University of Alberta
Department of Civil &
Environmental Engineering

Structural Engineering Report No. 63

A Classical Flexibility
Analysis for Gentilly Type
Containment Structures

by

D.W. Murray
A.M. Rohardt
and

S.H. Simmonds

June, 1977




University of Alberta

Department of Civil Engineering

A Classical Flexibility Analysis
for Gentilly Type Containment

Structures

by

Murray,
Rohardt,
Simmonds.

v@o
T==

Faculty Investigators:

Professor J. G. MacGregor
Professor D. W. Murray
Professor S. H. Simmonds

A Technical Report to the
Atomic Energy Control Board
Nuclear Plant Licensing Directorate
P.0. Box 1046
Ottawa, Canada KI1P 5S9

June 1977



Abstract

A computer program, called FLEXSHELL is developed for the
analysis of thin shell structures, which consist of branched, axisym-
metric segments of shells of revolution. The procedure follows the
standard flexibility matrix approach and uses formulae obtained from
simple classical elastic shell theory.

- Solutions are presented for the stress resultants for a number
of typical load conditions for a Gentilly type nuclear containment
structure. These reSu]ts are compared with those obtained from a stiff-
ness ana]ysfs based on a numerical integration of an energy finite

difference formulation (BOSOR4).
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- 1. INTRODUCTION

1.1 Background to Report

This report is the second technical report in a continuing
program, sponsored by the Atomic Energy Control Board of Canada, to
investigate the overpressure response of nuclear containment structures.
The prototype building for the report is the Gentilly-2 Nuclear Power
Station Reactor Building [1], which is considered to be representative
of containment buildings to house 600 MW CANDU-PHW type nuclear reactors.

. The first report in the series [6,7], entitled 'An Elastic
Stress Analysis of a Genti]]y_Type Containment Structure', contains a
description of the prototype building and describes the objectives of
the overall study. It also contains the results of an extensive elastic
Toad superposition study, which examines the effects of internal pressure;
dead load, prestressing forces, shrinkage and temperature. An assess-
ment of the relative significance of these effects (including the effects
of the construction sequence) on the stress resultants predicted through-
out_ the structure was reported. |

The analyses in the first report were carried out by employing
the BOSOR4 computer code [4,5]. This code is a versatile prbgram, based
on an energy finite-difference displacement model, which is generally
available for distribution, and is specifically designed to hanﬂ]e
complex problems in shells of revolution. However, a linear thin.shell
analysis of a Gentilly type structure should not require the use of such
a complex code and the question arises as to whether satisfactory results

could be obtained with a much simpler classical shell analysis.



1.2 Objective of Report

While the objective of the overall study is to assess the
response of nuclear containment structures, subjected to internal over-
pressures up to the point of collapse, detailed design and analysis of
the protype buildings has generally been confined to estimating the
elastic response under prescribed factored service load conditions. The
analysis of the structure under service loading, which may consist of a
number of load combinations of the influences itemized in Sect. 1,
therefore plays an important role in the proportioning of the components
of the structure which, in turn, influences its overpressure response.
1t is, therefore, pertinent to investigate simple methods of determining
stress resultants which may be sufficiently accurate for design purposes,
or preliminary design purposes, or which may serve to verify the valid-
ity of the design of important segments of a containment structure. It
is also important to be aware of the 1imits of applicability of any
simple analyses which may be employed.

The objective of this report is to develop a simple, but
flexible, analytical capability for the elastic analysis of axisymmetric
segmented shell containment structures, which can include all of the
significant static 1oading effects which may influence the stress result-
ants.in such structures under service load and design basis accident
conditions.

The approach is to use simple idealized classical shell theory,
in the context of a matrix flexibility analysis, and to solve for the
redundants which establish compatibility at the junctions between shell

segments. Once the redundants have been determined, the stress resultants



throughout the she]i segments may be determined from the closed form
solutions available in the literature.

It was originally anticipated that a simple set of compati-
bility equations could be set up for a manual solution of the problem.
quever, in view of the fact that even a"clean' containment building,
such as Gentilly-2, contains six to twelve different shell segments, it was
decided to produce a small cdmputer code to perform the analyses. This
report discusses the background, development and application of the
code, designated as FLEXSHELL, and compares the results obtained.from it
with similar results obtained from the BOSOR4 analyses of Refs. 6 and 7.

The advantages of the approach are:

(a) A simple classical shell program, devised to handle all sig-
nificant load cases, contains approximately 1200 source state-
ments which is about an order of magnitude less than general
purpose shell programs. It can, therefore, be used on office
mini-computers without difficulty.

(b) The input to such a program is simple and can be readily
understood by engineers who have no specialized knowledge of
computer technology.

(c) Such classical solutions can serve as benchmark solutions to
which other solutions can be compared. Since most shell
programs, such as BOSOR4, are based on the Love-Kirchhoff
hypothesis, and the geometry of the principal shell segments
under consideration is such that théy may be classified as
‘thin', the results of simple classical shell theory may be

as acceptable for design and evaluation purposes as those



obtained from more complex analyses.
Factoirs such as stress concentrations at points of geometric
discontinuity, and departures from axial symmetry cannot, of course, be

accounted for by either of the approaches under consideration.

1.3 Structure of Report

Chapter 1 has described the objective and background for this
report. Chapter 2 considers the theory and organization of the FLEXSHELL
program. Chapter 3 considers the formulation and solution of equations '
for individual shell segments. Chapter 4 consists of a description of
the input and output for some simple problems. A comparison of results
to those of BOSOR4 for some important load cases is contained in Chapter
5. Chapter 6 introduces a set of stress plots and pressure factor plots
which permit an examination of serviceability limit states. Chapter 7
contains a brief summary and conclusions. Detailed derivations, the
program listing, user's manual and fnput data, together with a summary

of formulae are contained in the Appendices.



2. THEORY AND ORGANIZATION OF FLEXSHELL

2.1 Introduction

following

(a)

.(b)

(c)

(d)

(e)

(f)

Classical flexibility analysis of shell structures follows the
pattern: ' |

A ‘'particular solution' for the membrane stresses in the
shell, which will equilibrate the applied loading, is deter-
mined. This 'membrane solution' does not contain any bending
moments.

The displacements at the boundaries (i.e. edges) of the shell,
consistent with the particular solution, are computed.

Known boundary forces aré applied to each shell segment and
the boundary displacements associated with these edge forces
are computed. These solutions, referred to as 'homogeneous
solutions', necessarily require the inclusion of bending
deformations.

Step (c) permits compatibility equations to be established in
terms of unknown boundary forces (i.e. rédundants) to express
the requirements that the displacements of the boundaries of
adjacent shells must coincide at the junctions between shell
segments (i.e. to eliminate the incompatibility of the par-
ticular solution displacements computed in step (b)).

The compatibility equations are solved to determine the
redundant bpundary forces. _

The final solution is obtained for each segment from the
superposition of the particular solution from step (a) and

the effects of the redundant boundary forces from step (e).



The membrane solutions of step (a) and the boundary force
solutions of step (c) are generally available in the literature [2,3,8-12],
although usually in a rather disjointed form. Thus the primary problems
in constructing a computer code for the flexibility analysis of shell
structures are:

(i) to devise a scheme to automate the assembly and solution of
the compatibi]ity equations, and
(ii) to find in the literature the appropriate solutions to deal

with the variety of load conditions required.

This Chapter addresses the first problem itemized above,
i.e. it describes the basis for the FLEXSHELL code from a point of view
of assembly and solution of equations. The particy]ar and homogeneous
solutions, and the element flexibility matrices, required in the solu-

tion are presented in Chapter 3.

2.2 Identification of Variables and Constraint Equations

The formulation of the problem and organization of the code
“can best be explained by example. A sketch of a typical containment
structure is shown in Fig. 2.1(a). The structure can be considered to
be made up of a number of segments as shown. These segments may be
classified as (a) spherical (b) cylindrical or (c) base segments. Each
segment may be considered to have a 'top' and a 'bottom'. These terms
are defined with reference to a coordinate starting at the 1ine of
symmetry at the apex of the structure and traversing the centerline

of the shell in a clockwise sense until again reaching the symmetry

line at the base of the structure. A coordinate for branches that do



not fall on this primary circuit may be defined in the same manner,
starting at the free edge, and increasing in the same sense as the main
circuit coordinate at the junction point with the main circuit. The.
‘top' of a segment may then be defined as that boundary of the segment
with the lowest coordinate. _

It can be seen from Fig. 2.1(a) that, with the above defini-
tions, the 'bottom' of a segment is always supported by the 'top' of an
adjacent segment, except for the last segment in the primary circuit.

The ségments may now be numbered sequentially in such a way that any
segment always has a higher number than any of the segments which it
supports. The structure may then be separated into its component segments
as shown in Fig. 2.1(b). In carrying out this separation the forces
representing the interaction between the segments may be identified.

Only those forces which will produce deformations restoring compatibility
of deforma;ions betWeen adjacent segments need be identified. In general
there will be two forces acting on each segment, at each Jjunction between
segménts, which will contribute to these deformations, namely, a hori-
zontal force and a moment. These have been degignated in Fig. 2.1(b) as -
V? and M? at the top of segment j, and Vg and Mg at the bottom of segment
j. (The base will be ignored throughout the remainder of this Chapter
since it complicates the description without contributing conceptually

to the arguments. Hence one may consider the last segment in Fig. 1 to
be segment 7).

A displacement may be associated with each of the intersegment
forces identified above. These are also shown in Fig. 2.1(b). For each

Vg the corresponding displacement is designated as Ag, and for each Mg



the corresponding displacement (a rotation) is designated as eg. The
forces Vg and Mg denote stress resultants per unit of width, while the
associated displacements Ag and eg denote the corresponding displace-

ments produced by these forces.

7, may be

The requirements for compatible displacements, down to segment

written as
tA; tA?
19 - 97
WY &
teg tG?
b = b
% | 9
85 - 8
93 - 15
05 - ¢
9 - 6

(2.

(2.

(2.

(2.

.1a)
.1b)
.1c)
.1d)
le)
1)
-19)
.1h)
14)

.2.13)



tA?_ -8y =0 (2.2.1k)
6 7 _
05 - 87 =0 (2.2.11)

The leading subscript 't' in these equations denotes that the compat-
ibility requirement is imposed on the total displacements. In general,
when this subscript is omitted, the displacements referred to will be
those produced by the edge forces, Vg and Mg.
Equilibrium equations may be written at each juncfioﬁ point.
For this purpose it is important to recognize that the centerline of each
segment may terminate at a different distance from the axis of symmetry.
Let Rg denote the horizontal distance from the axis of symmetry to the
terminal point of the centerline of segment j at end i as shown in
Fig. 2.2. Equilibrium equations must be written at a spécifica]]y
desidnated Junction point. Since all segments at a Jjunction may nqt end
at the same point, a horizontal eccentricity may be defined to the
Junction point at each end of each segment. Let this eccentricity at
end i of segment j be denoted by Eg, as shown in Fig. 2.2.
It is now neceésary to introduce an explicit sign convention
"which has been only implied to this point. The sign convention is
illustrated in Fig. 2.2, and consistently fo]lows the following rules:
(a) The origin of the local centerline coordinate is at the top
end of the segment.
(b) Positive displacements, w, are normal to the segment coordinate
and are in a positive sense towards the central axis.
(c) End forces, end displacements and eccentricities, except for

the base segment, are horizontal, and positive in the direction



of the central axis.

(d) End moments and rotations are positive in a clockwise sense.

(e) End forces are always referred to a unit width of the shell
segment at the end of the segment (i.e. at a distance Rg.from
the central axis).

(f) For the base segment, positive vertical displacements are
downward whereas positive eccentricities are upward.

With these conventions the equilibrium equations at the junction
of the segments in Fig. 2.1, down to segment 7, may be written as follows

(note that the superscripts are not powers):

Ry Vy + Ro Va + R V3 = 0 (2.2.2a)
R) My + Py Ey Ry + R5 M5 + P E5 RS + RY M3 + P ES R3 = 0 (2.2.2b)
Ry Vp + RO V3 =0 (2.2.2¢)
Ry My + Ty P3 Ep + RY M) + RY Py E3 = 0 (2.2.2d)
RVI+R VS +RI V=0 | (2.2.2e)
RS M3 + R3 P ES + RD M3 + Ro Eo P>+ RS M + RS ES Y = 0 (2.2.2f)
RS Vg + RI V] = 0 (2.2.29)
RS M8 + RS ES PS4 RD M)+ RO E) ) =0 (2.2.2h)

The portion of the problem in Fig. 2.1 that is described by



Eqs. 2.2.2 contains 20 unknown segment forces, namely, < V;, M;, Vg,

2 3 3 v W 5 M S WD w3 w3 Wb Wb B Wb T W
MZ’ V], M], V2, M2, V], M], V2, s Vo MZ’ V], M], V2, MZ’ V], l“l.l >.

However, Eqs. 2.2.2 are eight equilibrium equations expressing con-

Mo, V

straints between these unknown forces. Hence, there are only twelve

(20-8=12) independent forces. These twelve 'redundant' forces may be

determined from twelve compatibility equations (Egqs. 2.2.1) which become

the'governing equations for a flexibility analysis. In the discussion
that follows, ne will denote the number of unknown segment end forces,
Ne the numbers of equilibrium equations, n. the number of compatibility

equations, and n. the number of redundants. Note that, in all cases,
n.=n_=ng.-n (2.2.3)

2.3 Matrix Formulation of Solution Procedure

It is assumed that it is possible to form segment flexibility
matrices, relating the end forces identified in Fig. 2.1 to the corres-
ponding end displacements which these forces produce. Thus for segment

3 it is possible to write

5 V3 (2.3.1)
o7 | = 71, y
5 v;
0 “3

where [F]3 is the flexibility matrix of segment 3. The -construction of

segment flexibility matrices will be considered in Chapter 3 and need

11.



not concern us now. The force induced displacements of all segments may
be assembled into a vector {A} and written collectively in the matrix
equation

{a} = {F] {v} (2.3.2)

where <A> and <V>. are the assembled vectors

I
N —
Ny —
NN
~N N
w
—w
N W
N W
N
N B
—:n
—
N ov

<A> <A

>
[ASNe}
D
nN O
~
~

> (2.3.3a)

—
)

33 w3 vd M yd md O W
1 Vo M Vo M V] M] V2 M2

1
<V, M 2 My Vo My

<V> Vo, M

M

~
N—l
N R
N
——w

M;> (2.3.3b)

— O

6 6 Mo
M] v, M2 )

N~

and [F] is a global matrix with segment flexibility matrices assembled

down the main diagonal
[F]_= diag [F], F2, vy F7] (2.3.3c)

Eq. 2.3.2 does not, however, express the total displacements
of the segment ends, since these will be also influenced by the primary
loading effects on the structure. The displacements produced by primary
loads on the structure will be denoted as 62 and 5?, with the same
subscript notation as applicable to A? and eg. The primary dispiacements

arising from particular solutions for the shell in response to the primary

12.



loads and will be referred to as 'particular solution displacements'.
Assembling the particular solution displacements into the vector <&>,
in the same order as the corresponding displacements <A>, the total

displacements may be expressed as Eqs. 3.2.5 and 3.2.6
{tA} = {A} + {8} (2.3.4)

The compatibility equations, Egs. 2.2;1, apply to total dis-

placements, and can be written in matrix form as

[_ M
| |
|
|

1 -1 {tA} = {0} (2.3.5a)

(n. x ng) (ng x 1)
or, in symbollic form as
[A] (48} = {0} (2.3.5b)

where [A] is the (Boolean) connectivity matrix expressing the compat-
ibi]{fy requirements between the segment displacements.

Substituting Eq. 2.3.4 into the compatibility equations,
Eq. 2.3.5b, yields

13.



14.

[A] {A} + [A] {8} = {0} (2.3.6a)
which, upon making use of Eq. 2.3.2 becomes
[A] [F] (v} = -[A] {8} ~ (2.3.6b)

While Eqs. 2.3.6 represent the compatibility requirements, it is not yef.
possible to determine the unknown forces {V} since there are ne unknown
forces and only n, = ng equations.

There is a general theorem of structural analysis that states
that if a.set of forces {V} is associated with a set of displacements
{v}, and if, in another coordinate system, the same set of forces may be
described as {U} and their associated displacements as {u}, then the
work done by equivalent sets of forces in the two systems must be

identical when undergoing equivalent displacements. That is,
<u> {U} = <v> {V} | (2.3.7)

If the leading subscript (t) is omitted, the left hand sides
of Egs. 2.2.1 may be considered to define a set of fe]ative displace-

ments {q} in terms of the end displacements {A}, such that
{q} = [A] {a} (2.3.8)

The forces associated with {A} are the forces {V}. Therefore the
(redundant) forces {Q} associated with the relative displacements {q}

may be determined by making use of Eq. 2.3.7 in the form



15.

<q> {Q} = <6> {V} (2.3.9a)
Substituting for <q> from Eq. 2.3.8 yields

<> {[AT" 1Q} - W3} = O (2.3.9b)
and since this must be true for all <A>, Eq. 2.3.9b implies that

= (A" 1 C(2.3.10)

Eq. 2.3.10 is the force transformation consistent with the displacement
transformation expressed by Eq. 2.3.8.

Substituting Eq. 2.3.10 into Eq. 2.3.6b yields
[A] [F1 [AT" Q) = -[A] (&} (2.3.11)
which can be written as

[F] Q) = {q,} (2.3.12)
where the matrices are defined by identifying corresponding terms between
the last two equations. |

Eq. 2.3.12 can be solved for the redundant forces {Q} that afe
necessary to restore the lack of compatibility expressed by the relative
displacements {qo}.

The procedure for a flexibility analysis of a Gentilly type

structure may now be described as follows:



(1)

(2)
(3)

- (4)

(5)

(6)

16.

Identify the number of segments and the unknown segment forces
{v}.

Establish the connectivity matrix [A] of Eqs. 2.3.5.

Compute the displacements of each segment arising from the
particular §olution for the segment, assemble them into the
vector {8}, and determine the relative displacement vector

{qo}, of Eq. 2.3.12, from the relation
{q ) = -[A] {8} (2.3.13)

Evaluate the flexibility matrix of each segment, and assemble
it into the diagonal flexibility matrix [F] of Eq. 2.3.3c.
Compute the structure flexibility matrix [E] of Eq. 2.3.12

from ‘the relation
[F1 = [A] [F] [A] (2.3.14)

Solve Eq. 2.3.12 for the redundants, {Q}, and recover the
segment end forces, {V}, that are necessary to restore compat-
ibility, from Eq. 2.3.10.

Superimpose the stress resultants arising from {V} on those

associated with the particular solution.

The above procedure has been implemented in the FLEXSHELL

program which forms the basis of this report. It should be noted that,

with this procedure, explicit use of Egqs. 2.2.2 is not required, nor is



17.

it necessary to physically interpret the meaning of the redundant forces
{Q}. The next Section describes the strategy of implementation for this

analytical procedure.

2.4 Coding Strategy for Identifying Forces and Connectivity Requirements

One strategy of automating the procedure described in Sect. ,
2.3 is as follows. Number the segments as described in Sect. 2.1.
Associate with each end of each segment a flag which indicates whether
the end is attached to another segment. This input information is shown
in Table 2.1a, where a segment type of 1 indicates it is'spherical, a
segment type of 2 indicates it is cylindrical, and 0 and 1 indicate the
absence or presence of a connection, respectively, at the top and bottom
of the segment as indicated by IR and JR, respectively. The eccentri-
cities are also specified for internal use in the program. It is a
matter of simple coding to have the program number the Segmeﬁt end
forces as shown in Table 2.1b, which orders the end forces of Fig. 2.1b
for assembly into the vector {A} of Sect. 2.3. .

The segment connectivities are then specified as indicated in
Table lc. Note.that the 'top segments' are arranged in order, each
segment appearing precisely once. The 'bottom segment' is the segment
to which the top segment is attached. Note that the bottom end of a top
segment must always connect to the top end of a bottom segment.

.The information in Tables la and 1c is all that the user must
supply in order for the program to identify the end forces and establish
the [A] matrix of Sect. 2.3. It is necessary, of course, to also ‘supply
information on the geometric and material properties of the segment, and

on the type and magnitude of the loads. Details of the requirements for



this input data may be found in Appendix A - FLEXSHELL User's Manual and
examples are given in Chapter 4. The only point of significance that
may be of interest at this stage is that only one type of loading effect
may be treated at a time (e.g. - pressure load, dead load or thermai
load), the final results for a load combination being determined by a

separate superposition program.
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3. SEGMENT RESPONSE

3.1 Introduction

The analysis described in Chapter 2 assumes that segment
flexibilities [F]i’ as required in Eq. 2.3.1, are available to estab-
lTish the matrix [F] of Eq. 2.3.3c. It also assumes that particular
so]utipn displacements {8}, as required in Eq. 2.3.4, can be evaluated
and that the particular solution stress resultants and edge force
stress resultants can be determined throdghout the segment for the final
superposition as required in step (6) of the procedure described in
Sect. 2.3. |

ATthough there arelﬁany reference books on shell analysis
available [2,3,8-12] none of these contains all of the formulae necessary
to evaluate the above quantities for the type of structure under consider-
ation. 1In most shell applications the effect of end forces dies out
exponentially with the dis%énce from the end of the shell. Most classical
flexibility shell analyses make use of this fact by assuming that the
shell is 'long’, in which casé the forces applied at one end of the -
shell segmeht produce negligible displacement effects at the other end
of the segment. Under these conditions the off-diagonal submatrices
in the segment flexibility matrices reduce to zero and there is no
coupling between ends. That‘ié,,the segment flexibilities take the form

F]] 0
[Flyj =0 Fy (3.1.1)

i

where [F]i is a 4x4 matrix, while [F]]] and [FJZZ are 2x2 matrices. It

19.
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is quite apparent, however, that for the short cylindrical segments of
the idealization shown in Fig. 2.1, this assumption is unwarranted [Ref.
9, pg. 318]. Hence, the investigators have derived a short cylindrical
shell flexibility matrix (which, to the authors' knowledge, is not
available in the literature). The development of this matrix is des-
cribed in Sect. 3.2.

For spherical segments the authors have formed a flexibility
matrix extracted from the classical shell theory literature. This
matrix is described in Sect. 3.3. Because of the limitations on the
classical shell solution it is required that the angle subtended by the
spherical segment be greater than 20° [2, pg. 76; 8, pg. 341] in order
for these equations to be reasonably valid. This means that FLEXSHELL
cannot treat an extension of the lower dome on the inside of ring beam 4
(Fig. 2.1a) as a spherical segment because it does not, at this time,
have a proper formulation for the flexibility of such an element. The
desirability of formulating such a segment flexibility matrix can best
be assessed by the sponsoring body, after an assessment of what role a
FLEXSHELL type of analysis may be expected to play in future design or
regulatory functions associated with containment structures.

A short 'plate on elastic foundation' flexibility matrix is
derived, in a manner similar to that for a short cylinder segment, in
Sect. 3.4 on the basis of asymptotic solutions to the classical equations.
This short plate foundation matrix is only accurate for equivalent radii
which are re]afive]y large. However, for the range of arguments encoun-

tered in Gentilly type structures it appears to be extremely effective.

The particular solutions required for the evaluation of {6}
are discussed in Sect. 3.5, while the coding strategy for handling

flexibility matrices, and transfer of forces is discussed in Sect. 3.6.
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3.2 Short Cylinder Flexibility Matrix

The f]exibﬁ]ity matrix for the short axisymmetric cylinQrica]
segment implemented in FLEXSHELL is based on the governing differential

equation which may be written as [Ref. 3, page 91]

d"w e o _ Py
er+43 W-'D— (3.2.1)

where w is the inward radial displacement; y is the cylinder centerline
coordinate; P, is the radial inward pressure; D is the flexural stiffness
of the segment and B is a parameter of the segment properties.

The flexural stiffness of the cylindrical shell segment D, is
defined by the expression

_E g
D-TT'-JT 17 (3.2.2)

where E is the elastic modulus, v is Poisson's ratio and t is the thick-

ness of the segment. The parameter B is defined as
- u2 ¥
gr = 3= p) (3.2.3)

where r is the centerline radius of the cylinder.

The solution to the homogeneous form of Eq. 3.2.1 is [Ref. 3,

pg. 91]
w= e (C] cos gy + C, sin By) +

e BY (C3 cos By + C, sin gy) (3.2.4)



The meridional moment and radial shear in the wall may be expressed in

terms of derivatives of the displacement w in the form [Ref. 3, pg. 93]

and

L

[}

]

(==
QJQ.
il w

£

(3.2.5)

(3.2.6)

" where moment is positive when it produces compression on the inside of

the cylinder and shear is positive acting radially inward on the bottom

of the element.

Let us write Eq. 3.2.4 as the vector product
w =< ¢(y) > {c}

in which

By -By

< oly) > = <e® cos gy, e® sin gy, e ® cos gy,

o BY

sin By>

and

(3.2.7a)

(3.2.7b)

(3.2.7¢)
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Evaluating the stress resultants at the ends of the segment, illustrated

in Fig. 2.2(b); by making use of Eqs. 3.2.5 and 3.2.6

v J
v, [+ (0))] | (3.2.8)
J M, =p -<¢"'(0)> {c}
> : '
V2 f<¢”‘(2‘)>i
M +<d' ' (2)> |
L ZJ . u <¢ ( )__'

where indicates d/dy and j is the segment number. Upon evaluating the
derivatives of <¢> indicated in Eq. 3.2.8, the vector of coefficients {c}
can be determined in terms of the end force vector by inverting the
matrix in Eq. 3.2.8. Let the inverse of this matrix be designated as

[B]. Then we may write

(3.2.9)

The boundary displacements of the segment in Fig. 2.2(b) may

now be evaluated from Eqs. 3.2.7 as

IR {_<¢(0)> _] | |
o, = | <o) | e | (3.2.10)

r
I ! <p(2)> !
eZJ <¢'(2)>




Substituting the value of {c}, from Eq. 3.2.9, into Eq. 3.2.10 yields

N - ()
(8] ° " <4(0)> v |
6, = <¢' (0)> I [8] J M, } (3.2.11)
> r
B,
AZ <¢(2')> VZ
6, -_<¢ (2)> | M2
\ J \ J
This equation may be written as
4 h j f J
B Vi
ﬁe] = IRy Mg (3.2.12)
) Yy
5 Mo
{ \ J

where [F]j may be identified as the flexibility matrix of the short
cylindrical shell segment. The algebraic details of this procedure are
presented in Appendix E - Derivation of Short Cylinder B Matrix, where
c]oséd form expressions for the elements of the [B] matrix are derived.
[F]j is formed in FLEXSHELL by numerically evaluating the matrix product
in Eq. 3.2.11.

The flexibility matrix discussed above -is required for the
evaluation of [?], according to step 4 of the procedufe outlined in
Sect. 2.3. The end forces on the segment are determined in step 5, and
in step 6 it is necessary to evaluate the moment stress resultants
throughout the segment arising from the known set of end forces. This
latter evaluation is accomplished by substituting the known end forces,

of step 5, into Eq. 3.2.9 to determine the {c} vector applicable for the
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segment, and using this vector to evaluate the equation which results
after substituting Eq. 3.2.7a into Eq. 3.2.5. That is, the homogeneous
solution for the meridional moment produced by end forces is evaluated

as
M(y) = D <¢''(y)> {c} (3.2.13)
where the numerical values of {c} are known.

3.3 Spherical Segment Flexibility Matrix

The spherical segment flexibility matrix may be evaluated from
the homogeneous solution for a spherical shell ségment subjected to edge
forces as illustrated on segment 5 of Fig. 2.1. Homogeneous solutions
associated with unit values of each of these edge forces are given in
Table D.2 of Appendix D. The system of labelling the equations in
Appendix D is explained in Table D.1 and the geometric variables appear-
ing in the equations are defined in Fig. D.1. The 4x4 flexibility
matrix corresponding to the [F] matrix of Eq. 2.3.1 for a spherical
shell segment can be obtained by evaluating Eqs. SHj.i of Table D.2, as

F.=SHj.i j=1,4; i=1,2 : (3.3.1)

kJ
for the specified geometry of the segment, and the appropriate value of
the argument. When the argument is associated with the upper end of the:
segment k = i. When the argument is associated with the lower end of

the segment k = i + 2.
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It has been pointed out in Sect. 3.1 that there is a 1imit on
the subtended angle of the shell segment below which this matrix is no

longer applicable.

3.4 Short 'Plate on Elastic Foundation' Flexibility Matrix

The notation for a 'plate on elastic foundation' segment
(which will also be referred to as a base segment) is illustrated in
Fig. 2.2, except for the spring foundation elements which are assumed to
haQe a stiffness of k (load/area/height). The governing differential

equation for this plate is [11, pg. 260]

d?> _1d, ,d®w _ 1dw, _q - kw
(3?7'+ r dr) (3?7'+ r dr) "D (3.4.1)

and the internal stress resultants may be determined as [11, pg. 52]

M= -D (¥ + 2 du (3.4.2a)

M= D (b4 g-:;"}) (3.4.2b)

V=0 (%N;g—;"é-‘;,g—‘:) (3.4.2¢)
Defining a new variable

o =r/(J21) | (3.4.3a)

where



g = %/D/k s (3.4.3b)

the general solution to Eq. 3.4.1, for large values of o, may be written

as
¢
2
W =<0, o o3 0y> 5 (3.4.4a)
Cq
or w = <> {c} ; (3.4.4b)
where [11, pg. 266]
(o) .
- e
¢ = (g7) cos (o - 7/8) (3.4.5a)
(s)
6y = (erg) sin (o - 1/8) (3.4.5b)
- (™2) cos (o + 1/8) - (3.4.5¢)
¢3 o cos (o T A,
= (2) sin (o + 1/8) (3.4.5d)
¢4 = N5 sin (o + 7 4.
with
n = 20-75 0.5 (3.4.5¢)

Eqs. 3.4.5 are asymptotic approximations to the Bessel function solutions
of Eq. 3.4.1 which introduces some limitations to their range of applic-

ability as discussed in Appendix G.
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Evaluating Eqs. 3.4.2a and 3.4.2c at the ends of the plate

segment results in

r N . = -
M] J [<o"> + %’- <¢|>]r‘o
— 110 ] [1] ] ] j .
v =D |-[<¢p'''> + = <¢p"> - <¢'>] {c} : 3.4.6
) 1h : i r , vz <0 ro ( a)
M “[<op"> + = <¢'>
2 ¢ r ]¢ Y‘-i .
Vo [<¢'''> +F<¢"> - FT<¢|>]r‘-
. / — T
= [B] {c} (3.4.6b)

where Mi and Vi are the boundary forces illustrated in Fig. 2.2c; o and
r; are the outer and inner radii, respectively; and ' indicates d/dr.

Inverting the B matrix of Egs. 3.4.6 yields

ey =81 Vi (3.4.7)

Evaluating the boundary displacements illustrated in Fig.

2.2c, from Eqs. 3.4.4 and substituting from Eq. 3.4.7 for {c}, yields

(~ Y3 ' ( J
e] ; <¢ >Y‘0 M] }
- -1
<8 F = <¢>ro [B]* < v, } (3.4.8)
R ' |
62 i <¢ >Y‘.i M2 ‘
6 { <b> V H
%2 P 2 |

or
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6]’ ,“'1\ ’
<6, ¢ = [F14 Kl (3.4.9)
5 M,

5 v

2 l \ 2/

where [F]j is a short plate segment 4x4 flexibility matrix.

Expressions for the derivatives of the <¢> vector required in
this -development are contained in Table 3.1. No attempt has been made
to derive closed form solutions for the elements of the [B] ! matrix.
The matrix [B] is formed in the program by making use of the derivatives
in Table 3.1 and Eq. 3.4.6a, inverted numerically, and the product of
Eq. 3.4.8 is evaluated to produce the flexibility matrix of Eq.. 3.4.9.

Unlike the other segments in FLEXSHELL, the complete segment
flexibility matrix for the base segment is a 6x6 matrix rather than a
4x4. However, the in-plane effects are uncoupled from the transverse
effects and, therefore, a 2x2 in-plane f]exibf]ity matrix may be com-
bined with the above 4x4 flexibility matrix simply by inserting the two
matrices into the complete segment flexibility matrix with a proper
ordering of subscripts. The 2x2 in-plane flexibility matrix was obtained
from the classical thick cylinder solution, and is formed by evaluating

Eqs. PH.1.1 and PH.2.1 of Table D6, Appendix D.

3.5 Particular Solutions

Particular solutions for the various loading cases may, in the
main, be extracted directly from the 1iterature. The equations for the
particular solutions coded into FLEXSHELL are tabulated in Tables D3,

and D4 and D6 of Appendix D. The system of labelling these equations is



also explained in Table D.1. Particular solution displacements at the
edges of the elements are obtained for load case %, from Eqs. XP&.i

where i = 1 indicates a w displacement and i = 2 indicates a rotation.

3.6 Coding Strategy for Assembly and Solution

The remainder of the coding strategy associated with the solu-
tion of Sect. 2.3 may now be described. The technique of identifying
the forces and constructing the [A] matrix has been outlined in Sect.
2.4. 1t should be noted, however, that the connectivity of a base
segment with vertical eccentricity introduces an additional element into
the [A] matrix to establish horizontal compatibility. Thus, in Fig. =
2.1, if segment 7 is considered attached to the top of plate segment 9,
and if it is assumed plane sections remain plane in the plate segment,
this may be modelled by a rigid eccentricity E?, of Fig. 2.2c, where E?

has a magnitude of one-half the slab thickness. The horizontal compat-

ibility equations, similar to Eqs. 2.2.1, become

7 9 9 .9, _
S e tA2 - (tAl - E] tel) =0 (3.6.1a)
and
7 9 _
tez - tel =0 (3.6.1b)
9

Eq. 3.6.1a introduces E] into the [A] matrix.

The program has the limitation that plate segment vertical
eccentricities specifying connections to cylinders or dome must be imput

as E? values for the segment with the higher segment (ie. plate) number.
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Plate segment eccentricities specifying eccentric vertical connections
with other plate segments must be input as Eg values of the segment with
the lower segment number.

The element flexibility matrices are constructed as outlined
in Sects. 3.2, 3.3 and 3.4 and the structure flexibility matrix is
evaluated according to Eq. 2.3.14.

The segment end forces and displacements are evaluated as
follows. An array of 'particular solution basic forces' (PBF) is con-
structed which contains the edge forces which must be exerted on each
segment in order to equilibrate the particular solution for that seg-
ment. These forces are obtained from a resolution of the forces eval-
uated at the ends of the segments by equations XP%.j for j=3 and 5, in
Tables D3 and D4, where £ is the loading effect. The order of PBF
subscripts, for each of the segment types is shown in Fig. 3.1. "The
vertica] force applied to the top of the segment and the net vertical
force resulting from the applied loading is also stored in this array
with subscripts 5 and 6, respectively. .

Each segment is treated in turn and the PBF(5) and PBF(6)
forces are transferred from any segment to those below it, by méking use
of the connectivity information illustrated in Table 2.1(c). That is,
the PBF(5) forces for the "lower' elements are augmented by the vertical
load on the element under consideration according to the heifarchy
specified in the connectivity input.

The array of PBF forces for the segment is then examined to
see if the adjacent segments are required to equilibrate any edge forces

that are not a part of their particular solution. If so, the edge



32.

forces that will produce displacements in a segment, over and above
those displacements produced by its own particular solution, are accum-
ulated in a particular solution force array PSF.

The displacements for each segment are calculated, at the
edges of the segments from equations XP2.i, for i=1,2, of Tables D.3,
D.4 and D.6c, as explained in Sect. 3.4, where % is the loading effect.
Thesé 'particular solution displacements' are stored in the segment
array PSD. The PSD displacements are then augmented by the homogeneous |
solution displacements arising from the 'particular solution forces'
(PSF) accumulated as described above (as evaluated from Tables D.2, D.5,
and D.Ga;b, and Eqs. 3.2.12 and 3.4.9) and assembled into the vector {§}
of Eq. 2.3.4. Premultiplying by the [A] matrix produces the right hand
side of Eq. 2.3.12. | |

Eq. 2.3.12 is solved for {Q} by a simple Gaussian e]iminafion
procedure. The segment forces, {V}, required to restore compatibility
are recovered from Eq. 2.3.10. The internal stress resultants are
computed by superimposing the redundants {V} onto the segment end forces
(PSF) to obtain a 'segment end force' array SF which represents the
final.end forces, which are applied to the edges of the segment. The
final stress resultants are then those produced by the particular solution,
which are valuated by Eqs. XP%.i, of Tables D.3, D.4 and D.6¢c, i=3 to 6,
plus those pfoduced by the homogeneous solutions for the SF array of
edge forces (computed from Eqs. XXi.j, j=3,6, of Tables D.2 and D.5,

where i identifies the boundary force, or Eq. 3.2.13 or Eqs. 3.4.2).
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4. EXAMPLE APPLICATIONS OF FLEXSHELL

4.1 Introduction to Applications

In this Chapter two example solutions are discussed. These
examples serve to illustrate the input for, and the gutput from, the
FLEXSHELL program. The first example is an analysis of the effects of
internal pressure which requires very simple input. The second solution
is for prestressing effects, and is somewhat more complicated. The
reader is referred to "Appendix A - FLEXSHELL User's Manual" for a
detgi]ed description of all input data required. This Appendix should
be read prior to or concurrently with this Chapter.

The principal geometric dimensions of the Gentilly-2 contain-
ment structure are shown in Fig. 4.1. The structure has been modelled
in this report in a manner similar to the structure illustrated in Fig.
2.1, and the 'standard model' is shown in Fig. 4.2. Details of the
model in the area of the ring beam, the inner perimeter beam of the
lower dome, and the base are shown in Figs. 4.3a-c. The input files,
for the load cases which will be compared with the BOSOR4 stress result-
ants in Chapter 5, are listed in Appendix C, on pages €1 to C15. In
general, an attempt has been made to keep the input data as consistent
as possible to the BOSOR4 model of Ref. 6, except where the influence of
Toading and geometric variations are being investigated.

The input for any of the analyses on the standard model, which
consists of 10 segments, requires only 41 lines, as can be seen on pages C2
to C15, each page containing the complete input for one run. Table c1,
on page C1, contains an index to the data files. The input data remains

constant for a given model as only the loading information changes from



34.

one run to another. Thus, referring to page C2, lines 3 to 12 contain
the type of information illustrated in Table 2.la (discussed in Sect.
2.4) with an additional column (column 5) specifying at how many locations
in a segment the stress resultants are required. The eccentricities
specified on these lines are consistent with those shown in Fig. 4.3.
Lines 13 to 21 specify the connectivity information illustrated in Table
2.1c (discussed in Sect. 2.4). Lines 22 to 31 specify the geometry and
material properties of the segments, as illustrated in Figs. 4.2 and
4.3. |

The variation in input is then associated with the loading
information which for the pressure example is contained on lines 32 to
41 of page C2, and for the prestress example is contained on lines 35 to

45 of page C4. This is discussed in detail in the following Sections.

4.2 Analysis for Internal Pressure

The input for internal pressure is contained on page C2 where
the loading information is contained on lines 32 to 41. This loading
condition is identified by the 1 in the second column of figures on
these lines. Only segments 1, 3, 6, 7, 8 and 10 are subjected to nonzero
pressures. The pressures on these load cards are consistent with 1 psf
internal pressure which must be reduced in the ratio of the internal

radius to the centerline radius of each segment, and is negative accord-
| ing to the sign conventions of Fig. 2.2, except for the base segment.
The nonzero PSF forces to the right of the third column of figures for
segment 7 are the result of the internal pressure acting upward on the
0.75 ft. interior overhang of the ring beam as illustrated in Fig. 4.2.

The computation of this type of force will be illustrated in Sect. 4.3.
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Typical program output for the analysis for internal pressure
is reproduced on pages C16 to C22. Pages C16 and C17 contain the echo
check of input data and the results of the analysis start at the top of
page C18 with a summary of the forces of interaction between segments
(the {V} vector of Sect. 2.3), identified by segment number and the
subscripting order of Fig. 3.1. This is followed on pages C19 to C20 by
the typical output for a spherical segment consisfing of the total end
forces acting on the segment, the N1, N2, M1 and M2 stress resultants ét
stations along the length of the segment, and the horizontal displace-
ments along the segment. The stress resultants, and the sign conven-
tions for theh, are illustrated in Fig. 4.4a. Page C21 illustrates
output for a typical cylindrical segment. Page C22 illustrates output
for a typical base segment. It should be noted that the program does
not output values close to the radial centerline for base segments
because of the 1imitatiqn on accuracy as the radius becomes small, which
was méntioned in Sect. 3.1.

The form of the output always follows this pattern unless a
nonzero IPRINT value is included on line 2 of the input data, in which
case considerably more information, such as the [A] matrix, the [F]
matrices and the [?] matrix, is contained in the output for the problem.

A comparison of these results with the BOSOR4 results is

included in Chapter 5.

4.3 -Analysis for Prestressing Effects

The input data for two switched-on prestress analyses is
reproduced on pages C4 and C7. The ring beam for these models has been

subdivided into four and five segments, respectively, rather than the
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three of the standard model, in order to accommodate discontinuities in
the prestress loading.

The prestress 1oad condition is characterized by a number of
concentrated_]oading effects, in addition to distributed loads, which
are input as PSF forces (see Sect. 3.5). These are contained on the
loading lines (the last twelve in the file on page C4, and the last
thirteen of the file on page C7), in addition to the segment number and
the prestress load identification number, i.e. 3. The prestress forces
have been computed as equivalent pressure loads except that the vertical
wall prestress, and the self-equilibrating forces for the anchorage of
the dome prestressing cables must be applied as concentrated (line)
loads. The essential computations required to evaluate the prestress
1oading are shown in Table 4.1 and the resulting PSF forces are shown in
Fig. 4.5. The external PSF forces which are applied to segments 2 and
3, according to the sign convention of Fig. 2.2, make it possible to
account for concentrated loading conditions arising at the ends of the
segments.

The output for the prestress analyses have been omitted but
follow the same pattern as that for internal pressure discussed in Sect.
4.2. The results are presented in Chapter 5 where they are discussed in

detail.
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5. COMPARISON WITH BOSOR4 ANALYSES

5.1 Introduction to Comparison of Result

In order to assess the reliability of the stress resultants
obtained from simple shell thgory for Gentilly type structures, it is
desirable to compare the results from FLEXSHELL with those of moré
complex analyses. The results from the FLEXSHELL program are compared
herein with those obtained from the BOSOR4 analyses of Refs. 6 and 7.

It should be noted that the theoretical basis for BOSOR4
is more 'exact' than that for FLEXSHELL, in that the BOSOR4 formulation
accounts for a number of geometric effects which are not included in
simple shell theory. In the formulation for BOSOR4 it is possible to
retain many geometric effects that are discarded in classical shell theory
becausg the resulting energy expressions are integrated numerically.
Classical shell theory attempts to reduce the governing equations to
a set of linear partial differential equations which facilitates a
solution using classical mathematical techniques. A comparison of the
two approaches on a rigorous basis is difficult because simple shell
theory discards terms in a rather ad-hoc manner. However, the follow-
ing gives some indication of the basis for the two approaches.

BOSOR4 develops a consistent energy formu]ation from the

following strain-displacement equations [5].

F - )
€ u' + w/Ry + ]7(«52 + y?)
le} = Qeyp = -1 v/ir+ur'/r+ W/R, + %(wz + ) (5.1a)
Xi g
Xp v/r +rt Efr
\ ) L /
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where g = w'-u/R]
¥ =W/ - /R,
y = %.(ﬁ/r -Vv' - r'v/r) (5.1d)

and u, v and w are the displacements in the meridional, circumferential
and normal directions, respectively; s, and 6 are the meridional and
(angular) circumferential coordinates, respectfve]y; ' and -+ indicate
differentiation with respect to the meridional and circumferential
coordinates, respectively; R], R2 and r are the meridional, circumfer-
ential and radial radii of curvature, respectively; and, &, ¢ and y

are the rotation of the meridian, rotation about the meridian and
rotation around_the normal, respectively. The energy associated with
these strains is integrated through the shell thickness by dividing the
thickness into a number of layers and numerically evaluating the required
products. In this manner geometric effects, such as the change in

radius through the thickness and product terms in the straiﬁ displacement
equations, can be accounted for.

In the more classical shell theory, on which FLEXSHELL is
based, the formulation starts from essentially the same strain-displace-
ment relations, and derives equilibrium equations, except that all non-
linear terms are neglected as they arise. In order io solve the result-
ing differential equations the solution is separated into a homogeneous
part, corresponding to the edge effects arising from the continuity of
the shell segments, and a particular solution corresponding to the
membrane effects for the applied load condition. These two solutions,
and the technique of superposition, have been discussed in Chapters 2
and 3.

The uncoupling of the load and edge effects for cylindrical



segments results in differential equations which can Be solved by standard
mathematical techniques and solutions obtained, for 'thin' shells, are
sufficiently accurate for engineering applications. However, for spher-
ical shell segments a further simplification is required before the
differential equation can be solved. If it is assumed that edge effects
decay rapidly as one proceeds from the edgé then only higher derivatives
need be retained in the equilibrium equation and the differential
equation reduces to a simple form resembling that of the cylindrical
shell segment. This assumption is reasonable if the angle from the
central axis of symmetry is large, say in the order of 30 degrees. The
effect of this simplification (first introduced by Geckler [10, pg. 63],
and used in FLEXSHELL) on the stress resultants is generally small,
except for the M2 stress resultant, for which one of the neglected terms
becomes significant, and for small angles from the axis of symmetry.

The approximate theory for M2 retains only the term corresponding to

vM]. This abproximation has been found to be completely inadequate and
the authors have adapted an equation recommended by Pfliiger [10, pg.
66], as described in Appendix F, for the computation of the Mz stress
resultant. A1l formulae in Appendix D, and results presented herein,
include this modification.

In view of the above differences between the two approaches it
should not be expected that the results from the two would precisely
correspond. Where discrepancies occur it must be aséumed, for the
present, that the BOSOR4 analyses are the more reliable. This is

particularly true in the upper regions of the lower dome where the

opening occurs at a small angle from the axis of symmetry.
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It is also questionable whether the stress resultants computed
within the ring beam are accurate. The ring beam has a depth to thick-
ness ratio of 2 to 1; and contains junctions with the spherical segments
along its length. For this type of geometry the 'plane sections remain
plane' assumption, upon which both programs are based, is questionable
and finite element analyses are probably required to determine stresses
within this region. Such studies are presently underway and a compar-
ison of finite element results with those contained herein will be the

subject of a subsequent report.

5.2 Comparison of FLEXSHELL and BOSOR4 Results

The N N2, M] and M2 stress resultants, and the horizontal

1°
disp]afements, for four load conditions are compared with the BOSOR4
results of Ref. 6 in Figs. 5.1 to 5.29. The load cases are internal
pressure, dead load, total ('switched-on') prestressing and winter
operating temperature (WOT). Each of these load cases is discussed
separately in the following sub-sections. The analyses will generally
be carried out on the standard model for which a foundation modulus of
450000 1b/ft® is used. The effects of varying this foundation modulus
will be considered in Sect. 5.3 and discussion of comparisons at the
base connection will be undertaken in that section.

The discussion of Sect. 5.1 has alluded to the fact that the
computation of the M2 stress resultant presents a source of difficu]ty
in a classical shell approach. The result is that the FLEXSHELL M2
predictions are generally 15-25% lower than those of BOSOR4 at the

interior maximum moment location. This must be regarded as a deficiency

in the classical shell theory and will receive 1ittle further attention.
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The sign convention for the comparison of stress resultants is
that of BOSOR4, illustrated in Fig. 4.4b. 1In all plots the solid lines
are the BOSOR4 results while the x's represent FLEXSHELL results. The
linear coordinate against which the stress resultants are plotted is
that of the BOSOR4 analyses of Ref. 6.

The reader is cautioned to check the scale of each drawing
since the vertical scale varies from plot to plot and the relative
significance of the stress resultants cannot always be judged without

referring to the absolute values.

5.2.1 Comparison of Internal Pressure Stress Resultants

A comparison between the N], N2, M] and M2 stress resultants,
and horizontal displacement, for an internal pressure of 1 psf, as
predicted by FLEXSHELL and BOSOR4, is presented on Figs. 5.1 to 5.5,
respectively. Except for the perturbation at the crown the N] stress
resultants (Fig. 5.1) differ by less than 3%. It should be noted that
the classical shell theory gives a singular value at this point if the
boundary effects are retained (Eqs; SH3.3 and SH4.3). The N, stress
resultants (Fig. 5.2) show excellent agreement. The M] stress resultants
(Fig. 5.3) also show excellent agreement. The M2 stress resultant (Fig.
'5.4) displays a 15% discrepancy for the peak interior moment in the
spherical shell, as discussed in Sect. 5.2, and a small perturbation at
the apex of the shell for the same reason as the'N] stress resultant
(Eq. SH4.6).

The discrepancies in the ring beam at the junction with the
upper dome in Figs. 5.3 and 5.4 result from the facts that there is a

very high gradient in this area and the FLEXSHELL model had slightly



different geometry than the BOSOR4 model. The FLEXSHELL results are
probably 'theoretically' more correct at this junction than the BOSOR4
results. The discrepancy is also influenced by the finite element mesh
size in the BOSOR4 model.

The horizontal displacements in the cylindrical segments are
compared in Fig. 5.5. Since BOSOR4 outputs normal displacements for the
spherical segments, and these are not available from a classical analysis,
the FLEXSHELL spherical segment displacements have been set to zero. No
further reference to spherical segment displacements will be made in |

subsequent comparisons.

5.2.2 Comparison of Dead Load Stress Resultants

The comparison between the N], N2’ M] and M2 stress resultants,
and horizontal cylinder displacements, for switched-on dead load is
presented on Figs. 5.6 to 5.10, respectively. Excellent correspondence
for the N, stress resultant (Fig. 5.6) is obtained except at the inner
opening of the lower dome. Excellent correspondence for the N2 stress
resultant (Fig. 5.7) is obtained except at the same location and at the
base junction. The difficulty in the lower dome relates to the Geckler
approximation and the small angle of the opening, as discussed in Sect.
5.1 and Appendix F. The base connection is discussed in Sect. 5.3. The
correspondence of the M] moment (Fig. 5.8) is considered good, while the

M, stress resultant (Fig. 5.9) exhibits the characteristic discrepancy

2
(23%) for the interior maximum moment in the upper spherical shell.

Horizontal cylinder displacements show good agreement (Fig. 5.10).
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5.2.3 Comparison of Prestress Stress Resultants

Two prestressing ané]yses are presented herein, the difference
in the analyses being jn the way the anchorage loads for the dome
prestressing are treated. The computation of these forces was discussed
in Sect. 4.3 and summarized in Table 4.1 and Fig. 4.5. A comparison for
both the 'simp]ified'model' and the 'BOSOR4 model' follows.

The N], N2, M] and M2 stress resultants, and the horizontal
cylinder displacements, are shown in Figs. 5.11 to 5.15, respectively,
for the switched;on simplified prestress. Except in the region of the
prestress anchorages, and the usual discrepancy of M2 internal moment (in
this case 26%), the correspondence with BOSOR4 results is excellent
throughout.

Introducing an additional segment to the model, as illustrated
in Fig. 4.5b, allows a simulation of force effects more consistent witﬁ
the BOSOR4 model of Ref. 6. The N], N2, M] and M2 stress resultants, and .
the horizontal displacements, are shown in Figs. 5.16 to 5.20, respectively,
for the switched-on BOSOR4 prestress loading. The agreement between the
two sets of results is now excellent even in the areas of abrupt dis-

continuity where concentrated force effects are applied.

'5.2.4 Comparison of Thermal Effects

Two sets of thermal stress resultants are presented herein. The

first set is for the standard model of Fig. 4.2. The N], N2, M, and M

1
stress resultants, and the horizontal cylinder displacements, for the

2

winter operating temperature (WOT) thermal conditions of Ref. 6, are
shown on Figs. 5.21 to 5.25, respectively. These stress resultants are

obtained by superimposing the results from the thermal gradient input,



on page C6, and those from the constant temperature change input, on
page C5; The maximum N] stress resultants on Fig. 5.21 correspond closely
with those of BOSOR4. There is, however, a discrepancy with the BOSOR4
results in the upper part of the outer dome. The BOSOR4 output predicts
a force at the apex of 2000 1b. while the FLEXSHELL results reduce to
zero. However, it should be noted that the BOSOR4 force is small in
magnitude, producing an average stress of 7 psi, and that the classical
particular solution used for FLEXSHELL requires this force to vanish.
Because of the low forces generated the discrepancy is not considered to
be serious. The remaining stress resultants (Figs. 5.22 to 5.24) and
the horizontal cylinder displacements (Fig. 5.25) generally show good
agreement except in the vicinity of the base connection. Hence, a thermal
model more closely resembling the BOSOR4 model at the base was analyzed.
The BOSOR4 model did not have the outer perimeter base ring,
namely, segment 9 of Fig. 4.2. The thermal input files, similar to those
on pages C5 and C6, but omitting this base segment are contained on
pages C8 and C9. Results from this input are shown in Figs. 5.26 to 5.29

(the N, stress resultant is identical to that in Fig. 5.21). It can be

1
seen from these plots that the discrepancy with the BOSOR4 results in the
Tower portion of the cylinder wall has disappeared and, indeed, the

correspondence is quite remarkable.

5.3 Effect of Foundation Modulus

One area of weakness in the BOSOR4 analyses of Ref. 6 was the

simulation of the foundation stiffness. The base was supported by 5

vertical springs whose stiffnesses were made proportional to their distance

from the axis of symmetry and were adjusted to reproduce the field

44,



45.

measurement of delfection (0.15 inches) observed on the outer perimeter
of the Gentilly 1 Powerhouse under dead load.

The current 'base-on-elastic foundation' segment in the FLEXSHELL
code has continuous elastic support whose stiffness is expressed as the
subgrade modulus, k, of Eq. 3.4.1, but is subject to the deficiency that
the suppoft is of the Winkler type. This type of support is a common
simplification for structural analysts but is not regarded favourably by
soils engineers who consider it to be an oversimplification. There does
not appear to be any rational technique for determining an equivalent
subgrade modulus from the properties of the foundation. Stress resultants
are, however, relatively insensitive to the precise subgrade modulus
selected and recourse is generally made to tabulated recommendations,
giving approximate values based on verbal descriptions of the subgrade,
such as those on pg. 259 of Ref. 11.

The subgrade modulus selected for the standard model of this
report was 450000 1b/ft®. The base deflection under dead load for this
modulus is shown as line A on fig. 5.30. In addition, deflections for a
subgrade modulus of 900000 1b/ft® are shown as line B, from the BOSOR4
analysis are shown as line D, and from preliminary finite element studies
are shown as line C. It is quite apparent that by adjusting the founda-
tion modulus a FLEXSHELL analysis could be made to precisely reproduce
the BOSOR4 deflection at the wall centerline. However, this would be a
rather pointless exercise. It appears that the angular rotation at the.
base of the wall is more significant than deflection and that the chosen
subgrade modulus closely approximates the rotation for the BOSOR4 model.

The analyses for self-equilibrating forces (prestressing and

thermal effects) shown in Figs. 5.11 to 5.20, and Figs. 5.26 to 5.29,



are relatively unaffected by the subgrade modulus and exhibit excellent
correspondence in the area of the hinge. The analyses which require base
slab participation (internal pressure and dead load), shown on Figs. 5.1

to 5.5, and Figs. 5.6 to 5.10, do not exhibit as good a correspondence in
the hinge area. Nevertheless, the correspondence is still quite reasonabie
in view of the discrete nature of the support associated with the BOSOR4
model and the omission of the outer perimeter base ring from the BOSOR4 |
model (as discussed in Sect. 5.2.4).

The effect of doubling the foundation modulus (from 450000
1b/ft® to 900000 1b/ft®) on the stress resultants at the bottom of the
cylinder wall is shown, for the standard model, in Table 5.1 for three
load cases. The large variations in N2 for dead load and internal pressure
are not considered significant since the effects of these load cases are
an order of magnitude less than the prestressing effect. The moment
stress resultants for dead load are the most sensitive to changes in
foundation modulus while those for prestressing are.the least sensitive.
Magnitudes of moments decrease for both dead load and internal pressure
as the foundation modulus increases.

In view of the fact that the Winkler type foundation appears
to give rather different rotation characteristics than a finite element
model (compare curves A and C in Fig. 5.30) and that the nature of the
structural model in the area of the 'hinge' also has an effect on stress
resultants (see Sect. 5.2.6), it was considered inappropriate to 'tune'

a foundation modulus to produce closer correspondence of FLEXSHELL stress
resultants with those of BOSOR4. Effort is more appropriately directed
at determining an effective foundation modulus to simulate finite element

results.
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5.4 Effect of 'Hinge' Detail

The 'hinge' detail for the standard model used in this report
is shown in Fig. 4.3c. Stress resultants at the base junction are in-
fluenced by the type of connection contained in the model. For comparison
purposes, three variations of base detail from the standard model have
been considered. These are shown in Fig. 5.31. The details in Figs.
5.31a, b and c are all 'rigid link models', with a variation of detail
at the base of the cylinder wall. For Fig. 5.31d the wall was assumed
to extend through the base to the slab center-line, thus eliminating the
rigid link.

The results for N2, M] and MZ’ and the horizontal cylinder
displacement, are shown in Figs. 5.32 to'5.35, respectively, for the
effect of dead load. It is apparent that the short segment of flexible
cylinder inserted at the connection in the standard model has a significant
effect. A similar conclusion arises from a consideration of the effects
of internal pressure shown in Figs. 5.36 to 5.39, inclusive.

In view of the sensitivity of results in this area to the modelling
of the base connection and the differences between the FLEXSHELL and
BOSOR4 models, the discrepancies adjacent to the connection in Figs. 5.2

to 5.4 and in Figs. 5.7 to 5.9 appear to be very reasonable.

5.5 Reference State Rfl
| The_N], N2, M] and M2 stress resultants, for the reference state
Rf1 of Ref. 6, are shown in Figs. 5.40 to 5.43, respectively. This
referenée state is obtained by sequencing the application of dead load
and prestressing forces to partial structures in such a manner as to

simulate the site construction procedure. Details are given in Ref. 6,



and the necessary data files to simulate the partial structure loadings
for reference state Rfl are included in Appendix C.

It is quite apparent that since FLEXSHELL exhibits good
correlation with BOSOR4 for individual Toad cases it should also
correlate well with any set of load combinations. The results on Figs.
5.40 to 5.43 exhibit this excellent correlation (the FLEXSHELL analysis

presented is for the simplified prestressed loading).
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6. STRESS COMPUTATIONS

6.1 Introduction to Stress Computations

Chapter 5 has established that a simple classical shell flex-
ibility analysis gives results for Gentilly type structures which are
essentially the same as those from more sophisticated displacement
analyses, except in clearly definable regions. The results appear to
be suitable for most aspects of preliminary design and for.checking the
adequacy of a given structure in meeting serviceability requirements.
However, for determining first cracking pressures and regions subjected
to tensile stresses in a specified serviceability state it is much more
convenient to examine stresses rather than stress resultants. This

Chapter illustrates a tonvenient method of examining stress states in a

Genti]ly type structure, excluding the effects of stress concentrations.

Stresses may be computed with reasonable accuracy from the
previously determined stress resultants by the simple flexure formula,

namely,

- (6.1)

Q
n
> =
+
g

where N is the membrane force per unit width; M is the moment per unit

of width;. A and I are the section properties per unit width; and, y is

the distance from the middle surface. In the following S1 refers to the

extreme fibre stress arising from a combination of N] and M], while S2
refers to the extreme fibre stresses arising from a combination of N2

and M2, at any point in the structure.
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6.2 Stress Plots

The stress plots for 51 resulting from an internal pressure of
18 psi are shown on Fig. 6.1. The plot shows the variation of stress on
the internal and external faces of the structure. The effect of moment
is exhibited by the spread between the two stress points at the same
section. The average of the two stress points at any section indicates
the effect of axial force. Clearly the critical section for uniform
thickness of dome is at the springing line of the dome and this has lead
the designers to thicken the structure in this area.

In the absence of a more exact analysis a common technique of
design is to compute stress resultants on the basis of a dome of uniform
thickness (ie. carry out the analysis for uniform thickness) but to vary
the thickness during the design phase to produce acceptable stresses.
The effect of thickening the structure at the springing line, using the
above technique, is shown by the solid lines in Fig. 6.1. The reduction
in stress at the springing line is very significant. A similar plot for
the circumferential stresses, S2, is shown in Fig. 6.2.

Stress plots for a 'switched-on reference' state are shown in
Figs. 6.3 and 6.4. Stresses for the FLEXSHELL simulation of the Rfl
reference state of Ref. 6 (partial structure load superposition) are
shown in Figs. 6.8 and 6.9.

A summary of the stresses at the springing 1ine of the dome,
in the region of dome thickening, is given in Table 6.1 for the three

load cases discussed above.

6.3 Check of Serviceability Conditions (Switched-on Analysis)

Given the stress ordinates for the reference states and internal
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pressure, it is straightforward to compute the pressure to produce any
desired stress at any specified point on the faces of the structure.
Thus, if s is the stress at any point due to a unit internal pressure, o
is the reference state stress, f is the desired stress and p is the

internal pressure producing the desired stress, then

ps+ao=f ' (6.2)
or

p=(f-o0)ls (6.3)

In general, for serviceability requirements f is either zero (a no
tension state) or ft (the tensile strength of the concrete).

Using Eq. 6.2, the internal pressure required to produce zero
stress (f = 0) and the cracking stress (f = ft = 450 psi) at all points
on the exterior and interior faces of the structure have been ﬁeter-
mined. The results are shown in Figs. 6.5, 6.6 and 6.7.

Fig 6.7 indicates that for a 'switched-on' reference state no
circumferential tension is predicted until the internal pressure exceeds
30 psi.

In contrast, Fig. 6.5 indicates that tensile regions exist,
prior to pressurization, on the exterior face of tﬁe ring beam, the under-
side (interior) of the lower dome at the springing line, and the topside
(exterior) of the lower dome, over approximately one-half its length.

These regions are indicated on Fig. 6.5 by the points plotted at 0 psi
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and correspond to the tensile stress regions of the reference state
stresses in Fig. 6.3.

Since the lower dome is unprestressed and does not act as a
part of the containment, no further discussion of this area will be under-
taken. Fig. 6.5 also indicates, however, that the exterior of the top of
the cylinder wall, and the interior of the (unthickened) dome_at the
springing line would be subject to tensile stress at pressures below the .
design basis accident conditions (18 psi). (The horizontal dashed
lines on Figs. 6.5 to 6.7 and Figs. 6.10 to 6.12 indicate the design
basis accident pressure of 18 psi and the proof test pressure of 20.7
psi). An enlargement of the pressure factor plot of Fig. 6.5 in the
region of the ring beam is shown in Fig. 6.6. When the thickening of the
upper dome is included it can be seen that the pressure to produce zero
tensile stress at the springing line rises above the design basis accident
pressure. In addition, it is apparent from Figs. 6.5 and 6.6 that no
cracking is indicated at the proof test pressure. The pressurizations,
in the region of thickening, that are required to produce the service-

ability limit states are tabulated in Table 6.2.

6.4 Check of Serviceability Conditions (Load Superposition Analysis)

One of the objectives of this study is to determine if second-
ary effects, such as the construction sequence, have a significant
effect on serviceability limit states. It was for this reason that Ref.
6 undertook to simulate the effects of construction sequence which
requires a considerably mbre detailed analysis than the 'switched-on'
type of analysis. The stress resultants arising from the more detailed

analysis are reflected in reference state Rfl. The plots in Figs. 5.40
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to 5.43, discussed in Sect. 5.5, indicate that this reference state can
be accurately reproduced by FLEXSHELL.

The Rf1 reference state stresses are shown in Figs. 6.8 and
6.9. The pressure factor plots to produce the serviceability limit
states, defined in Sect. 6.3, are shown in Figs. 6.10 to 6.12 for pressur-
ization starting from the Rf1 reference condition. Fig. 6.12 again
indicates that serviceability pressure factors relative to the S2 stresses
are of no concern.

A comparison of Figs. 6.5 and 6.10 indicates the construction
sequence produces somewhat lower pressure factors at the top of the
cylinder wall.on the exterior face and indicates some crackfng.may
occur, at the same location, during the proof test. However, a comparison
of Figs. 6.11 and 6.6 indicates that construction sequence has essentially

no effect on serviceability 1imit states at the dome springing line.
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7. SUMMARY AND CONCLUSIONS

7.1 Summary

This report has discussed the development of, and application
of, a 'small' program for the analysis of axisymmetric segmented thin-
shell structures, based on classical shell solutions generally available
in the literature and a matrix flexibility approach. The program has
been applied to the analysis of a number of loading cases for a Gentilly
type nuc]eaf containment structure and compared with the results of BOSOR4
analyses.

The results, on the whole, show excellent agreement between
thé two solution techniques. The greatest discrepancies between the two
types of analysis are in the determination of the N1 thermal stress
resultants in the spherical segﬁents (Fig. 5.21), which are small, and
in the maximum interior M2 stress resultants towards the mid-ordinate of
the spherical segments (Figs. 5.4, 5.9 and 5.14).

Within the theoretical limitations of a Winkler type of
foundation the plate-on-elastic foundation base segments give an effective
means of representing the interaction between the foundation and the
containment structure. The stress resultants in the base of the wall
have been shown to be relatively insensitive to a variation in subgrade
modulus (Table 5.1) but considerably more sensitive to the technique
of modeling the base connection (Figs. 5.31 to 5.39).

A load superposition construction sequencing analysis can be
simply carried out with excellent results (Figs. 5.40 to 5.43). The
effect of altering the details of the model in the region of dome pre-

stress anchorage has been demonstrated (compare Figs. 5.11 to 5.15 with
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Figs. 5.16 to 5.20). The effect of alteration of the base geometry on
the thermal stress resultants has also been shown (compare Figs. 5.22 to
5.25 with Figs. 5.26 to 5.27).

Streés plots over the exterior and interior faces of the
structure have been presented for a number of loading conditibns and
these represent a convenient way of presenting the loading influence on
the structure. The pressure factors to produce the serviceability
limit states of zero tension and of the concrete tensile strength have
been presented graphically. A comparison of pressurization factors for
a 'switched-in-analysis' (Figs. 6.5 to 6.7) with those for a 'construction
sequence analysis' (Figs. 6.10 to 6.12) indicates that the results are
substantially the same except on the exterior face of the cylinder wall
immed{ately below the ring beam. A compgrison of stress states at the
springing Tine of the dome indicates that, while thickening of the dome
has a substantial effect on stresses arisfng from each load case (see,
for example, Figs. 6.1 and 6.3), the effect on serviéeabi]ity limit
states is much more subdued (see, for examﬁle, Fig. 6.6). Nevertheless,
the change is sufficient to alter the pressurization factors enough to

satisfy the design criteria under the condtions of this analysis.

7.2 Limitations on FLEXSHELL

The following limitations on the FLEXSHELL program, as developed
herein, have been stated throughout the report but are summarized as
follows: |

(a) The program assumes thin shells.
(b) For spherical segments the program uses a classical solution

of simplified thin shell equations which requires the minimum
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angle subtended by any shell segment to be in the order of
20° to 30°.

(c) For spherical segments the M2 stress resultants are less accurate
than other stress resultants although they appear to be reliable
in all critical areas for Gentilly-type structures.

(d) The base segments assume a Winkler type of foundation and use
assymptotic expansions of the solution of the governing
differential equation.

The advantages of a FLEXSHELL approach are stated in Sect. 1.2.

7.3 Conclusions

Within the context of this study, at its present stage of
development, it may be concluded that FLEXSHELL is a simple effective
tool for use in the prediction of serviceability states for Gentilly-

type structures.
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Segment Segment Type IR JR ECI ECJ
(Top End) (Bottom End)
1 2 0 1 -3.5
2 1 0 1
3 1 1 1
4 1 0 1
5 2 1 1 -3.5
6 1 1 1
7 1 1 0 -1.0

(a) Segment Types, Redundant Flags and Eccentricities (INPUT)

Segment Top Forces Bottom Forces
1 0 0 1 2
2 0 0 3 4
3 5 6 7 8
4 0 0 9 10
5 IR 12 13 14
6 15 16- 17 18
7 19 20 0 0

(b) Identification of Segment End Forces (GENERATED)

(c) Segment Connectivities (INPUT)

Top Bottom
Segment Segment
1 3
2 3
3 6
4 5
5 6
6 7

TABLE 2.1 - SEGMENT DEFINITION AND
CONNECTIVITY ARRAYS
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TABLE 3.1 - DERIVATIVES OF BASE SEGMENT

{¢} VECTOR
¢ e® V2 171 cos (o - B)
&)] (1 - ]/(20))¢] - ¢2
b ¢,/(20%) + (1 - 1/(20))$; - 3,
"9 ~p1/0° + §1/0% + (1 - 1/(20)); - &,
¢, &% 5" 1/2 "t sin (o - B)
¢, (1 - 1/(20))9, + ¢, |
b, 0,/(202) + (1 - 1/(20))é, + &,
b, =0,/0° + &,/0 + (1 - 1/(20))b, + &
¢4 1% o2 17t cos (0 + B)
. ¢3 '(] + ]/(20))¢3 - ¢4
b3 ¢5/(20%) = (1 + 1/(20))é5 - &,
"o5 ~93/0® + ba/0® - (1 +1/(20))é5 - &,
by e 612 173 sin (o + B)
by -(1 +1/(20))9, + ¢4
by 04/(20%) - (1 +1/(20))d, + ¢4
"o, ~04/0° + $,/0% = (1 +1/(20))4, + &5
Notation: (") = d( )/do
d() __1 d()
dr Vii do
o = 20-75 ;0.5

B = 1/8
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TABLE 4.1 - COMPUTATION OF PRESTRESS LOADING

Distributed Cylinder Wall Pressure (Horizontal Cables)

153 ksi

_ in?
p=2.4 69.75 Tt

ft

X = 5286 psf
Distributed Ring Beam Prestress Pressures

Lower Ring Beam (4.5 ft: 4 cables)
_ 4 cables x 150.8 ksi x 5.08 in?

P 70.75 ft x 4.5 ft cable - 0025 psf
Upper Ring Beam (9.5 ft: 4 cables)
_ 4 cables x 150.8 ksi x 5.08 in? _
p = 70.75 ft x 9.5 ¥t cable ~ 1029 psf
Distributed Dome Prestress Pressures
_712 k . 3 layers ] ey
P = Cable X 3 ft/cable * T37 ¥t - 2197 psf

Vertical Wall Prestressing
. 22
Load/ft = 1.30 %%—-x 153.5 ksi = 199.5 k/ft
PSF Load/ft = 199.5 k/ft x 69.75/70.75 = 196.68 k/"'

PSF Moment = 199.5 k/ft x 1 ft x 69.75/70.75 = 196.68 'k/ft

Anchorage Forces for Dome Prestressing

P = 5197 psf x L3 t = 366 k/'

H = 356 k/ft x cos 29.398 x 67.25/70.75 = 294.82 k/°
V = 356 k/ft x sin 29.398 x 67.25/70.75 = 166.11 k/'
M=H-e=294.8k/'x1.972 ft = 581.39 'k/'
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(a) STANDARD MODEL

e

(c) FIXED END

(b) PURE HINGE

(d) FIXED END

(no eccentricity
between
wall and base)

FIGURE 5.31 Variations of Base Connection Detail
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effect of the thickening

FIGURE 6.6 P1 in Ring Beam Area for

Switched-on Reference State
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127.

P1 in Ring Beam Area for
Reference State Rfl
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Al

APPENDIX A
User's Manual for Program FLEXSHELL

Program FLEXSHELL computes the in-plane forces and bending
moments due to five types of loading conditions for axisymmetric branched
segmented shells of revolution consisting of cy]indrjca] and spherical
shell segments anq base slabs on elastic foundation. The loading conditions
included are distributed pressure, self weight, prestress of segments,
uniform temperature change and temperature gradient throﬁgh the shell
thickness. A complete listing of the program is given in Appendix B.

Solutions are obtained using the flexibility matrix method.
Particular solutions are approximated using membrane solutions. Flex-
ibility influence coefficients are obtained from bending solutions basgd
on classical elastic shell theory. The general assembly procedure is
described in detail in the report and all equations uéed in- the program
are listed in Appendix D. Examples of input are given in Appendix C and
some discussion of input is contained in Chapter 4.

This Appendix is restricted to describing the input to thé
program. z

The input to FLEXSHELL consists of multiple lines of input
. which may be either lines in a data file or data input cards. For
convenience since each line in a data file corresponds exactly to a
single input card, both will be referred to as cards.

There are six input card types each containing a separate type
. of data and having its own format. Certain card types may be repeated

as required.



A typical explanation of a card type consists of the card type
number, a descriptive name indicating the nature of the data being
entered, the format for the data on that card and the number of data
cards of that type required. This is followed by a symbolic line of
input which, in turn, is followed by definitions of the terms and/or
options available for the input variables. Examples of input for five
sample problems are given in Appendix C. Throughout the input, all

units have to be consistent.

TYPE 1: TITLE CARD

Format 10A8; 1 card

80

AN IDENTIFIER STRING

In order to identify the output, the user may enter any char-
acter string of up to 80 characters which will be reproduced as the
first line in the output; _This card is mandatory and if no title is
desired on the output a blank entry card must be used which will appear

as a blank line in the output.

TYPE 2: CONTROL CARD

Format 2I4; 1 card

4 8
NSEG |IPRINT

NSEG = number of shell segments in the structure to be analysed.
Maximum number = 20.
IPRINT = print control character

A2



A3

If IPRINT=0, echos input data and prints final results only.
(Usual mode of useage.)
IPRINT#0, prints full output including intermediate values.

(Used for checking purposes only.)

TYPE 3: SEGMENT TYPE CARDS

Format 514, 2F10.4; 1 card for each segment.

4 8 12 16 20 30 40
I [IT(I)|IR(I,1) |IR(I,2) |NDIV(I) |EC(I,1) EC(I,2)

I = segment number
IT = segment type
If IT = 1, segment is a cylinder segment
IT = 2, segment is a spherical segment.
IT = 3, segment is a base segment.
IR(I,1) = Top connectivity flag for segment I.
If IR(I,1) = 0, top not connected to another segment,
IR(I,1) = 1, top is connected to another segment.
IR(I,Z) = Bottom connectivity flag for segment I.
If IR(I,2) = 0, bottom not connected to another segment,
IR(I,2) = 1, bottom is connected to ahother segment.'
IR(1,2) = -1, bottom is connected to another segment with a
pure hinge. . |
NDIV(I) = number of divisfons for segment I at which stress result-
' ants are to be computed and printed. (NDIV(I) < 100)
EC(I,1) = eccentricity of joint connection at the top of the segment

in feet.



A4

EC(I,2) = eccentricity of joint connection at the bottom of the

segment in feet.

NOTE: When two shell segments are connected at a given elevation but
have different midsurface radii, a horizontal eccentricity equal to the
differences in horizontal radii to the midsurfaces will result. This
eccentricity can be applied to either shell segment and is positive when
directed inwards. For the eccentricity between a spherical and cylin-

drical segment, EITHER of the following entries is permissable.

SEGMENT 1 .. SEGMENT 1
, \
’ H l ! "
437"k SEGMENT 2 pa-e 1 SEGMENT 2
EC(1,2) = -3.5 EC(1,2) = 0.0
EC(2,1) = 0.0 EC(2,1) = +3.5

TYPE 4: CONNECTIVITY SPECIFICATION CARDS

Format 2I4; 1 card for each connection between segments, (i.e.: -
NSEG - 1 cards)

4 8
IDCO(I,1)|IDCO(I,2)

the number of the top segment

]

IDCO(I,1)
IDCO(1,2)

the number of the segment to which the top segment is

connected



NOTE: Where three shell segments intersect at the same elevation, two

connectivity specification cards are required. For the condition shown

below the entries are 3 5 , on the first card, and 4 5 on the

SEG 4

SE

SEG 7

second card. *)Note that each segment
number appears precisely once in
5EqG 3
IDCO(I,1) and these numbers must be
arranged consecutively in increasing
order, starting with segment 1 and
& 5
ending with segment NSEG.

*)  For the base intersection the

SEG 6 entries are 5 7 on the first

TYPE 5:

card and 6 7 on the second.

SEGMENT PROPERTIES CARDS

Format 14, F6.0, F12.0, F8.0, 5F10.0; 1 card for each segment.

4 10

20

30 40 50 60 70 80

I {T(I)

R(I)

H(I) |HO(I) [E(I) {PR(I) [ALPHA(I) |UW(I)

I
(1)
R(I)

H(1)

HO(I)

segment number

segment thickness

radius to midsurface of segment for cylindrical and
spherical segments

subgrade coefficient for base segments

the length for a cylindrical segment

the total angle from the axis of revolution to the outer
edge in degrees, for a spherical segment

the outer radius of a circular base ring slab

0.0 or blank, for cylindrical segment

A5



E(I)
PR(T)

ALPHA(T)

UW(I)

TYPE 6

A6

the angle in degrees measured from the axis of revolution
to the inner edge of the shell, for spherical segment.
the inner radius of a circular base ring slab

modulus of elasticity for segment

Poisson's ratio for segment

coefficient of thermal expansion

unit weight of material for segment

PARTICULAR SOLUTION CARDS

Format 214, 7F10.0; 1 card for each segment

4 8 18 28 38 48 58 68 78
1l1p |Pv(1) |PSF(1,1) |PSF(I,2) |PSF(I1,3) {PSF(I,4) |PSF(I,5) |PSF(I,6)
I = segment number
IP = classification of 'particular solution' according to
the following code:
1 = unfform pressure
2 = self weight
3 = prestress loading
4 = uniform temperature change across section
5 = temperature gradient across section
PV(I) = Numerical value of particular solution, interpreted as

follows:

If IP = 1, magnitude of pressure

(Positive for internally directed pressure and negative
for externally directed pressure. For a base segment positive
when pressure directed downward and negative when directed

upward. )



- IP = 2, the value of PV is disregarded and a dead load analysis
is carried out for the unit weights specified on cards

of Type 5.

IP = 3, value of the distributed prestress pressure on the
midsurface. Same sign convention as 1.

IP

4, value of the uniform temperature change in degrees
(positive if the temperature rises above the reference -
temperature. )

IP = 5, gradient of temperature across section in degrees per

unit of thickness. Positive if temperature increases in
a radially inward direction.

PSF(I,1) magnitude of externally applied horizontal force at the

top of the segment
PSF(1,2) = magnitude of externally applied moment at the top of the
segment |
PSF(1,3) = magnitude of externally applied horizontal forcé at the
. bottom of the segment
PSF(I,4) = magnitude of externally applied moment at the bottom of

the segment

PSF(1,5) magnitude of externally applied vertical force at the top
of the segment
PSF(I,6) = magnitude of externally applied vertical force at the

bottom of a base segment.

NOTE: ~(a) The PSF forces are forces and moments which, if necessary,

are to be applied in addition to the distributed loading




effects identified by the PV particular solution values.
(b) Prestressing effects are generally simulated as distri-
buted loads but cable anchorages give rise to concentrated

loads which are treated as PSF forces.

A8
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#%%  PLEXSHELL  ##%x Bl
THIS PROGRAM TS FOR THE FLEXIBILTTY ANALYSIS OF SEGMENTED
AXISYMMETRIC SHELLS. YT CAN HANDLE ANY COMBINATION OF DOME
AND SHERICAL SEGMENTS CONNECTED TOGETHER AT JUNSTION POYNTS.
REDUNDANT FORCES AR® APPLIED TO THF INDTVIDUAL
SEGMENTS TO ESTABLISH THE REQUTRED GFOMFTRIC COMPATIRILTYTY.
CODED BY D.W. MURRAY AND A.M.ROHARDT, DFCEMBER 1976
THE UNIVERSTTY OF ALBERTA, FDMONTON,ALEERTA
REVISED: MAY 1977

*%% NOTATTON *%**
IT=TYPE OF SEGMENT ¢ 1=CYLTNDER :2=DOME :3=BASE ON ELASTIC FOUND.
IP=TYP® OF LOADING :1=INTERNAL PRESSURE :2=DEAD LOAD
¢ 3=PRESTR¥®SS PRESSTURE :4=0NYFORM THERMAL STRATN
¢t 5=GRADYFNT "THERMAY. STRATN .
GEOMETRIC VARIABLES

SFG. TYPE CYLINDER SEELL BASE
T= THYCKNESS THICKNESS THICKNESS
= RADIUS RADTUS EASE STIYFN
H= LFNGTH OUTER ANGLE OUTER RADTUS
HO= *% INNER ANGLE INNER RADIUS
INDECEFS
NF=NUOMBER OF SEGMENT EDGE FORCRS NR=NOUMBFR OF REDUNDANTS

NSEG=NUMBER OF SEGMENTS

MATN ARRAYS
: IR (*, 1) =REDUNDANT FLAG TOP OF FLEMENT
IR (*,2)=REDUNDANT FLAG BOTTOM OF FLEMENT
IDF=YDENTYITY OF UNKNOWN FORCES AT TOP AND BOTTOM OF ELEMFNTS
PBF=PARTICULAR SOLUTION BASE FORCES
PSD=PARTICULAR SOLUTION EDGE DYSPLACEMENTS
PARD=PARTTICULAR SOLUTION TNCOMPATYBLE DISPLACEMENTS
PSF=PARTICULAF SOLUTION FORCES WHICH PRODUCE ADDITIDONAL INCOMPAT
' -IBLE DYSPLACEMENTS

A=MATRIX ESTABLYISHING GEOMFTRYC COMPATIBILITY BETWEFEN DEGREES OF
4 FREEDOM

FXTERNAL FUNCTIONS AND SUBROUTYNES FOLLOW THF MAIN PROGRAM

TN THE FOLLOWING ORDER:

FUNCTIONS: SUBROUTINRS:
1. CONST 4. PCYLIN 9. RASE
2. PN1 5. CYLIN 10. BSFAPF
3. FN2 6. PDOME 11. JTNVER
7. DOME 12. soL
8. PBASE 13. PFOR

o000 000000000000000NO0O00NNONONO00ONN0OO0O0O0O0O0N

IMPLICIT REAL*8(A-H,0-7)
DIMENSION T (20),P (20),H(20),HO (20),F (20),PR (20),ALPHA (20), PV (20),
* S6,6),PSD(6),F(80,80),TT(80,80),PARD(80),PART(80), PBF(6,20),
* FO(80),SF(6),CVEC(4),XH(101),4(80,80),TS (4,4) ,PSF(20,6) ,BB(4,1),
* RN1(101),PM2(101),8N1¢101),RN2(101),%C (20,2),UR (20) ,TITLE (10)
DIMENSION IT(20),IR{20,2),TP(20),IDCO(19,2),IDF(19,6),NDIV(20)
* ,IBASE(6) ,TVECT (4) ,SR(10),41(100),M2(1C0),V(100),HR(101),W7 (100)
DATA PT/3.1415926536/ ,RAD/57.295779513/ ,IBASE/1,2,5,3,4,6/
FILF



C------------; ....................... - - - - - - ————— - ——— - > - -

C READ AND ECHOCHECK DATA
C ................................................................. P

READ (5,1001) TITLE

WRITE(6,2001) TITLE

READ(5,1000) NSEG,IPRINT

WRITE(6,2000) NSEG,IPRINT

IF(NSEG.GT.20) GO TO 999

READ (5,1000) (I,IT(I),IR(I,1),IR(I,2),NDIV(I),EC(I,1),EC(L,2),
* T1II=1,NSEG)

WRITE(6,2100) (I,IT(I),IR,1),IR(I,2),NDIV(I),EC(I,1),EC(I,2),
* I=1,NSEG)

NSEG1=NSEG-1

READ (5,1200) ((IDCO(I,J),J=1,2),I=1,NSEG1)

WRITE(6,2200) ((IDCO{(I,Jd),d=1,2),I=1,NSEG1)

READ{5,1300) (I,T(I),R¢I),H(I),HO(I),E(I),PR(I),ALPHA(I),UW(]),
* II=1,NSEG)

WRITE(6,2300) (I,T(X),R(I),H(I),HO(I),E(XT),PR(I),ALPHA(I),UW(T),
* I=1,NSEG) .

READ (5,1400) (I,IP(I),PV(I), (PSF(I,J),J=1,6),I1I=1,NSEG)
WRITE(6,2400) (I,IP(I),PV(I),(PSF(I,Jd),J=1,6),I=1,NSEG)

P4=PI/4

R2=2.0

R2=DSQRT (R2)

IFLAG=0
C--- ......................... - - - - - W W D P W e D b WA W U WD W = W - - - - -
C IDENTIFY DEGREES OF FREEDOM AND FORM A-MATRIX
Crrrr e a e c e e ar e - - - - —— - — - - - - - - - cecencnwnea - - - -
C FORM IDF ARRAY

po 30 J=1,6
Do 30 I=1,NSEG
30 IDF(I,J)=0

KV=0
KOUNT=0
NRH=0 :
Do 50 I=1,NSEG
DO 50 J=1,2
J2=2%J-1
IF (IR(I,J) .EQ.0) GO TO 50
IDF(I,J2) =KOUNT+1
IF (IR(I,J).GT.0) GOTOQ 40
KOUNT=KOUNT+ 1
NRH=-1
GOTO 41

40 IDF(I,J2+1)=KOUNT+2
KOUNT=KOUNT+2

41 IF(IT(I).NE.3) GO TO 50
IF(J.EQ.1) J2=5
IF(J.EQ.2) J2=6
KOUNT=KOUNT+ 1
IDF (I,J2) =KOUNT
KV=KV+1

50 CONTINUE

NF=KOUNT
NR=2*NSEG1+KV/2+NRH

FILE



FILE

35
2440
2435

45

180

250

260

300

350
2450
2500

IF(IPRINT.EQ.0) GOTO 45

WRITE (6,2435)

po 35 I=1,NSEG

WRITE(6,2440) (IDF(I,J), J=1,6)
CONTINUR

FORMAT (2015) .

FORMAT(///' THE IDF MATRIX IS '/)
CONTINUE

FOPM A MATRIX
T0=1

DO 180 T=1,NR

po 180 J=1,NF
A(1,J)=0.0

DO 300 T=1,NSFG1
K=IDCO (I, 1)
L=IDCO (I, 2)
J1=IDF¥ (K, 3)
J2=TDF¢(L, 1)
A(10,J31)=1.
A(In,J2)=-1.
YF(IDF (K,4) .EQ.0.0R.TDF(L,2) .FQ.0) GOTO 260
A(T0+1,J1+1)=1.
A(IO+1,J2+1)=-1.

TYF(IT(L).FQ.3) A(IO,J2+1)=+*C(L,1)

IF (IT(K) .EQ.3.AND.TT(L).F0Q.3) A(T0,J2+1)=-FC (K,2)
JO=TI0+2

IF(IDF(X,4) .EQ.0.0R.IDF(L,2).F0.0) I0=T0-1
IF(IT(I).NE.3.0R.IT(L) .NE.3) GOTO 300
J1=IDF (K, 6)

J2=1DF (L,5)

A¢I0,J1)=1

A (I0,J2)=-1

TO=T0+1

CONTINUE

IF (IPRYNT.EQ.0) GO TO 351
WRITE(6,2450)

DO 350 I=1,NR

WRITE(6,2500) (A(I,Jd),J=1,NF)

CONTINUFE

FORMAT(///' THE A CONNECTIVITY MATRIX IS')
FORMAT (20F4. 1)

B3

Crreccrrcccre e —e=-- ceccerrm e - L i, S

C CONSTRUCT BASIC FORCES FOR PARTICULAR SOLUTTONS (PBF AND PSF ARRAYS)

Coerrcccrcccsrcrrnrccnrrr e crcccn cecccme—=- S -

DO 355 N=1,NSEG
po 355 J=1,6
PBF(J,N)=0.0

DO 356 I=1,NSEG
PBF(5,1)=PSP (I,5)

DO 385 N=1,NSEG
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IF (IPRINT.EQ.0) GOTO 45
WRITE (6,2435)
DO 35 I=1,NSEG
WRITE(6,2440) (IDF(I,J), J=1,6)
35 CONTINUE
2440 FORMAT(2015)
2435 FORMAT(///' THE IDF MATRIX IS '/)
45 CONTINUE

C FORM A MATRIX
I0=1
po 180 I=1,NR
pO 180 J=1,NF
180 A(1,J)=0.0
DO 300 I=1,NSEG1
K=IDCO (I, 1)
L=1IDCO (I,2)
250  J1=IDF(K,3)
J2=1IDF (L, 1)
A(I0,J1)=1.
A(I10,J2)=-1.
IF(IDF(K,4).EQ.0.OR.IDF(L,2).EQ.0) GOTO 260
A(I0+1,J1+1)=1. :
A(I0+1,J2+1)=-1.

260 IF(IT(L).EQ.3) A(IO0,J2+1)=¢EC(L,1)
IF(IT(K).EQ.3.AND.IT(L).EQ.3) A (I0,J2+1)=-EC(K,2)
TI0=I0+2
IF(IDF(K,4).EQ.0.OR.IDF(L,2).EQ.0) IO=IO-1
IF(IT(I).NE.3.0R.IT(L) .NE.3) GOTO 300
J1=IDF (K,6)

J2=IDF(L,5)
A(10,J1)=1
A(10,J2)=-1
I10=I0+1

300 CONTINUE

IF (IPRINT.EQ.0) GO TO 351

WRITE (6,2450)

DO 350 I=1,NR

WRITE (6,2500) (A(I,J),Jd=1,NF)
350 CONTINUE
2450 FORMAT(///' THE A CONNECTIVITY MATRIX IS')
2500 FORMAT (20F4. 1)

C ———————————————————————————————————————————— -- ————————————————————————
C CONSTRUCT BASIC FORCES FOR PARTICULAR SOLUTIONS (PBF AND PSF ARRAYS)
C ——————————————————————————————————————————————————————— T - - - - -

351 DO 355 N=1,NSEG
Do 355 J=1,6
355 PBF(J,N)=0.0
DO 356 I=1,NSEG
356 PBF(5,I)=PSF (I,5)

DO 385 N=1,NSEG

FILE
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DO 387 1=1,NSEG
387 WRITE(6,2553) (PSF(I,Jd),Jd=1,6)
2550 FORMAT(///,' #*%%x PBF *%% t,)
2551 FORMAT (6E13.4)
2552 FORMAT(///,"' *%% PSF %% /)
2553 FORMAT (6E13.4)

C CONSTRUCT AND ASSEMBLE ELEMENT FLEXIBILITY MATRICES
C AND INITIAL DISPLACEMENT VECTOR
C --------- TP . s e e > e > - - > > - ————— —— - P - > - - - -
398 DO 400 I=1,NF
PARD (I)=0.0
DO 400 J=1,NF
400 F(I,d)=0.0
C .
DO 500 N=1,NSEG
IF (IT(N) .NE.1) GO TO 405
CALL CYLIN(T(N),R(N),H(N),HO(N),E(N),PR(N),UW(N),S,TS,D,BETA,
*  IFLAG)
PBT=PBF (5,N) _
CALL PCYLIN(T(N),R(N),H(N),HO(N),E(N),PR (N),UW (N),ALPHA (N),S, PSD,
* IP(N),PV(N) ,N,PSF,PBT)

IF (IPRINT.EQ.0) GO TO 420 _
2600 FORMAT(///' FLEXIBILITY MATRIX FOR CYLINDRICAL SEGMENT',Id/
* (4E16.95))

Cc

GOTO 420
405 IF(IT(N).NE.2) GO TO 410
Cc

C . SPERICAL SEGMENT
CALL DOME (T (N) ,R(N),H(N),HO(N),E(N),PR(N) ,UH (N),S,ANG, ANGO)
PBT=PBF (5,N)

PST=PSF (N,1)
CALL PDOME(T (N) ,R(N) ,H(N) ,HO(N) ,E(N),PR(N),UR (N) , ALPHA (N) ,

* 5,PSD,IP(N),PV(N),N,PSF,ANG,ANGO, PBT, PST)

IF (IPRINT.EQ.0) GO TO 420
WRITE(6,2700) N, ((5(T,J),Jd=1,4) ,I=1,4)

2700 FORMAT(///' FLEXIBILITY MATRIX FOR DOME SEGMENT® ,I4/
* (4E16.5))
GOTO 420

o

C ELASTIC FOUNDATION SEGMENTS

410 IF(IT(N).NE. 3) GO TO 999
IFLAG=0
CALL BASE(IFLAG,T(N),R(N),H(N),HO(N),E(N),PR(N),UH(N),BB.S,TS,D)
CALL PBASE(T(N),R(N),H(N),HO(N),E(N),PR(N),ALPHA(N),UH(N),S,PSD,
* IP(N),PV(N),N,PSF,PBF)

FILE
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C SPECIAL ASSEMBLY FOR BASE ELEMENTS

C

412
415

2720

C

420

450
460
500

2800

505
2850
C

DO 415 1I=1,6

L=IDF (N,I)

IF(L.EQ.0) GO TO 415

PARD (L) =PSD(I)

DO 412 J=1,6

K=IDF (N,J)

IF(K.EQ.0) GO TO 412

F(L,K) =S (I,J)

CONTINUE

CONTINUE

IF (IPRINT.EQ.0) GO TO 500

WRITE(6,2720) N,S

FORMAT (///' FLEXIBILITY MATRIX FOR BASE SEGMENT',Id4/
{6E16.5))

GO TO 500

C ASSENMBLY OF FLEXIBILITY MATRIX AND DISPLACEMENT VECTOR (PARD)

DO 460 I=1,4
L=IDF (N, I)
IF(L.EQ.0) GO TO 460
PARD (L) =PSD (I)

DO 450 J=1,4
K=IDF (N, J)
IF(K.EQ.0) GO TO 450
F(L,K)=S(I,J)
CONTINUE

CONTINUE

CONTINUE

IF (IPRINT.EQ.O0) GO TO 508
WRITE(6,2800)
FORMAT (///' ELEMENT FLEXIBILITIES AFTER ASSEMBLY?')

DO 505 1I=1,NF

WRITE(6,2850) (F(I,J),Jd=1,NF)
CONTINUE
FORMAT (6E12.4)

C CONDENSE TO REDUNDANT FLEXIBILITY MATRIX AND DISPLACEMENT VECTOR

508

510
520

610

FILE

DO 520 I=1,NF

DO 520 J=1,NR
c=0.0

DO 510 K=1,NF
C=C+F (I,K) *A (J,K)
7T (I,J) =C

DO 650 I=1,NR
c=0.0

DO 610 K=1,NF
C=C+A(I,K) *PARD (K)
PART (I)=-C
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DO 630 J=1,NR
c=0.0
DO 620 K=1,NF
620  C=C+A (I,K)*TT(K,J)
630 F(I,J)=C
650 CONTINUE

IF (IPRINT.EQ.0) GO TO 670
WRITE (6,2900)
2900 FORMAT(///' CONDENSED FLEXIBILTTY MATRIX')
DO 660 TI=1,NR
WRITE(6,2850) (F(I,J),J=1,NP)
660 CONTINUE
WRITE(6,3001) (I,PART(T),I=1,NR)
3001 FORMAT(///*' INCOMPATIBLE DISPLACEMENTS'/' IDISP VALOE'/
* (I5,E13.5))

(o LR TR L LR 2 bbbt R R bl el T i A I, R L L T

C SOLVE FOR REDUNDANTS AND FIND SEGMENT END FORCES
Creorcocrraccacrcacrcccarcncacnccacncacccaace - -—--- S i P i i g g
670 . CALL SOL (F,PART,80,NR)
c
C FIND SEGMENT FORCES
DO 700 I=1,NF
c=0.0
PO 690 J=1,NR
690 C=C+A(J,I)*PART (J)
700 FO(I)=C
c
C WRITE TOTAL VECTOR OF SEGMENT END FORCES
WRITE (6,3100)
3100 FORMAT(///'PORCES ON ENDS OF SEGMENTS'/' SEG J TIF',6X,
* tPORCE')
DO 706 N=1,NSEG
po 705 J=1,6
L=IDF (N, J)
IF(L.EQ.0) GO TO 705
WRITE (6,3200) X,J,L,FO (L)
705 CONTINOE
706 CONTINUE
3200 FORMAT(3T4,E13.5)

Crrececeea rerccccnccas ewrcecccccccne - - e ace - S, rrcm e, - -l -

C FIND AND OUTPUT SEGMENT STRESS RESULTANTS

C----------------- comoncrrcwrcem oo e -e- P - > B D T - - -

c
DO 900 N=1,NSEG
IPN=IP(N)

IF (IT(N).EQ.3) GOTO 800

C

C  FORM SEGMENT END FORCE CVECTOR
TF(NDIV(N).GT.100) €O TO 999
DH= (H (N) -HO (N) ) /DFLOAT (NDIV (N))
NDIVAI=NDIV (N)+1
DO 710 I=1,4
SF(T)=PSF (N, T)
FILE
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‘IF(L.EQ.0) GO TO 710

SF(I)=FO(L)+SF(I)
710 CONTINUE

SF(5)=PBF {5, N)

SF (6) =PBF (6, N)
C
C WRITE INDIVIDUAL SEGMENT END FORCES

WRITE(6,3300) N, (SF(I),I=1,6)
3300 FORMAT (///° INDIVIDUAL END FORCES FOR SEGMENT *,I6,/(4E13.5))
C .............................. G S . P T D W WSS W WD W W W - - -
C STRESS RESULTANTS FOR CYLINDRICAL SEGMENTS
(mvrccrrccrcccccrccccsc e - o= R > o - - ——— - - - - -

IF(IT(N).NE.1) GO TO 750

IFLAG=1

CALL CYLIN(T (N),R(N) ,H(N) ,HO(N) ,E(N),PR(N),OW(N),S,TS,D,BETA,

* IFLAG)

DN1=0.0

CM1=0.0

cM2=0.0

CN1=-PBF (5,N)

WP=CN1%R(N) *PR(N) /(E(N) *T (N))

CN2=0.0

WW=0.0

RN=E (N) *T (N) /R (N)

GOTO (711,712,711,713,714) ,1IPN

711 CN2==-PV (N) *R (N)
WP=PV (N) *R(N) **2/ (E (N) *T (N) ) +WP
GOTO 721
712 DN1=-T (N) *UW (N) *DR
WW=DN1*R(N) *PR(N) /(E(N)*T(N))-

GOTO 721
713  WP=-R(N) *ALPHA (N) *PV (N) +WP
GOTO 721
714 CM1=(1.+PR(N)) *D*ALPHA (N) *PV (N)
" CM2=CHM1

721 D=2.*D*BETA%*2
po 730 1=1,4
C=0.0
Do 720 J=1,4

720 C=C+TS (I,J) *SF(J)
730 CVEC(I)=C

£=0.0

DO 740 L=1,NDIV1
BX=BETA*X
DC=DCOS (BX)
DS=DSIN (BX)

W (L) =WP+DEXP (BX) * (CVEC (1) #DC+CVEC (2) #DS) +DEXP (-BX) *
#  (CVEC(3) *DC+CVEC(4) *DS) +WW*DFLOAT (L-1)

735  RN1(L)=CN1+DN1*DFLOAT (L-1)
RN2 (L) =CN2- (DE XP (BX) * (CVEC (1) #*DC+CVEC (2) *DS) +
#*DEXP (-BX) * (CVEC (3) #DC+CVEC (4 ) *DS) ) *RN
RM1 (L) =DEXP (BX) * (DXCVEC (2) *DC~ D*CVEC(1)*DS)+DEXP(-BX)*(D*
* CVEC(3) #*DS=-D*CVEC (4) *DC)
FILE



RM2(L)=PR¢(N) *RM1 (L) +CM2
RM1(L)=RM1(L)+CHM1

XH (L) =X

X=X+DH

WRITE(6,4000) N, (L,XH(L),RN1(L),RN2(L),RM1(L),RM2(L),L=1,NDIV1)

WRITE(6,4005) (L,XH(L) ,W(1l),L=1,NDIVT)
GOTO 900

B9

STRESS RESULTANTS FOR DOME SEGMENTS

C .............................................................. - e - - -

752

753

754
C

IF (IT(N) .NE.2) GO TO 800

ANGO=HO (N) /RAD

X=0.

ANG=H(N) /RAD

DX=DH/RAD

C=CONST (PV (N) ,UR (N) ,R(N), T(N),IP(N))

D=T(N) ¥%3/(12.% (1.-PR (N) *%2) )

RLAM= (3.% (1.-PR (N) *%2) * (R (N) /T (N) ) %%2) ®%_25
C2=R2*SF (4)

C1=R (N) *DSIN (ANG) *SF (3) /RLAM

CM=0.0

IF (IP(N).EQ.5) CM=+(1.+PR(N))*D*ALPHA (N) *PV (N) *E (N)

DO 780 L=1,NDIV1

PSIL=(ANG=- (ANGO+X)) *RLAM
ELAM=DEXP (-PSIL)

FAC=RLAM*(
RN1(L)=C*FN1(IP(N),X,ANGO,ANG)

CAOX=DCOS (ANGO+X)
SAOX=DSIN (ANGO+X)
SA=DSIN (ANG)
CP=DCOS (PSIL)
SP=DSIN (PSIL)
SAO=DSIN (ANGO)
CAO=DCOS (ANGO)
CFA=DCOS (FAC)
SFA=DSIN (FAC)
EF=DEXP (-FAC)

Wp=0.
WHVT=0.
WHT=0.
WMT=0.
WHB=0.
WMB=0.
IF(X.EQ.0..AND.ANGO.EQ.0.) GOTO 759

IEN=IP (N)

GoTo (752,753,752,754,755) ,1IPN

WP=PV (N) *R(N) #*%2%SA0X* (1-PR(N) + (1+PR (N)) *
SAO*%2/SA0X**2) / (2*E(N) *T (N) )

GOTO 755

WP==-UW (N) *R (N) *%2%SA0X*((1+PR(N)) * (CAO-
CAOX) /SAOX*%2-CAOX) /E (N)

GOTO 755

WP=-ALPHA (N) *R (N) #*SAOX*PV (N)
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755 IF (ANGO.EQ.0.) GOTO 756
WVT==-SF (5) *R (N) * ( (14PR (N) ) *SAQ/SAOX-2*SAO*
* CAO*RLAMX*EF*CFA) / (E (N) *T(N))
WHT=SF (1) *2*%SA0%*2%RLAM*R (N) *EF*CFA/ (E(N) *T (N))
WMT=-SF (2) ¥2*SA0O*RLAM**2%xEF* (CFA-SFA)
* / (E (N) *T (N))
756 WHB=SF (3) ¥2%SA**2%R (N) *RLAM*DEXP (-PSIL) *CP
* / \E(N) *T (N))
WMB=SF (4) *2%SA*RLAMN**2*DEXP (-PSIL) * (CP~-
* SP)/(E(N) *T (N))
W(L) =HP +WAVT+WHT+WMT+WHB+WMB
GOTO 758
759 W(L)=0.
C
758 RN2(L)=C*FN2 (IP(N),X,ANGO,ANG)
%4 2*RLAM*S A*ELAM*DSIN (PSIL-PI/2) *SF (3)
*¥+2%R2*¥RLAM**2/R (N) *ELAM*DSIN (PSIL-PI/4) *SF (4)
IF (ANGO.EQ.0.) GOTO 761
RN2(L)=RN2(L)-2*SA0O*RLAM*EFP*CFA*SF (1)
*4+2%RLAM*%2/R (N) *EF* (CFA-SFA) *SF(2)
¥= (2%¥CAO*RLAM*EF*CFA-SAOQ/DSIN (X+AN
*GQ) *%2) * SF(5)
C
761 IF(ANGO.EQ.0.AND.X.EQ.0) GOTO 763
760 RN1(L)=RN1(L)+R2* (CAOX/SAOX) *SA*ELAM*DSTIN (
*PSIL-PI/4)*SF(3)
*4+2%RLAM/R (N) *(CAOX/SAOX) *ELAM*SP*SF (4)
IF (ANGO.EQ.0.) GOTO 765
RE1(L)=RN1(L)+SAO*EF*(CFA-SFA) * (DC
*¥0S (X+ANGO) /SAOX) *SF (1)
*+2*%RLAM/R (N) ¥*EF*SFA* (CAOX/SAOX)
#*SF(2)
¥4+ (CAOX/SAQX*CAO*EF* (CFA
*~SFA) =SAO/SAQX**2) %XSF (5)
. GOTO 765
763 RN1(L)=RN2(L)

765 RH1(L)‘C1*ELAM*SP*C2*ELAH*DSIN(PSIL+P4)
IF(ANGO.EQ.0.) GOTO 770
RM1(L) =RM1(L)+SAO*R (N) /JRLAM*EF*SFA*SF (1)
*-EF* (CFA+SFA)*SF (2)
*+CAO*R(N) /RLAM*EF*SFA*SF (5)

770 IF(X.EQ.0..AND.ANGO.EQ.0.) GOTO 775
COT=CAOX/SAOX
RM2(L)=PR(N) *RM 1 (L) +CM+SF (3) * (COT*SA*
%R (N) *ELAM* (CP+SP) / (2*RLAM*%2) )

RM2 (L) =RM2 (L) +SF (4) *COT*ELAM*CP/RLAM
R11=RM1(L)

R22=RM2 (L)

GOTO 774

775  RM2 (L) =RM1(L)

774  IF(ANGO.EQ.0.) GOTO 772
RM2 (L) =RM2 (L) +SF (5) *CAO*C AOX*R (N) *

*ELAM* (CP+SP) / (2*¥RLAM**2)
FILE



FILE

¥~SF(1)* (R(N) *EF*SAO*CAQK*
* (CFA+SFA) /(2*%SAOX*RLAM*%2))
*=SF (2) * (EF*CFA*CAOX/ (SAOX*RLAM) )
772 RM1(L)=RM1(L)+CHM
771 X=X+DX
XH(L)=DFLOAT (L-1) *DH
780 CONTINUE

C
WRITE(6,4500) N, (L,XH(L),RN1(L),RN2(L),EKM1(L),RM2(L),L=1, NDIV1)
WRITE(6,4505) (L,XH(L) ,W(L),L=1,NDIV1)

GOTO 900
C ..............................................

C FORM SEGMENT END FORCE VECTOR
800 IF (NDIV(N).GT.100) GOTO 999Y

NDIV1=NDIV (N) +1

DO 805 I=1,6

SF(I)=PSF (N,I)

L=IDF(N,I)

IF(L.EQ.0) GOTO 805

SF(I)=FO (L) +STF (1)
805 CONTINUE
C
(o WRITE INDIVIDUAL SEGMENT END FORCES

WRITE(6,5000) N, (SF(I),I=1,6)
5000 FORMAT (///! INDIVIDUAL END FORCES FORY,

* ' SEGMENT*,1I6,/(4E13.5))
C
C COMPUTE STRESS RESULTANTS

IFLAG=1

B11

CALL BASE(IFLAG,T(N) ,R(N) ,H(N) ,HO(N) ,E(N),PR(N),UW(N),BB,S,TS,D)

DATA IVECT/2,5,4,6/
DO 820 I=1,
c=0.0 -
po 815 J=1,4
JJ=IVECT (J)
815 C=C+TS (I,J) *SF(JJ)
820 CVEC (I)=C
HT=H (N)

IFLAG=2

DO 825 I=1,4

DO 825 J=1,4
825 BB (I,J)=0.0

DO 860 L=1,NDIV1

CALL BASE(IFLAG,T(N),R(N),HT,HO(N),E(N),PR(N),UW(N),BB,S,TS,D)

DO 830 I=1,4
CcCc=0.0
DO 835 J=1,4
835  CC=CC+BB(I,J)*CVEC(J)
830 SR (I)=CC
HR (L) =HT
DH= (H (N) -HO(N) ) /DFLOAT (NDIV (N))
HT=HT-DH



FILE

B12

RM1(L)=SR (2)

RM2(L)=SR (1)

V(L) =SR(3)

W{(L)=SR(4) -

GOTO - (840,841,860,860,860) ,IPN
840  W(L)=W(L)+PV (N)/R(N)

GOTO 860
841  W(L)=W(L)+UW (N) *T (N) /R (N)

GOTO 860
860 CONTINUE i

WRITE (6,5500) N, (L,HR(L),RM1(L),RM2(L1),V(L),L=1,NDIV1)
5500 FORMAT(///' *%% OUTPUT FOR BASE ELEMENT',I4,?  *¥%xt/

*# ¢ POINT COORD M1Y,12X,'M2°,12X,'V", 12X,

* /(I16,F10.4,3E14.5))

WRITE(6,5505) (L,HR(L),¥(L),L=1,NDIV1)
5505 FORMAT(///' **%* VERTICAL DISPLACEMENT #*%%t/

* 'POINT COORD W'/ (16,F10.4,E14.5))
C
900 CONTINUE

STOP

999 WRITE (6,3000)
3000 FORMAT (' STOP FOR PROGRAM DIAGNOSED INPUT ERROR ')
STOP

1001 FORMAT (1048)
2001 FORMAT('1',10A8//)
1000 FORMAT (5I4,2F10.4)
2000 FORMAT('1',' #*%¥%* OQUTPUT FOR FLEXIBILITY ANALYSIS OF SEGMENTED?',

¥ ¢ SHELL *%%%%/,
* ' NUMBER OF SEGMENTS =',Ju/

* ' IPRINT =',14///

* * SEG TYPE IR JR NDIV®,4X,'EC1',7X,'EC2')

2100 FORMAT (I4,4I5,2F10.4)

1200 FORMAT (214)

2200 FORMAT(///,' CONNECTIVITY MATRIX'/(5X,2I4))

1300 FORMAT (I4,F6.0,F12.0,F8.0,5F10.0)

2300 FORMAT(///' GEOMETRIC PARAMETERS'/' SEG',4X,'THICK',3X,'RADIUS"
*,3%,'L OR ANG',4X,'ANGO',7X, *MODULUS',6X,'P RATIO',2%, 'THERMCOEF',
* 3X,'WEIGHT'/ (I4,F8.3,F12.3,2F10.3,E13.4,F10.3,E13.4,F10.3))

1400 FORMAT (2I4,7F10.0)

2400 FORMAT(///* PARTICULAR SOLUTION INPUT INFORMATION'/
* ' SEG TYPE VALUE',4X,'TOP SHEAR',d4X,'TOP MOM',6X,'BOT SHEAR',
* 4X,'BOT MOM',4X,*TOP FORCE',4X,*'VERT FORCE'/ (I4,I5,F10.3,6E13.5))

4000 FORMAT(///' **% OUTPUT FOR CYLINDRICAL SEGMENT',I4,? #*%t1/
#' POINT COORD N1',12%, *N2',12X,*M1*,12%, ' M2* ,/
*  (I6,F10.4,4E14.5)) .

4005 FORMAT(///' #*%% HORIZONTAL DISPLACEMENT *%% ¢/

* ¢ POINT COORD W '/(16,F10.4,E14.5))
4500 FORMAT(///' *** OQUTPUT FOR DOME SEGMENT',Iu,' #%xt/
** POINT  ANGLE N1Y,12X,'N2',12X,'M1*,12%, 'M2*,/

* (I6,F10.4,4E14.5))

4505 FORMAT(///' *** HORIZONTAL DISPLACEMENT *%* ¢/
* ' POINT COORD W */(I6,F10.4,E14.5))
END -
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C

FUNCTION CONST (PV,UW,R,T,IP)

THIS FUNCTION IS USED FOR THE IN-PLANE DOME STRESS RESULTANTS

10

20
100

IMPLICIT REAL*8(A-H,0-2)
CONST=0.0

¢0T0 (10,20,10,100,100) ,IP
CONST=-0.5%PV*R

GOTO 100

CONST==-UW*T*R

RETURN

END

(C % % 3% e 2 e 2 e e e e Ak e e e 4 0 e o e e e 2k 3k ok % e 3k o o e sk % e e Fe e ok o sl ale o o Ak 3k 3k o ke o k3 3k 3 3k 3k ok 3%k o ok o o o ok ok

C

FUNCTION FN1(IP,X,ANGO,ANG)

THIS FUNCTION IS USED FOR N1 DOME STRESS RESULTANTS

10

20

21
100

IMPLICIT RFAL*8 (A-H,0-2)

FN1=0.0

60TO (10,20,10,100,100) ,IP

FN1=1.0

IF (ANGO.GT.1.0E-03) FN1=1-(DSIN(ANGO) *%2/DSIN {X+ANGO) *%2)
GOTO 100 _

IF (ANGO.NE.0.0) GOTO 21

IF (X.NE.0.0) GOTO 21

FN1=0.5

GOTO 100

FN1= (DCOS (ANGO) -DCOS (X+ANGO) ) /DSIN (X+ANGO) **2
RETURN

END

C % e 3% 3 e 3 e A e e % e A Fe e A e geaeae e A ek e ik e e ke Ak o Ak e e e sk e ok o ok A ok ok e ale o afe o ol ok akk o e ofc o ok 3 o o ok o e ek 3k 3k oK

C

FUNCTION FN2 (IP,X,ANGO,ANG)

THIS FUNCTION IS USED FOR N2 DOME STRESS RESULTANTS

10

20

21
100

IMPLICIT REAL*8(A-H,0-2)

FN2=0.0

GOTO (10,20,10,100,100) ,IP

FN2=1.0 :

IF(ANGO.GT.1.0E-03) FN2=1+(DSIN (ANGO)*%*2/DSIN (X+ANGO) **2)
GOTO 100

IF(ANGO.NE.0.0) GOTO 21

IF(X.NE.0.0) GOTO 21

FN2=0.5

GOTO 100

FN2=- (DCOS (ANGO) -DCOS (X+ANGO) ) /DSIN (X+ANGO) ** 2+DCOS (X+ANGO)
RETURN :

END :

C 3% % die 3k 2 afe e e Ak e e e B e e 3 Ak e e Ak A 3k e e e o e Ke ke o ok ke e Ak Ak ok ke A e A sk e e ke o 3l e d e A ok 3 e 3 e e % Ak Qe e Ak el o Ak ek ok Ak A

C THIS SUBROUTINE COMPUTES CYLINDER PARTICULAR SOLUTION DISPLACEMENTS (PSD

10

SUBROUTINE PCYLIN(T,R,H,HO,E,PR,UW,ALPHA,F,PSD,IP,PV,N,PSF, PBT)

IMPLICIT REAL*8 (A-H,0-2Z)
DIMENSION F(6,6),PSD(4),PSF(20,6)

DO 10 I=1,4

PSD(I)=0.0

IF (IP.LT.1.0R.IP.GT.5) GO TO 999
PSD (1) =-PBT*PR*R/ (E*T)
PSD(3)=PSD (1)




Bi4
GO TO (20,30,20,40,70),1IP

20 PSD (1) =PV*R*%*2/ (E*T) +PSD (1)
PSD(3)=PSD(1)
GO TO 70

c

30 PSD(3) =PSD(3) ~-UWXT*PR*R*H/ (E*T)

C=UW*T*PR*R/ (E*T)
PSD(2) =PSD(2) ~C
PSD(4)=PSD(4)=~C

GO TO 70
C
40 ==-ALPHA*R*¥PV
PSD(1)=PSD (1) +C
PSD (3) =PSD (3) +C
C
70 DO 100 I=1,4
C=PSD (I)
DO 80 J=1,4
80 C=C+F(I,J)*PSF(N,J)
100 . PSD(I)=C
C
RETURN
C

999  WRITE(6,1000) IP
1000 FORMAT (' PROGRAM STOPPED FOR CYLINDER IP =1, Id)
STOP -
. END
C % 2% 35 2 2 3 3 2 A3k ok 2k sk e deolk e ek e e e e 4 e ok o e ok e e e ok e e sl A ok ofe o Ak e o X e e ol ol e e e e sge Ak afe el ok ok o e e ok e e e ok A
SUBROUTINE CYLIN(T,R,H,HO,E,PR,UW,F,TT,D,BETA,IFLAG)
C THIS SUBROUTINE COMPUTES THE CYLINDER FLEXIBILITY (F) AND B MATRICES (TT)
IMPLICIT REAL*8 (A-H,O-2)
DIMENSION F(6,6),TT (4,4),TA (4,4)

D=E%*T*%3/(12.%(1.=-PR¥%*2))
BETA=(3.% (1.=-PR*%2) / (R¥T) *%2) *%x,25
X=BETA*H

C=DCOS (X)

S=DSIN (X)

EP=DEXP (X)

- EM=DEXP (~X)

PHI1=EP*C

PHI2=EP*S

PHI3=EM*C

PHI4=EMN*S

TH1= PHI1-PHI2

TH2=PHI1+PHI2

TH3=PHI3+PHIY

TH4=PHI3-PHIU

DENOM=DEXP (2.%*X) +DEXP(=2.%X) ~4.%S5%%2-2,
C2=1./(2.*BETA**2%D%*DE NOM)
C1=C2/BETA

FILE



80
100

200

FILE

TT (1,1) = (TH4* (PHI1-PHI3) ~PHIu* (TH1+TH3)) *C1

TT (2,1) = (TH4 *PHI2-TH2%PHI4) *C1

TT (3,1) = (TH2* (PHI1-PHI3) - PHI2* (TH1+TH3) ) *C1

TT (4,1) = (TH4*PHI2 -TH2*PHI4) *C1

TT (1,2) = (PHI4* (TH1-TH3) 4PHI3*(TH1-TH4) +PHI 1% (TH3-TH4) ) *C2
TT (2,2)=(PHIU¥ (TH2-TH3) +PHI3* (TH2-TH4) +PHI2* (TH3-TH4)) *C2
TT (3,2) = (PHI 1% (TH3-TH2) +PHI3* (TH1-TH2) + PHI2* (TH1-TH3) ) *C2
TT (4,2)= (PHI4* (TH1-TH2) +PHI 1% (TH2- TH4)+PHIZ*(TH4 TH1)) *C2
TT (1,3) =(PHI1-PHI3-2.*PHIY) *C1

TT (2, 3) = (PHI 2-PHI4) *C1

TT (3,3) = (PHI 1-PHI 3-2 . *PHI2) *C1

TT (4, 3) = (PHI2-PHI4) *C1

TT(1,4)=(TH1+TH3-2.*TH4) *C2

TT (2,4) = (TH2-THY4) *C2

TT (3,4) = (TH1+TH3-2.*TH2) *C2

TT (4,4) = (TH2-TH4) *C2

IF(IFLAG.NE.O) GO TO 200

TA(1,1)=1.0
TA(1,2)=0.0
TA(1,3)=1.0
TA(1,4)=0.0

TA (2, 1) =BETA

TA (2,2) =BETA

TA (2,3)=-BETA
TA(2,4) =BETA

TA (3,1)=PHI1

TA (3,2)=PHI2

TA (3,3)=PHI3

TA (3,4)=PHI4

TA (4, 1) =TH1*BETA
TA (4,2) =TH2*BETA
TA (4,3) =-TH3*BETA
TA (4,4) =TH4*BETA

DO 100 I=1,4
po 100 J=1,4
C=0.0

‘DO 80 K=1,4

C=C+TA(I,K)*TT (K,J)
F,Jd)=C

RETURN
END
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SUBROUTINE PDOME(T,R,H,HO,E,PK,UW, ALPHA,F,PSD,IP,PV,N,PSF,ANG,
* ANGO,PBT,PST)

C THIS SUBROUTINE COMPUTES DOME PARTICULAR DISPLACEMENTS (PSD)

10

20

80
100

999
1000

" FILE

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION F (6,6),PSD(4),PSF (20,6)

IF (IP.LT.1.0R.IP.GT.5) GO TO 999
DO 10 I=1,4
PSD (I)=0.0
RLAM= (3.% (1. ~PR¥%2) % (R/T) %%2) %% 25
X=ANG-ANGO
PSD(2) =PBT * (~DCOS (ANGO) *R**2%6% (1. ~PR¥**2) / (2% T** 3¥E*RLAMN**2) )
#* ~PST*DSIN (ANGO) *R¥%2%6% (1,-PR*%2) /(EXT**3*¥RLAM**2)
PSD (1) =PBT* (-R* ( (1.+PR)~2*DSIN (ANGO) *DCOS (ANGO) *RLAM) / (E*T}))
* +PST*2%DSIN (ANGO) **2%R*RLAM/ (E*T)
PSD(3) =PBT#* (=R* ( (1.+PR) *DSIN (ANGO) /DSIN (ANG) -2.*DSIN (ANGO) *
* DCOS (ANGO) *RLAM*DEXP (~RLAM*X) *DCOS (RLAM*X) ) / (EXT))
* +PST*2%DSIN (ANGO) **2%R*RLAM*DE XP (~-RLAM*X) *DCOS (RLAM*X) / (EXT)
PSD (4) =PSD (2) *DEXP (~RLAM*X) * (DCOS (RLAM*X) +DSIN (RLAM*X) )
* -PST*DSIN (ANGO) *R**2% 6% (1. -PR*%2) *DEXP (~RLAM*X) *
* (DCOS(RLAM*X)+DSIN(RLAM%X) ) /(E*T**3%RLAM*%2)
GO TOo (20,30,20,40,70),IP
PSD (3) =PSD(3) +PV#R*%*2% (1.~PR+ (1+PR) *(DSIN (ANGO) **2/
%  DSIN (ANG) *%2) ) *DSIN (ANG) / (2. *T*E)
IF (ANGO.EQ.0.) GOTO 70
PSD (1) =PSD (1) +PV*R*%2%DSTN (ANGO) / (T*E)
GO TO 70

CC=-UW*R**2/F

DSO=DSIN (ANGO)

DCO=DCOS (ANGO)

DS=DSIN (ANG)

DC=DCOS (ANG)

PSD(3) =PSD(3) +CC* ((1.+PR) * (DCO~-DC) /DS **2-DC) ¥DS
PSD (1) =PSD (1) =CC*DCO*DSO
CC=CC* (2. +PR) /R

PSD (2) =PSD (2) +CC*DSO

PSD (4) =PSD(4) +CC*DS

GO TO 70

PSD(3) =PSD (3) ~ALPHA*PV*R*DSIN (ANG)
PSD (1) =PSD (1) ~AL PHA*PV*R%DSIN(ANGO)
GOTO 70

DO 100 I=1,4
C=PSD(I)

DO 80 J=1,4
C=C+F (I,J) *PSF (N,J)
PSD(I)=C

RETURN

WRITE(6,1000) IP

FORMAT (* PROGRAM STOPPED FOR DOME IP =',I4)
STOP

END
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SUBROUTINE DOME(T,R,H, HO,E,PR,UW,F,ANG,ANGO)
C THIS SUBROUTINE COMPUTES DOME FLEXIBILITY MATRICES (F)
IMPLICIT REAL*8 (A-H,0-2Z)
DIMENSION F(6,6)
ANG=H/57.295779513
ANGO=H0/57.295779513
RLAM= (3.% (1.-PR**%2) * (R/T) #%2) ¥%0. 25
S=DSIN (ANG)
SS=DCOS (ANG)
S1=DSIN (ANGO)
SS1=DCOS (ANGO)

C
AN=ANG-ANGO
EX=DEXP (~-RLAM*AN)
CO=DCOS (RLAM*AN)
SI=DSIN (RLAM*AN)

C

bo 100 I=1,4
Do 100 J=1,4
100 F(,Jd)=0.0

F(1,3) =2#S**2¥R*RLAMXEX*CO/ (E*T)
F(1,4)=2%S*RLAM**2%EX* (CO-SI)/ (E*T)

F(2,3) =S*R*#2%6% (1. -PR**2) *EX* (CO-SI) / (EXT**3%RLAN**2)
F(2,4) =R¥12% (1-PR*%2) *EX*CO/ (EX T**3%RLAM)
F(3,1)=F(1,3) *ST*%2 /5% %2

F(3,2)=-F(1,4) *SI/S

F(4,1)=-F(2,3) *S1/S

F(4,2)=F(2,4)

F(1,2)=‘2*S1*RLAM**2/(E*T)
F(2,2)=R*12*(1-PR**2)/(E*T**3*RLAH)
F(1,1)=2%S1%*2%R*RLAM/ (E*T)
F(2,1)=-S1*R**2*6*(1-PR**Z)/(E*T**3*RLAM**2)
F(3,3)=2.%RLAM*S*%2%R/ (EXT)
F(3,4)=2.*RLAM**2*S/(E*T)

F(4,3)=F (3,4)

F(4,4) =4 . *RLAMN%**3/(E*T*R)

RETURN
END
FILE
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SUBROUTINE PBASE(T,K,H,HO,E, PR, ALPHA,UW,F,PSD,IP,PV,N,PSF, PBF)
C THIS SUBROUTINE EVALUATES THE PARTICULAR SOLUTION
C DISPLACEMENTS FOR A BASE SEGMENT
IMPLICIT REAL*8(A-H,O0-2Z)
DIMENSION . F(6,6),PSD(6),PSF(20,6),PBF (6,20)

Do 10 1=1,6
10 PSD(I)=0.0

C SELECT LOAD TYPE _
IF(IP.LT.1.0R.IP.GT.5) GO TO 999
GO TO (20,30,40,50,70),IP

C

C INTERNAL PRESSURE

20 PSD(5) =PV/R
PSD (6) =PSD (5)
GO TO 70

C

C DEAD LOAD

30 PSD (5) =UW*T/R
PSD(6) =P5D(5)
GO TO 70

c

C IN-PLANE PRESTRESS

40 PSD (1) =PV*H/T
PSD (3) =PSD (1) *HO/H
GO TO 70

C UNIFORM THERMAL
S0 . PSD(1)=-PV*ALPHA*H
PSD(3) =-PV*ALPHA*HO

70 po 100 1=1,6
C=PSD(I)
Do 80 J=1,6
80 C=C+F(1,J)*PSF(N,J)
100 PSD(I)=C
RETURN

999  WRITE(6,1000) . :
1000 FORMAT ('0',' #** PROGRAM STOPPED IN SUBROUTINE PBASE FOR DIAGNOSE'
* ,'D ERROR')

SToP
END
FILE



FILE
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SUBROUTINE BASE(IFLAG,T,R,H,HO,E,PR,UW,BB,S,TIT,D)
THIS SUBROUTINE COMPUTES THE FLEXIBILITY MATRIX (S)
FOR A BASE SEGMENT ON AN ELASTIC FOUNDATION, OR
(IF IFLAG=1) THE MATRIX BB TO DETERMINE INTERNAL
DISPLACEMENTS AND STRESS RESULTANTS
IMPLICIT REAL*8 (A-H,0-~2)
DIMENSION S(6,6),TT(4,4),B(4,4),G (4,4),BB (4,4)
DIMENSION PHI(4),PHIP (4),PHIDP (4),PHITP (4),IVEC (4)
DATA IVEC/2,5,4,6/

cOOn

C FUNCTION -DEFINITIONS
FII(RO,RI)=CHM*RI/RO**2+4CP/RI
FOI(RO,RI)=2.*C/RO
FOO (RO, RI) =CM*RO/RI**2+4CP/RO
FIO{RO,RI)=2.*C/RI

LM=2 :
IF (H0.EQ.0.) LM=1
LN=2*%LM
D=E*T**3/(12.%(1.-PR**2))
STIFL= (D/R) **0,25
IF(IFLAG.EQ.2) GOTO 300

SIGN=1.0
RD=H '
DO S0
DO 50
50 S1,4d)
DO 51
DO 51
51 B (I,J)

WG =
o nonn

Do 100 I=1,LM
I1=2%(I-1) +1
I2=I1+1
IF(I.EQ.2) RD=HO
IF(I.EQ.2) SIGN=-1.0
RDI=1./RD '
RDI2=RDI*%2
CALL BSHAPE(STIFL,RD,PHI,PHIP, PHIDP, PHITP)
po 80 J=1,LN
B(I2,J)=-D* (PHITP (J) +RDI*PHIDP (J) ~-RDI2*PHIP (J) ) *SIGN
B(I1,J)=D*(PHIDP (J) +PR*RDI*PHIP (J) ) *SIGN
G(I2,J)=PHI (J)
G(I1,J)=PHIP (J)
80 CONTINUE
100 CONTINUE



CALL JINVER (B,TT,4,LN)
IF(IFLAG.EQ.1) GOTO 210

DO 200 I=1,LN
II=IVEC (I)
DO 200 J=1,LN
JJ=IVEC (J)
c=0.0 .
DO 150 K=1,LN
150  C=C+G (I,K)*TT (K,dJ)
200 s(I1,dJ)=C
C

‘C  ADD FLEXIBILITIES FOR IN PLANE STIFFNESSES

ILE

IF(LM.EQ.1) GOTO 205

C= (H*HO) **2/ (T* (H**2-HO*%*2) *E)
CM=(1.-PR) *C

CP=(1.+PR) *C

S (1, 1)=F00 (H,HO)
S(1,3)=FO0I(H,HO)
S(3,1)=FIO(H,HO)
S(3,3)=FII(H,HO)

GOTO 210
205 S(1,1)=H*(1.-PR) / (E*T)
C
210 RETURN
C

300 CALL BSHAPE(STIFL,H,PHI,PHIP,PHIDP,PHITP)
DO 320 J=1,LN
BB (1,J) =D*(PR*PHIDP (J) +PHIP (J) /H)
BB (2, J) =D* (PHIDP (J) + PR*PHIP (J) /H)
BB (3, J)—-D*(PHITP(J)+PHIDP(J)/H PHID (J) /H**2)
BB (4,J) =PHI (J)

X=HO/STIFL
IF(X.LT.2.) X=2.0
' O=X*STIFL
320 CONTINUE
GOTO 210
END
C
C
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SUBROUTINE BSHAPE(STIFL,RD,PHI,PHIP, PHIDP,PHITP)
C THIS SUBROUTINE EVALUATES THE PHI VECTOR AND ITS DERIVATIVES
C FOR A BASE ON ELASTIC FOUNDATION SEGMENT
IMPLICIT REAL*8(A-H,O-2)
DATA RT,PI/2.0,3.1415926536/
DIMENSION PHI(4),PHIP(4), PHIDP (4), PHITP (4)

P8=PI/8.
CD1=1./ (DSQRT (RT) *STIFL)
SIG=RD*CD1

RSIG=DSQRT (SIG)

COSP=DCOS (SIG+P8)
SINP=DSIN (SIG+P8)
COSM=DCOS (5IG-P8)
SINM=DSIN (SIG-P8)
ETA=RT**0.75%DSQRT (PI)
CPHIP=DEXP (SIG)/ (ETA*RSIG)
CPHIM=PI*DEXP(~-SIG)/ (ETA*RSIG)
CD2=CD1%%2

CD3=CD2*CD1

C FORM PHI VECTOR
PHI (1) =CPHIP*COSM
PHI (2) =CPHIP*SINNM
PHTI (3)=CPHIM*COSP
PHT (4) =CPHIM*SINP

C FORM PHIP VECTOR

SI1G2I=1./(2.*SIG)

SIGP=1.+5IG2I

SIGM=1.-5IG2I

PHIP (1) =CD1* (SIGK*PHI (1)~-PHI (2))
PHIP (2) =CD1*(SIGM*PHI (2) +PHI (1))
PHIP (3) =-CD1*(SIGP*PHI (3) +PHI(4))
PHIP (4) =CD1* (~SIGP*PHI (4) +PHI (3))

C FORM PHIDP VECTOR
C2=1./(2. *SIG**2)

PHIDP (1) =CD2¥C2*PHI (1) + (SIGM*PHIP (1) -PHIP (2)) *CD1
PHIDP (2) =CD2*C2*PHI (2) + (SIGM*PHIP (2) +PHIP (1)) *CD1
PHIDP (3) =CD2*C2*PHI (3) - (SIGP*PHIP (3) +PHIP (4)) *CD1
PHIDP (4) =CD2*C2*PHI (4) ~(SIGP*PHIP (4) ~PHIP (3)) *CD1

C FORM PHITP VECTOR

C2=2.%C2 '

C3=-1./(SIG*%*3)

PHITP (1) =CD3*C3*PHI (1) +CD2%C2%PHIP (1) + (SIGM*PHIDP (1) -
*  PHIDP(2)) *CD1

PHITP (2) =CD3*C3*PHI (2) +CD2*C2*PHIP (2)+ (SIGM*PHIDP (2) +
*  PHIDP (1)) *CD1

PHITP (3) =CD3*C3%PHI (3) +CD2*C2*PHIP (3) - (SIGP*PHIDP (3) +
*  PHIDP (4)) *CD1

PHITP(4)=CD3*C3%*PHI (4) +CD2*C2*PHIP (4)- (SIGP*PHIDP (4) -
%  PHIDP (3)) *CD1

RETURN
END
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SUBROUTINE JINVER (A, B,NDIM, NEQ)
C THIS SUBROUTINE INVERTS THE MATRIX A BY THE JACOBI METHOD
C AND STORES THE RESULT IN B
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(NDIM,1),B(NDINM,1)
C
C INITIALIZE THE B MATRIX
PO 100 J=1,NDINM
po 100 I=1,NDIM
100 B(I,J)=0.0
po 110 J=1,NEQ
110 B(J,J)=1.0
C
C BEGIN JACOBI REDUCTION OF MATRIX A AND ALSO OPERATE ON B
DO 600 N=1,NEQ
IF(DABS(A(N,N)).LT.1.0D-06) GO TO 999
C=1./A (N, N)
N1=N+1
IF(N.EQ.NEQ) GO TO 410
DO 400 J=N1,NEQ
AJ=A (N,J) *C
BJ=B (N,J) *C
pO 300 I=1,NEQ
A(I,Jd)=A(I,Jd)-AJ*A(I,N)
300 B(I,Jd)=B(I,J)-BJ*A(I,N)
A (N,J)=Ad
400 B (N,dJd)=BJ

410 DO 500 J=1,N
BJ=B (N, J) *C
DO 450 I=1,NEQ
450 B(I,J)=B(I,J)-BJ*A (I,N)
500 B(N,J)=BJ

C

600 CONTINUE
RETURN

C

" 999 . WRITE(6,1000) N
1000 FORMAT('0',' ** ZERO ELEMENT ON MAIN DIAGONAL FOR EQUATION',
* I4," INDICATES MATRIX IS SINGULAR')
STOP
END

FILE



FILE

C*x%

s Neo NN Xe]

100

200

250

400
500
100
600
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SUBROUTINE SOL (A,B, NN, NEQ)
THIS SUBROUTINE SOLVES A SET OF LINEAK ALGEBRAIC EQUATIONS
OF THE FORM A*X=B BY GAUSSIAN ELTMINATION, WHERE 'A' IS A
SQUARE MATRIX. B IS THE RIGHT-HAND SIDE VECTOR
ON ENTRY. BUT IS OVERWRITTEN WITH THE SOLUTION VECTOR 'X°*
DURING BACK SUBSTITUTION

IMPLICIT REAL*8(A-H,0-2)

DIMENSION A (NN,NN),B (NN)

NL=NEQ-1

pO 250 N=1,NL

IF(A(N,N).LE.0O.) GO TO 500

N1=N+1

DO 100 J=N1,NEQ

A(N,J)=A(N,J)/A(N,N)

B (N) =B(N) /A (N,N)

DO 250 I=N1,NEQ

IF(A(I,N).EQ.0.) GO TO 250

Cc=A (I,N)

DO 200 J=N1,NEQ

A (I,J)=A(I,J)=C*A(N,J)

B (I) =B (I) -C*B(N)

CONTINUE

BACK SUBSTITUTION

M=NEQ

B (M) =B (M) /A (M, M)

pO 400 N=1,NL

M1=M

M=M-1

DO 400 J=M1,NEQ

B (M) =B (M) ~B(J) *A (H,J)
GO TO 600

WRITE (6,1000) N
CALL EXIT

0 FORMAT(' ZERO OR NEGATIVE ELEMENT ON MAIN DIAGONAL OF TRIANGULARIZ
1ED STIFFNESS MATRIX ' ,/ * FOR EQUATION NUMBER ',Id4)
RETURN
END
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SUBROUTINE PFOR(IT,T,R,H,HO,E,PR,UW,ALPHA,IP,PV,PBF)
C THIS SUBROUTINE COMPUTES PARTICULAR SOLUTION EDGE FORCES (PDF)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION PBF (6)

DATA RAD/57.295779513/

c
C SELECT SEGMENT TYPE
GO0 TO (50,500,700),IT

50 GO TO (900,100,900,900,200),IP
DEAD LOAD
00 PBF(6)= PBF(6)+T*UH*H
RETURN
C THERMAL GRADIENT
200 PBF(2)=PBF (2)+E*PV*ALPHA*T*%3/(12.%(1.-PR))
PBF (4) =-PBF (2)
RETURN

C
C CYLINDRICAL SEGMENTS
C
1

c
C SPHERICAL SEGMENTS
500 ANG=H/RAD
ANGO=HO/RAD
GO TO (550,600,550,900,650),1IP
C PRESSURE OR PRESTRESS
550 C=0.5%pV%R
RATIO=(DSIN (ANGO)/DSIN (ANG)) **2
PBF (6) =PBF (6) +C*DSIN (ANG) * (1.-RATIO)
PBF (3) =PBF (3) +C*DCOS (ANG) * (1.-RATIO)
RETURN
C DEAD LOAD . - '
600  C=UWXT*R* (DCOS (ANGO) -DCOS (ANG) ) /DSIN (ANG) **2
PBF (6) =C*DSIN (ANG)
PBF {3) =C*DCOS (ANG)
RETURN .
C THERMAL GRADIENT
650  PBF (4) =PBF (4)-E*PV¥ALPHA*T**3/(12.%(1.-PR))
. PBF(2)=-PBF (4)
900  RETURN

C

C BASE ON ELASTIC FOUNDATION

700 GOTO (900,900,900,900,850) ,IP
C

C THERMAL GRADIENT
850 PBF (4) =PBF (4) - E*PV*ALPHA*T**3/(12.*(1.-PR))
PBF (2) =-PBF (4)

RETURN
C

END
C
C



APPENDIX C
DATA FILES AND OUTPUT FOR
TYPICAL LOAD CONDITIONS



TABLE C1: INDEX OF DATA FILES
PAGE DATA FILE NUMBER REMARKS
OF SEG
c2 Int. Pressure 10 1 PSF
Cc3 Dead Load 11
“Switched-On-Loading"
c4 Prestress 11
C5 Const. Temp. Change 10
C6 Temp. Gradient 10
c7 Prestress 12 "Switched-On" (BOSOR4)
c8 Const. Temp. Change 9 BOSOR4 Model
' ' (Without Outer Base
c9 Temp. Gradient 9 Ring)
C10 Dead Load (BW) 4
c1i Dead Load (BD) 8
c12 Dead Load (C) 11 BOSOR4 Models For
. Partial Structures in
C13 Prestress (BW) 4 Order to Get RF1
C14 Prestress (BD) 8
C15 Prestress (C) 1

C1
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1*%% TINTERNAL PRESSURE **x

1 *%xx%x OQUTPUT FOR FLEXIBILITY ANALYSIS OF SEGMENTED SHELL | *%Xx%

NUMBER OF SEGMENTS = 10
IPRINT = 0
SEG TYPE 1IR JR NDIV EC1 EC2
1 2 0 1 40 0.0 -3.5000
2 1 0 1 5 0.0 0.0
3 1 1 1 20 0.0 0.0
4 1 0 1 10 0.0 0.0
5 2 1 1 40 0.0 -3.5000
6 1 1 1 10 0.0 0.0
7 1 1 1 40 -1.0000 0.0
8 1 1 1 2 0.0 0.0
9 3 0 1 10 0.0 0.7500
10 3 1 0 20 2.5000 0.0

CONNECTIVITY MATRIX
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FORCES ON ENDS OF SEGMENTS

SEG

- b
OOO\O\D\D@@&@N\I\I\IO\O\O\O\MU‘U’U‘&«FL»U)(»U)NM-I—&

mw-mawaww-\::ww-aww-cww-\awawwaawawh

IF

FORCE
0.22147E+02
-0.19169E+03
0.27628E+01
-0.15971E+01
-0.24910E+02
0.19328E+03
-0.86327E+01
-0.13410E+02
-0.23545E-01
0.29810E~01
0.23545E-01
~0.29810E-01
0.20398E+01
-0.73587E+01
0.65929E+01
0.20768E+02
-0.30336E+01
-0.60010E+01
0.30336E+01
0.60010E+01
0,99191E+01
-0.50657E+02
-0.99191E+01
0.50657E+02
0.10369E+02
-0.55729E+02
-0.15201E+01
-0.46002E+02
-0.10333E+02
-0.88491E+01
0.12879E+03
0.10333E402

c18



M1
-0.37663E+00
-0.42687E+00
-0.47428E+00
-0.51583E+00
-0.54781E+00
-0.56574E+00
-0.56431E+00
=0.53740E+00
-0.47803E+00
-0.37845E+00
-0.23017E+00
-0.24203E-01

0.24881E+00
0.59824E+00
0.10331E+01
0.15613E+01
0.21895E+01
0.29218E+01
0.37591E+01
0.46978E+01
0.57287E+01
0.68358E+01
0.79943E+01
0.91693E+01
0.10314E+02
0.11368E+02
0.12255E+02
0.12882E+02
0.13139E+02
0.12896E+02
0.12003E+02
0.10291E+402
0.75748E+01
0.36524E+01
-0.16884E+01
-0.86648E+01
=0.17492E+02
-0.28370E+02
-0.41473E+02
-0.56935E+02

INDIVIDUAL END FORCES FOR SEGMENT 1
0.0 -0.0 0.22147E+02 -0.74823E+02
0.0 -0.33389E+02
*%% OUTPUT FOR DOME SEGMENT 1 #**x
POINT ANGLE N1 N2
1 0.0 0.68039E+02 0.68039E+02
2 0.7349 0.65835E+02 0.68144E+02
3 1.4699 0.67022E+02 0.68278E+02
4 2.2048 0.67467E+02 0.68442E+02
5 2.9398 0.67735E+02 0.68641E+02
6 3.6747 0.67939E+02 0.68876E+02
7 4.4097 0.68117E+02 0.69148E+02
8 5.1446 0.68285E+02 0.69457E+02
9 5.8796 0.68452E+02 0.69802E+02
10 6.6145 0.68621E+02 0.70178E+02
1 7.3495 0.68795E+02 0.70579E+02
12 8.0844 0.68974E+02 0.70995E+02
13 8.8194 0.69156E+02 0.71412E+402
14 9.5543 0.69341E+02 0.71812E+02
15 10.2893 0.69526E+02 0.72172E+02
16 11.0242 0.69707E+02 0.72463E+02
17 11.7592 0.69879E+02 0.72650E+02
18 12.4941 0.70036E+02 0.72693E+02
19 13.2291 0.70172E+02 0.72541E+02
20 13.9640 0.70279E+02 0.72140E+02
21 14.6990 0.70347E+02 0.71429E+02
22 15.4339 0.70365E+02 0.70338E+02
23 16.1689 0.70324E+02 0.68795E+02
24 16.9038 0.70209E+02 0.66724E+02
25 17.6388 0.70008E+02 0.64046E+02
26 18.3737 0.69707E+02 0.60687E+02
27 19.1087 0.69292E+02 0.56578E+02
28 19.8436 0.68750E+02 0.5166 0E+02
29 20.5786 0.68066E+02 0.45893E+02
30 21.3135 0.67230E+02 0.39260E+02
31 22.0485 0.66232E+02 0.31777E+02
32 22.7834 0.65065E+02 0.23506E+02
33 23.5184 0.63725E+02 0.14560E+02
34 24,2533 0.62216E+02 0.51205E+01
35 24,9883 0.60545E+02 -0.45531E+01
36 .25.7232 0.58729E+02 <-0.14106E+02
37 26.4582 0.56792E+402 -0.23076E+02
38 27.1931 0.54769E+02 -0,30878E+02
39 27.9281 0.52707E+402 -0.36793E+02
40 28.6630 0.50668E+02 =-0.39953E+02
41 29.3980 0.48725E+02 -0.39337E+02

-0.74823E+402

c19

M2
-0.37663E+00
-0.18601E+01
-0.11945E+01
-0.99120E+00
~0.90036E+00
-0.85056E+00
~0.81664E+00
-0.78641E+00
-0. 75239E+00
-0. 70903E+00
-0.65165E+00
-0.57596E+00
-0.47785E+00
-0.35339E+00
-0.19879E+00
-0.10560E-01

0.21440E+00
0.47859E+00
0.78366E+00
0.11302E+01
0. 15172E+01
0.19421E+01
0.24000E+01
0.28833E+01
0.33815E+01
0.38803E+01
0.43615E+01
0.48024E+01
0.51753E+01
0.54476E+01
0.55810E+01
0.55319E+01
0.52514E+01
0.46858E+01
0.37774E+01
0.24656E+01
0.68836E+00
-0.16152E+01
-0.45025E¢01
-0.80236E+01
-0.12217E+02



%% HORIZONTAL DISPLACEMENT ***

POINT

COORD
0.0
0.7349
1.4699
2.2048
2.9398
3.6747
4.4097
5.1446
5.8796
6.6145
7.3495
8.0844
8.8194
9.5543

10.2893

11.0242

11.7592

12.4941

13.2291

13.9640

14.6990

15.4339

16.1689

16.9038

17.6388

18.3737

19.1087

19.8436

20.5786

21.3135

22.0485

22,7834

23.5184

24,2533

24.9883

25.7232

26.4582

27.1931

27.9281

28.6630

29.3980

W
0.0
-0.94692E-07
-0.18993E-06
-0.28696E-06
-0.38591E-06
-0.48690E-06
-0.58998E~-06
-0.69513E~-06
-0.80222E-06
-0.91102E-06
-0.10211E-05
-0.11319E-05
-0.12427E-05
-0.13523E-05
-0.14593E-05
-0.15622E-05
-0.16589E-05
-0.17469E-05
-0.18235E-05
-0.18853E-05
-0.19289E-05
-0.19502E-05
-0.19451E-05
-0.19090E-05
-0.18374E-05
-0.17261E-05
-0.15709E-05
-0.13685E-05
-0.11165E-05
-0.81400E-06
-0.46187E-06
-0.63604E-07
0.37418E-06
0.84104E-06
0.13219E-05
0.17962E-05
0.22373E-05
0.26112E-05
0.28763E-05
0.29823E-05
0.28700E-05
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INDIVIDUAL END FORCES FOR SEGMENT 6

0.65929E+01 0.20768E+02 -0.30336E+01 ~0.60010E+01

-0.31738E+02 0.0

*%% OUTPUT FOR CYLINDRICAL SEGMENT 6 *xx

POINT COORD N1 N2 M1
1 0.0 0.31738E+02 -0.34153E+02 -0.20768E+02
2 0.3178 0.31738E+02 -0.29729E+02 -0.18745E+02
3 0.6356 0.31738E+02 <~0.25297E+02 =-0.16859E+02
4 0.9534 0.31738E+02 -0.20861E+02 -0.15106E+02
5 1. 2712 0.31738E+402 -0.16419E+02 -0.13479E+02
6 1.5890 0.31738E+02 -0.11972E+02 -0.11971E+02
7 1.9068 0.31738E+02 -0.75213E+01 -0.10576E+02
8 2.2246 0.31738E+02 -0.30670E+01 <-0.92879E+01
9 2.5424 0.31738E+02 0.13905E+01 -0.81003E+01
10 2.8602 0.31738E+02 0.58507E+01 -0.70068E+01
11 3.1780 0.31738E+02 0.10313E+02 -0.60010E+01

*%% HORIZONTAL DISPLACEMENT **x
COORD

POINT
0.0
0.3

0.9

D2 OVONOTUMEWN=

-l b

3.1

178

0.6356

534

1.2712
1.5890
1.9068
2.2246
2.5424
2.8602

780

W
0.67765E-06
0.60060E-06
0.52343E-06
0.44617E-06
0.36882E-06
0.29138E-06
0.21388E-06
0.13631E-06
0.58688E-07

-0.18983E-07
-0.96696E~-07

c21

2
~0.31153E+01
~0.28117E+01
~0.25289E+01
~0.22659E+01
-0.20218E+01
-0.17956E+01
~0.15864E+0 1
-0.13932E+01
~0.12150E+01
~0.10510E+01
-0.90015E+00



INDIVIDUAL END FORCES FOR SEGMENT 9
=0.15201E+01 -0.46002E+02

0.0
0.0

0.0

-0.10333E+02

%% QUTPUT FOR BASE ELEMENT

POINT

-—b b

2 OWVWOYJOUNE WN -

COORD

77.7500
76.9500
76.1500
75.3500
74 .5500
73.7500
72.9500
72.1500
71.3500
70.5500
69.7500

M1

=0.35527E-14

0.62555E+00
0.21466E+01
0.45579E+01
0.78547E+01
0.12032E+02
0.17087E+02
0.23015E+02
0.29812E+02
0.37476E+02
0.46002E+02

 %%% VERTICAL DISPLACEMENT *¥x*

"POINT

-t b

= OoOVWoOoOgOUEWN =

COORD
77.7500
76.9500
76.1500
75.3500
74.5500
73.7500
72.9500
72.1500
71.3500
710.5500
69.7500

W
-0.31084E-05
-0.30283E-05
-0.29480E-05
-0.28674E-05
-0.27865E-05
-0.27051E-05
-0.26230E-05
-0.25400E-05
-0.24557E~-05
-0.23699E-05
-0.22822E-05

9 *x kK
M2

=0.17103E+02
-0.17216E+02
~0.17211E+02
-0.17097E+02
-0.16887E+02
-0.16590E+02
-0.16220E+02
-0.15787E+02
-0.15305E+02
-0.14786E+02
-0.14244E+02

v
0.17764E-14
0.11109E+01
0.22046E+01
0.32811E+01
0.43406E+01
0.53829E+01
0.64081E+01
0.74160E+01
0.84064E+01
0.93789E+01
0.10333E+02
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APPENDIX D
FORMULAE FOR HOMOGENEOUS
AND PARTICULAR SOLUTIONS



¢
I S 1%
3 7
6
¢ |
h e
6
4
5 A T A <+
|‘—'r——> v
I
9% It
8 h0| ¥
f\; v : ) ;!

E = MODULUS OF ELASTICITY
V = POISSONS RATIO
;= THERMAL COEFFICIENT

A= V3(1-02) )2

FIGURE D.1 Notation for Spherical, Cylindrical
and Base Segments
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TABLE D1: LABELING OF HOMOGENEOUS AND
PARTICULAR SOLUTION EQUATIONS

(a)

Homogeneous Solutions

General Form: XH%.J

XH Interpretation

SH Spherical segment homogeneous solution
CH Cylindrical segment homogeneous solution
PH Plate segment homogeneous solution

SS Special homogeneous solutions

L Loading

] Unit horizontal force at top of segment
2 Unit moment at top of segment

3 Unit horizontal force at bottom of segment
4 Unit moment at bottom of segment

5 Unit vertical force at top of segment

] Effect

AU P WN —

Horizontal displacement
Meridional rotation
N1 stress resultant
N2 stress resultant
M1 stress resultant
M2 stress resultant




(b)

TABLE D1 (continued)

Particular Solutions

General Form: XPR.j

XP Interpretation

SP Spherical segment particular solution
cp Cylindrical segment particular solution
PP Plate segment particular solution '

L Loading

1 Pressure (1 psf)

2 Dead weight (1b/ft?)

3 Prestress (1 psf)

4 Uniform thermal strain (+1°)

5 Gradient thermal strain (+1°/ft)

Interpretation of j is precisely as in (a)

D3
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TABLE D5 - SPECIAL HOMOGENEOUS SOLUTIONS

)

O

2 / | \ P=1 Eq. No.

$ - - e -
w(x) -r[(1+v) sin ao/sin a-2sin a, Cos o A e MX cos Ax]/EY SS2.1
8(x) -cosa, r26(1-v?) - e AX (cos Ax + sin Ax)/Et3A? $S2.2
N] -sinao/sinz(ao+x) + cosa, e'xx[coskx - sinxx] SS2.3

ctg(ao+x)
=X . .
N2 -2cosao Ae cos(Aax) + s1na0/s1n (ao+x) SS2.4
M, +cosa re X SinAX/A §s2.5
M2 cosa, cos(a0+x) re'kx [cosix + sinAx]/ZAzsin(a0+x) SS2.5
-vM]
(a) Effect of Top Vertical Load on Open Spherical Segment

i 1.t e

& | p=1 Eq. No.

4 -

L
W -ver/Et SS1.1
&) 0 S$§1.2
N] 1 S$1.3
N2 0 SS1.4
M] 0 SS1.5
M2 0 SS1.6

(b)

Effect of Top Vertical Load on Cylindrical Segment
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(a)

(b)

(c)

—]

= =2 = =
N

TABLE D6: PLATE ON ELASTIC FOUNDATION FORMULAE

D8

I wn )
3 ! Je— 1
r 2 r 2
- o i 1 -vy,_r 1+ w1
u(r) t(roz 11) {( E riz + ( E ) Y‘} PH1.1
l 1 /u«—1
_.i_...._. ‘__{__. e .__j —
- Z Z Z .
t(ro r ) E "o E r
Particular Solution Displacements
1,3 2 4 5
Const. Temp Gradient Ac(°/FT)
Change
p Yt . |
K " PP271
. . agr AT . PP%.1a
. . . . PPR:.Z
. . . . PP2.3
. . . . PPL.4
L ] L ] - 2 - 2
aTEt /12(1-v?) PP%.5
. . i 2 2
aTEt J12(1-v2) PPL.6



APPENDIX E
DERIVATION OF SHORT CYLINDER B MATRIX



Derivation of Short Cylinder B Matrix

APPENDIX E

The basic equations for a short cylindrical shell segment have
been presented in Sect. 3.2.
Eq. 3.2.1, has the general solution displayed in Eq. 3.2.4, which can be
written in vector form as indicated in Eqs. 3.2.7.

segment flexibility matrix as defined from Eq. 3.2.11 it is necessary to

The displacement equation of equilibrium,

To evaluate the

invert the matrix of Eq. 3.2.10 in order to determine the [B] matrix

of Eq. 3.2.11. This inversion has been carried out in closed form and
the resulting [B] matrix incorporated into the coding of FLEXSHELL. The

purpose of this Appendix is to provide details of this procedure.

The vector {¢} of Eq. 3.2.7b and expressions for {¢}', {¢}""

and {¢}''' are given in Table E.1.

indicated, Eq. 3.2.8 may be written as

where, in this equation and the remainder of this Appendix, it is

understood that the notation ¢, implies the ¢i(y) functions of Table E.1

L

Evaluating these expressions as

(E.1)

evaluated at y=¢. With this notation the symbols Y; appearing in Eq.

E.1 are defined as

tl



Y1 =9 -9
Yo 54t 9
Y3 = b3+ 0,
Yg = 937 9y

The factor B is defined in Eq. 3.2.3.

Factoring the B's, Eq. E.1 may be written as
{v*} = [E]{C}
where {C} is the vector of constants, of Eq. 3.2.7c,
1

and

[E] = 0 -l 0 1

Inverting the [E] matrix yields

c E;] = Y4 (¢] - ¢3) - ¢4 (Y] + Y3) £ B-”/B

£ B, /8

21 =Yg % " Yo ¥y

(E.2a)
(E.2b)
(E.2¢)
(E.2d)

(E.3b)

(E.3c)

(E.4a)
(E.4b)

E2



c E3q =¥y (97 - 93) - 05 (v,
CEl Tyt

CEp - 0a(v7 - v3) + 05(vy
cEpp = 04(v, = v3) + 05(v, -
c E;; = 01(y3 = vp) + o5(y; -
cEpp = 047 = ¥p) + 4q(y, -
CEy - y- 2

c Eé% =9y - 9

c Egg =91 - 95 - 24,

c Ea% =4y - Oy

CElp vy tvg - 2y,

CEyp Ty

CEy =yt -2y

CEa vty

+ Y3)

- Y4) + ¢](Y3

Y4) + ¢2(Y3
Yz) + ¢2(Y]
Y4) + ¢2(Y4

£ By /B

12
22
32

£

3

g

£

£ Byp

£ B,,/8
£ Byy/B
£ Byy/8
£ Byy/8
& By

& By
& B3y
g€

Bag

where c = 'Y-I(¢4 - ¢2) + Y2(¢-| + ¢3 = 2¢4) + Y3(¢2 + ¢4)

'Y4(¢] + 2¢2 + ¢3)

C

and E = EBE?

(E.
(E.
(E.
(E.
(E.

(E.

(E.

.4¢)
.4d)
.de)
.4f)
-4g)
.4h)
.41)
.43)
.4k)

41)
4m)
4n)
4o0)

4p)

4q)

4r)

Eqs. E.4 define the elements of the [B] matrix of Eq. 3.2.11,

which permits the numerical evaluation of the short cylindrical shell

flexibility matrix of Eq. 3.2.12.
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APPENDIX F
SPHERICAL SHELL M2 STRESS RESULTANT



F1

APPENDIX F
Spherical Shell M, Stress Resultant

Pfliiger [10, pg. 63] gives an 'exact' expression for the

meridional curvature of an arbitrary shell of revolution as

s dee
X = (€¢ - 89) Cth) - 'F; 'a'€_¢; (F.])

where ¢ is the meridional (angular) coordinate and 6 is the circumfer-
ential (angu]af) coordinate. In order to formulate the governing equa-
tion of a shell it is necessary to differentiate this curvature. For a
cylinder, cot¢ = 0, the first term of Eq. F.1 drops out, and the deriva-
tives of Eq. F.1 take on a simple form for which the relation M2 = vM] is
valid. This is also true at the edge of a hemispherical shell where

¢ = 90°. However, the first term of Eq. F.1 cannot, in general, be
discarded for a spherical shell.

The results for ‘long' non-cylindrical shells of revolution
show a remarkable similarity to the results obtained for a 'long' cylin-
der. Boundary disturbance vanish rapidly in the form of damped oscilla-
tions. In differentiation of damped oscillations with large damping
factors, the magnitude of the derivative is always larger by this factor
than the oscillation itself. Therefore, it is a godd approximation to
consider only the terms involving the highest derivative when formulat-
iné the governing equations. This method is normally referred to as

'Geckler's approximation'.



A visual interpretation of this method is given by Pfliiger
[10, pg. 65]. The rotation of the meridional tangent of the real shell
is approximated by the cbrresponding rotation of the tangent of a
'substitute cylinder' which has a radius equal to the radius of curv-
ature of the real shell. In this approximation M2 = vM], for the sub-
stitute cylinder. The usefulness of the method becomes questionable,
however, when the central angle ¢ reduces below about 30°. The term
(e¢ - se) coty in Eq. F.1 can then no longer be neglected. In this case
the term can be reintroduced into the expression for evaluating the

stress resultant arising from Eq. F.1, to yield [10, p. 66].

(F.2)

M2 = D coto e X (C] Ccos Ax + C2 sin Ax)/r - vM]

This, however, is still not 'exact' because the curvature, from which M2
is evaluated through Eq. F.2, has been determined from a solution to the
simplified Geckler equafion.

Eq. F.2 forms the basis for the computation of the M2 stress

resultants for spherical segments as tabulated in Appendix D.
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APPENDIX G
ASYMPTOTIC APPROXIMATION FOR BASE SEGMENT
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APPENDIX G

Asymptotic Approxiqg;jon For Base Segment

It was pointed out in Sect. 3.4 that the shape functions <¢>
employed in Eq. 3.4.4b are asymptotic approximations of the Thomson
functions which exactly satisfy the governing differential equation. They
are, therefore, valid only for 'large' values of the argument o def{;ed
in Eq. 3.4.3a. This usually does not present a problem since the stresses
in the base slab near the central axis are not of significant interest
and the connection to the cy]ihder wall usually occurs at reasonably
large values of the.argument.

A numerical comparison of the asymptotic approximations and
the exact functions indicates that good accuracy is obtained whenever the
argument x = r/% > 2. (2 is defined by Eq. 3.4.3b).

FLEXSHELL checks the value of the argument x against this
value and computes a (hypothetical) inner radius for the base segment
below which output of values for base displacements and stress resultants

is deleted. The radius r, the thickness of the slab t, and the subgrade

modulus k are Timited by the Tower bound on the value of x as follows:

r 2 2 VEC/YT200 < vk (6.1)

=~
v

4 Et3/(3(1 - v¥)r*) (6.2) .

P 8
]

SY2rk (- SVVALG: (6.3)



In the case of a very thick base element the radii used to
' @
define the prob?ém should be checked manually with Eq. G.1 to make sure
that at least fheJouter radius in the input data stays within the

program computedi#kimit for FLEXSHELL output.
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