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Abstract

This thesis introduces a new class of robust estimators for regression mod-

els. Specifically, a class of weighted least square estimators under linear re-

gression models is introduced in Chapter 2, with a continuous adaptive weight

function computed using the Kolmogorov-Smirnov statistic. Asymptotic prop-

erties, such as consistency and asymptotic normality, of the proposed estimator

are established under the model. Simulation studies show that the proposed

estimator attains almost full e�ciency and have a better robustness proper-

ties than the initial estimators for finite sample sizes. An application to a real

contaminated dataset shows that it’s comparable to other robust estimators

in practice.

In Chapter 3, a class of weighted maximum likelihood estimators under

logistic regression models is introduced, again with a continuous adaptive

weight function computed using Mahalanobis distances of exploratory vari-

ables. Asymptotic consistency of the proposed estimator is proved under the

model, and finite-sample properties are also studied by simulation. In simu-

lation studies, it is observed that the proposed estimator is almost as e�cient

as the maximum likelihood estimator under the model, and under point-mass

contamination models, the proposed estimator shows a comparable robustness.

This is also verified in an application to a real data set.

Chapter 4 contains some concluding remarks and future directions.
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Chapter 1

Introduction

1.1 Background

Almost all statistical methods rely on some background assumptions about

datasets; for example, assuming the data points have a normal distribution.

However, in practice sometimes observed data only satisfy the assumptions

approximately. For instance, in the linear regression model, the assumed nor-

mal distribution model may only hold for majority of observations, and some

of them may show di↵erent pattern than the others. Unfortunately, this kind

of discrepancy will bring many di�culties to statistical methods used for ana-

lyzing these data sets. Robust statistical methods focus on deriving statistical

methods that produce reliable results not only when the observed data follow

the assumed assumptions, but also when they only hold approximately. Here

the word “robust” refers to the ability of a method to retain its validity under

a model misspecification and/or when outliers are present.

For parametric models, robust estimators have been studied extensively

in the last fifty years, following the pioneering work of Tukey (1960), Huber
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(1967) and Hampel (1968), among others. Marrona et al. (2006) summa-

rizes the most up-to-date results about robust statistics theory in parametric

models. For the linear regression model, robust methods will be discussed

with some details in the next section. Strong parametric assumptions made

on assumed models make it easier to study theoretical properties of robust

estimators studied in the literature. However, strong assumptions also bring

many restrictions in applying these methods in practice. So, when we have

enough knowledge about some model features of the data parametrically but

are not willing to assume other features of the models, semiparametric models

can be used as an extension of classical parametric models. As robust estima-

tors in semiparametric models, Bickel et al (1993) have introduced a class of

generalized M (GM)-estimators, and they have provided general guidelines on

how to construct asymptotic “e�cient” estimators for regular semiparametric

models.

When we extend a classical parametric model to a larger semiparametric

model, we usually have to pay a price in e�ciency. For example, when we

use a threshold value to control observations with large residuals in linear

regression models, we would lose some e�ciency. This is because there still

will be a small fraction of observations that will have large residuals, even

when the observed data follows the assumed model perfectly. So, if a large

threshold value is chosen then the estimators will lose some robustness against

outliers, and if the threshold value is too small then the e�ciency lost would

be significant. To obtain full e�ciency under the true model and maximum

robustness under contaminated model simultaneously is a challenging problem

in semiparametric models estimation.

2



1.2 Robust estimates for the linear regression

model

Consider a multiple linear regression model with the response variable y
i

is

related to p explanatory variables x
i1, xi2, ..., xip

by the the linear model

y
i

=
pX

j=1

x
ij

✓
j

+ e
i

i = 1, ..., n,

or in matrix form

Y = X✓ + e,

where e
i

’s are independent random errors with identical distribution F , Y =

(y1, y2, ..., yn)
0
, X = (x

1

,x
2

, ...,x
n

)
0
, ✓ = (✓1, ..., ✓p)0, e = (e1, e2, ..., en)

0
and

the e
i

’s are independent of the x
i

’s. The goal is to find the “best” estimator of

unknown parameter ✓ that captures the relationship between the response and

explanatory variables. Suppose we already have an estimator ✓̂ = (✓̂1, ..., ✓̂p)
0
,

then we can obtain

ŷ
i

=
pX

j=1

x
ij

✓̂
j

,

and ŷ
i

is called the predicted or estimated value of y
i

. Residual r
i

measures

the di↵erence between observed y
i

and estimated ŷ
i

:

r
i

= y
i

� ŷ
i

, i = 1, ..., n.

Naturally, we want an estimator ✓̂ to make the residuals as small as possible.

The popular least squares (LS) estimators are obtained by minimizing the

3



residual sum of squares

✓̂
LS

= min
✓

nX

i=1

r2
i

, (1.1)

or, by di↵erentiating (1.1) and solving the following p equations:

nX

i=1

(y
i

�
pX

j=1

x
ij

✓
j

)x
ik

= 0, k = 1, ..., p.

In matrix form, they can be written as

X
0
X ✓̂

LS

= X
0
Y.

If the design matrix X has full rank, then a unique solution can be obtained

as

✓̂
LS

= (X
0
X)�1X 0Y.

There are many desirable equivariance qualities that we want to have for

our estimators. For example, we call a regression estimator ✓̂ regression equiv-

ariant if for all � 2 Rp,

✓̂(X, Y +X�) = ✓̂(X, Y ) + �. (1.2)

It is scale equivariant if for all � 2 R

✓̂(X,�Y ) = �✓̂(X, Y ), (1.3)

and a�ne equivariant if for all nonsingular p⇥ p matrices A

✓̂(XA, Y ) = A�1✓̂(X, Y ). (1.4)
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The LS estimators satisfy all of the above desirable properties. When the errors

ei are homoscedastic and uncorrelated, LS estimators achieves the lowest pos-

sible mean squared error among all estimators based on the linear combination

of yi. Also, when the errors are normally distributed, the LS estimator (LSE)

equals to maximum likelihood estimator (MLE), which reaches the Cramér

Rao lower bound (defined in Section 1.3) of the variance of estimators. Thus,

the LSE is efficient under normal errors. However, when these assumptions

fail to hold (e.g., when there exist outliers), it will bring dramatic changes

on the LSE. We present two examples based on some artificial data to show

how much damage a single atypical observation can do to the LSE; they are

depicted on Figure 1.1.

1 2 3 4 5 6

4
6

8
10

12

LS

1

2
3

4

5

6

y = 3x + 2

(a)

1 2 3 4 5 6

-4
-2

0
2

4

LS

1

2

3 4

5
6

y = -x + 6

(b)

Figure 1.1: Scatterplots of contaminated data set with LS fit line and the line
used to simulate data

From Figure 1.1a, we can see the LS fit line was dragged down by ob-

servation #2. In fact, the artificial data set was simulated from the model

y = −x + 6 + e with random error e from the N(0, 1) distribution, and ob-
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servation #2 is a gross error (2,�3). This point is called an outlier in the

y-direction because it has an atypical y-value compared to the bulk of the

data set, and we can see it has a large residual.

For Figure 1.1b , observation #6 changes the LS regression line dramati-

cally since its x-value is very di↵erent from the others. This artificial data set

was simulated from the model y = 3x + 2 + e with random error e from the

N(0, 1) distribution, and observation #6 is a gross error (6, 7). This point is

called an outlier in the x-direction or a leverage point, and actually this point

doesn’t have a very large residual, so it will be hard to diagnose by check-

ing residuals. However, there are other diagnostic methods to check leverage

points; for example, by checking the diagonal elements h1, h2, ..., hn

of the so-

called “hat matrix” H = X(X
0
X)�1X

0
, and h

i

can also be called a leverage,

so x-outliers can also be called leverage points.

As we can see, both independent and dependent variables can be contam-

inated by outliers, and it brings many di�culties in robustifying the least

squares method. Huber (1964) proposed a straightforward and popular M-

estimators defined by minimizing a “bounded” version of sum of residuals:

✓̂
M

= min
✓

nX

i=1

⇢(y
i

�
pX

j=1

x
ij

✓
j

), (1.5)

and ✓̂
M

can be obtained by solving the following p equations:

nX

i=1

 (y
i

�
pX

j=1

x
ij

✓
j

)x
ik

= 0, k = 1, ..., p,

where ⇢ is a bounded nondecreasing function of |x|, with ⇢(0) = 0,and  = ⇢
0
.

If ⇢ is bounded, it is also assumed that ⇢(1) = 1. Huber’s basic idea is

6



to control observations with too large residuals. To make the estimator scale

invariant, a scale parameter � is introduced, and then the estimating equations

become
nX

i=1

 (
r
i

(✓̂)

�
)x

i

= 0. (1.6)

In practice, � can be estimated by standardized Median Absolute Deviation

(MAD), which can be defined as

�̂ =
1

0.675
Median

i

(|r
i

| | r
i

6= 0).

M-estimator ✓̂
M

is regression, a�ne and scale equivariant, and its asymptotic

distribution of ✓̂
M

can also be derived. M-estimators are robust to y-outliers,

however, they are not robust to x-outliers.

In order to quantify the robustness property of estimators, many methods

have been proposed. Hampel (1971) proposed asymptotic breakdown point

(BP), and he also proposed the influence function technique (Hampel, 1974)

as an asymptotic version of the sensitivity curve. Roughly speaking, the break-

down point of an estimator is the proportion of incorrect observations an es-

timator can handle before giving an arbitrarily large result (Hampel 1971,

Donoho and Huber 1983). Asymptotic contamination BP is formally defined

as

Definition: The asymptotic contamination BP of the estimate ✓̂ at F , denoted

by ✏⇤(✓̂, F ), is the largest ✏⇤ 2 (0, 1) such that for ✏ < ✏⇤, ✓̂1((1�✏)F+✏G) as

a function of G remains bounded, and also bounded away from the boundary

of ⇥.

The BP of M-estimators is 0 due to its vulnerability to leverage points.
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There are many robust regression estimators achieving an asymptotic break-

down point 0.5. Rousseeuw (1984) proposed Least Median of Squares (LMS)

estimator by replacing the sum in (1.1) with the median, and it can be defined

as

✓̂
LMS

= min
✓

Med r2
i

.

The LMS estimator is very robust with respect to y outliers as well as x outliers,

and it is regression, scale and a�ne equivariant. But it has an asymptotic

convergence rate of n�1/3, which means its relative e�ciency with respect

to the LS estimator is 0, since the asymptotic convergence rate of the LS

estimator is n�1/2. To overcome this, Rousseeuw (1984) introduced the Least

Trimmed Squares (LTS) estimator by eliminating the observations with the

largest residuals while minimizing the sum of squares, and it is defined as

✓̂
LTS

= min
✓

hX

i=1

(r2)
i:n,

where (r2)1:n  ...  (r2)
n:n are the ordered squared residuals. The LTS

estimator achieves the highest breakdown point 0.5 when h is approximately

n/2, and it has excellent robustness properties against y- and x- outliers.

It’s also regression, scale and a�ne equivariant. Further, it has a normal

convergence rate of n�1/2. But compared with the LS estimator, it only has a

relative e�ciency about 7% under the normal model.

To obtain an estimate with high e�ciency and high BP simultaneously,

Yohai (1987) proposed an MM-estimator by using an initial robust estimator

with high breakdown point and an M-estimator. His idea is as follows: first

obtain an initial consistent estimate ✓̂0 with a high BP but may be with low

8



e�ciency (for example, LMS, LTS are possible candidates); second, compute

a robust scale �̂ of the residuals r
i

(✓̂0) (use MAD, for example) and then iter-

atively solve (1.6) starting with ✓̂0. The resulting estimator has a breakdown

point of 0.5, as long as the initial estimator ✓̂0 has a BP of 0.5.

1.3 Preliminaries

In this subsection, we state a few definitions, some empirical processes results

and other results that are used throughout the thesis. Most of them are taken

from the monograph Asymptotic Statistics by van der Vaart (2000).

Suppose ✓ is an unknown deterministic parameter which is to be estimated

from measurements X, distributed according to some probability density func-

tion f(x; ✓). The variance of any unbiased estimator ✓̂ of ✓ is then bounded

by the reciprocal of the Fisher information I(✓):

var(✓̂) � 1

I(✓)

where the Fisher information I(✓) is defined by

I(✓) = E[(
@l(X; ✓)

@✓
)2] = �E[

@2l(X; ✓)

@✓2
]

and l(x; ✓) = log(f(x; ✓)) is the natural logarithm of the likelihood function,

and the inverse of Fisher information I(✓)�1 is known as the Cramér-Rao lower

bound when estimating ✓.

9



The e�ciency of an unbiased estimator ✓̂ is defined as

e(✓̂) =
I(✓)�1

var(✓̂)
.

Then the Cramér-Rao lower bound gives e(✓̂)  1.

Assume that an estimator T
n

of �(✓) based on n observations has the

property that, as n ! 1,

p
n(T

n

� �(✓)) N(0, �2(✓)).

Let T1,n and T2,n denote two such estimators with asymptotic variances

�2
1(✓) and �2

2(✓), respectively. Then the asymptotic e�ciency of T1,n with

respect to (w.r.t.) T2,n is given by

�2
2(✓)

�2
1(✓)

.

If the ratio is bigger than 1, then the second estimator needs proportionally

as many observations more than the first one to achieve the same asymptotic

precision.

Consider again the linear regression model Y = X✓+ e with design matrix

X. Assume that lim
n!1

1
n

XTX = C, where C is a positive definite matrix.

Let �2
e

be the variance of the error term e. Then the asymptotic distribution

of the LSE can be written as

p
n(✓̂

LS

� ✓0)
d�! N(0, �2

e

C�1).

Let X1, ..., Xn

be a random sample from a distribution function F . Then

10



the empirical distribution function of the sample is defined as

F
n

(t) =
1

n

nX

i=1

1(X
i

 t),

which is an unbiased estimator of the distribution F . From the strong law of

large numbers, it is consistent:

F
n

(t)
as�! F (t), for every t.

Glivenko-Cantelli theorem extends this result from pointwise convergence to

uniform convergence. This theorem is given next.

Theorem 1.1: If X1, X2, ... are i.i.d. random variables with distribution

function F , then kF
n

� Fk1 = sup

t

|F
n

� F | as�! 0.

If the random sample X1, ..., Xn

is from a probability distribution P on a

measurable space (X ,A), then the empirical distribution, as a discrete uniform

measure, can be defined as P
n

= n�1
P

n

i=1 �Xi

, where �
x

is the probability

distribution that degenerates at x. For a measurable function f : X 7! R, the

expectation of f under empirical measure P
n

f can be defined as

P
n

f =
1

n

nX

i=1

f(X
i

),

and similarly the expectation of f under P is Pf =
R
fdP . A class F of

measurable functions f : X 7! R is called P-Glivenko-Cantelli if

kP
n

f � Pfk = sup
f2F

|P
n

f � Pf | as�! 0.

The empirical process evaluated at f is defined as G
n

f =
p
n(P

n

f � Pf),

11



and a class F is called P-Donsker if the sequence of processes {G
n

f : f 2 F}

converges in distribution to a tight limit process in the space l1(F).

Whether a class of functions is Glivenko-Cantelli or Donsker depends on

the “size” of the class. A way to measure the size of a class F is items of

entropy. Consider the bracketing entropy relative to the L
r

(P )-norm

kfk
P,r

= (P |f |r)1/r.

Given two functions l and u, the bracket [l, u] is the set of all functions  
i

with l   
i

 u. A "-bracket in L
r

(P ) is a bracket [l, u] with P (u� l)r < "r.

The bracketing number N[ ](",F , L
r

(P )) is the minimum number of "-brackets

needed to cover F . (l, u must have finite L
r

(P ) norms, but need not belong

to F .) The following theorem gives a criteria to check whether a class is

P-Glivenko-Cantelli, and it’s a generalization of the classic Glivenko-Cantelli

theorem (Theorem 1.1).

Theorem 1.2 (Glivenko-Cantelli): Every class F of measurable functions

such that N[ ](",F , L1(P )) < 1 for every " > 0 is P-Glivenko-Cantelli.

If a class of functions F is shown to be Glivenko-Cantelli, then we have the

uniform convergence within the class. Theorem 5.9 in van der Vaart (2000)

provides a way to prove the consistency of an estimator. This result is given

next.

Theorem 1.3: Let  
n

be random vector-valued functions and let  be a

fixed vector-valued function of ✓ such that for every ✏ > 0

sup
✓2⇥

k 
n

(✓)� (✓)k P�! 0,

12



inf
✓:d(✓,✓0)�✏

k (✓)k > 0 = k (✓0)k .

Then any sequence of estimators ✓̂
n

such that  
n

(✓̂
n

) = o
P

(1) converges in

probability to ✓0.

1.4 Summary and organization of the thesis

This thesis proposes a new class of robust estimators for the linear and lo-

gistic regression models. They are essentially “weighted estimators”. Specifi-

cally, Chapter 2 proposes a class of weighted least squares estimators for the

linear regression model. Instead of using cut o↵ threshold values to elimi-

nate the e↵ects of extreme observations, the proposed estimator in Chapter 2

uses a continuous weight function, calculated from an initial robust estimators

of the regression as well as the scale. The weighting step on the initial ro-

bust estimators improves the e�ciency while still keeping the high breakdown

point. The resulting estimator is named as Robust and E�cient Continu-

ous Weighted Least Squares (RECWLS) estimator. I have proved that the

proposed RECWLS estimator is asymptotically consistent. Furthermore, the

asymptotically distribution of RECWLS estimator is also derived, and it at-

tains the full e�ciency under normal errors. Simulation studies presented in

the thesis also verify that the proposed estimator exhibits full e�ciency un-

der normal errors for finite sample sizes. They have comparable e�ciencies

to threshold-value based estimators under t-error models. When the outliers

have small and large leverage points, the proposed estimator shows a better

robustness than the initial robust estimators, especially when the outliers are

more extreme.

13



Chapter 3 proposes a class of weighted maximum likelihood estimators for

the logistic regression model, with a continuous weight function computed us-

ing an adaptive Mahalanobis distances of exploratory variables. The asymp-

totic consistency of the proposed estimator is proved. A simulation study

shows that the proposed estimator is almost as e�cient as the maximum like-

lihood estimator under the clean model. Under point-mass contamination

models, the proposed estimator has a comparable robustness, especially when

the contaminated points are on the boundary of the exploratory space.

Some concluding remarks and future directions are stated in Chapter 4.
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Chapter 2

Linear Regression Model

2.1 Preliminaries: the linear regression model

and existing estimators

Consider a random sample of observations (x1, y1), ..., (xn

, y
n

), where x

i

2 Rp

is a vector of p explanatory variables and y
i

is the response variable. Assume

that they are linked by the linear relationship

y
i

= x

T

i

✓ + e
i

, i = 1, ..., n, (2.1)

where ✓ 2 ⇥ ✓ Rp is the unknown regression parameter that needs to be

estimated, the error terms e
i

’s are i.i.d. unobservable random variables with

unknown distribution F0(./�0) for some scale parameter �0 > 0, the e
i

’s are

independent with the covariates x
i

’s. We also assume F is symmetric about 0

to simplify some theoretical proofs.

In order to find an estimator ✓, say ✓̂, which captures the linear relationship

between X = (x1, ...,xn

)T and Y = (y1, ..., yn)T , the well-known least squares

15



method tries to find ✓̂ minimizing
P

(y
i

�x

T

i

✓)2. Then ✓̂ is the solution to the

estimating equation
nX

i=1

(y
i

� x

T

i

✓)x
i

= 0. (2.2)

The least square estimator (LSE) is e�cient under normal error models, and

it achieves the lowest possible variance among all unbiased estimators based

on the linear combination of y values. From the estimating equation (2.2), we

can see that LSE can be easily a↵ected by (i) observations with extreme values

of standardized residuals, (ii) observations with extreme values of leverages,

and (iii) failures of the assumed model.

To obtain a more robust estimator, Rousseeuw (1984) proposed an equiv-

ariant regression estimator that attains the maximum asymptotic breakdown

point 1/2, least median of squares estimator (LMS), as well as a least trimmed

squares estimator (LTS). Both LMS and LTS estimators show great robustness

properties against outliers and high leverage points. But the main disadvan-

tage of them is that they are not very e�cient. For the LMS estimator, the

rate of convergence is n�1/3, so its relative e�ciency with respect to LSE is 0.

The LTS estimator achieves the normal n�1/2 convergence rate, but its relative

e�ciency w.r.t. the LSE is only about 7%.

The excellent robustness properties of LMS and LTS estimators are still

useful to construct better estimators that are more e�cient. Suppose ✓̂ and �̂

denote a pair of initial robust estimators of regression and scale, respectively.

Then initial standardized residuals can be calculated as

r
i

=
y
i

� x

T

i

✓̂

�̂
.
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Now use a weighting step on the initial robust estimators to improve the

e�ciency while still keeping the high breakdown point (i.e., high robustness).

Rousseeuw and Leroy (1987) proposed a weight function based on the initial

standardized residuals

w
i

=

8
>><

>>:

1 if r
i

< t0

0 if r
i

� t0

with t0 = 2.5 as a reasonable fixed threshold. The rationale for the choice

t0 = 2.5 is that if one assumes a normal-error model, then r
i

� t0 would

indicate an outlier. The resulting weighted least squares estimator is of the

form ✓1n = (XTWX)�1XTWY , where the matrix W = diag (w1, ..., wn

).

Even when the error distribution perfectly follows the assumed distribution,

there still will be a small fraction of observations with r
i

> t0, which will be

eliminated using fixed threshold weight functions. If a really large t0 is chosen,

then the robustness properties will be influenced. This fixed threshold based

weighted least squares estimator does retain a high breakdown point. Further,

He and Portnoy (1992) showed that it converges no faster than the initial

estimator ✓̂, which means that its asymptotic relative e�ciency compared to

the LSE could be still very low.

Gervini and Yohai (2001) proposed a class of robust and e�cient weighted

least squares estimators (REWLSE), using adaptive cut-o↵ values. Their

adaptive cut-o↵ values are computed using the empirical distribution of the

residuals of an initial robust estimator. They also proved that their REWLSE

has the full asymptotic e�ciency if the errors are normally distributed. Fur-

thermore, the REWLSE also has asymptotic breakdown points no less than

those of the initial estimators.
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2.2 RECWLS estimator

Instead of using cut-o↵ values to eliminate the observations with high residu-

als, I will propose a class of weighted least square estimators with a continuous

weight function. I will refer these new estimators as robust and e�cient con-

tinuous weighted least squares (RECWLS) estimators in what follows.

First, let ⌘̂ denote a test statistic that measures the goodness-of-fit of

the observed data to the assumed model. We assume that ⌘̂ estimates some

unknown parameter ⌘ � 0. In fact ⌘ = 0 if the model is correctly chosen; that

is, ⌘̂ is a consistent estimator of 0 under the true model. There are many ways

to construct such a statistic. Let the empirical distribution function of the

standardized absolute residuals of initial robust estimators be

F+
n

(t) =
1

n

nX

i=1

I(|r
i

|  t),

and let F+
0 (t) be the assumed cumulative distribution function of the absolute

errors under the model. Based on Kolmogorov-Smirnov statistic, by comparing

F+
n

(t) and F+
0 (t), following Gervini and Yohai (2002) we define

⌘̂ = sup
t�t0

��F+
0 (t)� F+

n

(t)
�� .

Then for t0 = 0, ⌘̂ can be considered a measure of the goodness-of-fit of the

observed data to the assumed model.

When
��F+

0 (t)� F+
n

(t)
�� is large for a large t, it means the outliers are present

18



in the sample, since a heavier tail appeared in the empirical distribution func-

tion F+
n

(t). The value t0 = 2.5 is a reasonable choice in application. Also

⌘̂ can be viewed as a measurement of percentage of outliers present in the

sample. Since the true error distribution is usually unknown, a hypotheti-

cal distribution F is used instead of F+
0 (t), and F =  is a recommended

choice in practice (Gervini and Yohai, 2002), where  denotes the cumula-

tive distribution function of N(0, 1). It must be pointed out that even though

it is assumed that F =  , it doesn’t mean that the error terms e
i

are as-

sumed to come from a normal distribution. We observed that ⌘̂ is a pretty

robust to misspecification of F . I will show this fact in the simulation studies

section below. There are many other ways to construct a goodness-of-fit of

the observed data to the assumed model, such as Cramer-von Mises statistic,
p
n
R
(F

n

(x)� F0(x))2dF0(x).

We define a weight function of the form

w
�

(x, y) = m(⌘ |r
↵,�

|),

where � = (⌘,↵, �) denotes nuisance parameters, population residual r
↵,�

=

y�x

T

↵

�

with ↵ 2 ⇥, � 2 R, and m is an absolutely continuous non-increasing

mapping from R+ to (0, 1] such that m(0) = 1, sup
x>0[xm(x)] < 1, and its

first derivative is bounded with m(1)(0) = 0. Define a objective function

 
✓,�

(x, y) = w
�

(x, y)�
✓

(x, y), x, ✓ 2 Rp, y 2 R, (2.3)

where �
✓

= (y � x

T ✓)x, ✓ 2 ⇥. Then I define the RECWLS estimator ✓̂
n

as
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the solution of estimating equation

nX

i=1

 
✓,�̂

(x
i

, y
i

) = 0, (2.4)

where �̂ is an initial estimator of the nuisance parameter �. The solution ✓̂
n

of (2.4) can be written as a weighted least squares estimator:

✓̂
n

= (XTWX)�1XWY,

where W = diag(w
�̂

(x1, y1), ..., w
�̂

(x
n

, y
n

)). For robustness purposes of ✓̂
n

, �̂

should be chosen as a robust estimator of �.

2.3 Asymptotic properties

This section studies asymptotic properties of the RECWLS estimator. I will

show that under some general assumptions on the error distribution F0 and the

moments of explanatory variables, the estimator is asymptotically consistent

and has an asymptotic normal distribution. For models with normally dis-

tributed errors, the proposed estimator achieves the full asymptotic e�ciency.

Assume the random vector (X, Y ) follows the central model if

(X, Y ) ⇠ H0, with H0(x, y) = G0(x)F0{(y � x

T ✓)/�}.

Asymptotic is established under the assumption that the sample (x1, y1), ..., (xn

, y
n

)

follows the linear regression model (2.1). Assume that ✓0 and �0 are the “true

value” of ✓ and �, respectively, where � denotes the scale parameter of the

error distribution.
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We define functions

P
n

 
✓

=  
n

(✓) =
1

n

nX

i=1

 
✓,�̂

(x
i

, y
i

)

and

P 
✓

= P 
✓,�

and  (✓) = P�
✓

= P 
✓,0,

where �̂ = (⌘̂, ↵̂, �̂),  
✓,0 is obtained from (2.3) with �0 = (0, ✓0, �0), and P

denotes the (unknown) joint probability distribution of the (x, y)’s, H0.

The consistency of ✓̂
n

is established in Theorem 2.1 below. To prove this

theorem, I first state and prove three lemmas. The following assumptions are

needed in Theorem 2.1 and in the lemmas:

A1 ↵̂
p�! ✓0 and �̂

p�! �0.

A2 E(XX

T ) is nonsingular.

A3 E
G0(kxk

4) < 1 and F0 has finite fourth moment.

A4 The weight function m(x) is continuous, has bounded first derivative,

m(0) = 1 and m(1)(0) = 0.

For most popular initial robust estimators, like the least median squares

and the least trimmed squares used in simulation studies, A1 is satisfied. In

the theorems and lemmas stated below, asymptotic are understood to be as

n ! 1.

Lemma 2.1: If A1 is satisfied, then ⌘̂ = o
p

(1).

Proof : Recall that standardized error term ✏
i

= e

i

�0
= y

i

�x

T

i

✓0

�0
and r

i

=

y

i

�x

T

i

↵̂

�̂

, F+
0 (t) is the distribution function of the absolute errors under central
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model, and F̂+
n

(t) = 1
n

P
n

i=1 I(|ri| t). We can write

r
i

=
y
i

� x

T

i

✓0 + x

T

i

✓0 � x

T

i

↵̂

�0

�0
�̂

=
�0
�̂
✏
i

+
1

�̂
x

T

i

(✓0 � ↵̂),

and so

Pr(r
i

 t) = Pr(
�0
�̂
✏
i

+
1

�̂
x

T

i

(✓0 � ↵̂)  t)

= Pr(✏
i

 t
�̂

�0
+

1

�0
x

T

i

(↵̂� ✓0))

= F0(t
�̂

�0
+

1

�0
x

T

i

(↵̂� ✓0))

= F1(t).

Define a class of measurable functions F0 = {f
t

= 1[�t,t] : t 2 R+}, and also

denote

P
n

f
t

=
1

n

nX

i=1

I(|r
i

| t) = F+
n

(t),

Pf
t

= Pr(r  t) = F+
1 (t) = F1(t)� F1(�t).

Now we show that F0 is P-Glivenko-Cantelli. Consider brackets of the form

[1[�t

i�1,ti�1], 1[�t

i

,t

i

]] for a grid of points 0 = t0 < t1 < ... < t
k

= 1 with the

property that F (t
i

�) � F (t
i�1) < "/2 for each i, where " > 0. These brakes

have L1(F )-size ". Their total number k can be chosen smaller than 2/", so for

every " > 0, N[](",F0, L1(P )) < 1. Now using (Glivenko-Cantelli) Theorem

19.4 in van der Vaart (2000), F0 is P-Glivenko-Cantelli, and so we have

kP
n

f
t

� Pf
t

kF0
= sup

f

t

2F0

|P
n

f
t

� Pf
t

|= sup
t>0

|F+
n

(t)� F+
1 (t)| as�! 0.
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Note that

⌘̂ = sup
t�t0

���F+
0 (t)� F̂+

n

(t)
���

 sup
t�0

���F+
0 (t)� F̂+

n

(t)
���

= sup
t�0

��F+
0 (t)� F+

1 (t)
��+ sup

t�0

��F+
n

(t)� F+
1 (t)

�� .

Now we only have to show sup
t�0

��F+
0 (t)� F+

1 (t)
�� = o

p

(1) to prove ⌘̂ = o
p

(1).

Observe that

F+
0 (t)� F+

1 (t) = F0(t)� F0(�t)� F1(t) + F1(�t)

= (F0(t)� F0(t
�̂

�0
+

1

�0
x

T

i

(↵̂� ✓0)))

� (F0(�t)� F0(�t
�̂

�0
+

1

�0
x

T

i

(↵̂� ✓0))).

Since ↵̂
p�! ✓0, it is easy to see that for every t > 0, we have |F+

0 (t)�F+
1 (t)|!P

0. That F0 is a continuous distribution function implies that this convergence

is uniform in t and hence ⌘̂ = o
p

(1).

Lemma 2.2: If A2 is satisfied, then k (✓
n

)k ! 0 implies k✓
n

� ✓0k ! 0

for any sequence {✓
n

} 2 ⇥.

Proof: Note that

k (✓
n

)k = kP 
✓

n

,0k

= kP�
✓

n

k

=
��P (y � x

T ✓
n

)x
��

=
��P (xT ✓0 + e� x

T ✓
n

)x
��

=
��P (xT (✓0 � ✓

n

)x)
�� .
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If k (✓
n

)k ! 0, then we have  (✓
n

) ! 0. Since x = (x1, x2, ..., xp

)T , ✓0�✓n =

✓
d

= (✓
d1, ✓d2, ..., ✓dp)T , we obtain

P (xT (✓0 � ✓
n

)x) = P (
pX

i=1

✓
di

0

BBBBBBB@

x1xi

x2xi

...

x
p

x
i

1

CCCCCCCA

) =
pX

i=1

✓
di

P (

0

BBBBBBB@

x1xi

x2xi

...

x
p

x
i

1

CCCCCCCA

) ! 0.

Since P (XX

T ) = E(XX

T ) is nonsingular, we have ✓0 � ✓
n

! 0, and therefore

we have k✓
n

� ✓0k ! 0.

Lemma 2.3: If A3 and A4 are satisfied, then the class { 
✓,�

: ✓ 2

⇥, k� � �0k < �} is P-Glivenko-Cantelli for some � > 0, where � = (⌘,↵, �)

and �0 = (0,↵0, �0) is a fixed value.

Proof: To show a class F of vector-valued functions  : (x, y) 7! Rp to

be Glivenko-Cantelli, we only need to show that each of the classes of coordi-

nates  i : (x, y) 7! R with  = ( 1, ..., p)T ranging over F(i = 1, 2, ..., p) is

Glivenko-Cantelli.

The class F = { 
�

: � = (✓, �) = (✓, ⌘,↵, �), ↵, ✓ 2 ⇥, ⌘ 2 (0, 1), �⇤ <

�, k� � �0k < �} is a collection of measurable functions indexed by a bounded

subset in � = ⇥⇥⇥⇥R⇥R ⇢ R2p+2. The parameter space consists of three

nuisance parameters � and the target parameter ✓. For any �1 = (✓1, �1) and
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�2 = (✓2, �2),

�� i

�1
(x, y)�  i

�2
(x, y)

�� =
��w

�1(x, y)�
i

✓1
(x, y)� w

�2(x, y)�
i

✓2
(x, y)

��

= |w
�1(x, y)�

i

✓1
(x, y)� w

�1(x, y)�
i

✓2
(x, y)+

w
�1(x, y)�

i

✓2
(x, y)� w

�2(x, y)�
i

✓2
(x, y)|


��w

�1(x, y)�
i

✓1
(x, y)� w

�1(x, y)�
i

✓2
(x, y)

��+
��w

�1(x, y)�
i

✓2
(x, y)� w

�2(x, y)�
i

✓2
(x, y)

�� .

(2.5)

Also we have

��w
�1(x, y)�

i

✓1
(x, y)� w

�1(x, y)�
i

✓2
(x, y)

��

= w
�1(x, y)

��(y � x

T ✓1)xi

� (y � x

T ✓2)xi

��


��
x

T (✓2 � ✓1)xi

��

 |x
i

| kxk k✓2 � ✓1k .

(2.6)

Then we obtain

��w
�1(x, y)�

i

✓2
(x, y)� w

�2(x, y)�
i

✓2
(x, y)

��

= |w
�1(x, y)� w

�2(x, y)|
��y � x

T ✓2
�� |x

i

|

= |w
⌘1,↵1,�1(x, y)� w

⌘1,↵2,�2(x, y) + w
⌘1,↵2,�2(x, y)� w

⌘2,↵2,�2(x, y)|
��y � x

T ✓2
�� |x

i

|

 (|w
⌘1,↵1,�1(x, y)� w

⌘1,↵2,�2(x, y)|+ |w
⌘1,↵2,�2(x, y)� w

⌘2,↵2,�2(x, y)|)
��y � x

T ✓2
�� |x

i

| .

(2.7)

Since m(x) has a bounded first derivative, we have
��m(1)(x)

�� < K for all x, for

some finite constant K. Since m(x) is an absolute continuous function, using
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the Mean Value Theorem, for any x1, x2 we obtain

|m(x1)�m(x2)| = m(1)(c) |x1 � x2| < K |x1 � x2| , c 2 (x1, x2).

Then we have

|w
⌘1,↵2,�2(x, y)� w

⌘2,↵2,�2(x, y)| =

�����m(⌘1

��y � x

T↵2

��
�2

)�m(⌘2

��y � x

T↵2

��
�2

)

�����

<
K

�2

��y � x

T↵2

�� |⌘1 � ⌘2| ,

(2.8)

and

|w
⌘1,↵1,�1(x, y)� w

⌘1,↵2,�2(x, y)|

=

�����m(⌘1

��y � x

T↵1

��
�1

)�m(⌘1

��y � x

T↵2

��
�2

)

�����

< K⌘1

�����

��y � x

T↵1

��
�1

�
��y � x

T↵2

��
�2

�����

 K

�����

��y � x

T↵1

��
�1

�
��y � x

T↵1

��
�2

+

��y � x

T↵1

��
�2

�
��y � x

T↵2

��
�2

�����

 K
��y � x

T↵1

��
����
1

�1
� 1

�2

����+
K

�2

��(y � x

T↵1)� (y � x

T↵2)
��

 max(
K

(�⇤)
,

K

(�⇤)2
)(
��y � x

T↵1

�� |�2 � �1|+ kxk k↵2 � ↵1k).

(2.9)

From (2.7), (2.8) and (2.9), we then have

��w
�1(x, y)�

i

✓2
(x, y)� w

�2(x, y)�
i

✓2
(x, y)

��

< K0 |xi

|
��y � x

T ✓2
�� (kxk k↵2 � ↵1k+

��y � x

T↵2

�� |⌘1 � ⌘2|+
��y � x

T↵1

�� |�2 � �1|),

(2.10)
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whereK0 = max( K

(�⇤) ,
K

(�⇤)2 ). Since k✓2 � ✓1k , k↵2 � ↵1k , |⌘1 � ⌘2| < k�1 � �2k,

from (2.5), (2.6) and (2.10), we now have

�� i

�1
(x, y)�  i

�2
(x, y)

�� < K0 |xi

|
��y � x

T ✓2
�� (kxk k↵2 � ↵1k+

��y � x

T↵1

�� |�2 � �1|

+
��y � x

T↵2

�� |⌘1 � ⌘2|) + |x
i

| kxk k✓2 � ✓1k

< (K0 |xi

|
��y � x

T ✓2
�� kxk+ |x

i

| kxk+

K0 |xi

|
��y � x

T↵1

�� ��y � x

T ✓2
��+

K0 |xi

|
��y � x

T↵2

�� ��y � x

T ✓2
��) k�2 � �1k

= Li(x, y) k�2 � �1k , every �1, �2,

where Li(x, y) = K0 |xi

|
��y � x

T ✓2
�� kxk+|x

i

| kxk+K0 |xi

|
��y � x

T↵2

�� ��y � x

T ✓2
��+

K0 |xi

|
��y � x

T↵1

�� ��y � x

T ✓2
��. For every  i, i = 1, ..., p, we have derived a Lip-

schitz condition, so for  = ( 1, ..., p)T we then have

�� i

�1
(x, y)�  i

�2
(x, y)

�� < Li(x, y) k�2 � �1k , every �1, �2.

Consider the bracketing entropy relative to L
r

(P )-norm

k 
i

k
P,r

= (P | 
i

|r)1/r.

Use brackets of the type [ i

�

�"Li, i

�

+"Li] for � ranging over a suitable chosen

subset of �, and these brackets have L
r

(P )-size 2" kLik
P,r

. If � ranges over a

grid of mesh width " over �, then the brackets [ i

�

� "Li, i

�

+ "Li] ranges over

F . By the Lipschitz condition

 i

�1 � "L   i

�2   i

�1 + "L, if k�2 � �1k  ",
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so we need as many brackets as we need balls of radius "

2 to cover �, or we

need less than (diam �/")2p+2 cubes with size " to cover parameter space �. If

P |Li|r < 1, then there exists a constant J , depending on � and p only, such

that the bracketing numbers satisfy

N[ ](",F , L
r

(P ))  J(
diam �

"
)2p+2, every 0 < " < diam �.

Since all  2 F are continuous functions, so they are measurable. In order

use to Theorem 19.4 (Glivenko-Cantelli) in van der Vaart (2000), it is now

enough to verify that P |Li| < 1 for all 1  i  p. Then the class F is

P-Glivenko-Cantelli. Using the Cauchy-Schwartz inequality, we have

P (K0|xi

|
��y � x

T ✓2
�� kxk)  K0P

1/2|x
i

|2+K0P
1/2(

��y � x

T ✓2
�� kxk)2

 K0P
1/2|x

i

|2+K0P
1/4(

��y � x

T ✓2
��)4 +K0P

1/4(kxk)4.

(2.11)

Similarly,

P (K0|xi

|kxk)  K0P
1/2|x

i

|2+K0P
1/2(kxk)2 (2.12)

and

P (K0|xi

|
��y � x

T↵2

�� ��y � x

T ✓2
��)

 K0P
1/2|x

i

|2+K0P
1/2(

��y � x

T↵2

�� ��y � x

T ✓2
��)2

 K0P
1/2|x

i

|2+K0P
1/4(

��y � x

T↵2

��)4

+K0P
1/4(

��y � x

T ✓2
��)4.

(2.13)

If A3 is satisfied, then the right hand sides of (2.11), (2.12) and (2.13) will all

be finite, so we have P |Li|< 1. Thus the class F is P-Glivenko-Cantelli.
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Theorem 2.1: Assume that A1, A2 , A3 and A4 hold. Then any solution

✓̂
n

of the estimating equation (2.4) converges in probability to ✓0.

Proof: Denote

 (✓) = P 
✓,0 = P�

✓

 (✓, �) = P 
✓,�

= P�
✓

w
�

 
n

(✓) =  
n

(✓, �) =
1

n

nX

i=1

 
✓,�

 
n

(✓, �̂) =
1

n

nX

i=1

 
✓,�̂

.

Note that  (✓̂
n

) = ( (✓̂
n

) �  
n

(✓̂
n

)) +  
n

(✓̂
n

). Then if we can show that

sup
✓2⇥ k 

n

(✓)� (✓)k = o
P

(1), then
��� (✓̂

n

)
��� = o

P

(1) since  
n

(✓̂
n

) = o
P

(1).

Then from Lemma 2.2, we have
���✓̂

n

� ✓0

��� = o
P

(1). To show sup
✓2⇥ k 

n

(✓)� (✓)k =

o
P

(1), we factor it as follows

sup
✓2⇥

��� 
n

(✓, �̂)� (✓)
���

= sup
✓2⇥

��� 
n

(✓, �̂)� 
n

(✓, �) + 
n

(✓, �)� (✓, �) + (✓, �)� (✓, 0)
���

 I1 + I2 + I3,

where

I1 = sup
✓2⇥

��� 
n

(✓, �̂)� 
n

(✓, �)
���

I2 = sup
✓2⇥

k 
n

(✓, �)� (✓, �)k

I3 = sup
✓2⇥

k (✓, �)� (✓, 0)k .

From Lemma 2.3, we know that F is a P-Glivenko-Cantelli class, so I2
as�! 0.
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For I1,

I1 = sup
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�����
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A Taylor expansion of order one yields

|w
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(x
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���
����̂ � �
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where rm(�) is the gradient of m(�), and denote �
0
= � + (� � �̂)t with

t 2 (0, 1). Then we have

rm(�
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Since �̂ � � = o
P

(1) and
��rm(�

0
)
�� is finite, we have w

�̂

(x
i

, y
i

)�w
�

(x
i

, y
i

) =

o
P

(1). From assumption A3, we also have sup
✓2⇥ k�

✓

(x, y)k2 < 1, and thus

we obtain I1
p�! 0.
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For I3,

I3 = sup
✓2⇥

kP�
✓

(x, y)(w
�

(x, y)� w
�0(x, y))k
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where the last inequality follows from the Cauchy-Schwarz inequality. Also

w
�

(x, y)� w
�0(x, y) = 1�m(⌘

y � x

T↵

�
)

p�! 0,

since ⌘ = o
P

(1), and m(0) = 1, and |w
�

(x, y) � w
�0(x, y)|2 is bounded by 1.

Now use the Dominated Convergence Theorem to obtain
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n!1

P 1/2|w
�

(x)� w
�0(x)|2= P 1/2 lim

n!1
|w

�

(x)� w
�0(x)|2

p�! 0.

Also,

sup
✓2⇥

P k�
✓

(x, y)k2 = sup
✓2⇥

P
��(y � x

T ✓)x
��2  P kxk2 ,

and from assumption A3 we have sup
✓2⇥ P k�

✓

(x, y)k2 < 1. Then we have

I3 ! 0, and this completes the proof. J

The asymptotic normality of ✓̂
n

is established in Theorem 2.2, which makes

use of the following assumptions:

A5 E
G0(kxk

8) < 1 and F0 has finite eighth moment.

A6 ✓̂
n

satisfies  
n

(✓̂
n

) = o
p

(n�1/2).
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Theorem 2.2: Assume that A1 to A6 hold. Then we have

p
n(✓̂

n

� ✓0) = �V �1G
n

 
✓0 + o

P

(1).

In particular, the sequence

p
n(✓̂

n

�✓0) is asymptotically normal with mean zero

and covariance matrix V �1P 
✓0 

T

✓0
(V �1)T , where V �1 = P�1(m(⌘ y�x

T

↵

�

)XXT )

and P 
✓0 

T

✓0
= P (m2(⌘ y�x

T

↵

�

)(Y �XT ✓0)2XXT ). In particular if ⌘ = 0, then

the covariance matrix equals to ��1
0 E�1(XXT ), which means the RECWLS

estimator is asymptotically e�cient under normal errors.

2.4 Monte Carlo studies

In this section a Monte Carlo Study was carried out to examine finite-sample

e�ciency and robustness properties of the proposed estimator, RECWLS. Two

robust estimators, LMSE (least median of squares estimator) and LTSE (least

trimmed squares estimator), were used as initial estimators for ✓0n. Further,

the scales used to standardize residuals were the standardized MAD (median

absolute deviation).

The following weight function m(x) was used in the simulation:

m(x) =
1

(1 + x2)5
. (2.14)

For comparison purposes, I computed the following estimators:

1. Least squares (LS).

2. Least median of squares (LMS).

3. Least trimmed squares (LTS).
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4. One-step weighted least squares with cut-o↵ value t0 = 2.5, starting from

the LMSE (WLS-LMS).

5. Same as above, starting from the LTS (WLS-LTS).

6. REWLSE with hard-rejection weight w(u) = I(u < 1) and ⌘ = 2.5,

starting from LMSE (REWLS-LMS).

7. Same as above, starting from LTSE (REWLS-LTS).

8. One-step weighted least squares with weight function

w(x
i

, y
i

) = m(⌘̂ kr
i

k) = 1

(1 + (⌘̂
���y

i

�x

T

i

✓0n

S

n

���)2)5

starting from the LMSE (RECWLS-LMS).

9. Same as above, starting from LTSE (RECWLS-LTS).

10. For the case of linear regression with t-distributed errors in Section 2.4.2,

I considered the corresponding maximum likelihood estimator.

2.4.1 E�ciencies with normal errors

I considered regression models with intercept, normal covariates and normal

errors. Specifically, let (x1, y1), ..., (xn

, y
n

) be a random model that follows the

linear model (2.1) with x

i

= (1, x
i1, ..., xip�1)T and such that (x

i1, ..., xip�1)T

has a multivariate normal N
p�1(µ,⌃) distribution. Since all estimators are

regression, a�ne and scale equivariant, without loss of generality I took µ = 0,

⌃ = I and ✓0 = 0.
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Samples with n = 20, 50, 100, 200, 500, 1000 and p = 2, 5 were considered.

For each value of p and n, I generated 1000 samples, and for each estimator

✓
n

I computed the relative mean squared e�ciency (REF) with respect to the

LSE:

REF =

P1000
i=1 (

��✓LS
ni

� ✓0
��)2

P1000
i=1 (k✓ni � ✓0k)2

=

P1000
i=1 (

��✓LS
ni

��)2
P1000

i=1 (k✓nik)2
,

where ✓
ni

and ✓LS
ni

are the i-th generated values of ✓
n

and the LSE, respec-

tively. Since the LSE is the most e�cient estimator under normal models, an

estimator with REF close to 1 would consider to be very e�cient.

Table 2.1: REF w.r.t. LSE for normal errors and p = 2

estimator n
20 50 100 200 500 1000

LMS 0.22 0.18 0.15 0.13 0.10 0.08
WLS-LMS 0.60 0.69 0.71 0.76 0.79 0.80
REWLS-LMS 0.60 0.69 0.74 0.81 0.88 0.93
RECWLS-LMS 0.79 0.96 0.98 0.99 1.00 1.00
LTS 0.24 0.17 0.13 0.12 0.09 0.09
WLS-LTS 0.60 0.68 0.70 0.75 0.79 0.83
REWLS-LTS 0.60 0.68 0.72 0.81 0.88 0.93
RECWLS-LTS 0.74 0.96 0.98 0.99 1.00 1.00

Tables 2.1 and 2.2 show the comparison of REF of di↵erent estimators for

normal errors when p = 2, 5. As we can see from these tables, the initial

estimators LMS and LTS are not very e�cient: their relative e�ciencies are

decreasing as the sample size increases. When the number of parameters p

increases, the REF decreases for the LMS, but it doesn’t change much for

the LTS. Further, the LTS is more e�cient than the LMS estimator, espe-

cially when p is larger. But when n reaches 1000, both of them have very

low e�ciencies, about 7%. As I mentioned in Section 2.1, LMS estimators’
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Table 2.2: REF w.r.t. LSE for normal errors and p = 5

estimator n
20 50 100 200 500 1000

LMS 0.15 0.17 0.16 0.13 0.09 0.07
WLS-LMS 0.24 0.40 0.57 0.67 0.73 0.77
REWLS-LMS 0.24 0.40 0.59 0.72 0.84 0.90
RECWLS-LMS 0.28 0.61 0.95 0.99 0.99 1.00
LTS 0.24 0.18 0.15 0.12 0.08 0.07
WLS-LTS 0.34 0.41 0.57 0.66 0.72 0.76
REWLS-LTS 0.34 0.41 0.59 0.71 0.83 0.89
RECWLS-LTS 0.41 0.62 0.94 0.99 0.99 1.00

asymptotic relative e�ciency with respect to the LSE is 0, and for the LTS’s

it is about 7%.

It is noticeable that even using a simple one-step weighted least squares

with non-adaptive cut-o↵ value greatly increases the e�ciency. For p = 2 and

sample size 100, WLS-LMS only has a REF about 69%, and for p = 5, it drops

to 41%. We know ultimately when n ! 1, the asymptotic relative e�ciency

is 0. For finite sample sizes, we can see that the REF of the weighted LSE

with fixed threshold values are not that high, especially with the increasing of

dimension p.

REWLS based estimators (i.e., the WLSE with adaptive threshold values)

have very similar REF with WLSE with fixed threshold values, especially when

the sample size is small (n < 100). The asymptotically e�ciency of REWLS

is 1, so we can see as n increases, the REF increases pretty fast.

Obviously, all estimators have better e�ciencies with larger n, and REWLS-

LMS showed a slightly better e�ciency than WLS-LMS. For the proposed

estimators, RECWLS-LMS greatly increases the e�ciency. When p = 2,
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RECWLS with sample size n = 50 and higher attains almost full e�ciency,

and this is also the case for n = 100 and higher when p = 5.

By comparing REWLS and RECWLS when p = 2, the e�ciency of RECWLS

with sample size n = 20 is almost as high as REWLS with sample size n = 200.

When p = 5, RECWLS-LMS with sample size n = 100 have higher e�ciencies

than REWLS with sample size n = 1000. Implementing the LMS or LTS as

initial estimators has similar e↵ects in e�ciencies, and when p increases, the

e�ciencies decrease as we have more parameters to estimate.

The proposed estimator, RECWLS, shows great e�ciency properties over-

all. When p = 2, its REF reaches 96% even when sample size is n = 50, and

it reaches about 95% when n = 100 for p = 5.

In summary, RECWLS has shown the best e�ciency among the estimators

considered under models with normal errors; its REF reaches close to 1 very

fast. So, for small sample size data sets, the proposed estimator may be more

preferred one to use in applications.

2.4.2 E�ciencies with heavy-tailed errors

The simulation settings in this section are the same as in Section 2.4.1, except

that the errors e
i

’s were generated here according to a t distribution with 3

degrees of freedom. The relative e�ciencies were calculated with respect to

the maximum likelihood estimator in this case.

Samples with n = 20, 50, 100, 200, 500, 1000 and p = 2, 5 were considered.

For each value of p and n, I generated 1000 samples, and for each estimator
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✓
n

, I computed the relative mean squared e�ciency with respect to the MLE:

REF =

P1000
i=1 (

��✓MLE

ni

� ✓0
��)2

P1000
i=1 (k✓ni � ✓0k)2

=

P1000
i=1 (

��✓MLE

ni

��)2
P1000

i=1 (k✓nik)2
,

where ✓
ni

and ✓MLE

ni

are the i-th generated values of ✓
n

and the MLE, respec-

tively. Since MLE’s are the most e�cient estimators under student t errors,

an estimator with REF close to 1 would consider to be very e�cient.

Table 2.3: REF w.r.t. MLE for Student errors with 3 d.f. and p = 2

estimator n
20 50 100 200 500 1000

LSE 0.55 0.54 0.53 0.51 0.47 0.51
LMS 0.29 0.30 0.24 0.23 0.17 0.14
WLS-LMS 0.71 0.81 0.77 0.83 0.83 0.79
REWLS-LMS 0.71 0.81 0.79 0.84 0.86 0.81
RECWLS-LMS 0.76 0.83 0.83 0.84 0.79 0.77
LTS 0.60 0.54 0.43 0.45 0.42 0.40
WLS-LTS 0.74 0.81 0.78 0.81 0.84 0.85
REWLS-LTS 0.74 0.81 0.80 0.81 0.87 0.86
RECWLS-LTS 0.78 0.83 0.84 0.83 0.79 0.77

Tables 2.3 and 2.4 show the comparison of mean squared e�ciencies of

some estimators for student t errors with 3 d.f. when p = 2, 5. Unlike in the

previous section, with the increase of sample n, most estimators’ e�ciencies

do not increase, and most of them show a better e�ciency when n = 200 than

n = 1000. This is probably because with a higher sample size, the heavier tail

of error distribution becomes more obvious.

All reweighed estimators show a better e�ciency than the initial estima-

tors, and LTS estimators show a significantly better e�ciency than LMS es-

timators. Again WLS estimators and REWLS estimators show very similar
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Table 2.4: REF w.r.t. MLE for Student errors with 3 d.f. and p = 5

estimator n
20 50 100 200 500 1000

LSE 0.58 0.55 0.52 0.47 0.50 0.49
LMS 0.20 0.26 0.25 0.22 0.15 0.11
WLS-LMS 0.32 0.58 0.73 0.80 0.76 0.75
REWLS-LMS 0.32 0.58 0.74 0.81 0.80 0.78
RECWLS-LMS 0.34 0.74 0.86 0.83 0.79 0.76
LTS 0.55 0.51 0.46 0.45 0.30 0.21
WLS-LTS 0.41 0.59 0.70 0.80 0.78 0.74
REWLS-LTS 0.41 0.59 0.71 0.82 0.81 0.78
RECWLS-LTS 0.46 0.74 0.85 0.84 0.80 0.76

e�ciencies. As the sample size n increases, the e�ciencies of RECWLS estima-

tors start to increase and then decrease. It appears that RECWLS estimators

are more e�cient than REWLS when n < 200.

In summary, under models with t errors, RECWLS still have a pretty good

performance in e�ciencies compared to other estimators, especially when the

sample size n is small.

2.4.3 Model with normal errors and some fraction of

outlier contamination

As in Section 2.4.1, a model with normal-error and normal-covariates were

considered, But now h observations in each sample were replaced by identical

outliers of the from (x0, y0). Because of the sphericity of the normal distribu-

tion, without loss of generality I took x0 = (1, x0, 0, ..., 0)T . I chose x0 = 1, 10,

which correspond to low and high leverage outliers, respectively, and varied

y0 in the grid {0.1jx0 : j is a positive integer}. For j, I considered integers
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from 1 to 100, and then randomly chose 50 j from 101 to 1000, and another

randomly chosen 50 j from 1001 to 10000. I only considered a small sample

size n = 50, and I took p = 2 and h = 3, 5, 8, 10. For each estimator ✓1n and

each value of h, x0 and y0, I estimated the mean squared error based on 1000

Monte Carlo replications, MSE (✓1n, h,x0, y0). Tables 4.19 to 4.12 report the

values of max
y0 MSE(✓1n, h,x0, y0), which represents the worst performance of

each estimator for that leverage and that number of outliers.

Table 2.5: Maximum MSE with outliers with x0 = 1 (not high leverage outliers)

estimator h
3 5 8 10

LMS 0.36 0.53 1.03 1.71
WLS-LMS 0.10 0.18 0.48 0.93
REWLS-LMS 0.10 0.18 0.48 0.93
RECWLS-LMS 0.12 0.18 0.39 0.75
LTS 0.39 0.68 1.63 2.87
WLS-LTS 0.09 0.48 1.33 2.47
REWLS-LTS 0.09 0.48 1.33 2.47
RECWLS-LTS 0.14 0.34 1.06 2.13

Table 2.6: Maximum MSE with outliers with x0 = 10 (high leverage outliers)

estimator h
3 5 8 10

LMS 0.35 0.53 1.14 1.91
WLS-LMS 0.19 0.38 0.95 1.67
REWLS-LMS 0.19 0.38 0.95 1.67
RECWLS-LMS 0.16 0.28 0.77 1.45
LTS 0.40 0.69 1.61 2.86
WLS-LTS 0.22 0.48 1.31 2.45
REWLS-LTS 0.22 0.48 1.32 2.45
RECWLS-LTS 0.18 0.35 1.05 2.11
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Tables 2.5 and 2.6 show the maximum MSE for the normal error model

with outliers x0 = 1, 10. Initial estimators, LMS and LTS, already show

great robustness properties since they are already robust, and WLS estima-

tors and REWLS estimators have very similar performance, both increased

the robustness significantly compared to initial estimators. When x0 = 1,

which means that the contaminated observations do not have high leverage,

RECWLS estimators have a slightly larger MSE than REWLS estimators when

h = 3. This is because the proposed estimators are more “gentle” than the

threshold-value based estimators since its weight function is continuous. When

h increases, RECWLS estimators show better robustness properties than the

others, and the di↵erences are increasing with increasing of h. When x0 = 10,

this means that the contaminated observations have a high leverage, the pro-

posed RECWLS estimators in this case show better robustness properties even

when the proportion of outliers is low (h = 3). Also, LMS-based estimators

are more robust than LTS-based estimators judging from the MSE values.

In summary, the proposed RECWLS estimators show better robustness

properties than the initial estimators and threshold-value based weighted es-

timators for finite sample sizes.

2.5 Real data analysis

I analyzed the aircraft data set given in Gray (1985). It records five mea-

sured characteristics of 23 single-engine aircrafts built over the years 1947-1979

recorded by the O�ce of Naval Research. The response variable is the cost

(unit $100,000) and the predictor variables are aspect ratio, lift-to-drag ratio,

weight of plane (in pounds) and maximal thrust. There are 2 extreme outliers,
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and there may be other potential moderate outliers and leverage points in the

dataset. So it is a good dataset to illustrate robust estimators in a real world

setting.

The LSE, REWLS and RECWLS estimators with LTS as the initial esti-

mator, MM-estimators (Yohai, 1987) and S-estimators (Rousseeuw and Yohai,

1984) were calculated to compare the performance of these robust estimators.

Table 2.7 shows the comparison of coe�cients. As we can see from Table 2.7,

Table 2.7: Coe�cient estimates for Aircraft data

Intercept Aspect Ratio Lift-to-drag Ratio Weights (⇥103) Thrust (⇥103)
LSE -3.79 (10.12) -3.85 (1.76)⇤ 2.49 (1.19) 3.50 (0.48)⇤⇤ -1.95 (0.50)⇤⇤

REWLS 9.50 (5.58) -3.05 (0.92)⇤⇤ 1.21 (0.65) 1.38 (0.39)⇤⇤ -0.55 (0.33)⇤⇤

S 13.37 (4.47)⇤⇤ -4.02 (1.16)⇤⇤ 1.54 (0.44)⇤⇤ 1.70 (0.34)⇤⇤ -0.98 (0.29)⇤⇤

RECWLS 3.15 (7.71) -3.41 (1.31)⇤ 1.95 (0.89)⇤ 2.39 (0.46)⇤⇤ -1.24 (0.42)⇤⇤

MM 6.14 (8.31) -3.23 (0.86)⇤⇤ 1.67 (0.70)⇤ 1.92 (0.79)⇤ -0.93 (0.51)

*standard errors in parentheses, two sided significance at level 0.05 (

⇤
) or level 0.01

(

⇤⇤
)

all robust estimators are very di↵erent from the LSE. Among the robust es-

timators, the S-estimator and the REWLS estimator show a similar pattern,

except that the variable lift-to-drag is not significant for the REWLS estimator

(p-value is 0.08). The MM-estimator and the proposed estimator RECWLS

are similar in performance, and the variable lift-to-drag is significant in both

cases, and the variable thrust is not significant for the MM-estimator (p-value

is 0.08).

The plots in Figure 2.1 exhibit the relative weights assigned to each ob-

servation under di↵erent estimators. Since the REWLS uses a threshold to

assign 0/1 weight to observations, it gave 0 weight to observation #16 and

#22, and the REWLS actually has exactly the same estimates as with its ini-
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Figure 2.1: Weights for each of the 23 observations in the Aircraft data
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tial estimator LTS in this case. All estimators downweighted observation #22,

and the MM-estimator and the proposed estimator did not totally eliminate

the observation #16, unlike the REWLS, but gave it a smaller weight. Both

the MM-estimator and the proposed estimator also downweighted a little the

moderate outliers and leverage points: #3, #4, #12 and #19.
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Chapter 3

Logistic Regression Model

3.1 Preliminaries: the logistic regression model

and existing estimators

Consider a random sample of observations (x1, y1), ..., (xn

, y
n

), where x

i

is a

vector of p explanatory variables and y
i

2 {0, 1} is a dichotomous response

variable, and assume the probability of positive response ⇡
i

= P (y
i

= 1|x
i

) is

linked with the covariates via the relationship

g(⇡
i

) = x

T

i

�,

where the link function is a quantile function of some probability distribu-

tion. For example, when the link function g is the logit link function g(⇡
i

) =

log{⇡
i

/(1�⇡
i

)}, then the corresponding model is known as logistic regression.

Another common link is g = ��1, the inverse of the standard normal distribu-

tion function, and the resulting model is called probit regression. Here I focus

on estimating the regression parameter � for a given g.
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The maximum likelihood estimator (MLE) of � of binomial regression

model is defined as

�̂ = argmin
�

nX

i=1

d(y
i

,x
i

, �),

where d(y
i

,x
i

, �) = �2y
i

log ⇡(xT

i

�)�2(1�y
i

)log{1�⇡(xT

i

�)} is the deviance

and ⇡ = g�1 is the inverse link function. Taking the derivative w.r.t. �, the

MLE �̂ satisfy the estimating equation

nX

i=1

{y
i

� ⇡(xT

i

�̂)}⇡0
(xT

i

�̂)

⇡(xT

i

�̂){1� ⇡(xT

i

�̂)}
x

i

= 0, (3.1)

and if the link function is logit link, then the estimating equation becomes

nX

i=1

(y
i

� ex
T

�

1 + exT

�

)x
i

= 0.

For logistic and probit models the objective function in (3.1) is convex,

so that if a finite minimizer exists, it is the unique solution of (3.1). Albert

and Anderson (1984) showed that �̂ exists if and only if the data overlap, in

the sense that no hyperplane in the covariate space separates response from

non-responses.

From the estimating equation (3.1) we can see that the MLE is a↵ected by

(i) observations with extreme values of explanatory variables x

i

’s, (ii) obser-

vations which are poorly predicted by the chosen model, usually with unrea-

sonably large value of y � ⇡(xT�), and (iii) model misspecification.

Bianco and Yohai (1996) proposed robust estimators by controlling the

deviances. However, in order to obtain theoretically unbiased estimators, an

additional bias-correction term has to be added, and it makes the computation

of their estimator very complicated and the estimator itself isn’t straightfor-
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ward.

Künsch et al.(1989) proposed Mallows-type estimators by controlling co-

variates and residuals in the estimating equation independently. For the logis-

tic regression case, they were defined as solutions of

nX

i=1

w(x
i

; ⌘̂)�
b

(y
i

� ⇡(xT

i

�̂)� c(⇡(xT

i

�̂), b))x
i

= 0,

where ⌘̂ is a vector of nuisance parameters (location, scatter estimate of co-

variates), and �
b

is usually taken as Huber’s function �
b

(t) = (�b) _ (t ^ b),

c(t, b) is a bias-correcting function expressed as

c(t, b) =

8
>>>>>><

>>>>>>:

b⇡(t)/{1� ⇡(t)}� ⇡(t) if t < 0, b < 1� ⇡(t)

1� ⇡(t)� b{1� ⇡(t)}/⇡(t) if t > 0, b < ⇡(t)

0 otherwise.

The covariate weights w(x
i

; ⌘̂) usually depends only on continuous covariates.

If we write x

T

i

= (uT

i

, zT
i

), where u

i

2 Rp�q are the categorical covariates and

z

i

2 Rq are the continuous covariates, then the weights are typically of the

form w(x
i

; ⌘̂) = !((z
i

� µ̂)T ⌃̂�1(z
i

� µ̂)/t), with ! : R+ ! R+ a non-increasing

function, µ̂ and ⌃̂ are robust estimators of location and scatter of the z
i

’s, and

t is a threshold value (usually t = �2
q,1�↵

for some ↵ 2 (0, 1)).

The initial robust location and scale estimator of continuous covariates, µ̂

and ⌃̂, can be computed using the Minimum Covariance Determinant (MCD)

methods. MCD is one of the first a�ne equivariant and highly robust estima-

tors of multivariate location and scatter. It finds the h(> n/2) observations
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x(i) whose classical covariance matrix

V =
1

h
⌃

i

(x(i) � t)(x(i) � t)T

has the lowest possible determinant, where t = x, the average of those h points.

As we can see, the covariate weight w and “residual” weight �
b

are indepen-

dent, and it will make the resulting estimators less e�cient since the estimating

equation will downweight observations with extreme covariates even if they are

well-fitted.

Gervini (2005) proposed a class of robust adaptive weighted maximum like-

lihood estimators for binary regression models. The adaptive weights he chose

are based on adaptive cut-o↵ thresholds to control observations with extreme

covariates. He showed that the estimators based on adaptive thresholds are

more e�cient than those based on non-adaptive thresholds under the clean

model and have comparable robustness under contaminated models.

3.2 RECMLE estimators

Similar to the strategy used in constructing the RECWLS estimator in the

linear regression model of Chapter 2, here I construct a new class of weighted

maximum likelihood estimators with a continuous weight function based on

an estimator of a nuisance parameter as a function of the Kolmogorov-Smirnov

statistic, without using cut-o↵ values. I shall refer these estimators as RECMLE

(robust and e�cient continuous maximum likelihood estimators).

First construct two estimators, µ̂(0) and ⌃̂(0), that are initial location and

scatter estimators of the z

i

’s. Then the squared Mahalanobis distances of the
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z

i

’s can be defined as m2
i

= (z
i

� µ̂(0))T (⌃̂(0))�1(z
i

� µ̂(0)), and the empirical

distribution function of m2
i

can be defined as

F
n

(t) =
1

n

nX

i=1

I(|m2
i

| t).

When the z

i

’s are normally distributed, F
n

converges to F
�

2
q

(�2
q

distribution

function). Then the proportion of outliers in the covariates can be estimated

by (Gervini, 2005)

↵
n

= sup
t�F

�1

�

2
q

(1��)

{F
�

2
q

(t)� F
n

(t)}+

= max
i�i0{F�

2
q

(m2
(i))�

i� 1

n
}+,

where {·}+ denotes the positive part, � determines the length of the tail (� =

0.25 is a reasonable choice) and i0 = min{i : m2
i

� F�1
�

2
q

(1 � �)}. When
���F

�

2
q

(t)� F
n

(t)
��� is large for a large t, it means that the outliers (observations

with extreme covariates) are present in the sample. Then an adaptive threshold

can be defined as

t
n

= F�1
n

(1� ↵
n

)

= m2
(n�[n↵

n

]).

The adaptive threshold-type estimators were proposed by Gervini (2005).

Specifically, he proposed a Mallows-type estimator with weights w(x
i

; ⌘̂) =

!(m2
i

/t
n

), and they are essentially weighted maximum likelihood estimators.

The weight function I propose here can be defined as

w(x
i

;↵
n

) = m(↵
n

m2
i

),
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similar to the weight function defined in Section 2.2. I assume that m is

an absolutely continuous non-increasing mapping from R+ to (0, 1] such that

m(0) = 1, sup
x>0[xm(x)] < 1, and first derivative is bounded with m(1)(0) =

0. Define an objective function

 
�,⌘

(x, y) = w
⌘

(x)�
�

(x, y), x, � 2 Rp, y 2 {0, 1}, (3.2)

where ⌘ = (↵, µ,⌃) is a set of nuisance parameters (location, scale and good-

ness of fit of covariates), an adaptive weight function w
⌘

(x) = m(↵(z �

µ)T⌃�1(z � µ)) and �
�

(x, y) = (y � ⇡(xT�))x, with µ 2 Ra,⌃ is a q ⇥ q

real matrix and x

T = (uT , zT ). Then I define my adaptive estimator �̂
n

of �

as the solution to the estimating equation

nX

i=1

 
�,⌘̂

(x
i

, y
i

) = 0,

where ⌘̂ is a consistent estimator of ⌘ = (↵, µ,⌃).

3.3 Asymptotic properties

This section studies asymptotic properties of the proposed estimator �̂
n

de-

fined in the previous section. I will show that, under some general assumptions

on the moments of explanatory variables, the estimator is asymptotically con-

sistent.

Assume that �0, µ0 and ⌃0 are the “true values” of �, µ and ⌃, re-

spectively, and the independent sample (x1, y1), ..., (xn

, y
n

) follows the logistic
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model Pr(y
i

= 1) = ⇡(xT

i

�0), i = 1, ..., n. We define functions

P
n

 
�

=  
n

(�) =
1

n

nX

i=1

 
�,⌘̂

(x
i

, y
i

)

and

 (�) = P 
�,0 = P�

�

,

where  
�,0 is obtained by (3.2) with ⌘ replaced by ⌘0 = (0, µ0,⌃0), and P

denotes the (unknown) joint probability distribution of the (x, y)’s.

The consistency of �̂
n

is established in Theorem 3.1, which makes use of

the results of Lemma 3.1, 3.2 and 3.3 stated below. The following assumptions

are needed to prove lemmas and the theorem:

B1 µ̂
p�! µ0 and ⌃̂

p�! ⌃0.

B2 E(XX

T ) is nonsingular.

B3 E
G0(kxk

4) < 1.

B4 the weight function m(x) is continuous, has bounded first derivative,

m(0) = 1 and m(1)(0) = 0.

For almost all popular initial robust estimators, like the MCD (Minimum

Covariance Determinant) used in the simulation studies, B1 is satisfied. In

the lemmas and the theorem stated below, the asymptotic properties are un-

derstood to be as n ! 1. The proof of Lemma 3.1 below is given in Gervini

(2005).

Lemma 3.1: If B1 is satisfied, then ↵
n

= o
p

(1).

Lemma 3.2: If B2 is satisfied, then k (�
n

)k ! 0 implies k�
n

� �0k ! 0

for any sequence {�
n

} 2 ⇥.
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Proof: Consider

k (�
n

)k = kP 
�

n

,0k

= kP�
✓

n

k

=
��P (y � ⇡(xT�

n

))x
��

=
��P (y � ⇡(xT�0) + ⇡(xT�0)� ⇡(xT�

n

))x
��

=
��P (y � ⇡(xT�0))x+ P (⇡(xT�0)� ⇡(xT�

n

))x
�� .

If k (�
n

)k ! 0, then  (�
n

) ! 0. Since P (y � ⇡(xT�0))x = 0, we have from

the above equality that P (⇡(xT�0)� ⇡(xT�
n

))x ! 0. Note

P (⇡(xT�0)� ⇡(xT�
n

))x = P (⇡(1)(c)(xT�
n

� x

T�0)x)

 1

4
P (xT (�

n

� �0)x),

where c 2 (xT�0,x
T�

n

) and ⇡(1) is the first derivative, for logistic link, ⇡(1) =

e

x

(ex+1)2 2 (0, 1/4]. Also we have x = (x1, x2, ..., xp

)T , �0 � �
n

= �
d

=

(�
d1, �d2, ..., �dp)T .

P (xT (�0 � �
n

)x) = P (
pX

i=1

�
di

0

BBBBBBB@

x1xi

x2xi

...

x
p

x
i

1

CCCCCCCA

) =
pX

i=1

�
di

P (

0

BBBBBBB@

x1xi

x2xi

...

x
p

x
i

1

CCCCCCCA

) ! 0.

Since P (XX

T ) = E(XX

T ) is nonsingular, we have �0 � �
n

! 0, and so we

prove k�
n

� �0k ! 0.

Lemma 3.3: Assume that B3 and B4 hold. Then the class { 
⌘,�

: � 2

⇥, k⌘ � ⌘0k < �} is P-Glivenko-Cantelli for some � > 0, where ⌘0 = (0, µ0,⌃0).
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Proof: To show that a class F of vector-valued functions  : (x, y) 7! Rp

to be Glivenko-Cantelli, we need to show each of the classes of coordinates

 i : (x, y) 7! R with  = ( 1, ..., p)T ranging over F (i = 1, 2, ..., p) is

Glivenko-Cantelli.

The class F = { 
�

: � = (�, ⌘) = (�,↵, µ,⌃), ↵ 2 [0, 1], µ 2 Rq, ⌃ 2

Sq

+, � 2 ⇥, k⌘ � ⌘0k < �} is a collection of measurable functions indexed

by a bounded subset in � ⇢ ⇥ ⇥ Rq ⇥ R ⇥ Rq⇥q, and Sq

+ denotes a set

of positive semidefinite matrices defined in Rq⇥q. This is because ⌃ is a

variance-covariance matrix of continuous explanatory variables essentially, so

it is symmetric and positive semidefinite. For the norm, I use k⌘ � ⌘0k =

(↵2+kµ� µ0k2+k⌃� ⌃0k2+k� � �0k2)1/2, with k·k denotes Euclidean norm

of for vectors µ, �, and for matrix ⌃, k·k denotes the general induced norm

(without specifying p). For two values �
i

= (�
i

, ⌘
i

), i = 1, 2 of �, we have

�� i

�1
(x, y)�  i

�2
(x, y)

�� =
��w

⌘1(x)�
i

�1
(x, y)� w

⌘2(x)�
i

�2
(x, y)

��

= |w
⌘1(x)�

i

�1
(x, y)� w

⌘1(x)�
i

�2
(x, y)+

w
⌘1(x, y)�

i

�2
(x, y)� w

⌘2(x)�
i

�2
(x, y)|


��w

⌘1(x)�
i

�1
(x, y)� w

⌘1(x)�
i

�2
(x, y)

��+
��w

⌘1(x)�
i

�2
(x, y)� w

⌘2(x)�
i

�2
(x, y)

�� .

(3.3)
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But

��w
⌘1(x)�

i

�1
(x, y)� w

⌘1(x)�
i

�2
(x, y)

�� = w
⌘1(x)

��(y � ⇡(xT�1))xi

� (y � ⇡(xT�2))xi

��


��⇡(xT�1)� ⇡(xT�2)

�� |x
i

|

 K0 |xi

|
��
x

T�2 � x

T�1
��

 K0 |xi

| kxk k�2 � �1k ,

(3.4)

where K0 is an upper bound of the first derivative of link function ⇡(1)(x).

Using the Mean Value Theorem, for any x1 and x2, there exists c 2 (x1, x2)

such that

|⇡(x1)� ⇡(x2)| = ⇡(1)(c) |x1 � x2| < K0 |x1 � x2| .

Furthermore, we have

��w
⌘1(x)�

i

�2
(x, y)� w

⌘2(x)�
i

�2
(x, y)

�� = |w
⌘1(x)� w

⌘2(x)|
��y � ⇡(xT�2)

�� |x
i

|

= |w
↵1,µ1,⌃1(x)� w

↵1,µ2,⌃2(x)+

w
↵1,µ2,⌃2(x)� w

↵2,µ2,⌃2(x)|
��y � ⇡(xT�2)

�� |x
i

|

 (|w
↵1,µ1,⌃1(x)� w

↵1,µ2,⌃2(x)|+

|w
↵1,µ2,⌃2(x)� w

↵2,µ2,⌃2(x)|) |xi

| ,

(3.5)

|w
↵1,µ2,⌃2(x)� w

↵2,µ2,⌃2(x)| = |m(↵1(z� µ2)
T⌃�1

2 (z� µ2))�

m(↵2(z� µ2)
T⌃�1

2 (z� µ2))|

 K1|↵2 � ↵1|(z� µ2)
T⌃�1

2 (z� µ2),

(3.6)
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and

|w
↵1,µ1,⌃1(x)� w

↵1,µ2,⌃2(x)| = |m(↵1(z� µ1)
T⌃�1

1 (z� µ1))�

m(↵1(z� µ2)
T⌃�1

2 (z� µ2))|

 K1↵1|(z� µ1)
T⌃�1

1 (z� µ1)�

(z� µ2)
T⌃�1

2 (z� µ2)|

 K1|(z� µ1)
T⌃�1

1 (z� µ1)�

(z� µ1)
T⌃�1

2 (z� µ1)|+

K1|(z� µ1)
T⌃�1

2 (z� µ1)�

(z� µ2)
T⌃�1

2 (z� µ2)|.

(3.7)

Since ⌃ is a positive semidefinite matrix, so does ⌃�1. Denote the eigenvalues

of ⌃�1
2 to be �1 � �2 � ... � �

q

� 0. Then there is a set of orthonormal

eigenvectors of ⌃�1
2 , say p1, ..., pq, s.t. ⌃

�1
2 p

i

= �
i

p
i

. In matrix form, there is

an orthogonal matrix Q s.t.

Q�1⌃�1
2 Q = QT⌃�1

2 Q = ⇤.
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Then we obtain

|(z� µ1)
T⌃�1

2 (z� µ1)� (z� µ2)
T⌃�1

2 (z� µ2)|

= |
qX

i=1

�
i

(pT
i

(z� µ1))
2 �

qX

i=1

�
i

(pT
i

(z� µ2))
2|

= |
qX

i=1

�
i

pT
i

(2z� µ1 � µ2)p
T

i

(µ2 � µ1)|


qX

i=1

�
i

kp
i

k2 k2z� µ1 � µ2k kµ2 � µ1k

 �1 kµ2 � µ1k k2z� µ1 � µ2k
qX

i=1

kp
i

k2

= ⇢(⌃�1
2 ) kµ2 � µ1k k2z� µ1 � µ2k

qX

i=1

kp
i

k2


��⌃�1

2

�� kµ2 � µ1k k2z� µ1 � µ2k ,

(3.8)

where ⇢(⌃�1
2 ) = max|�

i

| is the spectral radius of ⌃�1
2 , and ⇢(A)  kAk holds

for any induced norm.

Similarly, ⌃�1
2 �⌃�1

1 is symmetric too, thus denote the eigenvalues of ⌃�1
2 �

⌃�1
1 to be �⇤1 � �⇤2 � ... � �⇤

q

, and the orthonormal eigenvectors of ⌃�1
2 � ⌃�1

1

as p⇤1, ..., p
⇤
q

s.t. (⌃�1
2 �⌃�1

1 )p⇤
i

= �⇤
i

p⇤
i

. In matrix form, there is an orthogonal

Q⇤ s.t.

(Q⇤)�1(⌃�1
2 � ⌃�1

1 )Q⇤ = (Q⇤)T (⌃�1
2 � ⌃�1

1 )Q⇤ = ⇤⇤.
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Then we have

|(z� µ1)
T⌃�1

2 (z� µ1)� (z� µ1)
T⌃�1

1 (z� µ1)|

= |(z� µ1)
T (⌃�1

2 � ⌃�1
1 )(z� µ1)|

= |(z� µ1)
TQ⇤⇤⇤(Q⇤)T (z� µ1)|

= |[(Q⇤)T (z� µ1)]
T⇤⇤[(Q⇤)T (z� µ1)]|

= |
qX

i=1

�
i

((p⇤
i

)T (z� µ1))
2|

 max
i=1,...,q

|�⇤
i

|
qX

i=1

((p
0

i

)T (z� µ1))
2

 ⇢(⌃�1
2 � ⌃�1

1 ) kz� µ1k2
qX

i=1

��(p⇤
i

)2
��

 kz� µ1k2
��⌃�1

2 � ⌃�1
1

�� .

(3.9)

Then from (3.5), (3.6), (3.7), (3.8) and (1.6), we obtain

��w
⌘1(x)�

i

�2
(x, y)� w

⌘2(x)�
i

�2
(x, y)

��

< K1|↵2 � ↵1|(z� µ2)
T⌃�1

2 (z� µ2)|xi

|

+K1

��⌃�1
2

�� kµ2 � µ1k k2z� µ1 � µ2k |xi

|

+K1 kz� µ1k2
��⌃�1

2 � ⌃�1
1

�� |x
i

|.

(3.10)

Since |↵2 � ↵1|, kµ2 � µ1k , k⌃2 � ⌃1k , k�2 � �1k < k�2 � �1k, from (3.3),
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(3.4) and (3.11), we can now give a bound for  :

�� i

�1
(x, y)�  i

�2
(x, y)

�� < K0 k�2 � �1k |xi

| kxk+

K1|↵2 � ↵1|(z� µ2)
T⌃�1

2 (z� µ2)|xi

|+

K1

��⌃�1
2

�� kµ2 � µ1k k2z� µ1 � µ2k |xi

|+

K1 kz� µ1k2
��⌃�1

2 � ⌃�1
1

�� |x
i

|

 (K0 |xi

| kxk+K1(z� µ2)
T⌃�1

2 (z� µ2)|xi

|+

K1

��⌃�1
2

�� k2z� µ1 � µ2k |xi

|+

K1 kz� µ1k2 |xi

|) k�2 � �1k

= Li(x) k�2 � �1k , every �1, �2.

For each  i, i = 1, ..., p, we have derived a Lipschitz condition, so for  then

we have

| 
�1(x, y)�  

�2(x, y)| < L(x) k�2 � �1k , every �1, �2,

where L(x) = K0x kxk+K1(z�µ2)T⌃
�1
2 (z�µ2)x+K1

��⌃�1
2

�� k2z� µ1 � µ2k |xi

|+

K1 kz� µ1k2 x.

Now consider the bracketing entropy relative to L
r

(P )-norm

k 
i

k
P,r

= (P | 
i

|r)1/r.

Use brackets of the type [ 
�

�"L, 
�

+"L] for � ranging over a suitable chosen

subset of �, and these brackets have L
r

(P )-size 2" kLk
P,r

. If � ranges over a

grid of mesh width " over �, then the brackets [ 
�

� "L, 
�

+ "L] range over
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F . By the Lipschitz condition, we obtain

 
�1 � "L   

�2   
�1 + "L, if k�2 � �1k  ",

so we need as many brackets as we need balls of radius "

2 to cover �, or we

need less than (diam �/")2p+2 cubes with size " to cover parameter space �. If

P |Li|r < 1, then there exists a constant J , depending on � and p only, such

that the bracketing numbers satisfy

N[ ](",F , L
r

(P ))  J(
diam �

"
)p, every 0 < " < diam �.

Since all  2 F are continuous functions, they are measurable. If B3 is

satisfied, then P |L| < 1, and thus the class F is P-Glivenko-Cantelli from

Theorem 19.4 (Glivenko-Cantelli) in van der Vaart (1998).

Theorem 3.1: If B1, B2, B3 and B4 are satisfied, then estimators �̂
n

as

the solution to the estimating equation  
n

(�̂
n

) = 0 converges in probability to

�0.

Proof: Denote

 (�) = P 
�,0 = P�

�

 (�, ⌘) = P 
�,⌘

= P�
�

w
⌘

 
n

(�) =  
n

(�, ⌘) =
1

n

nX

i=1

 
�,⌘

 
n

(�, ⌘̂) =
1

n

nX

i=1

 
�,⌘̂

.

Note that  (�̂
n

) = ( (�̂
n

) �  
n

(�̂
n

)) +  
n

(�̂
n

). Then if we can show that

sup
�2⇥ k 

n

(�)� (�)k = o
P

(1), then
��� (�̂

n

)
��� = o

P

(1) since  
n

(�̂
n

) = o
P

(1).

Then from Lemma 2.2, we have
����̂

n

� �0

��� = o
P

(1). To show sup
�2⇥ k 

n

(�)� (�)k =
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o
P

(1), we factor it as follows:

sup
�2⇥

k 
n

(�, ⌘̂)� (�)k

= sup
�2⇥

k 
n

(�, ⌘̂)� 
n

(�, ⌘) + 
n

(�, ⌘)� (�, ⌘) + (�, ⌘)� (�, 0)k

 J1 + J2 + J3,

where

J1 = sup
�2⇥

k 
n

(�, ⌘̂)� 
n

(�, ⌘)k

J2 = sup
�2⇥

k 
n

(�, ⌘)� (�, ⌘)k

J3 = sup
�2⇥

k (�, ⌘)� (�, 0)k .

From Lemma 3.3, we know that F is a P-Glivenko-Cantelli class, so J2
as�! 0.

For J1,

J1 = sup
�2⇥

�����
1

n

nX

i=1

�
�

(x
i

, y
i

)(w
⌘̂

(x
i

)� w
⌘

(x
i

))

�����

 1

n

nX

i=1

sup
�2⇥

k�
�

(x
i

, y
i

)(w
⌘̂

(x
i

)� w
⌘

(x
i

))k

=
1

n

nX

i=1

|w
⌘̂

(x
i

)� w
⌘

(x
i

)| sup
�2⇥

k�
�

(x
i

, y
i

)k .

From (3.11), we obtain

|w
⌘̂

(x
i

)� w
⌘

(x
i

)| < K1|↵̂� ↵|(z� µ)T⌃�1(z� µ)

+K1

��⌃�1
�� kµ̂� µk k2z� µ̂� µk

+K1 kz� µ̂k2
���⌃̂�1 � ⌃�1

��� .

(3.11)

Since ⌘̂�⌘ = (↵̂�↵, µ̂�µ, ⌃̂�⌃) = o
P

(1), we have ↵̂�↵ = o
p

(1), µ̂�µ = o
p

(1)
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and ⌃̂ � ⌃ = o
p

(1). Also, ⌃̂�1 � ⌃�1 = ⌃̂�1(⌃ � ⌃̂)⌃�1, and so we have

⌃̂�1 �⌃�1 = o
p

(1). Then from (3.10) it follows that |w
⌘̂

(x
i

)�w
⌘

(x
i

)|= o
p

(1).

Since B2, B3 are satisfied we also have sup
�2⇥ k�

�

(x, y)k2 < 1. Then we

obtain J1
p�! 0.

For J3,

J3 = sup
�2⇥

kP�
�

(x, y)(w
⌘

(x)� w
⌘0(x))k

 sup
�2⇥

P k�
�

(x, y)(w
⌘

(x)� w
⌘0(x))k

 sup
�2⇥

P 1/2 k�
�

(x, y)k2 P 1/2|w
⌘

(x)� w
⌘0(x)|2

= P 1/2|w
⌘

(x)� w
⌘0(x)|2sup

�2⇥
P 1/2 k�

�

(x, y)k2 ,

and the last inequality used the Cauchy-Schwarz inequality. We know

w
⌘

(x)� w
⌘0(x) = 1�m(⌘(z� µ)T⌃�1(z� µ))

p�! 0.

Then since ⌘̂ = o
P

(1), m(0) = 1 and |w
⌘̂

(x)�w
⌘0(x)|2 is bounded by 1, using

the Dominated Convergence Theorem we obtain

lim
n!1

P 1/2|w
⌘

(x)� w
⌘0(x)|2=

p�! 0.

Also we have,

sup
�2⇥

P k�
�

(x, y)k2 = sup
�2⇥

P
��⇡(y � x

T�)x
��2  P kxk2 ,

and so from assumption B3, we get sup
�2⇥ P k�

�

(x, y)k2 < 1. It then follows

that J3 ! 0. This completes the proof. J
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3.4 Monte Carlo studies

In this section a Monte Carlo Study was carried out to examine the finite-

sample e�ciency and robustness properties of the proposed estimator �̂
n

given

in Section 3.2. For the initial robust estimators of the location and scatter of

the covariates, µ̂ and ⌃̂, minimum covariance determinant (MCD) estimators

were used. The weight function m(x) used in the simulation is the same as

(2.14), m(x) = 1
(1+x

2)5 .

For comparison purposes, I computed the following estimators:

1. Maximum likelihood estimator (MLE).

2. Weighted maximum likelihood estimator with fixed hard rejection weight

(F-WMLE) with ↵ = 0.10.

3. Weighted maximum likelihood estimators with adaptive hard rejection

weight (A-WMLE) with � = 0.10.

4. The proposed estimator, weighted maximum likelihood estimator with

continuous weight (RECMLE).

3.4.1 E�ciencies under the clean model

We considered clean logistic regression models with intercept and normally

distributed covariates. Specifically, let (x1, y1), ..., (xn

, y
n

) be a random model

that follows the logistic model with x

i

= (1, x
i1, ..., xip�1)T and such that

(x
i1, ..., xip�1)T has a N

p�1(µ,⌃) distribution, and µ = 0, ⌃ = I was chosen in

the following simulation studies. Unlike LSE of linear regression models, there

isn’t model equivariance in the logistic regression. Di↵erent sets of regression

60



parameter �0 will influence the performance of estimators greatly, so �0 must

be chosen carefully. I considered di↵erent kind of conditions, when �0 =

(0, 1.79), P0(y = 1) = 0.5, so the distribution of ⇡(xT�0) is symmetric; when

�0 = (�1, 1.18), P0(y = 1) ⇡ 0.3, so the distribution of ⇡(xT�0) is skewed.

Samples with n = 100, 500 and p = 2, 5 were considered (when p = 5,

�0 = (0, 1.79, 0, 0, 0) and (�1, 1.18, 0, 0, 0)). For each value of p and n, 1000

samples were generated, and for each estimator �
n

, I computed
p
n ⇤ bias and

n ⇤ var. Since the MLE is asymptotically e�cient, I computed the relative

squared e�ciency with respect to the MLE:

REF =

P1000
i=1 (

���MLE

ni

� �0
��)2

P1000
i=1 (k�ni � �0k)2

,

where �
ni

and �MLE

ni

are the i-th generated values of �
n

and the MLE, respec-

tively. Any estimator with REF close to 1 would be considered very e�cient.

Also since the MLE is only asymptotically e�cient, the simulated e�ciency

heavily depends on the sample size and the number of parameters that need

to be estimated.

Tables 3.1 and 3.2 exhibit comparisons of bias and relative e�ciency of the

estimators considered in the simulation when p = 2, 5. As we can see, for all

estimators, the relative e�ciency increases as the sample size n increases. For

all MLE based estimators, the relative e�ciency for the symmetric target pa-

rameter �0 (distribution of ⇡(xT�0) is symmetric, for example, �0 = (0, 1.79))

is larger than skewed ones (for example, �0 = (�1, 1.18)). Further, under all

settings, the performance in e�ciency of di↵erent estimators have the follow-

ing order: MLE ⇡ RECMLE > A-WMLE > F-WMLE. As for the bias, all

MLE based estimators have almost similar biases. In summary, the proposed
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Table 3.1: Bias and variance of estimators of �02 for clean logistic models

(p = 2)

estimator �0 = (0, 1.79) �0 = (�1, 1.18)p
n ⇤ bias n ⇤ var REF

p
n ⇤ bias n ⇤ var REF

n = 100
MLE 0.88 16.76 1.00 0.59 10.58 1.00
F-WMLE 0.88 19.95 0.84 0.60 14.81 0.71
A-WMLE 0.87 17.97 0.93 0.57 12.03 0.88
RECMLE 0.88 16.77 1.00 0.59 10.56 1.00
n = 500
MLE 0.31 13.97 1.00 0.29 9.32 1.00
F-WMLE 0.27 16.17 0.86 0.27 12.94 0.72
A-WMLE 0.30 14.20 0.98 0.26 9.76 0.96
RECMLE 0.31 13.97 1.00 0.29 9.32 1.00

estimator attains almost the full e�ciency (relative to the MLE), while keeping

the bias comparable for finite samples.

When comparing the respective cases of p = 2 and p = 5, that is comparing

values of Table 3.1 to those of Table 3.2, we can see that both biases and

variances increased when p = 5. This is probably because when p = 5, one

has to estimate more parameters than in the case p = 2. However, the trend

between di↵erent estimators seems to be the same.

3.4.2 Robustness under contaminated models

Consider point-mass contamination models defined by

P⇤(y = 1|x) = (1� ✏)⇡(xT�0) + ✏I{⇡(x̃T�0)  0.5},

where ✏ 2 [0, 0.5) is the proportion of misclassified observations with possibly

outlying covariates x̃ = (u, z̃) (only the continuous covariates are changed),
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Table 3.2: Bias and variance of estimators of �02 for clean logistic models

(p = 5)

estimator �0 = (0, 1.79, 0, 0, 0) �0 = (�1, 1.18, 0, 0, 0)p
n ⇤ bias n ⇤ var REF

p
n ⇤ bias n ⇤ var REF

n = 100
MLE 1.73 22.23 1.00 1.08 12.85 1.00
F-WMLE 1.76 25.89 0.86 1.10 16.62 0.77
A-WMLE 1.71 23.38 0.95 1.05 14.29 0.90
RECMLE 1.67 22.57 0.99 1.04 13.13 0.98
n = 500
MLE 0.80 15.08 1.00 0.48 9.85 1.00
F-WMLE 0.82 16.56 0.91 0.46 11.69 0.84
A-WMLE 0.80 15.26 0.99 0.50 10.07 0.98
RECMLE 0.80 15.06 1.00 0.48 9.84 1.00

x̃ 2 Rp and �0 is the target parameter.

In the simulation, I have chosen x̃(k) = (1, k, 0
p�2) with k = 2 and k = 5,

and ✏ = 0.1 and ✏ = 0.2, and the sample size was taken to be n = 100. Tables

3.3 and 3.4 display the comparison of mean squared errors of estimators of �02.

When k = 2, which means that the leverage of contaminated point is not

very large, the di↵erence of MSEs between all estimators are not very large.

This means that when the contaminated points are not in the boundary of the

covariate space, it’s very hard to detect it, and thus the robust estimators do

not have a better performance than the MLE. On the other hand, it can be

seen that when k = 5, all robust estimators have significantly smaller MSE

than the MLE. Also, by comparing conditions of di↵erent �0, the skewed case

(�0 = (�1, 1.18)) has a smaller MSE than the symmetric case (�0 = c(0, 1.79)).

When k = 5, robustness of three robust estimators examined have the

following order in performance: RECWLS > A-WMLE > F-WMLE. So the

proposed estimator at least has a comparable robustness than the adaptive

63



Table 3.3: Mean squared errors ⇥10 of estimators of �02 under point-mass

contaminations at x̃ = (1, k)

estimator �0 = (0, 1.79) �0 = (�1, 1.18)
k = 2 k = 5 k = 2 k = 5

✏ = 0.10
MLE 14.54 30.63 4.56 12.56
F-WMLE 12.58 2.05 4.51 1.42
A-WMLE 10.49 1.99 3.85 1.29
RECMLE 13.66 1.55 4.32 1.10
✏ = 0.20
MLE 25.26 38.02 9.15 16.66
F-WMLE 29.83 2.45 11.20 1.52
A-WMLE 30.29 2.42 11.33 1.47
RECMLE 25.35 2.29 9.19 1.54

and fixed threshold weighted MLEs. Comparing the two cases p = 2 and

p = 5, the trends are the same, and the proposed estimator still has the best

performance overall. Also, by looking at the MSE values for the two cases

✏ = 0.10 and ✏ = 0.20 separately, we see that the comparisons between di↵erent

estimators are the same. However, we can see that the MSE is increased

considerably when ✏ increased when k = 2 but not so much when k = 5.

This is because when k = 5, all robust estimators easily detect most of the

contaminated observations, so the increase of proportions of contamination

would not influence the estimators that much, and that is not the case when

k = 2.

In summary, all robust estimators didn’t show very good robustness prop-

erties when the contamination points are not in the boundary of the covariate

space. Further, when the contaminated points have high leverage, the pro-

posed estimator has the best robustness performance.
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Table 3.4: Mean squared errors ⇥10 of estimators of �02 under point-mass

contaminations at x̃ = (1, k, 0, 0, 0)

estimator �0 = (0, 1.79, 0, 0, 0) �0 = (�1, 1.18, 0, 0, 0)
k = 2 k = 5 k = 2 k = 5

✏ = 0.10
MLE 14.59 30.99 4.41 12.63
F-WMLE 17.69 4.07 5.69 2.06
A-WMLE 16.05 3.97 5.00 2.00
RECMLE 17.92 2.92 5.89 1.65
✏ = 0.20
MLE 25.39 39.41 9.31 16.95
F-WMLE 25.43 4.35 9.43 2.67
A-WMLE 25.68 3.98 9.41 2.25
RECMLE 26.03 3.43 9.35 2.04

3.5 Real Data Analysis

The dataset analyzed here from Cox and Oakes (1984, p. 9.), and it is based

on 33 patients who died from acute myelogenous leukemia. Three variables

were measured for each patient: WBC, AG and Time. The response variable

time is patient’s survival time in weeks, and we transformed it into a binary

variable with Y = 1 signifying patients with survival time longer than 52

weeks, and Y = 0 to those who did not. WBC measured the patient’s white

blood cell count at the time of diagnosis, and AG (present = 1, absent = 0)

was about the test result indicating the presence or absence of a morphologic

characteristic of white blood cells. AG present patients were identified by the

presence of Auer rods and/or significant granulation of the leukemia cells in

the bone marrow at the time of diagnosis.

The variable WBC is associated with low survival time, and a plot of time

against WBC in Figure 3.1 shows that patient No. 17 is atypical, with a very
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high WBC number and Y = 1. A logistic regression model was fit using binary

Figure 3.1: Scatterplot of survival time against WBC for Leukemia data
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*Survival time has been transformed into a binary variable (Y = 1 if survival time
longer than 52, Y = 0 if not)

.

survival time Y as response and WBC and AG as covariates. The estimators

used here are the MLE, MLE17 (MLE after deletion of observation No.17),

F-WMLE (weighted MLE with fixed threshold values), A-WMLE (weighted

MLE with adaptive threshold values) and the proposed estimator RECMLE.

In Table 3.5, the estimated parameters and their estimated standard errors (in

parenthesis) are reported. As we can see, the MLE is very sensitive to atypical

observations, and the observation No. 17 reduced the effect of WBC close to

0. All other robust estimators show a similar behaviour to that of the MLE17.
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Table 3.5: The estimated regression parameters for Leukemia data with stan-

dard errors in parentheses

Estimate Intercept WBC(⇥10�4) AG
MLE -1.3(0.81) -0.32(0.18) 2.26(0.95)
MLE17 0.21(1.08) -2.35(1.35) 2.56(1.23)
F-WMLE 0.17(1.11) -2.27(1.45) 2.54(1.23)
A-WMLE 0.18(1.11) -2.28(1.44) 2.54(1.23)
RECMLE 0.15(1.20) -2.18(1.55) 2.47(1.29)

*WBC measures the patient’s white blood cell count at the time of diagnosis, and

AG is the test result indicating the presence or absence of a morphologic character-

istic of WBC.
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Chapter 4

Concluding Remarks and

Future Directions

4.1 Concluding Remarks

This thesis has proposed robust estimators for regression models that achieve

high e�ciency and high robustness properties.

In Chapter 2, a weighted least squares estimator (RECWLS) has been pro-

posed for the linear regression model with an adaptive weight function. The-

oretical results such as the consistency and asymptotic normality of the pro-

posed estimator have been established. The derived asymptotic distribution

suggests that the proposed RECWLS estimator achieves the full e�ciency un-

der normal errors models. In order to study finite sample properties of the pro-

posed estimator, a simulation study was conducted. For model with normal er-

rors, the RECWLS estimator shows relative e�ciency of almost close to 1 with

respect to the LSE, even for small sample sizes (n = 50 for p = 2, and n = 100

for p = 5), and this is not achieved by other threshold value based weighted
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least square estimators. For models with heavy-tailed errors (student-t3 was

used), RECWLS estimator has comparable performance in e�ciency when

compared with other weighted least square estimators. All weighted LSE es-

timators studied increased their e�ciency of the initial high BP robust es-

timators significantly. For models with normal errors and some fraction of

outlier contamination, the maximum MSE suggests that the RECWLS esti-

mator increased the robustness properties of the initial robust estimators, and

it has better performance than the threshold value based estimators when

the contamination of y-value or the leverage is more extreme. The proposed

RECWLS estimator is applied to a real data set and the result showed that it

had similar performance as the MM-estimator.

In Chapter 3, a RECMLE has been proposed for the logistic regression

model. The asymptotic consistency of the proposed estimator was proved.

A simulation study was conducted to examine the finite sample properties of

the proposed RECMLE. For the clean model, the proposed estimator shows

a relative e�ciency of almost 1 with respect to the MLE, without worsen-

ing the bias. For point-mass contamination models, the proposed estimator,

along with other weighted MLE estimators with threshold cuto↵ values, didn’t

show a significant di↵erence in robustness properties compared with the MLE

when the contamination has a small leverage. However, for high leverage

contaminations, the proposed RECMLE significantly improved the robustness

performance, and it did exhibit a much better performance than the threshold

value based estimators. The performance of the proposed RECMLE on a real

data set showed that it was comparable to the existing robust estimators in

practice.

In summary, given the overall excellent performance in e�ciency and com-
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parable robustness properties provided by the proposed estimators, I believe

that my proposed estimators are very useful in practical applications over the

existing methods.

4.2 Future Directions

The following future research directions can be studied based on the work of

this thesis:

1. Other asymptotic properties of the proposed estimators still need to

be developed. Asymptotic breakdown points and influence functions

need to be derived to assess the robustness property theoretically. The

distributional properties of proposed estimators can be analyzed with

more details, and corresponding confidence interval and robust hypoth-

esis testing methods can also be studied.

2. More simulation studies can be done. Since the MLE isn’t regression,

a�ne and scale equivariant, so more target parameter values can be

chosen to access the performance of proposed estimators in a more com-

prehensive way. Other kinds of contaminated models except than point-

mass contaminated model, like multi di↵erent points contamination, can

be studied to test the robustness of proposed estimators under di↵erent

conditions.

3. The strategy used here to construct robust estimators can also be gen-

eralized to generalized linear regression models, linear mixed model and

other di↵erent models.
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4. The proposed estimator is applied on two small data sets in this thesis,

and it can be used on some more complicated real data sets, especially

those unstructured data sets with many potential outliers or errors.
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