ERA

Download the full-sized PDF of Gauss-Chebyshev Quadratures for Wireless Performance AnalysisDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R38C9RB1M

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Graduate Studies and Research, Faculty of

Collections

This file is in the following collections:

Theses and Dissertations

Gauss-Chebyshev Quadratures for Wireless Performance Analysis Open Access

Descriptions

Other title
Subject/Keyword
Gauss-Chebyshev Quadrature
Bit/Symbol Error Rate
Wireless Performance Analysis
Outage Probability
Type of item
Thesis
Degree grantor
University of Alberta
Author or creator
Wang, Maolin
Supervisor and department
Tellambura, Chintha (Electrical and Computer Engineering)
Examining committee member and department
Jiang, Hai (Electrical and Computer Engineering)
Khabbazian, Majid (Electrical and Computer Engineering)
Tellambura, Chintha (Electrical and Computer Engineering)
Department
Department of Electrical and Computer Engineering
Specialization
Communications
Date accepted
2013-12-09T15:51:58Z
Graduation date
2014-06
Degree
Master of Science
Degree level
Master's
Abstract
Bit/symbol error rate and outage probability are common performance metrics used to quantify the reliability of wireless communication systems. Error rates for a broad class of digital modulation schemes and outage probability are expressed as integrals, which often do not have closed-form solutions. Therefore, accurate and simple approximations to develop insight are desirable. To achieve this goal, classical Gaussian Chebyshev quadrature and rational Gaussian Chebyshev quadrature rules are studied in this thesis. These rules are used to compute symbol error rates over multipath fading channels and outage caused by co-channel interference. The accuracy and convergence rate of these rules are investigated.
Language
English
DOI
doi:10.7939/R38C9RB1M
Rights
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication

File Details

Date Uploaded
Date Modified
2014-06-15T07:09:54.102+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 1438499
Last modified: 2015:10:12 18:39:23-06:00
Filename: Wang_Maolin_Spring 2014.pdf
Original checksum: 37962170f9792d46f9e161fd0ae56138
Well formed: false
Valid: false
Status message: Invalid Font entry in Resources offset=1420996
Status message: Invalid Annotation list offset=18599
Status message: Outlines contain recursive references.
File title: front page.pdf
Activity of users you follow
User Activity Date