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Abstract

This paper characterises the size distribution of wild�res in the boreal mixed-
wood forests of Alberta Canada, for the interval 1980{1998. For �res exceeding
2:5 ha, the logarithm of �re size is exponentially distributed, according to standard
tests. This result is motivated by an apparent exponential distribution of �re du-
rations (in days) and an empirical power law relating duration to size. However,
computer simulations using the estimated distribution would seriously over-predict
the frequency of large �res. A truncated exponential distribution can be used to
model �re with bounded sizes. This upper bound can not be estimated from the
data by standard methods, including the statistical analysis of extremes. A non-
parametric bootstrap method combined with least squares estimation produces a
satisfactory estimate. Parametric modelling of the �re size data using forest inven-
tory data as covariates shows that the expected size of a �re is positively related
to the abundance of pine forest in the vicinity of the point of detection, and neg-
atively related to the abundance of recently logged or burnt areas. Variation in
forest structure and disturbance history impose marked spatially variability on the
�re size distribution.
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1 Introduction

In this this paper, I present a simple parametric model which describes, for recent
decades, the �re size distribution in a large region of the boreal mixedwood forest of
Alberta, Canada. I believe this model to be of both theoretical and applied interest.
The theoretical interest consists partly in the fact that it has apparently never been done
(He and Mladeno�, 1999), and partly in the way in which the model emerges naturally
from the distribution of �re durations and a relationship between duration and size.
The applied interest lies in the statistical and simulation modelling of �re dominated
landscapes. With a parametric model, spatial and temporal covariates that e�ect �re
size can be studied more rigorously than has been possible. Also, with such a model,
the �re component of the growing number of spatial dynamic models of large forested
landscapes can be placed on a �rm empirical foundation. The latter application was
the principal motivation for this study. My methods should be applicable at the least
to any part of the circumpolar boreal forest for which minimal �re history data exist.
Speci�cally, a few decades of empirical �re size data will probably su�ce.

There have been few statistical analyses of �re size distributions. Strauss et al.
(1989) introduced the extreme proportion function EP (p); 0:0 � p � 1:0 which they
de�ne as the \proportion of all the area burnt that is attributable to the largest 100 p%
of the �res." They present expressions for EP (p) for a variety of underlying size dis-
tributions, and propose the truncated Pareto distribution as a model of �re size. This
truncation places an upper bound on �re size. However, they do not �t their model to
empirical size data, noting that the task is complicated by the large number of impre-
cisely measured small �res. On the basis of visual inspection of empirical EP functions,
they conclude that \the degree of size inequality" between �res in southern California
and Baja California chaparral systems is much the same. Chou et al. (1993) take issue
with these informal methods, introduce an alternate functional form for the EP func-
tion, and resort to ANOVA to conclude that �re size distributions in fact di�er between
the two area. I have used non-parametric statistics to demonstrate temporal trends in
the �re size distribution in Alberta, consistent with increases in �re suppression e�ort or
e�ectiveness (Cumming et al., 1995, Cumming, 1997). Most recently, Moritz (1997) has
applied the statistical analysis of extremes to annual maxima of �re sizes. He tested for
di�erences in size distributions between two regions of the Los Padres National Forest,
another southern California chaparral system.

A taxonomy of �re modelling strategies used in spatial dynamics models is beyond
the scope of this paper, but two common methods are based on percolation or cellular
automata models. A �re burning in a given model cell can spread to adjacent cells
according to a probability, which may depend upon cell characteristic such as forest
type or age. In some formulations, for each simulated ignition, a �re size is drawn from
an empirical distribution (Andison, 1998) or from a continuous density function with
the �rst moment �t to empirical data (He and Mladeno�, 1999). The �re then spreads
randomly until the speci�ed size is reached. In other cases, a size distribution emerges
from the simulation, varying as hypotheses regarding e.g., age-speci�c ammability are
tested(Ratz, 1995, Li et al., 1997). It is also possible to tune the spread parameter(s)
so as to approximate an empirical distribution, although this is seldom done.
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These models have certain common features. Fires smaller than the model resolution
don't count, which I will argue is an advantage. There is insu�cient care given to match-
ing the actual size distribution. For example, percolation models imply an exponential
size distribution, while the lognormal distribution adopted by He and Mladeno� (1999)
is judged suitable merely because most �res are small, but some large �res emerge:
they prevent �res from becoming too large by censoring at an historical maximum size.
However, getting the size distribution right is important, especially at the tail where
individual �res actually matter in structuring the landscape. For example, some models
are concerned to match real patch size distributions because of their presumed utility for
forest management. Others model distance-limited seed dispersal, so that recruitment
of tree species into burns is limited by �re size. Finally, no approach is amenable to
studying the e�ects of changing conditions such as climate, �re suppression strategy,
or forest pattern, as the landscape is fragmented, or at least structurally altered, by
harvesting.

The present research is directed at simulating the dynamics of natural and managed
boreal forests, at large spatial and temporal scales. The target modelling platform
runs at �100 km2 spatial resolution and annual or multi-annual time steps. The time
horizon is 200 yr, which reects long-term forest management planning in Alberta. The
spatial extent of the simulations is � 1 � 106 ha or more. Each model cell maintains
a detailed description of forest age and size structure and species composition, similar
to the spatially aggregated model of Armstrong et al. (1999). Although �res of any
size may be simulated, there is reason to set a lower bound. This is because the size
distribution of small �res is probably governed by several di�erent random processes:
the onset of crowning, at which point the �re becomes, so to speak, autonomous, and by
�re suppression e�orts, which are most e�ective when the �re is very small (Hirsch et al.,
1998). These factors present a di�cult statistical modelling problem, which vanishes
when only �res exceeding a certain minimum size are considered. Since these small �res,
though numerous, have little aggregate e�ect on the landscape, they may be ignored in
most applications.

I will show that, for �res larger than a few ha, the logarithm of �re size follows
an exponential distribution. To address the maximum size problem, I introduce the
truncated exponential distribution, and show how the upper limit can be estimated
from historical data. This distribution is amenable to parametric modelling of the
e�ects of covariates on expected �re size. As an example, I show that the expected �re
size is related to forest composition in the vicinity of the �re's point of detection.

2 Data and methods

My study area is a �86; 000 km2 rectangle in northeastern Alberta, Canada, bounded
by 55� N; 110�W and 58�N; 115�W (Fig. 1). Most of the study area is contained in
the boreal mixedwood ecological region (Rowe, 1972). The mixedwood region, of total
extent � 485; 000 km2, is transitional between colder, conifer-dominated forests to the
north and warmer, dryer aspen parklands to the south, which are now mostly farmland.
In Alberta, � 270; 000 km2 of the mixedwood is still forested (Strong, 1992). The
most abundant tree species are trembling aspen, black spruce (Picea mariana (Mill.)
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Figure 1: Location of the study area in Alberta, Canada. Reproduced from Armstrong
(1999).

B.S.P.), jack pine (Pinus banksiana Lamb), white spruce (Picea glauca (Moench) Voss)
and balsam poplar (Populus balsamifera L.). Paper birch (Betula papyrifera Marsh.),
tamarack (Larix laricina (Du Roi) Koch) and balsam �r (Abies balsamea (L.) Mill) are
widely distributed, but rarely form pure stands. Mature mixed stands containing both
aspen and white spruce are characteristic of the region. Peatlands and sparsely treed
muskeg cover about half of the study area. The regional forest types are described by
Kabzems et al. (1986). Climate, topography and geomorphology are reviewed by Strong
(1992).

2.1 Fire history data

The Government of Alberta's Department of Environmental Protection (AEP) main-
tains databases of �re records from 1961{1998 (AEP 1998). Fire attributes recorded
over this interval include the location and date of detection, the date of extinction,
the �nal size and an indication of cause, whether by lightning or human agency. This
study considers lightning �res only. Locations are determined by triangulation from a
network of �re towers and by a lightning detection system. Prior to 1996, �res are spa-
tially registered to land-survey units called townships, most of which are square regions
exactly six miles (�9:66 km) on a side (�93:2 km2). Since 1996, only the latitude and
longitude of detection were recorded. I used the coordinates of township centroids to
infer in which township these �res started. Tests of �res where both the township and
latitude and longitude were recorded showed the method to be almost 100% accurate.

Although the period of record begins in 1961, observational e�ort has not been
uniform. The network of �re towers was not completed until 1968 (Murphy, 1985). Also,
�re suppression policy and strategy changed markedly between 1961 and 1983 (Murphy,
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1985, Gray and Janz, 1985). The three years 1980{1982 were the most severe on record
(Armstrong, 1999), and contained most of the largest recorded �res. Thus, summer
climate, or �re weather conditions, have not been uniform either. As a compromise, I
select 1980{1998 as my study interval for most of the analyses, and defer the problem
of annual variability in �re suppression e�ort and �re weather to a future study. I will
assume however that the largest �re burning in a given year was reliably recorded since
1961. Such �res seem unlikely to have escaped notice if large, and would not e�ect the
analysis if small.

2.2 Forest inventory data

I used the Alberta Phase 3 forest inventory (Alberta Forest Service, 1985) to describe
the forest composition in the vicinity of each �re. This inventory was interpreted from
1:15,000 scale aerial photography, own between 1970 and 1982. Phase 3 data are avail-
able as 1:15,000 paper maps and as machine readable extracts from the \Alberta Forest
Service Inventory Storage and Maintenance System" (AFORISM) database. Both ver-
sions are spatially organised to township resolution. AFORISM data are stand lists,
with no representation of the underlying topology. I refer to the township in which a
�re was �rst detected as the �re's locale.

Mapped forested polygons are regions of uniform canopy attributes, where the
canopy is de�ned as the tallest strata of trees which has at least 6% canopy cover.
Canopy attributes include height and crown-closure, species composition, area, and an
estimate of stand age. Deciduous species (aspen, balsam poplar and birch) are not
usually distinguished. Canopy species composition is expressed as proportions of esti-
mated merchantable volume for stands > 12 m in height, and by proportion of crown
closure otherwise. Various classes of nonforested polygons such as wetland types, bodies
of water, burned areas, clearcuts and clearings are also mapped. For most burns and
cuts more recent than 1980, the year of the disturbance is recorded. The minimum
mapping unit is 2 ha. AFORISM data for the study area were provided by AEP. The
only attributes used in the present study are area (in ha), the species composition of
forested polygons, and the class attribute of unforested polygons.

I assign mapped polygons to one of six classes: Deciduous, White spruce, Black
spruce, Pine and Muskeg and Disturbed. Class Muskeg includes all non-forested areas,
predominantly wetlands, excepting open water. Class Disturbed is that portion of a
locale which, at the year of a �re, had recently been burnt or logged. The four forested
classes are based on the polygon's dominant species (or species type, in the case of
the Deciduous class). The characteristic mixed stands are thus classed as either White
spruce or Deciduous. To make the classi�cation exhaustive, I consider balsam �r to be
equivalent to white spruce, and larch to be equivalent to black spruce. This reects
the successional relationships and/or site associations of these species (Kabzems et al.,
1986). A locale is described by a vector of the proportional area in each class. Because
forest cover is spatially autocorrelated at a scale of 20 km or more (Cumming et al.,
1996), the composition of a locale estimates the pre-�re composition of the surroundings
of even very large �res.
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In order to model the e�ect of forest cover on �re size, it is necessary to estimate the
composition of a locale at the time the �re started. This is complicated, because, after
logging or �re, the AEP databases are updated to reect the disturbance, and update
records are not maintained. The update process splits any polygons partially burnt or
cut. For example, the area of polygon 86A which burnt in 1995, can be unambiguously
assigned to the same class as unburnt polygon 86 for any �re burning before 1995. The
development of the forest industry in the area is such that any stand marked as clearcut
prior to 1993 may be assumed to have belonged to class White spruce. My primary
data sources were a 1998 snapshot of the inventory for the entire study area, and a
1993 snapshot for most of the study area. In addition, records for 284; 000 ha of burnt
stands had been recovered from the original map annotations in the course of another
study. From these data sources and rules, I reconstituted the pre-�re composition of
291; 000 ha of burnt or logged stands. Fires for which than 5% or more of the pre-�re
forested area of the locale could not be classi�ed were excluded from this part of the
analysis.

2.3 Statistical methods

Statistical methods will mostly be introduced as needed. Here, I establish some nota-
tional conventions. With respect to univariate distributions, my de�nitions and notation
will hue closely to Johnson et al. (1994, 1995). Random variables are denoted by X
and Z. Probability density functions are written pX(x) which denotes the given density
function for X, evaluated at x. The relational symbol � means \is distributed as."
Cumulative density functions are denoted

FX(x) = Pr[X � x] =

Z x

a
pX(x)dx;

where a is the lower bound of the domain of p, usually 0 for the distributions considered
here. To avoid excess notation, it will always be clear from context to which distribution
p or F refer.

Distributional parameters are either lower case Greek letters, or in one case, the
symbol b. Parameter estimates are hatted (e.g., �̂). Sample means are barred (e.g.,
�x = n�1 �

Pn
i=1 xi). Where dependency on parameters � needs emphasis, a probability

density function will be written pX(x;�). Fitting a distribution to data means estimat-
ing the parameters from a sample fx1; x2; : : : ; xng. In most cases, I do this by �nding
the maximum likelihood estimate, which is that value �̂ for which

nY
i=1

pX(xi;�)

is maximised. This is equivalent to minimising

L =

nX
i=1

�pX(xi;�);

which must usually be done numerically. L is the log-likelihood of the parameters, given
the data. Unless otherwise speci�ed, I use the general function minimisation routine ms
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of Splus version 3.3 (MathSoft Inc., 1995) for estimation. Model 1 is said to be nested
in Model 0 if it can be reduced to Model 0 by setting p parameters to zero. Whether
Model 1 is a signi�cant better model, given the additional p parameters, is tested by
the likelihood ratio statistic S = �2(L0 � L1) � �2p.

When maximum likelihood estimates are not useful, I use bootstrap estimators.
Given a set of observations fx1; x2; : : : ; xng, a bootstrap sample is generated by ran-
domly sampling n elements from the set, with replacement. By applying an estimation
procedure to a large number of bootstrap samples, one can determine the mean and
standard deviation of the estimated parameter(s). My source for this method, and for
maximum likelihood methods, is Hilborn and Mangel (1997).

3 Motivation and tests for an exponential form

Between 1980 and 1998, 295 lightning �res � 9 ha started in the study area. The lower
threshold of 9 ha is the spatial resolution of a companion landscape modelling initiative
beyond the scope of this paper. The e�ect of varying this threshold is explored below.

The diurnal patterns of �re arrival and the cumulative number of �res burning
(Ni) can be reconstructed from the recorded dates of �re detection and extinction. A
typical pattern of multiple arrivals and subsequent decline in Ni is illustrated in Figure
2. The pattern suggests a constant �re decay rate or, equivalently, a constant daily
probability of extinction, so that �re durations (in days) are exponentially distributed.
The natural logarithms of �re duration and size are linearly related (Figure 3). These
two observations suggest the exponential distribution as a model for the logarithm of
�re sizes.

The random variableX has an exponential distribution if it has a probability density
function (pdf) of the form

pX(x) = ��1 exp

�
�
(x� �)

�

�
; x � �; � > 0: (1)

The cumulative density function (cdf) is

FX(x) = 1� exp(�(x� �)=�):

The maximum likelihood estimate (mle) for the shape parameter � is the sample mean
�x = 2:56 . Note that if z = exp(x) is the �re size in ha, and t = exp(�) is the threshold
size (z � t), then x� � = log(z=t), which is the log of the �re size in units of size t, for
example, the grid resolution of a raster-based spatial simulation model. In what follows,
I therefore dispense with the location parameter � and deal in scaled units x = log(z=t),
with t = 9 ha in most cases.

The Anderson-Darling goodness-of-�t statistic A2 is a recommended test for ex-
ponentiality, with \generally good power properties over a wide range of alternative
distributions" (Kotz et al., 1982). It is de�ned as

A2 = �

(
nX
i=1

(2i � 1)[logFX(xi:n) + log(1� FX(xn+1�i:n)]

)
=n� n:
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Figure 2: Diurnal arrivals of detected lightning �res (N) and the total number of �res
burning (F) in a subregion of the study area, between April and October of 1972. This
pattern of multiple arrivals and apparent exponential decay within a year is typical.
Reproduced from Cumming (1997).
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Figure 3: The summed durations, in days, of all �res burning in a given year (x) is
related to the annual total area burnt in ha (y). The relation is shown for the interval
1970{1993, as log y = �9:22 + 2:66 log x, (r2 = 0:74; p � 0:001; n = 24). The relation
between the duration and size of individual �res also �ts a linear model in log-log space,
but is markedly heteroscedastic. Reproduced from Cumming (1997).
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Figure 4: The best �t exponential distribution of the logarithm of �re size, for �res
exceeding 9 ha, left shifted to the origin. A smoothed representation of the empirical
probability density of the data is shown for comparison|see the text for an explanation.

where the notation xi:n denotes the i-th smallest sample. I computed the test statistic
and associated p-values by the methods of Davis and Stephens (1989), with the req-
uisite modi�cation for when � is estimated from the data. The hypothesis that the
log-transformed �re size data are exponentially distributed cannot be rejected (A2 =
0:621; p = 0:351.) This result holds when exp(�) � 3 ha (Table 1). Thus, t may be se-
lected to suite the target application(s) of the analysis. Figure 4 compares the �tted pdf
to the empirical distribution, described by a non-parametric density estimate computed
using a Gaussian �lter kernel of bandwidth 2.010 (Venables and Ripley, 1997, Ch. 5.5).
This is essentially a smoothed histogram of optimal bin-width.

3.1 The Gamma distribution

Although the exponential distribution provides an adequate statistical model of the
data, I will show that it is unsuitable for the intended application, because it over-
predicts the frequency of very large �res. One solution to this sort of di�culty is to
adopt a size distribution which resembles the exponential, but which has less weight
at the tail, so that e.g., large �res are less probable. The gamma distribution is a
commonly recommended candidate.

The random variable X has a gamma distribution if its pdf is of the form

pX(x) =
x��1e�x=�

���(�)
; � > 0; � > 0;

where � is the gamma function. The family of gamma distributions includes the expo-
nential as a special case (� = 1) but also includes lighter-tailed distributions. I obtained
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Table 1: Sample sizes (nt), Anderson-Darling test-statistics (A2
t ), p-values, and esti-

mated scale parameter �̂t for the �re size distribution, truncated at various lower bounds
(t = exp(�) in Eqn. 1). An exponential distribution �ts the data when t > 2; 5 ha. Fires
are all lightning �res ignited in the study area from 1980{1998.

t nt A2
t pt �̂t

2 557 2.378 0.004 2.47
2.5 508 1.994 0.009 2.47
3 463 0.947 0.137 2.51
4 397 1.031 0.101 2.61
10 280 0.628 0.345 2.59
20 209 0.862 0.174 2.65
40 165 1.044 0.106 2.58
100 123 0.790 0.214 2.39
200 97 0.815 0.199 2.25

the mles �̂ = 1:055, �̂ = 2:428 by minimising the log likelihood

Lg =

nX
i=1

�(�� 1) log xi + xi=� + � log � + log �(�)

For the gamma distribution Lg = 471:102, as compared to Le = 471:366 for the expo-
nential form (� = 1:0; � = 2:56). The two models are nested, with S = �2� (Le�Lg) =
0:528 which is distributed as a �21 (p = 0:467). The data give no warrant to prefer the
gamma distribution. However, as noted, it might be preferable because of its extremal
properties.

4 The problem of large �res

Simulations of forest dynamics over large spatial and temporal scales require repeated
sampling from the chosen �re size distribution. The exponential and gamma distribu-
tions are de�ned for all x � 0, so their use in a stochastic model will result in simulated
�res arbitrarily larger than real �res are observed to be. The largest �re in the study
area since 1961 was a 1981 �re of � 428; 000 ha, while the largest �re known to have
burnt in Alberta is the 1:4�106 ha Chinchaga River �re of 1950 (Johnson, 1992), which
actually started in British Columbia.

A landscape simulation of the study area would be expected to generate about
295=19 = 15:5 large �res per year. Assuming for now that �re sizes are independent
between and within years, the probability of all simulated �res being smaller than x
in a given year is q(x) = FX(x)

15:5 and the probability of there being at least one �re
larger than x is p(x) = (1� q(x)). Then the interval in yr between �res of size at least
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Figure 5: Expected waiting time for �res of size � x, in yr, plotted for the best �t
exponential and gamma distributions. These unbounded distributions over-predict the
frequency of large �res. The relation for the truncated form of the exponential is also
shown (see Section 4.1 for explanation.)

x follows a geometric distribution with mean R(x) = q(x)=p(x) (see e.g., Fraser, 1996).
The function R(x) is shown for the exponential and gamma distributions in Figure 5.
Under the exponential distribution, the expected waiting times for �res of 1 � 105 ha,
5 � 105 ha and 1 � 106 ha are 2.0 yr, 4.1 yr and 5.5 yr, respectively. The values are
only very slightly greater for the lighter-tailed gamma distribution. The empirical value
for �res of � 1 � 105 ha is 2.8 yr, computed from the 1980{1998 records using the
same independence assumptions. However, only one �re exceeded 2 � 105 ha over this
interval. Clearly, both exponential forms radically over-predict the frequency of large
�res, so neither is suitable for use in landscape simulations. In the remainder of this
section, I present a modi�ed form of the exponential distribution which does appear to
be suitable.

4.1 The truncated exponential distribution

By de�nition (Kendall and Stuart, 1973, p. 542), a variate with pdf pX(x;�), doubly
truncated at known points a, b with a < b, has pdf

pXt
(x) =

pX(x;�)R b
a pX(x;�)

; a � x � b; (2)
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where the subscript t indicates truncation. For the case of an exponential distribution
with a = 0 and b some value exceeding the largest sample size,

pXt
(x) =

��1 exp(�x=�)

1� exp(�b=�)
(3)

By integration, the cdf for the truncated exponential is

Ft(x) =
1� exp(�x=�)

1� exp(�b=�)
:

As this has a simple closed-form inverse function (x can be derived from Ft(x) by
elementary algebra), random deviates from the distribution are easy to generate from
the standard uniform distribution (Press et al., 1988). That is, the distribution is easy
to use in simulation models.

The mle for � conditional on b is obtained by minimising

Lt =

nX
i=1

log(�) +
xi
�
+ log(1� exp(�b=�)) (4)

In a modelling application, a suitable value of b could be chosen, and the appropriate
instance of the truncated exponential distribution used to generate random samples of
�re sizes. This seems more elegant than drawing from the unbounded exponential or
gamma distribution and then censoring at b. Better still if b could be estimated from
the data.

4.2 How big may �res get?

The maximum likelihood estimate of b is just the sample maximum. This is easy to see
from Eqn. 4. For � > 0, exp(�b=�) is monotone decreasing in b, so log(1� exp(�b=�))
becomes smaller (more negative) as b approaches the sample maximum from above.
Since this is the only term in Lt in which b appears, the result follows. This esti-
mate is unsatisfactory. The period of record is short relative to the intended length of
simulations (200 yr), so �res larger than observed must surely be allowed for.

One way to proceed is to use the extreme value distribution (Johnson et al., 1995,
Ch. 22) to estimate the maximum expected �re size over a time horizon of interest. The
approach does not actually work in this instance. However, I think the failure is worth
documenting, as extreme value methods have been used in a previous study of �re sizes
(Moritz, 1997), without a formal evaluation of their suitability. To actually solve the
problem at hand, I use a non-parametric bootstrap procedure to generate a distribution
of least squares estimates of b and � jointly.

4.2.1 Estimation from extremal values

From Chapter 22 of Johnson et al. (1995), if Z1; Z2; : : : ; Zn are independent, identically
distributed exponential random variables, then the limiting distribution (as n!1) for
the sample maximum has cdf

H(z) = Pr[Z � z] = exp
n
�e�(z��)=�

o
(5)
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Armstrong (1999) has shown that the annual total area burned in the study area can
be modelled as a serially independent log-normal variate. Since the annual maxima of
�re sizes are typically a large proportion of annual sums, it seemed plausible that they
satisfy the distributional assumptions. Unfortunately, this is not the case. From 38
years of annual maxima (1961{1998), I computed the mles �̂ = 4703:9 and �̂ = 18468:1
by an iterative procedure given in section 22.9.6 of Johnson et al. (1995). I started the
iteration with a simple linear estimator of � based on order statistics (Johnson et al.'s
(1995) Eqns. 22.75 and 22.77). The Anderson-Darling test statistic, computed as per
Johnson et al.'s (1995) Table 22.19, was A2 = 8:15, which greatly exceeds the 0.99 upper
tail percentage value of 1.038 for H. Clearly, at least one distributional assumption fails.

Alberta's �re suppression strategies changed in 1983, in response to the severe 1980{
1982 �re years (Gray and Janz, 1985). Inter-annual variation in �re suppression e�ec-
tiveness or in �re weather conditions may violate the assumption that the Zi are identi-
cally distributed. I therefore also tested the annual maxima for the intervals 1980{1998,
1983{1998 and 1961-1979. The resultant A2 statistics were 3.60, 3.28 and 1.82 respec-
tively. The distribution of Eqn. 5 just does not �t the data, and cannot be used validly
to estimate b. Notably, �res > 100; 000 ha are predicted to recur every 174:7 yr (deter-
mined by 1=(1�H(1e5; �̂; �̂)). In fact, there have been at least 5 such �res in the study
area since 1961.

An alternate and reportedly more general form of the cumulative extreme value
distribution was introduced to the ecological literature by Gaines and Denny (1993):

H 0(x) = exp�

�
�� �x

�� ��

�1=�
(6)

Moritz (1997) has used H 0 to compare �re size distributions in two southern California
chaparral forests, and to test for changes resultant from the introduction of water-
bombers in the 1950s. Although he presents informal arguments that the distributional
assumptions are satis�ed, he does not compare his �tted distributions with the under-
lying data.

From the likelihood expression for Eqn. 6 (Gaines and Denny, 1993, Appendix A),
I obtained mles of �̂ = �4:333, �̂ = �3:108 and �̂ = 300:25. This distribution is also
unsatisfactory. Although no appropriate goodness-of-�t test seems to be available, this
distribution radically over-predicts the frequency of very large �res (Figure 6). The
expected return interval for 1� 105 ha �res is 7:0 yr, compared to the empirical 6:6 yr
over the 38 yr sample interval. However, the return interval for 1 � 106 ha �res is
14:1 yr, yet only 1 has been observed in Alberta since 1940. The \200-year �re" is an
excessive �4:20�109 ha. The lesson from these two trials is that a maximum likelihood
parameter estimate for a statistical model is not su�cient. One must also check that
the �tted model is reasonable.
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Figure 6: The extreme value function H 0(x) of Eqn. 6 with parameters estimated by
maximum likelihood, plotted with the empirical cumulative density function of maxi-
mum annual �re sizes (EDF). Note the high predicted probability of extremely large
�res.

4.2.2 Estimation by sum of squares

By de�nition, the expected value of the truncated exponential distribution (pXt
(x) of

Eqn. 3), conditional on the parameters, is

�(�; b) =

Z b

0
x pXt

(x) dx (7)

= (e�b=� � 1)
h
e�b=�(� + b)� �

i
(8)

For 10,000 bootstrap samples of the �re size data from 1961{1998 (485 �res � 9), I
found pairs (�j ; bj) which minimised the sum of squared error

nX
i=1

(xi � �(�j ; bj))
2

over the j-th sample, using Press et al.'s (1988) implementation of the Nelder and
Mead downhill simplex method. The bootstrap parameter estimates have mean (��;�b) =
(2:651; 11:621) and covariance matrix�

0:013 0:042
0:042 0:318

�
:
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Table 2: Recurrence times for �res of various sizes, estimated from the empirical counts
for the intervals 1961{1998 and 1980{1998, and as computed from the estimated pa-
rameters of a truncated exponential distribution, based on 1961{1998 �res.

Fire size

1� 104 ha 5� 104 ha 1� 105 ha 4:3� 105 ha 9� 105 ha

1961{1998 0.58 4.4 6.6 37 1
1980{1998 0 1.7 2.8 18 1

R(x; �̂; b̂) 0.71 2.2 3.5 14.6 136.5

The correlation coe�cient of the bootstrap estimates is 0.658. The estimated maximum
�re size is exp(11:621 + log(9)) = 1:003 � 106 ha. The mle of �, conditional on the
bootstrap estimate for b, is 2.568. It is unclear which estimate of � ought to be used.
The log-likelihoods (Lt of Eqn. 4) are not signi�cantly di�erent. As the conditional mle
provides a slightly better �t to the empirical distribution of large �res, I chose to adopt
it. The waiting time function R(x) for the truncated exponential is shown in Figure 5,
alongside those for the exponential and gamma distributions. Some values for speci�c
�re sizes are tabulated in Table 2, with the empirical values for the intervals 1961{
1998 and 1980{1998, computed from the historical records under the assumptions of a
geometric waiting time distribution. The truncated exponential matches the observed
frequency of large �res quite well. The di�culty of over-prediction associated with the
exponential and gamma distributions does not arise. R(9:31 � 105 ha) � 200 yr, so
some very large �res can be expected in the course of long-range simulations.

When the sample is restricted to the years 1980{1998, the many large �res of 1980{
1982 inate the estimate of b, resulting in a maximum �re size of � 1:9 � 106 ha. I
suspect that this sample interval places too much weight on the contingent occurrence
of three severe years, and chose to proceed with the estimate based on the full 39 years
of data.

5 Modelling spatial covariates

Here, I use the truncated exponential form to model the e�ect of local forest composition
on expected �re size. Of the 295 sample �res from 1980{1998, 242 could be matched
with forest cover data. Unfortunately, most of the largest �res could not be so matched.
These typically burnt most of the forested area in their respective locales, and most
burnt during 1980{1982, before the earlier of the two inventory snapshots. Thus, re-
construction of the pre-�re locales for these �res was not possible from the available
data. To avoid biasing parameter estimates by including the e�ect of these large �res,
I re-estimated the parameters of the truncated exponential for this subsample to be
b̂ = 10:557, �̂0 = 2:458, by the methods of the previous section.
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Table 3: Models of the e�ect of a single component of local forest composition on
expected �re size. a0 and a1 are the model coe�cients estimated by maximum liklihood;
S is the likelihood ratio statistic of the one parameter model relative to the null model
where a0 = log(�0) = 0:899 and a1 = 0 (see text); and p is the associated signi�cance
level of S � �21.

Forest type a0 a1 S p

Aspen 0.979 -0.456 0.654 0.419
White spruce 0.938 -0.589 0.350 0.554
Black spruce 0.802 0.604 1.285 0.247
Pine 0.731 1.775 5.063 0.024
Muskeg 1.036 -0.279 0.566 0.452
Disturbed 0.960 -2.354 4.353 0.037

I modelled � in the likelihood expression of Eqn. 4 as � = exp (f(y;a)), where f is
a linear combination of the vector of forest cover variates y speci�ed by a, the vector of
parameters to be estimated. The exponential transformation ensures that � is positive.
The results of the one-term models are presented in Table 3. Only two components of
forest cover are signi�cant: the proportions of pine and of recently disturbed area. The
best two-term model is

� = exp(0:775 + 2:05y1 � 2:56y2) (9)

(p = 0:022), where y1 is the proportional area of pine dominated stands, and y2 is
the proportion of forested area recently disturbed. Pine stands in the vicinity of a
�re tend to increase its expected size, while areas of recently disturbed forest tend to
decrease the expected size. This model describes marked spatial variability in the �re
size distribution (Fig. 7). No three-term models were signi�cant.

6 Discussion

Past a certain minimum, the logarithm of �re size (x) follows an exponential distribution.
I have argued that this arises from an exponential distribution of �re durations, and a
log-log relation between size and duration. The exponential distribution is said to be
memoryless, in the sense that e.g., \the future lifetime of an individual has the same
distribution no matter how old it is at present" (Johnson et al., 1994). Ignoring the
limitation which winter places on �re survival, this is tantamount to a Poisson arrival of
weather conditions su�cient to extinguish the �re as it exists at a particular time. This
seems to be the case, as �re durations do appear to follow an exponential distribution.
If we conceive of a �re as an expanding ame front which at any given time describes
a roughly elliptical pattern of growth, then the area burnt as a function of time will
follow a power-law. Then a log-log relation between duration and size follows. This
mental model could be elaborated to incorporate growth and shrinkage of the active
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Figure 7: 95% con�dence intervals of �re size distributions under the joint variation in
abundance of pine and disturbed areas in the sample, based on regression Eqn. 9.

�re front as weather conditions change. However, the exponential characterisation of
�re size follows from a simple phenomenological model of �re survival and growth. My
subsequent adoption of a truncated exponential form reects real world limitations on
�re survival time and on the area available to be burnt.

The expected size of a �re is positively related to the abundance of pine-dominated
stands in the vicinity of ignition, and negatively related to the abundance of previously
disturbed areas. This last relation is important, because it implies that either forest
management can e�ect �re behaviour or that burnt areas are refractory to �re for about
10 yr, or both. In either case, such a temporary resistance to �re has a large e�ect on
the behaviour of computer simulations of �re dominated landscapes (Ratz, 1995). This
result is the �rst clear evidence in boreal forests of a relation between patch age as such
and the probability of burning: previous reports are contradictory (Antonovski et al.,
1992, Johnson, 1992).

The statistical models on which this result is based must be regarded as demon-
strative. Many large �res could not be analysed because the pre-�re forest composition
of their locales could not be reconstructed from the available data. However, this re-
construction is usually possible, by referencing the original forest inventory maps. This
should be done and the data reanalysed, before the relations are incorporated into any
landscape models. The di�culties I encountered in this retrospective analysis illus-
trate the great importance of maintaining audit trails or periodic snapshots of extensive
environmental databases.

Another limitation of the models is the low spatial resolution of the independent
variables describing forest cover|100 km2. Experience has shown that this resolution
is often su�cient for the statistical analysis of ecological relationships (Vernier and
Cumming, 1998, Cumming, 1999). However, the statistical relations in this instance
are relatively weak. The data resolution may be too coarse for the problem at hand.
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For areas where digital forest cover data exist, covariates could be generated for circle
of radius perhaps1 km, centred at the reported origin of each �re. This is just a
straightforward application of GIS techniques.

To support the analysis of recurrence times as a function of size, I assumed that �re
sizes were independent within and between years. This is clearly not the case. Most
of my sample �res exceeding 1 � 105 ha burnt in the three year interval 1980{1982.
It seems probable that there is relation between summer weather conditions and �re
size, just as total area burnt is related to various indices of weather at monthly and
annual time scales (Flannigan and Harrington, 1988). Given su�cient meteorological
data, it would be easy to test for and quantify the e�ect within the modelling framework
developed here. The results could be used to extend previous studies of the e�ect of
global warming scenarios on �re, which have focussed on weather indices as a measure
of area burnt (Flannigan et al., 1998). It may also be possible to study additional
covariates describing �re suppression e�ort to test for their inuence on the expected
size of larger �res, once �re weather and fuels are accounted for.

As Moritz (1997) concluded, \quantitative approaches for characterising distur-
bance regimes are necessary to understand ecological processes and manage disturbance-
mediated ecosystems." In the case of �re in boreal regions, there are four processes which
require quanti�cation: the spatial pattern of ignitions, the probability that a �re will
reach a certain minimum size, the size distribution of these non-trivial �res, and �nally,
the e�ect of individual �res, measured as within-�re variability in severity and the forest
types consumed. Many long-standing debates in �re ecology, such as the impact of �re
suppression, the relative role of �re weather and fuels, and the relation between patch
age or type and hazard of burning, could be formulated as testable statistical hypoth-
esis, and resolved with existing data, once parametric models are developed for these
processes.
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