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Abstract 
 
This	  study	  explored	  ways	  of	  integrating	  optical	  and	  flux	  measurements	  in	  the	  

context	  of	  the	  Light	  Use	  Efficiency	  (LUE)	  model	  in	  an	  alfalfa	  (Medicago	  sativa)	  

field.	  Narrow-‐band	  spectrometers	  and	  low	  cost	  two-‐band	  radiometers	  

provided	  alternate	  ways	  to	  measure	  NDVI	  and	  estimate	  the	  APAR	  term	  of	  the	  

LUE	  model.	  The	  high	  temporal	  resolution	  of	  two-‐band	  sensors	  system	  

accurately	  tracked	  seasonal	  carbon	  flux	  dynamics	  (R2	  =	  0.96)	  demonstrating	  

the	  value	  of	  automated,	  low	  cost	  approaches	  to	  monitoring	  NDVI	  and	  canopy	  

light	  absorption,	  which	  was	  the	  dominant	  term	  in	  the	  LUE	  model	  for	  this	  

agricultural	  field.	  At	  the	  seasonal	  scale	  PRI	  correlations	  with	  LUE	  varied	  with	  

the	  LUE	  formulation,	  and	  suggested	  that	  seasonal	  PRI	  patterns	  were	  

primarily	  driven	  by	  canopy	  structure	  changes.	  However,	  at	  the	  diurnal	  level,	  

∆PRI	  correlated	  with	  changing	  efficiency.	  Combined	  optical	  and	  flux	  sampling	  

can	  help	  partition	  flux	  data,	  gap-‐fill	  data,	  and	  add	  insights	  into	  the	  controls	  of	  

carbon	  fluxes.	  	   	  
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Chapter 1 – Introduction: Background and Context 

 

The accurate assessment of global biosphere-atmosphere carbon 

exchange remains a major challenge for ecosystem scientists. Not only do we 

have to account for the size of the biospheric-atmospheric fluxes, but interpreting 

the ecological dynamics within each biome introduces a higher level of 

complexity that is responsible for our incomplete understanding of some of the 

carbon cycle mechanisms (Field et al., 1998, Running, 2008). Over the years, a 

goal of ecologists has been to develop consistent global ecosystem measurements 

that properly describe and integrate ecosystem dynamics (Schimel, 1995). Early 

methods attempted to model global productivity through various approaches that 

included the assessment of productivity through climate (Leith, 1975), soil, and 

nutrient availability (Schimel et al. 1994), distribution of assumed homogeneous 

biomes (Leith and Whittaker, 1975, Atjay et al., 1979), or by determining light 

interception by vegetation (Ruimy et al., 1994). Each conceptual model attempted 

to characterize the biosphere as a whole, however, each one contained errors due 

to oversimplifications of ecosystem dynamics or the lack of available spatially 

and temporally suitable data. To address ecosystem dynamics, methodical studies 

looking at temporal patterns within individual ecosystems need to be conducted. 

Characterizing ecosystem processes allows us to create regional models that 

characterize the challenges, limitations, and feasibility of global-scale models 

(Field et al., 1995). As such, we can think of ecosystem studies as being a key to 
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correctly informing global carbon models (Schimel, 1995; Braswell et al., 1997; 

Reich et al., 1999; Running et al., 2004; Turner et al. 2005). 

 The eddy covariance technique has become a valuable tool for 

assessing ecosystem mechanisms related to ecosystem-atmosphere gas fluxes. 

Eddy covariance allows the direct in situ measurement of carbon exchange 

between vegetated canopies and the atmosphere (Baldocchi et al. 1988). Carbon 

flux measurements quantify the total carbon accumulated by an ecosystem as the 

net gain or loss when both photosynthesis and respiration are considered, and is 

expressed as net ecosystem exchange (NEE) (Randerson et al., 2002). By 

providing real-time, non-invasive measurements of NEE, the eddy covariance 

technique has become the standard method for accessing ecosystem carbon fluxes. 

Partitioning net carbon fluxes into gross primary productivity (GPP), defined as 

the carbon fixed during photosynthesis over a period of time and respiration 

provides further insight into ecosystem functioning (Baldocchi, 2003).  

 Despite the wide acceptance of the eddy covariance 

method(Baldocchi et al., 2001; Baldocchi, 2008), there are some drawbacks to 

this technique.  Measurements of fluxes are assumed to be in ecosystems under 

steady state atmospheric conditions, with homogenous vegetation in flat terrain 

(Baldocchi et al., 1988; Aubinet et al., 2000). Implementation of this technique in 

non-ideal conditions requires accounting for complex effects of atmospheric 

storage, wind divergence and advection which can lead to significant errors in the 

ecosystem carbon budget (Baldocchi et al., 1988; Baldocchi et al., 2000; Foken & 

Wichura, 1995; Massman & Lee; 2002). To correctly quantify local and global 
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carbon budgets, accurate measurements of carbon fluxes at stand scale that allow 

us to resolve the spatial and temporal variability of carbon exchange are required. 

Remote sensing has provided the prospect to measure ecosystem 

productivity at scales ranging from local to global. One of the biggest benefits of 

remote sensing is its ability to sample across a wide range of spatial and temporal 

scales. Additionally, remote sensing gives us the ability to gather a wide range of 

data from locations that were previously inaccessible and to do this in a non-

destructive way.  Most remote sensing methods for ecosystem carbon flux 

assessment have involved the light-use efficiency (LUE) model. 

The LUE model was first proposed by Monteith (1972, 1977), and in 

its simplest form states that the amount of plant growth is a function of a 

structural term determining light absorption and a physiological efficiency term. 

In more specific terms, Monteith determined that the amount of productivity can 

be quantified by measuring the amount of photosynthetically active radiation 

(PAR) absorbed by the canopy, and the efficiency by which that absorbed 

radiation is transformed to fixed carbon (dry biomass) during a specific time 

period. This can be expressed as  

 

Total Yield = ε0∫tAPARdt    (1)  

 

where APAR(µmol m-2 s-1)is the absorbed photosynthetically available radiation 

(PAR) (µmol m-2 s-1) and ε represents the light use efficiency (LUE).  In it’s 

original formulation, ε was expressed in g MJ (grams of dry matter per mega 
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joule of solar radiation, integrated over a growing season, Monteith, 1977), but 

recent applications have often applied a more instantaneous definition and units 

(e.g. mol CO2mol-1 PPFD, or µmol CO2µmol-1 PPFD). Depending upon the 

applicationεcan be integrated over an annual cycle, although other periods (e.g., 

instantaneous, daily, weekly or monthly) are also used. 

A principal advantage of this model is that it can be applied at a wide 

range of spatial scales (i.e. at leaf-level, at canopy-level, or stand level) and time 

periods across all vegetation types. Furthermore, the LUE model can be directly 

linked to remote sensing, allowing the required data to be collected, even over 

large areas, by non-destructive methods. When driven by remote sensing, the 

LUE model is conventionally expressed in terms of gross primary production 

(GPP) expressed as follows:  

 

GPP = 𝐴!
!!! PAR xε   (2) 

 

where ΣAPAR refers to the integration of absorbed photosynthetic available 

radiation over time frame (Monteith, 1977; Asrar et al., 1984; Sellers 1985). 

Traditionally, light absorption is integrated temporally into seasonally or yearly 

time periods. However, conceptually, the LUE model expressed by equation (2) 

can describe various temporal scales, including “instantaneous” measurements 

(Gamon et al., 2001). In this thesis, an LUE model was derived using 

instantaneous light absorption measurements as a basis for examining the 

processes influencing the terms in the model. Primary productivity is often 
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measured in terms of net instead of gross values. This requires the addition of a 

respiration term to the model (Prince and Goward, 1995; Ruimy et al., 1994).  

Alternatively, respiration is sometimes integrated into the model (Gamon and Qiu, 

1999). 

In the remote sensing community, PAR is sometimes used as a 

synonym of photosynthetic photon flux density (PPFD) when discussing the LUE 

model. Throughout this thesis, PPFD will be used to describe the flux of 

downwelling radiation from 400 to 700 nm, and PAR will be used to refer to the 

expression of PPFD in the context of the LUE model equation, following this 

remote sensing convention. The relationship between optical remote sensing and 

the LUE model is based on the principle that PAR measurements can be 

combined with the fraction of PAR absorbed by vegetation (fAPAR) to determine 

the APAR term, providing a measure of potential photosynthetic activity (Sellers, 

1985, Sellers et al., 1987; Myneni and Williams, 1994). More specifically, APAR is 

the product of the fraction of the photosynthetic available radiation absorbed by 

the green portions of the plant (green fAPAR) and the total downwelling irradiance, 

or PPFD. Typically, green fAPAR is assessed using a vegetation index, usually the 

normalized difference vegetation index (NDVI).  The relationship between the 

normalized difference vegetation index (NDVI) and green fAPAR has been 

explored both theoretically (Kumar & Monteith, 1981; Sellers et al., 1987; Prince, 

1991; Goward & Huemmrich, 1992) and empirically (Daughtry et al., 1983; Gallo 

et al., 1985; Gamon et al., 1995), showing that NDVI and green fAPAR are closely 

correlated.  
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Light use efficiency provides a physiological measure of how plants 

respond to changing environmental conditions (Monteith, 1972; 1977). Its 

complexity, relating to the large number of factors that can possibly be 

encompassed within this term, has led to different ways of treating this variable. 

Monteith (1977) first proposed that the efficiency term should be relatively 

constant for all plant functional types across all ecosystems, and this view has 

sometimes been supported by the observation that most unstressed vegetation has 

a similar photosynthetic photon yield (Manchow, 1985; Garcia et al. 1988; Field, 

1991). However, exceptions have been observed in canopies under water, 

temperature, and nutrient stresses, and efficiency can vary with ontogeny, season, 

and functional types (Runyon et al., 1994; Gamon et al., 1995; Landsberg and 

Waring, 1997; Huemmrich et al., 2010). Many researchers using the LUE model 

have, therefore, adopted the approach of estimating a variable efficiency term that 

accounts for variability between vegetation types as well as the seasonal 

variability within an ecosystem.  

The NASA Moderate-Resolution Imaging Spectroradiometer 

(MODIS) satellite instrument for calculating GPP/NPP (MOD17A2/A3) products 

follows this approach (Heinsch et al., 2003). To quantify the range of efficiency 

across biomes, MODIS algorithms use a biome parameter look-up table (BPLUT) 

that starts with a maximum efficiency for each biome type.  This efficiency is 

further modified by temperature and vapor pressure deficit (VPD) derived from 

gridded (interpolated) meteorological data (Running et al., 2004). However, these 

meteorological data are collected at much coarser spatial resolutions (1o latitude x 
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1.25o longitude) than the MODIS pixel (250m), leading to a significant loss of 

information due to the degradation of the intrinsic spatial variability within 

ecosystems (Running et al., 2004; Turner et al., 2005; Zhao et al., 2005; Heinsch 

et al., 2006).  Consequently, a more direct assessment of LUE at a finer scale is 

needed.   

One proposed method to reduce inaccuracies within the LUE model is 

to exclude all externally derived meteorological data and instead estimate 

efficiency solely from remote sensing data (Gamon and Qiu, 1999; Sims et al., 

2006; Strachan et al., 2008; Grace et al., 2007; Coops et al., 2010). Advances in 

the spectral resolution of remote sensing tools have provided some new 

opportunities for estimating LUE. One possible method involves the 

photochemical reflectance index (PRI), typically derived from narrow band 

reflectance at 531 and 570 nm (Gamon et al., 1990, 1992, 1993; Peñuelas et al., 

1995; Filella et al., 1996). Over certain conditions, this index can serve as a proxy 

for the activity of the xanthophyll cycle, which is closely linked to photosystem II 

(PSII) photochemical efficiency (Gamon et al., 1990, 1992; Peñuelas et al., 1995). 

A useful tool for defining these conditions is the concept of “excess light energy”. 

This can be visualized through commonly used light response curves where 

departure from the linear, light limited region indicates light saturation and excess 

energy (Björkman and Demmig-Adams 1994). Under excess light, the majority of 

PSII centers remain in a reduced (closed) state, leaving them susceptible to 

photoinhibitory damage. To prevent damage, carotenoid pigments composing the 

xanthophyll cycle undergo chemical changes and quench excess energy. The 
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general mechanism for the xanthophyll cycle involves the conversion of 

violaxanthin to the photoprotective pigment zeaxanthin, via antheraxanthin as a 

response to exposure to excess light (Bjorkman and Demming-Adams, 1994; 

Demming-Adams et al., 1995, 1996). This mechanism provides a sink for excess 

energy and thus a method for light regulation, and can be detected optically via 

the PRI (Gamon et al. 1992, 1997, Gamon and Surfus 1999). 

It should be noted that PRI was originally defined in the context of 

diurnal changing light levels and photosynthetic rates (Gamon et al. 1992, 1993, 

Peñuelas et al., 1995). Since then, many remote sensing studies have used the PRI 

as an indicator of changing photosynthesis. However, most of these studies have 

been correlative in nature, and have not explicitly examined the cause of changing 

PRI over time and space. PRI interpretation becomes particularly problematic 

over large time scales (e.g. seasonal change) or spatial scales (e.g. regional or 

global satellite measurements), where many confounding factors including canopy 

structure, view and illumination angles can affect PRI (Barton & North, 2001).    

Additionally, across seasons or multiple canopies, PRI often provides a measure 

of canopy greenness or chlorophyll:carotenoid ratios (Sims & Gamon 2002, 

Stylinski et al.2002, Filella et al. 2004 & 2009, Garrity et al. 2011, Gamon & 

Berry 2012), which may also scale with light-use efficiency, although this 

relationship between pigment pool sizes and LUE has received less attention than 

the effect of xanthophyll cycle epoxidation state.  Perhaps for these reasons, 

attempts to compare satellite based PRI and photosynthetic efficiency across 

ecosystems have typically demonstrated contrasting PRI-LUE relationships for 
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different ecosystems (Nichol et al. 2002; Goerner et al. 2011), calling into 

question PRI’s ability to accurately measure LUE when used in a remote sensing 

context. Consequently, the utility of PRI as a remote-sensing measure of LUE 

remains an open question. 

One challenge of testing the LUE model for individual ecosystems is 

that the necessary data are often not easily available at the appropriate temporal or 

spatial scales. For this reason, there is a need to apply field spectrometers within 

the flux tower footprint, sometimes periodically or continuously over time 

(Gamon et al. 2006a, 2010). These studies are beginning to yield insights into 

factors affecting the terms of the LUE model, but principle challenges include 

obtaining accurate and cost effective data with comparable methods.  In recent 

years, a variety of methods have been developed to address theses challenges 

(Huemmrich et al 1999, Gamon et al., 2006b; Leuning et al., 2006; Vierling et al. 

2006; Hilker et al., 2007; Richardson et al., 2007). Recently, low-cost methods 

involving simple broadband radiometers (Huemmrich et al., 1999) or two-band 

radiometers (Eklundh at al. 2011) have also been explored as alternative ways to 

estimate the terms of the LUE model. The assessment of vegetation at the 

ecosystem scale, allows us to address the strengths and weaknesses of the model 

and develop an operational model that can be scaled spatially and temporally. 

Ideally, this working model would not focus only on one data source, but would 

take advantage of different data resources. For example, much information could 

be gathered through the comparison and integration of different optical data 

sources, ranging from hyperspectral to broadband. 
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For this study we utilized proximal remote sensing collected from a 

tram system (Gamon et al., 2006b), automated, tower-mounted broadband 

sensors, and eddy covariance data to assess crop productivity using the LUE 

model. The objectives of the study were to 1) determine the feasibility of using 

two-band sensors to derive an APAR term that is comparable to one derived from 

standard narrow-band data; 2) determine if PRI can be used as a proxy of LUE 

and, if so, to evaluate the mechanisms driving this association; 3) determine the 

effect of temporal aggregation on the accuracy of productivity estimates; and 4) 

develop a working framework for deriving an operational LUE model driven 

entirely from optical remote sensing. We hypothesize that 1) 2-channel broadband 

sensors data will produce a LUE model that predicts fluxes with accuracy; 2) 

seasonal PRI values will be affected by changing canopy structure throughout the 

season; and 3) the integration analysis of flux and optical data can provide a novel 

way to partition flux data, gap fill missing flux data, and gain valuable insight into 

the controls of ecosystem carbon fluxes.  
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Chapter 2 –Seasonal dynamics monitored by meteorological and optical 
sensors 
 

2.1 Introduction: 

Phenological observations can elucidate climate-biosphere relationships 

within an ecosystem and can be used to better inform vegetation models 

(Schwartz, 1990; Schwartz, 1994). Links between plant life-cycle events and 

variations in weather and climate can reveal an assembly of feedback interactions 

associated with controls on green-up and senescence that define growth season 

length and represent a key constraint on primary productivity (Running and 

Nemani, 1991; Goulden et al., 1996; White at al. 1997; Churkina et al., 2005). 

With the onset of remote sensing, optical sampling has provided a non-invasive 

tool allowing the monitoring of vegetation phenology at a variety of spatial and 

temporal scales ranging from local to global. Seasonal dynamics observed through 

NDVI have been shown to properly describe vegetation phenological changes 

used to describe vegetation type and productivity (Huemmrich et al., 1999; 

Jenkins et al., 2002; Schwartz et al., 2002; Fisher et al., 2006).  

Productivity assessment using remote sensing data is commonly done 

through the light use efficiency (LUE) model (Kumar & Monteith, 1981; Sellers, 

1987, Field, 1991; Running et al., 2004). However, one of the biggest challenges 

in using remote sensing data for productivity assessments is the shortage of data at 

the appropriate temporal and spatial scales. To drive the LUE model, we need to 

achieve a balance between the temporal and spatial resolutions that allow us to 

interpret the ecological dynamics within each biome. Furthermore, we may also 
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need to match the scale of resolution between sensors.  Many commonly used 

multiband and hyperspectral satellite optical datasets have the advantage of 

having global coverage and being relatively available. However, difficulties 

include low temporal resolution that can lead to a lack of data needed to 

accurately characterize subtle vegetation changes (Huemmrich et al. 1999). 

Additionally, large composite periods chosen to minimize errors sources from 

cloud contamination and atmospheric aerosols, gases and water vapor, can lead to 

a bias towards higher NDVI values during periods of change such as the start and 

end of the growing season (Los et al., 1994; Holbem, 1986). Further difficulty 

with multiband and hyperspectral remote sensing include limitations in spatial 

resolution making it difficult to properly define individual plant processes within 

a specific vegetation type at the scale of a flux tower (Huemmrich et al., 1999). 

Addressing these challenges can impose costly solutions, forcing us to develop 

cost-efficient ways to obtain scale-appropriate optical measurements.  

To solve these challenges, many people have been exploring the use of 

low-cost methods involving simple two-channel radiometers as alternative ways 

to derive proxy LUE model terms (Huemmrich et al., 1999; Jenkins et al., 2007; 

Richardson et al., 2007; Wilson and Meyers, 2007; Garrity et al., 2010). The high 

temporal resolution in automated optical sensor systems could allow improved 

tracking of diurnal and seasonal carbon flux dynamics within an ecosystem. 

Furthermore, the low cost of these sensors would enable them to be widely used 

by the scientific community, allowing a possible extensive spatial network of 

sensors as suggested by the SpecNet network and similar efforts (Gamon et al., 
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2006; 2011; Eklundh et al. 2011). To achieve this, it is important to consider if 

data from simple two-band sensors can be used to drive a LUE model with the 

level of accuracy that one would achieve with high spectral resolution data. In this 

thesis chapter, we begin to explore comparisons of common meteorological and 

optical variables with measured gross primary productivity. We also explore the 

possibility of driving a LUE model from two-channel broadband data by defining 

the NDVI-fAPAR relationship using various proxy greenness indices derived from 

broadband reflectance. These simple relationships were the initial steps needed to 

construct a more robust LUE model, later discussed in Chapter 4 of this thesis.  

 

2.2. Methods 

2.2.1 Study Site: 

The study site was located at the University of Alberta South Campus 

agricultural research farm (53.497 N, -113.552 E) within in the city of Edmonton, 

Alberta, Canada (Figure 2-1). The individual parcel of land for this study had 

been cultivated with alfalfa (Medicago sativa) for a number of years, helping 

minimize any adverse influence from plant row structures usually encountered in 

croplands. The 250m wide x 500m long alfalfa parcel had a homogenous 

arrangement of plants with nearly flat topography. This site was monitored for 

three consecutive growing seasons starting in 2009 and continuing through 2011.  
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Figure 2-1: Alfalfa field located at the University of Alberta South Campus agricultural 
research farm in Edmonton, Alberta, Canada (53.497 N, -113.552 E). Monitoring systems 
include a 50m robotic tram system (black and white line), a 3m phenology/meteorology 
station (dotted circle), and a 2.5m eddy covariance flux tower (black circle). 
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2.2.2.Experimental design: 

Of the three years of monitoring, the 2010 growth season saw the most 

rigorous data collection campaigns. The ecosystem at this site was monitored 

using three different systems: 1) a 50m Tram system (Gamon, et al., 2006b) 

oriented east to west, 2) a 3 m phenology/ meteorological station, and 3) a 2.5m 

eddy covariance flux tower (Figure 2-1). The homogenous nature of the field 

allowed direct comparison between all three systems. More specifically, the 50m 

track length of the tram system was designed to collect measurements comparable 

to those collected from the majority of the flux footprint. Optical sensors on the 

phenology tower contained cosine foreoptics, allowing hemispherical 

measurements of a large area of the field similar to the flux footprint. To construct 

a LUE model, fAPAR measurements were included during all tram data collection 

campaigns. During the 2010 growth season, the field was harvested three times, 

partitioning the growth season into individual growth cycles, composed of 

separate green-up and mature growth stages, and followed by disturbance 

(through harvesting) events (Figure 2-2). Each of the growth cycles was treated as 

an independent growing event. 

 

2.2.3 Micrometeorology measurements: 

2.2.3.1 Eddy Covariance Instrumentation: 

The eddy covariance (EC) flux technique (Baldocchi et al., 1988, 

Moncrieff et al., 1997; Aubinet et al., 2000; Baldocchi, 2003) was used to 

measure net ecosystem CO2(µmol m-2 s-1), latent heat (LE) (W m-2), and sensible 
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heat (H) (W m-2) fluxes at the study alfalfa field. These were gathered during the 

2009 and 2010 growing seasons. 

A three-meter tower was equipped with a sonic anemometer (SAT; CSAT3, 

Campbell Scientific, Logan, UT, USA), used to measure three dimensional wind 

velocities, direction, and temperature fluctuations; along with a open-path infra-

red gas analyzer (IRGA; LI7500, LI-COR Inc., Lincoln, NE, USA), used to 

measure CO2 and water vapor concentration fluctuations in air, within the 

boundary layer above the alfalfa field. These two instruments were mounted on 

separate horizontal support arms, oriented towards the direction of the prevailing 

winds (south-west direction) and having a separation of approx. 15cm between 

the center of the IRGA optical path and the center of the SAT instrument path. 

Both of the SAT and IRGA were programmed to have a sampling frequency of 

10Hz, logged with a CR5000 data-logger (Campbell Scientific, Logan, UT, USA) 

and recorded using an industrial grade compact flash memory storage card.  

Additional meteorological equipment was integrated into the flux tower, 

including a net radiometer (NR lite, Kip & Zonen, Delft, Holland), air 

temperature and humidity probe (HMP45C, Vaisala Inc., Helsinki, Finland) 

encased in a vented radiation shield (41003-5, Gill Multiprobe, R.M. Young 

Company, Traverse City, MI, USA).  

 

2.2.3.2 NEE calculations:  

High frequency eddy covariance data was processed using the post-

acquisition software EdiRe (University of Edinburgh) program. Flux of CO2was 
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expressed as the product of mean air density and the covariance between 

instantaneous vertical wind velocity and concentration fluctuations. 

 

    Fc = - ρa 𝑤’  𝑠’                                             (1) 

 

where Fc represents the vertical CO2 (µmol m-2 s-1), ρa is the dry air density (mol 

m-3), w is the instantaneous vertical wind speed (m s-1), and s is the molar mixing 

ratio (mol mol-1 dry air). Over bars over the wind speed and mixing ratio terms 

indicate time averaging, while primes indicate fluctuations about the mean (over a 

30 minute time aggregate), following Reynolds decomposition. The negative 

notation in the expression was added since a meteorological notation was adopted 

for representation of NEE, where negative NEE values represented net CO2 

uptake into an ecosystem and a positive values represent net CO2 release into the 

atmosphere. 

Sensor separation correction was applied to the 10Hz eddy covariance data 

to compensate for lost fluxes due to the inability of the IRGA and SAT 

instruments to sample the exact same volume (Moore, 1986). Also, coordinate 

rotations corrections (Baldocchi et al., 1988; Aubinet et al. 2000) were performed, 

allowing the proper alignment of the mean vertical wind direction to a position 

exactly perpendicular to the mean wind streamlines. To correct for the effect of 

changes in temperature and water vapor on air density (and CO2 mixing ratio) 

(Webb et al. 1980), the Webb-Pearman-Leuning correction was applied.  
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2.2.3.3 GPP and total ecosystem respiration calculations: 

Net ecosystem CO2 exchange (µmol m-2 s-1) is the sum of two competing 

processes and can be expressed as: 

 

             NEE = -GPP+TER                        (2) 

 

where GPP is the gross primary production (µmol m-2 s-1) and TER is the total 

ecosystem respiration (µmol m-2 s-1). The negative sign on the GPP term comes 

from adopting a meteorological convention indicating NEE as being negative 

where there is CO2 uptake by an ecosystem. 

Similarly, NEE can be conveyed in terms of light-response curves, relying 

of the ecological relationships between rate of photosynthesis and incident light 

(as photosynthetically active photon flux density; PPFD) (Landsberg, 1977) as 

well as temperature and respiration (Lloyd and Taylor, 1994). Using these 

relationships, NEE can be expressed as (Flanagan and Johnson, 2005;Glenn et al., 

2006a; Glenn et al. 2006b; Syed et al., 2006; Adkinson et al., 2011): 

 

    NEE= - Amax α PPFD  + R10Q10
(T-10/10) 

     Amax + α PPFD                     (3) 
 

where Amax is the maximum carbon assimilation (µmol m-2 s-1), or GPP, at infinite 

PPFD (µmol m-2 s-1); α is the apparent quantum yield derived from the initial 

slope of the light-response curve (mol CO2 mol-1 PPFD); R10 represents the 

ecosystem respiration rate at 10oC (µmol m-2 s-1); Q10 is the respiration 
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temperature response coefficient during temperature changes of 10 oC; and T is 

the atmospheric temperature (oC). Using five-day aggregated diurnal 

meteorological (PPFD and T) and NEE flux data, a series of non-linear least 

square, Gauss-Newton, regressions were applied, using the statistical package 

Systat10 (SPSS Inc. 2000), to calculate estimates of Amax, α, R10 and Q10 variables. 

The parameters were constrained over the following ranges: Amax between 1.0 and 

60 µmol m-2 s-1, α between 0.001 and 0.08 (mol CO2 mol-1 PPFD), R10between 

0.001 and 0.6µmol m-2 s-1, and Q10between 1.4 and 2.2.  

Resulting diurnal model parameters (Amax, α, R10 and Q10) were combined 

and plotted over the course of each growth cycle. Polynomial relationships as a 

function of time were fitted for each parameter. These functions, combined with 

measured PPFD and T, were used to estimate half-hourly values for GPP, TER, 

and modeled NEE. To determine the accuracy of the model, the modeled NEE 

was directly compared to measured NEE. 

 

2.2.4 Reflectance measurements: 

2.2.4.1 Hyperspectral data from Tram system: 

A dual channel field spectrometer (Unispec-DC, PP-Systems, Amesbury, 

Massachusetts, USA) was used to collect hyperspectral optical measurements on a 

periodic (roughly weekly) basis, following the tram system collection method 

described by Gamon et al. (2006b). This involved the use of a dual channel field 

spectrometer (Unispec-DC, PP-Systems, Amesbury, Massachusetts, USA) 
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(spectral range of 305-1130nm) collecting data every 1m along the 50m-length 

tram tack every hour throughout the collection day, as weather permitted. 

All raw reflectance data collected from the hyperspectral tram runs was 

corrected to actual target reflectance using a 99% reflective white standard panel 

(Spectralon, Labsphere Inc., North Sutton, NH). The correction procedure can be 

mathematically expressed as: 

 

ρcorrected = (Rtarget/Idownwelling) x (Idownwelling/Rstandard)      (4) 

 

where ρcorrected represents corrected reflectance. The first term (Rtarget/Idownwelling) 

represents the raw reflectance, expressed as a ratio of the upwelling radiance to 

the downwelling irradiance over the alfalfa field target. The second term 

(Idownwelling/Rstandard) represents the cross calibration value, calculated as a ratio of 

the downwelling irradiance to the radiance of the standard panel (Gamon et al. 

2006b). An assumption of this method is that the sky conditions are identical (or 

nearly identical) during target and panel readings. Using this formula, it is not 

necessary to apply a radiometric calibration, since the calibration coefficients 

would cancel.   

Spectral measurements collected at an hourly basis were averaged over the 

length of the track and average values were used in all subsequent analyses. 

Hyperspectral tram measurements provided a “benchmark” against which two-

band radiometer values were compared. Ideally, optical measurements were set 

out to be collected weekly including during the recovery period after major 
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disturbance events through harvesting, with each collection characterizing the 

diurnal reflectance of the canopy though hourly sampling. However, periodic 

precipitation events led to less extensive diurnal collections and seasonal coverage 

of these measurements.  

 

2.2.4.2 Broadband data from phenology station 

Broadband optical measurements from two-band radiometers provided 

fully automated continuous measurements of both the target reflectance and the 

sky conditions. The phenology tower allowed near continuous yearly 

measurements since first installed on June 6, 2009. Measurements included light 

conditions, through upward looking photosynthetic active radiation (PAR) and 

pyranometer (PYR) spot radiometers (Onset Computer Corporation, Bourne, 

Massachusetts, USA, Massachusetts), and canopy reflectance, through paired 

upward and downward-looking PAR and PYR sensors (Onset Computer 

Corporation, Bourne, Massachusetts, USA). Ancillary meteorological data 

included temperature and relative humidity (RH) measurements (HMP45C-L, 

Campbell Scientific Corp., Logan, UT, USA). Continuous optical measurements 

were logged at an interval of one minute throughout the entire growth seasons. 

Data was logged onto a HOBO H-21-011 Weather Station data-logger (Onset 

Computer Corporation, Bourne, Massachusetts, USA, Massachusetts) and 

downloaded every 15 days. 
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2.2.4.3 Calculation of reflectance indices 

Vegetation indices were derived from tram hyperspectral reflectance 

measurements at both diurnal and seasonal temporal scales. The normalized 

difference vegetation index (NDVI) was used as a proxy of green biomass. The 

index were constructed as follows: 

 

NDVI680,800  = (ρ800 – ρ680)/( ρ800+ρ680)         (5) 

 

where “ρ” refers to reflectance and the subscripts refers to the specific spectral 

wavelengths used (800 nm and 680nm). 

To assess NDVI proxies using broadband data, five different indices for 

canopy greenness were derived using the two-band sensors mounted from the 

phenology station. These five NDVI proxies included the Jenkins NDVI proxy 

method (Jenkins et al., 2007), the Wilson method (Wilson et al., 2007), the 

Huemmrich method (Huemmrich et al., 1999), the two band enhanced vegetation 

index (EVI2) method (Rocha and Shaver, 2009), and a revised version of the 

Huemmrich method (Gamon et al. 2011). The revised Huemmrich index, 

hereafter called Huemmrich II, was constructed as follows: 

 

NDVIHuemmrich_II = (ρPYR – ρPAR)/ (ρPYR + ρPAR)   (6) 

 

where ρPYR is the solar radiation reflectance calculated from the ratio of upwelling 

to downwelling radiation using the pyranometers; and ρPAR is the total reflectance 
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of photosynthetically active radiation (PAR) calculated from the ratio of 

upwelling to downwelling PPFD (Gamon et al. 2011). For clarity, we propose 

specific nomenclature that eases the identification of each proxy index as used 

throughout this thesis.  This involves stating the index followed by a subscript that 

recognizes the original author who proposed the proxy calculation. Each term and 

the literature reference where they were first discussed are listed in Table 2-1.  

 

Table 2-1: References and notation of the various greenness indices derived from broadband 
data. 
Proxy Index References 
NDVIJenkins NDVI proxy as outlined by Jenkins et al., 2007 
NDVIWilson NDVI proxy as outlined by Wilson et al., 2007 
NDVIHuemmrich_I NDVI proxy as outlined by Huemmrich et al., 1999 
NDVIHuemmrich_II Modified Huemmrich proxy outlined in Gamon et al. 2011 
EVI2 Two band EVI as outlined by Rocha and Shaver, 2009 
 

2.2.5 Direct fAPAR measurements: 

Light properties above and within the canopy were measured using a 

ceptometer (AccuPAR LP-80, Decagon, Pullman, Washington, USA). Light 

interaction with the canopy can be expressed as: 

 

1=fAPAR + ftrans + fRefVeg – fRefSoil      (7) 

 

where, fAPAR is the fraction of absorbed PPFD, ftrans is the fraction of transmitted 

radiation, fRefVeg is the reflected radiation from the vegetation, and fRefSoil is the is 

the fraction reflected by soil. Operationally, fAPAR is expressed following common 

convention: 
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fAPAR = 1- t – r + rs       (8) 

 

where, t is the fraction of transmitted radiation, r is the reflected radiation from 

the canopy, and rs is the is the soil reflectance component. fAPAR sampling periods 

correlated with hourly tram sampling events as measurements were gathered in 

concert with optical sampling. Individual canopy measurements were made every 

5 meters along the tram track throughout the diurnal collection period.  

 

2.3. Results: 

2.3.1. Monitoring through meteorological instruments: 

The evaluation of the midday (30 min about solar noon, 13:30 MDT) GPP 

time series for the entire 2010 growth season shows the progression through the 

phenological stages of dormancy, green-up and mature growth (Figure 2-2). 

Disturbance events, due to harvesting between growth cycles, are also 

distinguishable in the flux seasonal tends (grey bars, Figure 2-2). Gaps within the 

GPP dataset (Figure 2-2) are attributed to precipitation events that cause 

unreliable CO2 concentration measurements due to the use of an open path IRGA 

(LI7500, LI-COR Inc., Lincoln, NE, USA). Overall, the GPP patterns correlated 

with several meteorological variables. Seasonal trends of temperature (Figure 2-

3c) and VPD (Figure 2-3d) appear to have a strong association with that of GPP. 

Temperature increased during crop green-up and reached peak values during the 

second growth cycle where peak productivity occurred. VPD also increased 
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during green-up and, initially, appeared to continue this trend, however, the values 

decreased slightly during the beginning of the second growth cycle when frequent 

prolonged precipitation events occurred (Figure 2-3d). At the end of the season, 

both temperature and VPD seasonal declines coincided with a period of 

decreasing GPP and low precipitation. Time series of the incoming (downwelling) 

radiation shows a consistent pattern throughout growth cycles #1 and #2. A 

decline in crop productivity was observed during the third growth cycle, 

coinciding with a decline in PPFD (Figure 2-3b). Comparison between the 

seasonal patterns of relative humidity and GPP did not yield strong similarities 

(Figure 2-3e).  
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  (A) 

(B)  

 
Figure 2-2: Corresponding phenologic stages designated for (A) the gross primary 
production (GPP), and (B) NDVIHuemmrich_II greenness proxy for the 2010 growth season. 
Individual stage delineation was chosen through rate of change analysis of the broadband 
phenology tower seasonal data.  
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(A) 

(B)  

 
(C) 

(D)  

(E)  

 
Figure 2-3: Seasonal time series of mid-day GPP and (A) total precipitation, (B) PPFD (C) 
temperature, (D) calculated VPD, and (E) relative humidity. GPP was calculated from eddy-
covariance flux measurements.  
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2.3.2 Monitoring through remote sensing instruments: 

Comparison of the seasonal time series of narrow band NDVI680,800 and 

that of midday GPP values showed similar patterns (Figure 2-4). Some of the 

seasonal variability observed in GPP was not apparent in NDVI680,800 due to the 

non-continuous nature of narrow-band measurements (collected once a week). 

However, we should note that the high frequency and resolving power of flux 

instrumentation lead to inherently noisier measurements than any optical 

expression, regardless of temporal resolution. This is because NDVI doesn’t 

capture instantaneous variations due to wind and other stochastic processes that 

affect the fluxes. Additionally, tram data were not collected after the second 

harvesting event, thus no hyperspectral data is available for the third and final 

growth cycle.  

Time series of each of the broadband greenness proxy methods were also 

compared to seasonal productivity changes. Resulting patterns from each index all 

followed the general seasonal trajectory of GPP (Figure 2-5 b-f). One-to-one 

comparisons between the each proxy index and GPP during individual 

phenological stages (dormancy, green-up, and mature growth) allowed us to 

identify where deviations occurred throughout the seasonal progression (Table 2-

2). During dormancy all greenness indices showed very low correlations with 

GPP, with EVI2 and Huemmrich II having the best correlations. During green-

ups, all proxies showed linear correlations to GPP, with NDVIHuemmrich_II showing 

the best correlation (R2 = 0.663). Through the mature growth stage, the phenology 

and flux datasets plateaued, leading to stable NDVI and GPP values that produce 
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deceptively low correlation coefficients. However, visual analysis (figure 2-5) 

showed their patterns to be quite similar. For the overall season (all growing 

phases combined), all proxies had high correlations with GPP, with EVI having 

the best relationship (R2 = 0.871). The Huemmrich II proxy was shown to have 

the second highest correlation with GPP  (R2 = 0.840). Correlations during 

disturbance (through harvesting) events were not used due to the possible 

unreliability of flux measurements during this period associated with farm 

equipment emissions and higher than normal respiration rates associated with the 

decomposition of harvested biomass 

 
 

 
Figure 2-4: Composite of midday NDVI time series calculated through hyperspectral and 
broadband NDVI proxy indices compared to midday GPP. 
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      (A) 

(B)  

(C)  

(D)  

(E)  

(F)  

 
Figure 2-5: Time series of midday GPP and corresponding (A) NDVI680,800, (B) NDVIJenkins, 
(C) NDVIWilson, (D) NDVIHuemmrich_I, (E) EVI2, and (F) NDVIHuemmrich_II. NDVI680,800 was 
derived from narrow-band reflectance measurements from tram. All other NDVIs were 
derived from two-band sensors, where subscripts refer to the specific proxy method used. 
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Table 2-2: Correlations (R2)of broadband derived NDVI proxies and GPP during the 
dormancy, green-up, and mature growth stages.  
 

	  
Dormancy Green-up Mature Growth Combined Season 

NDVI Proxy  R2 R2 R2 R2 
Jenkins 0.211 0.648 0.086 0.811 
Huemmrich_I 0.164 0.634 0.074 0.799 
Wilson 0.211 0.65 0.086 0.816 
EVI2 0.379 0.637 0.253 0.871 
Huemmrich_II 0.211 0.663 0.09 0.84 

 

To evaluate the feasibility of using two-channel broadband data to track the 

seasonal changes in biomass, proxy NDVIs and EVI2 measurements were 

compared to measured NDVI680,800 values calculated from the spectrometer 

(Figure 2-6). Statistical evaluation, through paired t-tests, of the broad-band 

vegetation indices shows them all as being significantly related to measured 

NDVI680,800 (p<0.005). Simple one-to-one correlations show all proxy NDVIs as 

being linearly correlated to NDVI680,800; proxy calculation method Huemmrich II 

having the greatest correlation (R2 = 0.994). EVI2 was observed to be non-

linearly correlated to NDVI680,800.  
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(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
Figure 2-6: Time series and Simple correlations between narrow-band derived NDVI680,800 
and broad-band NDVI proxies calculated using the (A) Jenkins, (B) Wilson, (C) Huemmrich 
I, (D) EVI2,  and (E) Huemmrich II methods for the 2010 growing season.  
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2.3.3 Empirical comparison of broadband vs. narrow-band NDVI-fAPAR 

relationships: 

Midday NDVI data values collected from the tram system during 2009, 

2010, and 2011 were combined with fAPAR measurements of green vegetation 

(green fAPAR), collected at matching time periods under same light conditions, to 

determine an empirical relationship between the two (Figure 2-7a). The 

mathematical expression that characterized this relationship is: 

 

   fAPAR = 1.02 (NDVI680,800)3.45        (7) 

 

This non-linear function showed a high correlation coefficient (r2 =0.92) and 

showed small interannual variability, which was attributed to the better 

characterization of the relationship with increasing data. To minimize the effects 

of canopy structure due to changes in diurnal sun angle, only midday values (30 

minutes averaging window centered on solar noon, 13:30 MDT) were used to 

form this relationship. NDVI values between 2 and 3 represented the lower 

resolving limit of the spectrometer, thus values within this rage could be less 

reliable than the rest.  

Midday phenology data, collected during the same time period, was also 

used to determine the relationships between broadband vegetation indices and 

fAPAR (Figure 2-7b). Comparison between broadband relationships showed 

variability in patterns, with Jenkins, Huemmrich I, and Wilson NDVI-fAPAR 

functions all closely related to one another, while Huemmrich II and EVI2 
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showed similar curves that were different from the other proxy NDVI indices. All 

relationships derived from the proxies produced functions slightly offset 

compared to that of the tram-derived (Figure 2-7b). However, empirical 

normalization of broadband data to represent that of the hyperspectral signal 

resulted in all proxy NDVIs/EVI2- fAPAR functions as being statistically 

comparable as equation (6) (t-test; p<0.05) (Figure 2-7c). 

 
(A)      (B) 

 
(C) 

 
Figure 2-7: NDVI-fAPAR relationships derived from mid-day (A) hyperspectral spectrometer 
and (B) broadband spot radiometers data. Pane (C) represents resulting functions after 
calibration of broadband values to represent narrowband hyperspectral value outputs.  
 

2.4 Discussion: 
 

Temperature, moisture content and light availability interact with plants’ 

life-cycle events (Menzel et al. 2005; Kathuroju et al. 2007) and can be perceived 

as major drivers affecting ecosystem phenologic progression. These three 

variables have been show to significantly affect land-surface fluxes and account 
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for some of the dynamic changes observed in flux measurements (Goulden et al. 

1997; Sellers et al. 1996). For our ecosystem, growth dynamics were closely 

linked to temperature and water balance as shown by the close link of GPP with 

VPD and temperature seasonal trends. VPD seemed to be a better indicator of 

water balance than relative humidity, seemingly correlating with the notion that 

VPD more accurately monitors variation in atmospheric humidity as temperature 

changes as proposed by Anderson et al. (1939). PPFD, VDP and temperature can 

be conceptually thought as analogous to the components of the LUE model, where 

light availability is a measure of APAR, and temperature and VPD affect the 

photosynthetic efficiency of the canopy. 

The ability to use inexpensive spot radiometers to assess ecosystem state 

increases the feasibility of achieving continuous monitoring of the many diverse 

global ecosystems (Huemmrich et al., 1999; Balzarolo et al., 2011; Pastorello et 

al., 2011).  The comparison of optical time series’ to GPP can show if a simple 

remote sensing greenness product can track the general seasonal growth 

progression of the vegetation. Not all flux variability can be resolved by optical 

sensors as NDVI cannot capture the high-frequency changes in CO2, which are 

captured by eddy-covariance instruments. However, the high temporal resolution 

of two-band sensors does allow resolution of detailed seasonal patterns. A lack of 

temporal resolution of the hyperspectral dataset can lead to an inaccurate 

depiction of NDVI dynamics present throughout the growth season that are 

inherently resolved by continuous sampling of two-band sensors.  
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Results from correlation analysis of the proxy indices showed all of them 

as having a strong correlation with GPP values for the combined growing season. 

The low correlation between proxy NDVIs and GPP during the dormant stage 

(Table 2-2), likely related to the effects of low vegetation amounts, where canopy 

background effects are known to have a significant influence on optical 

measurements (Huete et al., 1985; Goward & Huemmrich, 1992; Price et al., 

1992).  Similarly low correlations found after disturbance events (Figure 2-5) 

were likely due to the presence of farm equipment and respiring vegetation left 

after harvesting. These canopy effects would have lingered until canopy closure, 

which occurred slightly into each of the green-up stages. These factors may have 

affected the NDVI proxy-GPP relationship during this stage, leading to a reduced 

correlation than was expected. Effects of canopy structure remained minimal for 

the rest of the growth season, as canopy closure was the predominant state of this 

ecosystem. However, in ecosystems where canopy structure was constant 

throughout the growth season we encounter weaker seasonal NDVI- productivity 

correlations (Gamon et al. 1995). 

The comparison between proxy and definite NDVI values showed that, for 

the purposes of estimating fAPAR and driving the LUE model, broadband derived 

greenness indices are all comparable to benchmark narrowband NDVI680,800 

measurements (Figure 2-6). The power function that characterize the EVI2 proxy-

NDVI680,800 relationship is likely due to the known saturation of NDVI680,800 at 

high relative values (Huete et al., 1999), and is inherently corrected during EVI2 

calculations (Rocha and Shaver, 2009). Further comparison of the broadband and 
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narrowband derived NDVI values showed proxy indices as having a much smaller 

range of values than our standard NDVI680,800. This could be partly associated 

with differences in sensor composition and response. The radiometric and spectral 

characteristics that define each sensor will have an effect on the quantitative 

measure of light conditions, which have been shown to significantly affect 

spectral products such as NDIV calculations (Teillet et al., 1997; Tittebrand et al., 

2009). Without knowing the specific spectral response, we cannot produce a first 

principle evaluation of broad and narrow band instruments which would allow a 

direct cross-comparison between the sensors. Without this information cross-

comparison of sensors are based on empirical observations and comparisons.   

Defining the NDVI-fAPAR relationship constitutes a first step to 

constructing an LUE model. Defining and comparing this relationship for each 

NDVI proxy expressions is vital to assessing the capability of using two-band 

sensors for constructing the model. Initial comparison of each of the proxy 

derived functions all showed a similar general pattern to that of the benchmark 

NDVI680-800-fAPAR relationship. However, each seemed to be offset by different 

amounts (Figure 2-7b). This variability is likely a function of the different 

methods by which each proxy has been calculated. Empirical normalization of the 

two-channel broadband data to narrow-band values using the one-to-one response 

relationships (Figure 2-6) reduced these differences and produced statistically 

equivalent functions.  

The ability to properly track GPP seasonal dynamics with broadband-

derived proxy NDVIs (Figure 2-5), the high correlation between proxy and 
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definite NDVI measurements (Figure 2-6), and the accurate characterization of 

the NDVI-fAPAR relationship (Figure 2-7) are all positive results pointing to the 

possibility of using two-band sensors to derive a LUE model. Noting that all 

proxy indices gave very high correlations with GPP and NDVI680,800, in 

subsequent chapters we chose to focus on a single proxy index. Proxy index 

NDVIHuemmrich_II was chosen as it yielded a high correlation with GPP (R2 = 

0.871), provided simplicity in calculation, and the highest correlation to our 

benchmark NDVI680,800. In subsequent sections of this thesis, NDVIHuemmrich_II will 

be referred solely as “proxy NDVI”. 
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Chapter 3 – Photochemical Reflectance Index as a proxy of light use 
efficiency 
 
 
3.1. Introduction: 

Conceptually, the LUE model is composed of two components 1) a 

structural component, described by changes in fAPAR, and 2) a physiological 

component, portrayed by the light use efficiency term. Addressing the efficiency 

term of the LUE model from remote sensing has been more challenging than 

addressing the fAPAR variable. As an indicator of xanthophyll cycle activity, PRI 

can reveal dynamic changes in photosynthetic efficiency at fine temporal and 

spatial scales (Gamon et al. 1992, 1993, Peñuelas et al., 1995). The xanthophyll 

cycle is particularly active under conditions of excess energy, i.e. departures from 

the linear, light-limited region of the photosynthetic light-response curve 

(Björkman and Demmig-Adams 1994). Therefore, it is during conditions 

involving transitions to excess light that PRI is likely to provide an accurate 

measure of xanthophyll cycle activity.  

Comparisons between the PRI and LUE at the canopy level and stand 

level (Filella et al. 1996; Gamon et al., 2001; Nichol et al., 2000, 2002; Strachan 

et al., 2002; Rahman et al., 2004; Garbulsky et al., 2008; Goerner et al. 2011) 

often show a good correlation between these two variables, at least for individual 

ecosystems. However, deviation in the LUE-PRI relationship often occurs in 

response to different vegetation types, sun angle, view angle, canopy structure, 

and pigment pools sizes among other factors (Barton and North, 2001; Gamon et 

al., 2001; Sims et al., 2006; Hilker et al., 2008a,b; Filella et al., 2009; Garrity et 
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al., 2011; Gamon & Berry, 2012). Further complications arise from the different 

operational definitions of LUE, with some studies defining it based on incident 

PPFD or “PAR” (Nichol et al. 2000, 2003; Grace et al. 2007) and others defining 

it based on absorbed PPFD or “PAR” (Drolet et al., 2005, 2008; Hilker et al., 

2008; Garbulsky et al., 2008; Goerner et al., 2009). Originally, light use efficiency 

was defined as a ratio of productivity to the amount of radiation intercepted by a 

crop to drive photosynthesis (Monteith, 1972; 1977). Later, authors have also 

calculated LUE based on absorbed light, which is presumably a more accurate 

estimate of light actually used for photosynthesis, and is closely related to 

intercepted LUE. The benefit of calculating LUE based on absorbed radiation 

(LUEAbs) is that by accounting for the structural component of vegetation (fAPAR), 

it can better isolate the physiological (efficiency) term. However, absorbed light, 

and the fraction of absorbed light used for photosynthesis, can be hard to measure, 

especially in tall, structurally complex vegetation. Consequently, LUE is often 

approximated using incident light (LUEInc). The effect of these two LUE 

expressions, and their effect on the PRI-LUE relationship, needs to be better 

understood. 

Significant progress has been made in exploring the effects of light 

conditions on the LUE-PRI relationship (Hall et al, 2008; Hilker et al., 2008a,b; 

Middleton et al., 2009). Still, the majority of studies overlook how changes in 

pigment pools or canopy structure can alter the reflectance properties and 

associated PRI or LUE values, all of which can confound the LUE-PRI 

relationship. Many remote sensing studies seem to make the assumption that 
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fluctuations in PRI represent only short-term photoregulatory processes associated 

with the xanthophyll cycle and neglect long-term processes that can also affect the 

index. Studies have shown that constitutive PRI changes due to pigment pool size 

variation over a growth season can account for most of the PRI variation and 

potentially confound the LUE-PRI relationship (Stylinski et al., 2002; Sims et al., 

2006; Filella et al., 2009; Garrity et al., 2011; Gamon & Berry, 2012). Similarly, 

changes in canopy or stand structure that affect reflectance patterns can also 

strongly influence PRI (Gamon et al., 1995; Barton and North, 2001). 

Consequently, to understand the mechanism of PRI response, it is important to 

determine what the index is truly representing, taking into account the irradiance 

and the spatial and temporal dimension of PRI measurements within a specific 

ecosystem. 

This study explored the suitability of PRI as a proxy for light use 

efficiency in an alfalfa agricultural field using the two commonly used LUE 

definitions (i.e. LUEAbs and LUEInc). One goal was to consider the effect of LUE 

formulation on the PRI-LUE relationship.  Also, we explicitly considered the 

effect of time scale by examining the LUE-PRI relationship both seasonally and 

diurnally. Garbulsky et al. (2011) suggested that highly productive crops would 

not have a significant relationship between PRI and LUEAbs, as there is a strong 

net CO2 uptake by the ecosystem and little excess energy or need for 

downregulation. Consequently, we expected that at the seasonal time scale, PRI 

would be a weak indicator of LUEAbs and that light absorption would be the 

dominant term in the LUE model. At the diurnal time scale, assuming negligible 
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changes in vegetation structure, we expected PRI to act as a proxy of efficiency, 

as has been shown before (Gamon et al. 1992, 1993, Peñuelas et al., 1995) 

 
3.2. Methods: 
 
 
3.2.1 Study site: 

All measurements were made in a homogeneous alfalfa field (Medicago 

sativa) located at the University of Alberta South Campus agricultural research 

farm; coordinates 53.497 N, -113.552 E. Monitoring occurred throughout the 

2009 to 2011 growth season using 1) a 50m Tram system (Gamon, et al., 2006b), 

providing hyperspectral optical measurements from 2009-2011; 2) a 3 m 

phenology/ meteorological station, providing broadband optical measurements 

from 2009-2011; and 3) a 2.5m eddy covariance flux tower, providing 

atmospheric-biospheric CO2 exchange measurements from 2009-2010.  Further 

descriptions of the study site and measurement design can be found in chapter 2. 

 

3.2.2 Hyperspectral tram reflectance: 

Hyperspectral optical measurements were collected once a week 

throughout the first two growth cycles of the 2010 growing season, using the tram 

based robotic system described in chapter 2 of this thesis and in further detail by 

Gamon et al. (2006b). This involved the use of a dual channel field spectrometer 

(Unispec-DC, PP-Systems, Amesbury, Massachusetts, USA) (spectral range of 

305-1130nm) collecting data every 1m along the 50m-length tram track. On some 

days, diurnal measurements were made by sampling every hour over the 
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collection day, as weather permitted.  For practical reasons, these hourly 

measurements were focused on the middle of the photoperiod (i.e. 13:30 MDT) 

when solar elevation angles were relatively high (solar azimuth range of 97o to 

257o), and did not include early morning or late evening sampling. 

All raw reflectance data collected from the hyperspectral tram runs was 

corrected to actual target reflectance using a 99% reflective white standard panel 

(Spectralon, Labsphere Inc., North Sutton, NH). The correction procedure can be 

mathematically expressed as: 

 

 ρcorrected = (Rtarget/Idownwelling) x (Idownwelling/Rstandard)      (1) 

 

where ρcorrected represents corrected reflectance. The first term (Rtarget/Idownwelling) 

represents the raw reflectance, expressed as a ratio of the upwelling radiance to 

the downwelling irradiance over the alfalfa field target. The second term 

(Idownwelling/Rstandard) represents the cross calibration value calculated as a ratio of 

the downwelling irradiance to the radiance of the standard panel (Gamon et al. 

2006b). An assumption of this method is that the sky conditions are identical (or 

nearly identical) during target and panel readings. Using this formula, it is not 

necessary to apply a radiometric calibration, since the calibration coefficients 

cancel.   

Corrected reflectance values were used to derive the photochemical 

reflectance index (PRI) as follows: 
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PRI = (ρ531 – ρ570)/ (ρ531 + ρ570)    (2) 

 

where “ρ” refers to reflectance and the subscripts refers to the specific spectral 

bands (531 nm and 570 nm) used for the index. On diurnal sampling days, for 

each of the hourly collections, PRI values were first calculated for each individual 

meter along the tram line and then averaged, resulting in a single PRI value per 

hourly collection period. 

 

3.2.3 fAPAR calculation: 

A ceptometer (AccuPAR LP-80, Decagon, Pullman, Washington, USA) 

was used to measure upwelling and downwelling radiation properties above and 

below the alfalfa canopy. Measurements collected under the canopy were done as 

close to the base of the canopy as possible. However, due to the thickness of the 

instrument (approximately 1 cm) and unevenness of the ground, below-canopy 

measurements were collected approximately 2cm above the ground. This failure 

to capture extremely short vegetation could lead to artificially low early season 

fAPAR measurements and consequently to false high LUEAbs estimates, with 

diminishing error as the canopy grew taller. These errors were unavoidable with 

this instrument. Canopy light property measurements allowed the calculation of 

the fAPAR values. This was calculated using the equation: 

 

fAPAR = 1- t – r + rs    (3) 
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where, t is the fraction of transmitted radiation, r is the reflected radiation from 

the canopy, and rs is the is the soil reflectance component (AccuPAR user’s 

manual, http://www.decagon.com/manuals/LPman12.pdf ). Individual 

measurements were made every 5 meters along the track and were done in concert 

with hourly optical sampling. fAPAR values were averaged to a single value for 

each hourly collection period. This allowed comparable fAPAR spatial and 

temporal coverage to that of optical measurements.  

 

3.2.4 Continuous fAPAR and APAR measurements: 

As previously outlined in chapter 2 of this thesis, the phenology station 

provided fully automated continuous measurements of the canopy reflectance (1 

minute logging interval). Data collected from the broadband sensors on the tower 

were used to calculate a proxy normalized difference vegetation index (NDVI), 

calculated from the ratio of upwelling to downwelling radiation and outlined by 

the mathematical expression: 

 

NDVIproxy= (ρPYR – ρPAR)/ (ρPYR + ρPAR)          (4) 

 

where ρPYR is the radiation reflectance calculated from the ratio of upwelling to 

downwelling radiation using a silicon pyranometer (Onset Computer Corporation, 

Bourne, Massachusetts, USA, Massachusetts); and ρPAR is the total reflectance of 

photosynthetically active radiation (PAR) calculated from the ratio of upwelling 
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to downwelling PPFD. The high temporal resolution of the broadband data 

allowed near continuous diurnal NDVI proxy values through the season. 

Through the use of the NDVI- fAPAR relationships previously defined in 

chapter 2, NDVIproxy values were converted into continuous seasonal fAPAR values. 

Proxy NDVI values were first converted to NDVI680, 800 values using empirically 

derived regressions (see chapter 2). These converted NDVI values were then used 

to construct a NDVI- fAPAR relationship. The resulting non-linear equation from 

the NDVIproxy- fAPAR curve (y = 3.76 (NDVIHuemmrich_II)5.38 ; R² = 0.92) was then 

used to derive continuous fAPAR values (every 1 minute) throughout the growing 

season (see chapter 2 for graphical representation of relationship). 

Absorbed photosynthetically active radiation (APAR) was calculated as the 

product of continuous fAPAR and PPFD: 

 

APAR = fAPAR x PPFD    (5) 

 

Combining continuous irradiance and fAPAR values derived from the broadband 

optical sensors provided APAR values at one-minute time steps throughout the 

2010 growing season.  

 

3.2.5 LUE derivations: 

To evaluate the impact of LUE formulation on the PRI-LUE relationship, 

two metrics of LUE were calculated. LUE values for the growth season based on 

absorbed radiation were computed as follows: 
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LUEAbs = GPP/APAR                       (6) 

 

Additionally, LUE was also calculated based on incoming PPFD as opposed to 

absorbed light using the following equation: 

 

LUEInc = GPP/PPFD                                   (7) 

 
3.2.6 Linear mixing model:  
 

A linear mixing model was used to explore the link between PRI and 

canopy structure by simulating the effect of different levels of canopy closure on 

PRI changes throughout the growing season. This model utilized brown soil and 

green canopy spectra from data collected during growth cycle #2 as end-members, 

and mixed different ratios of brown and green reflectance (assuming linear 

additive mixing). Spectral response from end members (100% and 0%) were 

defined and used to model the expected response of canopy cover levels of 0, 20, 

40, 60, 80, and 100% closure. PRI values were calculated from each of the 

modeled spectra and compared to measured values from growth cycle #2. Linear 

mixing model allowed us to assess the link between seasonal PRI response and 

canopy structure. 

 

3.2.7 Seasonal analysis of optical, fAPAR and flux measurements: 

For the seasonal analysis, PRI and fAPAR were expressed as two different 

temporal aggregation periods. For time series analysis, midday PRI and fAPAR 
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were calculated by averaging measurements taken during solar noon (~13:30 

MDT). Therefore, each midday value represents the average PRI and fAPAR values 

of approximately 20 minutes (time needed for tram and light bar sampling) 

centered on solar noon. Expressing PRI and fAPAR as midday values was done to 

match the temporal aggregation (30 minutes) of flux measurements. For direct 1-

to-1 correlation analysis, the entire PRI and fAPAR datasets of the 2010 growth 

season were used. Each of the values in the dataset represents an average of each 

hourly sampling collected throughout the growth season.  

All seasonal relationships of fluxes were derived using 30-minute 

aggregate midday values. Midday values were chosen to remove some of the 

variability associated with eddy covariance data. To match the temporal resolution 

of GPP, 30-minute averaged APAR values from midday were extracted for the 

entire growth season. Seasonal LUEs (absorbed and incident) were calculated 

using mid-day 30-minute averaged GPP and APAR values.  

 

3.2.8 Diurnal Analysis of PRI as an LUE proxy: 

Taking into account the limited amount of collection days available for 

diurnal analysis, we selected the most complete datasets that best represented the 

different canopy states encountered through out the growth season. Collection 

days 12/05/17, 12/06/12, and 12/06/28 represented mid green-up, mid mature-

growth, and end of growth cycle (#1), respectively. Collection day 12/07/27 was 

representative of the transition between green-up and the mature growth phase of 

growth cycle #2. For each collection day, light response curves were prepared 
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using the 30-minute aggregated NEE values over the full day (daylight hours 

only) and compared to corresponding PPFD values at identical temporal periods. 

Each of the light curves was divided in two sections (prior and post solar noon, 

approximately 12:30 MST). The slope of each section was calculated and 

represented the photosynthetic quantum yield (α). To remove the effect of 

hysteresis on α calculations, only periods 2 hours away from solar noon and 

within the photoperiod were considered (i.e. from 04:30- 10:30 MST; and from 

14:30-21:00 MST). For each of the light curve, the change in diurnal quantum 

yield (∆α) was calculated by comparing the slope of each of the sections prior and 

post solar noon. 

Diurnal analysis also compared PRI and PPFD responses for each of the 

four collection days. In this analysis, each PRI531,570 value represents an average 

of a single  tram run collected at a given hour of the day. PPFD values were 

averaged over 30-minutes to match the temporal coverage of flux and tram 

collection periods. The change in diurnal PRI (∆PRI) was calculated by 

comparing the maximum and minimal PRI values. Temporarily low PRI values 

that were caused by short periods of cloud cover were excluded from ∆PRI 

calculations.  
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3.3. Results:  

3.3.1 Analysis of seasonal patterns: 

Seasonal changes in PRI roughly follow seasonal changes in productivity 

(Figure 3-1d). Some slight deviations between PRI and GPP were observed 

during mid green-up of the first growth cycle and could suggest physiological 

response to light conditions, temperature, VPD or a combination of these 

variables. As expected given the large change in canopy structure during the 

growing season, the fAPAR seasonal pattern also closely tracked GPP (Figure 3-

1e). Similarly, the seasonal pattern of LUEInc closely followed GPP (Figure 3-1f) 

and showed similar overall patterns to that of PRI and fAPAR. However, this was 

not the case for LUEAbs, where there was a negative association with the GPP 

seasonal patterns (Figure 3-1g). The progression of LUEAbs values throughout the 

growth season shows a repeatable pattern occurring within each of the individual 

growth cycles (Figure 3-1g). The pattern consisted of high values during early 

green-up stage, followed by progressive decrease during mid green-up, and 

reaching a plateau during crop mature-growth stages. Clearly, the LUE 

calculation method has a significant effect on the resulting seasonal LUE pattern. 
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      (E) 

(F)  

(G)  

 
 

Figure 3-1: Time series of midday GPP and (A) irradiance, (B) temperature, (C) VPD, (D) 
PRI531,570,  (E) fAPAR, (F) LUEInc, and (G) LUEAbs. 
 
 

Analysis of the PRI time series shows it generally followed fAPAR (Figure 

3-2a). Comparison of PRI to the LUEInc time series also revealed comparable 

seasonal patterns (Figure 3-2b). Conversely, comparison of the LUEAbs and PRI 

time series revealed opposite seasonal patterns to one another (Figure 3-1c).  

The seasonal time series of LUEAbs appeared to be in the opposite direction 

to that of LUEInc. Generally, periods of high LUEAbs values seemed to correspond 

to low LUEInc values, and vice versa. Comparison of the two datasets showed 

them as being negatively correlated (R= -7.87, R2 = 0.62) (Figure 3-3). 

-40

-30

-20

-10

0

GP
P 

(µ
m

ol
 m

 -2
 s

-1
)

4/1/10 5/1/10 6/1/10 7/1/10 8/1/10 9/1/10
Date

1.0

0.8

0.6

0.4

0.2

0.0

fAPAR

 GPP
 fAPAR

-40

-30

-20

-10

0

GP
P 

(µ
m

ol
 m

 -2
 s

-1
)

4/1/10 5/1/10 6/1/10 7/1/10 8/1/10 9/1/10
Date

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

LUEInc  (µm
ol µm

ol
-1)

 GPP
 LUEInc

-40

-30

-20

-10

0

GP
P 

(µ
m

ol
 m

 -2
 s

-1
)

4/1/10 5/1/10 6/1/10 7/1/10 8/1/10 9/1/10
Date

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

LUEAbs  (µm
ol µm

ol
-1)

 GPP
 LUEAbs



	  
	   	  

65	  

       (A) 

(B)  

(C)  

 
Figure 3-2: Comparison of hourly collected fAPAR, midday LUEInc, and midday LUEAbs to 
hourly collected PRI531,570 seasonal time series.  
 
 

 
Figure 3-3: One-to-one correlation of absolute seasonal LUEAbs and LUEInc values showing a 
negative exponential correlation (R2 = 0.62). 
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3.3.2 Seasonal PRI comparison to PAR, fAPAR, and APAR: 

To further investigate the underlying reason for the opposing seasonal 

pattern of PRI531,570 and LUEAbs, correlations with other variables relating to the 

LUE model were also explored. The variables tested consisted of PAR, fAPAR and 

APAR, as they represent the direct measure of downwelling irradiance (PPFD), the 

measure of vegetation structure, and a combination of structure and available 

PAR irradiance (PPFD), respectively. PRI531,570 had a very low correlation to 

irradiance (R2 = 0.12) (Figure 3-4a), and a higher but still weak association to 

APAR (R2 = 0.49) (Figure 3-4b). However, there was a relatively strong correlation 

between PRI531,570 and fAPAR (R2 = 0.78) (Figure 3-4c). One source of scatter in 

the PRI-fAPAR relationship resulted from patchy canopy structure conditions 

during periods of open canopy. Also, early season fAPAR values could be slightly 

lower as the light bar might have failed to capture all green material (green leaves 

and stems) near the ground and below the instrument.   
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      (A) 

(B)  

(C)  

 
Figure 3-4: Pairwise correlation of PRI531,570  derived from hyperspectral reflectance 
measurements and (A) PAR (PPFD), (B) APAR, and (C) fAPAR for the entire 2010 growing 
season. 
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                (A) 

(B)  

 
Figure 3-5:  Spectral reflectance resulting from the linear mixing model for various 
percentages of canopy closure ranging from 0% to 100%. Modeled PRI values calculated 
from the idealized spectral reflectance, compared favorably to measured PRI values. 
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correlations to seasonal LUE. Indeed, the seasonal fAPAR-LUE (absorbed and 

incident light based) relationships show a very similar pattern to those of the PRI-

LUE relationships (compare Figure 3-6b to 3-6a). 

 

                  (A) 

(B)  

 
Figure 3-6: (A) Seasonal correlation between LUE (absorbed and incident light based) and 
PRI. (B) Seasonal correlation between LUE (through both methods) and fAPAR. PRI531,570 
derived from hyperspectral reflectance measurements. fAPAR calculated from light bar 
measurements.  
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this temporal scale for our alfalfa crop. A series of representative collection days 

that described the various canopy states encountered throughout the growth 

season are shown in Figure 3-7a. NEE light-response curves for each of these 

collection days allowed us to explore the actual physiological status of the 

vegetation independently of optical measurements. For collection day A and D, 

there seemed to be little diurnal variation in PRI (Figure 3-8e and 3-8h). Diurnal 

light-response curves of both of these days showed little deviation between the 

first and latter half of the day (Figure 3-8a and 3-8d). Analysis of the light curve 

for collection day B shows slight separation between the fist and latter half of the 

day (Figure 3-8b). The point of hysteresis begins during solar noon (12:30 MST). 

The diurnal PRI pattern was closely associated with the light regime (Figure 3-8f). 

As PPFD increased from morning to solar noon, PRI values decreased. Following 

solar noon, PRI values continued to decrease slightly, but subsequently showed 

recovery late in the diurnal cycle. During collection day C, there was a significant 

separation in the NEE-light trajectory between the first and latter part of the day 

(Figure 3-8c). The point of hysteresis of the curve began around 12:00 MST, 

which correlated with the daily peak PPFD value (1872 µmol m-2 s-1). The diurnal 

PRI trend, again, closely followed the light regime, declining as PPFD increased 

in the morning, then jumping up in response to midday cloud cover that extended 

from solar noon until 13:30 MST (Figure 3-8g). When looking at individual 

diurnal patterns of these collection days, there is evidence for classic midday 

decline in LUE in some cases (Figure 3-8f and 3-8g) but not all (Figure 3-8e and 

3-8h). These cases of a midday PRI dip correspond to days with hysteresis in the 
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light response curves, indicating days where photosynthetic downregulation 

occurred.  

For each of the collection days, quantum yield (α) was calculated for the 

first and second half of the diurnal cycle. By quantifying changes in diurnal α, we 

were able to directly measure diurnal changes in light-use efficiency. Comparison 

of ∆α to ∆PRI (calculated from diurnal tram measurements) showed a strong 

correlation (R2 = 0.91) (Figure 3-9). The linear relationship that emerges between 

∆α and ∆PRI confirms that, on a diurnal time scale, when changing canopy 

structure (∆ fAPAR due to crop growth) is not an issue, the “classic” PRI response 

can be seen, even in ecosystems with high net CO2 uptake such as crops.  

However, days with photosynthetic downregulation may not be visible in seasonal 

PRI trends, particularly if midday cloud cover masks these periods of midday 

depression (as in collection day C of Figure 3-7).   

 
 

 
Figure 3-7: Seasonal trend of GPP and PRI. Letters  “A, B, C, and D” corresponding to 
collection dates (12-05-17, 12-06-12, 12-06-28, and 12-07-27, respectively) used for diurnal 
analysis.  This figure was derived from Figure 3-1D. 
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(A)      (E) 

 
(B)       (F) 

 
(C)       (G) 

 
(D)       (H) 

 
 
Figure 3-8: Analysis of diurnal patterns of light response curves for collection days (A) 12-
05-17, (B) 12-06-12, (C) 12-06-28, and (D) 12-07-27 (listed as A, B, C and D, respectively, in 
Figure 3-6).  Changes in diurnal PRI and PPFD for collection days (E) A, (F) B, (G) C, and 
(H) Darealso illustrated. NEE points represent 30 minute running averages. Dashed lines in 
each light curve plot represent calculated quantum yield values (α) early (dotted line) and 
late (dashed line) in the day. Each PRI point is an average of 50 sample tram points collected 
hourly throughout the diurnal day. PPFD was collected every minute and averaged over 30 
minutes to match the flux temporal resolution. 
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Figure3-9: Correlation between ∆ quantum yield and ∆ PRI531,570 derived from diurnal 
analysis. 
 
 
4.4. Discussion:  

Addressing the efficiency term through the LUE model can be quite 

challenging. As this study shows, using PRI as a proxy of efficiency at a seasonal 

time scale may be problematic for this alfalfa crop. As our results indicate, some 

of the complexities associated with monitoring LUE include the fact that LUE 

does not vary greatly throughout the season. LUEAbs is generally flat during most 

of the growing season, except for early season where high GPP and small changes 
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canopy closure makes it difficult to track using PRI. Most of the seasonal changes 
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PRI, making it appear like a meaningful correlation between these variables, when 

in fact this correlation is driven by changing canopy structure, which also 

influences PRI (as demonstrated in Figure 3-5), not just the APAR term. 

At the seasonal scale, comparison of PRI to fAPAR and LUEAbs allowed us 

to identify the component (structural vs. physiological) that PRI most closely 

represents. The strong association between seasonal PRI and fAPAR time series 

(Figure 3-2a) was the first indicator that, for this alfalfa crop, PRI was mostly an 

indicator of the ecosystem’s structural component. Correlation between these two 

variables shows that 78% of the variability within this index can be explained by 

fAPAR (Figure 3-4c). Thus, over seasonal time scales, PRI is a better indicator of 

canopy greenness and total chlorophyll content (analogous to NDVI) than a proxy 

of the physiological status of vegetation. The linear mixing model further 

demonstrated the mechanism of the strong association between seasonal PRI 

changes and canopy structural progression. Conceptually, this is analogous to 

other studies that show PRI being similarly confounded by pigment pool sizes, 

particularly over long time periods (Stylinski et al. 2002; Sims et al. 2006; Filella 

et al., 2009; Garbulsky et al. 2011; Gamon & Berry, 2012).  

Even though the seasonal pattern largely shows PRI as being closely 

connected to the structural component, there is still evidence that the index can 

capture the physiological status of vegetation over short time scales through the 

activity of the xanthophyll cycle, as previously reported (Gamon et al. 1992, 

1993, Peñuelas et al., 1995). Periods of deviation between the fAPAR and PRI time 

series show evidence of slight physiological effects, beyond the structural 
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component, on the PRI signal. However, this divergence could be the result of 

using midday values for time series analysis. PRI patterns can be influenced, by 

short-term weather patterns, as the index is highly related to incoming radiation 

(Figure 3-8).  Analysis of midday PPFD, VPD and PRI values collected over the 

growing season (see Figure 3-2) indicated that some of the variation in midday 

PRI was indeed caused by irradiance (R2 = 0.33) and VPD (R2 = 0.22), but these 

correlations were much weaker than the PRI-fAPAR correlations shown in figure 3-

6, so are not shown here. Conditions of variable cloud cover, as can normally be 

encountered during mid-day at our site, can lead to some of the variability in the 

PRI values not accounted for by fAPAR in the overall seasonal PRI trend (see 

Figure 3-2).  

At the diurnal time scale, PRI does indeed accurately track changes in 

LUE, even though this may not be noticeable over a seasonal time scale. This is 

due to: a) the strong influence of canopy structure on PRI, and b) the confounding 

effects clouds (and possibly reduced VPD) can have on PRI, which cause 

temporary recovery of PRI during when a cloud passes at midday, as shown in 

collection days C and D. All of this supports our original contention (first 

suggested by Garbulsky et al. 2011) that in a healthy, unstressed crop, LUE 

variation (and thus PRI) is not terribly useful as an LUE indicator, and thus the 

focus of the modeling effort for a crop like this should be primarily directed at 

capturing APAR and secondarily at LUE (PRI). 

Analysis of the PRI patterns at the diurnal time scale shows evidence for 

the index’s association with physiological activity, and thus with the efficiency 
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term of the LUE model, at least over short time scales (when canopy structure 

does not vary much). The decrease in PRI values observed on representative days 

B and C, indicate photosynthetic downregulation, presumably due to de-

epoxidation towards the zeaxanthin state (Gamon et al. 2001). The variability in 

PRI values observed in day C is associated with cloud cover, causing the 

temporary decrease in excess light energy leading to a decrease need for non-

photochemical quenching for this short time period; this causes the otherwise 

reduced PRI to be “invisible” for this date when examining the seasonal trend of 

midday values (e.g. Figure 3-2a).The minimal hysteresis in the light curve pattern 

in representative days A and D, suggest little diurnal downregulation on these 

dates. This is further supported by the minimal variability of PRI on these days, 

suggesting that substantial non-photochemical quenching did not occur since light 

availability did not exceed the saturation threshold of vegetation (Bjorkman and 

Demming-Adams, 1994). Alternatively, on days B and C, the separation in NEE 

light response between the initial and latter part of the day, and the parallel 

changes in PRI, indicates PRI was able to clearly detect this short-term stress 

associated with midday photosynthetic downregulation. 

At the diurnal time scale, changes in leaf movement (heliotrophic alfalfa 

leaves) can lead to measurable changes in diurnal vegetation structure. Yet, in 

comparison to the overall structure changes occurring throughout the growth 

season, structural changes due to leaf movement appeared to be minimal. This is 

confirmed by comparing the small changes in diurnal fAPAR (max diurnal ∆fAPAR 

= 0.05) to the larger seasonal changes (approximately ∆fAPAR = 0.73). Therefore, 
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one can assume that changes in PRI, at the diurnal time scale, are primarily driven 

by downregulation in response to saturating light conditions, and not due to 

changing canopy structure. The parallel patterns between diurnal PRI and 

illumination in all diurnal analysis demonstrate that the degree of excess 

irradiance has a dominant effect on PRI dynamics over the short term as 

previously reported by Gamon et al. (2001, 2013). However, this was only 

apparent in the context of diurnal temporal periods, and was not clearly evident in 

the seasonal PRI patterns.  

With the complexity of trying to distinguish the underlying mechanisms 

affecting PRI signal at the various temporal dimensions (seasonal, diurnal, etc.), 

the ability to interpret PRI in terms of light response curves provides a way to 

clearly identify if the variability in signal is attributed to physiological changes in 

light use efficiency. Our results show an example of this analysis at the diurnal 

level (Figure 3-6), however, due to limitations in the temporal coverage of tram 

data, this analysis could not be conducted for every day over the full season. 

Limitations in temporal dimension of the dataset call for the need for continuous 

PRI measurements if we are to fully characterize these effects. Similar to the two-

band NDVIproxy sensors discussed in chapter 2, automated PRI sensors would 

provide us with a detailed view of the dynamic changes occurring within an 

ecosystem, and would help define the drivers (i.e. structural or physiological) 

affecting ∆PRI at the seasonal and diurnal temporal scales (Garrity et al. 2010, 

Balzarolo et al. 2011). Skye Instruments Ltd. and Decagon Devices Inc. are two 

companies currently developing continuous PRI sensors for commercial 
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distribution. However, Skye PRI sensors are still poorly characterized and 

Decagon PRI sensors are still undergoing field-testing and development, hence 

more progress in sensor development may be needed before these sensors can be 

used to accurately measure PRI.  

My findings support the contention that proper interpretation of PRI 

depends largely on the context, which includes time scale, type and condition of 

canopy, and irradiance.  Consequently, even with the development of automated 

PRI sensors, we recommend that all PRI studies should be complemented with 

measurements of leaf pigments, canopy structure, PPFD, and photosynthesis (or 

net carbon flux) measurements. It is only through the complete suite of 

measurements that we can account for effects of different vegetation types, sun 

angle, view angle, canopy structure, pigment pools sizes, and level of 

downregulation, all of which are known to effect PRI (Barton and North, 2001; 

Gamon et al., 2001; Sims et al., 2006; Hilker et al., 2008a,b; Filella et al., 2009; 

Garrity et al., 2011; Gamon & Berry, 2012). Attaining a pure PRI signal that can 

serve as an indicator of efficiency, at all temporal scales, would leave us one step 

closer to deriving a purely remote sensing driven LUE model for assessing 

productivity in any terrestrial ecosystem.  
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Chapter 4 – Effects of Temporal aggregation on LUE model accuracy  

 

4.1 Introduction: 

The LUE model allows the direct integration of optical measurements with 

flux measurements. Integration of optical and flux measurements can avoid some 

of the limitations associated with each independent method. Remote sensing 

provides the ability to sample in sites that are not ideal for eddy covariance 

technique including ecosystems with high heterogeneity or with clear topographic 

relief. However, criticism arises from the LUE model’s dependence on empirical 

observation. Integration of optical sampling with eddy covariance can strengthen 

our understanding of the mechanisms underlying the LUE model.   

 One of the primary goals involving remote sensing and flux dataset 

integration has been the validation of terrestrial carbon exchange estimated from 

satellite products using net ecosystem carbon exchange values from the global 

flux network as a reference (Rahman et al., 2004; Turner et al., 2005; Heinsch et 

al., 2006; Sims et al., 2006; Coops et al., 2007). With progress in this area, 

research priorities have continued to focus into exploring individual ecosystem 

processes by partitioning net ecosystem carbon exchange into its component 

fluxes: gross primary productivity and ecosystem respiration. The integration of 

optical with flux measurements can provide an additional method for the 

partitioning of fluxes, thus helping provide further insight into ecosystem 

functioning (Gamon, 2006).   The evaluation of the individual components allow 
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for a more mechanistic understanding of carbon cycle dynamics (Falge et al., 

2002; Law et al., 2002). 

One of the challenges of integrating optical and flux data arises from the 

different time and space scales of optical and flux measurements.  To achieve 

meaningful integration of remote sensing with flux data, an in-depth assessment 

exploring the temporal aggregation requirements needed to build relationships 

that properly represent the physiological status of plant canopies is necessary. 

Recently, Sims et al. (2005) observed a strong correlation between midday 

satellite based gross CO2 and daily aggregated carbon flux at a variety of sites. 

However, the low temporal resolution associated with satellite based 

measurements makes it difficult to fully explore the effect data aggregation has on 

the accuracy of integration. Field optical sampling provides an experimental 

platform for the integration of optical and flux measurements (Gamon et al. 

2006).   

The main objectives of this chapter are to: 1) explore the effect of 

aggregation on the terms of the LUE model, both individually and combined and 

2) determine the optimal aggregation period that will allow the most accurate 

prediction of fluxes from optical measurements. This case study will hope to 

establish some of the issues associated with developing an accurate LUE model 

that can be compared and integrated with flux derived productivity measurements. 
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4.2 Methods: 

4.2.1 Study site: 

The homogeneous alfalfa field (Medicago sativa) was located at the University of 

Alberta South Campus agricultural research farm; coordinates 53.497 N, -113.552 

E. Monitoring occurred throughout the 2009 to 2011 growth seasons at various 

extents using 1) a 50m tram system (Gamon, et al., 2006b), providing a sampling 

platform for hyperspectral optical measurements from 2009-2011; 2) a 3 m 

phenology/ meteorological station, providing broadband optical measurements 

from 2009-2011; and 3)  a 2.5m eddy covariance flux tower, providing 

atmospheric-biospheric CO2 exchange measurements from 2009-2010. For more 

information on these methods, refer to chapter 2. 

 

4.2.2 Eddy-covariance derived GPP:  

 The eddy covariance (EC) technique (Baldocchi et al., 1988, Moncrieff et 

al., 1997; Aubinet et al., 2000; Baldocchi, 2003) was used to measure net 

ecosystem CO2(µmol m-2 s-1), latent heat (LE) (W m-2), and sensible heat (H) (W 

m-2) fluxes over the study field. Fluxes were measured at 10Hz and averaged over 

30 minute aggregation periods throughout 2009 and 2010 growing seasons. High 

frequency eddy covariance data were processed using the post-acquisition 

software EdiRe (University of Edinburgh) program. Flux of CO2 was expressed as 

the product of mean air density and the covariance between instantaneous vertical 

wind velocity and concentration fluctuations (details outlined in chapter 2 of this 

thesis). 
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Partitioning of measured net ecosystem exchange (NEE) (µmol m-2 s-1) into 

gross primary productivity (GPP) (µmol m-2 s-1) and total ecosystem respiration 

(TER) (µmol m-2 s-1) was performed using the light-response curve method 

(Flanagan and Johnson, 2005;Glenn et al., 2006a; Glenn et al. 2006b; Syed et al., 

2006; Adkinson et al., 2011). This method first involves fitting a non-linear 

regression using the following equation: 

 

    NEE= -   Amax α PPFD  + R10Q10
(T-10/10) 

     Amax + α PPFD                       (3) 
 

where Amax is the maximum carbon assimilation (µmol m-2 s-1), or GPP, at infinite 

PPFD (µmol m-2 s-1); α is the apparent quantum yield derived from the slope of 

the light-response curve (mol CO2 mol-1 PPFD); R10 represents the ecosystem 

respiration rate at 10oC (µmol m-2 s-1); Q10 is the respiration temperature response 

coefficient during temperature changes of 10oC; and T is the atmospheric 

temperature near the ground (oC). For further details regarding partitioning of 

fluxes refer to chapter 2. 

 

4.2.3 Vegetation indices: 

The vegetation index NDVI was derived from hyperspectral reflectance 

tram measurements. NDVI was used as a proxy for fAPAR (Kumar & Monteith, 

1981; Sellers et al., 1987; Prince, 1991; Goward & Huemmrich, 1992). The index 

was constructed as follows: 



	  
	   	  

86	  

 

NDVI680,800  = (ρ800 – ρ680)/( ρ800+ρ680)         (4) 

 

where “ρ” refers to reflectance and the subscripts refers to the specific spectral 

bands used (800 nm and 680nm). 

Data collected from the broadband sensors on the phenology station were 

used to calculate a proxy normalized difference vegetation index (NDVI), derived 

based on the concept presented by Huemmrich et al. (1999). It was constructed 

from the ratio of upwelling to downwelling radiation and outlined by the 

mathematical expression: 

 

NDVIproxy = (ρPYR – ρPAR)/ (ρPYR + ρPAR)          (5) 

 

where ρPYR is the total radiation reflectance calculated from the ratio of upwelling 

to downwelling radiation using a silicon pyranometer (Onset Computer 

Corporation, Bourne, Massachusetts, USA, Massachusetts); and ρPAR is the total 

reflectance of photosynthetically active radiation (PAR) calculated from the ratio 

of upwelling to downwelling PAR radiance and irradiance (PPFD) using a 

quantum sensor (Onset Computer Corporation, Bourne, Massachusetts, USA, 

Massachusetts). The high temporal resolution of the 2-channel broadband data, 

logging every minute and averaged over 30 minute aggregation periods, allowed 

near-continuous diurnal NDVI proxy values through the season. Refer to Chapter 

2 of this thesis for further detail. 
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4.2.4 fAPAR and APAR values and derivations:  

The fraction of absorbed photosynthetically active radiation (fAPAR) 

absorbed by the alfalfa canopy was measured hourly in concert with optical 

sampling and calculated as previously outlined in chapter 2 of this thesis. Through 

the use of the previously defined NDVI680,800-fAPAR and NDVIproxy-fAPAR 

relationships, continuous fAPAR values were calculated. Figure 4-1 shows the 

detailed methodology describing the process used to derive these values. NDVI 

(680,800 and proxy) and fAPAR midday values were used to determine NDVIproxy- 

fAPAR and NDVI680,800-fAPAR seasonal trends. Comparison between the two 

showed the proxy NDVI based relationship to have a similar pattern to that of the 

benchmark NDVI680,800-fAPAR relationship, but with a slight offset (see detailed 

analysis in chapter 2). To remove the offset, proxy NDVI values were empirically 

corrected to match those of measured NDVI680,800 and then used to construct a 

new NDVI- fAPAR relationship. The resulting non-linear equation from the 

NDVIHuemmrich_II - fAPAR curve was then applied to all the NDVIproxy values, 

resulting in continuous fAPAR values at one-minute intervals for the entire growth 

season. Continuous absorbed photosynthetically active radiation (APAR) values, at 

one-minute intervals, were a product of continuous fAPAR values and directly 

measured PPFD logged every minute throughout the growing season. 
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Figure 4-1: Flow chart depicting the method used to calculate continuous fAPAR derived from 
the measured NDVI680,800- fAPAR relationship. Comparison between the NDVI680,800 and 
NDVIproxy values allowed the empirical correction of the 2-channel broadband data for the 
2010 growth season. The power equation describing the empirically corrected NDVIproxy- 
fAPAR relationship was applied to all NDVIproxy values collected throughout the season, 
allowing the calculation of continuous fAPAR values for the entire 2010 growth season.  
 

4.2.5 Temporal aggregation of LUE model variables: 

 A detailed assessment of the effect of temporal aggregation on the terms 

of the LUE model, both individually and combined, was performed to determine 

how best to integrate the flux and optical data streams. For temporal aggregation 

analysis, the LUE model equation was expressed as: 

 

[------ III ------] 
GPP = (fAPAR x PAR)          (7) 
 [IV]           [I]           [II] 
 [------------ V ------------] 

 

 where the product of (I) the fraction of absorbed photosynthetically active 

radiation (fAPAR), and (II) photosynthetically active radiation (PAR) is equivalent 
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to (III) the absorbed photosynthetically active radiation (APAR); and can be 

directly compared to (IV) gross primary productivity (GPP). Conventional 

expressions of the LUE model contain an efficiency term (ε), however, as 

discussed in chapter 3, due to the low influence of the physiological constituent 

on the overall seasonal productivity at our test site, this term was disregarded. 

Also, the low temporal coverage of PRI measurements prevented us from 

applying the same analysis to efficiency. Each of the variables in the LUE model 

were aggregated through averaging over increasing periods from 1 to 24 hours 

around midday values for each day of the growth season. Roman numerals I-V 

refer to the sequence in which the terms were aggregated, and indicate whether 

these terms were aggregated individually (I, II, IV) or in combination (III, V).  

Aggregation by averaging fAPAR was done using previously calculated 

continuous fAPAR values. We should note that the NDVI-fAPAR relationship built 

on midday values was used to calculate continuous fAPAR values. To better 

illustrate this, a conceptual depiction of this process can be seen in figure 4-2 (top 

panel). Although there are some drawbacks to this method, the approach provided 

continuous fAPAR values for all times of the day throughout the entire growth 

cycle. Aggregation effect on fAPAR (method I of equation 7) was evaluated by 

aggregating continuous fAPAR values (original logged at 1 minute intervals) while 

maintaining all other variables of the LUE model constant. fAPAR values were 

aggregated over periods ranging from 30 minutes, matching the flux aggregation, 

to 24 hours. An LUE model was driven from each of the aggregation periods and 
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modeled GPP was compared to calculated GPP values. Figure 4-3b provides a 

flowchart of the aggregation methodology specific for continuous fAPAR. 

PAR values were collected at one-minute intervals. Measurements were 

aggregated over periods ranging from 30minutes to 24 hours. To test the 

aggregation effect on PAR, a series of LUE models were derived from each of the 

PAR aggregation periods, while maintaining all other variables at a designated 

constant aggregation period, and comparing the resulting model values to GPP 

(Figure 4-3a). The same general process was used to assess the effect of APAR and 

GPP aggregation (Figure 4-3c and 4-3d respectively). The fifth aggregation 

method comprised of a combination of all variables (Figure 4-3e). An optimal 

aggregation period was determined for each iteration, and was defined as the 

temporal aggregation period resulting in the highest coefficient of determination 

value. This was done for each of the three growth cycles within the 2010 growth 

season.  
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Figure 4-2: Conceptual model showing how NDVIproxy data were associated with fAPAR 
measurements during the calculation of continuous fAPAR values. To construct the 
NDVI680,800-fAPAR relationship, continuous NDVIproxy measurements were compared only to 
midday values. The bottom panel is meant to represents the aggregation periods varying 
from 30 min. to 24 hours, centered on solar noon (approximately 13:30 MDT). 
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(A) 

 
(B) 

 
(C) 

 
(D) 
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(E) 

 
Figure 4-3: Work flows for aggregation of (A) PAR, (B) fAPAR, (C) APAR, (D) GPP, and (E) all 
variables.  
 

4.3 Results: 

4.3.1 Temporal aggregation of each LUE model variable: 

The initial qualitative assessment of the effect of aggregation on each of 

the LUE variables is easily illustrated by observing changes in their time series 

patterns (Figure 4-4). Aggregation of each of the LUE variables reduced 

variability inherent in continuous data, yielding clearer diurnal and seasonal 

patterns. The quantitative impact of temporal aggregation on model accuracy was 

determined by calculating coefficients of determination (R2 values) for each of the 

aggregation period iterations within each aggregation method.  

Evaluation of the impact of PAR aggregation for the growth cycle #1 

(Figure 4-5a) shows a significant initial increase in accuracy during the first 4 

hours of aggregation (R2 range of 0.96-0.83, ∆R2= 0.13). This upsurge is then 

followed by very slight increases, reaching a maximum R2 = 0.97 that correlated 

to an optimal aggregation time period of 9 hours. Following peak accuracy, we 

observed a slightly decreasing plateau continuing until maximum aggregation 

period (24 hours). Very similar overall PAR aggregation effect patterns were 

observed for growth cycles #2 and #3, but the R2 values were lower. Testing of 
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the fAPAR variable for the first growth cycle showed negligible sensibility to 

aggregation, having a maximum ∆R2 ≈0.003 throughout the entire aggregation 

period (Figure 4-5b). The optimal aggregation period was determined to be 12 

hours, but the lack of sensibility to aggregation makes it hard to confidently 

resolve a definite optimal period.  Similarly flat aggregation patterns were 

observed for growth cycles #2 and #3 but the R2 values declined with each 

subsequent cycle. The general pattern for aggregation of APAR within each growth 

cycle was as expected, as it appears to be a combination of patterns observed form 

the PAR and fAPAR aggregation methods. As in the PAR aggregation patterns, we 

observed an initial increase in R2 values, followed by a plateau (Figure 4-5c).  

Aggregation of flux-derived GPP showed an initial high responsiveness to 

aggregation, showing a ∆R2 = 0.09 (R2 range of 0.96-0.87) within the first five 

aggregation hours. This was followed by slow continuous increases in R2 values, 

until reaching optimal aggregation periods of 5 hours in all growth cycles, after 

which we observed a continuous slow decrease in values as flux variability 

increases and boundary layer conditions deteriorate (Figure 4-5d). Aggregation 

method V, where all terms were varied, showed patterns similar to both method 

III and IV. In growth cycles #1 and #2, again we observed an initial high 

sensitivity to aggregation continuing until peak accuracy, followed by a slow 

continuous decrease in R2 values. For growth cycle #3, no initial rise in accuracy 

was observed. 

When each of the aggregation methods was compared to one another, 

through all growth cycles, aggregation method V showed the greatest accuracy, 
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defined by the comparison of R2 values for each aggregation method. Also, inter-

comparison of growth cycles showed overall decreasing accuracy from cycle #1 

to cycle #3 as these cycles become shorter and individual stages less distinct. 

Optimal aggregation periods for each cycle and aggregation method are 

summarized in Table 4-1. 

(A) 

(B)  

(C)  

(D)  

 
Figure 4-4: Comparison of the effect of aggregation through averaging on the time series of 
variable (A) PAR, (B) fAPAR, (C) APAR, and (D) GPP aggregated over 30 minutes (left panels) 
and 12 hours (right panels). Aggregation reduces noise and generates a clearer pattern of 
diurnal changes.   
 
 

2000

1500

1000

500

0

PA
R 

(µ
m

ol
 m

-2
s-1

)

150145140135130125120115110
Date

1400

1200

1000

800

600

400

200

0
PA

R 
(µ

m
ol

 m
-2

s-1
)

150145140135130125120115110
Date

0.8

0.6

0.4

0.2

0.0

fA
PA

R

150145140135130125120115110
Date

0.6

0.5

0.4

0.3

0.2

0.1

0.0

fA
PA

R

150145140135130125120115110
Date

1.0

0.8

0.6

0.4

0.2

0.0

A
PA

R 
(µ

m
ol

 m
-2

s-1
)

150140130120110100
Date

1.0

0.8

0.6

0.4

0.2

0.0

A
PA

R 
(µ

m
ol

 m
-2

s-1
)

150140130120110100
Date

-30

-25

-20

-15

-10

-5

0

GP
P 

(µ
m

ol
 m

-2
s-1

)

150145140135130125120115110
Date

-30

-25

-20

-15

-10

-5

0

GP
P 

(µ
m

ol
 m

-2
s-1

)

150145140135130125120115110
Date



	  
	   	  

96	  

 
(A) 

(B)  

(C)  

(D)  

(E)  

(F)  
Figure 4-5: Coefficient of determination as a function of aggregation period (hours) for LUE 
model variables (A) PAR, (B) fAPAR, (C) APAR, (D) GPP and (E) all variables aggregated in 
concert; for growth cycle #1 (red), growth cycle #2 (green), and growth cycle #3 (blue) within 
the 2010 growth season. 
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Table 4-1: Resulting optimal aggregation periods for each of the aggregation methods. 
Individual periods were calculated for each of the three growth cycles within the 2010 
growth season and a composite of the entire growth season. 

Growth Cycle PAR fAPAR APAR GPP 
All 
Parameters 

2010 GC#1 9 hr. 12 hr. 9 hr. 5 hr. 10 hr. 
2010 GC#2 16 hr. 15 hr. 15 hr. 5 hr. 8 hr. 
2010 GC#3 14 hr. 14 hr. 13 hr. 5 hr. 7 hr. 
Full Season 15 hr. 16 hr. 15 hr. 4 hr. 9 hr. 

 

4.3.2 Optical vs. flux productivity comparisons based on optimal aggregation 

periods: 

 To further explore the integration of optical and flux measurements, a 

series of optically driven LUE models, using the previously defined optimal 

aggregation periods of PAR, fAPAR, and APAR, were compared to optimally 

aggregated GPP (9hrs., 12 hrs., and 9hrs. for GC#1, respectively) (see Table 4-1 

for all aggregation periods). This was done for each of the three growth cycles as 

well as a composite of the entire 2010 growth season. Each of the models can be 

though of as increasing in complexity and starting with PAR, fAPAR, and APAR 

variables as drivers. The LUE model based on PAR showed little association with 

GPP (R2 = 0.19 for growth cycle #1) (Figure 4-6a). The relationship showed 

significant dispersion in values and no clear seasonal trajectory throughout each 

of the three growth cycles. The model driven by fAPAR showed a strong positive 

non-linear correlation to GPP (R2 = 0.85 for growth cycle #1) (Figure 4-6c). A 

strong seasonal trajectory started to become defined showing a clear positive 

correlation between canopy greenness and GPP. Deviations in the relationship 

were attributed to periods directly following strong precipitation events, where 

flux measurements and calculated productivity appeared to be undervalued. The 
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final and more complex APAR driven LUE model showed the greatest correlation 

to productivity (R2 = 0.97 for growth cycle #1) (Figure 4-6d). The very clear 

seasonal trajectory appeared to be non-linear for each of the growth cycles, as 

APAR values seemed to increase while productivity plateaued.   

(A) 

(B) 

 
(C) 

 
(D) 

 
Figure 4-6: Comparison between measured GPP and optically derived representation of 
productivity through (A) PAR, (B) NDVIHuemmrich_II, (C) fAPAR, and (D) APAR for growth cycle 
#1 (red), growth cycle #2 (green), and growth cycle #3 (blue) within the 2010 growth season. 
 

For each model, the three growth cycles showed patterns that were 

generally comparable. This was specially the case with the PAR-GPP 

comparisons, where the data set ranges seemed to all fall within one other’s 

(Figure 4-7a). Comparisons of fAPAR-GPP growth cycle relationships showed the 

first and third cycles as following a similar seasonal trajectory, while the second 
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cycle had slightly higher GPP per fAPAR values (Figure 4-7b). The seasonal 

trajectory difference of cycle #2 became more pronounced in the APAR-GPP 

correlations (Figure 4-7c) and is supported by greater average GPP values during 

this time period, relative to the other cycles. When looking at the APAR-GPP 

relationships for each of the individual growth cycles, there is some evidence of 

hysteresis (trajectory not shown). 

 
(A)      

(B)  

(C)  

     
Figure 4-7: Seasonal comparison of all combined growth cycles between measured GPP and 
optically derived representation of productivity through (A) PAR, (B) fAPAR, and (D) APAR.  
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Using an optimally aggregated APAR driven LUE model for each growth 

cycle and the complete growing season, optical based productivity values were 

calculated and compared to optimally aggregated GPP (9hrs, 15hrs, 13hrs, and 

15hrs for GC#1, GC#2, GC#3, and full season, respectively). Time series plots of 

productivity for each of the growth cycles allowed us to assess if modeled GPP 

could resolve the seasonal dynamics encountered throughout the 2010 growth 

season. Assessment of the first growth cycle showed very close association 

between the modeled and measured GPP (Figure 4-8a). Major deviations between 

the measured and modeled values was observed during the start of the season and 

continued until green-up initiated. During green-up and maturity, modeled GPP 

accurately tracks the seasonal dynamics observed in measured values. 

Furthermore, the continuous APAR dataset allowed the calculation of continuous 

productivity values, even during periods where the flux dataset contained gaps 

due to precipitation or instrument malfunction events. Comparison between 

modeled and measured GPP during the second and third growth cycles showed 

similar results (Figures 4-8b and 4-8c, respectively). Divergences mainly occurred 

during recovery following harvesting events but correlations returned during 

green-up and maturity phases.  

Due to variation in optimal aggregation periods between growth cycles, 

modeling of the entire 2010 growth season was performed by first determining the 

optimal aggregation period of all combined growth seasons (15hrs, 16hrs, 15hrs, 

4hrs, and 9hrs for PAR, fAPAR, APAR, GPP, and all variables combined, 

respectively). Also, multiple model iterations using single growth season average 
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aggregations were tested and resulted in the same time series pattern, changing 

only the model’s scale ranges. From the evaluation of the entire season, we were 

able to observe a deviation between the modeled and measured GPP during the 

second growth cycle. Modeled values seem to underestimate productivity 

throughout this second cycle, especially considering that this cycle was the most 

productive due to high total precipitation during this period.  

 
 
 
(A)     (B) 

 
(C)     (D) 

 
Figure 4-8: Time series of measured GPP and APAR derived productivity for (A) growth cycle 
#1, (B) growth cycle #2, (C) growth cycle #3, and (D) the entire 2010 growth season.  
 

 

4.4 Discussion: 

 As this study shows, the method by which data is treated to derive the 

LUE model directly influences it’s overall accuracy. More specifically, temporal 

aggregation can leads to sigificant changes in model accuracy (Figure 4-5). 

Furthermore, our results indicate that aggregation does not only impact optically 
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derived variables but also those derived from eddy covariance fluxes (Figure 4-

5e). This illustrates the importance of understanding the impact of data 

manipulation and determining optimal approaches by which remote sensing and 

flux measurements can be integrated and result in accurate ecosystem productivity 

measurements.  

 The aggregation exercise not only provides a road map as to how to 

construct the most accurate model based on optimal periods, it also provided 

insight as to the effect each variable has on the overall model. PAR showed high 

sensitivity to aggregation, most likely due to the changing conditions encountered 

at our experimental site around mid-day, where clouds frequently appeared near 

solar noon. Optimal aggregation periods for each of the growth cycles seem to 

suggest that variability in PAR would be best dealt with by aggregating over a 

period approximating the diurnal photoperiod allowing minimization of 

variability through averaging. fAPAR variability seemed to be insensitive to 

aggregation (Figure 4-1b). The lack of variability is most likely a function of the 

method used to calculate continuous fAPAR using NDVIproxy values. By comparing 

all NDVIproxy values to only midday fAPAR measurements, we remove the diurnal 

variability that would otherwise be maintained if each NDVI measurement was 

compared to its corresponding fAPAR measurement. Future analysis should include 

an evaluation of the two methods and the effect on aggregation results and the 

overall model accuracy. We should also note that the lack of stress in this 

agricultural field (relative to many natural ecosystems – see chapter 3) would also 

contribute to the low diurnal variability. It is important to note that an even with 
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the absence of variability, the high R2 values observed in the fAPAR-GPP 

relationships demonstrate that fAPAR as an essential variable within the LUE 

model. 

At our alfalfa agricultural site, we found that variability associated with 

incoming radiation affected the temporal aggregation patterns in an APAR driven 

LUE model (Figure 4-5c). However, this would not be the same case in all 

biomes. Temporal aggregation patterns of fAPAR would most likely be much more 

variable in ecosystems or development stages where canopy structure plays a 

significant role. In such ecosystems, the interaction between changing solar angles 

and structure would lead to greater variability in diurnal illumination and fAPAR 

patterns. It is therefore important that effects of temporal aggregation be explored 

for each particular ecosystem and, if possible, phenological stage. Determining 

optimal aggregation periods for each model variable, can provide some insight 

into the underlying mechanisms driving the productivity within an ecosystem. 

While it is known that productivity is mainly driven through the variation 

in canopy APAR and secondly through variation in efficiency (Field et al., 1995), 

the relative magnitudes will differ between ecosystems. Due to the difficulty 

using PRI as a proxy of LUE (see results from chapter 3 of this thesis), efficiency 

could not be easily determined though optical sampling in our study. However, 

assessing the model variance not explained through APAR helped to indirectly 

determine the proportion by which ε might have influenced the LUE model. At 

our site, the majority of the model variance (between 84%-97%) was explained by 

the structural (APAR) component of the LUE model (Figure 4-6d). This was 
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expected due to the high rate of photosynthetic rate and the lack of water and 

nutrient stress for most of the growing season in this alfalfa field. Presumably, the 

remaining variance represents the physiological component associated with light 

use efficiency or can be attributed to error. 

A detailed assessment of the seasonal trends within each growth cycle 

provides insight into how structure and physiology play changing roles during 

different phenological stages. The non-linear correlations of each of the APAR-

GPP relationships suggest that productivity cannot solely be explained by the 

structural component. Departure from linearity seems to occur in all growth 

cycles during the transition from green-up to maturity stages, where productivity 

continues to increase at rates greater than that of canopy growth. This would 

suggest that during the late phenological stages, there is a changing influence of 

physiological status and limitations on productivity. The onset of non-linearity 

seems to occur earlier and be more evident in growth cycle #2 than the other 

cycles. This, along with results showing growth cycle #2 as having the greatest 

slope when comparing the individual APAR-GPP relationships, as well as 

displaying maximum total GPP, indicate that efficiency is greatest for this cycle. 

Maximum LUE values in this cycle could be associated with high water 

availability due to frequent precipitation events. The lack of an efficiency term in 

our LUE model would explain the separation between the modeled and measured 

GPP seasonal time-series observed for growth cycle #2 (Figure 4-8d). In cycles #1 

and #3, efficiency seems to play less of a role in driving productivity; therefore 
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time-series analysis shows modeled values as accurate estimates of productivity 

(Figure 4-8d).  

These observations call for incorporation of an efficiency term in 

ecosystems where closed-canopy or slow-growing vegetation is predominant.  In 

ecosystems such as evergreen forests, were photosynthetic rate is often low and 

nutrient and water availability may be limited, the light use efficiency term will 

most likely represent a much larger source of total model variance (Field et al., 

1995). Even though an agricultural site does not contain the same complexities 

encountered in other ecosystems, the methods and analysis discussed here can be 

used as a working model when assessing more dynamic ecosystems. 

The combination of this accurate LUE model with flux measurements can 

allow us to explore certain ecosystem components in more detail. For instance, 

the ability to accurately model GPP dynamics of through remote sensing can 

provide a novel approach to partition fluxes. Partitioning is important to better 

understand the dynamics of the carbon cycle and respiration as well as to develop 

biochemical models (Baldocchi et al., 2001; Baldocchi 2003). Additionally, 

optical data can also help better inform carbon fluxes by providing a tool for gap 

filling periods of missing data. Flux data series typically contains gaps due to 

instrument malfunction as occurs during precipitation events. Optical sampling is 

less susceptible to such disturbances, hence accurate values of optically modeled 

GPP, in association with fluxes measurements, can be used to gap fill missing flux 

data periods. Examples of this can be see in Figure 4-8, modeled productivity 

values were able to accurately complement missing productivity data. These 
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examples illustrate how combining optical and flux measurements can help 

achieve a more comprehensive understanding of biospheric- atmospheric flux 

interactions.  
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Chapter 5 – General Discussion and Conclusion 

 
This thesis is largely a test of optical methods in the context of the LUE 

model.  A foundational assumption of this thesis was that optical monitoring 

(proximal remote sensing) at a comparable scale of the flux tower footprint can 

improve our understanding of the controls on carbon flux (Gamon et al. 2006, 

2010).  The LUE model is a product of the structural component (described by 

changes in APAR) and a physiological component (described through the 

efficiency term). Field et al. (1995) suggested that productivity (or GPP) is 

primarily driven through the variation in canopy APAR and secondly through 

variation in efficiency. Our results agree with this Field et al. (1995), showing 

that, at our site, the majority of the variance in GPP (approx. 78%) was explained 

by the structural (fAPAR) component of the LUE model. This was expected due to 

the high rate of photosynthetic rate and the lack of water and nutrient stress 

associated with agricultural fields. In other ecosystems such as evergreen forests, 

where photosynthetic rate is low and nutrient and water may be limited, the light-

use efficiency term is bound to represent a much larger source of total variance in 

carbon flux (Field et al., 1995). 

Others have indicated that the amount by which each component of the 

LUE model contributes to the overall productivity will differ between ecosystems. 

For example, in a comparison of ecosystems, Garbulsky et al. (2011) suggested 

that ecosystems with high CO2 assimilation and little excess energy or need for 

downregulation like a healthy crop system would not show a significant 

relationship between PRI and LUEAbs. This is consistent with our finding that over 
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the full growing season in alfalfa, PRI is driven primarily by changes in canopy 

structure (as measured by fAPAR) and is only weakly associated with LUEabs. 

In earlier diurnal studies, PRI was shown to be an accurate proxy of 

LUEAbs (Gamon et al., 1992, 1993; Peñuelas et al., 1995). However, interpretation 

of PRI can become difficult at large temporal and spatial scales, where many 

factors such as effects of canopy structure, pigment pool changes, view and 

illumination angles can confound the PRI-LUE relationship (Barton & North, 

2001, Stylinski et al., 2002; Sims et al., 2006; Filella et al., 2009; Garrity et al., 

2011; Gamon & Berry, 2012). In our study, we found that at the seasonal time 

scale, PRI is indeed confounded by changes in vegetation structure. The effect 

associated with structural changes is so large that it hindered us to from 

identifying the underlying physiological changes defined by light use efficiency. 

However, at the diurnal level, where changes in vegetation structure are reduced, 

PRI accurately tracks changes in LUE, as has been shown in previous studies 

(Gamon et al. 1992, 1993, Peñuelas et al., 1995). This shows that even in an 

ecosystem with strong CO2 uptake, PRI reveals changing physiological activity, 

when considered over the appropriate time scale.  Our results demonstrate that the 

interpretation of PRI depends largely on the context in which the index is being 

analyzed. Factors such temporal and spatial scale, type and condition of canopy, 

and irradiance must be considered to ensure that PRI is acting like a suitable 

proxy of light use efficiency.  Without this, it is still possible to get a correlation 

between PRI and GPP or other photosynthetic measures, but the explanation of 
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the correlation may be confounded by multiple factors, as shown in this study, and 

as reported by Barton and North (2001). 

 The ability to interpret PRI in terms of light response curves provides a 

way to clearly identify the variability in signal attributed to physiological changes 

in light use efficiency. This analysis helped identify periods of excess light energy 

(Björkman and Demming-Adams, 1994) when the xanthophyll cycle de-

epoxidation is likely to play an important role in influencing the PRI signal.  

Applying this method repeatedly over the growing season would help separate the 

PRI signal into the structural component and the subtler physiological component. 

Due to the need for frequent sampling, such measurements are hard to accomplish 

using the periodic tram sampling methods used here. Automated two-band PRI 

sensors could provide the necessary temporal coverage that would allow us to 

implement the light response curve method across the full growing season.  While 

such PRI sensors are now available (Garrity et al. 2010; Balzarolo et al. 2011; 

Eklundh et al. 2011), more work is needed to characterize these sensors. 

To make any association between a vegetation index and efficiency, LUE 

must be expressed in its correct form. As our results show, defining LUE based on 

incident light instead of absorbed light leads to an opposite and potentially 

incorrect conclusion that PRI is detecting changes in physiological activity, when, 

in fact, it is reflecting changes in canopy structure of rapidly growing vegetation. 

This misrepresentation of LUE can lead to misunderstanding of the controls on 

carbon flux, especially in ecosystems were productivity is primarily driven by 

structural changes in vegetaion. It is likely that the literature is full of such false 
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correlations, Since many authors have chosen to calcuate LUE on an incident light 

basis, while not measuring pigments or canopy structure, it is likely that 

misinterpretation of PRI abounds, confusing our ability to reveal the underlying 

mechanisms controlling carbon fluxes. We recommend that, to be able to test any 

vegetaion index as a proxy of efficiency, it is crucial that LUE be calculated by its 

correct definition i.e. based on absorbed light, particularly in situations where 

canopy structure is likely to change and confound the interpretation of PRI.  

The empirical calibration of two-band radiometer data with hyperspectral 

data can be used as example of how different optical datasets can be integrated to 

produce a unified signal (in our case, a common fAPAR metric) for use in the LUE 

model. The integration of data sources allows us to take advantage of the benefits 

associated with each measurement method, while minimizing their disadvantages. 

For example, the lack of temporal resolution in our hyperspectral data and the low 

spectral resolution of two-band sensors can be both overcome through empirical 

cross-calibrations, allowing integration of the data streams. The ability to use 

inexpensive spot radiometers to assess ecosystem carbon flux increases the 

feasibility of achieving continuous monitoring of the many diverse global 

ecosystems (Huemmrich et al., 1999, Gamon et al. 2010). The rich temporal 

resolution associated with automated two-band sensors allowed us to capture the 

seasonal dynamic changes in vegetation structure that would have otherwise been 

unnoticed through occasional or periodic field collection methods such as the tram 

collections. The strong correlation between NDVIproxy and our benchmark 
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NDVI680,800, and the strong correlation with fAPAR,  show that simple and 

inexpensive 2-channel radiometers can be used to drive the LUE model. 

The concept of data source integration can be explained using a funnel 

analogy (Figure 5-1). For this concept, we can think of each data source as an 

input that can be combined with others to produce a single LUE model 

expression. One of the main advantages of data integration would be the 

production of a single LUE model that accommodates and incorporates multiple 

data sources into a single, uniform output. 

 

 
Figure 5-1: Hypothesized funnel concept describing the progress of integrating different data 
sources. Integration results in a single expression of the LUE model that can then be 
compared to ecosystem productivity.  
 
 

The way data is treated when deriving the LUE model will directly 

influence its overall predictive capabilities.  Our results demonstrate that 

aggregation can be important.  In this study, the need for spatial aggregation was 

minimized by the uniform stand structure and the sampling methods that allowed 

a large sampling area. Our study shows that temporal aggregation can lead to 

sigificant changes in model accuracy. Also, our results indicate that aggregation 
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not only affects variables derived from optical measurement but also those 

derived from eddy covariance. Therefore, it is essential to determine how the 

different data sources affect the accuracy of the LUE model.  

Additionally, this study demonstrated a method for conceptually 

integrating optical and flux data by comparing diurnal changes in PRI to changes 

in the slope of the light response curve.  This kind of methodological integration 

can help us understand the relative importance of structural vs. physiological 

controls on ecosystem carbon fluxes.  In this case, structural controls (fAPAR) 

dominated, but this would not be the case for all ecosystems.  For example, in 

evergreen ecosystems, where physiological downregulation can exert a significant 

influence over fluxes, we would expect light-use efficiency to become a more 

important model variable (Running and Nemani 1988; Runyon et al., 1994; 

Gamon et al., 1995).  Further work should focus on expanding these methods of 

analyses across different ecosystems to help reveal contrasting controls on carbon 

fluxes and develop improved LUE models, as has been proposed (Gamon et al. 

2006, 2010)  

 

Take Home Messages: 

•  The ability to properly track GPP seasonal dynamics with broadband-

derived proxy NDVIs, the high correlation between proxy and benchmark 

(narrow-band) NDVI measurements, and the accurate characterization of 

the NDVI-fAPAR relationship are all positive results pointing to the utility 
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of using automated two-band sensors to derive a LUE model.  More work 

is needed to develop and test similar PRI sensors. 

•  In alfalfa, seasonal PRI531,570  changes are primarily influenced by 

structural changes (illustrated as fAPAR variation over time) which 

concealed the underlying physiological changes associated with occasional 

photosynthetic downregulation on the diurnal scale. 

•  An incorrect derivation of LUE, based on incident light, can lead to 

incorrect positive correlations between efficiency and PRI.  Properly 

defining LUE as LUEABS should help avoid this problem.  

•  Within a single day, even in ecosystems primarily influenced by canopy 

structure, the underlying physiological changes quantified through light 

response curve analysis are strongly correlated with PRI changes. This 

method of integrating light-response curves derived from eddy covariance 

with dynamic optical properties illustrates a powerful way to demonstrate 

the physiological influence on PRI against a background of structural 

changes affecting this index.  

•  Integration of flux and optical data using the LUE model can help with 

partitioning of flux data and gap-filling periods of missing flux data.  

•  Temporal aggregation of data can significantly affect the LUE model 

accuracy.   
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Future research: 

There are additional areas where future research would allow further 

testing and refinement of the LUE model. One of these areas includes the further 

comparisons of two-channel NDVI and PRI sensors against benchmark 

spectrometer measurements. While this study used empirical methods of 

calibrating such sensors, another approach might be to use the sensor radiometric 

response functions to better characterize such sensors. There is a particular need 

to characterize new two-band sensors used to monitor PRI. Automated PRI 

sensors would facilitate the application of the light response curve method, 

allowing the partitioning of the seasonal PRI signal into that which is affected by 

structure vs. due to physiological changes by using light response curves. This 

would allow us to better evaluate the correlation between PRI and changes in 

efficiency at the seasonal level.  

One of the biggest remaining questions of this study is related to data 

aggregation. Our results illustrate a limited subset of the many different 

aggregation periods and methods that could be used. There is a need to expand the 

concept of data aggregation by methodically exploring the effect of different 

aggregation periods on the overall LUE model accuracy. This could lead to an 

improved LUE model that uses an optimal method by which optical data could 

best predict productivity. Also additional models that allow estimations of 

ecosystem productivity should be also explored. These may include models driven 

by fluorescence index (Zarco-Tejada et al., 2000) as well as the chlorophyll index 

(Gitelson et al., 2006). 
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Further studies might also consider expanding this analysis to other types 

of ecosystems, where vegetation structure changes do not have such a strong 

influence on productivity, such as in evergreens. Networks such as the FLUXNET 

and SpecNet could be used to further explore the integration of flux and optical 

data across various ecosystems.  To help achieve this, better methods of data 

management will be needed due to the large volumes of data involved.  Unlike 

current data systems that focus on flux or spectral data alone, data systems that 

facilitate integration of flux and spectral data must be developed. Such studies 

could help us understand contrasting controls on carbon flux, and could also 

evaluate whether a universal LUE model parameterization is possible.   
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