of splits while keeping the space requirement the same. Increasing the number

of splits is expected to produce a better approximation of the induced history.

For instance, in Fig.4.5, an improvement is observed in the representation of

dimension x(z) in interval [30 — 52],

The approach discussed for variable splitting can be easily modified to im­

plement our superimposed encoding; since similar dimensions are represented

by one dimensional MBRs, |_Dj| in Eq.4.9 is replaced by one to derive space

constraint. The setting of maximum value for ki in Eq.4.10 should be modi­

fied, alternatively, to j and the partitioning of D must be performed

based on the similarities of dimensions instead of their change trends3.

Our idea of superimposed encoding has similarities with Skyline Bounding

Regions (SBR) of Li et al. [75], but the two are different. While SBRs are built

3Note that two time series with similar change trends might not show a strong correlation,
in general.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on multiple time series that are similar but may have no other relationships, a

superimposed encoding is done on a partition, which includes similar dimen­

sions, of a single history. Also Li et al. use the area of SBRs to find their best

approximations while we use uDAE because of its advantages for pruning as

discussed earlier and confirmed by our experiments.

4.6 Sim ilarity Search for H istories

We are now ready to present our algorithm for processing nearest-neighbors

queries. Our algorithm uses an index over HSums which are 1-d time series.

Leaf nodes of the index contain both HSum and uDAE-MBR approximation of

data histories, whereas internal nodes are built based on HSums. Fig.4.6 gives

an example of a multi-step nearest-neighbors search algorithm [108] which

performs filtering using the index (line 1-5) and pruning based on uDAE-MBRs

(line 8). The algorithm first retrieves k histories that have most similar HSums

to the HSum of the query. For each retrieved history, r is computed as an

upper-bound of the distance of the query and potential candidates. Given the

non-expansive property of the kernel function, for all histories H in the answer

set of the original query, it must hold that D (hsf(H), hsf(Q)) < r; hence, the

algorithm performs a range query on the index on HSums to retrieve a superset

of the qualifying histories. Some false positives are pruned by comparing H

with Q using £>«,, where H(Q) is the uDAE-MBR approximation of history

H(Q) and Dib(H,Q) is a lower bound of the distance between H and QA.

True distance are computed to prune false positives which are not pruned

using HSum index and uDAE-MBR approximations.

4.7 E xperim ental Evaluations

This section presents the result of an experimental evaluation of our algo­

rithms on both real and synthetic data. First we compare the efficiency of our

splittings and the quality of our generated MBRs with a related and recently

proposed splitting algorithm [8]. Second, we compare our splitting algorithm

can be any function that lower-bounds D(-) e.g. [117].

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm 2: K-NN Search
Input: A d-dimensional history Q as query

An index constructed on HSums
Output: k most similar histories to Q

Pre-processing:
Apply kernel function / on Q to extract hsf(Q).
Apply adaptive splitting to obtain Q.

Search:
(1
(2
(3
(4
(5
(6
(7
(8
(9

(10
(11
(12
(13
(14

Find &-NN of hsj(Q) using the index.
Let % be all records in the result set.
Let r be the largest value of D {H , Q), H G H.
Perform a range search for hsf(Q) and range r.
Read H for all records in the result set.
Initialize Topk list to the first k records.
For each H in the result set

If Dlb(H ,Q) > Topk.dist
Prune H

Else
Read H the full history corresponding to H.
Compute D(H, Q); update Topk list if required

Endlf
EndFor

Figure 4.6: Algorithm for k-NN search

with the traditional volume based splitting in terms of the tightness of the

lower bounds. Third, we investigate the effectiveness of our adaptive splitting

heuristics in improving the quality of MBRs measured by uDAE. Finally, we

study the efficiency of our algorithm in terms of its pruning power, running

time, and scalability with database size. Experiments are performed on a

machine with a single AMD/XP2600 CPU, 512MB RAM, running Red Hat

Linux.

4.7.1 D atasets

Four dataset collections were used in our experimental study:

The Reall collection contains a number of real datasets from UCR time

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1: Summary of ReaI2 datasets
ASL Marine VT1 VT2 Word

Dimension 3 2 2 2 4
Size 6,756 4 15 23 2,381
Avg. length 58 128 151 543 178

series archive5, including those used in [8], spanning over a wide range of areas

including computer networks, medicine, robotics, and random walk. Each

dataset consists of 50 time series of length 512 each.

The Real2 collection consists of a few datasets of 2-4 dimensional histories.

Table 4.1 provides a summary of the datasets in this group. These datasets

have been used in the related work on indexing multi-dimensional time series

(e.g. (117]).

The Web collection contains the history of a sample of the Web as a collec­

tion of 17-dimensional histories. We used Google Directory6 to get a sample

of highly ranked web pages. Google Directory organizes web sites by their

categories in a hierarchical structure. Each node in the structure contains a

set of links to other nodes, as well as a list of web pages and a descriptive

text for each page. In each node, the web pages are ordered according to their

PageRank. We crawled the first five levels of this directory and extracted a set

of descriptive terms for each of the 17 categories (e.g. Art, Business, Sports,

etc.). The set of descriptive terms for each category included all terms that

appeared in the text description of any node that descended from the cate­

gory within the crawled data. From the crawled data, we collected the URL of

11, 328 web sites; these are links to external web sites within the first five levels

of Google Directory. We checked the change history of these pages in Internet

Archive [60}. For most of the web pages, either the page did not change in

the specified period or few versions of it (less than 50) were stored in Internet

Archive. To focus our experiments on pages that changed more often, we de­

cided to crawl those with at least 50 different versions in the first six months

of 2004 from Internet Archive. This provided us with 1,191 histories of web

5h ttp ://w w w . cs.ucr.edu/~eam onn/T SD M A /
6http ://directory.google.com/

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://directory.google.com/

pages. We crawled all versions of these pages and mapped each version into a

point in a 17-dimensional space. The mapping showed the degree of overlap

between the content of each version of a page and the descriptive terms of each

category. The result after this mapping was a set of 17-dimensional histories

that showed the change patterns of 1,191 pages over this interval. The average

number of versions for each web site was 81.

The Synthetic dataset simulates a large archive of 17-dimensional histo­

ries, which was constructed to investigate the scalability of our approach on a

large and realistic dataset. We used the Web dataset as a seed set and gener­

ated multiple copies of the histories in the seed by applying a combination of

four operations: permutation, time shifting, compression and insertion of new

points, thus increasing the number of histories in the dataset. Permutation

randomly changes the order of dimensions of a history. Time shifting intro­

duces a random shift r in time. Compression selects a random segment and

replaces it with a single point which is the average value of that segment. New

points are inserted at index t. The inserted point was set to the average of

the points at index [t — w, t). A combination of compression and insertion can

increase or decrease the length of histories. We selected r from [1,5], t from 1

to the history length, and w from [1,10], all uniformly at random.

In a pre-processing step, we normalized all histories so the mean for each

dimension was zero.

4.7.2 uDAE-based vs. Distance-based Splitting

We investigated how a splitting algorithm which minimizes uDAE could be

compared with a related algorithm [8] which performs a global distance-based

segmentation of histories, aiming at maximizing pairwise distance preserva­

tion. Since the exact solution of the proposed approach in [8] could not be

applied to even a database of moderate size, due to its intractable complex­

ity, Anagnostopoulos et al. propose a greedy solution that preserves closely

the sum of pairwise distances; we refer to this approach as AVHKY and com­

pare it with a dynamic programming algorithm based on DPSplit [51] which

minimizes total uDAE for histories (our approach). To be in-line with the ex-

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

|Bour approach □AVHKY|

(S)
CO
CDc
o>

CD><

[Hour approach HAVHKY[

10*4
O
CD^ 10*3
CD
•i W2

Figure 4.7: Average tightness and split time

periments performed in [8], we used the same datasets (Reall) and Euclidean

distance to compare histories.

To imitate a real similarity search in which queries are not selected directly

from the indexed data, we partitioned each dataset and used one-fourth of

data as queries and the rest as data to be indexed. For each query, we set the

number of MBRs to 10% of the length of the query. Similar to AVHKY, we

set the number of MBRs for the collection to be split equal to 10% of the total

sum number of observations in the collection. We wished to split each query

using the same approach used to split the corresponding dataset. However,

since AVHKY could not be used to independently split a query, we split each

query by minimizing volume, to avoid being biased to any of the two methods.

For each query and data history pair, we measured tightness as the ratio of

estimated distance over true distance; a tightness closer to one indicates a

more distance preserving splitting.

Fig.4.7 shows average tightness and split time for Reall collection. In

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

general, our approach performed very close to AVHKY in terms of average

tightness. However, as we expected, uDAE-based splitting had a significantly

better running time. This is because uDAE is a local measure which, for each

history, can be computed independently from other histories, whereas AVHKY

computes the distances for the corresponding segments of all pairs of histories

in the dataset in order to make a decision on merging consecutive segments of

each history.

4.7.3 uDAE-based vs. Traditional Splitting
Tightness o f Lower-bounds

We investigate how a uDAE-based splitting scheme could be compared with a

volume-based approach [51], w.r.t. the tightness of the lower-bounds proposed

in [117]. The only similar comparison, which we are aware of, is reported by

Anagnostopoulos et al. [8] for time series and Euclidean distance; we consid­

ered high dimensional histories in Real2 and Web datasets with more flexible

distance functions. We split each history individually; the number of splitting

points for each history was set to 10% of its length. To measure Euclidean

distance between histories of different lengths, we truncated the longer history

at the end. For Ddtw, the warping range was set to 5% of query length and

for D[CSS, e was set to 25% of the query standard deviation, as both are sug­

gested in [117]. Table 4.2 reports average tightness computed for fifty histories

selected uniformly at random from each dataset. Even though uDAE mini­

mizes an upper bound (instead of the exact value) of distance approximation

error, we observed that for most datasets and distance functions, using uDAE

made estimated distances closer to true distances, thus it is more effective for

pruning.

Right N um ber of M BRs

Finding the right number of MBRs is an important issue in MBR approxi­

mation of histories. A heuristic for finding this number is proposed by Had-

jieleftheriou et al. [52]. The main idea is to increase the number of partitions

of a history and monitor the reduction in the total volume of MBR approxi-

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.2: Average tightness of lower bounds
Asl Marine VT1 VT2 Word

Deuc volume 0.42 0.73 0.87 0.84 0.50
uDAE 0.49 0.75 0.90 0.89 0.56

Ddtw volume 0.50 0.64 0.76 0.75 0.44
uDAE 0.54 0.65 0.77 0.77 0.46

Dlcss volume 0.53 0.69 0.82 0.70 0.48
uDAE 0.58 0.71 0.82 0.75 0.54

mation and fix the number of MBRs to a point where volume reduction is no

longer strong. The same heuristic can be used to find a proper value for the

number of MBRs when uDAE is used because uDAE, like volume, is a mono-

tonically decreasing function of the number of MBRs. In this experiment, we

investigated how the history approximation improved with k 1 the number of

MBRs, for Web and Word (Real2) datasets. Let Vi and u\ be, respectively,

the total volume and uDAE of the histories in the dataset when a single MBR

is assigned to each history. We increased k from 20 to 450 and for each k ,

we derived an optimal approximation of the histories using k MBRs, where

optimality was measured using total volume and total uDAE.

Fig.4.8 shows the total volume and uDAE, normalized respectively by v\

and ui for 20 randomly picked histories of Word and Web datasets, varying

the number of MBRs. As expected, both volume and uDAE decreased with

k. However, volume decreased with a faster rate and became zero earlier. For

instance, in Web dataset, total volume was zero when as few as 30 MBRs were

assigned to all histories, which means that increasing the number of MBRs

beyond this point does not increase the accuracy of the approximation. In

contrary, uDAE was much higher which indicates that increasing the number of

MBRs beyond 30 resulted in a better approximation and more pruning. While

increasing the numbers of MBRs beyond 30 did not reduce total volume in Web

dataset, it reduced total uDAE and resulted into more distance preserving

MBRs.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Volume - - uDAELD

0.75

"O
Cl)
n 0.25

20 100 200 300 400 m b r s

Volume —-uD A E

> 0.75

S 0.5

n 0.25

2 20 100 200 300 400 mbrs

Word Web

Figure 4.8: Sensitivity of volume and uDAE to the Number of MBRs

4.7.4 Effectiveness of Adaptive Splitting

We measured average uDAE reduction for high-dimensional histories when our

heuristics are employed. For each d-dimensional history, we derived an optimal

fixed splitting using k MBRs; k was set to 10% of the length of the history.

Such an optimal splitting requires M = k(2dnm + nt) bytes to store where

nm and nt are, respectively, the space required to store the extents of each

dimension (min. and max.) and the temporal length of each MBR. We im­

plemented an adaptive splitting scheme given the same amount of space as M

and measured uDAE reduction compared to optimal fixed splitting. Since find­

ing an optimal adaptive splitting is computationally expensive (section 4.5.1),

an approximate adaptive splitting is used to divide the dimensions of each

history into np partitions. To store ki MBRs of induced history rr(A,Di) ,

where A is a history and Di is a partitioning of its dimensions, we allocated

ki(2\Di\nm + nt) + rid bytes in Variable Splitting (VS) and ki(2nm + n t) + rid

bytes in Superimposed Encoding (SE); here rid is the extra space required to

store (Dt, ki). We set nm — 4, nt = 1, and rid = 2 bytes.

Table 4.3 reports average uDAE reduction over optimal fixed splitting for

Web dataset when VS and SE were used and np varied from 2 to 5. Although

approximate adaptive splitting was used, our heuristics were still effective and

improved upon optimal fixed splitting. In particular, more reduction was ob­

served for SE; after examining this dataset we found that for affected histories,

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: Average uDAE reduction for adaptive splitting over optimal fixed
splitting for Web dataset _______ ___________

VS,2 VS,3 VS,4 SE,2 SE,3 SE,4 SE,5
0.30% 0.82% 1.33% 3.8% 5.0% 6.0% 7.2%

Table 4.4: Average tightness of lower bounds for Web dataset
volume uDAE SE,2 SE,3 SE,4 SE,5

Deuc 0.45 0.53 0.70 0.76 0.78 0.78
Ddtw 0.44 0.48 0.53 0.57 0.57 0.61
Dlcss 0.53 0.56 0.64 0.69 0.69 0.75

there were two or more similar dimensions which were grouped together in SE,

but not in VS.

We also measured the effect of adaptive splitting on the tightness of lower

bounds for the Web dataset; Table 4.4 reports the results. As we expected,

not only uDAE-based fixed splitting improved the lower bounds over the vol­

ume based scheme, taking advantage of the redundancy and the sparseness

present in Web dataset, our adaptive splitting could improve up to 25%(33%)

upon uDAE-(volume-) based fixed splitting, which confirms the effectiveness

of adaptive splitting.

4.7.5 Performance Evaluation

We compared our algorithm with the framework proposed in [?], henceforth

VHGK. Two indices were constructed, one for organizing the MBRs of d-

dimensional histories (for VHGK) and one for the MBRs of HSums. For each

history, we set s*, the number of splits, to 10% of its length for the first index

and to 2̂ 1') Si for the second index, to make the index sizes equal. Fig.4.9

reports results averaged over fifty 10-NN queries. Marine, VT1, and VT2

were relatively small and a linear scan could outperform an index. Since our

approach uses two pruning steps, once by HSum and once by uDAE-MBRs,

it shows a better overall pruning and performance compared to VHGK, even

though it uses the index twice to answer each query.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-aa?cD

«o.e
0 0.4

1 0.2
0

w
to<D
£ 0.8
_i
1 0.6
F 0.4O)
• | 0.2 c 3OC

iHSumiTuDAE MBRs VHGK

I id
ASL Word Web

De

lO ur approachDVHGK]

ASL Word Web

D e

73
CD
C33

g 0.8to
to 0.6
73

o 0.4

•I 0.2
o to 0

to0
CO
to 1
£ 0.8 _i
"I 0.6
F 0.4D)
■| 0.2

1 »

iHSumDuDAE MBRsDVHGKl

kJaJ
ASL Word Web

Ddtw

|Our approachDVHGK|

ASL
iL i
Word Web

Ddtu
Figure 4.9: Pruning and relative query processing time averaged for fifty 10-
NN queries

4.7.6 Scalability Test

We measured the performance of our algorithm over 17-dimensional histories.

To the best of our knowledge, no experiment has been reported on efficiently

retrieving histories with more than 4 dimensions, using Euclidean distance,

DTW, and LCSS as distance functions. Therefore, we compared our approach

to the only candidate, i.e. naive scan. We used synthetic datasets with 1 k,

2k, 4k, and 8k histories constructed from our Web dataset as discussed in

section 4.7.1. Fig.4.10 reports pruning and relative query processing time over

linear scan averaged over fifty 10-NN queries. Our synthetic data included

pairs of histories where one was formed after a random permutation of the

dimensions of the other. Pruning these histories using HSum was a challenge

because average is not sensitive to the order of dimensions; thus random per­

mutation generated dissimilar histories with equal HSums. However, still our

approach had a strong pruning power for a wide range of database sizes, which

made it superior to linear scan and scalable with database size.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Euclidean -*-D TW -*-LC SS

0.7:

Database Size

■ H S um U uD A E M B R s"O

Z. 0.4

o 0.2

LCSSEuclidean DTW

Figure 4.10: Average pruning and relative query processing time; bars for each
distance from left to right are for synthetic data of lk, 2k, 4k and, 8k histories.

4.8 R elated W ork

Several approaches have been proposed to extract features from time series, in­

cluding DFT [2], DWT [93], and APCA [20] for Euclidean distance, PAA [125]

for arbitrary Lp-norm, and edit distance with real penalty [25]. In each ap­

proach, the features could be used to estimate one type of distance function,

unlike our HSum, as it was shown in Theorem 1. Compared to PAA and the

work in [25], the length of an HSum is the same as the length of the history it

represents, hence, it can better preserve trends. Compared to the work in [20],

the APCA representation of a query needs to be computed for every history

that is compared with the query while in our approach, one representation of

the query is required.

4.9 C onclusion

We have addressed the problem of efficiently evaluating similarity queries on

histories, proposed techniques for finding summaries of histories at different

levels of detail, and investigated the use of these summaries for indexing and

pruning. We have developed uDAE as a measure of the tightness of history ap­

proximations and empirically evaluated its effectiveness on real and synthetic

historical datasets of high dimensionalities for fixed and adaptive splitting

policies. Our contributions may be summarized as follows:

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Techniques for extracting compact HSums from histories with some in­

teresting properties: (1) for a large class of distance functions, the same

distance function that operates on histories can be computed more effi­

ciently using HSums; (2) the distances between HSums can be used to

prune histories that are far from a query; (3) HSums can be indexed,

hence the pruning and retrievals can be done efficiently.

• uDAE-based MBR approximations of histories to further prune false pos­

itives not pruned based on their HSums. Two important features of a

uDAE-based MBR approximation are: (1) the maximum distance ap­

proximation error is minimized independent of the queries and distance

function, and (2) it resolves some of the limitations of previous MBR-

based techniques for approximating histories in higher dimensions.

• Two adaptive splitting strategies to further improve the tightness of

uDAE-based MBR approximations while keeping the same space require­

ments. To adjust the splitting policy, our heuristics targets cases where

there is a large difference, in terms of the degree of changes, between

dimensions or where two or more dimensions are correlated and it might

be possible to reduce the dimensionality of uDAE-based MBRs without

increasing the maximum distance estimation error.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions

In this chapter the main points of the thesis are summarized, our contributions

are highlighted, and possible directions of future work are proposed.

5.1 Sum m ary

In general, our work addresses the problem of efficiently retrieving similar

histories which are in the form of either historical market-basket data or

multi-dimensional time series. We have introduced a new domain-independent

framework to both formulate and efficiently evaluate similarity queries over

historical market-basket data. Our work generalizes a few concepts including

the edit distance and the longest common subsequence to histories. This gen­

eralization is helpful; for instance, it enables us to find a common signature

between histories based on their optimal alignments. Our experiments on real

and synthetic data confirm the effectiveness of our proposed scheme and the

efficiency of our algorithms.

We have also addressed the problem of efficiently evaluating similarity

queries on high-dimensional histories, by developing techniques for finding

summaries of histories at different levels of detail. We have investigated the

use of these summaries for indexing and pruning. Our techniques for deriving

summaries make use of a kernel function that maps a d-dimensional point to

a real number. We have identified a class of functions that can be used as

kernels; hence a spectrum of summaries can be obtained.

We have developed uDAE as a measure of the tightness of history ap-

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proximations and proposed adaptive splitting strategies to further improve

the tightness of uDAE-based MBR approximations and to resolve some of the

limitations of previous MBR-based techniques for approximating histories in

higher dimensions. Our experiments show that (1) uDAE-based MBR ap­

proximations give a more accurate estimate of the true distances, compared

to a traditionally used volume-based scheme, (2) uDAE-based MBR approx­

imations are comparable, in terms of distance preservation, to a related ap­

proach [8] but are at least two orders of magnitude faster to derive. This makes

our approach applicable to large databases.

5.2 C ontributions

Our contributions can be listed as follows:

• A domain-independent measure of similarity, using optimal conditional

alignment, which generalizes the idea of an edit distance to histories.

• An efficient enumeration algorithm to find a set of common patterns that

are observed in the same order in two histories, given the length and the

score of an optimal conditional alignment. This is a generalization of the

concept of the longest common subsequence to histories.

• Techniques for extracting compact summaries from histories and the ob­

servation that the summarization is independent of the distance function

that may be used. Therefore, for a large class of distance functions, the

same distance function that operates on histories can be computed more

efficiently using summaries, under-estimating the true distance of the

histories.

• Proposing the uDAE-based MBR approximations of histories and inves­

tigating whether such approximations are more effective for pruning than

the traditionally proposed volume based MBRs. An interesting obser­

vation is that uDAE-based MBR approximations can be derived inde­

pendently from queries and that the same representation can provide a

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

near optimal approximation of histories, in terms of distance estimation

error, for three commonly used distance functions: Lp-norm, dynamic

time warping, and longest common subsequence.

• An adaptive splitting scheme to improve the tightness of history approx­

imations; we observe that variable splitting and superimposed encoding

can improve MBR-approximations of high-dimensional histories. This is

the case in real-life applications where often there is a correlation be­

tween the dimensions of histories or there is a large difference, in terms

of the degree of changes, between the dimensions.

• Integration within a filter-and-refine framework of our similarity mea­

sures, lower-bounds, summarization and feature extraction techniques,

and algorithms to support exact similarity queries on historical market-

basket data and multi-dimensional histories. Our extensive experiments

confirm the naturalness of our similarity measure, the advantages of our

feature extraction approaches, and the efficiency and scalability of our

algorithms on both real and synthetic datasets.

5.3 Future W ork

• We have considered nearest-neighbors and range queries in this thesis.

All-pair queries is another interesting problem with many potential appli­

cations in clustering and data cleaning. Related work includes the work

of Ramasamy et al. [98] on set containment joins, that of Mamoulis [77]

on set equality, containment, and overlap joins, and the work of Chaud-

huri et al. [22] on string similarity join for several similarity measures

including the Jaccard coefficient, the Edit distance, and the hamming

distance. One straightforward approach to process all-pair queries on his­

tories is to perform a range query for all histories in the database. Future

work may investigate improvements over this base, for instance, using

the summaries and the indexes we have proposed for nearest-neighbor

and range queries.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Many data mining tasks such as clustering and pattern recognition re­

quire a large number of distance computations. We believe that HSum

and uDAE-based approximations can improve the efficiency of such data

mining tasks without much affecting their accuracies; further work may

examine the relationships between these tasks and our approximations.

• We have observed that history summaries and uDAE-based MBR ap­

proximations are useful to derive compact features for multi-dimensional

histories. These techniques may have applications in summarizing histor­

ical market-basket data as well. For instance, instead of presenting the

history of changes of a web page, we could divide the history into some

meaningful segments and present these episodes. Generalizing HSum

and uDAE MBRs to historical market-basket data is an open future

work.

• For the problem of efficiently retrieving histories, there are very few

works that can scale up to 3- or 4- dimensional histories; our work opens

up the door for further research in this area.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. A new method for similarity
indexing of market basket data. In ACM SIGMOD Conference, 1999.

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search
in sequence databases. In International Conference of Foundations of
Data Organization and Algorithms (FODO), 1993.

[3] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. Fast similarity search
in the presence of noise, scaling, and translation in time-series databases.
In Very Large Data Bases (VLDB) Conference, pages 490-501, 1995.

[4] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying shapes
of histories. In Very Large Data Bases (VLDB) Conference, 1995.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In Very Large Data Bases (VLDB) Conference, 1994.

[6] R. Agrawal and R. Srikant. Mining sequential patterns. In International
Conference on Data Engineering (ICDE), pages 3-14, 1995.

[7] S. Altschul, W. Gish, W. Miller, E.Myers, and D. Lippman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403-410,
1990.

[8] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou, E. J. Keogh, and
P. S. Yu. Global distance-based segmentation of trajectories. In ACM
SIGKDD Conference, 2006.

[9] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: or­
dering points to identify the clustering structure. In ACM SIGMOD
Conference, 1999.

[10] V. Athitsos. Learning embeddings for indexing, retrieval, and clas­
sification with applications to object and shape recognition in image
databases. PhD thesis, University of Boston, 2006.

[11] J. Bather. Decision Theory: An Introduction to Dynamic Programming
and Sequential Decisions. John Wiley & Sons, 2000.

[12] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recog­
nition using shape contexts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(4):509-522, 2002.

[13] D. J. Berndt and J. Clifford. Using dynamic time warping to find pat­
terns in time series. In KDD Workshop, pages 359-370, 1994.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[14] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When
is ’’nearest neighbor” meaningful? In International Conference on
Database Theory (ICDT'), 1999.

[15] J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert
space. Israel Journal of Mathematics, 52(l-2):46—52, 1985.

[16] T. Bozkaya and Z. Meral Ozsoyoglu. Indexing large metric spaces for sim­
ilarity search queries. ACM Transaction on Database Systems (TODS),
24(3):361-404, 1999.

[17] T. Bozkaya, N. Yazdani, and Z. M. Ozsoyoglu. Matching and indexing
sequences of different lengths. In International Conference on Informa­
tion and Knowledge Management (CIKM), 1997.

[18] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-
wise independent permutations (extended abstract). In Symposium on
the Theory of Computing (STOC), pages 327-336, 1998.

[19] Y. Cai and R. T. Ng. Indexing spatio-temporal trajectories with cheby-
shev polynomials. In ACM SIGMOD Conference, 2004.

[20] K. Chakrabarti, E. J. Keogh, S. Mehrotra, and M. J. Pazzani. Lo­
cally adaptive dimensionality reduction for indexing large time series
databases. ACM Transaction on Database Systems (TODS), 27(2): 188—
228, 2002.

[21] H. S. Chang, S. Sull, and S. U. Lee. Efficient video indexing scheme for
content-based retrieval. IEEE Transactions on Circuits and Systems for
Video Technology, 9(8):1269—1279, 1999.

[22] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for sim­
ilarity joins in data cleaning. In International Conference on Data En­
gineering (ICDE), 2006.

[23] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Searching
in metric spaces. ACM Computing Surveys, 33(3), 2001.

[24] S. S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying
changes in semistructured data. In International Conference on Data
Engineering (ICDE), pages 4-13, 1998.

[25] L. Chen and R. T. Ng. On the marriage of lp-norms and edit distance.
In Very Large Data Bases (VLDB) Conference, 2004.

[26] L. Chen, M. T. Ozsu, and V. Oria. Symbolic representation and retrieval
of moving object trajectories. In ACM SIGMM Workshop on Multimedia
information retrieval, 2004.

[27] L. Chen, M. Tamer Ozsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In ACM SIGMOD Conference, 2005.

[28] S. S. Cheung and A. Zakhor. Efficient video similarity measurement with
video signature. IEEE Transactions on Circuits and Systems for Video
Technology, 13(l):59-74, 2003.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] S. Y. Chien, V. J. Tsotras, and C. Zaniolo. Efficient management of
multiversion documents by object referencing. In Very Large Data Bases
(VLDB) Conference, pages 291-300, 2001.

[30] K. K. W. Chu and M. H. Wong. Fast time-series searching with scaling
and shifting. In Symposium on Principles of Database Systems (PODS),
1999.

[31] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In Very Large Data Bases (VLDB)
Conference, pages 426-435, 1997.

[32] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transaction on Information Theory, IT-ll:21-27, 1967.

[33] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series.
In European Conference on Principles of Data Mining and Knowledge
Discovery (PKDD), 1997.

[34] DBLP. Digital Bibliography and Library Project.
http://www.informatik.uni-trier.de/ ley/db/.

[35] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley-
Interscience, second(sub) edition, 2000.

[36] C. E. Dyreson, H. 1. Lin, and Y. Wang. Managing versions of web doc­
uments in a transaction-time web server. In World Wide Web (W W W)
Conference, pages 422-432, 2004.

[37] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In ACM
SIGKDD Conference, 1996.

[38] C. Faloutsos, H. Jagadish, A. Mendelzon, and T. Milo. A signature
technique for similarity-based queries. In Proceedings of the Compression
and Complexity of Sequences, page 2, 1997.

[39] C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets.
In ACM SIGMOD Conference, 1995.

[40] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In ACM SIGMOD Conference, 1994.

[41] M. Farach. Optimal suffix tree construction with large alphabets. In
Annual Symposium on Foundations of Computer Science (FOCS), 1997.

[42] R. F. Santos Filho, A. J. M. Traina, C. Traina Jr., and C. Faloutsos.
Similarity search without tears: the omni family of all-purpose access
methods. In International Conference on Data Engineering (ICDE),
2001 .

[43] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker.
Query by image and video content: the qbic system. IEEE Computer,
28(9), 1995.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.informatik.uni-trier.de/

[44] A. W.-C. Fu, E. J. Keogh, L. Y. H. Lau, and C. Ratanamahatana.
Scaling and time warping in time series querying. In Very Large Data
Bases (VLDB) Conference, 2005.

[45] L. Gao and X. S. Wang. Continually evaluating similarity-based pattern
queries on a streaming time series. In ACM SIGMOD Conference, 2002.

[46] A. Gionis, D. Gunopulos, and N. Koudas. Efficient and tunable similar
set retrieval. In ACM SIGMOD Conference, 2001.

[47] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimen­
sions via hashing. In Very Large Data Bases (VLDB) Conference, pages
518-529, 1999.

[48] D. Q. Goldin and P. C. Kanellakis. On similarity queries for time-series
data: constraint specification and implementation. In Principles and
Practice of Constraint Programming (CP), 1995.

[49] D. Gusfield. Algorithms on strings, trees and sequences: computer sci­
ence and computational biology. Cambridge University Press, first edi­
tion, 1997.

[50] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In ACM SIGMOD Conference, pages 47-57, 1984.

[51] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Ef­
ficient indexing of spatiotemporal objects. In International Conference
on Extending Database Technology (EDBT), 2002.

[52] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Index­
ing spatiotemporal archives. The VLDB Journal, 15(2):143—164, 2006.

[53] J. Han, X. Yan, and P. S. Yu. Mining, indexing, and similarity search
in graphs and complex structures. In International Conference on Data
Engineering (ICDE), 2006.

[54] G. Hirstescu and M. Farach-Colton. Cluster-preserving embeding of
proteins. Technical Rep. 99-50, CS Department, Rutgers University,
1999.

[55] G. R. Hjaltason and H. Samet. Properties of embedding methods for
similarity searching in metric spaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(5):530-549, 2003.

[56] Y.-W. Huang and P. S. Yu. Adaptive query processing for time-series
data. In ACM SIGKDD Conference, 1999.

[57] E. Hunt, M. P. Atkinson, and R. W. Irving. Database indexing for large
DNA and protein sequence collections. 11 (3):256—271, 2002.

[58] P. Indyk, G. Iyengar, and N. Shivakumar. Finding pirated video se­
quences on the internet. Technical Report, Stanford Inforlab, 1999.

[59] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative
trends in massive time series data sets using sketches. In Very Large
Data Bases (VLDB) Conference, 2000.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[60] Internet Archive, http://www.archive.org. As of 2004.

[61] H. V. Jagadish. A retrieval technique for similar shapes. In ACM SIG­
MOD Conference, 1991.

[62] H. V. Jagadish, A. O. Mendelzon, and T. Milo. Similarity-based queries.
In Symposium on Principles of Database Systems (PODS), 1995.

[63] L. Jin, N. Koudas, C. Li, and A. K. H. Tung. Indexing mixed types for
approximate retrieval. In Very Large Data Bases (VLDB) Conference,
2005.

[64] T. Kahveci, A. K. Singh, and A. Giirel. Similarity searching for multi­
attribute sequences. In International Conference on Statistical and Sci­
entific Database Management (SSDBM), 2002.

[65] I. Kamel and C. Faloutsos. On packing r-trees. In International Con­
ference on Information and Knowledge Management (CIKM), 1993.

[66] E. J. Keogh. Exact indexing of dynamic time warping. In Very Large
Data Bases (VLDB) Conference, 2002.

[67] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani. Lo­
cally adaptive dimensionality reduction for indexing large time series
databases. In ACM SIGMOD Conference, 2001.

[68] E. J. Keogh and M. J. Pazzani. An indexing scheme for fast similarity
search in large time series databases. In International Conference on
Statistical and Scientific Database Management (SSDBM), 1999.

[69] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for
datamining applications. In ACM SIGKDD Conference, 2000.

[70] E. J. Keogh and P. Smyth. A probabilistic approach to fast pattern
matching in time series databases. In ACM SIGKDD Conference, 1997.

[71] S.-W. Kim, S. Park, and W. W. Chu. An index-based approach for
similarity search supporting time warping in large sequence databases.
In International Conference on Data Engineering (ICDE), 2001.

[72] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad
hoc queries in large datasets of time sequences. In ACM SIGMOD Con­
ference, 1997.

[73] J. Lee, J.-H. Oh, and S. Hwang. Strg-index: spatio-temporal region
graph indexing for large video databases. In ACM SIGMOD Conference,
2005.

[74] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung. Similarity
search for multidimensional data sequences. In International Conference
on Data Engineering (ICDE), 2000.

[75] Q. Li, I. F. V. Lopez, and B. Moon. Skyline index for time series data.
IEEE Transactions on Knowledge and Data Engineering, 16(6):669-684,
2004.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.archive.org

[76] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Pranav Patel. Finding
motifs in time series. In ACM SIGKDD Workshop on Temporal Data
Mining, 2002.

[77] N. Mamoulis. Efficient processing of joins on set-valued attributes. In
ACM SIGMOD Conference, 2003.

[78] C. Meek, J. M. Patel, and S. Kasetty. Oasis: An online and accurate
technique for local-alignment searches on biological sequences. In Very
Large Data Bases (VLDB) Conference, 2003.

[79] V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos. A multiresolu­
tion symbolic representation of time series. In International Conference
on Data Engineering (ICDE), 2005.

[80] Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Duality-based subsequence
matching in time-series databases. In International Conference on Data
Engineering (ICDE), 2001.

[81] D. R. Morrison. PATRICIA - practical algorithm to retrieve information
coded in alphanumeric. Journal of the ACM, 15(4):514—534, 1968.

[82] M. E. Munich and P. Perona. Continuous dynamic time warping for
translation-invariant curve alignment with applications to signature veri­
fication. In IEEE International Conference on Computer Vision (ICCV),
1999.

[83] G. Navarro. A guided tour to approximate string matching. ACM Com­
puting Surveys, 33(1):31—88, 2001.

[84] A.V. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice-
Hall, first edition, 1975.

[85] K. p. Chan and A. W.-C. Fu. Efficient time series matching by wavelets.
In International Conference on Data Engineering (ICDE), 1999.

[86] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analy­
sis of range query performance in spatial data structures. In Symposium
on Principles of Database Systems (PODS), 1993.

[87] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal
data warehouses. In International Conference on Data Engineering
(ICDE), 2002.

[88] A. Papoulis. Probability, random variables, and stochastic processes,
McGraw-Hill, third edition, 1991.

[89] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Efficient searches for similar
subsequences of different lengths in sequence databases. In International
Conference on Data Engineering (ICDE), 2000.

[90] W.R. Pearson. Rapid and sensitive sequence comparison with fastp and
fasta. Methods in Enzymology, 183:63-98, 1990.

[91] C.-S. Perng, H. Wang, S. R. Zhang, and D. S. Parker Jr. Landmarks: a
new model for similarity-based pattern querying in time series databases.
In International Conference on Data Engineering (ICDE), 2000.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[92] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query
processing for moving object trajectories. In Very Large Data Bases
(VLDB) Conference, 2000.

[93] I. Popivanov and R. J. Miller. Similarity search over time-series data us­
ing wavelets. In International Conference on Data Engineering (ICDE),
2002 .

[94] Y. Qu, C. Wang, and X. S. Wang. Supporting fast search in time series
for movement patterns in multiple scales. In International Conference
on Information and Knowledge Management (CIKM), 1998.

[95] L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. Pren­
tice Hall, 1993.

[96] D. Rafiei and A. O. Mendelzon. Efficient retrieval of similar time se­
quences using dft. In International Conference of Foundations of Data
Organization and Algorithms (FODO), 1998.

[97] D. Rafiei and A.O. Mendelzon. Similarity-based queries for time series
data. In ACM SIGMOD Conference, pages 13-25, 1997.

[98] K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik. Set con­
tainment joins: the good, the bad and the ugly. In Very Large Data
Bases (VLDB) Conference, 2000.

[99] C. Ratanamahatana, E. J. Keogh, A. J. Bagnall, and S. Lonardi. A novel
bit level time series representation with implication of similarity search
and clustering. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), 2005.

[100] C. J. V. Rijsbergen. Information Retrieval. Butterworths, second edition,
1979.

[101] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386-
408, 1958.

[102] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5000):2323-2326, 2000.

[103] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: stream mining
through group lag correlations. In ACM SIGMOD Conference, 2005.

[104] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. Ftw: fast similarity
search under the time warping distance. In Symposium on Principles
of Database Systems (PODS), 2005.

[105] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(ll):613-620, 1975.

[106] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-
evolving data. ACM Computing Surveys, 31 (2): 158-221, 1999.

[107] D. Sankoff and J. Kruskal. Time warps, string edits, and macro­
molecules, the theory and practice of sequence comparison. Addison-
Wesley, 1983.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search.
In ACM SIGMOD Conference, 1998.

109] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The r-l—tree: A dynamic
index for multi-dimensional objects. In The VLDB Journal, pages 507-
518, 1987.

110] U. Shaft and R. Ramakrishnan. Theory of nearest neighbors indexability.
ACM Transaction on Database Systems (TODS), 31(3):814-838, 2006.

111] H. T. Shen, B. C. Ooi, and X. Zhou. Towards effective indexing for very
large video sequence database. In ACM SIGMOD Conference, 2005.

112] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195-197, 1981.

113] A. Strehl and J. Ghosh. Value-based customer grouping from large retail
data-sets. In SPIE Conference on Data Mining and Knowledge Discov­
ery, volume 4057, 2000.

114] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access method
for timestamp and interval queries. In Very Large Data Bases (VLDB)
Conference, 2001.

115] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global ge­
ometric framework for nonlinear dimensionality reduction. Science,
290(5000):2319-2323, 2000.

116] J. S. Varre, J. P. Delahaye, and E. Rivals. Transformation distances: a
family of dissimilarity measures based on movements of segments. Bioin­
formatics, 15(3):194-202, 1999.

117] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing
multi-dimensional time-series with support for multiple distance mea­
sures. In ACM SIGKDD Conference, pages 216-225, 2003.

118] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E.J. Keogh. In­
dexing multidimensional time-series. The VLDB Journal, 15(1):1—20,
2006.

119] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidi­
mensional trajectories. In International Conference on Data Engineering
(ICDE), pages 673-684, 2002.

120] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similari­
ties, periodicities and bursts for online search queries. In ACM SIGMOD
Conference, 2004.

121] H. Wang, C. S.Perng, W. Fan, S. Park, and P. S. Yu. Indexing weighted-
sequences in large databases. In International Conference on Data En­
gineering (ICDE), pages 25-36, 2003.

122] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and perfor­
mance study for similarity-search methods in high-dimensional spaces.
In Very Large Data Bases (VLDB) Conference, 1998.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123] L. Wei, E. J. Keogh, H. V. Herle, and A. Mafra-Neto. Atomic wedgie:
efficient query filtering for streaming times series. In IEEE International
Conference on Data Mining (ICDM), 2005.

124] Huanmei Wu, Betty Salzberg, and Donghui Zhang. Online event-driven
subsequence matching over financial data streams. In ACM SIGMOD
Conference, 2004.

125] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp
norms. In Very Large Data Bases (VLDB) Conference, 2000.

126] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar
time sequences under time warping. In International Conference on Data
Engineering (ICDE), 1998.

127] P. N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In Symposium on Discrete Algorithms
(SODA), pages 311-321, 1993.

128] Y. Zhu and D. Shasha. Warping indexes with envelope transforms for
query by humming. In ACM SIGMOD Conference, 2003.

129] J. Ziv and A. Lempel. A universal algorithm for sequential data compres­
sion. IEEE Transaction on Information Theory, 23(3):337-343, 1977.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

