
Improving Local Search for Resource-Constrained Planning

Hootan Nakhost
University of Alberta
Edmonton, Canada

nakhost@ualberta.ca

Jörg Hoffmann
INRIA

Nancy, France
joerg.hoffmann@inria.fr

Martin Müller
University of Alberta
Edmonton, Canada

mmueller@ualberta.ca

Abstract

A ubiquitous feature of planning problems – problems involv-
ing the automatic generation of action sequences for attain-
ing a given goal – is the need to economize limited resources
such as fuel or money. While heuristic search, mostly based
on standard algorithms such as A*, is currently the superior
method for most varieties of planning, its ability to solve crit-
ically resource-constrained problems is limited: current plan-
ning heuristics are bad at dealing with this kind of structure.
To address this, one can try to devise better heuristics. An
alternative approach is to change the nature of the search in-
stead. Local search has received some attention in planning,
but not with a specific focus on how to deal with limited re-
sources. We herein begin to fill this gap. We highlight the
limitations of previous methods, and we devise a new im-
provement (smart restarts) to the local search method of a
previously proposed planner (Arvand). Systematic experi-
ments show how performance depends on problem structure
and search parameters. In particular, we show that our new
method can outperform previous planners by a large margin.

Introduction
Automated planning, also often referred to as domain-
independent planning, is concerned with the development of
tools that, given high-level descriptions of an initial state, a
goal, and a set of available actions, generate a plan: a sched-
ule of actions leading from the initial state to the goal. The
planning problem – deciding whether or not there exists a
plan – is PSPACE-hard even in its simplest (but reasonably
expressive) formalizations. Hence we cannot hope to obtain
good performance on all possible problem instances. What
we can try to do is to develop algorithms that can deal well
with particular kinds of problem structure, i.e., with sub-
classes of instances sharing certain properties.

Problem structure that tends to appear in practical appli-
cations is, of course, particularly important. We herein are
concerned with one such structure: the need to economize
limited resources. This need is ubiquitous in many of the
classical applications of planning, involving the control of
autonomous agents requiring to economize resources such
as energy, fuel, money, and/or time. Clearly, such econo-
mization is the more difficult the more constrained the prob-
lem is: if C denotes the ratio between the amount of avail-
able resources vs. the minimum amount required, then the

problem becomes intuively “harder” as C approaches 1.1
Although planning with resources is a long-standing

topic, e.g. (Koehler 1998; Haslum and Geffner 2001; Long
and Fox 2003; Hoffmann 2003), the progress made in solv-
ing such problems is limited. Specifically, in almost all
known varieties of planning, today heuristic search based
on standard algorithms such as A* and greedy best-first
search is by far the superior method. The key to success
has been the development of heuristic functions that are very
informative in many of the traditional benchmark domains,
e.g. (Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Richter, Helmert, and Westphal 2008; Helmert and Domsh-
lak 2009). Now, almost all of these successful heuristics
are what has been termed relaxation heuristics (Helmert and
Domshlak 2009): they compute estimates relative to a re-
laxed planning problem in which all “negative effects” of
the operators, which can obstruct the rest of the plan, are ig-
nored. Resource consumption falls into this category. Hence
almost all existing heuristic functions for planning com-
pletely ignore the need to economize resources.

It has been observed (Hoffmann et al. 2007) that some
otherwise very successful planners perform very poorly
when C is close to 1. Somewhat surprisingly, this is the
only thing known about how planning systems react when
changing C, and no attempt has been made to improve on
this situation. So what can we do about this dilemma?

One option is to try to develop better planning heuristics.
An alternative option is to modify the search. Local search
in particular might be better suited than A* for this kind of
situation where the heuristic is very error-prone. To motivate
this thought with a well-known example, consider random
CNF formulas from the phase transition region (Cheeseman,
Kanefsky, and Taylor 1991), and the heuristic that counts
the number of unsatisfied clauses. Certainly, no-one would
entertain the idea of solving this with A*. Hill-climbing, on
the other hand, is very successful (Selman, Levesque, and
Mitchell 1992; Wei, Li, and Zhang 2008).

Local search has received some attention in planning, e.g.

1Obviously, this intuitive “hardness” is connected to the com-
putational complexity of (exact or approximate) optimization in the
underlying domain. Note, however, that in domain-independent
planning there is no general connection between C and computa-
tional complexity. It is trivial to construct example domains that
are NP-hard despite large C, or that are in P despite C = 1.

(Hoffmann and Nebel 2001; Gerevini, Saetti, and Serina
2003; Nakhost and Müller 2009), but not with a specific fo-
cus on how to deal with limited resources. We herein begin
to fill this gap. The main empirical basis of our investiga-
tion is the simple transportation domain of Hoffmann et al
(2007), called NoMystery here, whose generator allows to
control (fuel) constrainedness C. We can hence control pre-
cisely the “problem structure” we are interested in, enabling
us to draw clear-cut conclusions.

We first highlight the limitations of previous methods, up-
dating the results of Hoffmann et al (2007) with new plan-
ners that appeared in the meantime. As it turns out, the per-
formance with C close to 1 has not improved at all. To ad-
dress this, we introduce an improvement to the local search
planner Arvand (Nakhost and Müller 2009). Arvand appears
especially suitable since its basic search strategy relies on
fast random walks, enabling the planner to explore a larger
fragment of the search space even if the heuristic function –
as is typically the case in planning – is very costly to com-
pute. The new technique in ArvandSR are smart restarts: it
maintains a pool of the p “best” previous search episodes,
that ultimately reached the smallest heuristic values), and
restarts from a random state along those search trajecto-
ries. Thus ArvandSR balances exploitation of previous runs
against the risk of repeating previous mistakes.

We run large-scale experiments with ArvandSR in No-
Mystery, modifying three relevant parameters: C, the con-
strainedness of resources; p, the size of the pool for smart
restarts; and w, a parameter controlling the trade-off be-
tween Arvand’s two search strategies MDA and MHA,
which were previously strictly separate. We plot perfor-
mance as a function of (combinations of) these parameters.
In particular, smart restarts can be very useful. They do not
have much effect when resources are aplenty. However, as
C approaches 1, they become more useful. For C = 1.0
and C = 1.1, ArvandSR drastically outperforms all previ-
ous planners. Cross-checking these results on a subset of
IPC benchmarks with a resources or puzzle nature, we de-
termine that, also there, smart restarts rarely ever hurt, and
sometimes help significantly.

In the next section, we define the planning problem we
consider, and give an outline of the literature on resource
constrained planning. We then briefly describe the planners
considered herrein, and highlight their difficulties as C ap-
proaches 1. We explain smart restarts, and give our experi-
mental findings, before concluding the paper.

Resource Constrained Planning
We base our work on the simple wide-spread planning for-
malism of propositional STRIPS planning, short STRIPS.
A planning task is a tuple (P, I, G,A) where P is a set of
propositions, I ⊆ P is the initial state, G ⊆ P is the goal,
and A is a set of actions. Each action a ∈ A is a triple
(prea, adda, dela) of subsets of P , referred to as a’s pre-
condition, add list, and delete list respectively; we assume
that adda ∩ dela = ∅. A state s is a subset of P , inter-
preted as those propositions that are true in s. An action
a is applicable to s if prea ⊆ s; the result of executing a
is (s \ dela) ∪ adda. A plan is a sequence of actions in

whose iterative execution from I all actions are applicable,
and that ends in a result state s so that G ⊆ s. For ex-
ample, a driving action in a transportation domain could be
a = ({at-A}, {at-B}, {at-A}), I could be {at-A}, and G
could be {at-B}. The sequence 〈a〉 is then a plan.

What is meant by the term “resource-constrained plan-
ning”? At the intuitive level, resources may come in many
forms (ranging from fuel and time over robot arms to the in-
dividual agents in RoboCup Rescue). Herein, we focus ex-
clusively on the classical meaning of “resource” in the sense
of “a quantity that is required for, and consumed by, exe-
cuting some of the actions”. This kind of planning with re-
sources has been formalized, e.g. by Haslum and Geffner
(2001). STRIP planning tasks are extended with a set R of
resource identifiers as well as functions i : R 7→ Q≥0 and
u : A×R 7→ Q≥0. Here, i(r) gives the initial amount avail-
able for each resource r ∈ R, and u(a, r) is the amount of
r consumed when executing action a.2 Sufficient availabil-
ity of resources becomes an additional condition for action
applicability. If R = {r} is a singleton, we define resource
constrainedness C := i(r)

M where M denotes the minimal
resource consumption in any plan.3

In our implementation, we assume that i and u map
into N≥0 instead of Q≥0. The planning tasks are then de-
scribed in propositional STRIPS by a straightforward encod-
ing of effects and preconditions on numbers between 0 and
maxr∈Ri(r). The motivation is technical: ArvandSR cur-
rently cannot handle numeric variables.

As outlined in the introduction, planning with resources
has a tradition in planning. To some extent, this is reflected
in the benchmarks used in the biennial International Plan-
ning Competitions (IPC). In IPC’98, the domains Mystery
and Mprime encoded transportation with fuel consumption.4
In IPC’08, Trucks features time as a resource. Actions take
time and there are strict delivery deadlines. In IPC’02, Satel-
lite features fuel consumption as a resource; however, the
STRIPS version of the domain omits resources so we do not
run the domain here. Several other IPC domains feature re-
source consumption, imposing it not as a hard constraint but
only as an optimization criterion. Satisficing planners may
choose to ignore it, and most often do so. One domain has
a re-fuelling action, which we disallow for the sake of sim-
plicity.

IPC domains are widely used for testing, which is in prin-
ciple good because it provides a common test base. How-
ever, such tests are not suitable for understanding resource
constrainedness, i.e., the kind of problem structure we are
interested in. The simple reason is that C is not a controlled

2Haslum and Geffner (2001) also allow “renewable” resources,
like space in a truck, that are only temporarily consumed. We do
not consider this case here.

3When there are multiple resources, the definition of C is a little
tricky because there is no one aggregation method for resource val-
ues that is adequate across all possible domains. A simple canonic
aggregation method that would make sense is addition. In the No-
Mystery domain, the only resource is fuel.

4Absurd predicate names were chosen so as to disguise this na-
ture from planner developers – hence the name “Mystery”.

quantity in the IPC benchmarks. In many cases, C is not
even known, and much less do the IPC instances provide
a range of instances with different values of C, keeping all
other settings the same. We hence use, in most of our experi-
ments, the aforementioned NoMystery domain of Hoffmann
et al (2007). There, a truck moves in a weighted graph; a
set of packages must be transported between nodes; actions
move along edges, and load/unload packages; each move
consumes the edge weight in fuel. In brief, NoMystery is
a straightforward transportation problem similar to the ones
contained in many IPC benchmarks. Its key feature is that
it comes with a random generator allowing to control C.
The generator creates a random connected undirected graph
with n nodes, and it adds k packages with random origins
and destinations. The edge weights are uniformly drawn be-
tween 1 and 25. A domain-specific branch-and-bound pro-
cedure computes the minimum required amount of fuel,5 M ,
and the initial fuel supply is set to bC ∗Mc, where C ≥ 1 is
a (float) input parameter of the generator. Our experiments
fix n and k and let C range in order to be able to draw clear-
cut conclusions about planner performance when resources
become more constrained.

Current Algorithms and Limitations
A major performance breakthrough for satisficing planning
– by many orders of magnitude in most benchmarks, and by
a reduction from exponential to low-order polynomial be-
havior in some – was achieved around the year 2000. In-
strumental for this was the development of what Helmert
and Domshlak (2009) term relaxation heuristics: heuris-
tics that estimate goal distance relative to a relaxed plan-
ning problem in which all delete lists are ignored. This
idea was first voiced by Bonet and Geffner (2001). It un-
derlies FF (Hoffmann and Nebel 2001) which outperformed
all other automatic planners in IPC’00. The same is true
of the best performer at IPC’02, LPG (Gerevini, Saetti, and
Serina 2003), and at IPC’04 and IPC’06, SGPlan.6 LAMA
(Richter, Helmert, and Westphal 2008), the best performer
in IPC’08, uses FF’s heuristic plus a new landmarks-based
relaxation heuristic.

As for optimal planning, while this expectedly is gen-
erally much less performant than satisficing planning, re-
cently the invention of an admissible heuristic called LM-
cut (Helmert and Domshlak 2009) yielded a major advance.
LM-cut is also a relaxation heuristic.

Despite their enormous successes on IPC benchmarks,
and despite the fact that resource-constrained planning has
been a relevant topic for a long time, none of these success-
ful planners is well suited for solving critically resource-
constrained problems. This was observed for FF and LPG
by Hoffmann et al (2007). We confirm this here for all the
planners listed above.

We created 5 different NoMystery instances with n = 12

5Note here the difference between domain-specific and domain-
independent solvers. Instances easy for the former (the generator)
can already be very challenging for the latter (the planners we test).

6We do not run SGPlan because, as became known in 2008, it
changes its configuration based on parsing IPC domain names.

Figure 1: Average coverage (top) and runtime (bottom) of
state-of-the-art planners when varying (only) resource con-
strainedness C. 5 test instances per value of C, only dif-
ference across C is initial fuel level. Memory limit 2 GB.
Runtime limit 40 minutes which is inserted into the average
computation in case of a time-out.

nodes in the graph and m = 12 packages. Their minimal
fuel consumption was computed by the generator. Seven
values for C were tested: {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0},
leading to a total of 35 test cases, by setting the initial
amount of fuel to C times the minimum amount in each in-
stance. This setup assures that results across different values
of C are exclusively due to the level of resource constrained-
ness. The same 35 test instances underly all the NoMystery
experiments reported throughout the rest of this paper. Run-
ning all the planners, we obtained the data depicted in Fig-
ure 1.7 All the satisficing planners excel when C is large,
but degrade to be rather useless as C approaches 1. The op-
timal planner, A* with LM-cut, solves one instance for each
C > 1, but not for C = 1.

As previously hinted, there is a simple explanation to
this profound lack of performance, pertaining to relaxation-
based heuristics. These heuristics ignore the effect state-
ments erasing the resource levels prior to execution of an

7We also ran the “num2sat” planner of Hoffmann et al (2007),
who reported this to beat FF and LPG when C is close to 1. How-
ever, those results were obtained on n = m = 8, and num2sat does
not scale well with n and m. It does not solve a single instance in
our experiment here, where n = m = 12.

action. The next action can hence reuse these same prior re-
source levels, rendering the heuristic completely unaware of
resource consumption.

To address the observed difficulties, one can try to develop
better-suited heuristics. We herein consider the alternative
of developing better-suited search methods. All shown plan-
ners employ variants of A* or greedy best-first search – ex-
cept LPG that uses a variant of local search.8 Thus Figure 1
strongly suggests to consider local search in more depth:
LPG is clearly the best planner for small C. In our work,
we focus on the more recent local search planner Arvand.

Smart Restarts in ArvandSR
Arvand (Nakhost and Müller 2009) is a stochastic plan-
ner that mixes random sampling with heuristic evaluation.
This combination enables Arvand to both benefit from good
heuristic values and, to some extent, overcome misleading
ones thanks to the speed of random sampling.

Starting at the initial state, at each “search step” Arvand
choses its next state from a number of states sampled in a
local neighborhood. Each sample is obtained by running a
bounded random walk, i.e., a sequence of randomly selected
actions. The sampled states are the endpoints of the walks.
Arvand transitions to an endpoint whose heuristic value un-
der FF’s heuristic (Hoffmann and Nebel 2001), henceforth
referred to as hFF , is minimal (ties are broken randomly).
Since this method computes heuristic values only at the end-
points, it can perform a large number of random walks even
if computing FF’s heuristic is costly (which it typically is).
Arvand continues performing search steps in this fashion,
until either a goal state is reached or the search gets stuck: ei-
ther the heuristic value does not improve over several search
steps, or all random walk endpoints s are dead-ends - either
no actions are applicable, or hFF (s) = ∞. If the search
is stuck, it restarts from the initial state, beginning a new
“search episode”.

Nakhost and Müller (2009) devise two different methods,
Monte-carlo with Helpful Actions (MHA) and Monte-carlo
Deadlock Avoidance (MDA), that bias action selection dur-
ing the random walks based on prior experience. In MDA,
actions that frequently appeared in walks that get stuck are
penalized. In MHA, the bias rewards actions that are often
considered as “helpful actions” by FF (Hoffmann and Nebel
2001). This is a subset of actions that are deemed relevant,
and can be determined quickly as a byproduct of comput-
ing hFF . The intuition formulated by Nakhost and Müller
(2009) is that MDA is better on domains with dead-ends,
while MHA is better on domains with large branching fac-
tors. Although it appears natural to combine both methods,
Nakhost and Müller (2009) did not do that. We report on a
straightforward combination in our experiments further be-
low.

Our main modification of Arvand pertains to its restart-
ing strategy. Consider Arvand’s search after N restarts,
i.e., after N search episodes all of which eventually got

8FF also performs a variant of Hill-climbing, however this vari-
ant is a hybrid with complete search, is not randomized, no restarts
are made, and if it fails then FF defaults to greedy best-first search.

Algorithm 1 ArvandSR

Input Planning task (P, I, G,A), pool size p, threshold N
Output A plan for (P, I, G,A)

s← I; num restarts ← 0; P ← {}
while TRUE do
〈s0, . . . , sk〉 ← ArvandSearchEpisode(s)
if G ⊆ sk then

break
end if
min ← argmin0≤i≤k(hFF (si), i)
add trace(P, 〈s0, . . . , smin〉)
if num restarts < N then

s← s0 {restart from initial state}
else

s← get restart state(P) {restart from pool}
end if
num restarts ← num restarts + 1

end while
return the actions yielding 〈s0, . . . , sk〉

Procedure add trace(P, 〈s0, . . . , sk〉)
if |P| < p then
P ← P ∪ {〈s0, . . . , sk〉}

else
if hFF (sk) < max 〈s′

0,...,s′
l〉∈PhFF (s′l) then

P ← P \ {argmax 〈s′
0,...,s′

l〉∈P
hFF (s′l)}

P ← P ∪ {〈s0, . . . , sk〉}
end if

end if

Procedure get restart state(P)
〈s0, . . . , sk〉 ← a random element of P
s← a random state on 〈s0, . . . , sk〉
return s

stuck. Arvand discards all these episodes, and restarts from
scratch. This appears sensible because, after all, the previ-
ous episodes all appear to contain a wrong decision. Still,
it does not entail that all their decisions were bad. In par-
ticular, in a resource-constrained planning task with C close
to 1, it may easily happen that several good decisions at the
start were finally turned into a failure by a single bad deci-
sion at the end. It is then a waste to discard the whole search
episode. This motivates the new method of smart restarts
that is implemented in ArvandSR.

The basic idea is simple: maintain a pool of “most promis-
ing episodes” performed so far. When an episode gets stuck,
restart from a state visited in such an episode, instead of
always restarting from the initial state. An episode is con-
sidered “more promising” than another one if it reaches a
more promising state. As for states, not having a better
handle on what is promising, we simply rely on the (same)
heuristic function: state s is “more promising” than state s′

iff hFF (s) < hFF (s′). Clearly, this definition inherits the
difficulties of the heuristic – it does capture to some extent
“how much work have we managed to accomplish”, but it

(a) (b)
Figure 2: Average coverage of ArvandSR as a function (on the z-axis) of: the trade-off w between MDA and MHA; the pool
size p for smart restarts; and resource constrainedness C. (a) scales w (x-axis) against C (y-axis) averaging over p, (b) scales
w (x-axis) against p (y-axis) averaging over C. Detailed results for scaling p against C are in Figure 3.

does not actually take into account the resources. Hence the
need to maintain a pool of episodes to restart from: this in-
creases our chances to not repeat a previous mistake. This
also makes apparent the need for a search parameter, namely
the size of the pool, that we denote with p. If p is small, then
the search is more greedy and concentrates on the hitherto
best states (by p = 0 we will denote the original Arvand).
If p is large, then the search is more explorative, and can
solve some harder cases given more runtime. With limited
time, more exploration can be detrimental since each indi-
vidual state in the pool is visited less frequently. We will
see later that these intuitions are reflected in our results on
NoMystery.

Algorithm 1 gives pseudo-code detailing our changes
to Arvand. We maintain a pool P that, given the def-
inition of add trace(P, 〈s0, . . . , sk〉), contains up to p
execution traces. The more tricky bit lies in which
traces qualify for being included in P . The procedure
ArvandSearchEpisode(s) executes one episode of (un-
changed) Arvand. The trace 〈s0, . . . , sk〉 hence contains the
state s0 restarted from, followed by the endpoint states of
the search steps. The expression argmin0≤i≤k(hFF (si), i)
denotes lexicographic minimization, i.e., smin is taken to be
the earliest state among those states with minimum heuris-
tic value. The motivation for taking the earliest state is that,
with growing i, the amount of resources consumed can only
grow. Thus, smin is the most promising state reached by the
episode.

The procedure get restart state(P) selects a random
trace from P . It considers not only the end state of the trace,
but rather returns any state on it. This further decreases the
chance to select a faulty state: with limited resources, states
further up the trace have more resources so are potentially
less dangerous. Note also that, if si is a state from which
we can reach sk with very small hFF (sk), then this indi-
cates that in si we have not wasted too many resources yet –
otherwise we couldn’t “complete the work” to this extent.

The rest of the algorithm should be self-explanatory, the
only relevant additional detail being that the smart restarts

method is not invoked until a threshold number N of search
episodes has been completed. The motivation for this is that,
if we begin smart restarting right away, then search is heavily
biased towards the initial runs. In the experiments reported
herein, we fixed N = 50.

The reader might have the impression that some of our
algorithm are hand-tailored to NoMystery. We emphasize
that this is not the case. The underlying intuitions apply to
resource-constrained planning in general. We also did not
do any fine-tuning to NoMystery. We fixed N simply be-
cause, otherwise, there would have been too many free pa-
rameters in our experiments (as it is, we have 3 of them,
see below). The setting N = 50 was obtained based on lim-
ited tests performed prior to the detailed runs reported below.
The setting of all “old” search parameters of ArvandSR, i.e.,
of those parameters present already in the original version
of Arvand (2009), were kept exactly the same.

Experiments
We ran large-scale experiments on NoMystery, as well as
more limited tests on relevant IPC benchmarks. Experi-
ments on NoMystery were run on a 3.00 GHz machine, and
a 2.50 GHz machine is used for tests on IPC benchmarks.
For all experiments the memory limit was set to 2 GB. The
runtime cut-off varies depending on the experiment, and will
be individually given below.

Problem Structure vs. Search Parameters
We now investigate the performance of ArvandSR as a func-
tion of problem structure and search parameters. Problem
structure is captured in terms of resource constrainedness
C, which motivates our choice of NoMystery because it is
the only planning benchmark in existence whose generator
allows to control that parameter. Throughout the section,
we use exactly the same test instances as underly Figure 1.
Recall that these instances each have 12 graph nodes and
12 packages; 5 random instances were generated, then they
were ported to each C ∈ {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0} by

(a) (b)

(c) (d)
Figure 3: Coverage of ArvandSR when varying: the pool size p for smart restarts [shown on the x-axis in all of (a)–(d)]; the
runtime cut-off [10, 20, 30, 40 minutes in each of (a)–(d)]; and resource constrainedness C [1.0 in (a), 1.1 in (b), 1.2 in (c), 1.3
in (d)].
setting the initial fuel level. We omit C = 2.0 here because,
for Arvand, this yields the same behavior as C = 1.5.

We vary the pool size p for smart restarts. In addition, we
experiment with a trade-off between MDA and MHA, gov-
erned by a parameter w with 0 ≤ w ≤ 1. Every time Arvand
samples an action within a random walk, we generate a ran-
dom number 0 < r ≤ 1. If r ≤ w, then we chose the next
action according to MDA; if r > w, then we chose the next
action according to MHA. Hence we have MHA for w = 0,
MDA for w = 1, and a mixture of the two in between.

We run ArvandSR 10 times on each instance. Varying
all three parameters simultaneously, the number of test runs
required is large (11 ∗ 30 ∗ 13 instances, 10 runs each) so
we set a relatively small time-out of 10 minutes. Data pre-
sentation is also tricky since in total it would require a 4-
dimensional plot. Figure 2 shows two of the three possible
3-dimensional plots where two of the parameters are fixed,
and results are averaged over the third one. The most appar-
ent observation – apart from the known fact that small C is
more challenging – is that MDA is completely useless here.
Coverage increases monotonically the closer the w trade-off
gets to MHA. Especially for small C, where dead-end states
(too much fuel consumed) are omnipresent, this contradicts

the intuition of Nakhost and Müller (2009) who suggested
that MDA is more suitable in the presence of dead-ends. It
is not clear to us what causes this behavior. We note that,
as Figure 2 clearly shows, the behavior is independent from
pool size and resources constrainedness.

One unresolved issue in ArvandSR is how to set the sched-
ule for adapting the length of the random walks in this com-
bination, since MDA and MHA use different schedules by
default (Nakhost and Müller 2009). For NoMystery, pure
MHA was always superior in our tests no matter which
schedule for MDA was chosen.

It can be seen in Figure 2 (a) that, for small C, ArvandSR
tends to be significantly more effective than the state-of-the-
art planners tested in Figure 1. For C = 1.0, the best of those
planners, LPG, has 4% coverage. In Figure 2 (a), the best
coverage value for this is 16% at w = 0. For C = 1.0, these
numbers are 8% for LPG, but 50% for ArvandSR despite the
4 times shorter time.

ArvandSR’s coverage in Figure 2 (a) is averaged over all
different values of pool size. Figure 2 (b) shows an inter-
esting behavior across these p values. The behavior is most
pronounced at w = 0 where the underlying search is most
successful. Coverage improves from p = 0 up to around the

middle of the p range, but then gets worse again, yielding a
kind of sweet-spot behavior. That behavior is diluted, how-
ever, by averaging over C. Hence, in our next experiment,
we consider this issue in more detail. We fix w to 0, try a
broader range of p values, and vary the runtime cut-off. The
data in Figure 3 clearly shows that:

1. Original Arvand already significantly outperforms the
state of the art for tightly constrained resources. With
p = 0, at the runtime cut-off 40 minutes used in Figure 1,
coverage for C = 1.0 is 18% compared to 4% for LPG,
and for C = 1.1 it is 42% compared to 8% for LPG.

2. Smart restarts can significantly improve Arvand for
tightly constrained resources. With p > 0, coverage for
C = 1.0 improves to 46% at p = 50, and for C = 1.1 it
reaches 90% at p = 100. Note the total difference to the
previously best planner LPG: a factor > 11 improvement
in coverage. Of course, this comparison is a little unfair
since, as yet, we do not automatically determine a good
value of p (this is an open problem). Still, the amount of
improvement that can be obtained is impressive.

3. The benefit of smart restarts tends to grow as C tends
to 1. This is obvious from how the curves develop from
(a) to (d). The phenomenon nicely matches our derivation
of this algorithm enhancement, which was entirely moti-
vated by considering the economization of resources.

Looking at Figure 3 (a) and Figure 3 (b), we clearly see
the sweet-spot behavior across p that was already somewhat
visible in Figure 2 (b). Interestingly, the position of the
sweet-spot depends on the runtime cut-off. For example, for
C = 1.0 and time-out 10 minutes, the sweet spot is reached
already at p = 5; for the 40 minute time-out, the sweet-spot
appears to be at p = 50. Similarly for C = 1.1. An intuitive
explanation of this has been given previously when describ-
ing Algorithm 1. Larger p yields a more explorative search,
which may pay off by solving more examples, but only pro-
vided there is enough runtime to do so. If runtime is limited
then a more greedy search may “get lucky” more often.

IPC Benchmarks
For cross-checking how our new methods perform on stan-
dard benchmark instances, we now perform experiments on
IPC domains and instances. As explained previously, there
are only three IPC STRIPS domains that are “resource-
constrained” in the sense explored here: Mystery and
Mprime of the 1998 IPC, Trucks of the 2008 IPC. There
are several other IPC domains involving resources, however
in most of them resource consumption appears only in the
(numeric) optimization criterion, which is ignored by most
existing planners,9 and which, anyway, does not force a sat-
isficing planner to economize the resources. In the Satellite
and Rovers domains of IPC 2002, resources are a hard con-
straint in our sense, however in Rovers there is a refuelling
action that we don’t allow, and anyhow resources are present
only in the numeric domain versions, in both cases.

9To our knowledge, the only exceptions to this rule are LPG
and a non-default version of Metric-FF.

Instance FF LPG LAMA LM-cut MDA MDA50 MHA MHA50

Mystery02 0.0 122.1 0.1 26.2 8.3 0.5 0.3 0.3
Mystery06 – – 317.7 – 148.6 39.1 272.5 129.0
Mystery10 – 1015.6 136.1 – 14.6 14.6 26.4 102.7
Mystery13 – 8.4 2.7 – 34.6 37.6 77.5 4.4
Mystery14 4.3 – 2.9 – 14.0 20.3 69.1 12.0

Mprime10 17.7 2.5 3.3 – 60.6 25.1 8.9 10.3
Mprime13 45.6 57.4 3.1 – 218.1 58.4 15.4 14.2
Mprime14 191.4 – 2.8 – 69.4 63.0 20.1 16.5
Mprime18 – 4.5 3.3 – 47.5 28.4 7.3 7.1
Mprime22 322.7 6.3 8.0 – 33.8 28.2 10.9 12.1

Trucks05 0.0 0.0 94.53 0.4 0.5 365.3 265.5
Trucks06 0.0 0.0 – 0.7 0.5 – 746.3
Trucks07 26.6 3.8 261.75 16.7 5.0 – –
Trucks08 1.4 0.6 641.3 7.6 1.8 – –
Trucks09 0.0 64.9 – 0.8 20.3 – –
Trucks10 – 24.84 – 58.5 12.2 – –
Trucks11 0.0 28.5 – 1.3 3.8 – –
Trucks12 – – – 198.3 91.2 – –
Trucks13 – – – 170.3 164.5 – –
Trucks14 12.7 22.4 – 22.7 1.6 – –
Trucks15 – – – 159.6 278.8 – –
Trucks16 – – – – 488.6 – –
Trucks17 – – – 46.5 234.7 – –
Trucks18 – – – – 582.1 – –
Trucks21 – – – – 744.5 – –
Trucks23 – – – – 1012.7 – –

Tankage07 0.0 0.4 0.2 398.4 0.9 2.0 0.3 0.5
Tankage17 70.2 – 3.7 – – – – –
Tankage23 – – – – 5.9 5.83 16.59 42.0
Tankage26 – – – – 270.1 32.6 73.0 72.1
Tankage28 – – – – 208.0 – – –
Tankage31 29.2 – 249.7 – 202.4 250.1 – –
Tankage33 – – 22.9 – 246.3 12.18 802.6 –
Tankage35 – – – – 165.1 354.1 103.8 143.0
Tankage38 – – 538.4 – – 464.4 600.1 136.4
Tankage49 – – 358.8 – – – 735.2 1113.9

NoTankage37 – – 4.9 – 3.5 9.4 39.6 11.2
NoTankage38 – – 10.9 – 4.8 63.3 39.1 9.9
NoTankage39 – – 0.6 – 6.0 10.5 15.1 13.7
NoTankage40 – – 3.7 – 7.6 57.5 40.0 50.4
NoTankage41 6.1 37.5 1.7 – 2.0 2.8 0.8 8.9
NoTankage42 – – – – 10.8 169.9 – –
NoTankage43 – – – – 20.2 85.9 – –
NoTankage44 – – – – 171.5 88.1 – –
NoTankage45 – – 17.9 – 62.6 32.9 – 1298.27
NoTankage46 – – – – 364.7 900.0 – –
NoTankage47 – – – – 502.2 313.5 – –
NoTankage48 – – – – 608.5 668.3 – –
NoTankage49 0.8 – 16.7 – 12.6 104.6 65.5 24.7
NoTankage50 1.4 – 103.4 – 27.81 106.2 30.1 31.8

Freecell-2000-13-1 204.0 – 47.0 – 68.1 299.6 609.9 112.6
Freecell-2000-13-2 2.9 – 498.8 – 16.2 121.5 169.4 287.9
Freecell-2000-13-3 12.4 – 11.6 – 44.8 140.3 1052.3 78.7
Freecell-2000-13-4 985.1 – 126.0 – 398.8 169.7 – 1060.8
Freecell-2000-13-5 585.4 – 297.5 – 248.8 281.5 – –

Table 1: Runtime (seconds) in selected instances of IPC
STRIPS domains (see text). MDA, MHA are the original
search strategies of Arvand. MDA50, MHA50 denote Ar-
vandSR with the respective search strategy and smart restarts
with pool size p = 50. Dashes indicate time-outs (30 min-
utes), empty cells mean that the planner could not be run.

We hence consider, in what follows, Mystery, Mprime,
and Trucks. To examine the effect of our changes to Ar-
vand in other domains, we also consider some IPC domains
that have a puzzle-like nature – while this kind of problem
structure is not the focus of our work here, we generally con-
sider it interesting, and perhaps related to the intricacies of
economizing a scarce resource. We run all planners tested
previously. The data is in Table 1.

Table 1 shows, for each domain, a varying number of in-
stances depending on how interesting the observations to
be made are.10 In each case, the instances selected are the
most challenging ones that at least one of the tested plan-
ners could solve. In Mystery and Mprime, not much is
to be observed. All versions of Arvand are as reliable in
coverage as LAMA (although often slower), whereas FF
and LPG exhibit a rather erratic behavior. Like in NoMys-
tery (but not without exceptions), MHA tends to be bet-
ter than MDA. Smart restarts most often make no big dif-
ference, although sometimes they do significantly improve
runtime, and in rare cases deteriorate it. The main conclu-
sion to be drawn, specifically in comparison to NoMystery,
is that these benchmarks do not allow to evaluate resource-
constrained planning in an insightful way. The results in
Trucks are more interesting. MHA here is so bad that it lags
significantly behind even the optimal planner, A* with LM-
cut. MDA, on the other hand, vastly outperforms the state of
the art – as represented by FF and LAMA – especially when
using the smart restars technique proposed herein.

Turning our attention to the puzzle domains, in Tank-
age and NoTankage smart restarts have no significant effect.
Due to slow heuristic computation in these domains, the to-
tal number of search episodes in bigger tasks, which are the
most interesting ones, barely exceeds 10. Therefore, smart
restarting can not be used so often. In Freecell, MDA solves
all the problems without needing any restarts. Therefore, it
does not really matter what mechanism is used for restarting.
However, smart restarts improve both runtime and coverage
of MHA in Freecell.

Conclusion
Economizing limited resources is, clearly, an important sit-
uation to be considered for automated planning. Just as
clearly, our results here (extending those of Hoffmann et al
(2007)) show that current state-of-the-art planners are very
bad at doing so. We propose local search as a potential way
out, and we have shown that a simple improvement to Ar-
vand can already make a big difference. This result is en-
couraging, yet is only the first step in comprehensively ad-
dressing this issue. Some important open points are:

• Experiment with additional resource-constrained plan-
ning domains, equipped with to-be-developed generators
allowing to control C like in NoMystery.

• Develop strategies for automatically configuring the

10Note that A* with LM-cut is the only optimal planner here.
Such planners are normally not compared with satisficing ones,
since this comparison is unfair. We include LM-cut only for com-
pleteness, and do not wish to entail such a comparison.

search, such as finding a good static or dynamic scheme
for controlling the pool size p.
• Explore in a similar fashion other enhancements to local

search. For example, more intelligent methods for priori-
tizing states in the pool, perhaps inspired by UCT (Kocsis
and Szepesvári 2006), may be useful.

We hope that this line of work will inspire other researchers
as well, so that with joined forces we can make up leeway
on this glaring open problem.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.
Cheeseman, P.; Kanefsky, B.; and Taylor, W. M. 1991. Where
the really hard problems are. In Proc. 12th International Joint
Conference on Artificial Intelligence (IJCAI-91), 331–337.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning through
stochastic local search and temporal action graphs. J. Artificial
Intelligence Research 20:239–290.
Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. In Proc. 6th European Conference on Planning
(ECP-01), 121–132.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What’s the difference anyway? In Proc. 19th
International Conference on Automated Planning and Scheduling
(ICAPS-09), 162–169.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. J. Artificial Intelligence
Research 14:253–302.
Hoffmann, J.; Kautz, H.; Gomes, C.; and Selman, B. 2007. SAT
encodings of state-space reachability problems in numeric do-
mains. In Proc. 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), 1918–1923.
Hoffmann, J. 2003. The Metric-FF planning system: Translat-
ing “ignoring delete lists” to numeric state variables. J. Artificial
Intelligence Research 20:291–341.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-Carlo
planning. In Proc. 17th European Conference on Machine Learn-
ing (ECML-06), 282–293.
Koehler, J. 1998. Planning under resource constraints. In Proc.
13th European Conference on Artificial Intelligence (ECAI-98),
489–493.
Long, D., and Fox, M. 2003. The 3rd international planning com-
petition: Results and analysis. J. Artificial Intelligence Research
20:1–59.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration for
deterministic planning. In Proc. 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI-09), 1766–1771.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks
revisited. In Proc. 23rd National Conference of the American
Association for Artificial Intelligence (AAAI-08), 975–982.
Selman, B.; Levesque, H. J.; and Mitchell, D. 1992. A new
method for solving hard satisfiability problems. In Proc. 10th
National Conference of the American Association for Artificial
Intelligence (AAAI-92), 440–446.
Wei, W.; Li, C. M.; and Zhang, H. 2008. A switching criterion for
intensification and diversification in local search for SAT. J. Sat-
isfiability, Boolean Modeling and Computation 4(2-4):219–237.

