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We develop and test new models that unify the mathematical relationships among the abundance of a
species, the spatial dispersion of the species, the number of patches occupied by the species, the edge
length of the occupied patches, and the scale on which the distribution of species is mapped. The models
predict that species distributions will exhibit percolation critical thresholds, i.e., critical population
abundances at which the fragmented patches (as measured by the number of patches and edge length)
start to coalesce to form large patches.
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a. Distribution, N = 378 b. 25×25 m

c. 50×50 m d. 100×100 m
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FIG. 1 (color online). Distribution of 378 plants of Alibertia
edulis in a 50 ha (1000� 500 m) plot on the Barro Colorado
Island, Panama, and the occurrence maps at three mapping
scales. The four circles shown in (b) illustrate the delineation of
use in ecology is [7,8] patches.
Understanding the relationship between the distribu-
tion and abundance of species is a central goal of ecology
and biogeography [1,2]. To study this relationship, the
distribution and abundance of a species are typically mea-
sured by gridding a study area into a lattice and then
enumerating the species in each cell of the lattice (Fig. 1).
The distribution of a species is commonly recorded by
occupancy (the number of occupied cells), and the abun-
dance by the total number of individuals in all occupied
cells. Although occupancy is a useful measure of distri-
bution, it fails to capture significant features of distribu-
tion [3]. Thus, two species having the same occupancy
may nevertheless exhibit very different distribution pat-
terns. In order adequately to describe the spatial structure
of species distribution, it is also important to consider the
number of patches that the occupied cells form as well as
the total length of the perimeter (edge length) of all the
patches. The subject of the relationship between occu-
pancy and abundance is currently one of the most inten-
sively investigated topics in ecology [3–5], However, the
relationships between perimeter and abundance and be-
tween the number of patches and abundance have not been
studied. These latter relationships are of particular sig-
nificance because they measure, to a great extent, the
degree of fragmentation of landscapes. This study is to
establish these two new relationships and to report their
percolation phenomena.

The perimeter of a distribution is defined as the length
of the joins between occupied and empty cells, and a
patch is defined as a group of occupied cells which are
connected side by side [Fig. 1(b)]. Here a join is a common
edge between two cells. Given an occurrence map, the
occupancy of a cell can be modeled as the result of a
stochastic process according to the theory of percolation
[6]. Let p denote the probability that a cell is occupied.
One can create a statistical model of p as a function of
three factors: the abundance of the species, its spatial
distribution, and the cell size of the map. A function
incorporating all three factors that has been in widespread
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p � 1�

�
1�

aN
Ak

�
�k
; (1)

where A is the total area of the map, a is the cell size, N is
the total number of individuals of the species, and k is a
clumping parameter describing the spatial dispersion
pattern of the species in the area. Parameter k is defined
in the domain of ��1;��� or �0;�1�, where � � aN=A
is the mean density of the species per cell. In Eq. (1),
positive k describes aggregated dispersion patterns; nega-
tive k describes regular dispersion patterns of species [8].
It has been shown that the negative/positive binomial
distribution on which Eq. (1) is based can be generated
from a wide range of mechanisms including death and
birth processes [9]. Note that the widely used occurrence
probability, p � 1� �1� a

A�
N, for a randomly placed

species, is just a special case of Eq. (1), for k � �N [10].
As a first approximation, we assume the occupancy of

cells in a map are independent events. Under this assump-
tion, the probability that, of two adjacent cells, one is
occupied and one is not, is simply p�1� p�. Then the
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perimeter of a distribution, with the occurrence probabil-
ity defined by Eq. (1), is given by

L �
���
a

p
J
�
1�

�
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aN
Ak

�
�k

��
1�

aN
Ak

�
�k
; (2)

where J is the total number of neighboring joins for a map
(regardless of the occupancy of the cells). For a regular
lattice such as Fig. 1, J � 2JxJy � Jx � Jy, where Jx and
Jy are the number of cells along the x and y axes, respec-
tively. If cell occupancy is spatially correlated, Eq. (2)
still holds, but the first term is no longer

���
a

p
J. It is less

than this value for aggregated cells and larger for regular
cells. For random placement Eq. (2) becomes
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N
:

Equation (2) shows that the perimeter L of a distribu-
tion depends on the abundance of the species N, the
clumping parameter k, and the spatial scale a. The pe-
rimeter is a nonlinear function of the abundance. L first
increases with N until reaching a peak at a critical abun-
dance Nc. After that point, it decreases with N [Fig. 2(a)].
The critical abundance Nc is the so-called percolation
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FIG. 2. (a) Perimeter (L)-abundance (N) relationships of
Eq. (2) for spatial distribution patterns varying from highly ag-
gregated to random patterns (k from 0.25 to 20) provided A �
1000� 500 m and a � 50� 50 m. Shown is also the critical
abundance log�Nc� � 6:62 for k � 0:25. (b) Perimeter (L)-scale
(a) relationships for abundance N � 50; 100; 250; 1000; 5000
provided A � 1000� 500 m and k � 0:75. Also shown is the
critical scale log�ac� � 7:97 for N � 50.
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threshold, the point at which the coalescence of patches
becomes sufficiently rapid to start causing a reduction in
perimeter length. The value of Nc is easily obtained as

Nc � �21=k � 1�
Ak
a

: (3)

The same percolation phenomenon is also observed for
the relationship between L and a for fixed k and N
[Fig. 2(b)]. In this case, the critical spatial scale ac is
the a value at which a phase transition in L occurs and ac
can be numerically solved for �2a2NkJ� aAN � A2k� �
f1� 
1� �aN=Ak���kg � a2NkJ � 0.

Establishing a similar relationship for the number of
patches (T) is a difficult task and no exact solution yet
exists for the patch number. However, a good approximate
solution given by [6] is

T / pm�1� p�j; (4)

where m is the number of occupied cells for a patch, j is
the number of occupied and empty joins for that patch.

Based on Eq. (4), we offer a very good approxima-
tion for the general scaling relationship between the
number of patches and species abundance. Substituting
Eq. (1) into (4), we have T / f1� 
1� �aN=Ak���kgm�

1� �aN=Ak���kj. If a or N is relatively small or A is
large so that aN=A < 1, which is usually the case, the first
bracketed term in this equation can be approximated by
�aN=A�m, whereas the second term can be approximated
by e��N where � � ja=A. These simplifications lead to a
general scaling relationship

T / Nme��N: (5)

The number of patches T and abundance N, as given
by Eq. (5), form a hump-shaped curve. At low abundance,
the number of patches is low because of few indi-
viduals. At high abundance, the number of patches is
also low because small patches coalesce into fewer, large
patches. The number of patches reaches a maximum at
an intermediate abundance that is the critical threshold
Nc. From Eq. (5), the critical abundance is Nc � m=�,
and the maximum number of patches at that threshold
is Tmax / �m=�e�m.

To test the theoretically predicted percolation rela-
tionships given by Eqs. (2) and (5), we analyzed distribu-
tions of populations of more than 300 species from a
tropical rain forest on the Barro Colorado Island (BCI)
of Panama. In 1981 a 50 ha (1000� 500 m) forest plot on
BCI was established. In the plot, all freestanding trees
and shrubs � 1 cm diameter at breast height have been
enumerated, individually located on a reference map, and
identified to species. The census was repeated in 1985,
1990, 1995, and 2000. The data from the 1990 census
were used in this study where there are 229 048 plants
belonging to 301 species with the most abundant species
having 36 063 stems.
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We converted the distribution of each of the 301 spe-
cies into an occurrence map for a given scale as, for
example, for Alibertia edulis (Fig. 1). For each map, we
counted the number of trees in each cell and calculated
the total length of edge (perimeter) and the number of
patches. We then compared the observed perimeter and
the number of patches for each species at each scale to the
predictions of Eqs. (2) and (5). We made the computa-
tion on seven spatial scales: a � 5� 5; 10� 10; 20�
20; 25� 25; 50� 50; 100� 100, and 250� 250 m.

We estimated the aggregation parameter k in Eq. (2)
from the cell counting data according to k � �2=
��2 ���, where � is the average number of stems of a
given species per cell, and �2 is the variance. Because k
is scale dependent, it can be estimated either for each
scale used or according to a scaling function across scales.
The later approach is more appropriate in situations in
which quadrat sampling across scales is prohibitively
expensive to conduct. We find that an empirical scaling
function, k / a0:55, extrapolates k very precisely across
scales in the BCI plot. Based on this scaling function, we
can estimate k at any other scale a if k0 at a base scale a0
is known: k � k0�a=a0�

0:55. This scaling function works
well as compared to the scale-specific estimates of k for
a. Psidium friedrichsthalianum, N = 54

b. Croton billbergianus, N = 561
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FIG. 3 (color online). Perimeter (L)-scale (a) relationships
for three BCI species across scales from 5� 5 to 250�
250 m. The left-hand column shows the actual spatial distri-
butions of the species. The observed perimeter data are shown
on the right-hand column (dots) and the smooth solid curves
are the predictions of Eq. (2) using a scaling estimation
function for k across scale. For comparison, the curves using
k estimated from each individual scale are also shown (the
dashed curves). In this case k is estimated using the tree data
counted at each scale and a curve is drawn by substituting these
estimated k values into Eq. (2).
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the BCI species, as shown in Fig. 3, in which a0 � 20�
20 m was used as the base scale. However, other base
scales give very similar results.

We illustrate the results for perimeter-scale relation-
ships in Fig. 3 for three species chosen to represent the
typical abundance range and distribution patterns in the
BCI. For many species, the prediction of the theory is
very good. However, for some highly aggregated species
such as Croton billbergianus, theoretical predictions
show a modest departure from observations at certain
scales [Fig. 3(b)]. This departure is principally caused by
violation of the independence assumption in cell occu-
pancy for Eq. (2). Nevertheless, the fact that even for
those aggregated species, Eq. (2) still predicts well the
overall trajectory of the perimeter-scale relationship sug-
gests that the independence assumption is quite robust for
many species. Another reason for the good prediction is
probably due to the fact that the BCI species indeed can be
described well by the negative or the positive binomial
distribution. The majority of the BCI species (259 out of
301) show no significant departure from the binomial
distribution (p > 0:05, �2 test at the scale of 25� 25 m).

Unlike the perimeter-scale relationship, conspecific
data are not available to show the perimeter-abundance
relationship for single tropical tree species. Such a rela-
tionship can be examined only by using interspecific data.
As shown in Fig. 4, the observed perimeter-abundance
relationships for the BCI species are well predicted by the
percolation Eq. (2).

The relationship between the number of patches (T)
and abundance (N) is shown in Fig. 5 for the BCI species.
The critical abundance (Nc) decreases with an increase in
scale a, forming a nearly perfect and identical power law
FIG. 4 (color). Perimeter (L)-abundance (N) relationships for
the BCI species at four scales: 5� 5, 10� 10, 25� 25, and
50� 50 m. Each black dot represents the observed perimeter
for a species, the red dots are the predictions from Eq. (2) for
each species using k estimated for the species at the given
scale. The smooth curves are predicted from Eq. (2) using a
universal k � 2 for all the species. The critical abundances Nc
are calculated from Eq. (3) at k � 2 and A � 500 000.
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FIG. 5. Number of patches (T)-abundance (N) relationships
for the BCI species at three scales: 5� 5, 25� 25, and 50�
50 m. Each dot represents the observed number of patches for a
species. The smooth curves are the scaling Eq. (5) fitted to the
data. The last panel shows the power law (r2 � 0:997 for the
log-log linear regression) between the critical abundance Nc
and spatial scale a for six scales from 5� 5 to 100� 100 m.
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(Fig. 5, last panel). The nearly perfect identity of this
power law suggests that this scaling relationship will be
more generally true of tree communities, and perhaps in
many other plant communities as well.

The ramifications of the discovery of the new theoreti-
cal relationships between distribution and abundance of
species are potentially numerous and profound. For the
first time, we have unified several fundamental ecological
parameters including abundance (N), distribution pattern
(k), scale (a), extent (A), edge length (L), and the number
of patches (T) into a single mathematical framework for
quantifying the spatial architecture of fragmented meta-
populations. This unification is of important significance
to ecology, biogeography, and conservation biology. First
of all, this theoretical synthesis provides a far more
rigorous and standardized mathematical foundation for
analyzing and comparing the complex geometry of natu-
ral populations in ecology than the measurement of oc-
cupancy currently commonly used in ecology [3–5].
Second, this study connects fundamental landscape met-
rics (edge length and number of patches) to the spatial
distribution of species abundance, thus building a bridge
between biogeography and landscape ecology. Third,
landscape connectivity is widely considered to be critical
for the persistence of populations and maintenance of
species diversity in ecosystems [11–16], the percolation
theory developed here provides new tools for calculating
fragmentation thresholds in population viability analysis.
198103-4
In particular, the perimeter and the number of patches
models would allow us to determine the level of land-
scape fragmentation (e.g., forest cutting [17]) so that to
minimize the edge length and the number of patches in
practice. It will be especially useful if these analyses are
coupled with other information such as habitat quality,
behavior, dispersal capability and life history properties
of species.
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