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Abstract 

 

Plant-wide performance monitoring has generated a lot of interest in the 

control engineering community. The idea is to judge the performance of a 

plant as a whole rather than looking at performance of individual controllers. 

Data based methods are currently used to generate a variety of statistical 

performance indices to help us judge the performance of production units 

and control assets. However, so much information can often be 

overwhelming if it lacks precise information. Powerful computing and data 

storage capabilities have enabled industries to store huge amounts of data. 

Commercial performance monitoring softwares such as those available from 

many vendor companies such as Honeywell, Matrikon, ExperTune etc 

typically use this data to generate huge amounts of information. The problem 

of data overload has in this way turned into an information overload 

problem. This work focuses on developing methods that reconcile these 

various statistical measures of performance and generate useful diagnostic 

measures in order to optimize process performance of a unit/plant. These 

methods are also able to identify the relative importance of controllers in the 

way that they affect the performance of the unit/plant under consideration.  
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Chapter-1 

Introduction  

 

1.1 Plant-wide performance monitoring 

Plant-wide performance monitoring refers to wide-spectra monitoring 

activities of different aspects of a process plant, for example: control 

performance, process performance and equipment or asset monitoring. This 

is an area that has generated much interest in process systems engineering 

research because it allows one to take stock of the performance of a plant 

and identify gaps in performance which could be improved upon to result in 

higher long term profitability. In this work, we have focused our attention 

upon the relationship between optimum process performance and the 

performance of controllers on the said process. We also develop a correlation 

between the two to identify gaps in controller performance that could result 

in an optimum process performance. In the following part of the thesis, we 

first define the meaning of process performance monitoring and controller 

performance monitoring in general before investigating their relationship in 

detail in the subsequent chapters of this thesis. 

Process performance monitoring is concerned with the evaluation of 

performance of production assets such as reactors, furnaces and distillation 

columns. There are usually two aspects to measuring the process 

performance of a plant: 

 Short term performance: how well is the process doing with respect 

to meeting its target of production, energy consumption or other key 

performance indicators 

 Long term performance: setting the targets so that the plant is able to 

avoid unplanned outages. For example, if the plant is run at full 
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capacity at all times, it may increase short term profits but may also 

lead to equipment failure and could cause unplanned shutdowns 

resulting in big losses.  

Controller performance monitoring, on the other hand, relates to calculation 

of statistical measures of performance of controllers and judging how they 

are performing with respect to user-specified benchmarks. Often times, poor 

performance as indicated by controller performance metrics suggests that 

tuning changes be made on the controller. Sometimes, this may happen 

because of valve or other equipment problems as well. Controller 

performance monitoring is typically used to monitor performance of PID 

controllers in industry but can also be extended to multivariable controllers. 

With the recent advancements in computational technology, it has become 

much easier for industries to store process data and use them for a historical 

analysis and to optimize process performance based on past information. 

In the scope of this study, we first focus on process and control performance 

monitoring and attempt to correlate the two using statistical techniques. The 

results obtained through developing this correlation also help us prioritize 

controller maintenance activities. In essence, we attempt to prioritize 

controller maintenance activities relative to their influence on the overall 

business/objective performance of the plant. We also discuss the merits of 

this method over methods that are conventionally used in industry. 

 

1.2 Motivation  

 
The technology of controller performance monitoring has matured to the 

point where it is routinely used by process engineers to identify controllers 

that are not performing well. However this advancement has also led to an 

information overload in the sense that for each control loop there are many 
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more performance metrics, often as many as 20 different indices! These 

metrics are definitely useful in the diagnosis of poor control performance; 

however they can often overwhelm the broad process performance picture.  

 

Typical PID controllers have essentially one objective and that is to keep the 

controlled variable close to the desired set point while being subject to set 

point changes and external disturbances.  Specific controllers are ‘tuned’ to 

provide a reasonable compromise between that objective and the constraints 

imposed by process dynamics and controller output activity.  A growing 

number of performance and diagnostic metrics are available to help quantify 

various aspects of that single objective and to provide clues to performance 

problems.  But that information alone is not sufficient to prioritize 

maintenance activities.  Consider a hypothetical example of a temperature 

controller with a rapid but small oscillation that causes the output to swing 

by a couple percent. Is that control performance acceptable or unacceptable?  

Should it be given a high priority to repair or a low priority? The dilemma is 

depicted in figure 1.1. 
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Low Grade
Heat Recovery
Loop?

Performance is
Great!

Reactant Feed
Control?

Performance is
Terrible!

 

Figure 1.1 - The challenge of prioritizing controllers (Pareek et al. 20) 

Obviously, the answer is ‘it depends’.  If this controller is involved in heat 

recovery from a source of low grade steam then we probably consider this 

performance perfectly acceptable.  However if this temperature controller is 

causing a critical reactant stream to fluctuate by 2% this could be considered 

poor or perhaps even dangerous!  The point is that specific control 

performance issues cannot be prioritized without first putting them in the 

context of the overall process or business performance. 

In a typical process plant, if one starts to look for poorly performing 

controllers, typically hundreds of controllers light up as ones that may 

require maintenance. In such a scenario, it becomes imperative that the 

maintenance of such loops be prioritized.  

Therein lies the challenge of automatically prioritizing control performance 

problems. Controller performance metrics are fairly generic across processes 
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and even industries; however, the same is not true of process performance 

metrics.  They tend to be very process and industry specific.  Our challenge is 

to develop an algorithm which can relate control performance to process or 

business performance without requiring a huge amount of customization by 

the system integrator. 

Previous studies have aimed at ranking of controllers through empirical 

methods such as those discussed in Trenchard et al. (2005)1 and through 

their potential to affect other controllers in the unit/plant2. Trenchard et al. 

provide users with a checklist through which loop criticality can be 

determined. The checklist involves various parameters such as importance of 

loops with respect to safety of the operation. Choudhury et al.3 discuss ways 

of prioritizing controllers through simple perturbation tests on the subject 

system. Their approach is focused upon quantifying the potential of a 

controller to affect other controllers in the unit as well but through process 

model based methods. In this work we analyze data based techniques for 

prioritizing controllers based on their process and business impact. The 

methods discussed in this thesis are remote analysis methods which require 

little or no interaction with the process. We will also discuss the merit of 

these methods in this thesis. Naturally, the methods are ideally carried out in 

the plant by process engineers who would have an intimate knowledge of the 

process and the plant. However, we did not have access to such information 

and as a result the reconciliation of controller performance with process 

performance had to be carried out remotely but on real industrial data. 

 

1.3 Quantifying plant performance 

A composite plant performance index is a variable that can be a weighted 

combination of several process variables (measured or calculated) or one 

high level variable of the overall plant/unit operation. The constituents of 
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plant performance index can be variables such as conversion rate, yield, fuel 

efficiency etc. There are various ways in which one can define the overall 

process/plant performance index. One simple idea is to find a region of 

acceptable value(s) of the objective function (comprising process variable(s) 

of interest). One can then reward the objective function when it lies in the 

region of acceptable values. Elsewhere, it can be penalized accordingly. For 

instance, suppose that we want to keep the process yield close to 90%; 

however values lying in the region of 85% to 95% are acceptable. For this 

situation, the objective function could take the form of a parabola. The 

maximum value of the parabola could be achieved at a yield of 90% at which 

point the objective function takes a value of 1. At points corresponding to 

85% and 95% yields, the objective function takes a value of 0. For yields of 

less than 85% and more than 95%, the objective function takes negative 

values. It may seem counter-intuitive to penalize yields of more than 95% 

but high yield may not always be desirable. Operating process plants at high 

yield may result in severe degradation of process equipments as a result of 

pushing them to the extreme limits of their performance. This may cause 

unscheduled shut downs for maintenance. For the situation described above, 

an objective function is illustrated in figure 1.2: 

 

 

Figure 1.2 - Objective performance metric definition 
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For many reactors, conversion is the high level variable of primary 

importance to the operators of the plant. Conversion is defined as amount of 

feed converted per unit amount of feed into the unit. There is usually no 

optimal conversion level for a reactor; therefore defining the objective 

function as explained above may not be suitable. Usually the optimal 

conversion level is decided based on financial parameters such as cost of fuel, 

feedstock availability, purity of the feed and market conditions. Many process 

industries make use of an offline optimizer to decide upon an optimal 

conversion level for a finite time-horizon (in terms of days or weeks) for the 

plant. This is done keeping in mind the long term performance of the plant. 

Once the optimizer computes the conversion target (conversion SP), it is then 

expected that the reactor will operate close to this target using a supervisory 

control strategy. Therefore in this case, the objective function could be 

defined as the standard deviation of conversion from its set point value over 

a day: J=std (Conv SP – Conv PV). High standard deviation value means that 

the conversion value was off target by a great margin indicating that the unit 

performance on that day cannot be considered as a particularly good 

operational day. On days when conversion PV stayed close to the conversion 

SP value, standard deviation would be low, thus indicating that the day was a 

good operational day.  However, it is not always a black or white case; there 

are days that don’t belong to either of these categories. They are referred to 

as ‘in-between’ days in this study. 

 

1.4 Definition of good and bad operational days 

In the two case studies that are discussed in this work: case study of an 

industrial reactor and the Tennessee Eastman problem (TE problem), we 

define the objective function in terms of standard deviation of a Key 

Performance Indicator (KPI). For the industrial reactor, conversion was 

identified as the KPI. For the TE problem, ratio of the two main products (G & 
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H) in the product line was identified as the KPI. For both case studies, we 

define three classes of days: Good days, bad days and ‘in-between’ days. For 

the purpose of classifying days into these categories, we calculate the J 

function value, plot a time series graph and either visually inspect the 

thresholds (as in the case of the TE problem) or get inputs from plant 

engineers (for the industrial reactor case study). The J function value is 

calculated for each 24 hours period so as to judge the performance of the 

process in that one day. 

For the industrial reactor case study, good and bad operational days are 

defined in terms of deviation of conversion value from its target over a 24 

hour period. Therefore we calculate the error value (conversion SP – 

conversion PV) for 24 samples in a day and find the standard deviation of the 

error for each day. Next, we plot a time series of the standard deviation value 

of error for each day over the entire period of data available to us. Looking at 

the trends in this time series graph and after consultation with plant 

engineers, we propose a threshold or a limit to divide the data into good days 

(low standard deviation), bad days (high standard deviation) and ‘in-

between’ days.  

In the TE problem, it is known that high variability in ratio of products in the 

product line is an undesirable situation. Therefore we define std(flow rate 

G/flow rate H) in the product line as our objective function. As in the 

industrial case study, we calculate J value over a 24 hour period and plot a 

time series graph. After visual inspection we draw the threshold values in 

order to classify days into one of the three categories. 

For the purpose of prioritization of controllers, we only consider the data in 

two classes (good days and bad days) and leave out the ‘in-between’ days. By 

doing so we ensure that we only find the most discriminating factors among 
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these two classes. The more discriminating a factor is, the higher priority it 

gets, thus helping us in ranking of the control loops.  

The classification method that we use for the purpose of this study is the 

Support Vector Machines (2-class SVM and multi-class SVM) technique. 

Through means of feature selection strategies we find the most 

discriminating controllers among these two classes. A brief description of 

Support Vector Machines and the feature selection methods used in this 

study is provided in Chapter-2 of this thesis. 

The plot in figure 1.3 shows the time-series of the objective function, 

J=std(error) for one of the reactors: 

 

Figure 1.3 - J score time series for one of the industrial reactors for the year 2009 
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1.5 Outline of this thesis 

This thesis is organised as follows: 

 In chapter 2 we introduce Support Vector Machines (SVM) that is the 

main method of classification used in this work. Thereafter, we 

introduce feature selection methods that help us identify important 

contributors to any given classification model.  

 In chapter 3 we discuss the first industrial reactor case study. This is 

carried out on data obtained from three identical industrial reactors. 

We apply the controller prioritization algorithm and rank order the 

controllers according to their impact on a business objective. Also, we 

compare the results from the three industrial reactors and discuss the 

similarities and differences in the results. 

 Chapter 4 looks at the second case study, the well known Tennessee 

Eastman Challenge problem (TE problem). We simulate data from a 

TE simulation model and apply controller prioritization algorithm in 

order to identify important controllers in the TE process. 

 Chapter 5 discusses concluding remarks and future work that could 

be done in further automating and improving methods of controller 

prioritization. 
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Chapter-2 

Support Vector Machines and Feature 
Selection Methods 

‘Support Vector Machines’ (or SVM) is a relatively new supervised machine 

learning algorithm proposed by Vapnik et al. The foundation for SVM was 

laid by Vapnik in the year 19824. It was formally proposed by Boser, Guyon 

and Vapnik in their paper in 19925. Since that time, SVMs have been 

successfully used as methods of classification and regression. It has been 

particularly successful in applications in the fields of handwritten digit 

recognition and pattern recognition.  

Given data points from two classes, SVM finds the optimal separating 

hyperplane boundary between points of the two given classes. The optimal 

separating hyerplane boundary is the one that has the maximum margin of 

separation between the two classes. Figure 2.1 explains the concept of 

optimal separating hyperplane. 

 

Figure 2.1 - SVM separating hyperplanes 
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In figure 2.1, there are points belonging to two classes. Points from class 1 

are represented by solid dots and those from class 2 are represented by 

blank dots. As can be seen, hyperplanes H1 and H2 both act as separation 

boundaries between the points from two classes. Hyperplane H3 does not do 

a good job of separating these points. H2 is really the optimal separating 

hyperplane because it is the maximum margin classifier. Margin is defined as 

the width that the boundary can be extended by before it hits a data point. 

The points that are the first to hit the separating boundary when its width is 

extended are called support vectors. Maximal margin hyperplanes are 

considered optimal separation boundaries because they lead to less 

generalization errors5. They are more robust and less prone to the presence 

of noise in data. In the following sections, we will look at how SVM finds the 

maximal margin hyperplanes for two cases, i) linear SVM and ii) nonlinear 

SVM. We will only discuss the case of 2-class SVM methods where the goal is 

to separate points belonging to two different classes. In section 2.4 we will 

show how this idea can be extended to multi-class SVM. 

 

2.1 Linear Support Vector Machines 

Linear SVM, as the name suggests, aims at constructing maximal margin 

linear separation boundaries (hyperplanes) to separate points from two 

different classes. Consider that the set of training data available to us is in the 

form  

D={xi,yi} where i=1,…..l  

yi={-1,+1} represents the class of the data point. The nomenclature is 

arbitrary and any of the two classes can be labeled +1 or -1. These labels are 

required for SVM model building exercise during training. 

Let us assume that the separating hyperplane can be represented as:  
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F(x) = wx+b=0  

Since, we assume that the hyperplane is linear, this is a fair assumption. 

When we extend the margin of the separating hyperplane until it touches 

points on both sides (belonging to +1 and -1 classes respectively), we get two 

more planes: plus-plane and minus-plane. Points lying on the other side of 

plus-plane (away from the classifier boundary) will be predicted as points 

belonging to class +1. Similarly, points lying on the other side of minus-plane 

(away from the classifier boundary) will be predicted as belonging to class -1. 

If we assume that the points are completely linearly separable, we have to 

maximise the distance between the plus planes and minus planes subject to 

the condition that all points are correctly classified.  

 

Figure 2.2 – SVM classification boundary and labeling of classes 

 

It is easy to understand that the distance between these two planes is 

. Hence the goal is to minimize ||w||. Mathematically, 

Minimise J= ||w||2 under the following constraint: 

  i             (2.1) 
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The factor of   is included for mathematical convenience as can be seen 

when differentiating equation (2.2). 

In order to make this problem a little easier to handle and also to generalize 

the problem formulation for linear and non linear cases, this optimization 

problem is re-written using Lagrange multipliers. 

Let us introduce a set of positive Lagrange multipliers αi, i=1,…,l, one for each 

inequality in (2.1). For inequalities of the form ci ≥ 0, inequalities are 

multiplied with a positive Lagrange multiplier and subtracted from the 

objective function to form the Lagrangian6. Therefore, the Lagrangian 

becomes: 

                        (2.2) 

The SVM algorithm solves this optimization problem subject to the 

constraints that the derivative of Lp vanishes with respect to w and b and 

. Therefore, we get: 

                         (2.3) 

              (2.4) 

Substituting (2.3) and (2.4) in (2.2), we get the dual form of the problem: 

           (2.5) 

Minimizing Lp is the same as maximizing LD with respect to αi, subject to the 

conditions 
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 and             (2.6) 

The SVM algorithm solves the above quadratic optimization problem and 

finds the maximal margin hyperplane for a given training data. This kind of 

SVM classifier is also known as hard margin classifier because we assume 

that none of the training data points is misclassified. For this optimization to 

work as intended, it is essential that the points be indeed linearly separable. 

Section 2.2 looks at cases when the points are not completely separable using 

linear SVM.  

 

2.2 Linear SVM for non-separable classes 

Suppose the classification problem is so posed that a linear separation 

boundary can do a fairly good job of separating points from two different 

classes but it cannot separate them completely. These cases are fairly 

common in real life. In fact it is uncommon to find cases that are completely 

linearly separable. It is easy to understand that solving the quadratic 

optimization problem that we formulated in section 2.1 is not going to be 

helpful in this case. Therefore we construct a soft-margin classifier by adding 

a cost function term penalizing misclassification in training data set to the 

term that maximizes the margin of the separation hyperplane.  

In figure 2.3, one can observe that solid dots (class 1) and hollow dots (class -

1) are not completely separable, therefore a different objective function has 

to be formulated. 
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Figure 2.3 – Linear SVM for non-separable classes 

 

Therefore the objective function can be formulated as follows:  

                         (2.7) 

J has to be minimized under the following constraints: 

                         (2.8) 

Here,  denotes the distance of incorrectly classified points from the correct 

plane and C is a cost function that penalizes misclassification error. C is a 

parameter that can be tuned to give best accuracy over k-fold cross 

validation. In principle, high value of C implies a higher penalty for 

misclassification during training. Excessively high C may result in over-fitting 

the data where one may get low misclassification rates on training data set 

but the classification model may not have a good generalization capability. 

Excessively low C may result in a large number of training points getting 

misclassified and may even cause high misclassification rates in testing data 

set as a result of poor model learnt. 

Using Lagrangian formulation, we can re-write the objective function as 

follows: 
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Maximize           (2.9) 

Subject to 

           (2.10) 

           (2.11) 

Soft margin classifiers give reasonable results only if the training data set is 

nearly linearly separable. In cases, when constructing a linear classifier will 

result in large number of training errors, it is advisable to build non-linear 

SVM classification models. This is usually done through transforming data 

points from the original input space to a higher dimensional feature space. 

Section 2.3 looks at developing non-linear SVM classifiers. 

 

2.3 Non-linear SVM classifiers  

Application of SVM is not limited only to cases when a linear separating 

boundary can be drawn between points belonging to different classes6. They 

can also be used to draw non-linear separating boundaries using the ‘kernel 

trick’. Kernel transformation maps data points from input space (original 

dimension) on to a higher dimensional feature space. This transformation is 

so done that points that are linearly non-separable in the input space become 

linearly separable in the feature space. SVM then constructs a separating 

hyperplane in the feature space which when transformed back to the original 

input space translates to a non-linear separating boundary. A simple 

illustration of the kernel trick is presented in figure 2.4: 
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(Courtesy of: Jason Weston, NEC Labs America) 

Figure 2.4 – Kernel transformation of linearly non-separable points 

 

In figure 2.4, (x1, x2) is the original space. Data points (circles and crosses) 

seem to be linearly non-separable in the input space but when transformed 

to a 3 dimensional space by introducing the following transformation:  

z1 = x1
2, z2= √2x1x2 and z3=x2

2         (2.12) 

These points can be easily separated by a linear hyperplane in the feature 

space.  

It can be observed from equations (2.5) & (2.9) that the optimization 

problem only depends on the inner product . Now let us assume 

that we use a kernel mapping function  to transform the data on to a 

higher dimensional space. In this space, the optimization problem would only 

depend on  If there exists a kernel function K such that  

, then we would only need K in the training algorithm 

and would never need to know  explicitly. Commonly used kernel 

functions are as follows: 
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 Linear kernel:  

 Polynomial kernel:  

 Radial Basis Function kernel:  

Kernel functions should be positive definite and should obey Mercer’s 

theorem in order to be legitimate to represent a dot product space6. 

After the data points are transformed to a higher dimensional space, we can 

formulate an optimization problem similar to the one formulated in section 

2.2 to find the maximal margin hyperplane in feature space.  

If we use the radial basis kernel function for instance, we see that there are 

two parameters that need tuning: C and . When using polynomial kernel 

functions, one would have to tune 3 parameters. The way tuning is done in 

this work is through a grid search method where different combination of 

values of C and  are tried and the pair that gives the best accuracy over 5 

fold cross validation is chosen. 5 fold cross validation refers to segmenting 

the data randomly into 5 folds. For a given pair of (C, ), we train the SVM 

model over 4 folds and test it on the fifth. We repeat this exercise 5 times 

such that a different fold is left out of model building each time. We average 

the misclassification rate for each pair of (C, ) over these 5 runs and select 

the pair that gives the lowest misclassification rate.  

 Readers are referred to C.J. Burges6 and Hsu et al.7 for a more detailed 

tutorial on SVM theory and applications respectively. 

 

2.4 Multi-class SVM 

Until now, we have only looked at cases where classification is done between 

two classes. SVMs were originally proposed as a classification method for 
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two class problems. Several modifications, however, allow for them to be 

used for multi-class problems.10, 11.  

In this thesis, we have used one of the several possible modifications to 

develop 3-class SVM models. This technique is called one-versus-one. Here, 

we develop three 2-class SVM models taking two classes at a time and then 

use a voting technique to decide the true class of the data point.  Section 3.3 

explains in detail the 3-class SVM models employed in this work. 

 

2.5 Feature selection through Recursive Feature 

Elimination 

Feature selection refers to selecting a subset of variables (features) that are 

most relevant to the classification models. Recursive Feature Elimination is 

one of the many ways to do that. The various ways to do feature selection for 

a classification strategy are broadly categorized as: Filter method, Wrapper 

method and Embedded methods8. Following is a brief overview of these 

strategies. Readers are referred to Guyon8 for a more detailed account of 

feature selection strategies. 

Filter methods usually involve calculation of a statistical metric 

corresponding to all features and rank order them according to the value of 

the metric. Such methods are independent of the model building exercise. 

Fisher score calculation is one such way9. Fisher scores calculate a 

discriminant value corresponding to each feature in the data set. The higher 

the discriminant value, the more statistically important a feature is perceived 

to be. Filter methods are useful in cases when there are a large number of 

features to work with and the cost of including all of them is prohibitive. One 

can use filter methods to exclude some features that are deemed non-

important from the model building exercise. Depending only on filter 

methods can be disadvantageous because they do not take into account how 
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different features interact with the classification model. In this work, we use 

Fisher scores only as a tie-breaking criterion in Recursive Feature 

Elimination algorithm that is used to rank controllers in the reactor unit. A 

more detailed account of the feature selection algorithm as used in this thesis 

is provided in section 3.4. 

Wrapper methods are a class of feature selection methods that are usually 

dependent on the classification model that is learned from the data. There 

are various ways of employing wrapper methods in feature selection6. 

Wrapper methods test various possible subsets of features and their effect on 

model accuracy. Wrapper methods are generally computationally very 

intensive but using greedy search strategies such as backward elimination 

and forward selection, the computational load can be reduced. 

Another way to reduce the computational effort that is usually required for 

wrapper methods but still give an accurate feature selection result is to use 

embedded methods of feature selection. Embedded methods use techniques 

of feature selection with the model building exercise. Guyon et al. suggest 

different ways to do feature selection in an embedded manner. 

In this study, we have used Recursive Feature Elimination which belongs to 

the class of wrapper methods of feature selection. RFE can be used to find the 

optimal feature set as well as to rank order the features in a classification 

problem. RFE as used in this case study works as a greedy backward 

selection algorithm eliminating in each step the variables that contribute the 

least to the classification accuracy. The step-wise elimination can be stopped 

when the desired accuracy is reached and can also be continued until all 

features have been ranked in the order of their removal. A stepwise approach 

to performing RFE as was done in this case study is explained in section 3.4 

of chapter 3. 
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An important thing to remember while applying feature selection is that one 

should ensure that the classification models built on the data set give a 

reasonably good 5 fold cross validation accuracy. If they don’t, one should try 

to fit better models, try another technique, adjust model parameters etc. Only 

when it is ensured that the generalizable performance of the model is good 

should one proceed to find the important contributors to that classification 

model. Throughout this work, we achieved SVM classification accuracies in 

excess of 90% therefore we could apply feature selection and develop the 

controller prioritization algorithm. 

In this work, we have used the SPIDER toolbox18 in MATLAB for developing 

classification models using SVM. 
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Chapter-3 

Case Study: Unit-wide performance 
assessment of an industrial reactor using 
SVM for Controller Prioritization 

 

As the first case study for this paper, we analyzed data from three industrial 

reactors. The main aim of this case study is to correlate overall unit process 

performance with controller performance and identify those control 

performance problems most correlated to reactor performance. These 

important controllers are the ones that are the most discriminating factors 

between good days and bad days. As we will see in the distribution 

histograms presented in this section, good performance of the higher ranked 

important controllers meant it was a good day for the plant and vice versa. 

When a subset of few important controllers has been identified, maintenance 

priority can be given to these controllers whenever process performance 

appears to degrade. In any case these are the controllers that should be 

examined first in case unit performance appears to be degrading. Statistical 

analysis tells us that these controllers have the biggest impact on process 

performance and hence have the higher maintenance priority. We will also 

see through the application three-class SVM classification that these 

important controllers if maintained properly can significantly improve the 

performance of the reactor unit. 

 

3.1 Description of the Industrial Reactor Unit 

The reactor studied for this case study is a fairly common process in 

hydrocarbon processing industries. The feed gets treated inside the reactor 

and the outlet stream is a mixture of products, one important desirable 



24 

 

product plus by-products. Some part of the feed remains unconverted and 

comes out of the outlet line along with other products. The conversion rate 

tells us how much of feed has been converted into other products. The 

desirable component on the outlet line is a specific product, ‘X’. The 

percentage of this product in the outlet is the variable yield. As identified in 

Section 1.2, the objective function of the supervisory control strategy is 

standard deviation of conversion. This is also the measure of goodness of a 

day for our study. 

We performed the analysis on three separate reactors (R1 – R3). For each of 

the three reactors, we gathered data on conversion SP, conversion PV, 

reactor on/off days, supervisory control on/off days and several 

performance metrics for the controllers in the reactor unit. The reactor unit 

has a total of 17 controllers. Ten of these controllers regulate the feed flow 

into the reactor (W1, F1-F4, W5 and F5-F8). There are three pressure control 

loops, two of which control the pressure of fuel gases (P1 and P2) and one 

that controls the inlet air (P9). The fuel gas pressure loops (slave controllers) 

are cascaded with two temperature control loops (T1 and T2: master 

controllers). The outlet products are cooled by a stream of boiler feed water. 

There is a flow control loop (F9) that regulates the flow of boiler feed water. 

One controller that is very important with regards to safe operation of the 

reactor is the one that regulates the amount of Oxygen inside the reactor. The 

inlet air pressure loop (P9) is cascaded with the excess Oxygen control loop 

(A9).  

The performance metrics data that was collected corresponded to three 

indices I1, I2 and I3. I1 corresponds to the settling time of the controller 

compared to a benchmark controller. I2 gives the standard deviation of the 

control error and I3 is a metric that quantifies the amount of oscillation 

present in the control loop.  
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To keep the analysis unbiased, we removed certain days of data from our 

analysis. These were days when conversion SP changes were made on days 

when supervisory control was fully or intermittently operational. Also 

removed were days when the supervisory control was completely off during 

the day. This was done because it is observed that the standard deviation of 

conversion error tends to be higher on days when Conversion SP change was 

made and on days when the supervisory control was off. The reason for this 

high standard error on these days may not just be bad control. Since, we 

assume that there is a causal relationship in control performance with 

process performance, we exclude these days from the SVM model building. 

Therefore now, calculation of standard error is equivalent to calculating 

standard deviation of conversion PV. 

 

3.2 SVM classification models and feature selection 

In this case study, we have assumed that the following factors: performance 

of controllers, incipient faults in the process and process operating 

conditions have a causal relationship with process performance. It is easy to 

understand why controller performance has a causal relationship with 

process performance. If a controller oscillates significantly or has a high 

standard error, it will result in the value of a particular process variable 

being very different from its desired set point and thus overall process 

performance will be poor. There have been studies that have reported the 

effect of incipient faults in the process as a factor influencing process 

performance as well12. Also, it is often seen that industrial processes behave 

differently in different operating conditions, i.e. the process model used as a 

basis for supervisory control may work very well for certain operating 

conditions but may not work as well for other operating conditions. For this 

reason, we select these three factors: controller performance (3 indices for 

each of the 17 controllers), incipient fault data (which relates to scaling of 
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reactor tubes) and mean of feed flow set point and conversion SP for the day. 

This means we have a total of 54 variables as our predictor variables for this 

case study. 

The strategy that we have followed in this work can be described as follows. 

We decide upon the good day and bad day criteria based on a process 

variable value (standard deviation of conversion). The important point to 

note here is that these boundaries are not fixed and can be moved around to 

some extent. They can be different for different reactors. The only idea 

behind drawing these separation boundaries is that when we draw 

separation boundaries using SVM on predictor variables we want a good 

level of separation so that the boundaries are more robust and wide. Once 

the good days and bad days are decided upon based on the standard 

deviation of conversion, we take the 54 predictor variables for good days and 

bad days and develop a 2-class SVM model for classifying good day data from 

bad day data. 2-class SVM models between good days and bad days built on 

the predictor variables give a mean accuracy over 5 fold cross validation of 

around 90-95%.  5 fold cross validation, as used in this study, can be 

explained as follows: 

The entire data set is partitioned into 5 folds of almost equal sizes. SVM 

model is built on 4 of these folds and tested on the 5th partitioned segment of 

data. This exercise is repeated 5 times leaving a different fold out of the 

model building process each time. Mean accuracy is calculated by taking the 

mean of 5 accuracy values obtained in each of the five iterations. 5 fold cross 

validation ensures that the model does not over-fit the data and remains 

robust. This robustness can be judged from the fact that a mean accuracy of 

90% indicates that the SVM models were able to classify correctly 90% of the 

points that were not used in the model building exercise. 
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After this, we perform feature selection as described in step 2 to prioritize 

controllers for the reactor unit. The working algorithm is explained through 

the flowcharts presented in figures 3.1 and 3.2: 

Step1: Overall data processing algorithm: 

Optimizer

Calculate std 

(conversion SP-

conversion PV) for each 

day

Financial parameters

Conversion SP

Conversion PV

Display time 

series plots

Get cut-off values 

from user

Decide the class of 

each day of data

Cut-off limits

Predictor 

variable 

data set

INB daysGood days Bad days

Good 

days SVM 

data

INB days 

SVM data

Bad days 

SVM 

data
 

Figure 3.1 – Data processing algorithm 
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Step 2: Recursive Feature Elimination algorithm for identifying important 

control loops, this is the Controller prioritization algorithm 

2-class SVM 

data set

(data)

Count number 

of features (n)

Good days Bad days

Is n>1

initiate

i=1

Yes

Is i<=n

data=(data)
-i

Yes

Build 2-class SVM 

model

Record mean 5 

fold CV 

accuracy [ai]

i=i+1

Find 

max(ai)
No

Remove feature corresponding to max(ai)

Store 

ranks
Removed feature gets rank = n

Display 

ranks
No

 

Figure 3.2 – Recursive Feature Elimination algorithm 
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Recursive feature Elimination for SVM models can be done in many ways 

depending upon the problem at hand. In this study, we used a methodology 

described in Maldonado et al.13 with slight modifications suiting the needs of 

this study. A brief description of the Feature selection methodology as used 

in this case study is as follows: 

1)  Count the number of variables (features) remaining in the problem (n).  

2) Remove one variable at a time (xi); develop a two class SVM model (mi) of 

the reduced dimension good day and bad day data sets; record mean 

accuracy over 5-fold cross validation (ai). 

3) Find the maximum ai value. Note that, this maximum accuracy was 

achieved by the removal of variable xi. It means that variable xi is probably 

not an important contributor to the good day-bad day classification. 

4) If there is not a unique maximum value and there are two or more 

maximum accuracy values (ai, aj etc. for instance). Compare the Fisher scores 

of these variables. Select the variable with a higher Fisher score. 

5) Remove the variable xi identified as the least important contributor to the 

SVM model. 

6) Repeat steps 1-5 until all variables are ranked (variables eliminated 

earlier are ranked lower) 

One must realize that this sort of feature selection procedure is best applied 

by partitioning the data set differently and repeating this calculation multiple 

times. For this case study, we partitioned the data set into 5 folds differently 

for 32 times. We applied the feature selection algorithm for each of the 32 

times and the final rankings that we arrived at were the mean of the rankings 

over 32 runs. It is observed that mean rankings do not change even if the 

feature selection algorithm is applied for more than 32 times. The number 32 

was chosen because the seed to the MATLAB random number generator 
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using ‘twister’ algorithm by Matsumoto et al.14 can be varied from 0 to 2^32 – 

1. For computational ease, in this study, the seed to the random number 

generator were given as 2s where s varies from 0:31. 

In this case study, there are 17 controllers with 3 indices each in addition to 

3 process variables as mentioned in section 3.2. To prioritize the controller 

maintenance effort, the controllers need to be ranked in order of their 

relative importance to the good day-bad day classification. Therefore when 

removing a variable in the feature selection algorithm, we remove all 3 

indices corresponding to a controller. In effect, we have 20 variables to be 

rank ordered. Therefore steps 1-5 of feature selection need to be repeated 19 

times. The entire exercise is repeated 32 times. In each of the 32 runs, the 

features are ranked according to the order of their removal. Variables 

removed earlier get a lower rank as compared to variables removed after 

them. These rankings are then summed up over 32 runs in order to identify 

the top few contributors to the classification between good days and bad 

days.  

The 5 most important controllers as identified by feature selection for this 

case study are as follows: 

Reactor R1 Reactor R2 Reactor R3 
T2 T1 T1 
T1 T2 T2 
P1 W1 P9 
W5 A9 A9 
F1 P9 F7 
 

Table 3.1 – Results from feature selection 

These results show a great deal of similarity between the three reactors. For 

all the three reactors studied in this work, the temperature loops are 

identified as two of the top 5 most important controllers. This signifies the 

importance of proper maintenance of temperature control loops for these 
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reactors. In the feature selection results for R1, one can see that loop F1 is 

identified as being very important. When the plant engineers were asked 

about these results, they identified F1 as being one controller that has been 

difficult for them to tune. Feature selection results on other reactors were 

also corroborated by the plant engineers. In short, the essence of this study is 

to use data based methods to identify important controller based on a 

performance or business based objective function so as to help plant 

engineers prioritize the maintenance effort for these controllers. In the next 

section, we show results from three-class SVM classification.  

 

3.3 Three-class SVM 

Three-class SVM models are built on the complete data sets, i.e. inclusive of 

good days, in-between days and bad days. It should be noted that we had 

excluded the in-between days from the model building process for feature 

selection. The reason for their exclusion was to ensure high separation 

between the two classes.  

Three-class SVM models as used in this study are really a combination of 

three, 2-class SVM models built on  

1) Good days and bad days (model1),  

2) Good days and in-between days (model2), and  

3) Bad days and in-between days (model3) 

Predicted class of a data point is decided by a voting scheme. For instance, on 

passing a novel data point through the three models: 

Model1 predicts: it is a good day 

Model 2 predicts: it is a good day 



32 

 

Model 3 predicts: it is an in-between day 

In such a scenario, we have two votes for it being a point belonging to the 

good day class. Hence, we predict it to belong to the ‘good day’ class. If the 

day is actually a good day, we consider the point to have been correctly 

classified. Otherwise, we take it as a misclassified point.  

There is a possibility that all three models give a different prediction for the 

class of a data point. In such a case, we can’t decide the predicted class of the 

data point. Such cases are few and far-between. We consider these points to 

be misclassified regardless of their actual class. 

This kind of 3-class SVM model is known as one-versus-one 3-class SVM 

models. They are named so because the SVM models that are developed in 

this scheme are all 2-class models developed between two classes at a time. A 

detailed description of three-class SVM can be found in Crammer9 and Ulrich 

Kreßel10 

For this case study, five-fold cross validation of the 3-class SVM models give a 

mean accuracy of almost 90% for all three reactors studied in this paper. In 

this case study, three-class SVM models are built for two purposes: a) to 

underline the significance of feature selection results, b) to identify regions of 

good performance of the reactors. These results are best understood by the 

numerical experiments presented in sections 3.3.1 and 3.3.2. 

 

3.3.1 Numerical Experiment 1: Importance of the top 5 controllers 

In numerical experiment 1, we replace the controller indices values of the top 

5 controllers (i.e. a total of 15 variables) of the bad days with that of the 

mean value of the good day data for the corresponding 5 controllers and 

parse them through the 3-class SVM model. We repeat this experiment now 

with the controller performance indices of top 10 controllers changed. INB 
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denotes the percentage of bad days that changed to in-between days and 

Good denotes the percentage of bad days that changed to good days. The 

results are tabulated in table 3.2: 

Number of 
controllers 

R1 R2 R3 

5 INB= 88%  
Good=12% 

INB= 94%  
Good=6% 

INB= 95%  
Good=5% 

10 INB= 37%  
Good=63% 

INB= 59%  
Good=41% 

INB= 55%  
Good=45% 

 

Table 3.2 – Results to illustrate the importance of feature selection 

 

We observe that if the identified important controllers perform well, bad 

days can almost disappear. For the reactor to give a good performance 

however, significantly larger number of controllers should perform 

optimally. 

 

3.3.2 Region of optimal performance for the reactors 

 As a starting point, take mp1 to denote the mean of good day data, mp2 to 

denote the mean of bad day data and mp3 to represent the mean of in-

between day data. Each of these three means is a 1x54 vector. Find 100 

points equally spaced between two means taken at a time. In effect, we 

simulate a total of 300 data points. These points are then parsed through the 

3-class SVM model. Transition of data points, taken 100 at a time, from one 

class to another is plotted in figures 3.3, 3.4 and 3.5: 
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Figure 3.3 – Class transition from bad days to good days 
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Figure 3.4 – Class transition from INB days to good days 



35 

 

0 20 40 60 80 100
-1

-0.8

-0.6

-0.4

-0.2

0

Simulated data point number

P
re

d
ic

te
d
 c

la
s
s

1: Good days; -1: Bad days; 0: INB days

 

Figure 3.5 – Class transition from INB days to bad days 

 

The key observation in these class transition graphs is that there is a region 

of in-between days between the regions of good days and bad days. When we 

move from optimal controller index values (i.e. mean of good day data set) to 

sub-optimal controller index values (i.e. mean of bad day data set), we 

encounter a region of INB days. Similarly from other transition graphs we 

can conclude that there is no good day region between bad days and INB 

days; also there is no region of bad days between regions of good days and 

INB days. The implication here is that we know where the transition from 

one class to another class occurs. Therefore, we can figure out the optimal 

controller performance index value region wherein if we maintain our 

controllers, we will have more optimal plant performance. If it is possible to 

translate the controller index values back to tuning parameters for the 

controllers, we can identify optimal tuning parameters for the controllers. 
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3.4 Distribution Histograms 

So far, we have identified the important controllers for each of the three 

reactors. In order to somewhat validate our results, we present here the 

distribution histograms of the controller performance indices for the 

identified important controllers for each unit. The important observation 

here is the clear difference in performance of the identified important 

controllers over good days as compared with bad days. It should be noted 

that these distributions are not normal or follow a clear pattern because the 

number of sample days available to us are very few. Presented in figures 3.6 

– 3.12 are distribution histograms from a few controllers for each reactor 
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Figure 3.6 – Distribution histograms of index I1 for controller T2 over good days and 

bad days 
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Figure 3.7 – Distribution histograms of index I2 for controller F1 over good days and 

bad days                           
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Figure 3.8 – Distribution histograms of index I1 for controller T1 over good and bad 

days 
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Figure 3.9 – Distribution histograms of index I2 for controller T1 over good days and 

bad days 
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Figure 3.10 – Distribution histograms of index I1 for controller A9 over good days 

and bad days 
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Figure 3.11 – Distribution histograms of index I1 for controller T2 over good days 

and bad days 
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Mean: 0.22           Mean: 0.47 

Figure 3.12 – Distribution histograms of index I3 for controller A9 over good days 

and bad days 

  

We observe that in all of these histograms: index I1 (corresponding to settling 

time of the controller) tends to have a higher value on good days as 

compared with bad days (high value indicating a lower settling time) and 

indices I2 (corresponding to standard deviation of control error) and I3 

(quantifying oscillation the control loop) tend to be lower on good days 

compared with bad days. This observation also verifies our results because it 

shows that when important controllers had a good day, the reactor unit had a 

good day as well. Therefore, these important controllers impact the 

performance of the reactor more than others.  

 

3.5 Control Loop Digraph and Reachability Matrix  

Control Loop Digraph is a technique of capturing information flow between 

control loops in a plant/unit operation. They have been used for a variety of 

purposes. Some of them include root cause analysis of plant oscillations15 

and HAZOP2 analysis. The concept of Adjacency Matrix and Reachability 
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Matrix are associated with control loop digraph and can help us develop a 

static ranking of controllers in order of their potential to affect other 

controllers in a unit operation.  

A control loop digraph has control loops depicted as nodes and directed 

arrows connecting these nodes. The directed arrows and their direction are 

decided by a logic explained as follows: 

   

 

Fig. 3.13 – Construction of a Control Loop Digraph 

In figure 3.13, we can see a directed arrow from control loop A towards 

control loop B. This indicates that OP of controller A can directly affect PV of 

control loop B. In many cases, there are two way arrows between two control 

loops; this would mean OP of each controller directly affects the PV of the 

other controller. It should be kept in mind that only direct interactions 

between control loops are depicted by an arrow connection. ‘Indirect’ 

connections are not. A detailed explanation is provided in the example in 

section 3.5.1. 

3.5.1 Example illustrating construction of a Control Loop Digraph 

 

Fig. 3.14 – Example illustrating Control Loop Digraph (courtesy of: Jiang et al. 15) 

A B 
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Figure 3.14 shows a two tank system in which the top tank drains freely into 

the second tank15. FCs represent flow controllers, LCs represent level 

controllers and TCs represent temperature controllers. There are a total of 8 

controllers in this example. Steam flow loops are cascaded with temperature 

loops and cold water flow loops are cascaded with level loops. All the 8 

controllers have been marked from 1 to 8.  All the connections are shown by 

red arrows. 

It can be seen that there is a direct two-way interaction between nodes 1 and 

2. This is because OP of controller 1(FC2.OP) can change the PV of node 2 

(TC1.PV). Also, the OP of controller 2 (TC1.OP) can change the PV of node 

1(FC2.PV). Node 1 also interacts directly with node 6 because FC2.OP will 

affect TC2.PV since the top tank drains freely into the bottom tank. It can also 

be seen that node 1 will affect node 5 because when TC2.PV changes, it will 

change FC4.PV but since the interaction between node 1 and node 5 is not 

direct, we do not connect them in the control loop digraph. If node 5 were not 

cascaded with node 6, node 1 will not directly influence node 5. In short, 

control loop digraphs only show connections between nodes when there is a 

direct interaction between OP of one node with the PV of another. 

In figure 3.14, further distinction can be made by way of drawing a dashed 

arrow to indicate that increase in OP of controller A causes decrease of PV of 

control loop B and a solid arrow indicating that increase in OP of controller A 

would cause an increase in PV of control loop B. This distinction can be very 

useful when a root cause analysis is to be done. However, for the purpose of 

this study we are interested only in defining a ‘span of influence’ for each of 

the 17 controllers in the reactor unit. Span of influence will be defined in the 

section that talks about Reachability Matrix.   

Currently there are no good automated ways of constructing a Control Loop 

Digraph. Therefore when constructing a Control Loop Digraph, one has to 
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understand fully well the process information and topography of the 

unit/plant. Process and Instrumentation diagrams can help to make this 

process easier. Decisions have to be made by qualitatively understanding the 

process. It can then be validated by finding correlation between OP and PV of 

the control loops where a connection has to be verified. However, one has to 

be careful about drawing inferences based on correlation between OP and PV 

of two control loops. Correlation does not always imply causality; hence a 

high correlation between OP and PV is not sufficient to suggest a connection. 

Therefore, the Control Loop Digraph must first be constructed based on 

process knowledge. The connections can then be verified by correlation 

value2. If the correlation is high enough (0.7 or more), one can be reasonably 

confident about a connection. If the correlation is not very high (0.4 or less), 

there are reasons to doubt a connection in Control Loop Digraph. Anything 

between 0.4 and 0.7 is a grey area and perhaps P&ID diagrams should be 

referred to in order to validate a connection. 

Presented in figure 3.15 is the Control Loop Digraph for the industrial reactor 

units. It is the same for all three reactor units because they are all 

structurally similar with a similar control scheme. In this control loops 

digraph we have not made the distinction between positive and negative 

connections because a root cause analysis is not of interest to us. In the 

following sections, we will describe the concepts of Adjacency and 

Reachability matrices which will help us identify those controllers that have 

more of a potential to affect other control loops in the unit/plant. 
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Fig. 3.15 – Control Loop Digraph of the reactor unit with 17 controllers 

 

3.5.1 Adjacency Matrix and Reachability Matrix for the reactor unit 

The Adjacency Matrix (X) has 17 rows and 17 columns (corresponding to the 

17 controllers). If there is a directed arrow from controller A to controller B, 

we enter ‘1’ in the (A, B) cell of the matrix, otherwise we enter ‘0’.  

The Reachability Matrix (R) takes into account all possible paths between a 

set of controllers and not necessarily direct ones as is the case with the 

adjacency Matrix. R can be calculated as: 

R=(X+X2+X3+…+Xn)#       

n is the total number of controllers in the unit. ‘#’ is a boolean (algebra) 

operator which returns a value of 1 if the sum is greater than 1 and returns 0 

if the sum is zero. Results from the Reachability Matrix show that the 

controller with the highest reach is W1. It can reach all the other controllers 

in the reactor. The other feed flow controllers (F1-F4) also have an equally 

big reach. All controllers other than W5, F5-F8 have a reach of 7. The steam 

flow controllers have a reach of 5. 
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Table 3.3 shows the Reachability matrix for the controllers in these reactors. 

Highlighted in green are those controllers that were identified as important 

for reactor R1 based on feature selection results. One will observe that the 

controllers with highest reach are not often predicted as ones being 

important by the prioritisation algorithm. This indicates that static ranking of 

controllers is probably not the optimal way of rank ordering controllers to 

prioritise their maintenance effort.  As can be seen from the distribution 

histograms, you have more good days when the important controllers 

perform well. The same cannot be said of controllers with highest reach.   

 W1 W5 F1 F2 F3 F4 F5 F6 F7 F8 AC9 P9 P1 P2 T1 T2 F9 Reach 
W1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 

W5 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 5 
F1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 

F2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 
F3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 
F4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 

F5 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 5 
F6 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 5 

F7 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 5 
F8 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 5 
AC9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 7 

P9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 7 
P1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 7 

P2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 7 
T1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 7 
T2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 7 

F9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 7 

 

Table 3.3 – Reachability Matrix for the three Reactors 

 



45 

 

Chapter-4 

Case study: Controller Prioritization for the 
Tennessee Eastman Challenge problem 

 

The Tennessee Eastman Challenge problem (TE problem) was first proposed 

by Downs and Vogel (1993)16 as a test-bed problem on which to test control 

schemes, fault detection techniques and other process control technologies 

in general. The simulation for this problem was provided by Downs and 

Vogel in the form of FORTRAN sub-routines. Since then, it has been adapted 

into MATLAB, SIMULINK and other programming languages. This simulation 

is very useful because it imitates a real industrial process. It has a total of 5 

sub-units: Reactor, Condenser, Compressor, Vapour/liquid separator and 

Stripping column. This gives the process control community a chance to test 

out their ideas on a simulated case study before applying it on a real process.  

A brief description of the Tennessee Eastman problem follows: 

The process produces two products (G & H) from four reactants (A, C, D & E). 

There is one byproduct (F) and one inert (B). Therefore, this process has a 

total of 8 components. The reactions describing this process are as follows: 

A(g) + C(g) + D(g)  G(liq)            (4.1) 

A(g) + C(g) + E(g)  H(liq)            (4.2) 

A(g) + E(g)  F(liq)             (4.3) 

3D(g)  2F(liq)             (4.4) 

All reactions are irreversible and exothermic. 
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The process has a total of 41 measured variables and 12 manipulated 

variables thus giving the control scheme designers a total of 12 degrees of 

freedom. In their paper, Downs and Vogel also specify some control 

objectives that the designers should adhere to. Most of these objectives relate 

to minimizing variability in some key process variables. A more detailed 

description of the TE process follows in section 4.1. 

 

4.1. Description of the TE process 

Gaseous reactants are fed to the reactor where they react to form liquid 

products. Since the reactions are exothermic, the reactor is provided with a 

cooling bundle to remove the heat of reaction. Products and unconverted 

reactants leave the reactor in gaseous form and enter a condenser to 

condense the products. The stream then enters the vapour liquid separator 

where the gaseous components recycle back through a centrifugal 

compressor to the reactor feed. Condensed components move to a product 

stripping column where they are mixed with stream 4 (as shown in figure 

4.1) comprising reactants A & C. Products G & H exit the system from stream 

11 and enter a downstream refining section which is not included in the TE 

process. Inert (B) and byproduct (F) exit the process through purge stream 

from the vapour liquid separator. Readers are referred to Downs and Vogel 16 

for a more detailed description of the process. 

Shown in figure 4.1 is the schematic of this process depicting the various unit 

processes and streams that are a part of the Tennessee Eastman process. 
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Figure 4.1 – Schematic of the Tennessee Eastman Process 

This process has six specified modes of operation with varying production 

rates and G/H mass ratio in the product line (stream 11 in the figure 4.1). In 

order to make the process as realistic as possible to a real industrial process, 

the TE problem is also provided with 20 disturbance variables. The 

disturbance variables are summarized in table 4.1: 
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Disturbance  Process Variable Type 

IDV(1) A/C feed ratio, B composition constant (stream 4) Step 

IDV(2) B composition, A/C ratio constant (stream 4) Step 

IDV(3) D feed temperature (stream 2) Step 

IDV(4) Reactor cooling water inlet temperature Step 

IDV(5) Condenser cooling water inlet temperature Step 

IDV(6) A feed loss (stream 1) Step 

IDV(7) C header pressure loss-reduced availability (stream 4) Step 

IDV(8) A, B, C feed composition (stream 4) Random 

IDV(9) D feed temperature (stream 2) Random 

IDV(10) C feed temperature (stream 4) Random 

IDV(11) Reactor cooling water inlet temperature Random 

IDV(12) Condenser cooling water inlet temperature Random 

IDV(13) Reaction kinetics Slow drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(15) Condenser cooling water valve Sticking 

IDV(16) Unknown Unknown 

IDV(17) Unknown Unknown 

IDV(18) Unknown Unknown 

IDV(19) Unknown Unknown 

IDV(20) Unknown Unknown 

 

Table 4.1 – List of disturbances in TE Process 

As mentioned earlier, Downs and Vogel have specified multiple control 

objectives that any attempted control scheme should work towards attaining. 

In the literature, there are multiple control schemes available for this process 

as proposed by different authors. These control schemes often vary in their 
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choice of manipulated variable for a given controlled variable. For the 

purpose of this case study, we chose the control scheme developed by Ricker 

et al17. Ricker has also provided a SIMULINK model of their control scheme. 

The controller prioritization algorithm remains unchanged from the 

previously discussed SVM-classifier based algorithm in the industrial case 

study in chapter 3. A brief description of Ricker’s control scheme for the TE 

process is described in section 4.1. 

 

4.2. Description of Ricker’s SIMULINK model 

The model consists of 19 PID controllers. The design of this control scheme is 

based on a decentralized approach wherein the plant is partitioned into sub-

units and controllers are designed for each sub-unit.  

As mentioned earlier, the TE process has 12 degrees of freedom, i.e. 12 

manipulated variables. These are: 

Variable number Variable name 

xmv(1) D feed flow (stream 2) 

xmv(2) E feed flow (stream 3) 

xmv(3) A feed flow (stream 1) 

xmv(4) A and C feed flow (stream 4) 

xmv(5) Compressor recycle valve 

xmv(6) Purge valve (stream 9) 

xmv(7) Separator pot liquid flow (stream 10) 

xmv(8) Stripper liquid flow (stream 11) 

xmv(9) Stripper steam valve 

xmv(10) Reactor cooling water flow 

xmv(11) Condenser cooling water flow 

xmv(12) Agitator speed 
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Table 4.2 – List of manipulated variables in TE process 

According to the control objectives specified by Downs and Vogel, six 

measured variables must be controlled at specified setpoints: 

1. Production rate 

2. Mole %G in product 

3. Reactor pressure 

4. Reactor liquid level 

5. Separator liquid level 

6. Stripper liquid level 

This leaves us with just 6 degrees of freedom. One of these, the agitation rate 

is fixed at 100% to maximise the heat transfer in the reactor. The remaining 

5 degrees of freedom are utilized in controlling the following variables: 

7. Reactor temperature 

8. yAC – the combined %A + %C in the reactor feed 

9. yA – amount of A in the reactor feed relative to the amount of A+C (as 

a percent) 

10. Recycle valve position 

11. Steam valve position 

Presented in table 4.3 is a summary of the 19 PID loops used in Ricker’s 

control scheme. It should be noted that 17 of these loops assist the normal 

operation of the plant. Two loops are described as override loops that assist 

with abnormal operation. These loops (Loop 18 & 19) control maximum 

reactor pressure and maximum reactor level respectively. 
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Loop Controlled variable Manipulated variable Gain Integral 

time 

(min) 

1 A feed rate (stream1) xmv(3) 0.01 0.001 

2 D feed rate (stream2) xmv(1) 1.6x10-6 0.001 

3 E feed rate (stream3) xmv(2) 1.8x10-6 0.001 

4 C feed rate (stream4) xmv(4) 0.003 0.001 

5 Purge rate (stream 9) xmv(6) 0.01 0.001 

6 Separator liquid rate (stream 10) xmv(7) 4.0x10-4 0.001 

7 Stripper liquid rate (stream 11) xmv(8) 4.0x10-4 0.001 

8 Production rate Production index, Fp 2.0 400 

9 Stripper liquid level Ratio in loop 7 -2.0x10-4 200 

10 Separator liquid level Ratio in loop 6 -1.0x10-3 200 

11 Reactor liquid level Setpoint of loop 17 0.8 60 

12 Reactor pressure Ratio in loop 5 -1.0x10-4 20 

13 Mol %G in stream 11 Eadj -0.4 100 

14 yA Ratio in loop 1 2.0x10-4 60 

15 yAC Sum of r1+r4 3.0x10-4 120 

16 Reactor temperature Reactor coolant valve -8.0 7.5 

17 Separator temperature Condenser coolant valve -4.0 15 

18 Maximum reactor pressure Production index, Fp 2.0x10-6 0.001 

19 Reactor level override Recycle valve, xmv(5) 1.0x10-6 1.0x105 

 

Table 4.3 – Summary of PID controllers used in Ricker’s control scheme 

Please note:  
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1. Fp is the production index which has a value of 100 at mode 1 of 

operation. 

2. Eadj is an adjustment factor that is the signal from the feedback 

controller. It is used to adjust the flow rates of streams 1 and 4. 

3. r1 - r4 are flow rates of streams 1-4 respectively  

 

4.3. Generate process data from the SIMULINK model 

For this case study, we need the following data: 

1) Process data: using which an objective function for the performance 

evaluation of the process will be defined, and  

2) Controller data: i.e. controller output (OP), process variable in the 

loop (PV) and controller set point (SP) data. This will be used to 

generate performance indices for the controllers.  

For the purpose of data generation, we introduce a random disturbance 

generator function into Ricker’s SIMULINK model. This disturbance 

generator function introduces different disturbances at different times by 

generating random integers between 0 and 20. 0 would introduce no 

disturbance and any other number would introduce the corresponding 

disturbance from table 4.2. In the propagation of disturbances, we have 

followed the suggestions made by Downs and Vogel that disturbances 14-20 

should be used in conjunction with another disturbance and that they should 

be kept on for at least 24-48 hour time period. Random disturbances are 

generated every 6 hours otherwise.  

Using this SIMULINK model, we were able to generate 166 days of process 

and controller data. All of the controller data was then passed through a 

commercially available software to generate performance indices of these 

controllers. The idea here is to simulate a real plant as closely as possible. 
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However, to keep things simple, we did not change the mode of operation of 

the TE process. Changing the mode often requires changing of controller 

tuning parameters. It is suggested that people following up on this study try 

the controller prioritization algorithm by operating at different modes and 

by trying out different control schemes as proposed by different authors. 

4.4. Objective performance monitoring of the TE process 

Downs and Vogel, in their paper, suggest that it is important to minimize the 

variance of G/H mass ratio in the product line. High variability affects the 

performance of the downstream process which utilizes the product stream 

from the TE process. This downstream process is, however, not a part of the 

TE process. Therefore, we select standard deviation of mass flow rates of G & 

H in the product line as our objective function for this case study. In keeping 

with the terminology used for the previously discussed industrial case study,  

one can observe in figure 4.3 that good days would be when the standard 

deviation is low (points below the green line), bad days are points above the 

red line and points between the two lines would be the ‘in-between’ days. 

Figures 4.2 and 4.3 show the distinction between good and bad days for the 

TE process: 

0 20 40 60 80 100 120 140 160 180
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

days

J
=

s
td

(G
/H

)

J score time series - TE Process

 



54 

 

Figure 4.2 – J score time series for TE process 

 

20 40 60 80 100 120 140

0.018

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

days

J
=

s
td

(G
/H

)
J score time series - zoomed in

 

Figure 4.3 – J score time series for TE process (zoomed in) 

 

We find that in 166 days, 68 days are operationally good days, 47 are 

operationally bad days and the rest are in-between days.  

Next step, as with the previous case study, is to segregate the predictor 

variable data set upon which SVM classification models will be built. Unlike 

the previous case study, we do not change the process operating conditions 

for the process because we operate the plant only in mode 1. Therefore, 

process operating conditions are not included in the predictor variable data 

set. Also, there is no variable specified by Downs and Vogel which could be 

thought of as the incipient fault variable. Therefore, in this case, we only have 

the Controller Performance Monitoring data obtained from the commercial 

software as our predictor variable data set.  
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4.5. Two-class SVM and Controller Prioritization algorithm 

applied to TE Process data 

The commercial software that we used to generate controller performance 

indices needs controller OP, SP and PV to generate performance indices for 

the controllers for each operational day. Due to the proprietary nature of the 

software, we can not disclose the algorithm that it uses to calculate the 

indices. Like the previous case study, the indices that we used for the 

controller prioritization algorithm stay the same: 

I1: Settling time of controller compared with desired settling time 

I2: Standard deviation of control error 

I3: Oscillation in the control loop 

We build 2-class SVM models on the good day and bad day data sets and 

observe that a 5-fold cross validation accuracy of more than 99% is achieved. 

This means that SVM is able to correctly predict good and bad days from 

their respective controller performance data with an accuracy of more than 

99%. Since the classification model works well, we can proceed with the 

application of controller prioritization algorithm on the data set. As with the 

previous case study, the algorithm is applied in a Monte-Carlo fashion with 

32 repeated runs and the results aggregated for these runs.  

The Controller prioritization algorithm tells us that the 5 most important 

controllers in the TE process are as follows: 

Stripper bottoms liquid level (C9) 

Separator liquid level (C10) 

A+C control in reactor feed (C15) 

Separator temperature control (C17) 
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E feed flow controller (C3) 

Hereafter, we change the good day and bad day thresholds to some different 

values to see if this makes a difference in the controller prioritization results. 

It is observed that when controller prioritization algorithm is run with 

different threshold boundaries in a Monte-Carlo fashion, the feature selection 

results do not change at all. In fact, when the separation boundaries are made 

wider, it is observed that 5 fold cross validation accuracy with 2-class SVM is 

100%. This implies, that as we make the separation boundaries wider, we 

make the distinction between good and bad day controller performance 

values even wider thereby making the generalizable performance of the 

model even better. 

 

4.6 Discussion of Controller Prioritization results 

The controller prioritization algorithm results tell us that the five most 

important controllers with respect to lowering the variance in the product 

line are the ones listed above. Unlike the previous case study, here we have 

to resort to literature search and understanding of the process to try and 

validate the results. In section 4.7, we also present distribution histograms 

that are in tune with our findings: when important controllers perform well, 

the plant tends to have more good days. 

Shown in figure 4.4 is a schematic (P&ID) of the control scheme developed by 

Ricker et al. 
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Figure 4.4 –P&ID diagram of the Control scheme (Ricker et al.) 

One can clearly see that C9, C10 and C17 are the three controllers that 

directly impact the ratio in the product line. If the separator temperature 

control does not work properly, it is easy to see that it is going to affect the 

amount of G & H that go into the product line. It may also cause more by-

products to enter the product line. Similar argument holds true for the level 

controllers C9 and C10. Price et al.19 suggest that controller C17 does have an 

effect on product variability and removing this controller from the control 

scheme will increase product variability. 

In table 6, controller C13 is mentioned as the one that controls %G in the 

product line. It seems to have the most direct relation with our objective 

function that controls the variability in product line. The manipulated 

variable for this controller is Eadj which actually manipulates flow rates of D 

and E entering the reactor. We see that the flow controller for E is identified 

as an important controller in the feature selection results. C13 is found to be 

an important controller as well and is ranked as one of the 10 most 
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important controllers. However, it is not amongst the top 5. Through the 

distribution histograms presented below, we see that there is a marked 

distinction in the performance of the top 5 controllers on good days as 

compared with bad days.  

Presented in figures 4.5 – 4.10 are distribution histograms of controller 

performance indices for some of the most important controllers: 

2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

I1-C10-Good days

F
re

q
u

e
n

c
y

I1-C10-Good days

 
0 0.5 1 1.5 2 2.5 3 3.5

0

5

10

15

20

25

30

35

I1-C10-Bad days

F
re

q
u

e
n

c
y

I1-C10-Bad days

 

Mean: 7.67     Mean: 0.95 

Figure 4.5 – Distribution histograms of index I1 for controller C10 over good days 

and bad days 
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Figure 4.6 – Distribution histograms of index I2 for controller C9 over good days and 

bad days 
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Figure 4.7 – Distribution histograms of index I3 for controller C10 over good days 

and bad days 
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Figure 4.8 – Distribution histograms of index I1 for controller C3 over good days and 

bad days 
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Figure 4.9 – Distribution histograms of index I3 for controller C15 over good days 

and bad days 
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Figure 4.10 – Distribution histograms of index I1 for controller C17 over good days 

and bad days 

 

These histograms again prove our point that when ‘important controllers’ 

perform well, you tend to have more good days. As can be seen, for all the 

important controllers, consistently, I1 has a higher value; I2 and I3 have a 

lower value on good days as compared with bad days. 
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Chapter-5 

Concluding Remarks and Future Work 

In this work we have developed a framework for plant-wide performance 

monitoring by introducing the concept of objective performance monitoring 

of a unit operation/plant and correlating it with the controller performance 

indices. We discussed that it is important for us to find out controllers that 

affect process performance more than others so that plant engineers can 

focus their efforts in ensuring that these controllers are optimally tuned and 

well maintained at all times. We also saw through the distribution 

histograms and 3-class SVM methods that when the important controllers 

perform well, we have more good days than bad days. Therefore, in an 

industrial plant with more than a thousand controllers, it makes business 

sense to prioritize a subset of the most important controllers so that more 

energy can be spent in the optimal maintenance of these controllers.  

Through the method of Control Loop Digraphs, we saw that it is possible to 

find controllers that have a high reach, i.e. greater potential to affect other 

controllers in the unit/plant. However, it turns out that these controllers are 

not necessarily the ones that cause good days and bad days.  

We observed that Support Vector Machines classifiers are able to provide us 

with good classification accuracy for good days and bad days predictor 

variable data set. Therefore, we were able to carry out the application of a 

feature selection algorithm in order to identify controllers that contribute 

more towards the classification boundaries. We identified these controllers 

as important controllers and we were able to see through distribution 

histograms that good performance of these controllers meant good days for 

the plant. Therefore the plant engineers should focus on improving their 

performance. 
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All techniques that were discussed in this thesis are non-intrusive in nature. 

We were able to carry out this analysis remotely without running any 

experiments on the real plant. The idea is to make use of the wealth of 

information typically available to process control practitioners through data 

historian to extract useful information for better operation of the plant.  

We have shown that Support Vector Machines show promise as a 

classification method for this purpose. It has worked very well on the two 

case studies that we looked at in this work. SVM is able to identify a subset of 

important controllers that are responsible for causing good and bad days. In 

its present form, this algorithm needs some customization in the sense that 

Objective performance is highly unit dependent. Therefore, in order to find 

important controllers, one needs to identify the objectives of the unit/plant 

and then apply the controller prioritization algorithm. The algorithm is fairly 

generic in the sense that it can accommodate any number/kind of 

performance indices generated by one/more types of controller performance 

monitoring softwares.  

Interested researchers following up on the Tennessee Eastman case study 

are encouraged to apply the controller prioritization algorithm on the 

various control schemes available in literature and compare the results.  

However, there remains more to be done in order to make controller 

prioritization applicable in process industries. For instance, one could try 

and make this algorithm online. The idea is that it is not always the same 

controllers that cause bad process performance. In order to identify 

controller(s) performing poorly at any given time there is a method that we 

would like to suggest. The method makes use of 3-class SVM. People 

following up on this work are recommended to try it out along with any 

other approach that they develop. 
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5.1 Online identification of poorly performing control loops 

In section 3.3, we had discussed three-class SVM for identification of optimal 

performance regions for each controller. In order to make this algorithm 

online, the following approach is suggested: 

At any given time, if the need arises to identify poorly performing loops 

which could be causing bad plant performance, do the following: 

1. Run the controller performance monitoring software on data obtained 

from the last 24 hours of operation. 

2. Calculate the performance indices for each controller 

3. Use three class SVM to judge the class of this fictitious day (these 24 

hours are not really one day and could be spread over two days) 

4. Compare the performance indices values of this fictitious day with the 

optimal performance values and identify controllers that need to 

perform well in order to make this day a good day. 

5. Once the controllers causing bad performance are identified, it is 

suggested that they be re-tuned or be checked for valve problems 

etc. in order to progress towards improving the process 

performance. 
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