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Abstract 

 

Geological heterogeneity is often represented by assigning rock properties to grids of 

different block size. Some geological features are represented as discrete objects at the 

chosen grid block size and others are represented as continuous properties. There is a 

transition between the discrete and continuous where the size of the features is too 

small to be represented discretely and too large to be represented continuously. This is 

linked to the notion of REV, that is, it is impossible to choose a grid size where geological 

features are at REV scale. An extended view of modeling regimes is proposed by 

modifying the classical REV plot presented by Bear. The challenge of geostatistical 

modeling in transition regime is addressed. A continuous framework is considered with 

particular attention to the spatial continuity since the scale of variability is larger than 

the scale of modeling. Numerical experiments are conducted on various geological 

models. 
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1 Introduction 

1.1 Problem Definition 

The development and management of petroleum reservoirs is an economically intensive 

activity. Choosing the sequence of development, the placement of wells and the 

operating strategy of the wells is important to the technical and economic success of the 

project. Flow simulation is often used to forecast the reservoir response for specific 

scenarios of development which permits optimization of the development strategy. A 

key input to flow simulation is a numerical description of the reservoir. The numerical 

model defines the geometry and internal properties of the reservoir. This numerical 

model should represent important geological features that vary at different scales. 

 

Flow simulation, however, can only handle on the order of one million discretized grid 

blocks. Given the size of most reservoirs the grid blocks are necessarily quite large. 

There is geological variability at smaller scales. This is why upscaling the geological 

model is an essential and unavoidable step to obtain the flow simulation model. One 

problem addressed by this research is the calculation of effective properties of flow 

simulation grid blocks. 

 

Geological features are captured by the effective properties at the grid block scale. For a 

fixed grid size, large geological features are represented as discrete volumes and small 

features are represented continuously as proportions or effective properties at the grid 

block size. This continuous representation is related to the classic notion of a 

representative elementary volume (REV). If geological features are represented 

discretely, discrete modeling techniques such as object based or indicator methods may 

be used. If they are represented continuously, continuous modeling approaches such as 

Gaussian approaches may be used. However, some features are in transition from 

discrete to continuous representation. Quantifying the applicability of the discrete and 

continuous representation of the geological features and also the transition between 

the discrete and continuous representation, are considerable problems. Then, for 



 

2 
 

geological features in transition, modeling is a challenge and there is a need to choose 

and apply a suitable modeling approach.  

1.2 Literature Review 

This review discusses topics related to what is covered in upcoming chapters of the 

thesis including grid mesh types, mesh generators, public programs applicable to mesh 

complex geological structures, solvers for the systems of equations used for upscaling, 

and the notion of an REV.  

1.2.1 Review on Mesh Types and Mesh Generators 

Mesh generation or grid generation is the discretization of the domain of interest in 

points or nodes where a solution is to be obtained. Nodes are connected to form 

elements or volumes (Ferziger, 2002). There are three major types of the grids based on 

the connectivity of the mesh. Mesh (grids) could be structured, unstructured or hybrid. 

Grids could be 2D or 3D. In structured gridding, the neighboring grid connections are 

known but there is irregular connectivity in the case of unstructured grids and the grid 

connectivity would be determined and explicitly stored. In hybrid gridding, both 

structured and unstructured gridding are applied within the same domain. Grids are 

generated by applying a suitable grid generation algorithms. To generate structured 

grids, several techniques can be applied to map the physical domain to a computational 

domain. Delaunay triangulation, advancing front and octree are the three main 

algorithms to automatically generate tetrahedral and triangular unstructured grids 

(Thompson, 2002). There are several public programs and software available to 

generate structured and unstructured grids automatically.  

 

DistMesh is a simple MATLAB code for generating unstructured triangular and 

tetrahedral meshes that uses a Delaunay triangulation and tetrahedralization algorithm. 

It was developed by the Department of Mathematics at MIT. As of 2004 Per-Olof 

Persson and Gilbert Strang provided a detailed description of the program on the 

DistMesh website.  

 

http://www-math.mit.edu/
http://www.mit.edu/


 

3 
 

TetGen and Triangle are two well-tested mesh generators for 3D tetrahedral and 2D 

triangular meshing. TetGen was developed by the Numerical Mathematics and Scientific 

Computing group at WIAS (www.wias-berlin.de) which generates conforming Delaunay 

tetrahedra with volume control. Triangle was developed by the Computer Science 

Division at Berkley University (Triangle website). MeshPy combines TetGen with Triangle 

into a practical package, and was developed at the Institute of Mathematical Sciences at 

New York University. A detailed description could be found on the MeshPy website.  

 

Gridgen, Gambit, Fluent, Comsol and Gridpro are among the popular CFD softwares that 

are applied to generate grids (www.cfd-online.com). CMG Builder (www.cmgl.ca), Petrel 

and FloGrid (www.slb.com) are among well-known softwares in the petroleum industry 

that also provide possibilities to mesh geological media. 

1.2.2 Review on Solvers 

System of equations are created by discretized flow equations. Such systems are 

sometimes solved by direct methods such as Gauss elimination or LU decomposition. 

The pressure equation that must be solved for effective permeability calculation is quite 

large and sparse. The CPU and storage cost of direct methods are fairly high. Therefore, 

iterative solution methods are commonly employed. In an iterative method, one should 

guess a solution (which is the starting point) and use the equation to systematically 

improve it (Ferziger, 2002). If the number of iterations is small and each iteration is 

cheap, an iterative solver may cost less than a direct method which is usually the case in 

CFD related problems including the pressure equation in upscaling. 

 

Several efforts have been made to develop linear solvers and the pre-conditioners that 

improve the performance of flow simulators by using a fast solver. In 1981, Watts 

applied the preconditioned conjugate gradient method to solve the pressure equation 

and compared the results with the Strongly Implicit Algorithm (SIP). He showed that SIP 

is faster than preconditioned conjugate gradient for 3D problems but slower for 2D ones 

(Watts and James, 1981). In 1988, Eisenstat described a collection of block 

preconditioners to use for solving large, sparse, linear systems of equations by iterative 

http://tetgen.berlios.de/
http://www.wias-berlin.de/
http://mathema.tician.de/software/meshpy
http://mathema.tician.de/software/meshpy
http://www.cfd-online.com/
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methods, and compared their performance with several point preconditioners in solving 

some systems appearing in numerical reservoir simulation. Brand presented the 

successful application of an incomplete LU (ILU) factorization technique coupled with 

generalized conjugate-gradient (as an acceleration) to solve a set of equations (Brand et 

all, 1990). In the field of Mathematics in 2001 at the University of Texas, Eaton 

completed his PhD research related on the multigrid preconditioner. He discussed how a 

multigrid preconditioner was successfully applied for a 2D flow problem (Eaton, 2001). 

Furthermore, several solver packages have been used in Integrated Parallel Accurate 

Reservoir Simulators (IPARS). Generalized minimum residual (GMRES) with various 

preconditioners like Linear Successive Over Relaxation, Incomplete Lower Upper and 

Algebric Multi Grid are the most popular methods in IPARS (most used for parallel 

simulations) (Klie and Wheeler, 2005).  

 

The Algebric Multigrid method is another efficient solver and preconditioner for the 

flow equation system that has gained attention. For example, a package named SAMG 

(Algebraic Multigrid Methods for Systems) has been developed in this area by 

Fraunhofer (Klaus Stüben and Tanja Clees, 2007). Mishev discussed how AMG could be 

one of the most efficient solvers that is handling linear systems produced by the 

discretization of the pressure equation in Implicit Pressure Explicit Saturation (IMPES) 

and Sequential Implicit formulations. The AMG can be implemented in parallel 

algorithms. HYPRE is an available library of high performance preconditioners to solve 

large sparse linear systems. It includes several solvers and preconditioners that are 

applicable in parallel multiphysics and multiscale simulation. 

1.2.3 Review of Reservoir Modeling, Upscaling and the Notion of an REV 

Reservoir performance evaluation is done by applying a numerical model of the 

static/dynamic behaviour of the reservoir. The spatial distribution of the rock properties 

and heterogeneities have to be carefully represented in the numerical model to have 

the greatest predictive capability (Koltermann and Gorelick, 1996). There are two 

aspects to be considered: (1) generating a high resolution numerical geological model, 

and (2) upscaling the high resolution model to a grid suitable for flow simulation.  There 



 

5 
 

is also the important decision of how to choose the scales of the numerical geological 

and numerical flow models. Sub-meter scale lithological properties and heterogeneities 

are often rescaled to representative values seeing that computational limitations often 

do not allow us to use them directly in a full-field reservoir simulator. Some issues when 

rescaling heterogeneities can be seen in the following papers; Worthington (1993 & 

2004), Corbett (1992 & 1998), Delleur (2006). Four conceptual scales associated with 

averaging properties in porous rock media have been proposed by Haldorsen & Lake 

(Haldorsen and Lake, 1984). The notion of a Representative Elementary Volume (REV) 

has been introduced by Bear (1972) at which the parameter of interest is both 

statistically stationary and homogeneous.  

 

An REV represents a large enough volume of the property field that really small scale 

variations are captured within the volume, yet representative heterogeneity is 

represented between volumes at the REV scale. The concept of an REV has been 

discussed by many researchers in relation to the calculation of effective petrophysical 

properties (Hassanizadeh, 2004), (Flint, 2009), (Netinger, 1994), (Nordahl and Ringrose, 

2005). Porosity, being an additive property, is mainly upscaled by simple averaging 

schemes while the upscaling of permeability, a non-additive property, should generally 

be performed on practical models where sedimentological heterogeneities are revealed 

clearly. Variograms could also be of great help to characterize permeability (McKinley, 

2004) and percolation theory (Begg and King, 1985) and effective media theory 

(Durlofsky, 1991) are common methods to estimate effective properties. Deterministic 

modeling of sedimentary structures is presented in detail by Anggraeni, (1999), Pickup 

(1994), Jackson (2005).  

 

Jackson characterized the effective permeability of facies using 3D models. He showed 

that the key controlling point is the connectivity and continuity between low and high 

permeable layers which is not easy to capture these key factors in different length scales 

(Jackson, 2005). He also discussed that averaged effective permeability is a function of 

sample volumes while flow direction and facies types are major points in selecting the 

suitable averaging scheme to reduce the introduced error resulted by upscaling 
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techniques (Jackson, 2003). McKinley characterized permeability by variogram analysis 

(McKinley, 2004). 

 

In the following papers, flow barriers are modeled stochastically and the anisotropy is 

presented by using different correlation lengths in the vertical and horizontal directions.  

The effect of the block-size corresponding to the scale of heterogeneity has been 

discussed as well (Begg and Carter, 1989), (Desbarats, 1989), (Deutsch, 1989). Ozdemir 

and Ozguc determined REV for porosity with this assumption that porosity varies 

exponentially at wall regions of the porous medium (Ozdemir, 1997). Leung and 

Srinivasan assessed uncertainty introduced by scale up in reservoir models when the 

REV scale is larger than the volume support size (Leung, 2009 and 2011). The relation 

between statistical moments (mean, variance and integral scale) of the upscaled 

permeability to the permeability of homogenous porous media is discussed when the 

flow is steady in (Peter and Gedeon, 1991). 

 

Lake and Srinivasan used the variance of the mean of a random variable and the 

changes in horizontal and vertical permeability to get robust estimation of uncertainty in 

scaled up values (Lake, 2004). The effect of geological heterogeneity on flow has been 

investigated for continuous and discrete domains considering geostatsitical approaches 

by Eaton. REV is used to reinterpret hydrofacies as scale-dependant hydrogeologic units 

(Eaton, 2006). 

 

There is discussion on the correlation length and the effect of scale on flow in Hunt 

(2009), Bloschl (1995), Evesque (2000), Müller (2010). Sorek investigated that how the 

REV scale could affect phase balance equation when dealing with different types of 

fluids in a heat transfer phenomena (Sorek, 2010). Yong presented a new method for 3D 

conductivity upscaling in heterogeneous porous media.  He showed that his method is 

more successful than traditional upscaling techniques and also porosity upscaling  is 

critical when dealing with contaminant transport. Upscaled porosity in such cases is 

beyond the traditional porosity obtained on the REV scale. The similarities and 

differences between conductivity and porosity upscaling are also discussed by Yong 

(2004). Vogel and Brown quantify REV and a scale disparity factor to find a sample size. 

http://www.springerlink.com/content/?Author=Christian+M%c3%bcller
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The sample size is used to determine a meaningful semivariogram when correlation 

lengths are specified. Directional semivariograms and a scale disparity factor are used to 

get vertical and horizontal correlation lengths in small and large scales, considering that 

REV analysis is scalar in nature and semivariograms are based on vector analysis (Vogel, 

2003).  

 

Three volume averaging methods as REV tests are presented by Brown, Hsieh and 

Lucero including prismatic volume averaging, stacked slice averaging and a qualitative 

test. They tried to evaluate proper core sample size in the laboratory and found all core 

sizes suitable for the experiments comparing their respective REV size, while showing 

that one single core is not enough for the experiments (Brown, 2000). The authors 

applied their proposed method to determine REV based on porosity and phase volume 

fraction in two-phase systems (Clausnitzer, 1998). Rooij focused on upscaling from REV-

scale to a larger scale beyond the REV considering water flow through porous media 

with different degrees of heterogeneity. He investigated the validity of Darcy's law 

under the superposition principle (Rooji, 2008). Data quality implications of an REV have 

been examined by Robinson and Estabrook for porosity and water saturation in an 

unsaturated porous media (Costanza-Robinson, 2011). Gray and Miller proposed the 

thermodynamically constrained averaging theory (TCAT) approach to deal with 

inconsistencies and ill-defined variables in porous media modeling (Gary, 2004). 

Nachabe and Morel also discuss how to scale aquifer flow equation. They demonstrate 

that the small-scale macroscopic variability of aquifer transmissivity affects the 

megascopic behavior of the flow in both space and time (Nachabe, 1999). The flow of 

two fluids has been studied theoretically by Quintard (1989) at pore level with stokes 

equations and also local volume averaging has been applied for the derivation of Darcy-

scale equations over a large region compared to the length scale of heterogeneities. The 

numerical results have been compared statistically with the experimental data as well. 

Zhang systematically studied the scale dependency of the permeability and porosity and 

assessed the concept of statistical REV on a reservoir model based on the lattice 

Boltzmann simulations. A single statistical REV is defined, while deterministic REV isn't 

defined since the scale of the whole domain changes (Zhang, 2000).  
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Ringrose provided a review on current limitations of the implementation of multiscale 

modelling (2012). The author discussed how many scales should be modeled and 

upscaled and on which scales, one should focus. Nordahl and Ringrose evaluate the 

representative elementary volume for permeability at the lithofacies scale with a new 

insight. They show that REV varies with changing in lithofacies types and also depends 

on the measured property (vertical and horizontal permeability) (Nordahl and Ringrose, 

2008).  

1.3 Research Outline 

The first step of numerical modeling is discretizing the domain with grids. The grid shape 

could have different degrees of flexibility to discretize complex geological media based 

on finite difference, finite element or finite volume methods. Structured and 

unstructured grids are two major grid types that are discussed in the second chapter. 

The mathematical background of a flow simulator applicable for both structured and 

unstructured grids are explained. Also, two examples of 2D and 3D discrete fracture 

networks meshed by unstructured grids are presented (Razavi et al, 2011). 

 

A common problem in geostatistical reservoir modelling is the calculation of effective 

permeability to represent a high resolution regular grid. The FLOWSIM program has 

been used since the mid 1980s for this purpose. Chapter three reviews the 

implementation of the FLOWSIM program and recommends some changes including 

applying another iterative solver (SIP - the strongly implicit procedure) and convergence 

criteria that permit reliable results without excessive computational effort. The results 

are checked with a direct solver. 

 

Small scale heterogeneities are captured in effective properties at the grid block scale. 

Reservoir features (heterogeneities) that are large with respect to the grid size can be 

represented as discrete objects, that is, each grid block is in or out of the feature. 

Reservoir features that are smaller than the grid block size must be represented as 

proportions of the features within the grid block, that is, each grid block contains a 

continuous proportion of the feature. For a fixed grid size, large features are 

represented discretely and small features are represented continuously. Some features 
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are in transition between the discrete and continuous regime. The grid size that 

becomes large with respect to the feature size is sometimes referred to as 

representative elementary volume (REV). The classical REV plot was proposed by Bear 

(1972). Transition from the discrete domain, where there is little mixing, to continuous 

domain, where they are all mixed, is important to investigate as it is necessary to 

consider the most suitable modeling approach. The scales of the discrete, transition and 

continuous regimes are quantified. In chapter four, for this purpose, some models at 

different sizes and with different object sizes are constructed and the progression from 

discrete to transition and also from transition to continuous is explored. A modified 

version of the classical REV plot is also presented.  

 

If geological features are represented discretely, discrete modeling techniques such as 

object based or indicator methods may be used. If they are represented continuously, 

continuous modeling approaches such as Gaussian approaches may be used. But the 

transition regime is a challenge because there is significant variability between grid 

blocks and within grid blocks. There is a need to adapt the modeling approach for the 

transition. The fifth chapter of the thesis shows the challenge of modeling in transition. 

 

Chapter six is the final chapter and provides a conclusion and discusses possibilities for 

future work. 
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2 General Points on Gridding and Flow Simulation on Grids 

The flow of fluids through a petroleum reservoir is simulated by solving flow equations 

that require the spatial domain to be discretized by structured or unstructured grids.  

2.1 Structured and Unstructured Grids 

In case of structured grids, the neighbors of each grid are easily known and hence, they 

have clear data structure and grid connectivity list. Structured grids can be orthogonal 

Cartesian or boundary-fitted non-orthogonal curvilinear grids. Cartesian grids are the 

simplest grids to work with, but they may not effectively discretize complex geometries, 

Figure 2.1a. Curvilinear grids may be more adaptable to complex geometries and may be 

preferred, Figure 2.1b. Figure 2.1 shows schematic illustrations of structured grids with 

no particular scale.  

 

        
a)  Cartesian grids                                   b) non-orthogonal curvilinear grids 

Figure 2.1: Structured grids 

 

Unlike structured grids, unstructured grids do not have an explicit data structure and 

creating the connectivity list requires more computational effort; however, unstructured 

grids provide flexibility in mesh generation and discretization of the complex 

geometries. One advantage of unstructured grids is the possibility of controlling the grid 

resolution through refinement. Considering the geometrical simplicity and the 

accessible procedures for the numerical simulation of physical problems (Liseikin, 2010), 

unstructured grids are generally composed of triangles in two dimensions and 

tetrahedrons in three dimensions. Figure 2.2 shows a simple square meshed with 

structured and unstructured grids that is conceptual with no specific scale. 
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Figure 2.2: 2D Domain gridded by structured and unstructured grids 

There are three common methods to construct unstructured grids including octree 

methods, Delaunay procedures and Advancing Front techniques (Liseikin, 2010). 

Delaunay tessellation is a geometric decomposition tool to generate triangular and 

tetrahedral grids that has found wide use in engineering applications. Two and three-

dimensional Delaunay tessellations are used for the analysis of porous media, and the 

modeling of flow in porous media (Thompson, 2002). Liseikin’s work (Liseikin, 2010) is a 

good reference to gain information about the two other methods for unstructured mesh 

generation. There are many research and commercial programs for grid generation 

(www.cfd-online.com). 

2.2 Examples of Using Unstructured Grids for Fractured Media 

The geological model should be discretized for flow simulation purposes and numerical 

modeling is used to predict flow behavior and simulate transport phenomena. One of 

the origins of complexity in a geological medium is the existence of a large number of 

fractures where an efficient discretization of the fractured media requires significant 

effort.  

 

A research code has been developed to generate an unstructured triangular mesh for a 

randomly generated discrete fracture network in 2D. The software TetGen, which is an 

open access program to construct triangular and tetrahedral grids, is used to generate a 

mesh for a 3D discrete fracture network (Razavi et al, 2011).  

 

There are two approaches to model flow and mass transport in fractured porous media: 

(1) a dual continuum model proposed by Warren & Root in 1963, and (2) a discrete 
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fracture model (DFM). A DFM is a reasonable method to model laboratory scale 

fractured porous media (Ito, 2003). 

 

In the case of open fractures, flow moves through the fractures and, consequently, 

creating grids aligned with the fractures can be important. There are various open 

access programs to mesh complex geological media, see below. 

2.3 Some Available Programs to Mesh Complex Geological Media 

DistMesh is a simple MATLAB code to generate unstructured triangular and tetrahedral 

meshes which applies Delaunay's triangulation and tetrahedralization to construct the 

grids. The program was developed by the Department of Mathematics at MIT and the 

code could be modified based on specific needs. A detailed description of the program is 

provided by Per-Olof Persson and Gilbert Strang (DistMesh website). 

 

G23FM is another grid generator applicable for 2D and 3D fractured media. It is a 

flexible tool that gives different options during mesh generation like adding points, 

controlling size of triangles, refinement and scaling (Mustapha, 2010). It was developed 

by a computer science specialist at McGill University.  

 

FracMesh is a structured mesh generator that is applicable in 2D and 3D and was 

developed by the Earth Sciences Division at Berkley. The most complicated part of a 

fracture network gridding is creating the connectivity list. FracMesh produces these 

connectivity lists that are necessary for input to multiphase flow simulation (Ito, 2003). 

 

TetGen and Triangle are two well-tested mesh generators for 3D tetrahedral and 2D 

triangular meshing. TetGen was developed by Numerical Mathematics and Scientific 

Computing group at WIAS (http://www.wias-berlin.de). Triangle was developed by the 

Computer Science Division at Berkley. MeshPy was developed at the Institute of 

Mathematical Sciences at New York University; it combines TetGen with Triangle into 

one package.  

 

http://www-math.mit.edu/
http://www.mit.edu/
http://tetgen.berlios.de/
http://www.wias-berlin.de/
http://mathema.tician.de/software/meshpy
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In the next section, Delaunay triangulation and tetrahedralization will be explained 

which are very common to construct unstructured grids and also are the basis of most 

mesh generators.  

2.4 Delaunay Triangulation and Tetrahedralization 

Delaunay triangulation and tetrahedralization is applied based on a criterion. According 

to this criterion, neighbouring points are connected to form triangular or tetrahedral 

cells in such a way that the circumcircle through the three vertices of a triangular cell in 

two-dimension and the circumsphere through the four vertices of a tetrahedral cell in 

three-dimension do not contain any other point. This condition is called Delaunay 

criterion. The left circumcircle through the vertices of a triangular cell in Figure 2.3 

contains another point and it invalidates the first while the right circumcircle through 

the vertices of the triangle doesn't contain the other point and it follows the Delaunay 

criterion. 

 

 
Figure 2.3: Delaunay criterion in 2D 

Applying Delaunay criterion in 2D entails that the minimum angle of the triangles in the 

triangulation will be maximized and the maximum circumradius will be minimized. This 

avoids skinny triangles (Liseikin, 2010). The nice properties of Delaunay triangulation are 

not true in 3D, since a measurement for optimality in 3D is not agreed upon. Slivers are 

special types of badly-shaped tetrahedrons which are flat and nearly degenerate and 

they cause instability and inconsistency. In 3D, slivers could survive even after Delaunay 

refinement. To measure the quality of tetrahedrons, two criteria are considered: 1) the 

aspect ratio of an element which should be as small as possible and is defined as a ratio 

of the maximum side length to the minimum, and 2) the radius edge ratio which is the 
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ratio of the radius of the circumsphere of the tetrahedron to the length of the shortest 

edge. This value should be small for a well-shaped tetrahedron. The Delaunay criterion 

is applied in the next sections to generate triangular and tetrahedral mesh for 2D and 3D 

sample fractured media. 

2.5 Unstructured Mesh Generation for a 2D Fractured Media 

Fractures could be represented as lines including two endpoints in 2D and planes 

including four endpoints in 3D. Considering a 2D fractured model with numerous 

random fractures, the following steps have been followed to get the final discretized 

model: 1) select a domain size and establish the fracture endpoints, 2) distribute points 

in the background, 3) remove background points that are close to the fractures, 4) 

generate a mesh based on the Delaunay criterion and visualize in MATLAB by applying 

the “DelaunayTri” and “triplot” commands, respectively. A sample 2D model is 

presented in Figure 2.4 and Figure 2.5 that shows the point distribution on the fractured 

2D model and the generated Delaunay mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Distribution of points on fractures and background (Razavi et al, 2011) 
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Figure 2.5: Unstructured mesh generated based on the Delaunay criterion  

(Razavi et al, 2011) 

The mesh looks reasonable around the fractures and at the intersections of the 

fractures. Subsurface flow modeling around the fractures is affected by gridding and 

unstructured grids may be preferable since the grids can present the characteristics of 

fractures more realistically in modeling. Detailed information on the developed program 

has been documented in a research paper (Razavi et al, 2011).  

2.6 An Example of Unstructured 3D Mesh Generation by TetGen for a DFM 

TetGen generates tetrahedral meshes suitable for numerical simulation that use finite 

volume or finite element methods. Tetrahedralization is based on the Delaunay 

criterion. The quality of the tetrahedrons is measured by the two criteria mentioned 

above: (1) the aspect ratio of the element and (2) the radius edge ratio. Some of the 

degenerate tetrahedra slivers can be removed by TetGen using the local flip technique. 

Figure 2.6 shows an example of input 3D DFM suitable for TetGen. The model includes 7 

fracture planes where each is defined as a facet. TetGen output is visualized by TetView. 

The unstructured mesh that includes all tetrahedra generated by TetGen is shown in 

100 m 

100 m 0 
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Figure 2.7. The fracture planes are presented in green and Delaunay tetrahedra are 

presented in red in the left figure. The right mesh in Figure 2.7 shows only the boundary 

facets of the mesh. The edges of the fractures are presented as green lines. The grids are 

aligned with the fracture planes. Generating the fracture planes, detecting the 

intersections between fracture planes, creating TetGen input file, getting output and 

visualization are explained in (Razavi et al, 2011). 

 
Figure 2.6: An example of input 3D DFM with 7 fracture planes in TetGen (Razavi et al, 

2011) 

 
Figure 2.7: TetGen output visualized by TetView: a DFM with 7 fractures (Razavi et al, 

2011) 

2.7 Grid Population with Petrophysical Properties 

The generated grids should be populated with petrophysical properties. Geostatistical 

modeling of petrophysical properties could be conducted by using a GSLIB-like program 

called PSGSIM (Manchuk, 2010) that performs sequential Gaussian simulation of 
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continuous variables and sequential indicator simulation of categorical properties on 

irregular sets of points such as unstructured grids. These sets of points are locations in 

the triangular/tetrahedral control volumes in 2D/3D such as: 

A) At the center of the unique circumcircle/circumsphere  of each 

triangle/tetrahedron or,  

B) At the centroid, named also geometric center, center of mass, center of gravity 

or barycenter of each triangle/tetrahedron.  

Detailed information is available (Manchuk, 2010).   

 

The next section will focus on the important step after gridding, that is, flow modeling 

on the structured and unstructured grids.  

2.8 Flow Simulation on Structured/Unstructured Grids 

In this section, the finite volume form of the mass conservation law that is applied to 

model single phase flow in a 3D discrete fractured model meshed by unstructured 

tetrahedral grids is reviewed. Unstructured grids help handle complex fractured media. 

The transmissibility should be calculated for all connections in the fractured model 

including matrix-matrix, fracture-fracture and matrix-fracture connections. Thus, flow is 

measured along and between fractures. The flow simulator is predominantly based on 

connectivity lists. Creating the connectivity lists requires significant preprocessing effort 

especially for a 3D model.  

2.9 Mathematical Background and Numerical Modeling  

The goal is finding the solution of the pressure equation that is obtained based on the 

fundamental law of mass conservation and Darcy’s law (Bajaj, 2009). 

2.9.1 Continuity Equation 

“Conservation laws are resulting by considering a known quantity of control mass (CM) 

and its extensive properties such as mass, momentum and energy. We have to deal with 

the flow within a certain spatial region called control volume (CV) rather than a control 
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mass. So, the conservation laws should be transformed into a CV form and with the 

intensive variables rather than extensive properties which this transformation is done by 

Reynolds’ Transport Theorem (RTT). RTT states that the rate of changing in the amount 

of extensive property in the CM, is the rate of the property change within the CV in 

addition to the net flux of it through the CV boundary due to fluid motion relative to the 

CV boundary” (Ferziger, 2002).  Considering Ω as CV with Φ property as porosity, ∂Ω is 

the surface of CV and n is the normal vector at any point of the surface. Based on the 

mass conservation law on Ω, we have:  

(Rate of inflow - Rate of outflow) + Source = Accumulation 

 

� (−
𝜕Ω

𝜌𝑢) .𝑛𝑑𝑆 + � 𝑚�
Ω

𝑑Ω =  �
𝛿
𝛿𝑡Ω

(𝜙𝜌)𝑑Ω (2.1) 

 

where in Equation 2.1, 𝜌 is fluid density (lb/ft3), 𝑢 is Darcy velocity (ft/day) and 𝑚�  is 

source/sink term (unit mass/ (unit volume × unit time)).  

 

By applying divergence theorem to the first term of the left hand side of the Equation 

2.1 which is convective term, the surface integral is transformed to a volume integral; 

and the differential coordinate-free form of the continuity equation will be obtained as 

follows, Equation 2.2 (Bajaj, 2009).  

−∇ . (𝜌𝑢) +  𝑚� =  
𝛿
𝛿𝑡

(𝜙𝜌) (2.2) 

 Nest section is about the Darcy’s Law.  

2.9.2 Darcy’s Law (Vazquez, 2007) 

Modeling of filtration in porous media is performed by Darcy’s law for low flow 

velocities (Aarnes, 2007). Flow apparent velocity, 𝑢, is related to gravity forces and 

pressure through the following formula: 

𝑢 = −
𝐾
𝜇

(∇𝑝 +  𝜌𝑔∇z) (2.3) 
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𝐾 is permeability, 𝜇 is viscosity, 𝑔 is gravitational constant and z is the spatial 

coordinate.  

 

There are some assumptions behind Darcy's law: 

1) Flow is laminar.  For turbulent flow, which occurs at high velocities, the 

pressure gradient increases at a greater rate compared to the flow rate,  

2) Flow regime is steady state and the pressure of the reservoir does not change 

with time, 

3) Isothermal condition is considered in which temperature change results in a 

change in viscosity, 

4) The fluid is incompressible. Compressible fluids have a different pressure 

gradient as compared to the incompressible fluids, 

5) Formation is considered to be homogeneous with incompressible rock 

(constant porosity) and isotropic permeabilities.  

The pressure equation is obtained in the next section based on the continuity equation 

and Darcy’s law.  

2.9.3 Pressure Equation 

By neglecting gravity forces, considering horizontal flow, in Equation 2.3 and combining 

it with continuty equation, Equation 2.2, the pressure equation is obtained.  

 

∇ . (𝜌
𝐾
𝜇
∇𝑝) +  𝑚� =  

𝛿
𝛿𝑡

(𝜙𝜌) (2.4) 

 

Considering incompressible fluid and rock, Equation 2.4 is written as follows:  

 

−∇ . �
𝐾
𝜇
∇𝑝� =  

𝑚�
𝜌

=  𝑞� (2.5) 

 

𝑞�  is the volumetric source term (Bajaj, 2009). 
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2.9.4 Pressure Equation Discretization 

A cell-centered finite volume method is presented that is named Two Point Flux 

Approximation (TPFA). This is one of the simplest discretization techniques to solve the 

pressure equation; it uses two points to approximate the flux. TPFA is exact for 

orthogonal or K-orthogonal systems with anisotropic permeability. The neighboring 

cells' average pressures are used to estimate the flux through the interface between the 

adjoining cells.  Consider the integral form of Equation 2.5: 

 

� (𝑞� − ∇ .𝑢)𝑑𝑉
Ωi

=  0 (2.6) 

 

By applying divergence theorem, the volume integral will be transformed to surface 

integral and Equation 2.7 is obtained.  

 

� (−
𝜕𝛺𝑖

𝜆𝛻𝑝) .𝑛𝑑𝑆 = � 𝑞�𝑑𝑉
𝛺𝑖

 (2.7) 

 

λ is the ratio of permeability to viscosity named fluid mobility. 𝜕Ωi is the total area of ith 

CV which is the summation of areas of the CVs’ interfaces,  𝜕Ωijs.   

 

𝑓𝑖𝑗 is the flux through the interface 𝜕𝛺𝑖𝑗  (the common face between cell i and cell j) that 

should be estimated across the interface from a set of neighboring cell pressures.   

 

𝜕𝛺𝑖𝑗 = 𝛺𝑖 ∩ 𝛺𝑗 (2.8) 

𝑓𝑖𝑗 =  −� (
𝜕𝛺𝑖𝑗

𝜆𝛻𝑝 .𝑛)𝑑𝑆 =  𝑇𝑖𝑗 (𝑃𝑖 − 𝑃𝑗) (2.9) 

 

𝑇𝑖𝑗 is defined as the transmissibility of the surface 𝜕𝛺𝑖𝑗. To get the total flux through the 

cell, the summation of the Equation 2.9 should be calculated over all the interfaces of 

the CV. By placing Equation 2.9 in Equation 2.7, the TPFA scheme for the pressure 
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equation is obtained. 𝑗 is the number of faces of each CV. The procedure is identical for 

any CV shape, structured or unstructured, and any dimension.  

 

�𝑇𝑖𝑗�𝑃𝑖 − 𝑃𝑗� = � 𝑞�𝑑𝑉
𝛺𝑖

=  𝑄
𝑗

∀𝛺𝑖 ∩ 𝛺𝑗 (2.10) 

 

Applying Equation 2.10 with structured grids is straightforward. The transmissibility 

calculation for unstructured grids is a challenge that will be considered below. 

2.10 Transmissibility Estimation on Unstructured Grids 

In this section, a discrete fracture model that is discretized by unstructured grids is 

considered for transmissibility estimation on unstructured grids. Karimi-Fard presented 

a simplified DFM useful for transmissibility calculation on an unstructured mesh (Karimi-

Fard, 2003). 

 

The simplifications help to calculate transmissibility for fracture-fracture, matrix-fracture 

and matrix-matrix connections with the TPFA technique. In the model, the place of the 

unknowns is at the barycenter of the grids. The 3D simulator will be based on the 

connectivity lists. The connections between all the control volumes (CVs) should be 

specified. For any CV, flow at the interface 𝜕𝛺𝑖𝑗, is calculated as follows:  

 

𝑇𝑖𝑗�𝑃𝑖 − 𝑃𝑗� =  𝑄𝑖𝑗  (2.11) 

 

where 𝑇𝑖𝑗 is the transmissibility at the interface 𝜕𝛺𝑖𝑗and 𝑃𝑖 is the pressure at cell 𝑖.𝑇𝑖𝑗 is 

defined as follows: (Karimi-Fard, 2003) 

 

𝑇𝑖𝑗  =  
𝛼𝑖𝛼𝑗

𝛼𝑖 +  𝛼𝑗
    ,𝛼𝑖 =  

𝐴𝐾𝑖
𝐷𝑖

𝑛𝑖. 𝑑𝑖 (2.12) 

 

𝑇𝑖𝑗 is calculated for all interfaces. 𝛼 is evaluated for each grid cell. 𝐴 is the area of the 

interface between the adjacent cells. 𝑛𝑖 is unit normal to the interface inside 𝐶𝑉𝑖. 𝑑𝑖  is 
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unit vector along the line joining the center of the triangle to the center of interface. 𝐷𝑖 

is the distance between the centroid of the interface and the centroid of the cell 𝑖. 𝐾𝑖 is 

the permeability of 𝐶𝑉𝑖. 

2.11 Connectivity Lists  

Connectivity information between the unstructured elements in 2D/3D are required to 

solve the pressure equation for single phase flow. In a 3D Delaunay mesh, each 

tetrahedron is linked with 4 adjacent tetrahedrons and in a 2D Delaunay mesh; each 

triangle is linked with 3 adjacent triangles with equal flux through the common 

interface. Note that fractures are represented by lines in 2D and planes in 3D. The 

following connectivity lists have to be created for 2D and 3D mesh. 

 

Table 2.1: Necessary Connectivity Lists 

Connectivity Lists: 2D/3D 

A set of neighboring CVs for each CV 

A set of CVs sharing common edge (2D) / face (3D) 

Boundary CVs 

Boundary edges/faces 

Fracture edges/faces 

CVs connected to the fractures named fracture CVs 

Fracture-fracture connectivity list 

Boundary fracture CVs 

 

 

For a 2D DFM meshed by Delaunay triangular grids, Bajaj's work (2009) is a suitable 

source to study. Investigating the connections for transmissibility approximation is 

mainly divided to 3 steps: Matrix-Matrix connection, Matrix-Fracture connection, 

Fracture-Fracture connections that is also called fracture intersections. As mentioned 

before, to think about the connections, the simplified discrete fracture model proposed 

by Karimi-Fard (Karimi-Fard, 2003) is applied for 3D DFM, see Figure 2.8, Figure 2.9 and 

Figure 2.10. The figures show schematic illustration of different connections without any 

specific scale. Grid domain and computational domain are separated in Karimi-Fard's 
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model. Nodes are 0D objects. Segments defined by 2 nodes are 1D objects. Convex 

polygons defined by segments are 2D objects. Convex polyhedral defined by convex 

polygons are 3D objects. Figure 2.8 shows the matrix-fracture connection in the grid 

domain and computational domain in 2D and 3D. Figure 2.9 shows grids in 2D and 3D in 

case of matrix-matrix connection.   

                                 3D                                                                    2D 

 
          Figure 2.8: Matrix-fracture connection to calculate transmissibility in case of 

unstructured grids (Razavi et al, 2011) 

            
Figure 2.9: Matrix-matrix connection to calculate transmissibility in case of unstructured 

grids (Razavi et al, 2011) 

To handle the intersections, an intermediate control volume (Figure 2.10a) is considered 

for numerical connections between two or more fractures. It helps to consider flow 

redirection and thickness variation. Since fracture intersection CVs (Figure 2.10b) are 

small and cause instability in the calculations, they have to be eliminated (Karimi-Fard, 

2003). Figure 2.10 shows an intermediate control volume considering 6 fractures with 

 

 

 

 

 
 Grid Domain 

Computational Domain 

Fracture 

3D Fracture Grid 2D Fracture Grid 
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various thicknesses and three fracture intersection CVs. For detailed information on 

making the connectivity lists, see (Razavi et al, 2011). 

 
Figure 2.10: a) Intermediate CV which is the intersection of 6 fractures with different 

thicknesses b) Three intersecting fracture CVs (Razavi et al, 2011) 

2.12 Solving the Pressure Equation: The Coefficient Matrix Structure 

The pressure equation, Equation 2.10, is applied for all cells. This results in a system of 

equations and a matrix of coefficients including transmissibility values. For structured 

grids, the coefficient matrix is symmetric but in the case of unstructured grids, 

symmetry is not preserved and the matrix is not well defined (Bajaj, 2009). 

 

The dimension of this matrix is N × N where N is the sum of the number of tetrahedrons 

in an unstructured 3D mesh plus the number of fractures in the domain. It consists of 

matrix-matrix transmissibility, matrix-fracture transmissibility and fracture-fracture 

transmissibility matrix which are all assembled together in one matrix, Figure 2.11.  

 

By applying the information presented in the data lists including the fractures and 

matrix permeabilities, normal vectors, areas and centroids of the faces of tetrahedrons, 

centroid (barycentre) of each tetrahedron, etc and also connectivity lists information, 

the assembled transmissibility matrix including matrix-matrix assembly, fracture-matrix 

assembly and fracture-fracture assembly is calculated. The next step is to select a solver 

to solve the pressure equations. 
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Figure 2.11: Transmissibility matrix for a DFM meshed by unstructured grids 

2.13 Biconjugate Gradients Stabilized Method for Solving Systems of 

Equations 

To solve the non-symmetric coefficient matrix at each time step, the Biconjugate 

Gradients Stabilized method (BCGSTAB) could be used.  It is an iterative method and is 

available in MATLAB by X = bicgstab(A , b). It attempts to solve the system of linear 

equations AX = b for X, which are the pressure values including the matrix and fracture 

pressures. The N by N coefficient matrix A is a matrix that is square, large and sparse. 

The column vector b has length N and includes source/sink and boundary condition 

terms. By calculating the pressure values at each time step, b is updated and new values 

for pressures are obtained. The coefficient matrix does not change. The right hand side 

values will be zero for fracture grids; source/sink and boundary condition terms will be 

considered for matrix grids only. As an example, for an isolated flow system, the 

condition  𝑢.𝑛 = 0 should be satisfied at the reservoir boundary (Aarnes J., 2005); 

where 𝑢 is the Darcy velocity and 𝑛 is the normal vector of the boundary surface. 

2.14 Convergence Analysis  

The accuracy of the solution could be tested by a solution obtained from a very fine 

mesh reference solution. Different degrees of grid refinement could be considered at 

this stage. By increasing the mesh refinement, the solution should converge to the 

Matrix - Matrix Assembly 

Transient of  
Matrix - Fracture 

Assembly 

Matrix -Fracture 
Assembly 

Fracture -  
Fracture  

Assembly 
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reference solution. In this case, single phase flow equations are solved to find the 

pressure solution. For convergence analysis, the mean pressure error can be computed 

(Bajaj, 2009):  

𝐸(𝑝) =
|�𝑃𝑟𝑒𝑓 −  𝑃�|2

|�𝑃𝑟𝑒𝑓�|2
 (2.13) 

 

𝑃𝑟𝑒𝑓 and 𝑃 are pressure values on the reference and non-reference mesh respectively.  

2.15 Conclusion 

The chapter reviewed structured and unstructured grid types and also described how 

the finite volume form of mass conservation law is applied to model single phase flow. 

The finite volume simulator is mainly based on the connectivity lists. Creating the 

connectivity lists requires some preprocessing effort especially for 3D unstructured 

grids. For a discrete fracture model by listing the connections, the transmissibility is 

calculated in three separate parts, for matrix-matrix, matrix-fracture and fracture-

fracture connections and flow simulation follows the transmissibility calculation.  
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3 Scaling up of Effective Absolute Permeability 

A common problem in Geostatistical reservoir modeling is the calculation of effective 

permeability of coarse grids to represent higher resolution heterogeneity. The FLOWSIM 

program (Deutsch, 1989) has been used since the mid 1980s for this purpose. This 

chapter reviews its implementation and recommends some changes including the 

application of a new iterative solver (SIP - the strongly implicit procedure) and 

consideration of new convergence criteria that permit reliable results without excessive 

computational effort. The results are checked with a direct solver.  

3.1 Motivation for Scale up 

To optimize reservoir performance and forecast recovery, reservoir simulation is 

conducted on a numerical model that includes reservoir properties and geometry as 

input data. There is a significant scale difference between the flow simulation model and 

the data used to construct the geologic model; the geologic model (geomodel) has many 

more grid cells to represent high resolution features seen in the original data. The 

geomodel often captures complex geological features with approximately 107 grid cells 

(Chen, 2009).  

 

In reality, multiple realizations should be considered to quantify uncertainty. To 

facilitate the use of multiple realizations, the geomodel is upscaled to a coarser 

resolution for fast simulation. By upscaling, the heterogeneous medium is replaced with 

a more homogenous medium at the chosen grid size where small scale heterogeneities 

are represented with upscaled effective values. In subsurface flow modeling, the most 

important property to upscale is permeability, due to its first order influence on 

predicted rates and flow performance. Comprehensive reviews of current methods are 

given in Farmer (2002), Durlofsky (2005), and Gerritsen and Durlofsky (2005). Figure 3.1 

shows a simple schematic of permeability upscaling.  
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Figure 3.1: Left: Fine resolution model, Right: Coarse resolution with effective properties 

3.2 FLOWSIM Program 

FLOWSIM is a program for single phase flow-based permeability scale-up within a 

stratigraphic layer. The program takes a fine scale 3-D Cartesian grid of permeability and 

scales it to a coarser 3-D Cartesian grid of effective permeabilities. The effective 

permeability in each direction is calculated by solving the steady-state single-phase flow 

equations with no flow boundary conditions (Deutsch, 1989 and 1999).  

3.3 Single Phase Flow Upscaling 

Volumetric fractions such as porosity average linearly, that is, the effective porosity is 

calculated as an arithmetic average of the constituent porosities.  To get the effective 

directional permeability values, however, the single phase flow upscaling technique is 

used within the FLOWSIM program. Upscaling is not applied on relative permeability 

which is a two-phase flow parameter. This method is referred to as single-phase 

upscaling (Durlofsky, 2005). There are many confounding factors in the scale up of 

relative permeabilities and current best practice is to use facies dependent relative 

permeability curves with scaled up absolute permeability. 

3.4 Motivation 

The FLOWSIM program considers Linear Successive Over Relaxation (LSOR) to solve the 

pressure equation and compute effective absolute permeability.  There are other solvers 

that could be considered. 

 

KeffH / KeffV 

KH / KV 
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The Strongly Implicit Procedure (SIP) is another iterative solver that is recommended for 

flow related problems with large sparse matrix (Weinstein and Stone, 1969). There are 

also direct solution techniques. The GBAND direct solver (Aziz and Settari, 1979) has 

been added to the FLOWSIM program to get the exact solution of the pressure 

equations albeit at greater computational cost. Knowledge of the exact solution permits 

simpler analysis of the convergence of iterative solvers to the exact solution. 

Comparative studies are conducted on different permeability fields to study the 

effectiveness of the LSOR and SIP algorithms. 

3.5 Problem Formulation: Pressure Matrix in the FlOWSIM program 

The input to the FLOWSIM program is a fine scale 3D Cartesian grid of the permeability 

in X, Y and Z directions (Kx, Ky and Kz ) and it is scaled to a coarser 3D Cartesian grid of 

effective permeability that are denoted as KeffX, KeffY and KeffZ. The arithmetic, 

geometric and harmonic averages are also reported for checking. As mentioned earlier, 

the effective permeability in each direction is calculated by solving the steady-state 

single-phase flow equations with no flow boundary conditions (Deutsch, 1989). 

 

The effective permeability in the X direction is calculated by Equation 3.1 that is derived 

from Darcy’s Law. The nx, ny and nz are model discretization numbers in X, Y and Z 

directions and 𝑞𝑎𝑣𝑒 is the average of cumulative input and output flow rates.  𝑝𝑖𝑛 and 

𝑝𝑜𝑢𝑡 are pressures of input and output boundary grids which are set respectively to 0 

and 100 for the calculations. 

 

𝐾𝑒𝑓𝑓𝑋 = 2𝑞𝑎𝑣𝑒
𝑛𝑥

𝑛𝑧𝑛𝑦 (𝑝𝑖𝑛 −  𝑝𝑜𝑢𝑡)
 (3.1) 

𝑞𝑎𝑣𝑒 =
(𝑞𝑖𝑛 +  𝑞𝑜𝑢𝑡)

2
 

(3.2) 

 

𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 are the cumulative input and output flow rates which are calculated by 

Equations 3.3 and 3.4. 

𝑞𝑖𝑛 = � (
𝑖𝑛𝑙𝑒𝑡 𝑏𝑙𝑜𝑐𝑘𝑠

𝑝𝑖𝑛 −  𝑝𝑖)  𝑘𝑖  (3.3) 
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𝑞𝑜𝑢𝑡 = � (
𝑜𝑢𝑡𝑙𝑒𝑡 𝑏𝑙𝑜𝑐𝑘𝑠

𝑝𝑖 −  𝑝𝑜𝑢𝑡)  𝑘𝑖  (3.4) 

  

𝑝𝑖  and 𝑘𝑖 are the pressure distribution and permeability distribution on the grids. To 

obtain 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡, we need to know the pressure distribution of the model which is 

where the solver is used. The solver solves a large system of pressure equations and the 

pressure field necessary to calculate the effective permeability is obtained. The resulting 

pressure field has values between 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡. It is worth to mention that 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡 

have to be the same; any difference is an indication of numerical instability. 

 

Calculations are conducted in the X, Y and Z directions separately to get the effective 

permeability in each direction. Figure 3.2, Figure 3.3 and Figure 3.4 show one model 

when calculating the effective permeability in different directions.  

 

 

 

 

 

 

 

 

Figure 3.2: Calculating KeffX: grid faces in Y and Z directions are no flow boundaries.  

 

 

 

Flow direction 

 

 

No Flow Boundaries  

Inlet 

Outlet  

qin 

qout X 
Y 

Z 



 

31 
 

 

 

 

 

 

 

 

 

Figure 3.3: Calculating KeffY: Grid faces in X and Z directions are no flow boundaries.   

 

 

 

 

  

 

 

 

Figure 3.4: Calculating KeffZ: Grid faces in X and Y directions are no flow boundaries.   
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In a structured 3D model, there are six neighbors for each grid block except at the 

boundaries of the model. The pressure at the block center is related to the pressures of 

the adjacent blocks through the pressure equation, Figure 3.5. There is a separate 

pressure equation for each grid block in the model which results in a 7 diagonal pressure 

matrix for each set of boundary conditions. Grid indexing is an important point that 

should be considered carefully not only in making the pressure equation but also when 

applying the linear solver. Different indexing will affect the values on the matrix 

diagonals. If (i , j , k) is the index of the grid at the center, the indices of the diagonals are 

shown in Table 3.1. 

 

 

 

 

Figure 3.5: Each grid block has 6 neighbors. 

 

Table 3.1: Indices of the Pressure Matrix Diagonals 

Diagonal Index Corresponding Array 

Bottom diagonal (i , j , k - 1) AB 

South diagonal (i , j - 1 , k) AS 

West diagonal (i - 1 , j , k) AW 

Main diagonal (i , j , k) AP 

East diagonal (i + 1 , j , k) AE 

North diagonal (I , j + 1 , k) AN 

Top diagonal (I , j , k + 1) AT 

 

In the FLOWSIM program, a 1D index for each grid center with a 3D index (i , j , k) is 

calculated by:  

𝑖𝑝 = (𝑘 − 1) × 𝑛𝑥 × 𝑛𝑦 + (𝑗 − 1) × 𝑛𝑥 + 𝑖 (3.5) 

 

T 

 

B 

 

E 

 

N 

 

W 

 
S 

 

P 
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The above indexing results in the pressure Equation 3.6 for each grid block with the ip 

index: 

𝑃(𝑖𝑝 − 𝑛𝑥 × 𝑛𝑦)  × 𝐴𝐵(𝑖𝑝) +  𝑃(𝑖𝑝 − 𝑛𝑥) × 𝐴𝑆(𝑖𝑝) +  𝑃(𝑖𝑝 − 1)

× 𝐴𝑊(𝑖𝑝) +  𝑃(𝑖𝑝) × 𝐴𝑃(𝑖𝑝) +  𝑃(𝑖𝑝 + 1) × 𝐴𝐸(𝑖𝑝)

+  𝑃(𝑖𝑝 + 𝑛𝑥) × 𝐴𝑁(𝑖𝑝) +  𝑃(𝑖𝑝 + 𝑛𝑥 × 𝑛𝑦) × 𝐴𝑇(𝑖𝑝)

= 0 

(3.6) 

 

If the 1D index is calculated as it is in Equation 3.7, then the pressure equation would 

change to that which is presented by Equation 3.8. 

 

𝑖𝑝2 = (𝑘 − 1) × 𝑛𝑥 × 𝑛𝑦 + (𝑖 − 1) × 𝑛𝑦 + 𝑗    (3.7) 

 

𝑃(𝑖𝑝2 − 𝑛𝑥 × 𝑛𝑦)  × 𝐴𝐵(𝑖𝑝2) +  𝑃(𝑖𝑝2 − 1) × 𝐴𝑆(𝑖𝑝2) +  𝑃(𝑖𝑝2 − 𝑛𝑦)

× 𝐴𝑊(𝑖𝑝2) +  𝑃(𝑖𝑝2) × 𝐴𝑃(𝑖𝑝2) +  𝑃(𝑖𝑝2 + 𝑛𝑦) × 𝐴𝐸(𝑖𝑝2)

+  𝑃(𝑖𝑝2 + 1) × 𝐴𝑁(𝑖𝑝2) +  𝑃(𝑖𝑝2 + 𝑛𝑥 × 𝑛𝑦) × 𝐴𝑇(𝑖𝑝2)

= 0 

(3.8)  

 

By writing the pressure equation (Equations 3.6 or 3.8) for all grids, a pressure matrix 

which is a large sparse matrix is generated. In the next section, the linear solvers to solve 

the system of pressure equations are described. The required seven diagonals are 

summarized in Table 3.2. 

 

Table 3.2: Seven Diagonals of the Matrix in the FlOWSIM Program 

Diagonals AE AW AN AS AT AB AP 

FLOWSIM dxp dxm dyp dym dzp dzm D0 

 

3.6 Solving the Pressure Equations 

The performance of the two iterative solvers, SIP and LSOR are compared in this section. 

Comparative studies are conducted on different geological models to investigate the 

effectiveness of the two algorithms with respect to convergence to the exact solution. 
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The exact solution is obtained by applying the GBAND algorithm which is a direct solver 

suitable for banded matrices.  

3.6.1 Direct Solver 

GBAND is a direct solver for the solution of banded matrices without pivoting. The input 

of the algorithm is a one dimensional array containing the band of the diagonal matrix 

sorted by rows. The required dimension of the array is: 

 

𝐵𝑎𝑛𝑑 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =  𝑂 × (2 ×  𝑀 +  1)  −  𝑀 ×   𝑀 −  𝑀 (3.9) 

  

Where M is the number of diagonals above the main diagonal and O is the number of 

the equations. The number of the diagonals above and below the main diagonal is the 

same. Detailed information can be found in the book of Aziz and Settari (Aziz and 

Settari, 1979). 

3.6.2 Iterative (indirect) Solvers: LSOR, SIP 

3.6.2.1 Linear Successive Over Relaxation  

Successive over relaxation (SOR) is a popular iterative method that is an accelerated 

version of the Gauss Seidel algorithm. Considering a 2D model with 5 points, if each 

iteration starts in the lower left (southwest) of the domain, the successive over 

relaxation method can be written as follows: 

 

𝑃𝑖𝑛+1 = 𝑤
𝑃𝑖 − 𝐴𝑗−1𝑃𝑗−1𝑛+1 − 𝐴𝑖−1𝑃𝑖−1𝑛+1 − 𝐴𝑗+1𝑃𝑗+1𝑛 − 𝐴𝑖+1𝑃𝑖+1𝑛

𝐴𝑖
+ (1 −𝑤)𝑃𝑖𝑛 

 

(3.10) 

 

 

n is the iteration counter and w is the over-relaxation factor for acceleration, it must be 

greater than 1. P is the pressure and A is the corresponding diagonal value. It is hard to 

find the optimum value for the over-relaxation factor in complex problems. In general, 

the value is larger for larger grids. The number of iterations will be proportional to the 

number of grid points in one direction, when the optimum value of the over relaxation 
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factor is used. When w has the value of 1, SOR reduces to the Gauss Seidel method. It is 

specifically designed for algebraic equations and usually converges in a small number of 

iterations (Ferziger, 2002).  

3.6.2.2 Strongly Implicit Procedure 

The Strongly Implicit Procedure (SIP) is an incomplete lower-upper decomposition 

method which has found use in CFD problems. It was proposed by Stone (Stone, 1968). 

Stone improved the convergence of incomplete lower upper decomposition SIP. The 

Strongly Implicit Procedure usually converges in a small number of iterations as well. 

The SIP method is also suitable as a preconditioner for conjugate gradient methods and 

as a smoother for multigrid method (Ferziger, 2002). A 3D vectorized version of SIP has 

been given by Leister and Peric in 1994 (Leister and Peric, 1994). The rate of 

convergence in Stone`s method can be improved by changing Stone’s parameter (alpha), 

which is a problem dependent parameter, from iteration to iteration. Investigating the 

dependence of the convergence behavior on the alpha parameter between 0.92-0.94 

were found to give results close to the optimum ones for a wide range of problems. 

These values are suggested for general use (Leister and Peric, 1994). In the FLOWSIM 

program, the value of alpha has been determined based on descriptions in Weinstein’s 

paper (Weinstein and Stone, 1969). 

3.7 Stopping Criterion 

A stopping (convergence) criterion is needed to determine when to stop the iteration 

process. Ideally, the distance of the last iteration to the true solution could be known. 

The difference between a computed iterative solution and the true solution of a linear 

system is a measure of the error. In practice, we do not have the true solution, but we 

can solve it in test cases to establish the convergence properties of the different 

iterative methods. It would be reasonable to choose the iterative algorithm with less 

CPU time for the same convergence properties. 
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3.8 Applying the Algorithms 

All the calculations are conducted on the modified FLOWSIM program that currently 

includes three solvers: LSOR, SIP and GBAND. The goal is to investigate the convergence 

behavior of the SIP and LSOR algorithms when dealing with various permeability fields 

with different levels of complexity. The rapid convergence of an iterative method is the 

key factor for its effectiveness. The convergence is defined as the reduction of the 

iteration error below some specific value of tolerance (Ferziger, 2002).  

3.9 Stopping (Convergence) Criteria – Original Version 

The stopping criterion for the algorithms is the maximum change made to the pressure 

field in a given iteration. If the change is low enough (less than the input residual), then 

the pressure field is considered to be close enough to the exact solution. When we know 

the exact solution by applying a direct solver, then we can easily check if the iterative 

algorithms have reached the exact solution or not. We considered the permeability 

error as a stopping criterion. When it is below 0.1 %, the algorithms stop. The required 

level of accuracy for pressure from iteration to iteration has been also considered as 

0.1% that gives acceptable results. The iteration errors are calculated by Equations 3.11 

and 3.12. 𝐾𝑒𝑟𝑟𝑜𝑟(𝑖) and 𝑃𝑒𝑟𝑟𝑜𝑟(𝑖) are presented as the permeability error and 

pressure error at each iteration respectively. The permeability convergence and 

pressure convergence are presented through plotting the errors versus iterations while 

converging to the exact solution.  

 

𝐾𝑒𝑟𝑟𝑜𝑟(𝑖) =
�𝐾𝑒𝑓𝑓𝑖𝑐𝑎𝑙𝑐

  −  𝐾𝑒𝑓𝑓  𝑡𝑟𝑢𝑒�
𝐾𝑒𝑓𝑓  𝑡𝑟𝑢𝑒  . 100 

(3.11) 

 

 

𝑃𝑒𝑟𝑟𝑜𝑟(𝑖) =
1
𝑁
�

|𝑃𝑛𝑖
  −  𝑃𝑛𝑡𝑟𝑢𝑒|
𝑃𝑛𝑡𝑟𝑢𝑒

𝑁

𝑛=1

 . 100 (3.12) 

 

N is total number of the grids. 𝐾𝑒𝑓𝑓  𝑡𝑟𝑢𝑒 and 𝑃𝑛𝑡𝑟𝑢𝑒 are exact effective permeability 

values and exact pressure field obtained by GBAND algorithm. 𝐾𝑒𝑓𝑓𝑖𝑐𝑎𝑙𝑐 is the effective 



 

37 
 

value calculated by an iterative algorithm at each iteration and 𝑃𝑛𝑖  is the pressure 

distribution obtained at iteration i by the iterative solver.  

3.10 Case Studies 

Four 3D cases are put to test. The first, third and forth cases are generated in MATLAB 

and the second case is a 10 by 10 by 11 model generated by the SGSIM program in 

GSLIB. The first and forth cases are 10 by 10 by 10 models and the third one is a 10 by 10 

by 11 model. Figure 3.6 show the geological models under investigation. For the 1st, 2nd 

and 4th cases, 1mD and 1000mD are assigned respectively to the low and high 

permeability grid cells.  

 

The error plots for each model are generated in MATLAB by loading the output files of 

the FLOWSIM program. To apply the GBAND algorithm, it is necessary to know the 

dimensions of the diagonals. The 7 diagonals' dimensions based on the chosen indexing 

in pressure equation are presented in Table 3.3.  

 

Table 3.3: Dimension of the Pressure Matrix Diagonals  

Indexing 𝑖𝑝 = (𝑘 − 1) × 𝑛𝑥 × 𝑛𝑦 + (𝑗 − 1)

× 𝑛𝑥 + 𝑖 

𝑖𝑝2 = (𝑘 − 1) × 𝑛𝑥 × 𝑛𝑦 + (𝑖 − 1)

× 𝑛𝑦 + 𝑗 

Dimension dim(AB)  = (nx × ny × nz) - (nx × ny) 

dim(AS)  = (nx × ny × nz) - (nx) 

dim(AW) = (nx × ny × nz) - (1) 

dim(AP) = (nx × ny × nz)  

dim(AE)  = (nx × ny × nz) - (1) 

dim(AN)  = (nx × ny × nz) - (nx) 

dim(AT)   = (nx × ny × nz) - (nx × ny) 

dim(AB)  = (nx × ny × nz) - (nx × ny) 

dim(AS)  = (nx × ny × nz) - (1) 

dim(AW) = (nx × ny × nz) - (ny) 

dim(AP) = (nx × ny × nz)  

dim(AE)  = (nx × ny × nz) - (ny) 

dim(AN)  = (nx × ny × nz) - (1) 

dim(AT)   = (nx × ny × nz) - (nx × ny) 
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                a) Model 1                                       b) Model 2                                 c) Model 3 

 
d) Model 4 

Figure 3.6: Geological models under investigation  

 

Knowing the exact solution calculated by the GBAND algorithm, the permeability error 

and the pressure error (when compared to the exact solution) are calculated in each 

iteration.  Note that the error is different in the X, Y and Z directions. Furthermore, the 

CPU time is recorded for all calculations. The resulting graphs and tables are presented 

for each case separately. The following steps are taken in each case: 

 1) Run FLOWSIM by applying GBAND to get the exact pressure profiles and exact 

upscaled permeability values in X, Y and Z directions. 
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 2) Input the exact pressure solution and effective permeability solution to the 

FLOWSIM in X, Y and Z directions to measure the error when applying the LSOR and SIP. 

 3) Run LSOR with 10000 iterations to get the permeability and pressure 

convergence error report in all directions. 

 4) Once again run LSOR by considering the stopping criteria and measuring the 

CPU time in all directions. 

 5) Run SIP with 10000 iterations to get the permeability and pressure 

convergence error report in all directions. 

 6) Once again run SIP by considering the stopping criteria and measuring the 

CPU time in all directions. 

 

The calculated effective permeabilities by SIP and LSOR in all directions are the same as 

the exact effective permeability calculated by the direct solver, see Table 3.4. The 

measured CPU time when running the algorithms is tabulated in Table 3.5, Table 3.6 and  

Table 3.7. Kh is obtained by arithmetic averaging of KeffX and KeffY. Ka, Kg and Kha are 

arithmetic, geometric and harmonic averages respectively. A summary of the error plots 

for different cases are presented in the next section.  

Table 3.4: Exact Solutions Resulted by GBAND 

 KeffX KeffY KeffZ Kh  Ka Kg Kha 

Case 1 500.5 500.5 1.718 500.5 500.5 31.623 1.998 

Case 2 545.909 545.909 1.890 545.909 545.909 43.288 2.197 

Case 3 436.977 440.731 357.521 438.854 538.079 185.906 0.014 

Case 4 501.945 501.945 7.891 501.945 540.460 41.687 2.171 

 

Table 3.5: CPU Time (Seconds) and the Number of Iterations to Converge 

Case 1:  Stopping Criterion (SC) < = 0.1% 

 CPU time X CPU time Y CPU time Z niterX / S.C. niterY / S.C. niterZ/ S.C. 

SIP 0.0468 0.0468 27.895 12 / 0.00055 12 / 0.00055 > 10e5/13.45 

LSOR 0.0624 0.0624 31.637 48 / 0.00072 48 / 0.00072 > 10e5 /13.99 

GBAND 0.234 0.2184 0.234 Direct Solver 
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Table 3.6: CPU Time (Seconds) and the Number of Iterations to Converge 

Case 2:  SC < = 0.1% 

 CPU time X CPU time Y CPU time Z niterX  niterY  niterZ  

SIP 0.0312 0.0312 0.2496 11 11 499 

LSOR 0.0312 0.0312 0.5616 48 48 1511  

GBAND 0.2675 0.231 0.2675 Direct Solver 

 

 

Table 3.7: CPU Time (Seconds) and the Number of Iterations to Converge 

Case 3:  SC < = 0.1% 

 CPU time X CPU time Y CPU time Z niterX   niterY   niterZ  

SIP 0.0312 0.0468 0.0468 21  14  24  

LSOR 0.0312 0.0468 0.0312 44 49 51 

GBAND 0.2496 0.2496 0.2496 Direct Solver 

 

 

Comparative studies are conducted for all models on the pressure and permeability 

convergence to the exact solution for the iterative algorithms and in X, Y and Z 

directions. Since the error plots are similar for the models, only some representative 

ones are presented. The SIP and LSOR error plots have been shown in red and blue, 

respectively. 
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a) KeffX convergence: LSOR vs. SIP (Model HSB10.out) 

 
b) PX convergence: LSOR vs. SIP (Model HSB10.out) 

Figure 3.7: KeffX and PX convergence  for case 1 
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Figure 3.8: PZ convergence: LSOR vs. SIP (Model HSB10.out) 
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Figure 3.9: PZ convergence: LSOR vs. SIP (Model HSB11.out) 
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Figure 3.10: PY convergence: LSOR vs. SIP (Model4.out) 

 
Figure 3.11: KeffZ convergence: LSOR vs. SIP (Model7.out) 
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Figure 3.12 :PZ convergence: LSOR vs. SIP (Model7.out) 

Looking at these results, the following points are worthy of mention: 

 a) Calculations in the Z direction of the first case (Figure 3.6) is not an easy 

problem since the algorithms need more iterations to converge; see Figure 3.8.  

 b) The difference between the pressure convergence behaviour of the 

algorithms for the first, second and 4th cases in Z direction is interesting. By looking at 

Figure 3.12 for the fourth case, Figure 3.8 for the first case and Figure 3.9 for the third 

case, we observe that when there are low permeability layers in the model, the 

algorithms require more effort to satisfy the stopping criterion and also the algorithms 

have unpredictable and relatively unstable behaviour when converging to the exact 

solution. When in each layer there are a few low permeability grids, as in the fourth 

case, the algorithms converge to the exact solution more easily compared to the first 

case where the entire bottom layer is low permeabilty. The difference between the first 

and second cases is in an additional low permeability layer at the bottom of the first 

case that results in a different behaviour of the algorithms, see Figure 3.8 and Figure 3.9. 

Figure 3.10 also shows stable convergence of the algorithms to the exact solution in case 

of the model generated with SGSIM program.  
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3.11 Conclusion 

In this chapter, a comparative study has been conducted on two iterative algorithms in 

the FLOWSIM Program to show the performance of the linear successive over relaxation 

and strongly implicit algorithms. SIP and LSOR are iterative solvers which are widely 

used to solve very large and sparse systems of linear equations. The exact solution of 

the system of the pressure equations is obtained by applying the direct solver, GBAND, 

in the FLOWSIM program. The pressure convergence and permeability convergence to 

the exact solution have been investigated for the SIP and LSOR. CPU time has been also 

measured when applying SIP, LSOR and GBAND. Based on the presented case studies, it 

is clear that:  

1) Looking at Table 3.4 to Table 3.7, the direct solver generally takes much longer 

than iterative solvers. In case of first model Z direction, direct solver's CPU time 

is less compared with iterative algorithms.  

2) Looking at Figure 3.7 to Figure 3.12, both iterative algorithms are converging to 

the exact pressure solution for all cases at different directions. 

3) The memory cost of the algorithms is relatively insignificant since only the 

banded part of the matrix is kept. 

4) Looking at Figure 3.7 to Figure 3.12, the level of the residuals for SIP reduces 

higher orders in less iterations and SIP converges faster than LSOR for the 

examined cases. 

5) SIP required less computational effort (less iterations) than LSOR while the CPU 

time for each inner iteration of SIP is more expensive than LSOR. 

6) Looking at the K convergence graphs, SIP is more stable with fewer fluctuations 

while converging to the exact solution. Less CPU time and stability convergence 

could be mentioned as considerable advantages of the SIP.    

In conclusion, the FLOWSIM program should be used with the SIP solver as it converges 

quicker. 
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4 Representation of Geologic Features with Grids  

Full field reservoir flow simulation considers on the order of one million grid blocks. 

Small scale heterogeneities at scales less than meters cannot be explicitly represented 

by these blocks. These small scale features are captured in effective properties at the 

grid block scale. Reservoir features (heterogeneities) that are large with respect to the 

grid size can be represented as discrete objects, that is, each grid block is in or out of the 

feature. Reservoir features that are smaller than the grid block size must be represented 

as proportions of the features within the grid block, that is, each grid block contains a 

continuous proportion of the feature. For a fixed grid size, large features are 

represented discretely and small features are represented continuously. Some features 

are in transition from discrete to continuous. The grid size that becomes large with 

respect to the feature size is sometimes referred to as representative elementary 

volume (REV). Transition from the discrete domain, where there is little mixing, to the 

continuous domain, where they are all mixed, is important to investigate since it is 

important to adopt the most suitable modeling approach. One goal of this work is to 

quantify the scales of the discrete, transition and continuous regimes. For this purpose, 

some models at different domain and object sizes are constructed and the progression 

from discrete to transition and also from transition to continuous is explored. A 

modified version of the classical REV plot proposed by Bear (1972) is proposed. The 

proposed model is presented for a fluvial depositional system.  

4.1 A Classical Definition of Representative Elementary Volume (REV) 

A representative elementary volume (Zhang, 2000) is a volume within which the 

statistics of the quantity of interest are homogenous and stationary. A representative 

elementary volume was originally defined by Bear (1972). Based on Bear's theory, it 

should be large enough to capture a representative amount of heterogeneity. The 

notion of an REV relates to the concept of a length scale. Different factors influence the 

determination of the length scale of a process, including geological heterogeneity, 

transport phenomena and fluid flow, and chemistry and process design (Gates and 
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Wang, 2012). Our focus in this research is on geological heterogeneity and its direct 

effect on flow.  

 

Figure 4.1 illustrates the classical explanation of REV plot (Bear, 1972). The plot shows 

the average of porosity on the Y-axis and the averaging volume V on the X-axis. Any 

other petrophysical property could be on the Y-axis. The plot illustrates that the average 

of the property becomes stable and constant at intermediate V which is called REV, and 

then fluctuates as V approaches zero (Lake et al, 2004).  

 

The REV and any volume larger than that are considered as part of a continuous 

property regime where mixing is complete and continuous modeling approaches such as 

Gaussian simulation are applicable. In the classical REV point of view, the focus was on 

this part of the REV plot. As mentioned earlier, we will define discrete and transition 

regimes before reaching the continuous regime and propose a modified plot including 

three regimes; discrete, transition and continuous regimes while considering geological 

features' scales.  

 
Figure 4.1: The representative elementary volume concept applied to porosity (Bear, 

1972) 

The "sample volume" used in the upcoming sections is a label for different grid block 

sizes that the point scale variability is upscaled to. An REV is a special size of the sample 

volume. 
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4.2 Definition of Discrete, Transition and Continuous Regimes 

In this section, three regimes are defined: discrete, transition and continuous regimes. 

The size of the sample volume and the size of the geological features determine the 

regime. 

 

In the case each grid block is located in or out of the feature, the dominant regime is the 

discrete regime and the geological feature is represented discretely, see Figure 4.2. In 

the discrete regime, there is little or no mixing. Grid block is the square in blue (darker 

color) and the geological feature has a rectangular shape in yellow (lighter color).  

 

In the discrete regime, variability is between the grid blocks while it is homogeneous 

within the grid blocks. Figure 4.2 shows an example.  

 
Figure 4.2: An example of the grid block size and the geological feature size in the 

discrete regime 

In the continuous regime, there is variability within the grid blocks. In this case, the grid 

is large enough and the feature is small enough that, in most cases, the features are 

inside the grid, see Figure 4.3. In this case, continuous modeling is needed. 

 

 

 

 

 

Figure 4.3: An example of the grid block size and the geological feature size in the 

continuous regime 
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In the case of the transition regime, both variability within and between grid blocks 

occurs. Figure 4.4 shows the change from discrete to continuous regimes. In the 

transition regime, features cross multiple grid blocks. The features are neither inside the 

grid blocks nor large with respect to the grid blocks. 

  

 

 

             
 

 

Figure 4.4: Representation of different regimes considering fixed grid size and various 

feature sizes 

There are two equivalent methods to investigate the different regimes; fixing the grid 

size and changing the size of the features, as applied in Figure 4.4 or fixing the size of the 

feature and changing the grid size. Both these methods are fundamentally the same.  

 

Figure 4.5 shows the regimes considering fixed feature size and various grid block sizes. 

A model with circular features is presented, Figure 4.5a. Part “b” of Figure 4.5 shows the 

grid blocks 1/15 times the object size. The grids are mostly in or out of the circular 

feature; therefore, this is considered to be in the discrete regime. Grid blocks in red and 

light green are in the discrete regime as they are either inside or outside of the object. 

The grids in dark green are partly inside and partly outside of the object. Therefore, 

there is little mixing in this grid size but the geological feature could still be presented 

discretely. The mixing starts at the edges of the geological features. The grid sizes less 

than that are in discrete regime.  

 

In the transition regime, some grids start to mix and some are discrete. By increasing the 

size of the grids, the mixing percentage is increased and at a highly significant mixing 

percentage, each grid block contains a continuous proportion of the feature. 

Grid block color 
Feature color 
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Considering a grid 5 times bigger than the feature size, circular features that are smaller 

than the grid block size must be represented by the proportions of the features within 

the grid block, see Figure 4.5c. This system should be modeled continuously, as 

geological features cover a continuous percentage of the grid block. Grid sizes between 

these two sizes could be categorized as in the transition regime. 

 

There is always some mixing of some features at a specific scale, thus upscaling and 

averaging are inevitable. The transition regime is a significant regime relative to the well 

understood discrete and continuous regimes. Putting thresholds on the boundaries of 

the transition regime will help understand it better. The numbers will be evaluated 

based on the grid block size and feature size. The upper boundary of the transition zone, 

that is the border between the transition and the continuous regimes, could be referred 

to as the representative elementary volume size.  

 

In previous sections, the general concepts behind the research in this chapter were 

explained. In upcoming sections, the experiments that have been conducted on various 

models to evaluate the transition regime and propose a modified representation of the 

classical REV plot shown in Figure 4.1 will be presented.  

4.3 Modifications on the Classic REV Plot 

The proposed model includes three regimes discrete, continuous and a transition 

between the discrete and continuous regimes.  

 

The modified REV plot looks like Figure 4.6 which is applicable to different geological 

systems. The Y-axis represents the scale of the geological features and the X-axis 

represents the grid block size. Boundaries of the regimes (Bold green lines) are 

evaluated. Evaluation of the grid block size vs. the geological feature size guides us to 

get the boundaries of the transition regime which are determined by the slope of the 

bold green lines in a logarithmic scale, Figure 4.6. 
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a) Model with circular geological features 

 

                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

b) Discrete 

 

 

                                                

 

 

 

 

 

                                                                                                                c) Continuous (REV) 

 

 

 

Figure 4.5: Discrete and continuous representation of the geological features: Fixed 

geological feature size and various grid block sizes 
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Figure 4.6: Schematic of the proposed model to modify the classic REV plot  

In the next section, the criteria to characterize the thresholds of the regimes are defined 

to recognize: a) The discrete regime from the transition regime which is called the lower 

boundary of the transition regime, and b) The transition regime from the continuous 

regime which is called the upper boundary of the transition regime.  

4.4 Criterion to Determine the Discrete – Transition Boundary 

Looking back at Figure 4.6, to quantify boundary at “A”, the histogram of the point data 

and the increasing proportion of the upscaled values that fill in the area between the 

distributions of the point data, are considered. The proportion of the effective 

permeability between the distribution of the point data increases. The increase in the 

proportion in this area could be a criterion to determine the “A” boundary of the 

transition zone. The grid size that contains significant mixing determines the lower 

boundary of the transition zone. An arbitrary threshold of 15% of the grid cells having 

some mixing could be chosen as a reasonable value. To understand the criterion better, 

consider the histogram of a sample point data presented for a binary model, Figure 4.7. 

By upscaling, the proportion of the averaged values between the point data increases as 

it is shown in the histograms of averaged data at three different scales in Figure 4.8.  
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Figure 4.7: Histogram of the point data 

The point is that when averaging starts, mixing starts as well. But significant mixing is 

important to help us determine discrete length and the start of the transition regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 4.8: Histograms of the 3 upscaled models  

Mixing occurs differently in different directions, that is, the X, Y and Z directions for a 3D 

model. Three sample histograms, showing three upscaled models that originated from 

point data in Figure 4.7, are presented in Figure 4.8 to explain the increase of mixing 

proportion in X direction. They help to improve the understanding of the criterion that 
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will be applied in the next sections. The histograms show clearly how the proportions 

are concentrated at the middle of the point distribution. The proportion of the mixed 

values increases respectively in histograms numbered 1, 2 & 3 (1>2 >3) as the size of the 

selected grid for scale up increases from 1 to 3 (1>2 >3). 15% mixing is the feasible value 

where in less than that the dominant regime is the discrete regime and in higher than 

that the dominant regime is the transition regime.  

 

The criterion to distinguish the lower boundary of the transition zone was explained in 

this section. To apply the criterion, the geological feature size and the grid block size 

have to be connected which happens by defining a dimensionless length scale and will 

be explained in section 4.6. 

4.5 Criterion to Determine the Transition-Continuous Boundary 

Referring back to Figure 4.6, to define B boundary, the ratio of the variance of the 

upscaled model over the maximum variance,  𝛿2

𝛿𝑚𝑎𝑥
2 , is evaluated. 𝛿𝑚𝑎𝑥

2  is equal to the 

variance of the point data which is the original distribution. 𝛿2 is calculated for the 

upscaled model at the chosen grid block size. The criterion is considered as 2% that is 

when the variance of the upscaled model is about 2% of the variance of the point data. 

In that case, the continuous regime could dominate the transition regime and 

continuous length is evaluated. The percentage of blocks where there is some mixing, 

could also be considered as the criterion to evaluate the transition-continuous 

boundary. At the discrete-transition boundary, there is minimum mixing and at the 

transition-continuous boundary, there is very high percentage of mixing. The criteria are 

somewhat arbitrary and the thresholds could be pushed higher or lower for different 

applications. 

 

Once again to apply this criterion, there is a need to define the dimensionless length 

scale to connect the geological feature size and the grid block size.  
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4.6 Dimensionless Length Scale Definition 

A dimensionless length scale is defined as the maximum ratio of the length of the grid 

(sample volume) in each direction divided by the object size in that direction. In Figure 

4.9, the object is 2D and non-isotropic.  

 

Dimensionless length scale = Max (Lx/ax , Ly/ay) 

 

“ax” is the object length in X direction. “Lx” is the grid block size in X direction. In case of 

isotropic objects, ax and ay have the same size. For isotropic sample volumes Lx and Ly 

are equal as well. Figure 4.10 shows the models with isotropic and non-isotropic objects 

(geological features). 

 

 

 

 

 

 

Figure 4.9: Object and sample volume to define dimensionless length scale 

                                        
Figure 4.10: a) non isotropic objects              b) isotropic objects 

The dimensionless length scale in 3D is taken as: 

Max (Lx/ax , Ly/ay , Lz/az). 

By applying the dimensionless scale, it does not matter if the objects in the model or the 

sample volumes are isotropic or not.  In practice, it may be reasonable to keep the three 

different ratios because the grid size may be clearly large in one direction, but small in 

another – with respect to the size of the geological features. 
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4.7 General Review on Geological Models Put to Test  

Three synthetic geological models are generated by the object based modeling 

technique. As mentioned before, we try to evaluate the regimes and the boundary of 

the transition regime quantitatively on each case based on the defined criteria in the 

previous sections. Models are all two dimensional that is the number of grids in Z 

direction is considered as 1 (nz = 1). Figure 4.11a shows the pixel plot of the models that 

are put to test and explained one by one in detail in the next sections.  

 

 

 

 

 

 

a) Pixel plot of the models under examination 

 

 

 

b) Axis system 

Figure 4.11: Images of the models under test with no scale 

In the first and second models that are the small ones with less grids, objects are non-

isotropic and channel shaped and in the third model (the big one), objects are isotropic 

circular objects. The axes system is shown in Figure 4.11b.  

 

4.8 Evaluation of the Regime Boundaries on Small Models with Non Isotropic 

Objects 

A program has been written in MATLAB to generate 2D object based models; 512 grid 

blocks in each direction were considered. The ELLIPSIM program from GSLIB was also 

considered to generate larger models. The objects are distributed randomly in the 
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models and are also low permeable parts of the models that cover 30% of the entire 

domain in both small models. Subsequently, permeability is assigned to the grids; 1 mD 

for low permeability objects and 1000 mD for high permeability grids. Histograms of 

small models are shown in  

 

Figure 4.12 4.12. Y-axis is the frequency of the grid cells and X-axis is the permeability 

values (millidarcy). Afterwards, boundaries A and B of the transition regime are 

evaluated for the small models.  

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.12: Histogram of the point data: 30% low permeability grids and 70% high 

permeability grids 

Object size versus model size is presented in Figure 4.13.  The objects are non-isotropic 

and 9 isotropic sample volumes are considered for scale up. The isotopic sample 

volumes are listed in Table 4.1. For example, for the model with 512 grid blocks in each 

direction, when sample volume is 8 by 8 by 1, the upscaled output model is a 64 by 64 

by 1 model.  

 

In the left model in Figure 4.13, the object size is about 1/6 times the domain size and 

relatively small compared to the domain size. In the right model the object size which is 

about half of the domain is considered big relative to the size of the domain. It could be 

interesting to examine these two different cases to get a better estimation of the grid 
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sizes at different regimes. We are interested to connect the size of the grids to the size 

of the geological feature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Objects scales versus whole models scales (all in meter) 

Table 4.1: Sample Volumes and Output Model Size Applicable for Small Models 

Scale ID Isotropic Sample Volumes (m × m) Output Model Size (# of cells) 

1 2 × 2 256 × 256 

2 4 × 4 128 × 128 

3 8 × 8 64 × 64 

4 16 × 16 32 × 32 

5 32 × 32 16 × 16 

6 64 × 64 8 × 8 

7 128 × 128 4 × 4 

8 256 × 256 2 × 2 

9 512 × 512 1 × 1 

 

4.8.1 Boundary A: Evaluating the Discrete Length for Small models  

The mixing percentage is investigated by plotting the proportion of the mixed 

permeabilities when upscaling to a particular scale. Given that the criterion is 
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constituted of 15% mixing, Figure 4.14 shows the mixing proportion plots for both small 

models. Y-axis, that is proportion, is calculated as the proportion of the permeability 

values obtained by averaging and is not equal to the original permeability values. ±5% 

tolerance from the original values helps us to pick the mixed values. Each mixing 

percentage is calculated at a special sample volume size and X-axis is the corresponding 

scale ID, Table 4.1. 

 
Figure 4.14: Proportion plots: First criteria for small models 

Looking at Figure 4.14, the criteria is satisfied at scales somewhere between 3 and 4 for 

both models. Referring back to Table 4.1, scale ID 3 and 4 are equivalent to 8 and 16 grid 

block sizes respectively. Recall that the dimensionless scale is calculated by the division 

of the grid block size by object size. The dimensionless length scale in X and Y directions 

are shown by DLx and DLy respectively. Objects are non-isotropic while sample volumes 

are isotropic, that is grid size in X and Y directions have the same size. Grid block sizes, 

object sizes and dimensionless scales are listed in Table 4.2. Based on the criterion that 

we have defined, 15% mixing occurs when grid block size is between 0.27 to 0.53 of the 

object size for the first case and has a value between 0.1 to 0.2 for the second model. 

This means that when the grid block size is about 0.15 (between 0.1 and 0.2) of the 

object size for the second case, mixing is significant and the transition regime will be the 

dominant regime where the discrete regime ends. Table 4.3 shows the estimated 

discrete lengths for small models.  
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Table 4.2: Dimensionless Length Scales for the Lower Boundary of the Transition Regime 

 

Grid block 

size (m) 

Object size 

in X 

direction 

(m) 

DLx = 

Grid block size_x 

/ object size_x 

Object size in 

Y direction 

(m) 

DLy = 

Grid block size_x 

/ object size_x 

1
st

 model 
8 80 0.1 30 0.27 

16 80 0.2 30 0.53 

2
nd

 

model 

8 250 0.032 80 0.1 

16 250 0.064 80 0.2 

Table 4.3:  Estimated Discrete Length  

 Discrete Length Approximation 

1st small model 0.1-0.53 times object size 

2nd small model  0.032-0.2 times object size 

4.8.2 Boundary B: Evaluating the Continuous Length for Small Models 

To evaluate the upper boundary of the transition regime, the variance ratio is assessed 

and plotted for both small cases, Figure 4.15. The criterion is satisfied when the variance 

of the up-scaled model is about 2% of the variance of the point data that is the 

maximum variance.  

 
Figure 4.15:  Variance ratio: Boundary B criterion for small models 
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Looking at Figure 4.15, 2% is satisfied at scale ID 8 for the first case and scale ID 9 for the 

second case that correspond to 256 and 512 grid block sizes respectively. Based on the 

object sizes and grid block sizes, dimensionless length scale at corresponding scales, 

where the criterion is satisfied, are presented in Table 4.4. Table 4.5 shows continuous 

length for both models.  

Table 4.4:  Dimensionless Length Scales for the Upper Boundary of the Transition 

Regime 

 
Grid block size (m) Object size in x 

direction (m) DLx Object size in Y 

direction (m) 
DLy 

1
st

 model 256 80 3.2 30 8.53 

2
nd

 model 512 250 2.05 80 6.4 

Table 4.5: Estimated Continuous Lengths  

 Continuous Length Approximation 

1st small model 3.2-8.53 times object size 

2nd small model  2.05-6.4 times object size 

 

This means that for the first small model when the size of the grid is about 3 times 

bigger than the size of the object, the continuous regime starts. For the second case, the 

continuous regime happens at a grid size about 2 times bigger than the size of the 

geological feature in that model. The criteria are somewhat arbitrary and the thresholds 

could be pushed higher or lower for different applications. 

4.8.3 Locating the Boundaries A and B on the REV Plots  

Point data and all upscaled values at related grid sizes are plotted in one graph that we 

call it the REV plot in this work as it relates to the classic REV notion. The upscaled 

values are calculated by applying the FLOWSIM program. Now, we know the values of 

the grid sizes relative to the object size, for the lower and upper boundaries of the 

transition regime. In Figure 4.16 and Figure 4.17 that are REV plots in X and Y directions, 

the Y-axis of the plots is the effective permeability value and X-axis is the grid size. Plots 

are generated in both X and Y directions since effective values are different in X and Y 
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directions. As expected, the effective values converge to similar values in both directions 

because the model is randomly generated. For the first case, the grid size at the discrete 

regime is somewhere between 8 to 16m and for the upper boundary is about half of the 

domain that is about 256m. So, when the grid size is about half of the domain, 

geological features have to be presented continuously. Based on the analysis for the 

lower and upper boundaries of the transition regime, for the small model with bigger 

geological features (bigger objects), to present the discrete length, a grid size 

approximately equal to 16m is selected and for the continuous length, a grid size 

approximately equal to the length of the whole domain is the choice. The object size is 

large relative to the size of the domain and it shows that the representative elementary 

volume, in which the features are presented and modeled continuously, is close to the 

size of the domain for the case which even makes sense visually. Accordingly, there is a 

relation between the size of the grid and the size of the geological feature at different 

regimes.  

 

 

Figure 4.16: REV plots for the first model in X and Y directions (Small model with small 

objects), KeffX (mD) and KeffY (mD) vs. Grid size (m) 
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 Figure 4.17: REV plots for the small model with bigger objects in X and Y directions 

KeffX (mD) and KeffY (mD) vs. Grid size (m) 

Comparing Figures 4.16 and 4.17, discrete regime covers bigger area on the REV plot for 

the model with bigger objects.  

 

Plots of the upscaled models are shown in Figure 4.18 in discrete and transition regimes. 

The transition regime starts at a smaller grid block size for the case with smaller 

geological objects since more mixing is observed at the same grid block size for the case 

with smaller objects compared to the one with bigger object size. Figure 4.18b shows 

the upscaled models at the identical grid size for both small models showing more 

mixing for the model with smaller objects. The model with big channels is still in the 

discrete regime and the model with the small channels is in the transition regime. 
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a) Upscaled models at discrete regime showing the edge effect 

 

 

b) Upscaled models at grid block size 16m, LHS: in discrete regime  

RHS:  in transition regime 

Figure 4.18: Plot of upscaled models at discrete and transition regimes 

To propose the final modified REV plot and to have another evaluation of the 

boundaries of the transition regime, the previous workflow is conducted on a very large 

model with 100 million grid cells and isotropic circular geological objects. 

4.9 Definition of the Transition Regime on a Large Model 

To analyze the REV plot for scales less than the size of the object and also bigger than 

the size of the object, a model with the largest possible size is preferable. It helps to 

evaluate the boundaries of the transition regime more realistically. For this purpose, a 

binary 2D model is generated by the ELLIPSIM program of GSLIB considering 100 million 
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grid cells, a 10000 × 10000 × 1 model with 30% low permeability objects and 70% sand. 

Objects are isotropic, randomly distributed in the domain and 300 grids discretize the 

length of the objects in X and Y directions. It's interesting to see and analyze upscaling 

results when the sample volume size is about 1/100 of the object size, that is, a sample 

volume size equal to 3m × 3m × 1m. The size of the domain is 30 times bigger than the 

size of the object. In this model, both the object(s) and sample volume(s) are isotropic. 

The model is visualized in MATLAB (IMAGESC), Figure 4.19. Figure 4.19b shows a grid 

size about 1/100 of the object size; the geological feature is presented discretely at this 

scale. 

 
a) Whole domain (10000m by 10000m) 

  
         b) Grid size = 1/100 of the object size            c) Grid size is equal to the object size                     

Figure 4.19: Large model with isotopic objects at 3 scales 
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There is always some grid resolution concerns. At scales less than the size of the object, 

say 1/100 of the object scale, it has a discrete nature of the object as the grid is small 

relative to the object size (Figure 4.19b) and the geological feature is presented 

discretely. To evaluate the boundary of the transition regime, the similar experiments 

applied on the small models in the previous sections, are conducted here as well.  

 

Due to computational cost and memory limitations, only one realization of the model is 

generated. Subsequent to the construction of the object based model, permeabilities 

are assigned to the output of the ELLIPSIM program, 1mD for the objects' permeability 

and 1000mD for the background grid cells (sand). As the model is large, the arithmetic 

and geometric averages are analysed as upscaled values rather than applying flow based 

upscaling results.  

 

The FLOWSIM program is modified to perform only arithmetic/geometric averaging over 

100 million grid cells and at lower scales. The X-axis shows the dimensionless length 

scale and the Y-axis is the upscaled values. On the X-axis, 1 represents the size of the 

object on the REV plots. The difference before and after 1 on the REV plot is 

considerable. 24 possible isotropic sample volume sizes are considered for scaling up the 

model, see Table 4.6. 

Table 4.6: Sample Volumes and Resulted Output Model Size 

Sample Volume Size (m × m × m) Output Model Size (# of grid cells) 

10000 × 10000 × 1 1 × 1 × 1 

5000 × 5000 × 1 2 × 2 × 1 

2500 × 2500 × 1 4 × 4 × 1 

1250 × 1250 × 1 8 × 8 × 1 

625 × 625 × 1 16 × 16 × 1 

125 × 125 × 1 80 × 80 × 1 

25 × 25 × 1 400 × 400 × 1 

5 × 5 × 1 2000 × 2000 × 1 

1 × 1 × 1 10000 × 10000 × 1 

2 × 2 × 1 5000 × 5000 × 1 

4 × 4 × 1 2500 × 2500 × 1 
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8 × 8 × 1 1250 × 1250 × 1 

16 × 16 × 1 625 × 625 × 1 

80 × 80 × 1 125 × 125 × 1 

400 × 400 × 1 25 × 25 × 1 

2000 × 2000 × 1 5 × 5 × 1 

500 × 500 × 1 20 × 20 × 1 

20 × 20 × 1 500 × 500 × 1 

100 × 100 × 1 10 × 10 × 1 

250 × 250 × 1 40 × 40 × 1 

10 × 10 × 1 100 × 100 × 1 

50 × 50 × 1 200 × 200 × 1 

10 × 10 × 1 1000 × 1000 × 1 

80 × 80 × 1 125 × 125 × 1 

40 × 40 × 1 250  × 250  × 1 

4.9.1. Boundary A: Evaluating the Discrete Length for Large Model   

During upscaling and the consequent mixing, the increasing proportion of the upscaled 

values in between the original extreme values of the data helps understand the correct 

regime. Proportion plots are presented as the ratio of the numbers of mixed values over 

the original data with ±5% tolerance at each scale, see Figure 4.20. The Y-axis is the 

proportion values obtained by the arithmetic averaging. The X-axis is the calculated 

dimensionless length scale. Table 4.7 shows the discrete length obtained by both 

geometric and arithmetic averaging. AA and GA stand for arithmetic and geometric 

averaging, respectively. The criterion is applied on both arithmetic and geometric 

averaged results. The results are similar; therefore the plots for arithmetic averaging are 

shown in subsequent sections. 
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Figure 4.20: Proportion plot for arithmetic averaging 

 Table 4.7: Estimated Discrete Length for Large Model 

 Discrete Length Approximation 

Large model (AA) 0.15 of object size 

Large model (GA)  0.17 of object size 

 

Based on the proportion plot, where the size of the grid blocks is less than 0.15 of the 

geological feature, the criterion for boundary A is satisfied and the feature is 

represented discretely where mixing is not significant.   

 

Selecting the criterion is not precise, but a reasonable value should be chosen. The 

criterion could be defined as a range as well. For example, a range of 0.1%-0.2% for the 

lower boundary looks reasonable. 15% mixing is at the middle of the range.   

4.9.2. Boundary B: Evaluating the Continuous Length for the Large Model 

Evaluation of the variance ratio helps assess the upper boundary. Consideration of 

larger grid cells will appear to reduce the variance. The criterion is defined as the 

variance of the upscaled model over the maximum variance that is the variance of the 
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original high-resolution model. Figure 4.21 shows the variance ratio for the upscaled 

values versus dimensionless length scale. 

 

The variance ratio threshold was set at 2%. For the current model under investigation, 

the criterion is satisfied where the size of the grid blocks is somewhere close to 6 times 

the feature size. Table 4.8 shows the continuous length given by arithmetic and 

geometric averaging. This criterion could be defined as a range. For example, a variance 

ratio within the range 1% - 3% would be reasonable. The green lines on Figure 4.21 

show the satisfied criterion within the range.  

 

 
Figure 4.21: Variance ratio plot for AA results 

Table 4.8: Estimated Continuous Length for the Large Model 

 Continuous Length Approximation 

Large model (AA) About 5.8 times object size 

Large model (GA)  About 6.3 times object size 
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4.9.3. Locating the Boundaries A and B on the REV Plot 

The REV plot is presented for the arithmetic averaged values in Figure 4.22. There is 

about 150 million data presented on the graph. Based on the defined criteria, A and B 

boundaries are put on the REV plot. The grid size of 4 × 4 × 1 is the threshold for the 

discrete regime that results in a 250 × 250 × 1 model and it shows the mixing at the early 

stage, see Figure 4.23.  

 

Figure 4.24 shows two models at different scales but in the transition regime. Obviously, 

there is more mixing for the 80 × 80 × 1 model rather than the 100 × 100 × 1 model since 

the grid size is larger in the former model. Many upscaling calculations have been 

conducted to help us evaluate the transition regime with respect to the geological 

feature size and the grid size. Among those, the results for three models are selected to 

be presented in this chapter. 

 

 
Figure 4.22: REV plot for the big model including ~150 million data 

(Keff (mD) vs. Dimensionless length scale) 
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Figure 4.23: Model in the discrete regime showing edge effect, 250 × 250 × 1 model  

(Grid size: 4m × 4m × 1m)   

 

 
a) 100 × 100 × 1 Model in transition, grid size: 100m × 100m × 1m  
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b) 80 × 80 × 1 Model in transition, grid size: 125m × 125m × 1m   

Figure 4.24: Models in the transition regime 

4.10 Proposed Modified REV Plot 

In the classic REV point of view, the focus has been mainly on the continuous regime, yet 

in this work, 3 regimes are defined. The following ranges for the lower and upper 

boundaries of the transition regime are summarized from the work presented above. 

Table 4.9: General Range for Lower and Upper Boundaries of the Transition Regime 

Grid size at Lower Boundary (A): 1/30 – 1/5 times the object size 

Grid size at Upper Boundary (B): 2.5 – 7 times the object size 

 

A threshold of 1/15 times the object size is selected for the lower boundary and 5 times 

the object size for the upper boundary. These thresholds help to show the proposed 

model for different geological systems, see Figure 4.25 for an example. 

 

The modified REV plot is presented in the logarithmic scale. The Y-axis is the scale/size 

of the geological feature in meters and the X-axis is the grid size in meters. The values 

10000 m 

10000 m 
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found for the boundaries of the transition regime on the modified REV plot are the 

slopes of the two parallel blue lines on Figure 4.25.  

 

For a fixed grid size, large features are represented discretely and small features are 

represented continuously and some features are in transition from discrete to 

continuous. 

 

The next goal is to choose the proper modeling approach. When we are clearly in the 

discrete or continuous regime, we know what type of modeling approach must be used; 

however, the transition regime is a challenge.  The variance is very high and the spatial 

dependence of the values is very important. This will be addressed in the next chapter. 

4.11 Conclusion 

This chapter developed the concept of heterogeneity being represented as discrete or 

continuous. There is a transition between discrete and continuous. This is linked to the 

notion of the representative elementary volume/REV.  This leads to an extended view of 

the modeling regimes. 

 

Finally, values between 1/30 – 1/5 times the object size were established for the lower 

boundary of the transition regime and values between 2.5-7 times the object size were 

established for the upper boundary of the transition regime. In the end, the proposed 

modified REV plot was presented for a real petroleum system. 
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Figure 4.25: Proposed Modified REV Plot Considering the Levels of Reservoir Heterogeneity 

• Reference for the reservoir heterogeneity images: Miall, A.D., 1996, "The Geology of Fluvial Deposits", Springer.  
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5 Practical Modeling Considerations for the Transition Regime 

In the previous chapter, a modified REV plot is proposed that defines three regimes: 

discrete, transition and continuous. The objective of this chapter is to address the 

challenge of modeling in the transition regime when the size of the grid blocks is less 

than the REV scale and larger than the discrete scale. 

5.1 Motivation 

If geological features are represented discretely, discrete modeling techniques such as 

object based or indicator methods may be used. If they are represented continuously, 

continuous modeling approaches such as Gaussian approaches may be used.  The 

transition regime is a challenge because there is significant variability between grid 

blocks and within grid blocks. There is a need to adopt a modeling approach for the 

transition zone that preserves these variabilities and creates models that lead to 

unbiased forecasts. 

 

Considering a specific grid size and geological feature size, the feature could be partially 

or completely present in the grid. Moreover, there could be a variable number of 

features present in one grid cell, see Figure 5.1. The figure is a schematic illustration 

with no particular scale. The partially present case will likely have to be represented 

continuously rather than discretely, but acknowledging and accounting for the fact that 

it is still not at the REV scale and it is in the transition regime. 

 

                 

Figure 5.1: Feature is partially present, completely present and multiple present in the 
grids 

Grid Color 
    Feature Color 
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A fixed grid size and variable feature sizes are considered in this chapter to establish 

some practical modeling methodologies in the transition regime. A mind-map for the 

approach is shown in Figure 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Mind-map for the practical modeling application at the transition regime 
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5.2 Problem Definition 

For illustration, consider a 2D cross section of a schematic reservoir volume 512 meters 

high and 512 meters wide gridded by 1 meter by 1 meter grids, see Figure 5.3. The 

reservoir with the 512 by 512 grids is considered a high resolution or fine scale model, 

while there is a requirement to get a coarse model because of computational limitations 

for flow simulation purposes. Therefore, the fine model needs to be upscaled to the 

coarse model. A grid size in the transition regime will be selected to observe the 

practical implementation of modeling. The question is whether or not the heterogeneity 

is captured properly at the scale of coarse model.  

 

 

 

 

 

 

  

 

 

Figure 5.3: The shaded area will be replaced with different geological models 

 

For this purpose, the high resolution model is replaced with a variety of geological 

models including various geological feature sizes that are shale breaks at different 

lengths. Some 2D training images are generated for this purpose. By considering the 

feature size and the selected grid size, modeling in the transition regime is investigated.  

 

Also, the high resolution models and related coarse models are put under vertical and 

horizontal single phase flow flooding tests. The output is the pressure distribution on 

the fine and coarse grids. To compare, some homogenous geological models are 

generated and the horizontal and vertical flooding tests are also applied on them. The 

pressure distribution for fine models, coarse models and the homogeneous geological 

models is calculated. All cases are compared by plotting the scatter plots of pressure 
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distribution on fine and coarse grids and calculating the corresponding correlation 

coefficients. These tests are helpful to show how heterogeneity is captured by the 

coarse models. 

 

In this chapter, the importance of selecting a proper grid block size is emphasized. The 

challenges of modeling in the transition regime are highlighted. 

5.3 Generating Training Images (High Resolution Synthetic Models) 

Synthetic reference models, the shaded square area in Figure 5.3, are simulated for 

testing. Various scenarios considering different shale breaks lengths are generated. The 

high resolution models, that are also called 2D training images, are generated by the 

ELLIPSIM program that is an object based GSLIB program. The low permeability grid cells 

or shales, are placed randomly in a high permeability matrix. The models are 512 by 512 

square units and are discretized by 1 by 1 grid blocks. They all include 10% shale with 

different shale break lengths, see Figure 5.4. Three training images called A, B and C 

scenarios are generated with shale break lengths in the X-direction equal to 1/50, 1/10 

and 1/2 of the domain size, respectively. The shale break size in the Y-direction is given 

as 2 units. The shale break sizes in X and Y-directions are tabulated in Table 5.1. 

Table 5.1: Shale Breaks' Sizes in Training Images 

Scenario Size in X-direction (m) Size in Y-direction (m) 

A 512 / 50 2 

B 512 / 10 2 

C 512/ 2 2 

 

Subsequently, permeability values are assigned to the grids; 1 mD for low permeability 

grids and 1000 mD for high permeability grids. The results for this model size are 

deemed representative of larger models. 
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   a) Shale breaks' length is 1/50 of the domain            b) Shale breaks' length is 1/10 of the domain 

 

c) Shale breaks' length is 1/2 of the domain 

Figure 5.4: Geological synthetic models generated by ELLISPIM, scenarios A, B and C 

 

5.4 Histograms and Variograms of Generated Training Images 

The histograms and variograms of the generated training images are calculated and 

plotted. At the current grid block size which is 1, the histograms of the scenarios A, B 

and C in X and Y-directions are bimodal and exactly the same that is 10% low 

permeability grids and 90% high permeability grids, see Figure 5.5. The variograms, 
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however, of scenarios A, B and C in X and Y-directions are different. They are pure 

nugget effects in Y-direction, see Figure 5.6. The variograms in the X-direction, however, 

show structures depending on the size of the shale breaks.  

 

 

Figure 5.5: Histogram of training images, same for A, B and C scenarios 

 

The variograms are plotted for about half of the domain size to compare scenarios A, B 

and C in X and Y-directions. Horizontal (X direction) and vertical (Y direction) variograms 

are in red and blue respectively. The variogram ranges of A, B and C scenarios in X-

direction are about 10, 50 and 250 meters respectively that are equal to the feature 

sizes in X-direction, see Figure 5.6. The vertical variograms, that show the continuity in Y 

direction, are all pure nugget effect.  
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    a) Variograms of scenario A 

 

 

  

                     

 

 

 

 

 

b) Variograms of scenario B 

 

 

 

                                                                 

                                                                     

 

 

 

 

C) Variograms of scenario C 

Figure 5.6: Variograms in X and Y-directions for scenarios A, B and C 
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5.5 REV Plots Applicable to Select a Grid Size in Transition Regime 

In this section, the goal is to pick a grid size in the transition regime for all scenarios. 

Therefore, 9 isotropic sample volumes are considered to scale up scenarios A, B and C, 

see Table 5.2. The FLOWSIM program is applied to get the effective property values. The 

effective values versus the dimensionless length scale, which is defined in the previous 

chapter, are plotted for scenario A, see Figure 5.7.  

 

Table 5.2: Isotropic Sample Volumes 

Scale ID Number Sample volume 

Grid Size (m × m) 

Output Model  

Grid # in X and Y  

Output Model  

Grid Size (m) 

1 1 × 1 512 × 512 1 

2 2 × 2 256 × 256 2 

3 4 × 4 128 × 128 4 

4 8 × 8 64 × 64 8 

5 16 × 16 32 × 32 16 

6 32 × 32 16 × 16 32 

7 64 × 64 8 × 8 64 

8 128 × 128 4 × 4 128 

9 256 × 256 2 × 2 256 

10 512 × 512 1 × 1 512 

 

 

The REV plots corresponding to scenarios B and C, are very similar in the X and Y-

directions to Figure 5.7. The effective values in X-direction converge to the arithmetic 

average for all scenarios. The effective values in Y-direction converge to the lower values 

for the cases with larger shale breaks' lengths, see Table 5.3. In Table 5.3, KeffH is called 

horizontal effective permeability that is calculated by simple arithmetic averaging 

between effective values in X and Y-directions shown by KeffX and KeffY. The KA, KG and 

KH are arithmetic, geometric and harmonic averages, respectively.  
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Figure 5.7: Effective values at different sample volumes for scenario A in X and Y-
directions 

Table 5.3: Effective Values (mD) and Averages for Scenarios A, B and C 

 KeffX KeffY KeffH KA KG KH 

Scenario A 884.35 424.57 654.46 900.09 501.16 9.91 

Scenario B 906.66 106.99 506.82 900.09 501.16 9.91 

Scenario C 902.17 40.99 471.58 900.07 501.10 9.90 

 

Based on the proposed model in the previous chapter, the boundaries of the transition 

regime is determined. The thick green lines show the boundaries for scenario A in Figure 

5.7. Based on the proposed model, the lower boundary is located at the grid block size 

somewhere between 1/30 and 1/5 times the object size and the upper boundary is 

located at the grid block size somewhere between 2.5 and 7 times the object size. 

Considering the proposed model and the geological feature sizes on scenarios A, B and 

C, the scales in transition are determined for all scenarios. To calculate the boundaries, 

three values are selected for lower and upper boundaries in the estimated ranges, see 

Table 5.4. 

 

 

Transition 

 
KeffX 
(mD) 

  

 

KeffY 
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Table 5.4: Calculating the Boundaries of Transition Regime for Scenarios A, B and C  

Object size in X 
direction (m) 

Lower boundary grid 
size (m) 

Scale ID for 
lower 

boundary 

Upper 
boundary grid 

size (m) 

Scale ID for 
upper 

boundary 

Scale ID in 
transition 

 1/6 × object size  6 × object size   
10.24 1.71 2 61.44 7 2 to 7 

51.2 8.53 4 307.2 9 4 to 9 

256 42.67 6 1536 above 10 6 and above 
 

 1/5 × object size  2.5 × object size   
10.24 2.048 2 25.6 6 2 to 6 

51.2 10.24 4 128 8 4 to 8 

256 51.2 7 640 above 10 7 and above 

 
1/30 + (1/5 - 1/30)/2 
= 7/60 × object size  

2.5 + (7 - 2.5)/2 = 
4.75 × object size   

10.24 1.2 1 48.64 between 6 
and 7 1 to 7 

51.2 5.97 between 
3 and 4 243.2 9 3 to 9 

256 29.87 6 1216 above 10 6 and above 

 

Based on the calculations shown in Table 5.4, scales in transition are scale IDs 2 to 6 for 

scenario A, scale IDs 4 to 8 for scenario B and scale IDs 7 and above for scenario C. Note 

that we picked common scale IDs for the three calculations. Consequently, size 8 × 8, 

that is equivalent to the scale ID 4, is selected for the grid blocks since it is in the 

transition regime for scenarios A and B both, while still in discrete regime for scenario C 

with very large objects, Table 5.5. The red ellipse in Figure 5.7 highlights the picked grid 

size in transition for scenario A. The modeling at the grid block size in the transition 

regime is an important goal of the chapter.  

Table 5.5: Picking a Grid size in Transition Regime for Training Images 

Object size in X 
Object 
size in 

Y 

Grid Size in 
X & Y-

directions 
lx/ax ly/ay Dimensionless 

Length Regime 

512/50 = 10.24 2 8 × 8 8/10.24 8/2 4 Transition 

512/10 = 51.2 2 8 × 8 8/51.2 8/2 4 Transition 

512/2 = 256 2 8 × 8 8/256 8/2 4 Discrete 
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5.6 Quick Look at Variance Reduction through Upscaling 

The variance decreases when the size of the sample volume increases. Figure 5.8 and 

Figure 5.9 show the variance reduction caused by increasing the sample volume size for 

scenarios A, B and C. While scaling up at different sample volumes in X-direction, a 

decreasing trend in variance at all scales is observed, Figure 5.8. There is an increasing 

trend for the first few scales in the Y-direction which could be interpreted as a grid 

artifact, see Figure 5.9. Looking at scenarios A, B and C, the permeability in Y-direction is 

dominated by the shale. Due to mixing the proportion of the low permeability values 

while applying the scale up technique, percentage of near shale permeabilities goes up 

and the proportions of high values goes down. Recall that flow-based upscaling is non-

linear.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Variance versus sample volume size in X-direction 
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Figure 5.9: Variance versus sample volume size in Y-direction 

 

5.7 Plots of the Models at the Selected Grid Size in Transition 

The grid size 8 at the transition zone was chosen for scenarios A and B. The following 

discussion is aimed at practical modeling considerations in the transition regime. To 

begin with, the high resolution models are upscaled to coarse models by considering 

different sample volume sizes. The upscaled models in Y-direction and at three scales of 

grid size 2, 4 and 8, are presented in Figure 5.10. The 64 by 64 models, that are in the 

transition regime for scenarios A and B, are selected for further studies. The models are 

named as scenarios 1 and 2 which are obtained by upscaling scenarios A and B. A 

continuous simulation framework is considered at the transition regime in the upcoming 

sections. Scenario C is also plotted in Figure 5.10 to compare at the 3 scales and it is still 

in the discrete regime and not in the transition at the shown scales.  
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Figure 5.10: Pixel plot of the upscaled scenarios A, B and C  

at 3 scales in Y-direction (KeffY has been plotted) 

 

5.8 Histograms and Variograms of the Upscaled Models in Transition, Scenarios 1 

and 2 

The distribution of the scenarios 1 and 2 are considered as reference distributions for 

simulation and also there is a need for the spatial correlation of scenarios 1 and 2 to 

conduct continuous simulation on the permeability. As the permeability in Y-direction is 

dominated by the shale, so it is more significant than X permeability. Hence, the focus 

Scenarios 1 and 2, grid size, 
8, in transition regime 

 
 

 

Scenarios 3, grid 
size, 8, in discrete 

regime 
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would be on the simulation of the Y permeability. There is a similar procedure to 

practice simulation on X permeability as well. Figure 5.11 shows the histogram, which is 

the reference distribution, for Y permeability of scenario 2. The histograms of the 

permeability in the X and Y-directions are expected to be different for the upscaled 

models because of averaging. Figure 5.12 to Figure 5.14 show the modeled horizontal 

and vertical variograms for scenarios 1, 2 and 3. The horizontal variogram is plotted for 

X-direction and the vertical variogram is plotted for Y-direction. Scenario 3 is in 

transition at grid size 8 and the variograms are just plotted for comparison and not for 

simulation.   

 

 

Figure 5.11: Distribution of Y permeability for scenario 2 (Reference distribution) 

 

To fit the variogram, the first point of the variogram plays a very important role. Also, 

the horizontal range should be equal to the object size in the X-direction plus the block 

size of averaging. The vertical range would be the grid block size.  
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Figure 5.12: Fitted variograms for scenario 1, LHS: Horizontal variogram and RHS: 

Vertical variogram (in Transition)  

 

 

 

 

 

 

 

 

 

Figure 5.13: Fitted variograms for scenario 2, LHS: Horizontal variogram and RHS: 

Vertical variogram (in Transition)  

 

 

 

 

 

 

 

 

Figure 5.14: Fitted variograms for scenario 3, LHS: Horizontal variogram and RHS: 

Vertical variogram (in Discrete Regime)  
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The reference distribution and horizontal / vertical variograms of scenarios 1 and 2 are 

used to simulate realizations by the continuous Gaussian simulation technique which is 

applied through SGSIM program (GSLIB).  

 

Being in the transition regime, histograms of effective values are multimodal and have 

very high variance. The flow character is sensitive to both histograms and the spatial 

structure as well. The variograms of the high variance features are significantly 

important to represent the spatial structure despite the fact that the histograms cannot 

show the spatial structure and the variograms show the spatial structure.  

5.9 Continuous Simulation at Grid Size in the Transition Regime 

The SGSIM program was used to simulate 100 realizations of permeability in the Y-

direction considering the reference distribution in Y-direction and the variograms of the 

scenarios 1 and 2. The simulated models are called models 1 and 2 respectively. The 

realizations numbered 10 and 90 are plotted as representative ones, Figure 5.15. The 

plots show good agreement with the reference scenario 1 and 2. However to check the 

simulated models, histograms and variograms of the 100 realizations are reproduced in 

the next part.  

 

 
a) Model 1: Simulated scenario with minimum object length  
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b) Model 2: Simulated scenario with medium object length  

Figure 5.15: Plots of simulated Y permeability, realizations # 10 & 90 

 

5.10 Variogram and Histogram Reproduction  

The variogram of each realization was calculated to check variogram reproduction. The 

HISTPLTSIM, GSLIB program, is also used to calculate the histogram for each realization 

in the simulated models and it aids us to monitor histograms reproduction. Figure 5.16 

and Figure 5.17 show the variogram reproduction in X and Y-directions and the 

histogram reproduction for simulated models 1 and 2.  

 
a) Histogram reproduction for 100 realizations 
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b) Variogram reproduction for 100 simulated realizations; LHS: Horizontal, RHS: Vertical 

Figure 5.16: Variogram and histogram reproduction, simulated model 1 

 

The variograms show structure very close to the original high resolution models, 

scenarios A and B, both in X and Y-directions. The reproduced histograms are also 

compatible with the reference distributions used for simulating the models.  

 

The conclusion is that while taking care of the large variability in the univariate 

distribution and spatial statistics; sequential Gaussian simulation, a continuous modeling 

approach, has been successfully applied to simulate the geological models at grid size 8 

in the transition regime. Significantly, the variogram continuity of the low values has a 

big impact on the simulated models.  

 
a) Histogram reproduction for 100 realizations 

Variogram of reference 
distribution in transition 
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b) Variogram reproduction for 100 simulated realizations; LHS: Horizontal, RHS: Vertical 

Figure 5.17: Variogram and histogram reproduction, simulated model 2 

5.11 Scatter Plots of Simulated Permeability in Y-direction  

By applying the FLOWSIM program, flow based upscaling is performed on the simulated 

realizations. Each realization is upscaled to one value to compare the effective 

permeability between the simulated models. The scatter plots of the effective 

permeabilties for 100 realizations in Y-direction versus X-direction are shown in Figure 

5.18. It is apparent that the scatter plot related to the model with the larger barrier has 

lower effective permeability, Figure 5.18b.  

 

 
a) Effective values for simulated model 1             b) Effective values for simulated model 2 

Figure 5.18: Scatter plots of effective values (mD) for 100 realizations 

 

Variogram of reference 
distribution in transition 



 

94 
 

A continuous barrier has a large influence on the results and will have an impact on flow 

simulation, production performance, reservoir management, well design and selection 

of the horizontal and vertical wells.  

 

5.12 Flow Simulation on the Scenarios and Simulated Models to Compare 

In this part of the thesis, a comparison of the different geological models is performed; 

high resolution training images, upscaled models and simulated models. Horizontal and 

vertical flooding tests are applied on each model. In case of the vertical flooding test (for 

the Y-direction), flow enters from the front side and in case of the horizontal flooding 

test (for the X-direction), flow enters from the left side of the model. The solver in MRST 

MATLAB toolbox is applied to solve the single phase pressure equation for a flow driven 

with Drichlet and Neumann boundary conditions. The geological models are scenarios A, 

B, C, 1, 2, 3 and several (isotropic / anisotropic) homogeneous media to compare. The 

only parameters in the single phase equations are the permeability and the fluid 

viscosity. For all mentioned scenarios, the permeability is non-homogeneous and 

anisotropic.  

 

The viscosity is specified by saying that the reservoir is filled with a single fluid, for which 

the default viscosity value equals unity. The viscosity is set to 1 cp and density is set to 

1014 kg/m3. The initial reservoir pressure is set to 0 and single-phase saturation is equal 

to 0 as well. The Neumann conditions (flux of 10 m^3/day) are imposed on the global 

left-hand side in case of horizontal flooding and also on the front side in case of vertical 

flooding.  Drichlet boundary conditions, p = 0, are also set on other sides of the models. 

Figure 5.19 shows the initial and boundary conditions used for horizontal and vertical 

flooding tests. Ultimately, the computed cell pressures with unit 'bar' resulted by the 

basic flow simulation on the geological models are plotted to compare the models.  
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Figure 5.19: Horizontal and vertical flooding tests on a geological model 

There are a couple of significant points that can be made.  

 POINT 1: The 512 by 512 model is similar to the 64 by 64 model.  

Flow simulation has been conducted on the original high resolution models in the 

discrete regime, Figure 5.4 and also on the upscaled 64 by 64 models in the transition 

regime. As a sample case, pixel plots of effective permeability in X and Y-directions for 

scenario 2 are also shown in Figure 5.20. Each model is put to the horizontal and vertical 

flooding tests considering the initial and boundary conditions mentioned above, Figure 

5.19.  

 

Figure 5.20: Pixel plot of Keff in X and Y-directions for Scenario 2 

The flow response is shown by plotting the pressure distribution on the gridded models. 

The pressure distribution on scenarios B and 2 are presented in Figure 5.21. To quantify 

the similarities, cross plots of flow responses (pressure distribution) are presented in X 
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and Y-directions, Figure 5.22. The corresponding correlation coefficients are calculated 

and demonstrate very high correlation between the high resolution model and the 

upscaled one. With respect to the flow responses, it is confirmed that the 512 by 512 

gridded model is similar to the 64 by 64 gridded model. Similar results are obtained for 

the other two models where the correlation coefficient is very close to 1 for all cases. 

The flow responses are compared on the 512 by 512 grid resolution models. 
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Figure 5.21: Flow response (pressure distribution (bar)), scenario B and 2  

discrete vs. coarser scale under horizontal and vertical flooding tests at 512 by 512 grid 

resolution (Considering both KeffX and KeffY in flow simulation) 
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Figure 5.22: Scatter plots and correlation coefficients for flow reponses, scenarios B and 2 

 POINT 2: Flow response on homogenous media (isotropic / non-isotropic)  

In a homogenous medium, permeability is constant in each direction (Kx = a, Ky = b, Kz = 

c). In an isotropic medium, permeability at different directions is the same (Kx = Ky = Kz 

= d). Scenarios A, B and C are all non-homogenous and non-isotropic. In this section, 

three homogeneous media are generated with constant vertical permeability equal to 

1mD and constant horizontal permeability equal to 1, 100 and 1000mD respectively. The 

grid resolution is 64 by 64 and the homogeneous flow response is shown in Figure 5.23. 

For the 1:1 case, horizontal and vertical pressure response looks exactly the same. The 

other two cases are homogeneous but anisotropic and we achieve different pressure 

responses for the vertical and horizontal flooding tests. We can observe the anisotropy 
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as the next dimension and see how flow can affect the larger area horizontally for the 

case with larger horizontal permeability (1000:1 case). In case of vertical flooding test, 

flow can move through larger regions of the reservoir for models with less difference 

between horizontal and vertical permeability and vise versa. When the model moves 

towards a more anisotropic state, the pressure response range is decreased as well; see 

the color bars ranges in Figure 5.23.  
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a) LHS: Horizontal flooding test                          b) RHS: Vertical flooding test   

Figure 5.23: Homogenous flow response (bar) on 64 by 64 grid resolution 
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 POINT 3: Flow response on heterogeneous and anisotropic media  

In this section, the grid size effect is the key point since flow simulation is performed on 

the upscaled models, scenarios 1, 2 and 3, in grid size 8 that is in the transition regime 

for scenarios 1 and 2. Pressure distributions (flow responses) are shown in Figure 5.24 

on the 64 by 64 grid resolution. All scenarios are anisotropic and heterogeneous.  

Upscaled models  
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Figure 5.24: Comparison of pressure distribution (bar) on scenarios 1, 2 and 3 under 

horizontal and vertical flooding tests, 64 by 64 grid resolution (Considering both KeffX 

and KeffY of scenarios to get flow responses). 
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By increasing the size of the shale breaks, flow can move through larger areas of the 

reservoir horizontally (in X-direction) and smaller areas of the reservoir vertically in (Y-

direction). There is close behavior between the flow response for scenario 1 and the 

homogenous isotropic case, Figure 5.24 I and Figure 5.23 I. The model with minimum 

shale breaks' length behaves similar to the isotropic homogeneous case. Also, scenario 2 

is close to case 100 : 1 and scenario 3 is comparable to case 1000 : 1 visually. The effect 

of increasing the shale break size horizontally is approximately similar to the effect of 

increasing the horizontal permeability on the flow responses.  

 POINT 4:  Transition modeling with an appropriate variogram and histogram 

converges to the original discrete model.  

In this section, the flow responses are presented for the simulated models and the 

upscaled models at the grid block size 8 in transition. The similarity/difference between 

the simulated models and the upscaled models are investigated by cross plots of the 

pressure responses and the corresponding correlation coefficients. 

The key point is that simulation has been conducted on the vertical permeability (in Y-

direction) so the flow response is compared to the flow response obtained by the flow 

simulation on the vertical permeability of the upscaled models (KeffY).  

Figure 5.21 and 5.22 confirm that the 512 by 512 model is the same as the 64 by 64 one. 

Therefore by finding the similarities between the simulated models and the upscaled 64 

by 64 models, we can reasonably conclude that the simulated model is similar to the 

512 by 512 model and transition modeling with a correct variogram and histogram 

successfully converges to the correct discrete model. 

In Figure 5.25, one random realization of the simulated models and the upscaled models 

in transition (in Y-direction) are put to horizontal and vertical flooding tests for 

comparison.  

For a real model, the correct variogram and histogram are obtained based on the core 

data, log data and seismic data.  

 



 

101 
 

 

Model Horizontal Flooding Test Vertical Flooding Test 

Upscaled Model in Y-

direction and in 

Transition: Flow 

simulation on KeffY 

of Scenario 1 
  

Simulated 

Permeability Model 

in Y-direction and in 

Transition: Model 1 

  

Upscaled Model in Y-

direction and in 

Transition: Flow 

simulation on KeffY 

of Scenario 2 
  

Simulated 

Permeability Model 

in Y-direction and in 

Transition: Model 2 

  

Figure 5.25: Comparison between the pressure (bar) on simulated vertical K models and 

scenarios 1 and 2 in Y-direction (all in transition regime) and considering JUST KeffY of 

scenarios to get flow responses and to compare. 
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To quantify the closeness between the source model and the simulated one, the 

correlation coefficients and cross plots of the flow responses are used. The cross plots 

are all positively correlated because of applying the same boundary conditions and 

there is strong correlation in all cases. 0.85 and more than that can be considered as 

acceptable values for high correlation coefficient. There is a stronger correlation in the 

horizontal direction compared to the vertical one. Figures 5.26 to 5.29 show the cross 

plots in logarithmic scale and the correlation coefficients for both horizontal and vertical 

flooding tests for the upscaled models and simulated models in transition regime. The 

scatter plots have been plotted for every 5th data points. Looking at the cross plots and 

corresponding correlation coefficients, the strong correlations confirm that the 

anisotropy is preserved in simulated models at grid block size 8 picked in the transition 

regime and we can say that transition modeling with a correct variogram and histogram 

successfully converges to the correct discrete model.  

 

Note that the simulated models are geostatistically simulated at a 64 by 64 grid 

resolution but flow simulation is performed at a 512 by 512 grid resolution since the 

exact same grid resolution is used in the flow simulation for comparison. 
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Figure 5.26: Pressure scatter (Cross) plot for scenario 1 and simulated model 1, 

horizontal flooding test (Considering only KeffY to get pressure distribution) 

 

Figure 5.27: Pressure scatter plot for scenario 1 and simulated model 1, vertical flooding 

test (Considering only KeffY to get pressure distribution) 



 

104 
 

 

Figure 5.28: Pressure scatter (Cross) plot for scenario 2 and simulated model 2, 

horizontal flooding test (Considering only KeffY to get pressure distribution) 

 

Figure 5.29: Pressure scatter plot for scenario 2 and simulated model 2, vertical flooding 

test (Considering only KeffY to get pressure distribution) 
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5.13 Conclusion 

The objective of this chapter was to demonstrate the challenge of modeling in the 

transition regime. The experiments have been conducted on various synthetic models, 

three of which are original training images at high resolution (in discrete regime) which 

had different shale break length as flow barriers, three were upscaled models in 

transition regime and the last two were simulated models in transition regime by SGSIM 

program.  

 

Following the upscaling section, the following points are noteworthy:  

• Permeability varies with scale and variability is seen at all scales.   

• Variance follows a decreasing trend when the size of the sample volume 

increases.  

• In the horizontal direction, the effective values converge to the arithmetic 

average for all cases.  

• At smaller sample volumes, vertical and horizontal permabilities vary 

significantly. Variance is reduced and variability becomes small and smaller 

when the scale of averaging is about 10 times the scale of the variability.  

• Considering the variograms, with a fixed vertical continuity, that is pure nugget 

effect, it is obvious that the horizontal continuity has a dominant influence on 

the vertical permeability.  

• Also when the scale of interest is less than the size of the features then the 

influence of the feature is seen in spatial continuity and not in the effective 

property at the scale of inertest.  

• There is variability at all scales, and grid scaling should be done considering 

engineering constraints. In reality, the scales of relevance are not entirely 

dictated by the scale of geology and it could be dictated by data and the flow 

process. Considering the engineering constraints and their impacts on the length 

scale could be among the future work.  
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Points on geostatistical simulation in the transition regime: 

• Histograms cannot show the spatial structure and the variograms of the high 

variance features are very important.  

• For simulation in the transition regime, a continuous approach is applicable and 

care should be taken specifying the univariate distribution and spatial statistics. 

• At the transition zone, univariate distribution and spatial correlation must be 

preserved and it has to be modeled carefully to preserve the effective 

properties of the entire domain. Modeling is very sensitive to univariate 

distribution and spatial statistics. 

 

With respect to the flow responses and the last section calculations: 

• The 512 by 512 model in the discrete regime is similar to the 64 by 64 model in 

the transition regime. It means that the upscaled model at the picked grid size is 

an appropriate representative for the high resolution model.  

• The effect of increasing the shale break size horizontally is approximately 

similar to the effect of increasing the horizontal permeability on flow responses.  

• By applying continuous simulation, transition modeling with a correct variogram 

and histogram converges to the correct discrete model. 

• A continuous simulation technique can be picked as the proper modeling 

technique in the transition regime.  
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6 Conclusions 

Chapter One was the introduction chapter that described the problem addressed by the 

thesis. A literature review on various related topics; mesh types and mesh generators, 

solvers, reservoir modeling and upscaling and the notion of an REV was included. 

 

Structured and unstructured grid types were reviewed in Chapter Two. The 

mathematical background of a flow simulator applicable for both structured and 

unstructured grids was explained. The finite volume form of the mass conservation law 

was presented to model single phase flow in the case of structured and unstructured 

grids. A finite volume simulator is based on connectivity lists for unstructured grids. 

Also, two examples of 2D and 3D discrete fracture networks meshed by unstructured 

grids were presented and the DFM mesh method for unstructured grids was explained. 

This chapter motivated applying different types of the grids in the discretization of a 

geological media and also looking at the flow process in the domain discretized by 

structured and unstructured grids. A subject of future work could be to create the 

connectivity lists of the sample DFMs and calculate the transmissibilities followed by 

solving the pressure equation on the unstructured mesh. It would be interesting to have 

an unstructured flow simulator and apply some upscaling calculations to find an 

appropriate unstructured coarse model. 

 

The third chapter focused on upscaling and the established FLOWSIM program was 

modified to include a different iterative solver (SIP). The exact solution of the system of 

the pressure equations was obtained by applying a direct solver. The pressure 

convergence and permeability convergence to the exact solution were investigated. CPU 

time was also measured. It was shown that the direct solver generally took much longer 

than iterative solvers and the iterative algorithms converge to the exact pressure 

solution for all cases. The SIP algorithm implemented in the program was more stable 

and faster than the original LSOR algorithm. This chapter motivated concern for 

efficiency of upscaling, considering two different iterative algorithms. Investigation of 

the different types of boundary conditions applied in the FLOWSIM program and their 
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effect on the convergence of the algorithms and the efficiency of the FLOWSIM program 

could be in the future work item. 

 

In Chapter Four, the concept of geological heterogeneity being represented discretely or 

as continuous properties was developed. The transition between discrete and 

continuous regimes was discussed in detail and linked to the notion of an REV. By 

defining three regimes, an extended view of modeling was proposed. The need to model 

in the transition regime below the scale of a proper REV was quantified. Finally, the 

lower and upper boundaries of the transition regime were studied. A modified REV plot 

was proposed to better represent real petroleum systems. This chapter motivated 

concern for upscaling and representing geological heterogeneity at different scales. 

Applying the workflow on a real dataset and plotting the modified REV plot for different 

geological systems are considered in the future work item as well.  

 

The objective of the Chapter Five was to demonstrate the challenge of modeling in the 

transition regime. Experiments were conducted on several synthetic models in discrete 

and transition regimes and also related simulated models. It has been shown that by 

applying continuous simulation, transition modeling with a correct variogram and 

histogram converged to the correct discrete model with reasonably good 

approximation. Vertical permeability played the most important role in the models that 

were studied. The geostatistical simulation of permeability in the vertical and horizontal 

directions may be important in practice. Checking the results with real core data would 

be an interesting area of future work. 
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