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Abstract

The development of fast and efficient computer hardware technology has resulted

in the rapid development of numerous computational software tools for making

statistical inferences. The computational algorithms, which are the backbone of

these tools, originate from distinct areas in science, mathematics and engineering.

The main focus of this thesis is on computational tools which can be employed

for estimating unmeasured variables in a process using all the available prior

information. Specifically, this thesis demonstrates the application of a variety

of tools for soft sensing of process variables and uncertain parameters of physio-

chemical process models, using routine data available from the process. The

application examples presented in this thesis come from broad areas where process

uncertainty is inherent and includes petrochemical processes, mechanical valve

actuators, and upstream production processes in petroleum reservoirs. The

mathematical models that are employed in different domains vary significantly

in their structure and their level of complexity. In the petrochemical domain,

the focus was on developing empirical soft sensors which are essentially non-

parametric mathematical models identified using routine data from the process.

The Support Vector Regression technique was applied for identifying such non-

parametric empirical models. On the other hand, in all the other application

examples in this thesis the physical parametric models of the process were utilized.

The latter application examples, which cover a major portion of this thesis,

demonstrate the application of modern state and parameter estimation algorithms

which are firmly grounded on Bayesian theory and Monte Carlo techniques. Prior

to the chapters on the application of state and parameter estimation techniques, a



tutorial overview of the Monte Carlo simulation based state estimation algorithms

is provided with an attempt to throw new light on these techniques. The

tutorial is aimed at making these techniques simple to visualize and understand.

The application case studies serve to illustrate the performance of the different

algorithms. All case studies presented in this thesis are performed on processes

that exhibit significant nonlinearity in terms of the relationship between the process

input variables and output variables.
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Chapter 1

Introduction

1.1 Motivation

The field of system identification deals with finding a mathematical model which

can capture the relationship between a set of measured variables of a system with

a reasonable degree of accuracy. Based on the basic nature of the dependency

between the variables of the system, we can broadly classify identified models into

two types: linear and nonlinear. It is well known that most real world systems

are nonlinear by nature. However, the basic idea is to get a reasonably accurate

approximation of the true system and because it is easier to do this if the process

is assumed to be locally linear, we make some basic practical assumptions about

the process so that a linear model is able to capture the dynamics sufficiently

well. A common approach for modeling nonlinear processes is to use multiple

linear models which when combined together can cover the entire operating range

of the nonlinear process. The assumption here is that the process is locally linear

within each of these operating regimes. However, increasingly tight specifications,

environmental considerations and economic pressures are pushing the operational

windows of many of the industrial processes to regions where the assumption of

linearity breaks down (Rhodes & Morari, 1998). This necessitates the application

of nonlinear modeling and control theory to many of today’s industrial processes.

Nonlinear Model Predictive Control (NMPC) is one such advanced control technique

which can address the increasing demands of chemical industries. Reliable nonlinear

dynamic models are key to the success of this methodology. As reported by Nagy

& Allgöwer (2004), the number of NMPC applications in the chemical industry has

been growing at a very fast rate. It is expected that NMPC will become more

common with the development of new nonlinear model identification software tools

that can make nonlinear models readily available (Camacho & Bordons, 2007).

The focus of this thesis is to study the application of nonlinear system iden-

tification tools that have so far been given less attention in the chemical process

control literature. Based on the amount of a priori knowledge about the physical

1



and chemical properties of the process that is included in the model, we can broadly

classify model structures into two categories (Sjöberg et al., 1995):

1. Black-box models

2. Gray-box models

Black-box models are data-based regression models which can efficiently capture the

relationship between the process variables in the form of a mathematical function.

Mostly, the function parameters are almost impossible to relate to the physical and

chemical characteristics of the process. Soft sensors are a common type of data-based

models, used in the industry as a cost-efficient substitute for hardware sensors. On

the other hand, a complete set of differential equations which explicitly capture

the physio-chemical properties of the process, with some unknown variables which

have to be identified from data, are known as Gray-box models (Note: If all the

model parameters are assumed to be perfectly known, they are known as White-

box models). State space models belong to this category of models. Evidently,

a significant amount of prior knowledge about the “physics and chemistry” of the

process is required to arrive at such models. In all model structures (black or gray),

there are certain unknown variables which have to be identified using data collected

from the process. For the case of soft sensors, the parameters of the regression

function will have to identified; for state space models, there will be unmeasured

process states as well as unknown parameters which have to be estimated. There

are a wide variety of computational tools that can be employed for identifying the

unknown variables. For soft sensors, a deterministic optimization routine is the

most common approach where the objective is to minimize the prediction errors.

On the other hand, for state and parameter estimation a probabilistic route is more

commonly taken since process uncertainty has to be accounted for while identifying

the parameters of the first principles models.

1.2 Thesis Outline

This thesis has been prepared in the ‘paper’ format as per the guidelines from

the Faculty of Graduate Studies and Research at the University of Alberta. The

organization of the thesis is as follows. Chapter 2 presents the application of

the Support Vector Regression technique for developing empirical soft sensors for

nonlinear processes. The case studies discussed in this chapter serve to demonstrate

the efficacy of the method for building steady state and dynamic models, using very

little a priori knowledge about the process. In all the subsequent chapters, the

focus is on advanced nonlinear state and parameter estimation tools, which require

significant prior knowledge about the process. We assume that a first principles
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Figure 1.1: A snapshot view of this thesis.

based differential equation model of the process is available, with some unknown

parameters and unmeasured states. Before dwelling into the application case studies,

a tutorial overview of state and parameter estimation is first given in Chapter 3. The

fundamentals of two state estimation algorithms, namely the ensemble Kalman filter

(EnKF) and the particle filter, are discussed in detail in this chapter. Chapter 4

presents the application of a Kalman filter type of unknown input observer to detect

and quantify valve stiction in process control loops. An advanced framework for

combined state and parameter estimation, based on the expectation-maximization

(EM) principle, is presented in Chapter 5. The application of the ensemble

Kalman filter for online estimation of states and parameters is also presented in this

chapter. Chapter 6 outlines the application of the EnKF algorithm for estimation

of parameters of large scale petroleum reservoir simulation models. The efficacy

of the methodology, more generally known as history matching, is demonstrated

through two synthetic unconventional oil reservoir models. Each chapter in this

thesis contains a broad overview of the subject matter, including a review of the

pertinent references from the literature. To avoid repetition, the literature review

is omitted in this introductory chapter.

Figure 1.1 shows a snapshot view of the various computational tools that are

discussed in this thesis. As shown in this figure, the computational tools can be

broadly classified into two categories based on the type of model structure identified,

as follows: (1) Support Vector Regression for identifying soft sensor models, and (2)

State and parameter estimation algorithms for identifying state-space models. The

links connecting the blocks in the figure are representative of the organization of the

3



discussion in the remaining chapters of this thesis. The scales displayed at the top

of the figure illustrate the amount of process a priori knowledge that is captured

by the model structures in the two categories. Soft sensors are based on very little

a priori knowledge about the process, whereas state-space models are based on a

relatively higher amount of a priori knowledge about the physical and chemical

characteristics of the process.
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Chapter 2

Application of Support Vector
Regression for Developing Soft
Sensors1,2

2.1 Introduction

Over the past decades, there have been significant advances in the field of nonlinear

model based control. But many times, one of the key practical obstacles to the

wider industrial adoption of such model based control strategies has been the

difficulty of developing nonlinear models (Pearson, 2006). In general, the model

should be estimated in combination with some a priori information about the

process (often known as the gray-box approach). A first principles or a mechanistic

description of the process in which all the parameters are assumed to be known

a priori is known as a white-box model, whereas a model developed by a purely

data-based modeling or identification exercise is known as a black-box model. In

most cases, the lack of a priori knowledge about the nonlinearity of the process has

made the black-box procedure very attractive. Even in cases where the structural

information about the process is available, the effort put in for estimating parameters

of such models makes the gray-box procedure less attractive. Most of the popular

methods for the development of black-box nonlinear models are based on the theory

of NARMAX/NARX models, built using neural networks or techniques involving

kernel or logarithmic transformation followed by dynamic PCA or linear modeling

approaches.

As a consequence of many different application areas, there has been a pro-

nounced proliferation of methods, concepts and results in nonlinear systems identi-

fication (Ljung, 2006). One of the tools of data analysis which has recently shown

1A version of this chapter has appeared in the Canadian Journal of Chemical Engineering
(Chitralekha & Shah, 2010a).

2A condensed version of this chapter was presented at the 18th IEEE Mediterranean Conference
on Control and Automation, June 23 – 25, 2010, Marrakech, Morocco (Chitralekha & Shah, 2010b).
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fairly wide spread applicability to a diverse class of real world problems is the Sup-

port Vector Machine algorithm, a kernel-based method, developed by Vapnik and

co-workers in 1995. Originally developed for classification, the method was extended

to regression and is known as Support Vector Regression Machine (SVR) (Drucker

et al., 1997; Smola & Scholkopf, 2003). The main feature of this algorithm is the

use of a nonlinear kernel transformation to map the input variables of the model

into a feature space so that the input-output relationship can be approximated as

a linear function in the feature space. A non-parametric regression model in the

feature space is built by solving a constrained convex optimization problem. The

objective function is a weighted combination of two distinct criterions, based on

the idea of trade-off between low model prediction errors and low risk of overfitting

the data (regularization). An important property of the optimization problem solu-

tion is that the estimated models represent sparse nonlinear approximations of the

input-output relationship of the variables. The excellent generalization capabilities

of the method to high dimensional nonlinear problems have made this method one of

the best available methods for classification and regression in the past decade. The

method has strong theoretical foundation and is based on the Statistical Learning

theory or Vapnik-Chervonenkis (VC) theory developed by Vapnik and Chervonenkis

(Vapnik & Chervonenkis, 1974; Vapnik, 1998). Recently, there has been a lot of in-

terest on the application of this tool to nonlinear system identification. Suykens

(2009) has presented a recent survey on the state-of-the-art of dynamical systems

modeling using the SVR technique.

This chapter shows the application of the SVR technique for the development

of nonlinear soft sensor models for chemical engineering processes. The versatility

of this tool has been the main motivation behind the use of this technique in this

work. The idea is to develop models that can capture the dynamics of the nonlinear

process over a wide operating range. This would remove the need for developing

multiple linear models at several operating regimes. In addition, a single nonlinear

dynamic model can become very useful for control during process transitions between

different operating regimes. For example, the problem of optimal grade transitions

in a polymer manufacturing unit can be solved by having a good model which can

accurately predict the dynamic changes required in the manipulative variables for

achieving fast grade transitions. The main advantage of using the support vector

methodology for modeling nonlinear systems is the ease of use of the algorithms.

Unlike standard identification methods employed for nonlinear systems, in which

the identification approach is recursive, the SVR approach is fairly straight forward.

This chapter has been organized as follows. In Section 2.2, a brief overview

of the theory of Support Vector Regression is presented. Section 2.3 presents an

application of SVR for developing a data based melt index soft sensor for an extruder
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in an industrial EVA polymerization plant. The soft sensor predicts the melt

index of different grades of polymer based on its steady state relationship with the

secondary variables measured in the extruder such as temperature, pressure etc. The

application of the SVR tool for developing dynamic nonlinear models is presented

in Section 2.4. Using an automated procedure of model order and delay selection,

an SVR-based nonlinear ARX model was developed for two nonlinear processes: a

pH neutralization process which is a benchmark example of a process with nonlinear

dynamics and a laboratory scale twin screw extrusion process. Finally, Section 2.5

summarizes the major concluding remarks from the different application studies of

SVR conducted in this work.

2.2 Support Vector Regression: Overview

The basic idea of regression estimation is to approximate the functional relationship

between a set of independent variables and a dependent variable by minimizing a

“risk” functional which is a measure of prediction errors. More formally, we can

describe the problem as follows (Smola & Scholkopf, 2003; Vapnik, 1998):

Suppose we are given training data {(x1, y1)....(xl, yl)} ⊂ χ × R, where χ denotes

the d dimensional space of the independent variable x (i.e., χ ∈ R
d) and y

denotes univariate, random, independent observations. Consider a set of real valued

functions given in a parametric form {f(x, w), w ∈ Λ}, where Λ is an arbitrary set

which w belongs to. The dimension of w is equal to the number of parameters which

have to be estimated in the function f . Staying in line with classical approaches, it

is assumed that y results from a measurement with additive noise. This assumption

is quite realistic and also gives more support to the choice of simple risk functional

discussed below. The functional is defined as

R(w) =
1
l

l∑

i=1

L(yi, f(xi, w))

where L(yi, f(xi, w)) is called the Loss function. The objective is to find w = w∗ that

minimizes the functional, i.e., we seek the solution given by w∗ = arg min
w∈Λ

(R(w)).

New predictions are then obtained as ŷ = f(x, w∗). In the classical approach the

functional is Mean Square of Errors(MSE)

MSE =
1
l

l∑

i=1

(yi − f(xi, w))2 (2.1)

where the loss function is quadratic and the method is called Least Square Re-

gression. It is known that if the additive noise belongs to a Gaussian probability

distribution, minimizing the MSE gives an efficient (unbiased) estimator of the re-

gression f(x, w). However, if the additive noise is generated by other laws, better
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approximations are given by estimators based on other loss functions. For exam-

ple, if one only knows that the density describing the noise is a symmetric smooth

function, then the best choice of loss function is given by (see Huber (1964)):

L(y, f(x, w)) = |y − f(x, w)| (2.2)

where | .| denotes the one-norm. In Support Vector Regression (SVR), a new type of

loss function, called ε-insensitive loss function is used, given by (see Vapnik (1998)):

M(y, f(x, w)) = L(|y − f(x, w)|ε) (2.3)

where we denote

|y − f(x, w)|ε =

{
0 |y − f(x,w)| ≤ ε
|y − f(x, w)| − ε otherwise

(2.4)

These loss functions describe the ε-insensitive model: the loss is equal to 0 if the

discrepancy between the predicted and the observed values is less than ε.

For explaining the basic idea and subsequent application examples, the Linear

ε-insensitive loss function based SVR is considered here, referred to as ε−SVR given

by

L(|y − f(x, w)|ε) = |y − f(x, w)|ε (2.5)

For the case of linear regression, consider linear functions f of the form

f(x) = 〈w, x〉 + b with w ∈ χ, b ∈ R (2.6)

where 〈., .〉 denotes dot product in χ. In ε−SVR, the goal is to find (w∗, b∗) which

gives a f(x) that has the minimum risk w.r.t. the loss function in Eq. (2.5). In

addition, a regularization penalty is imposed on w in order to prevent overfitting.

This problem can be formulated as a constrained convex optimization problem as

follows:

minimize
w.r.t w, b, ξi, ξ∗

i

1
2

‖w‖2
ℓ2

+ C
l∑

i=1

(ξi + ξ∗
i ) (2.7a)

subject to
for i=1 to l





yi − (〈w, xi〉 + b) ≤ ǫ + ξi

(〈w, xi〉 + b) − yi ≤ ǫ + ξ∗
i

ξi, ξ∗
i ≥ 0

(2.7b)

The square of the ℓ2 norm of the weight vector (model parameters), i.e., ‖w‖2
ℓ2

=

〈w, w〉, is the regularization term in the objective function. The main objective of

regularization is to give more preference to solutions with lower norm of the model

parameters. From a system identification point of view, this can be interpreted as

the parsimony principle in which only parameters that have significant impact on

the regression fit will be used in the final model. The constant C > 0 determines the
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Figure 2.1: ε-insensitive loss function for a linear SVR.

trade-off between the penalty imposed on w and the tolerance on deviations larger

than ε. The variables ξi, ξ∗
i are slack variables which make the constraints feasible

for training points having prediction errors more than ǫ and also penalize them in

the objective function (also known as soft constraints in constrained optimization

terminology). This is depicted graphically in Figure 2.1. On the left hand side of

this figure, the straight line represents predictions from a linear SVR model. The

shaded region depicts the epsilon tube around this straight line. The points, in blue

and black color, represent the training data, (xl, yl), available from a real world

process. The data point shown in black color, lying outside the ε-tube, highlights

the linear dependence of the loss function on prediction errors higher than ε.

The above defined problem is the basic formulation for the linear SVR. It can be

solved using the Lagrangian method of constructing the Lagrange function with the

introduction of dual variables for each of the (4l) constraints in Eq. (2.7b). The dual

problem formulation is summarized here and more details can be found in the book

on statistical learning theory by Vapnik (1998) or the tutorial by Smola & Scholkopf

(2003). For this, let (αi, α∗
i , ηi, η∗

i )i=1...l be the dual variables (Lagrange multipliers)

corresponding to the inequality constraints in Eq. (2.7b). The Lagrangian is given

by

Γ ≡ 1
2

‖w‖2
ℓ2

+ C
l∑

i=1

(ξi + ξ∗
i ) −

l∑

i=1

(ξiηi + ξ∗
i η∗

i )

−
l∑

i=1

αi(ǫ + ξi − yi + 〈w, xi〉 + b) −
l∑

i=1

α∗
i (ǫ + ξ∗

i + yi − 〈w, xi〉 − b) (2.8)

For optimality, the partial derivative of the Lagrangian with respect to the primal
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variables (w, b, ξi, ξ∗
i ) should be equal to zero (saddle point conditions), i.e.,

∂Γ
∂b

,

l∑

i=1

(αi − α∗
i ) = 0 (2.9a)

∂Γ
∂w

, w −
l∑

i=1

(αi − α∗
i )xi = 0 (2.9b)

∂Γ
∂ξi

, C − αi − ηi = 0 (2.9c)

∂Γ
∂ξ∗

i

, C − α∗
i − η∗

i = 0 (2.9d)

As a result of the saddle point condition in Eq. (2.9b), the weight vector w takes

the following important form:

w =
l∑

i=1

(αi − α∗
i )xi (2.10a)

thus, f(x) =
l∑

i=1

(αi − α∗
i ) 〈xi, x〉 + b (2.10b)

From Eq. (2.10a), it is clear that the weight vector w can be described as a linear

combination of the training patterns. Due to this form, it is not required to explicitly

calculate w for evaluating f(x) as shown in Eq. (2.10b). Moreover, it turns out that

the complete algorithm can be described in terms of the dot product 〈xi, xj〉 between

the input data. These observations become important for the direct extension of

the algorithm to solve nonlinear regression.

One of the most important aspects of the solution is its sparsity which leads to

the name support vector. Denoting βi = (αi − α∗
i ), the complementary slackness

conditions force βi = 0 to all training patterns inside the ǫ-tube (shaded region in

Figure 2.1). A good choice of ǫ and C will lead to a majority of training patterns to

have prediction errors |f(x) − y| < ǫ (inside the ǫ-tube). So only the smaller subset

of training patterns that have nonzero βi will be required to evaluate w or f(x),

which is therefore a sparse solution. These xi’s that come with nonzero coefficients

are called Support Vectors. Also, the formulation is basically a convex optimization

problem and thus is guaranteed to have a unique optimal solution that is also globally

optimal. This is a great advantage when SVR is used for nonlinear regression over

methods such as neural networks which usually suffer from the problem of local

minima.

The advantage of sparse expansion of w in terms of the support vectors can be

linked to the ε-insensitive loss function defined in Eqs. (2.3) and (2.4). Note that if

ε = 0, the advantage of sparse decomposition is lost (Smola & Scholkopf, 2003). The
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support vectors can be considered as a compressed set of samples which can be used

to reconstruct or predict the output signal given a new set of input signals. In the

nonlinear case, the ε−SVR can be utilized to yield sparse nonlinear approximations

of the input-output relationship of the variables. Such approximations will be in

terms of basis function dot products, called kernel functions, as will be explained

later.

The key idea for the nonlinear extension is to perform simple preprocessing of

training vectors xi by mapping them into some feature space F and then applying

the standard SV regression algorithm. Let z = φ(x) be such a mapping which maps

x according to Φ : χ → F . The assumption here is that f(z) is linear in the feature

space, i.e.,

f(z) = 〈w, z〉 + b

where, z = φ(x)

Thus, the nonlinear SVR algorithm behaves like a linear one if the input vectors xi

are replaced by their corresponding feature vectors zi. But, due to the exclusive dot

product form in Eq. (2.10b), it is not required to know the mapping Φ explicitly.

Rather, it is only required to know the dot product 〈φ(xi), φ(xj)〉, which can be

represented by the kernel function

k(xi, xj) = 〈φ(xi), φ(xj)〉

This is commonly referred to as the “kernel trick” in the literature. Thus, for the

nonlinear case we have:

w =
l∑

i=1

(αi − α∗
i )φ(xi) (2.11)

thus, f(x) =
l∑

i=1

(αi − α∗
i ) 〈φ(xi), φ(x)〉 + b

For choosing the form of the kernel function k(xi, xj), the requirement is that it

should follow Mercer’s condition (Mercer, 1909). Several kernel functions have been

proposed which satisfy Mercer’s condition (Vapnik, 1998). Table 2.1 lists a few

commonly used kernels. The suitability of a kernel depends on the application and

the choice is usually made on a trial & error basis. If it is known a priori that

the process is linear then a linear kernel will suffice. For nonlinear processes, a

priori knowledge about the type of nonlinearity can help in choosing the kernel.

But usually this is not the case since very little knowledge is available about

the structure of nonlinearity and hence the kernel choice is made by observing

the prediction performance on validation data. The RBF kernel is a translation

invariant kernel (k(x, x′) = k(x − x′)) and it is a very useful kernel whose use is
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Table 2.1: Different types of Kernel functions.

Kernel type Operation

Linear 〈xi, xj〉
Polynomial (〈xi, xj〉 + c)p

Sigmoid tanh(c + γ 〈xi, xj〉)
Radial Basis Function(RBF)/Gaussian exp(−γ ‖xi − xj‖2)

quite widespread in applications of SVR cited in the literature (Smola & Scholkopf,

2003). The popularity of the RBF kernel is due to its practical success on many

different nonlinear regression & classification problems. This is attributed to the

property of RBF in that it is a “universal approximator”. This means that RBF-

based approximators can approximate any continuous function on a compact set

with arbitrary accuracy. Park & Sandberg (1991) proved that RBF networks with

one hidden layer are capable of universal approximation. Wang et al. (2004) have

shown that an RBF kernel-based SVR also has the same property.

2.2.1 RBF-kernel SVR

The RBF network, which are a special class of neural networks, is one of the classical

tools that is popular for developing nonlinear models. The activation functions

in the RBF network are the radial basis functions which can be used as kernels

(Gaussian kernel) in SVR. In the RBF network, the basis functions are centered at

node centers which are either tuned manually for good validation results or found

using some clustering technique. The number of such nodes and the parameters of

the nodes have to be manually tuned along with the centers in the model building

exercise, which can be a difficult task. The weights given to the nodes in the RBF

network are computed as a solution to an optimization problem which is framed to

minimize the model prediction errors.

The similarity between the RBF network model and the RBF-kernel SVR model

can be realized if one visualizes the SVR model as a two-layered network, as shown

in Figure 2.2 (Vapnik, 1998). The SVR model is essentially a weighted linear

combination of the kernel function values evaluated at the support vectors, shown

in Eq. (2.11). The support vectors are analogous to the node centers in the classical

RBF network model. Both the weights and the number of nodes (support vectors)

are automatically decided as the solution to the optimization problem in the SVR

method. Thus, in contrast to the RBF network, an RBF-kernel based SVR model

is much more easier to train; the node centers are automatically decided in SVR.

In an interesting comparison of RBF-kernel SVM with the RBF network, Scholkopf

et al. (1997) have demonstrated that the centers picked by the SVM algorithm give

superior classification results on the US postal service handwritten digit recognition
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Figure 2.2: Two-layered network structure of SVR model.

data set which is a popular benchmark data set. The interpretation given by the

authors is that the SVR algorithm ensures that the node centers (support vectors)

are specifically suited to the data at hand. In the following sections, the application

of RBF-kernel based SVR for developing models of real world processes which exhibit

significant input-output nonlinearities will be demonstrated.

2.3 Soft Sensor Application

Soft sensors are inferential calculators which can output the value of a primary

process variable or quality variable based on a model that captures its relationship

with other measured secondary variables. In many cases the important process

variables in process control systems are difficult or impossible to measure online due

to the limitation of process technology or measurement techniques (Yan et al., 2004).

These variables, which are sometimes the key indicators of process performance,

have to be determined by off-line laboratory analysis (that typically introduce large

time delays) or online product quality analyzers (which are expensive and have high

maintenance cost). Soft sensors have become an attractive option over conventional

hardware sensors or sensors based on laboratory analysis, because they do not suffer

from the disadvantages mentioned above. They can give measurements at much

faster sample rates than conventional hardware sensors and thus help in better
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control. Joseph & Brosilow (1978) introduced the idea of inferential control of

processes. They studied the use of several temperature and flow-rate measurements

to estimate product composition in a distillation column. The estimator employs

a linear combination of selected tray temperatures, steam and reflux flow rates to

estimate product compositions. Such empirical models are the most popular ones

used in soft sensors today.

In recent years, the use of SVR has attained wide popularity in the development

of empirical models which can be solved as regression problems. Practical success

has been demonstrated on both simulated data sets (Li et al., 2004; Rojo-Álvarez

et al., 2004) and actual process data (Shi & Liu, 2006; Nandi et al., 2004; Vogt

et al., 2004; Xi et al., 2007). The growing popularity can be mainly attributed to

the ability of SVR in being able to tackle nonlinear regression problems through the

use of kernels with relative ease. There is also considerable theoretical investigation

on SVR in the literature. Pontil et al. (2000) have explicitly shown that the noise

model corresponding to the ε-insensitive loss function is additive and Gaussian,

where the variance and mean of the Gaussian density are random variables. The

probability distribution of the mean and variance are also found explicitly; the

variance is shown to follow a unimodal distribution that does not depend on ǫ and

the mean to follow a distribution uniform in the interval [−ǫ, ǫ]. These probability

distributions were justified by interpreting the objective function in Eq. (2.7a) from a

Bayesian viewpoint. Cherkassky & Ma (2004) have proposed a practical analytical

method for the choice of the SVR regression parameters (ǫ and C) directly from

the training data. The authors suggest setting the value of ǫ proportional to the

standard deviation of noise (σ, known or estimated from data) with the empirical

dependency ǫ ∼ σ
√

ln n
n , where n is the number of training samples. The setting for

the C parameter is based on the assumption that the kernel is bounded in the input

domain (e.g. RBF kernel) and is given by C = max(|y −3σy|, |y +3σy|) where y and

σy are the mean and standard deviation of the y values of training data. Several

modifications of the ǫ-SVR algorithm have also been proposed: Least Square SVM

(for classification by Suykens & Vandewalle (1999), for regression by Saunders et al.

(1998)) where the loss function is chosen as quadratic and inequality constraints

are replaced by equality constraints; ν−SVR (Scholkopf et al., 1998), where the ν

parameter specifies a priori the maximum fraction of training samples to be support

vectors and thus automatically minimizes ǫ, giving the best achievable accuracy for

the chosen ν and C.

2.3.1 Melt index soft sensor

This section shows the application of SVR in the development of a soft sensor to

predict the quality variable of polymer in an industrial polymerization plant based
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on its dependency on a large number of other process variables. Ohshima & Tanigaki

(2000) have given a comprehensive review of property estimation methods published

for different polymerization processes. As evident from several papers listed in their

work, the development of an on-line inferential system for polymer property is a very

active research area in the field of polymerization reactor control. The majority

of papers are reported to be using techniques such as Extended Kalman Filters

(EKF), Artificial Neural Network (ANN), Nonlinear Parameter Estimation and

Partial Least Squares (PLS) incorporating nonlinear models. Most of these methods

use a mechanistic or physio-chemical model of the process. But the disadvantage

of such approaches is the requirement of a good knowledge of the mechanism of

polymerization process which is often very complex and the large computational

effort required to come up with a meaningful set of model parameters. The Nonlinear

SVR can be used to build a soft sensor in such situations where the output is

nonlinearly related with the input variables. Han et al. (2005) present one of the first

applications of SVR based soft sensor models for industrial polymerization processes.

The quality variable of interest in their application was the melt index of the polymer

in two polymerization plants (Styrene-Acrylo-Nitrile and Polypropylene). Process

variables such as temperature, pressure, levels, which were measured more frequently

than the melt index, were used as the dependent variables. The authors compare the

performance of the SVR based model with other black-box models based on ANN

& PLS and show that the SVR based model gives the best performance, especially

when only a small sample size of data is available for the modeling exercise. Shi

& Liu (2006) have shown the application of a weighted least square form of SVR

to infer the melt index of polymer in a real propylene polymerization plant. The

independent variables consist of upstream process variables of temperature, pressure

and catalyst flow rate in the plant.

In the current work, a case study which demonstrates the application of SVR

for soft sensing the melt index (MI) of polymer in an EVA polymerization plant

will be presented. The data is obtained from the work by Alleyne (2006) at the

AT Plastics Inc. site in Edmonton, Canada. The primary variable of interest is the

melt index of the polymer after extrusion through an extruder installed downstream

of the polymer reactor. In the previous work, an empirical model was built which

related the polymer’s melt index with the measured operating conditions of the

extruder (Figure 2.3). The input data to the model consisted of extruder pressure

(PI), extruder speed (SI) and temperature (TI) which are commonly measured

on extruders. The online measurement for the melt index was determined by an

online rheometer (AI-01). The significant issue, because of the large range of melt

index (MI) measurement required, was that the rheometer required die changes

and recalibration whenever a grade change occurred. This would result in the unit
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Figure 2.3: Extruder schematic.

having to be switched off or becoming unreliable for a short period while the die

was being changed. Thus, it was clear that some new measurement device or sensor

was required to give online polymer melt index values at regular time intervals. The

empirical soft sensor used by Alleyne (2006) was based on the model in Eq. (2.12).

MI =
exp(a + b.S + c( S

P α ) + d.P α)
T 2

(2.12)

The parameters were found by nonlinear least square regression. In addition,

a scheme for bias updating the soft sensor predictions was used. The bias in

the soft sensor predictions was caused by fouling of the extruder and the die,

which significantly changes the extruder operating conditions. An online bias was

calculated every half an hour using the online analyzer reading. The laboratory

measurements were available infrequently (generally every 2 hours or longer) and

used to calculate laboratory bias. Both biases were combined (details given in

Alleyne (2006)) and a unified bias update was applied to the soft sensor.

The Nonlinear Least Squares (NLS) approach had the disadvantages of slow

training and requirement of good initial guesses for the parameters. The SVR tool

can overcome these difficulties. It was also desirable to have a soft sensor that is less

dependent on the bias update. Unlike the NLS, the SVR algorithm does not require

any initial guesses and the convex nature guarantees the existence of a single optimal

solution. It is only required to choose the tuning parameters, which can be easily

done using the guidelines given in the literature, though some experience does help.

Fast training of SVR could be achieved by the Sequential Minimal Optimization

(SMO) algorithm, developed by Platt (1999) targeting the SVM and later extended

to SVR by Flake & Lawrence (2002). The LIBSVM package (Chang & Lin, 2001)

with the SMO implementation was used for training.

The objective was to build a single soft sensor model that can cover the entire
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product range. The full data set was constructed by combining steady state plant

measurements for around ten different polymer grades (25,793 samples at 1 minute

sampling time). This covered a wide range of MI values over the range of 10-1000.

The data was divided into training and validation set as shown in Figure 2.4. Note

that the data represents steady state operation of the process and our objective is

to build a corresponding steady state model covering the entire operating range. It

is necessary to have a training data which includes at least a few points from each

of the different steady state regions. Hence, the training and validation data were

carefully constructed by ensuring that Melt Indices from all the operating regions

are included in both subsets of the data as shown in Figure 2.4. Even though this

results in merging of data from discontinuous time periods, the key assumption of

steady state operation of the process makes this data preprocessing step a valid one.

The input or explanatory variables to the SVR based soft sensor comprised of 10

measured variables which monitor the extruder operating conditions: these were the

6 extruder pressure measurements (PI01-PI06), 3 temperature measurements (TI01-

TI03), and the extruder screw speed (SI01). A log transformation was applied to

the MI and given as target (or the dependent variable) to the SVR model. The

RBF kernel was used for implicit nonlinear mapping of inputs to the feature space.

Thus, the SVR model had the form shown below in Eq. (2.13).

Ŷ (x) =
l∑

i=1

(αi − α∗
i ) 〈φ(xi), φ(x)〉 + b (2.13)

where, MI = exp(Ŷ ), x = [PI01−06, TI01−03, SI01]

〈φ(xi), φ(x)〉 = exp(−γ ‖xi − x‖2)

The SVR parameters were initially set using the guidelines mentioned in Cherkassky

& Ma (2004), with some tuning to give good validation results. The parameter

settings used were: C = 100, ǫ = 0.3, γ = 1e − 6. The SVR model predictions

were compared with that of the NLS soft sensor on the validation data set. The

Mean Square of Errors was used to assess model quality or performance. The raw

predictions (without bias updating) from both models are shown in Figure 2.5. It

can be observed that the predictions are able to track most of the global trends

occurring in the MI reading. The high MSE of predictions can be attributed to an

offset between the predictions and the actual values which is more or less constant

within each grade. Thus, it is clear that bias updating would certainly improve the

predictions for both soft sensors. It is not meaningful to compare the MSEs of the

two sensors at this point as the raw predictions suffer from the bias problem.

As mentioned earlier, one of the objectives was to decrease the dependence of

the soft sensor on the bias updating, i.e., to use less frequent bias updating than the

existing 30 mins. update. To achieve this objective, a bias update was performed
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Figure 2.4: Online analyzer (AI01) MI data: Showing division of data into training
and validation set.

every 8 hours and the predictions from both the soft sensors were compared as shown

in Figure 2.6. As evident from the figure, the predictions from both soft sensors

improve considerably with the bias update. Comparing the MSE of the prediction,

it can be observed that the SVR based soft sensor performs better than the NLS soft

sensor for the 8 hrs. bias updating. Noting that laboratory measurements of MI are

usually available at least once for every 8 hrs., the SVR model can be used solely

with lab measurement based bias updating for the entire range of grades. This would

remove the issues of die changing and recalibration in the online analyzer during

grade changes, both of which hinder the smooth running of the process. Another

solution is to provide samples to the online analyzer every 8 hrs. and use the

readings for bias updating. This gives several advantages: lab measurements can be

completely avoided which naturally gives cost benefits; reduced measurement load

on the on-line rheometer decreases the rate of fouling of the rheometer die making

it reliable for longer periods; the 8 hrs. idle time in the rheometer can be utilized

to make any die changes, without hindering the MI measurement which is always

available from the soft sensor.

Remarks. In light of the above industrial case study, there are a few comments
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Figure 2.5: Soft sensor validation: Raw predictions (without bias updating).
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Figure 2.6: Soft sensor validation: 8 hrs bias updated predictions.
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we would like to make regarding the success of the SVR soft sensor after the bias

updating procedure was incorporated:

The success of the bias updating procedure will depend on the level of variation in

the bias error with time. If the bias error varies very frequently, then a more frequent

bias updating will be required to obtain a lower MSE. From Figure 2.5, we can see

that the bias error in the SVR model predictions stays at a fairly constant value

within each melt index grade. On the other hand, the NLS model predictions have

bias errors which are fluctuating highly within each grade (often fluctuating between

positive and negative values as can be observed from Figure 2.5). Hence, applying

the bias updating procedure will prove more effective on the SVR model than the

NLS model. Ideally a soft sensor model should be free from such bias errors; if not,

at least the error should be a constant value which is easy to correct for without

requiring re-calibration. In this comparative case study, the lower variation of the

bias in the SVR soft sensor model makes it superior to the NLS soft sensor after the

bias correction is incorporated.

2.4 Nonlinear Dynamic System Identification

From the case study on EVA polymerization plant, the application of SVR for soft

sensor design based on steady state data from a nonlinear plant was clear. Here, the

dynamic case is considered where the plant output is a nonlinear function of past

outputs and inputs. The utility of the SVR algorithm for such problems is shown by

constructing the input vector x appropriately. Assume that the dynamic plant can

be approximated by the nonlinear ARX structure (NARX) of the following form:

y(t) = f(xt) + ǫ (2.14)

xt = [y(t−1 : t−na), u1(t−d1 : t−d1−nb1+1), .., up(t−dp : t−dp−nbp+1)] (2.15)

where, y(t − 1 : t − na) = R
1×na , ui(t − di : t − di − nbi + 1) = R

1×nbi

In Eq. (2.14), f is some unknown nonlinear function which will be approximated

through regression on plant data; (na, nb1 to p) are model order parameters, d1 to p

are input delays and ǫ is the unknown additive noise contaminating the observed

plant output. Here na and nbi are parameters to be tuned to get good prediction

results on the validation data set. Also, the SVR parameters have to be tuned in

a similar fashion. In this work, the use of the SVR algorithm for nonlinear system

identification is proposed, employing the procedure described in the flowchart shown

in Figure 2.7 which is similar to the generic system identification loop given in Ljung

(1999).
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Figure 2.7: SVR based nonlinear system identification loop.

2.4.1 Simultaneous delay and order selection by a heuristic proce-
dure

Based on the flowchart in Figure 2.7, an algorithm is proposed, which is more

heuristic in nature, in order to automate the task of finding the optimal order and

delay parameters. In all the subsequent discussions, the variables d and nb are used

to denote a vector containing the respective delays and orders of all the inputs. The

usual method of finding a suitable model order is to test ranks of sample covariance

matrices or to use correlation plots for a range of lags which are manual procedures.

The delay parameters are usually found from the step input on the open loop process.

Here a unique heuristic approach is taken where a suitable choice of both delay and

orders are made automatically from the identification data. The basic idea is simple:

search for the best model (in terms of model fit) from a set of models with various

delays and orders. The identification data available from the process can be used

in all the steps of this algorithm. First, the data is divided into estimation and

validation set. The input required from the user is a range of values of orders and

delays to search for. While finding the best model, the parsimony of the model is

also taken care of. A step by step approach is taken in this heuristic procedure as

follows:

Step 1: Choose an appropriate kernel (linear/ nonlinear) based on the process

knowledge.

Step 2: Find reasonable parameters (C, ǫ and kernel parameters) that give good

fit on the validation data set for some arbitrary model orders. For the RBF kernel

based SVR, it is difficult to know a priori which C and γ parameter values would

give good prediction accuracy on the validation data set. Hence, a grid search

method can be employed to arrive at a good pair of C and γ parameter values (Bao

& Liu, 2006; Hsu et al., 2004). The search objective would be, for example, to

minimize the MSE of predictions on the validation data set. For the ǫ parameter,

a practical guideline is to choose a value proportional to the standard deviation of

the measurement noise in the output variable (Cherkassky & Ma, 2004). Steps 1

and 2 are mostly coupled together and will require some experience with tuning of

SVR parameters. Also, some prior knowledge of the process such as whether it is
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linear or nonlinear will also help.

Step 3: Find delay: Fix upper bounds, D and B, below which the delay and

input order is expected to lie. The lower bound is set at 1 for both delay and input

orders. Using the above parameters and na = 1, estimate the delay as follows:

For d = 1 . . . .D train SVR models on the estimation data by using input order of

nb = 1 . . . .B and output order of na = 1. Also, perform infinite horizon predictions

(simulation) on the validation data and build a matrix of R2 values of the predictions

which is given by

R2 = 1 −

N∑
i=1

(yi − ŷi)2

N∑
i=1

(yi − y)2

The R2 value measures the model fitness by comparing the predictions with the

measured output. Note that the R2 value will be less than unity and hence can be

used to compare the goodness of fit of the predictions from different models. The

matrix of R2 values is given by

J =




R2
11 R2

12 . . . R2
1D

R2
21 R2

22 . . . R2
2D

. . . R2
nbi,dj

. .

R2
B1 R2

B2 . . . R2
BD




Then, estimate delay as follows:

dmax = arg max
d

1
B

B∑

i=1

R2
id

, i.e., the column of J which has the maximum mean goodness of fit value gives the

delay estimate.

For the Multi-Input case D and B will be vectors, rather than scalars, which

contain the delay and order upper bounds for each of the inputs. Then dj and

nbi will consist of all the possible combinations of delay and input orders which lie

within the bounds. The computational cost will be high because many combinations

of delays and nbs have to be tried out. A significant amount of computational cost

can be saved by using a smaller set of nbs. The maximum of average model fit can

be expected to occur at the correct delays even if the model orders are not optimal.

Step 4: Find optimal order (na, nb)

Specify A as the upper bound of na to search for. The lower bound is set at 1,

similar to the previous step. Increase the B values to include more nbs, if required.

For delay = dmax, build a matrix of R2 values similar to the previous case for
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nb = 1, 2, . . . ..B and na = 1, 2, . . . ..A as follows:

H =




R2
11 R2

12 . . . R2
1B

R2
21 R2

22 . . . R2
2B

. . . R2
nai,nbj

. .

R2
A1 R2

A2 . . . R2
AB




The best order is given by the order [namax, nbmax] which maximizes the R2
nai,nbj

,

i.e.,

[i∗ j∗] = arg max
i,j

Hi,j

where, Hi,j = R2
nai,nbj

[namax, nbmax] = [nai∗ , nbj∗ ]

But the best model orders are usually high and this procedure will result in a very

high order model. In order to obtain a parsimonious model, a model with a low

order is required such that the predictions are within tolerable errors, i.e., R2 does

not decrease significantly. The optimal orders are therefore orders which are lower

than [namax, nbmax] with R2 higher than a defined threshold. The threshold can be

implicitly defined as a percentage reduction from the maximum R2 value obtained

above. For the multi-input case, the sum of input order values given by the one-

norm | .|1 can be used to define parsimony w.r.t the input order. Thus the optimal

orders are given by:

[naopt, nbopt] =arg max
nai,nbj

{H i,j ∀ i, j : nai< nai∗ , |nbj |1< |nbj∗ |1,
Hi∗,j∗ − Hi,j

Hi∗,j∗
≤ 10%}

, i.e., a decrease of 10% of the best fit can be tolerated when order is decreased from

[namax, nbmax] to [naopt, nbopt].

Step 5: Choose the optimal model

The required SVR model is the one corresponding to the model parameters

[naopt, nbopt, dmax]. The optimal model will be used for making predictions.

2.4.2 Case Study 1: Identification of a simulated pH neutralization
process

The above described heuristic procedure was tested on data from a simulated pH

neutralization process in a CSTR. The simulated data set is taken from the DaISy

database (Database for Identification of Systems, De Moor). This is an example of

a highly nonlinear process. The data was originally generated by simulation of the

nonlinear dynamic model given in McAvoy et al. (1972) for the reaction between

Acetic acid and Sodium hydroxide. The settings used for the simulation are shown

in Table 2.2.
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Table 2.2: Simulation settings for the pH neutralization process.
CSTR Volume 1100 l

Concentration of the acid solution (CH3COOH) 0.0032 Mol/l

Concentration of the base solution (NaOH) 0.05 Mol/l

Sampling Time 10 secs

Figure 2.8: Simulated pH neutralization in a CSTR (showing division of data into
estimation and validation set).

Figure 2.8 shows the plot of the full data set used for this case study along

with the division into estimation and validation set. The output y is the pH of the

solution inside the reactor. The inputs to the process are u1=Acid flow rate and

u2=Base flow rate.

Results

The heuristic procedure was applied on the training data set to arrive at a suitable

dynamic model. A log transform of the pH measurements was applied on the output,

i.e., the target variable was y = log(pH). The RBF kernel was used for kernel

mapping of inputs (Step 1). The SVR parameter settings of C = 10, ǫ = 0.01, γ = 0.1

were chosen based on satisfactory predictions on the validation data set (Step 2).
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Figure 2.9: Validation of SVR-NARX model with the heuristic model parameter
selection.

For finding appropriate input delay parameters (Step 3), the upper bounds on delay

(D) and input order (B) were set as 5. The output order upper bound (A) was

set as 10. The delay was estimated as 2 and 3 sampling instants for the two inputs

respectively in Step 3. The output of Step 4 was as follows: na = 1, nb = [1, 4]. The

optimal SVR-NARX model (Step 5) was validated using infinite horizon predictions

on the validation data set.

For comparison with a benchmark, another NARX model was built using tools

available in the “ident” GUI for System Identification in MATLAB developed by

Ljung and co-workers, which uses different algorithms such as neural network,

wavelet network etc. (Ljung et al., 2006). The Wavelet Network (wavenet) structure

available in the toolbox was used for modeling the nonlinearity since it gave better

results compared to neural and sigmoid networks. Wavenet-NARX models were first

built with orders and delays over the range used in the heuristic method. The model

with the best fit was chosen to compare with the SVR-NARX model. The validation

results are shown in Figure 2.9. Comparing the MSE and R2 values of the Wavenet-

NARX model, we can conclude that the SVR-NARX model gives better predictions

than the chosen benchmark. In order to evaluate the efficacy of the delay estimation

step, the predictions were compared with that of a SVR-NARX model developed

with a zero-order hold assumption, i.e., unit delay in both the inputs. The R2 value

of the SVR model based on the heuristic procedure was approximately 78%, where

as that of the model based on zero-order hold assumption was much lower at 62%.
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2.4.3 Case Study 2: Black-box modeling of a twin screw extrusion
process

The MI soft sensor described earlier was developed using steady state data in a

single screw extruder. In this section, the dynamic case is considered where an SVR

based nonlinear black-box model is developed to capture the dynamics of a twin

screw extrusion process. Similar to the case of single screw extruders, one of the

purposes of twin screw extrusion is to compound a mixture of chemically different

polymer materials in a controlled temperature and pressure environment so that the

resulting polymer blend attains certain desired properties. A good overview of the

twin screw extrusion process is given in Janssen (1977). The twin screw extrusion

process differs from the single screw process in the mechanism of transport that

is achieved with the rotating action of two parallel screws, as opposed to a single

screw, in a closely fitting barrel. The twin screw extruder is widely used for blending

applications in the polymer and the food industry (Iqbal et al., 2010).

The data used for this work was collected from a laboratory scale co-rotating

twin screw extruder at the Department of Chemical and Materials Engineering,

University of Alberta. A schematic diagram of the experimental setup is shown

in Figure 2.10. The data was taken from the work of Iqbal et al. (2010), where

a gray-box linear model was developed to capture the extruder dynamics. The

feed to the extruder consisted of a binary mixture of High Density Polyethylene

(HDPE) with different melt indices. The quality variables that were of interest

were the melt index and the rheological properties of the blended polymer. But

these variables were not measured online in this experimental setup. Hence for

controlling these variables indirectly, two process variables were selected, namely

the Melt Temperature (Tmelt) and Pressure (Pmelt) at the extruder die, which were

found to have high correlation with the quality variables based on off-line sample

analysis. The manipulated variables were the screw speed (N) and the feed rate (F ),

which are typical choices for control applications of the extrusion process (Janssen,

1977). The screw speed has a faster effect on the output response compared to the

feed rate. In this study, the univariate relationship between the Melt Temperature

and the screw speed, which has significant nonlinearity, is considered in order to

show the efficacy of the methodology.

The previous work conducted on this data was based on a gray-box approach,

where the physical knowledge about the dependence of Tmelt on the screw speed was

used to first capture the nonlinearity. A power law relationship was established based

on steady state analysis of the output and input variables. For the dynamic model

building, a power law transformation of the screw speed variable was performed to

build an ARMAX model between the transformed input variable and Tmelt. In the

current work, the black-box route was taken where the identification data collected
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Figure 2.10: Twin screw extruder schematic.

from the process was used to directly arrive at a NARX model using the SVR

technique. Based on the NARX structure shown in Eq. (2.14), we have y ≡ Tmelt,

u ≡ N . The heuristic methodology that was explained earlier was used to arrive at

a model with suitable order and SVR parameters. The RBF kernel based nonlinear

mapping was found to be appropriate.

Results

The input-output data collected from the extrusion process for a fixed value of

feed rate is shown in Figure 2.11. The variables shown in this figure are in their

detrended form which were used for model building and validation. The first half of

the data was used as training data for the model building exercise in the heuristic

procedure. As shown in the figure, a random binary variation of the screw speed

was used to excite the process. The mean residence time of this extruder, which

can be considered as the dominant time constant, was 98 sec (Iqbal et al., 2010).

The measurements were initially recorded at a sampling rate of 1 sec and then down

sampled to 10 sec sampling time. This sampling time will result in approximately

10 samples for one process time constant interval which is reasonable to capture the

dynamics of the process. The SVR parameter settings of C = 10, ǫ = 0.05, γ = 0.05

was used. In order to search for the optimal values of the order (na, nb) and delay,

the range of values in the interval [1 3] was used. Application of the heuristic

procedure resulted in the optimal order values of na = 1, nb = 1 and delay of 1.

Figure 2.11 also shows the infinite horizon predictions (or simulations) using the

model in order to validate the model. The goodness of fit of the model predictions
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or the R2 value was 98.2% which clearly indicates the validity of the model. The

linear model developed in Iqbal et al. (2010) was reported to have an R2 value of

88.5%, which shows that the SVR based model gives better predictions. Since the

SVR based model gives good predictions in the simulation mode, it is well suited to

be used in a typical model based control scheme.

Figure 2.11: SVR model validation: Infinite horizon prediction on full data set.

2.5 Concluding Remarks

This chapter presented the application of the Support Vector Regression technique

for designing soft sensors for nonlinear processes. The technique has several

advantages over other nonlinear black-box modeling techniques such as the convex

nature of optimization, few tuning parameters (compared to a neural network) and

good generalization capabilities. For SVR-based nonlinear regression, there are

many different types of kernel functions that can be chosen. It is difficult to tell a

priori which kernel function would be appropriate for a given data set. A suitable

kernel function has to be chosen using cross-validation of the trained model on a

validation data set. The main difficulty is that for a given kernel function, the

cross-validation results will highly depend on the values of the kernel parameters as

well as the C and ǫ parameter values. Hence, a search for the optimal parameters
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has to be performed for a given kernel function. The parameter search can be done

using a grid search based method such as the one given in Bao & Liu (2006). The

difficulty in choosing a feasible kernel function and the corresponding parameters is

one downside of the SVR technique.

In this chapter, the efficacy of the SVR method for developing soft sensors

was demonstrated through a Melt Index soft sensor for an industrial scale EVA

polymerization plant. The SVR based regression technique was used to combine

the information in the plant data, which covered several grades of polymers, into a

single soft sensor model. The predictions from the SVR based model were shown to

be more accurate than the previously installed nonlinear least square soft sensor in

the plant. The application of the technique for developing nonlinear dynamic models

was demonstrated through two case studies: a simulated pH neutralization process

and a laboratory scale twin screw extrusion process. The optimal model order and

delay vectors, which are required to define the dynamic relationships in the input-

output model structures, were chosen using an automated heuristic procedure taking

into account the aspects of goodness of fit and parsimony of the model.
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Chapter 3

A Tutorial Overview of
Sequential Monte Carlo Filters1

3.1 Introduction

The problem of state estimation and filtering has been one of the most active area

of research in applied mathematics since the 1960’s, when the Kalman filter was

proposed by Kalman (1960). The Kalman filter algorithm is known to be the optimal

filtering algorithm for linear systems with Gaussian process and measurement

noise. Most of the filters that are used in real systems today are either direct

implementation of the Kalman filter or practical extensions of it which are tailored

to handle nonlinearity in the state and measurement equations. Some of the most

popular extensions of the Kalman filter widely adopted in the research community

are the Extended Kalman Filter (EKF), the Ensemble Kalman Filter (EnKF,

Evensen (1994)), and the Unscented Kalman Filter (UKF, Julier & Uhlmann

(1997)). Another class of nonlinear state estimation algorithm, which arose from a

totally independent idea of using Monte Carlo methods for state estimation, are the

ones based on the Particle Filter (PF) algorithm proposed by Gordon et al. (1993).

A detailed overview of nonlinear state estimation algorithms, along with some of

their practical applications, is given in Ristic et al. (2004). This chapter presents a

tutorial overview of the Particle filter and the EnKF, which are both Monte Carlo

simulation based filters. A comparative study of these filters and their relationship

with the traditional Kalman filter is performed using simple examples of state space

systems.

The chief objective of state estimation and filtering is to optimally fuse the data

obtained through various sensors attached to the process in order to get an accurate

estimate of the true state of the process (Julier & Uhlmann, 1997). Algorithms

which perform this task are broadly termed as state estimation/filtering algorithms.

1A significantly abbreviated section of this chapter was presented at the IFAC Workshop on
Automation in Mining, Mineral and Metal Industry, Viña del Mar, Chile, October 14 – 16, 2009.
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A good introductory account on the topic of state estimation and filtering is given in

Maybeck (1979). Figure 3.1 illustrates the general structure of the state estimation

technique, as applied to process plants. The most important ingredient of any

state estimator is a mathematical model of the process, which is usually developed

based on physical insights and by conducting identification experiments. The model

used in state estimators is always a stochastic system model which can account

for the various uncertainties in our knowledge about the process, at least to some

extent. These uncertainties, which are in fact the main reason for using a filter,

result from mainly three sources (Maybeck, 1979). Firstly, the mathematical model

we use to describe the process is always an approximate one, capturing only its

most dominant characteristics known to us at the model development stage. The

characteristics we assign to a process are usually based on past observations and

fundamental laws of science. Secondly, the inputs affecting the process are never

known completely and hence the effect of these unknown inputs (or disturbances)

cannot be modeled. Finally, the measurement devices cannot give the perfect

information we need, because they are always corrupted by noise and sometimes

do not even exist for some process variables due to inherent measurement or process

limitations. As a result of the factors mentioned above, random variables belonging

to an appropriate probability distribution are included as part of the models to

account for the uncertainties. As a result of these stochastic variables being present

in the models, they are called ‘stochastic’ models.

3.2 Stochastic State Space Models

We briefly explain here the concept of stochastic state space models in a generic

mathematical framework which will be used henceforth. The state space model of

a process comprises of a state transition equation and measurement equation. We

consider the discrete stochastic form of these equations, which are practically used

for computer implementation purposes, as follows:

xk = f(xk−1, uk−1, vk−1) (3.1a)

yk = h(xk, nk) (3.1b)

where, f represents the state transition function and h the measurement equation.

The variable uk denotes the input vector which includes all the known inputs

to the process. The random variable vk denotes the process noise and captures

disturbances and modeling errors. The random variable nk denotes the measurement

noise. These variables make this model a stochastic one. Information about

the distribution of these random variables is required for filtering and this is

usually specified based on some simplifying assumptions about the nature of the

uncertainties. The most common choice is a zero mean Gaussian distribution with
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a known variance. Note that the state space form given above represents a Markov

process, which simplifies to a large extent the mathematical formulation and solution

of the estimation problem, as explained later in this chapter. By the definition of

the Markov property, the state of the system at any instant is determined solely by

the states, inputs and disturbances at the previous instant.

3.3 Bayesian Perspective

The Kalman filter was derived originally as a filter which minimizes the variance of

estimates and achieves an ‘optimal’ fusion of noisy measurements in this sense. A

more generic way of looking at the filtering problem is the Bayesian viewpoint using

the theory of conditional probability density2. According to this viewpoint, the

filter accomplishes the objective of finding “optimal” estimates by propagating the

conditional probability density of the states, conditioned on all the data available

from the sensors. Note that without the knowledge of the true values of vk and

nk, which is indeed the reality, we have to consider the states and measurements

as random variables. Hence, we can define such a conditional probability density

function associated with the states and measurements. Using this propagated

conditional probability density, the “optimal” estimate can be defined. The most

common choices are the mean, mode or median of this conditional density. It can be

shown that the Kalman filter performs this propagation of conditional probability

density and chooses the mean as the optimal estimate. For linear systems with

Gaussian process and measurement noise, this conditional probability density can

be shown to be always a Gaussian one, which can be propagated easily by using just

the mean and covariance. Thus the Kalman filter is well justified as the optimal

filter for such systems. A clear derivation of this result for a simple linear system

with Gaussian noise will be shown shortly. Before that, we will mathematically

derive the filtering problem from a Bayesian perspective.

The conditional probability of the system state in Eq. (3.1) at any instant k,

conditioned on all the measurements available until time instant k is given by

p(xk|y1:k) =
p(y1:k, xk)

p(y1:k)
(3.2)

where y1:k represents the set of all measurements from the sensors, available until

time k. Noting that the measurement equation is “memory-less” (yk depends only

on xk based on Eq. (3.1)), we can use the definition of conditional probability2 to

decompose the numerator in Eq. (3.2) as

p(y1:k, xk) = p(yk|y1:k−1, xk)p(y1:k−1, xk)

= p(yk|xk)p(y1:k−1, xk)

2For two events A and B, the conditional probability of A given B is defined as P (A|B) = P (A,B)
P (B)
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and thus Eq. (3.2) becomes

p(xk|y1:k) =
p(yk|xk)p(y1:k−1, xk)

p(y1:k)

Applying the definition of conditional probability to p(y1:k−1, xk) and p(y1:k), we

obtain

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)p(y1:k−1)

p(yk|y1:k−1)p(y1:k−1)

Canceling out the common term p(y1:k−1) in the numerator and denominator, we

obtain the following result to describe any filter from the Bayesian perspective:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.3)

The relationship obtained in Eq. (3.3) can be interpreted by viewing each of the

different elements as follows: p(xk|y1:k) in the L.H.S is the posterior density of

the state at time k given all measurements until k (conditional probability density

propagated in a filter); p(yk|xk) is the likelihood of the measurement obtained at

time k; p(xk|y1:k−1) is the prior density of the state at time k given all previous

measurements (prior information only), and p(yk|y1:k−1) in the denominator is

a normalizing constant which is independent of the state. The likelihood term

is a conditional probability density of the measurement at the current instant,

conditioned on a value of the state. This conditional density characterizes the

stochastic relationship between yk and xk, as defined by the measurement equation

in Eq. (3.1). The likelihood can be evaluated using the probability density function

(pdf) of the measurement noise distribution as

p(yk|xk) =
∫

δ(yk − h(xk, nk))p(nk)dnk (3.4)

where, δ(.) is the Dirac-delta function. The prior density term p(xk|y1:k−1) defines

the probability density of the current state conditioned on the set of all the past

measurements until (k − 1). Unlike the likelihood, this prior density is not directly

available to us using the equations in the state space model. If we assume that the

filtering algorithm has completely processed all the information until the previous

instant, then we can assume that p(xk−1|y1:k−1) is available in some form. Then by

the principle of induction, we would need a relationship between p(xk|y1:k−1) and

p(xk−1|y1:k−1) in order to establish a “recursive” relationship between the posterior

density of the states at two consecutive instants. This relationship is known as the

Chapman-Kolmogorov equation and is expressed as:

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.5)

which uses the Markov property of the state space model. Here, p(xk|xk−1) captures

the stochastic relationship between xk and xk−1 as defined by the state transition
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equation in Eq. (3.1) and can be evaluated using the distribution of the process

noise as (see Gordon et al. (1993))

p(xk|xk−1) =
∫

δ(xk − f(xk−1, uk−1, vk−1))p(vk−1)dvk−1 (3.6)

Substituting Eq. (3.5) into (3.3), we obtain a very useful recursive form, generic

enough to consider any filtering algorithm in terms of propagation of conditional

probability density, given by

p(xk|y1:k) =
p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

p(yk|y1:k−1)
(3.7)

This task of “propagation” can be translated into the two step procedure of

prediction and correction as follows:

1. Prediction step:

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.8)

2. Correction/Update step:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.9)

The Chapman-Kolmogorov equation in Eq. (3.5), which gives the prior density of the

states, constitutes the prediction step. The posterior density evaluation using Eq.

(3.7) (note that the denominator is just a normalizing constant), is the correction

or update step.

In order to better understand how the above equations can be useful, we can

derive the Kalman filter from a Bayesian perspective. For this we consider a very

simple linear state space system, with a scalar state variable as given in Eq. (3.10).

xk+1 = xk + vk, vk ∼ N(0, σ2
v) (3.10a)

yk = xk + nk, nk ∼ N(0, σ2
n) (3.10b)

x0 ∼ N(µ0, σ2
0) (3.10c)

The dynamics of the system are modeled using a random walk model and the

measurement of the state is also corrupted by noise. The process noise and

measurement noise are assumed to be zero mean Gaussian random variables with

variance σ2
v and σ2

n respectively. Also, the initial state x0 is assumed to follow a

Gaussian distribution with mean µ0 and variance σ2
0. Based on the state transition

equation, we can say that prior to any measurements at k = 1, x1 is Gaussian and

follows N(µ1|0 = µ0, σ2
1|0 = σ2

0 + σ2
v), i.e.,

p(x1|y0) =
1√

2πσ1|0
exp

(
−(x1 − µ1|0)2

2σ2
1|0

)
(3.11)
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Here, µ1|0 and σ2
1|0 represent the conditional mean and variance of the state

distribution at k = 1, conditioned on previous measurements. Note that since we

are dealing with a Gaussian distribution for all variables, the mean and covariance

suffice to completely define the pdf of the distribution. Let y1 represent the value of

measurement obtained at k = 1. Based on the measurement equation, the likelihood

is given by

p(y1|x1) =
1√

2πσn

exp

(
−(y1 − x1)2

2σ2
n

)
(3.12)

Then, substituting the prior and likelihood into (3.3) (ignoring the denominator as

constant and using proportionality instead of equality), we obtain the posterior of

the state at k = 1 as

p(x1|y1) ∝ exp −
(

(x1 − µ1|0)2

2σ2
1|0

+
(y1 − x1)2

2σ2
n

)
(3.13)

By completing the square and carrying out a few algebraic manipulations (detailed

derivation given in Appendix A), we obtain

p(x1|y1) =
1√

2πσ1|1
exp −

(
(x1 − µ1|1)2

2σ2
1|1

)
(3.14)

where, µ1|1 = µ1|0 + K1(y1 − µ1|0)

σ2
1|1 = σ2

1|0 − K1σ2
1|0

K1 =
σ2

1|0
σ2

1|0 + σ2
n

Note that the posterior density of the state at k = 1, as given in Eq. (3.14),

represents a Gaussian distribution with conditional mean µ1|1 and variance σ2
1|1

which are conditioned on the measurement y1. We can choose µ1|1, which is the

mean of this conditional density, as the optimal estimate of the state. Note that

the mean, median and the mode coincide for a Gaussian distribution and µ1|1 will

also be the maximum-a-posteriori (MAP) estimate. The constant K1 is the well

known Kalman update gain, which applies a weighted correction to µ1|0 based on

the difference between the obtained measurement and its predicted value. The

expressions for µ1|1 and σ2
1|1 represent the update step of the Kalman filter. In order

to continue this procedure for subsequent time instants, we utilize the principle

of mathematical induction. Assume that at time instant (k − 1), we obtained

the posterior pdf p(xk−1|y1:k−1) to be N(µk−1|k−1, σ2
k−1|k−1). Then, applying the

Chapman-Kolmogorov equation we obtain the prior density as
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p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

=
∫

1√
2πσv

1√
2πσk−1|k−1

×

exp

{
−1

2

[
(xk − xk−1)2

σ2
v

+
(xk−1 − µk−1|k−1)2

σ2
k−1|k−1

]}
dxk−1

=
1√

2π(σ2
v + σ2

k−1|k−1)
exp

{
−1

2

(xk − µk−1|k−1)2

σ2
v + σ2

k−1|k−1

}

=
1√

2πσ2
k|k−1

exp

{
−1

2

(xk − µk|k−1)2

σ2
k|k−1

}
(3.15)

where, µk|k−1 = µk−1|k−1, σ2
k|k−1 = σ2

v + σ2
k−1|k−1

Substituting Eq. (3.15) into (3.3), we obtain the posterior density of the state at

any instant k as (using proportionality)

p(xk|y1:k) ∝ exp

(
−(yk − xk)2

2σ2
n

)
exp

{
−1

2

(xk − µk|k−1)2

σ2
k|k−1

}
(3.16)

Again by completing the square, we obtain the posterior as

p(xk|y1:k) ∝ exp

{
−1

2

(xk − µk|k)2

σ2
k|k

}

where, µk|k = µk|k−1 + Kk(yk − µk|k−1)

σ2
k|k = σ2

k|k−1 − Kkσ2
k|k−1

Kk =
σ2

k|k−1

σ2
k|k−1 + σ2

n

3.4 Linear Systems: The Kalman Filter Algorithm

From the above derivations on a simple linear system, we see that the Bayesian

perspective of the filtering problem can be used to analytically derive the posterior

density of the state when the process and measurement noise are Gaussian. In fact,

we observe that it is only required to propagate the mean and covariance for such

systems since the posterior remains Gaussian at all times; these are the steps of

the Kalman filter. For a general multivariable linear state space model, we can

apply the above mentioned steps to arrive at the posterior mean and variance of the

states. These equations form the basic computations involved in the Kalman filter.
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Consider the following discrete time linear state space model

xk = Axk−1 + Buk−1 + vk−1 (3.17)

yk = Hxk + nk (3.18)

vk ∼ N(0, Q) (3.19)

nk ∼ N(0, R) (3.20)

where, xk ∈ R
l (l = state space dimension), yk ∈ R

m (m = number of measure-

ments), uk ∈ R
p(p = number of inputs). Here, A ∈ R

l×l is the state transition

matrix, H ∈ R
p×l is the measurement matrix and B ∈ R

l×p is the input matrix,

all of which are assumed to be known. Similar to the simple linear system, we

assume that the process and measurement noise are zero-mean Gaussian multivari-

ate random variables and pure white noise sequences (uncorrelated in time). Also,

we assume that the noise variables are uncorrelated with any of the other vari-

ables, i.e., cov(vk, nj), cov(vk, xk), cov(vk, yk), cov(nk, xk) and cov(nk, yk) are all

null matrices. The covariance matrices for process noise and measurement noise

distribution are assumed to be Q and R respectively. Let the initial state distribu-

tion be Gaussian with mean µ0|0 and covariance P0|0, i.e., x0 ∼ N(µ0|0, P0|0). Then,

the posterior distribution for all subsequent time instants will follow a multivariate

Gaussian distribution if all of the above mentioned assumptions hold true. In other

words, all the distributions that we are interested in the prediction and correction

steps, in equations (3.8) and (3.9) respectively, can be shown to be Gaussian, as

follows:

1. Prediction step:

xk|k−1 ∼ p(xk|y1:k−1) (3.21)

p(xk|y1:k−1) = N(µk|k−1, Pk|k−1) (3.22)

where,

µk|k−1 = Aµk−1|k−1 + Buk−1

Pk|k−1 = cov(xk|k−1)

= Q + APk−1|k−1AT

2. Correction/Update step:

xk|k ∼ p(xk|y1:k) (3.23)

p(xk|y1:k) = N(µk|k, Pk|k) (3.24)

41



where,

µk|k = µk|k−1 + Kk(yk − Hµk|k−1) (3.25)

Pk|k = cov(xk|k) = Pk|k−1 − KkHPk|k−1 (3.26)

Kk = Pk|k−1HT (HPk|k−1HT + R)−1 (3.27)

In the above equations, µ.|. ∈ R
l and P.|. ∈ R

l×l represent the conditional mean

and covariance of the appropriate multivariate Gaussian distributions. The Kalman

update gain Kk will be a matrix of dimension l × m. We can interpret the Kalman

gain as a function of two covariance matrices. In order to do this, we define two

random variables which are commonly known as innovation and estimation error

respectively. The innovation is defined as

ε , yk − Hµk|k−1

and the estimation error is defined as

e , xk − µk|k−1

The innovation variable signifies the new information (hence the term innovation)

contained in the measurement yk compared to the predicted measurement Hµk|k−1.

The estimation error, as the name suggests, signifies the error between the true

process state xk and the model prediction µk|k−1. Grouping the terms inside the

inversion operation in Eq. (3.27) and denoting as Pε,ε
k , we can derive the following

conditional covariance relationship:

cov(ε|y1:k−1) = cov(yk − Hµk|k−1|y1:k−1)

= cov(Hxk + nk − Hµk|k−1|y1:k−1)

= cov{H(xk − µk|k−1)|y1:k−1} + cov(nk|y1:k−1)

= Hcov{(xk − µk|k−1)|y1:k−1}HT + cov(nk|y1:k−1)

= Hcov(xk|y1:k−1)HT + cov(nk)

= HPk|k−1HT + R

, Pε,ε
k

In the above derivation, we use the assumptions that the measurement noise

covariance is equal to R irrespective of the measurements, i.e., cov(nk|y1:k−1) =

cov(nk) = R and, that the measurement noise is uncorrelated with xk. In addition,

the following can be derived for the conditional mean of the innovations and

42



estimation error random variables:

E{ε|y1:k−1} = E{yk − Hµk|k−1|y1:k−1}
= E{yk|y1:k−1} − E{Hµk|k−1|y1:k−1}
= E{Hxk + nk|y1:k−1} − HE{E{xk|y1:k−1}|y1:k−1}
= HE{xk|y1:k−1} − HE{xk|y1:k−1}
= 0

E{e|y1:k−1} = E{xk − µk|k−1|y1:k−1}
= E{xk|y1:k−1} − E{µk|k−1|y1:k−1}
= E{xk|y1:k−1} − E{E{xk|y1:k−1}|y1:k−1}
= E{xk|y1:k−1} − E{xk|y1:k−1}
= 0

We can show that the term Pk|k−1HT in the Kalman gain calculation is the cross-

covariance between the estimation error and innovations as follows:

cov(e, ε|y1:k−1) = E{[e−E(e|y1:k−1)][ε−E(ε|y1:k−1)]T |y1:k−1}
= E{εeT |y1:k−1}
= E{[xk − µk|k−1][yk − Hµk|k−1]T |y1:k−1}
= E{[xk − µk|k−1][Hxk + nk − Hµk|k−1]T |y1:k−1}
= E{[xk − µk|k−1][H(xk − µk|k−1) + nk]T |y1:k−1}
= E{[xk − µk|k−1][H(xk − µk|k−1)]T + [xk − µk|k−1]nT

k |y1:k−1}
= E{[(xk − µk|k−1)][xk − µk|k−1]T |y1:k−1}HT +

E{[xk − µk|k−1]nT
k |y1:k−1}

= Pk|k−1HT + 0

= Pk|k−1HT

, Pe,ε
k

Hence, we can interpret the Kalman gain as the product of two covariance matrices,

as follows:

Kk = Pe,ε
k (Pε,ε

k )−1

= (Cross-covariance between estimation error and innovations)

×(Covariance of the innovations)−1

The covariance of the innovations is a measure of the measurement uncertainty and

is proportional to the measurement noise variance R. The cross-covariance between
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e and ε is a measure of the impact of innovation on the estimation error, i.e., how

the error in the predicted measurement will affect the error in state estimation. Note

that in the update step, the Kalman filter corrects the predicted state mean µk|k−1

by a value proportional to the error in the predicted measurement (yk − Hµk|k−1).

The Kalman update step applies a weighted correction, where the weighting is given

by the ratio of Pe,ε
k to Pε,ε

k . A low magnitude for Pε,ε
k compared to Pe,ε

k , i.e., a high

magnitude of Kk would signify that the measurement uncertainty is low and there

is a high correlation between the estimation error and the error in the predicted

measurement (innovation). In that case, the correction step will be very sensitive

to the error in the predicted measurement (yk − Hµk|k−1). A useful heuristic to get

good performance of the Kalman filter is to tune the magnitudes of the process and

measurement noise covariances, Q and R respectively. For the simple univariate

case we considered earlier, we can roughly say that

Kk ∝ σ2
v

σ2
v + σ2

n

If σ2
n ≪ σ2

v (measurement noise is negligible compared to disturbances), then the

Kalman gain will be close to unity and the updated state will be equal to the

measured value, i.e., we completely trust the measurements and model predictions do

not affect our estimate. On the other hand, if σ2
n ≫ σ2

v, then the Kalman gain would

be close to zero and the updated state will be equal to the predicted state. This

means that we completely trust the process model and ignore the measurements.

This is intuitive also, since a high σ2
n signifies significantly noisy measurements and

hence the measured data is considered unreliable for estimation.

3.5 Nonlinear Systems: The Ensemble Kalman Filter
and the Particle Filter

In the presence of any form of nonlinearity in the state space model, the analytical

calculations involved in the Bayesian filtering steps become very complicated. This

is because the posterior will no longer be a Gaussian distribution. The same is true if

any of the noise distributions become non-Gaussian. In such scenarios, the integral

involved in the Chapman-Kolmogorov equation becomes intractable and hence it is

not possible to get an analytical expression for the posterior density. To get around

this problem, some approximate suboptimal solutions exist such as EKF, UKF,

EnKF and particle filters. The EKF is an analytical approximation method where

a linearized version of the nonlinear state space model is used at each instant and

subsequently a Kalman filter based prediction and update is implemented (Ristic

et al., 2004). The linearization is done using first order Taylor series expansion

by evaluating the Jacobian of the nonlinear model around the value of the filtered
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states and measurements at the previous instant. Boutayeb et al. (1995) have shown

through a theoretical convergence analysis of the EKF that if the covariance matrices

Qk and Rk satisfy certain conditions, then the state estimates will converge to their

true values. But the main drawback of the EKF is that for systems with significant

nonlinearity, it will give inconsistent estimates because of approximation errors

arising from linearization (Ristic et al., 2004). Also, the method cannot be applied

to nonlinear systems which do not have an analytical expression for the Jacobian.

The UKF, proposed by Julier & Uhlmann (1997), is an improvement over the EKF

and removes the need for evaluating the Jacobian for nonlinear state space systems.

By using a deterministic sampling technique known as the unscented transform, the

mean and covariance of the states at the prediction step are evaluated followed by

the Kalman filter type of updating. The unscented transform can accurately give the

mean and covariance of any random variable undergoing a nonlinear transformation.

Similar to the EKF, the main assumption in UKF is that the posterior is always

Gaussian. This is the basic limitation of the UKF because the true posterior of a

nonlinear state space system will be in general non-Gaussian and hence the mean

and covariance are not sufficient to characterize it completely. This limitation is

alleviated, at least to some extent, if one uses the method of Monte Carlo simulation

to represent the prior and posterior density in the filtering problem. This is the basic

essence of the estimation algorithms based on sequential Monte Carlo methods.

3.5.1 What are Monte Carlo simulations ?

The method of Monte Carlo simulation is key to the development of the ensemble

Kalman filter and particle filter algorithms. The terminology “Monte Carlo”

was coined in the 1940’s, at a time marked for the renaissance of the method

of statistical sampling (Metropolis, 1987). The terminology is a general name

for methods/algorithms that can generate random samples from a probability

distribution of interest. We assume that such a computational algorithm exists

which can generate random samples, at least when the distribution is completely

defined. For example, in the MATLAB computational environment the function

randn will generate random numbers from a standard normal distribution (mean

= 0, variance = 1). Extending this to normal distributions with any given mean

and variance is trivial. For performing a Monte Carlo simulation of a dynamic

system described by a stochastic state space model, first we will use the Monte Carlo

technique to generate samples of all the variables whose distribution is assumed to

be known a priori. Considering the generic stochastic state space model given in Eq.

(3.1), there are three probability distributions that we assume to be known a priori.

These probability distributions are mathematical representations of the uncertainty

in our knowledge about the true process. They are the following:
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1. The distribution that represents the uncertainty in the initial conditions of

the process (i.e., uncertainty in the initial value of the process states), p(x0)

at k = 0. For pedagogical reasons and ease of description of the EnKF and

particle filter later in this chapter, let k − 1 represent the initial time instant

at which the Monte Carlo simulation would be started.

2. The distribution of the process noise/disturbance, p(vk) for all k.

3. The distribution of the measurement noise, p(nk) for all k.

Given the above three distributions, the first step is to draw a finite number

of samples from the initial distribution p(xk−1). Let Nmc represent the number of

samples and X̂k−1 ≡ (x1
k−1, x2

k−1, ...., xNmc

k−1 ) represent the Nmc samples. In addition,

let V̂k−1 ≡ (v1
k−1, v2

k−1, ...., vNmc

k−1 ) represent Nmc samples drawn from the process

noise distribution p(vk−1). Then, using each of the samples in X̂k−1 and V̂k−1, a

one-step forward simulation can be performed using the state transition equation in

Eq. (3.1). Note that the variable uk−1 is a deterministic input to the process and it is

assumed that its exact value is known a priori. The Monte Carlo set of new values of

the states obtained through this one-step forward simulation, which we collectively

represent as X̂k|k−1, can be considered as Monte Carlo samples from the prior

distribution p(xk|xk−1) at time instant k. This is equivalent to the ‘prediction step’

of the Kalman filter, except that here we would have a distribution of Nmc predicted

states. Summary statistics of the new samples such as the mean and variance can be

useful for summarizing the predictive information. Also, measurement predictions

can be simulated by transforming the samples in X̂k|k−1 using the measurement

equation in Eq. (3.1b). These steps can be repeated for subsequent time steps and

will yield Nmc “Monte Carlo paths” that the true process can be expected to take,

had there been an exact match between the true process and the state space model.

Figure 3.2 graphically illustrates the result of Monte Carlo simulation for a two-

dimensional state space system. The black points represent the statistical samples

generated through the Monte Carlo simulation. The red line denotes the trajectory

of the true process. The bounding ellipses are representative of the spread of the

statistical samples.

3.5.2 The ensemble Kalman filter algorithm

The Ensemble Kalman filter (EnKF), proposed by Evensen (1994), is a Monte

Carlo simulation based variant of the Kalman filter designed for handling nonlinear

systems. Note that one of the basic requirements for the Kalman filter computations

is that the state transition model and the sensor model should be linear functions.

Also, the process noise and measurement noise should follow a Gaussian distribution.

We can relax these requirements in the EnKF computations. The main idea is to
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Figure 3.2: Illustration of Monte Carlo simulation for a two-dimensional state space system.
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use a bank of Kalman filters via an ensemble of Monte Carlo simulations of the

process. The covariance matrices Pe,ε
k and Pε,ε

k are calculated as sample covariances

of the statistical samples in the ensemble. The Kalman gain is calculated using these

sample covariance matrices and the Kalman update is applied to each sample in the

predicted state ensemble. The corrected ensemble so obtained will be propagated

forward using the state transition model. It is not required to store the error

covariance matrix and no explicit covariance evolution equations are needed. The

main assumption in the EnKF is that the state estimation error and the innovation

random variables follow a multivariate normal distribution. These in turn imply

that the pdf of the prior distribution of the state and the likelihood pdf are both

assumed to be Gaussian. Since these assumptions do not hold true for nonlinear

systems in general, the EnKF should be regarded as a sub-optimal nonlinear filter.

Typical implementations of the EnKF in the literature suggest that an ensemble

size of O(50) is sufficient to get good estimates of the states.

Numerous applications of this method for nonlinear state estimation, especially

for large scale systems, have been shown in the oceanography and meteorology

literature (Evensen, 2003). A comprehensive overview of the EnKF is given in

Evensen (2007). In recent years, this method has been demonstrated to be effective

for parameter estimation of highly nonlinear large scale models of oil and gas

reservoirs (Seiler et al., 2009). In this section, we briefly present the basic steps

of the EnKF algorithm for state estimation.

Assume that a nonlinear state space model of the process is available in the

form of Eq. (3.1). The EnKF uses an ensemble of Monte Carlo samples to represent

the state prediction error and the output error (innovation) statistics. The sample

covariance of the state prediction error and innovation samples will be used to

calculate the Kalman gain. At time k −1, assume that we have an ensemble of state

estimates given by:

X̂k−1|k−1 ≡ (x1
k−1|k−1, x2

k−1|k−1, ...., xNe

k−1|k−1)

where, in general, xi
k|k ∈ R

l, X̂k|k ∈ R
Ne×l, Ne is the ensemble size and (.)k|k denotes

the updated value of the corresponding vector given the measurements up to the

kth time instant. Given X̂k−1|k−1, the EnKF steps for the subsequent time instant

k are as follows:

1. Prediction step:

The Prediction step is a one-step Monte Carlo forward simulation of each

ensemble member, carried out using the state transition model. We can represent

the predicted state ensemble as X̂k|k−1 ≡ (x1
k|k−1, x2

k|k−1, ...., xNe

k|k−1), where xi
k|k−1

is obtained by the equation

xi
k|k−1 = f(xi

k−1|k−1, uk−1) + vi
k−1 (3.28)
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Note that vi
k is a random sample drawn from the distribution p(vk). The state

estimation error is approximated around the sample mean µx
k|k−1 = 1

Ne

Ne∑
i=1

xi
k|k−1 as

ei
k|k−1 = xi

k|k−1 − µx
k|k−1

In order to calculate the innovation covariance, measurement samples are generated

using the predicted state ensemble and the measurement equation. An ensemble

of simulated measurements, Ŷk|k−1 ≡ (y1
k|k−1, y2

k|k−1, ...., yNe

k|k−1) are generated using

the measurement equation as follows:

yi
k|k−1 = h(xi

k|k−1) (3.29)

The innovation covariance matrix is defined as the sample covariance of yi
k|k−1

around the sample mean, µ
y

k|k−1 = 1
Ne

Ne∑
i=1

yi
k|k−1, as follows:

P̂ε,ε
k|k−1 =

1
Ne − 1

Ne∑

i=1

(εi
k|k−1)(εi

k|k−1)T (3.30)

where, εi
k|k−1 = yi

k|k−1 − µ
y

k|k−1. Similarly, a cross-covariance matrix between the

prediction error and output error is defined as follows:

P̂e,ε
k|k−1 =

1
Ne − 1

Ne∑

i=1

(ei
k|k−1)(εi

k|k−1)T (3.31)

2. Correction/Update step:

The Correction/Update step is similar to the Kalman filter, where each of the

samples in the predicted state ensemble is updated using the measurement yk from

the process. While using the measured data, it is required to treat them as random

variables contaminated by noise (Burgers et al., 1998; Evensen, 2009). Hence, a set

of Ne perturbed measurements around the measured data sample yk are generated

using random samples from the measurement noise distribution as follows:

yi
k = yk + ni

k (3.32)

where, ni
k is a random sample drawn from the distribution p(nk). The purpose of

carrying out the perturbation operation as shown above is to ensure that the sample

covariance of yi
k will be representative of the measurement error covariance. Burgers

et al. (1998) and Evensen (2009) have shown analytically that this is a necessary

step for the convergence of EnKF to the Kalman filter, in the limit of an infinite

ensemble size for linear systems. The Kalman gain is computed using the error

covariance matrices as

Kk = P̂e,ε
k|k−1(P̂ε,ε

k|k−1 + R)−1 (3.33)

49



where, R is the variance/covariance of the measurement noise distribution. The

updated state ensemble is given by

X̂k|k ≡ (x1
k|k, x2

k|k, ...., xNe

k|k) (3.34)

where, xi
k|k = xi

k|k−1 + Kk(yi
k − yi

k|k−1) (3.35)

The updated samples will be used to re-initialize the model for the subsequent

time instant and the algorithm will proceed by following the above steps. The

optimal estimate of the state vector can be defined as the mean of the updated state

ensemble:

x̂∗
k|k =

1
Ne

Ne∑

i=1

xi
k|k (3.36)

The sample covariance of the updated state ensemble, P̂∗
k|k, can be computed as

P̂∗
k|k =

1
Ne − 1

Ne∑

i=1

(xi
k|k − x̂∗

k|k)(xi
k|k − x̂∗

k|k)T (3.37)

which will provide the quality of the state and parameter estimates generated by

the EnKF.

Figure 3.3(a) graphically illustrates the prediction and correction steps of the

EnKF for a two-dimensional state space system. The prediction step is similar to

the Monte Carlo simulation illustrated earlier in Figure 3.2. Figure 3.3(b) illustrates

the computational steps for a single time instant k, in more detail. As shown by

the ellipses denoting Corrected uncertainty, the spread of the ensemble will reduce

after the correction step. The reduced spread/variance of the ensemble is a result

of the Kalman update step and signifies the reduction in uncertainty, posterior

to accounting for the information from the sensor measurements. Also, there will

be a shift in the mean of the ensemble after the Kalman update. This is shown

in Figure 3.3(b) by the red arrows, which indicate the shifting of the ensemble

members towards a new region in the state space after the correction step. The

mean of corrected state ensemble can be conceptually expected to be closer to the

true process state.

3.5.3 The particle filter algorithm

The main difference between the particle filter and the EnKF is in the correc-

tion/update step - in the EnKF algorithm, a Kalman gain based linear update

is used for each ensemble member, whereas in the particle filter a re-sampling step

is used to update the particles (Evensen, 2009). ‘Particles’ in the particle filter are

equivalent to the realizations/ensemble members in the EnKF. Before describing the

particle filter algorithm, we first go through some advanced Monte Carlo concepts

which will help in better understanding of the algorithm. One of them is to visualize
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Figure 3.3: Illustration of the prediction and correction steps of the EnKF algorithm,
showing: (a) the ensemble evolution with the progression of the update step for
consecutive time instants k & k + 1, and (b) the computational steps for one time
instant k in more detail. The ensemble of states inside the green and orange ellipses
shown in (b) correspond to the predicted and corrected ensemble at time instant k
in (a), respectively.

51



kx

1:( ) ( | )k k kf x p x y

Figure 3.4: Illustration of the posterior density of the state for a scalar state space
system.

any probability distribution as a plot of the density function against the values of

the random variable. Since the conditional probability density is also a probability

density, we can visualize the posterior probability density at any given instant as a

function whose value can be evaluated at all points in the state space and plotted

against the states. The word “conditional” means that the shape of this function

depends upon the measurements available from the process until the current time

instant and hence this function would evolve over time. For example, for a scalar

state space system we can easily visualize this as a plot shown in Figure 3.4. Note

that in general, this function can take any arbitrary shape and will vary from one

system to another. For a linear system with Gaussian process and measurement

noise, this plot will be the bell shaped curve of a Gaussian distribution as derived

earlier for a univariate example.

The presence of distinct peaks in the posterior density at particular locations

of the state space means that these regions have to be considered to have higher

“weight” when performing a probabilistic inference. This introduces the concept

of using weights associated with certain values of random variables in order to

represent any distribution. In the context of state estimation, we are concerned
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Figure 3.5: Approximation of the posterior density in Fig. 3.4 using discrete point
weights.

with the random variable xk and its posterior distribution defined by the density

function p(xk|y1:k). Since the density function is defined in a continuous state space

domain for most real world systems, a functional form is required to get an exact

representation of the distribution. But this is not practically possible since the

mathematics involved in its evaluation is tractable only for some specific systems

as mentioned earlier. Taking the Monte Carlo route, we can solve this problem by

using a discrete approximation of the distribution defined as

p(xk|y1:k) ≈
Np∑

i=1

wiδ(xk − xi) (3.38)

where, δ(xk − xi) represents the Dirac-delta function. In Eq. (3.38), we have used

Np points {xi}Np

i=1 in the entire state space, each with an associated weight wi,

together represented by the set {xi, wi}Np

i=1, to approximately capture the shape

of the density function p(xk|y1:k). For example, we can approximate the posterior

density in Figure 3.4 using discrete points as shown in Figure 3.5. In order to satisfy

the fundamental property of any discrete distribution, the weights are normalized

so that the sum is equal to 1, i.e.,
Np∑
i=1

wi = 1.
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A further simplification of this approximation technique is to use random samples

from the discrete distribution. This can be done by resampling (with replacement)

from the discrete distribution {xi, wi}Np

i=1 to obtain a set of Np random samples

{x∗i}Np

i=1 each with weight 1/Np. We can discard the weights wi after resampling,

since the new set of samples form independent, identically distributed (i.i.d) samples

which have uniform weights. For example, any Gaussian distribution can be

represented by a set consisting of a large number of random samples drawn from

the distribution. This can be verified by observing that as the number of samples is

increased, the sample mean and variance will converge towards the corresponding

values of the true population. The collection of random samples, which are called

“particles”, carry the information vital for the computations in the particle filter

algorithm. The objective of the algorithm is to find these particles which can

approximate the posterior at each instant. Then, an optimal estimate can be easily

defined by using any of the aggregate measures of this discrete distribution such as

mean, median or mode.

A particle filter is essentially a Monte Carlo simulation based method of finding

where the process states are located in the state space at any instant. As mentioned

earlier, in particle filtering a discrete representation of the posterior pdf of the states

is also obtained at all time instants. Assume that at the time instant (k − 1), we

have performed filtering and we have particles X̂k−1|k−1 ≡ {xi
k−1|k−1}Np

i=1 which

approximate the posterior density, p(xk−1|y1:k−1). Using each of these particles

as initial conditions and the known inputs uk−1, we can do a one step forward

simulation of the process with the stochastic state space model, similar to the

EnKF. This simulation will be done as follows: for every particle xi
k−1|k−1, a

sample of the process noise vi
k−1 is drawn from the known distribution given by

p(vk−1), and substituted in the state transition equation to get a new particle

xi
k|k−1 = f(xi

k−1|k−1, uk−1, vi
k−1). The new set of particles that is obtained,

represented as {xi
k|k−1}Np

i=1, will represent i.i.d samples from the prior distribution

defined by the density p(xk|y1:k−1). Note that no information about yk was used for

the simulation. The above mentioned one-step simulation constitutes the prediction

step of the particle filter. In order to obtain an estimate of the state at the current

time instant k, we require samples from the posterior distribution p(xk|y1:k) which

incorporates the knowledge of yk. However, there is no direct way of drawing

samples from the posterior since the density function p(xk|y1:k) is not available. By

the recurrence relationship in Eq. (3.3), we have (ignoring the normalizing constant

in the denominator and using proportionality)

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1) (3.39)

Note that we already have samples {xi
k|k−1}Np

i=1 which represent p(xk|y1:k−1) in the

R.H.S of the above equation. The likelihood p(yk|xk) can be evaluated for any xk by
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substituting its value in Eq. (3.4) and knowing the pdf for the measurement noise.

It turns out that using the samples from p(xk|y1:k−1) and the value of likelihood

function evaluated at these sample points, one can obtain samples representing the

posterior p(xk|y1:k). This is the update step in the particle filter and is carried

out by a method called sampling importance resampling. This technique makes

it possible to recursively propagate the particles based on the relationship in Eq.

(3.39). This method will be explained through a simple example.

A simple example

Consider a process which has the following state space representation:

xk = xk−1 + vk−1, vk ∼ N(0, 5) (3.40a)

yk = xk + nk, nk ∼ N(0, 1) (3.40b)

x0 = 1 (Initial state) (3.40c)

y0 = No measurement available at k = 0 (3.40d)

Simulation of the true process

Drawing a random sample from the process noise distribution using the MAT-

LAB function randn, we obtain

v1 = sqrt(5)*randn = sqrt(5) ∗ 0.7826 = 1.7501

Using the above random sample of v1 and performing a one-step forward simulation

of the state space model, we obtain

xtrue
1 = x0 + v1 = 2.7501 (3.41)

ymeas
1 = 2.7501 + randn

= 2.7501 − 0.7204

= 2.0297 (3.42)

Estimation using 5 particles

Assuming the above realization of the state space model as the true process, the

estimation of the state of the process at time instant k will be demonstrated using

the particle filter algorithm. Here, N=5 particles will be used for the purpose of

demonstrating the basic calculations ‘by hand’. The basic steps of particle filtering

will be shown along with the detailed computations involved in each step.

1. At k=0:

Note that initially we do not have any measurements from the true process and

hence the posterior for x0 will be assumed to be of some appropriate form in
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order to obtain i.i.d samples. These samples are the first set of particles in the

particle filter algorithm which will be propagated forward through the state

transition equation. Subsequently, the evolution of these particles through the

prediction and update step will yield the samples required for all operations.

Assuming x0 ∼ N(1, 1), consider the following 5 particles as a realization of a

random draw from the distribution:

x̂0|0 =




0.3821
2.4085

−0.4799
2.0195
0.3948




2. At k=1:

(a) Prediction step: As explained earlier, in the prediction step the prior

distribution particles will be obtained using the state model. For this

we draw Np = 5 random samples from the process noise distribution. A

realization of this obtained using the MATLAB function randn was as

follows:

v̂k−1 = sqrt(5)*randn(5,1)

=




−2.3620
0.2305
0.7657
0.7584

−4.7368




Using x̂k−1 and v̂k−1 for k = 1, we obtain the prior particles using the

state transition equation as

x̂k|k−1 = x̂k−1 + v̂k−1 =




−1.9799
2.6390
0.2858
2.7779

−4.3420




(b) Likelihood evaluation: Since we have Gaussian measurement noise,

the likelihood at each of the prior particles is given by (based on Eq. 3.4)

p(ymeas
k | xk = x̂i

k|k−1) ∝ exp

(−(ymeas
k − ŷi

k|k−1)2

2σ2
n

)

where, ymeas
k is the value of the measurement obtained at time k (Eq.

3.42), ŷi
k|k−1 is its predicted value based on the measurement model and
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the ith particle x̂i
k|k−1. Thus, we have

ŷk|k−1 = x̂k|k−1

=




−1.9799
2.6390
0.2858
2.7779

−4.3420




Let,

wi = exp

(−(ymeas
k − ŷi

k|k−1)2

2σ2
n

)

Therefore,

Likelihood ∝ wi

Evaluating wi for the 5 particles, we obtain the vector w as

w =




exp
(

−( 2.0297−ŷ1
k|k−1

)2

2

)

exp
(

−( 2.0297−ŷ2
k|k−1

)2

2

)

exp
(

−( 2.0297−ŷ3
k|k−1

)2

2

)

exp
(

−( 2.0297−ŷ4
k|k−1

)2

2

)

exp
(

−( 2.0297−ŷ5
k|k−1

)2

2

)




=




0.0003
0.8306
0.2186
0.7559

0




The corresponding normalized weights, so that the sum of weights is equal

to 1, are given by

w =




0.0002
0.4601
0.1211
0.4187

0




Figure 3.6 shows the stem plot of the normalized weights of the 5 particles.

(c) Correction step: Sampling Importance Resampling (SIR)

In the previous steps, we obtained samples from the prior distribution

which corresponds to the prediction step in the particle filter. Also, we

evaluated their respective likelihoods using the measurement equation

and the measurement noise distribution (Step b). In order to obtain

posterior samples (update step of the estimation problem), we require

57



Figure 3.6: Normalized weights plotted against the particle index.

samples from the posterior distribution. Based on Eq. (3.39), the

posterior pdf can be related to the likelihood function and the prior pdf

as follows:

posterior
p(xk|ymeas

k )
︸ ︷︷ ︸

samples required

∝
likelihood

p(ymeas
k |xk)

︸ ︷︷ ︸
normalized weights

× prior
p(xk|ymeas

1:k−1)
︸ ︷︷ ︸

samples available

The Sampling Importance Resampling (SIR) algorithm can be employed

to obtain samples from p(xk|ymeas
k ), given samples from p(xk|ymeas

1:k−1).

The SIR algorithm was first proposed in a Bayesian logistic regression

application by Rubin (1983). The application of the algorithm for

obtaining samples from posterior distributions was illustrated in Rubin

(1988). The algorithm is useful when a good approximation of the

posterior distribution exists from which it is easy to obtain samples. This

distribution is called the importance distribution. The basic idea is to

“obtain samples from this approximate distribution, and then resample

from this finite sample with probability proportional to the ‘importance

ratios’ to obtain the required posterior samples”. In the current context

it is assumed that the prior distribution, from which we have samples

available, is an approximation of the posterior. This assumption results

in a particular type of particle filter which is widely known as the SIR-

particle filter. The choice of this importance distribution is one of the
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main variations in the different types of particle filter algorithms in the

literature. For the SIR-particle filter, the importance ratio r(x) of any

sample x is given by

r(x) ∝
posterior

prior

where,
posterior

prior
∝ likelihood

Thus, we have the importance ratio as

r(x̂i
k|k−1) ∝ p(ymeas

k | x̂i
k|k−1)

where, p(ymeas
k | x̂i

k|k−1) = wi

i.e. the importance ratios are proportional to the likelihood values which

were evaluated in the previous step (Step b).

By the SIR approach we resample from x̂i
k|k−1 with probability propor-

tional to wi to obtain the posterior samples. Note that we have normal-

ized wi already and hence we can perform resampling considering wi as

the discrete probability associated with particle i. This resampling is just

a standard problem of drawing samples from a finite discrete distribution,

given the probability values of all the points in the discrete space. This

can be done by the method of inversion of the cumulative distribution

function (cdf). This method was first suggested by the mathematician

John von Neumann in 1947 (Eckhardt, 1987; Metropolis, 1987). The cdf

has the property that it is always uniformly distributed on the interval

[0,1], independent of the pdf. The basic steps of sampling via inversion

of the cdf can be described as follows:

i. Sample a uniform random number ξ from U [0, 1]

ii. Equate the cdf at a location x in the space of random variable X to

ξ, i.e., F (x) = ξ

iii. Invert the cdf to obtain a sample xk from the distribution of X:

xk = F −1(ξ)

iv. Go to Step i. until k = required number of samples

The above steps is graphically depicted for a univariate continuous

random variable in Figure 3.7. This method can be used for a discrete

distribution also, where F (x) will be discrete. For resampling from the

prior samples, we have the discrete case and can be done using the above

method which is popularly known as the ‘Golden rule of Sampling’.
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Figure 3.7: Sampling by inversion of the cumulative distribution function.

First, we have to construct the discrete cdf of particles using w as:

Fj =
j∑

i=1

wi,

for j = 1 to 5

Here, we have F = [0.0002 0.4602 0.5813 1.0000 1.0000] and

this is plotted in Figure 3.8.

Figure 3.8: Cumulative distribution function based on wi.

60



Resampling from the prior to obtain posterior samples (x̂k|k):

i. Generate Np = 5 uniform random numbers in the interval [0 1]:

U = [0.4358 0.3631 0.8810 0.8012 0.0060]

ii. for i = 1 to Np

FIND j : Fj−1 < Ui < Fj

x̂i
k|k = jth particle in x̂k|k−1

end

With the above procedure, we obtain

x̂k|k =




2nd particle in x̂k|k−1

2nd particle in x̂k|k−1

4th particle in x̂k|k−1

4th particle in x̂k|k−1

2nd particle in x̂k|k−1




=




2.6390
2.6390
2.7779
2.7779
2.6390




After resampling, we have equal weights for all particles, i.e.,

wx̂k|k
= 1/Np = 1/5

Comparing the histogram of resampled particles (x̂k|k) in Figure 3.9 with

the plot of normalized weights in Figure 3.6, it is clear that resampling

preserves the distribution. [Note: The 2nd and 4th particles are the closest

Figure 3.9: Histogram of the particles after resampling at k = 1.

to the true state (xtrue
1 = 2.7501) among all the particles in the set of
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x̂k|k−1. Hence, their higher weight (i.e. likelihood) is reflected in terms

of higher frequency in the resampled set of x̂k|k.]

(d) We can define the optimal estimate as either the sample mean or mode

of the resampled particles, i.e.,

Estimate = Sample mean of x̂k|k OR Mode of x̂k|k

=
1
5

∑
x̂i

k|k OR 2nd particle in x̂k|k−1

Therefore,

xestimate
k = 2.6946(mean) or 2.6390(mode)

Note that, here the mean of x̂k|k gives more accurate estimate. The choice

of mean/mode as estimate is problem dependent.

3. For the subsequent time instant k+1, we have:

x̂k+1|k︸ ︷︷ ︸
prior samples

at (k + 1)

= x̂k|k︸︷︷︸
posterior samples

at k

+ v̂k︸︷︷︸
new noise samples

at k

Loop from steps 2(b) to 3

Running the algorithm for subsequent time instants, we can observe the quality

of particle filtering by comparing the estimates with the true states of the system.

Figure 3.10 shows an instance of running the particle filter algorithm on this example

for k= 1 to 100.

The choice of number of particles is problem dependent and the accuracy of

the estimate can be expected to improve with increasing number of particles. This

is because we always get a better approximation of the probability distribution

with more representative samples. For a one dimensional problem such as the one

discussed here, it is customary to use as many as 50 to 100 particles.

Estimation using N=50 particles:

Figure 3.11 shows the stem plots of the normalized weights (before resampling) and

histogram of particles (after resampling) for another instance of the above example,

using N = 50 particles. The sample mean statistic of the resampled particles

was used for obtaining the estimate (xestimate
k ). As is evident from Figure 3.11,

the use of more particles is able to give more meaningful weights to the particles

(unimodal, normal distribution) for this linear state space system. Figure 3.12 shows
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Figure 3.10: Particle filtering with N=5 particles: Comparison of true and estimated
states.

an instance of the true states and the corresponding estimates using N=50 particles

for k= 1 to 100.

The basic computational steps involved in the SIR-particle filter algorithm for

a single time instant k is graphically illustrated in Figure 3.13. The points in

Figure 3.13 represent the particles in a two-dimensional state space. Figure 3.13(a)

illustrates the prediction step, and 3.13(b)–(c) constitute the correction/update step

in the particle filter algorithm. In Figure 3.13(b), the color contours illustrate

how the state space spanned by the particles can be demarcated according to the

value of their importance weights. After resampling, the particle population will

be concentrated more towards the region of higher importance weight as shown in

Figure 3.13(c).

The stochastic state space model of the process and the importance distribution

completely defines the structure of the particle filter. In order to keep the discussion

at a basic level, the different choices of importance distribution that can be made

were not considered here. For a given structure of the filter, there are three basic

requirements for designing the algorithm (see Gordon et al. (1993)):

1. The initial distribution of the states, p(x0) at k = 0, should be available for

sampling.
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Figure 3.11: Comparison of the weights (before resampling) and histogram of
particles (after resampling) at (a) k=1, (b) k=2.
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Figure 3.12: Particle filtering with N=50 particles: Comparison of true and
estimated states.

2. The likelihood p(yk|xk) should be available as a known functional form. This

implies that the pdf of the measurement noise distribution should be explicitly

known.

3. The process noise distribution p(vk) should be available for sampling.

The above requirements, which also partly decide the design of a particle filter,

satisfy the mathematical formulation of the particle filter. The design parameters

that completely defines a particle filter includes the choice of the distributions

enlisted above and also the number of particles intended to be used. Like any

other filtering algorithm, a lot of engineering insight and experience has to be used

in “tuning” the particle filter so that it will become an effective operational filter. In

the Kalman filter and the EnKF algorithm, this process of tuning is usually done by

iteratively searching for the covariance of the process noise and measurement noise

that yield the best estimation performance (Maybeck, 1979). A similar approach

can also be taken for tuning the particle filter to give good estimation performance.

Note that the particle filter imposes no restrictive assumptions of process linearity

or Gaussian noise distributions and this procedure of tuning can be applied for any

given stochastic model of a process.
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Figure 3.13: Illustration of the prediction and correction steps of the SIR-particle
filter algorithm for one time instant k, showing: (a) prediction, (b) importance
weight computation using the measurement yk, and (c) resampling of the particles
using the importance weights. The predicted particles obtained in (a) are shown
superimposed on the color contour regions in (b). The color contours are based
on the magnitude of the importance weights. The correction/update step in the
particle filter comprises of (b) and (c).
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3.6 Comparison of Kalman Filter, Ensemble Kalman
Filter and Particle Filter

In this section, the performance of the EnKF and the particle filter algorithm

is analyzed, by comparing the estimation performance with Kalman filter, under

various scenarios such as non-Gaussian process noise and measurement noise,

nonlinear stochastic state space systems etc. In the previous example, our state-

space system was linear with Gaussian process and measurement noise. In such

scenarios, it is known that the Kalman filter is the optimal filter and gives the best

estimate.

The Kalman filter (KF) assumes that the posterior density of the states is

Gaussian at every time step and thus uses the mean and covariance value to

characterize the distribution completely. Also, analytical expressions to recursively

compute the covariance and mean of the Gaussian posterior density can be used,

making the Kalman filter simple to implement. But the assumptions inherent in

KF can be often highly restrictive in many practical situations. For example, if

the system is nonlinear the above assumptions do not hold, even if the state and

measurement noise processes are Gaussian. Another interesting case is when the

distribution of the state/measurement noise is non-Gaussian. On the other hand,

note that the EnKF/particle filter does not make any assumption of Gaussian noise

or linearity of the system. The only requirement in such Monte Carlo filters is that

the distribution of the noise should be known, and it should be possible to draw

samples from this distribution. The particle filter can be considered as the most

general solution for the state estimation problem because it practically makes no

prior assumption about the nature of posterior/prior distribution. On the other

hand, in the EnKF algorithm there is an inherent assumption that the distribution

of the state prediction error and the innovations is Gaussian, and hence uses the

ensemble covariance in the Kalman update equation. Hence, for any given system

the particle filter can be expected to give better, if not similar, accuracy of estimation

as that of the EnKF. However, the computational cost of the particle filter will be

significantly high due to the large number of Monte Carlo simulations (O(1000)

particles) required to obtain reasonably accurate state estimates.

As mentioned earlier, we can expect that the accuracy of the estimate provided

by the EnKF/particle filter algorithm will become better with more number of

particles. This can be verified by doing MC simulations for different ensemble

sizes/number of particles and observing the Root Mean Square Error (RMSE) of the

estimation errors. Note that filters such as KF, EKF, UKF are deterministic and

give a single RMSE value for one realization of the process. However, EnKF and

PF being stochastic ones (utilize random sampling), the RMSE has to be evaluated

by averaging over several Monte Carlo realizations of the filter on a single process
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realization. The following sections present case studies comparing the performance

of the EnKF and particle filter with that of KF as a function of the ensemble

size/number of particles used. In each of the following case studies, one realization

of the corresponding system (simulated for k = 1 to 100) was taken and used as

data for state estimation.

3.6.1 Linear system

First, the system defined in Eq. (3.40) is considered, without changing any of

the properties of the noise distributions. Figure 3.14 shows the plot of RMSE of

estimation of the EnKF and particle filter plotted against the number of realizations

in the ensemble/particles (Ne or Np). Also, the RMSE obtained if the Kalman filter

(KF) were used is shown. The RMSE of EnKF and the particle filter is obtained

by averaging over 50 MC simulations. As one would expect, we can observe from

Figure 3.14 that the KF gives the best performance for this linear system with

Gaussian noise. Also, we can observe that the performance of KF is superior to the

EnKF/particle filter when the number of particles is very low (<150). But as the

number of particles is increased, the RMSE of the Monte Carlo filters are tending

towards that of the Kalman filter. Clearly, this example illustrates the significance

of using sufficient number of Monte Carlo realizations in an EnKF/particle filter to

achieve near-optimal estimation accuracies.

Figure 3.14: Performance comparison of particle filter, EnKF and KF for a linear
process with Gaussian measurement noise.
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Note that the ‘curse of dimensionality’ becomes a factor when the state space

dimension is large. For this simple system, in order to get an estimation accuracy

comparable to that of a KF, the particle filter requires more than 250 particles.

As noted by Daum (2005), the computational complexity of filters such as particle

filters increases exponentially with the number of states in the system. However, the

computational complexity of KF grows only as cube of the state space dimension.

Thus, one should prefer using the KF over a PF with large number of particles,

for scenarios of linear systems with Gaussian noise such as the one considered here.

The KF will also give the best optimal estimate in such cases.

The EnKF shows a much faster convergence to the optimal filter, with the RMSE

reaching very close to that of the KF when the ensemble size is around 100. The

main feature of the EnKF is that the solution space is limited to the span of the en-

semble vectors. Hence, the dimension of the state estimation problem in the EnKF

is given by the dimension of the ensemble space. Hence, even for large scale systems

we can use a relatively small number of ensembles. However, the requirement is that

the true states of the process should lie in the ensemble space. This can be satis-

fied by having a good knowledge about the initial conditions of the process states

and also having better physical models of the process. This is true for large scale

systems in earth, atmospheric and oceanographic sciences, thanks to the modeling

effort by geophysicists, oceanographers and earth scientists. The EnKF has been

shown to be a promising method in many practical applications in these areas of

research. For example, the EnKF is today operational in the Canadian Meteorolog-

ical Center (http://www.weatheroffice.gc.ca/ensemble/index e.html) for obtaining

ensemble weather forecasts through atmospheric data assimilation (Houtekamer &

Mitchell, 2005).

In the previous study, it was assumed that the process noise and measurement

noise is Gaussian, in which case the Kalman filter is known to be the optimal filter.

In a second comparative study, this assumption was relaxed by assuming that the

measurement noise nk is non-Gaussian. The non-Gaussian density function assumed

for the measurement noise, p(nk), is shown in Figure 3.15. The normalized histogram

of a realization of 100 samples drawn from the pdf is also shown superimposed in the

figure. As shown in the figure, it was assumed that the measurement noise follows

a bimodal distribution. Figure 3.16 shows the RMSE values of the particle filter

and EnKF for different number of particles. The RMSE of the Kalman filter is also

shown for comparison. The degradation in the performance of the KF caused by the

non-Gaussian noise can be clearly observed from the figure. The EnKF performance

converges to that of the Kalman filter for sufficiently high number of realizations in

the ensemble. The particle filter gives the best performance compared to the EnKF

and the KF, for approximately 50 or more number of particles. Note that the true
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Figure 3.15: Bimodal pdf of measurement noise (nk).

Figure 3.16: Performance comparison of particle filter, EnKF and KF for a linear
process with non-Gaussian measurement noise.
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bimodal noise distribution was used to draw noise samples in the implementation

of the EnKF and the particle filter. This is a clear illustration that the EnKF

algorithm is not able to completely account for the non-Gaussian likelihood resulting

from the bimodal measurement noise distribution. This disadvantage is a result of

the Kalman update used in the EnKF algorithm. However, in the particle filter

we can properly incorporate the information about non-Gaussian likelihood at the

sampling-importance-resampling step. It can be observed that when the number of

particles is small (for example, when Np<35), the performance of both Monte Carlo

filters are worse than the Kalman filter, which once again illustrates the significance

of using sufficient number of particles. The RMSE of the particle filter starts to

improve significantly from that of the KF when Np > 50. The advantage of using the

particle filter is realized when the number of particles is around Np =250, beyond

which there is no significant improvement in the RMSE. There is no significant

effect of the high number of particles on the computational complexity in this one

dimensional case, making the particle filter as the best choice.

3.6.2 Nonlinear system

Next, the performance of the Monte Carlo filtering algorithms on a nonlinear system

will be compared. First, a simple nonlinear process with Gaussian process and mea-

surement noise will be considered, having the following state space representation:

xk+1 = xk + vk, vk ∼ N(0, 5) (3.43a)

yk = 10−4x3
k + nk, nk ∼ N(0, 1) (3.43b)

x0 = 1 (Initial state) (3.43c)

y0 = No measurement available at k = 0 (3.43d)

The above system has the same random walk type of state transition model as

the linear system considered earlier. However, the measurement equation is now

nonlinear. The process and measurement noise are assumed to have the same

variance as the linear system with Gaussian noise considered earlier. Note that

the Kalman filter cannot be employed for this system because the measurement

equation is nonlinear. Developing the PF and EnKF is straight forward for this

nonlinear system, and only requires plugging in the state space equations to the

respective prediction and correction steps. Similar to the previous studies, the

comparison was performed by using one realization of the above system simulated

for 100 sampling instants. Using the measurements from the simulation, the EnKF

and PF algorithms were executed to estimate the states. The ensemble size/number

of particles was varied in the range of 10 to 500. The RMSE of estimation of the
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two filters, averaged over 100 MC, is shown in Figure 3.17 as a function of number

of particles.

From Figure 3.17, it can be observed that the estimation performance of both

the filters improve with increasing number of particles and are close to each other

for Np ≥ 300 particles. Note that the PF does not make any assumption about the

distribution of the states. Nevertheless, the performance of PF (with Np ≥ 300)

and EnKF are similar for this particular nonlinear system. Although to some

extent the EnKF shows a better performance than the PF, this result may not be

generalized for any class of nonlinear systems. As will be shown in the next example,

the performance of the EnKF will degrade compared to that of the PF when the

likelihood becomes significantly non-Gaussian. Thus, the effect of nonlinearity on

the posterior density of the states for different systems will have to be investigated

on a case-by-case basis to understand under what scenarios the Gaussian assumption

of the EnKF is reasonable to give a performance comparable to that of the PF.

The case of non-Gaussian measurement noise in the above system was also

considered to compare the performance of the filters. Here, the same bimodal pdf

for nk shown earlier in Figure 3.15 was used. Figure 3.18 shows the plot of RMSE

of estimation against the number of particles. It can be clearly seen that the PF

outperforms the EnKF. The lower performance of the EnKF can be attributed to

the presence of non-Gaussian measurement noise, which will make the distribution

of the innovations significantly non-Gaussian and far away from the assumption of

Gaussianity in the Kalman update rule.

3.7 Concluding Remarks

This chapter presented a tutorial overview of the concept of state estimation/filtering

from a Bayesian viewpoint. The main objective of state estimation is to combine

prior knowledge about the process along with information from the real process

data measured through sensors, to estimate certain unknown quantities. Usually,

the quantities so estimated are the ones necessary for decision making in the face

of uncertainty. The uncertainty is mainly due to three reasons: (1) the lack of an

exact physio-chemical model of the process, (2) unmeasured external disturbances

affecting the process, and (3) random noise contaminating the measurements. A

detailed description of two filtering algorithms, namely the particle filter and the

ensemble Kalman filter (EnKF), which are suitable for state estimation of nonlinear

systems was presented. Both these filters belong to the class of algorithms known

as sequential Monte Carlo filtering algorithms. The ensemble Kalman filter can

be defined as a Monte Carlo version of the Kalman filter algorithm. In the EnKF

algorithm, the analytical solution provided by the Kalman filter for linear state space

systems is extended for nonlinear systems through the use of statistical samples.

72



Figure 3.17: Performance comparison of the particle filter and the EnKF for a
nonlinear process with Gaussian measurement noise.

Figure 3.18: Performance comparison of the particle filter and the EnKF for a
nonlinear process with non-Gaussian measurement noise.
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The particle filter is a more general solution to the problem of state estimation for

nonlinear systems. The particle filter is purely based on Bayes’ rule whose analytical

implementation is intractable for the state estimation problem. In the particle filter

algorithm, the Bayes’ rule is incorporated through Monte Carlo simulations by a

method known as sampling importance resampling of statistical samples. Simple

examples of univariate linear and nonlinear systems were used to demonstrate the

application of the algorithms. The examples showed the performance of these filters

in different scenarios, which were different combinations of linear/nonlinear systems

with Gaussian/non-Gaussian process and measurement noise. The optimality of the

particle filter was shown on a linear system with Gaussian process and measurement

noise, where the RMSE of the estimated variable was observed to converge to that

of the Kalman filter when the number of particles is close to 300. The EnKF also

showed similar convergence on such systems. However, for systems in which the

measurement noise was assumed to be non-Gaussian, the particle filter outperformed

the EnKF/KF with a significantly lower RMSE for particle population sizes of 100

and above. The particle filter will require an enormous number of Monte Carlo

simulations for systems whose state space dimension is high and this can cause an

exponential rate of increase in the computational cost of the particle filter. This

disadvantage limits the applicability of this method today to only low dimensional

systems. For large scale nonlinear systems, the EnKF is a good choice and is today

operational in some real world weather forecasting systems. An application of the

EnKF algorithm for characterization of large scale oil and gas reservoirs will be

discussed in a later chapter of this thesis.
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Chapter 4

Detection and Quantification of
Valve Stiction by the Method of
Unknown Input Estimation1,2

4.1 Introduction

The problem of stiction in valves is well known to be one of the primary causes

of oscillations in industrial process control loops (Ruel, 2000). Such oscillations

can easily propagate to other control loops and degrade the overall closed loop

performance of the process. The higher variability in the process variables due to

such oscillatory loops will be reflected in the final product, in the form of larger

variations in the product quality. Based on an industrial survey, Desborough &

Miller (2001) have reported that control valve problems account for about one-third

of the 32% of controllers classified as ‘poor’ or ‘fair’. The detection and quantification

of valve stiction in such loops is the first step towards a diagnosis scheme in order

to alleviate the effect of a sticky valve on closed loop performance.

Jelali & Huang (2009) and Choudhury et al. (2008) have presented a comprehen-

sive review of the state of the art on stiction detection and quantification method-

ologies. Horch (2006) has presented a detailed comparative study of the different

methods of automatic detection of stiction that are available in the published lit-

erature. The main conclusion of this study was that different methods “have their

strengths and application areas” , “rely on different assumptions” and “there is not

one method which can cover all cases reliably”. Jelali & Scali (2009) have presented

an extensive comparison of different valve stiction techniques on a benchmark data

set from 93 industrial loops. The aforementioned paper also provides detailed re-

1An almost full version of this chapter has been published in the Journal of Process Control
(Chitralekha et al., 2010).

2Abbreviated sections of this chapter were also presented at the 7th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes, Barcelona, Spain, June 30 – July 3, 2009
(Chitralekha et al., 2009).
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sults and conclusions about the merits of various techniques in terms of sensitivity to

measurement noise, data requirements, implementation difficulties and many other

practically relevant factors.

We can broadly classify the stiction detection methods into two categories: data-

based and model-based approaches. Horch (1999) presents a data-based method

which is based on the cross-correlation between the controller output (op) and

process output (pv). This method cannot be applied to integrating processes, for

which in a later work Horch & Isaksson (2001) have presented another method

based on the distribution of the second derivative of the pv signal. Rengaswamy

et al. (2001) and Yamashita (2006) have presented data based methods based on

the qualitative shapes in the time trends of the op and pv signals. In a more recent

work, Scali & Ghelardoni (2008) present an improved version of the shape based

method by also including additional stiction patterns observed in industrial data

sets. The shape based method was shown to be reliable for flow control loops.

Peter He et al. (2007) and Ahmed et al. (2009) have proposed methods which are

based on the triangular shape of the op or pv signals for detecting stiction in self-

regulating and integrating processes. In another study, Choudhury et al. (2006)

present a method for detecting and quantifying stiction for linear processes using

the pv and op data. This method is based on the fact that for a linear process under

closed loop control, a sticky valve would induce nonlinearity in the pv and op signals

and hence stiction can be detected based on the nonlinearity in the control error

signal. The quantification part was based on the pv vs. op plot, which was found

to be elliptical in shape and the width of the ellipse was used to quantify stiction.

This type of quantification is very useful since it expresses stiction as percentage of

the valve travel which is the practice in the process industry for quantifying stiction.

The disadvantage of this quantification methodology is that the width of the ellipse

will be dependent on the effect of loop dynamics (mainly controller tuning) on the

pv. Therefore, the estimated width of the ellipse is termed as ‘apparent stiction’.

On the other hand if the valve position (mv) data is available, then a simple plot of

mv and op can be used to obtain the actual stiction. For a sticky valve, the mv vs.

op plot will follow well defined patterns depending on the type of stiction as shown

in an earlier work by Choudhury et al. (2005). The true stiction can be quantified

using an appropriate width measure of this pattern.

Several authors have proposed model-based approaches for stiction detection

and quantification. Stenman et al. (2003) has presented a model-based approach

based on ideas from the field of change detection and multi-model mode estimation.

A stiction model defined by a binary mode parameter was proposed and used in

their approach. Stiction detection was performed through a combined identification

of the process model parameters and the mode sequence. Srinivasan et al. (2005),
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Choudhury et al. (2008), Jelali (2008) and Lee et al. (2009) have proposed model-

based methods where a linear process with a sticky valve is considered to be a

Hammerstein system, the sticky valve being the nonlinear element in the system. A

suitable valve stiction model was used to define the structure of the nonlinear part.

These methods involve explicit identification of the parameters of a stiction model,

along with the process model parameters, through an optimization procedure. The

validity of the stiction model structure chosen in this method is crucial to the success

of the method and confirmation of this may be possible only through a post-results

analysis.

In any of the methods mentioned hitherto, the mv vs. op plot was not used

for the quantification part since for most practical cases the valve positioner data

(available only for ‘smart valves’) is not available. Note that with the technological

advancements of today, there are valve position sensors which can measure the stem

position of the valve. However, the cost of such valves will be significantly high

compared to the legacy valves which are still the most popular ones. In the current

work, a novel method is proposed in which the valve position can be estimated by

the method of unknown input estimation using a process model and the pv, op data

available from the process. Such an approach can be described as a ‘virtual smart

valve’. Since most of the control loops with a valve have linear controllers, usually

PI(D)s, which are capable of giving satisfactory regulation, the assumption of a

linear process is reasonable. A major contribution of this work is the application

of the unknown input observer (UIO) proposed by Gillijns & De Moor (2007) and

its use in this particular study for estimating the mv. The two-parameter empirical

model developed in Choudhury et al. (2005) was used in all the simulation studies

in this work. However, note that the proposed stiction detection and quantification

methodology does not assume any stiction model. The two-parameter stiction model

was chosen over other models (which are physical models) since it was shown by

the authors to be effective in capturing all the different modes of real sticky valves

by specifying just two parameters of the model. Moreover, this model is generic

in the sense that it requires only the knowledge of the type of stiction to simulate

and hence it is more suitable for studying the performance of the proposed stiction

detection and quantification algorithm.

This chapter is organized as follows. In Section 4.2, the formulation of the

stiction detection problem as an unknown input estimation problem is explained.

The phenomena of how stiction manifests on the mv-op data plot and how stiction

quantification can be carried out using the plot is explained in Section 4.3. In

Section 4.4, the application of the method is demonstrated on simulated examples.

The simulation studies will show how the quantification is not significantly affected

by model-plant mismatch, external disturbances, and controller tuning, which are
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attractive features for applying this method to real world problems. In Section

4.5, the results of application of this method to a flow control loop in a pilot-scale

process is presented. In Section 4.6, two industrial case studies are presented where

the loop was exhibiting limit cycle behavior: one with a sticky valve and another

with a normal valve, where oscillations were due to external causes in the latter

case.

4.2 Problem Formulation

Consider the closed loop block diagram as shown in Figure 4.1, where a sticky valve

is included between the process and the controller block. Typically, the controller

will be P or PI. For the general case the pv can be the level, flow rate, temperature,

pressure or composition measurement. The controller commands the valve to open

to a particular position (units of % opening) through the op signal. The mv signal

(units of % opening) represents the actual percentage opening performed by the

valve. For a normal valve, the mv and op signal will be equal at all times. But if

the valve is sticky, then there will be a clear difference between the two signals. In

such a situation the valve acts like a nonlinear element transforming the op signal.

If we model this transformation of the op by adding an additive, nonlinear, external

signal which enters the loop just after the controller output, we get an equivalent

representation as shown in Figure 4.2 with the valve block replaced by an external

unknown input signal. Clearly, this external signal will be given by the difference

between mv and op i.e., ũ = (uV − u). This signal is defined as ‘unknown’ because

in most real world systems we do not know the mv and the problem of getting an

estimate of mv can be solved if we can estimate ũ.

+ pvop mv Process

P

Controller

C
Sticky

Valve

V

+
_

+

Measured pv

Disturbance
w

r

Set-point

y

u V
u

Sensor

Figure 4.1: Closed loop with a “Sticky” valve.

The process in the above scenario can be assumed to be a univariate process with

a P or PI controller to control it. Assume that the process can be described as a
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Figure 4.2: Equivalence between a sticky valve in a loop and an external unknown
input signal.

univariate linear discrete time system with the following state-space representation

xk+1 = akxk + bkuV
k−L+1 + wk (4.1)

yk = xk + vk

where xk ∈ ℜ is the process state, uV
k−L+1 ∈ ℜ is the input to the process (valve

position), L accounts for process dead-time and yk ∈ ℜ is the measurement available

from the process. The process noise wk ∈ ℜ and measurement noise vk ∈ ℜ are

assumed to be Gaussian with variance Q and R respectively. With the above system,

we can use the method of unknown input estimation proposed by Gillijns & De Moor

(2007) in order to obtain an estimate of uV . This estimator is a Kalman filter type

recursive estimator, which uses the process model in the form of Eq. (4.1) and the

sequence of input and output measurements to estimate the unknown input. The

main assumptions of the unknown input estimation method proposed by Gillijns &

De Moor (2007) are the following: (1) the linear state space model in Eq. (4.1) is

observable, and (2) an unbiased estimate of the initial state x0 is available. The

model parameters ak and bk have to be known/chosen a priori. They can be chosen

based on the a priori knowledge about the gain and time constant of the process;

also, an identified linear model of the process can be used. Any delay in the system

is assumed to be known or estimated and should be incorporated in the state-space

model of the process. In the following discussions, it is assumed that L = 1, i.e., a

unit delay exists between the input and the state variables, without loss of generality.

Q and R have to be considered as Kalman filter type tuning parameters in the

unknown input estimator. The measurement error variance, R, can be estimated

from past measurements from a steady state operation of the process. In the current

context, the input is not completely known and is given by

uV
k = uk + ũk (4.2)
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where ũk is the unknown portion which has to be estimated. Substituting Eq. (4.2)

into Eq. (4.1), we obtain the state-space system with the unknown input explicitly

as

xk+1 = akxk + bkuk + bkũk + wk (4.3)

yk = xk + vk

The recursive form of the unknown input estimator is then given by

x̂k|k−1 = ak−1x̂k−1|k−1 + bk−1uk−1 (4.4)

̂̃uk−1 = Mk(yk − x̂k|k−1) (4.5)

x̂∗
k|k = x̂k|k−1 + bk−1

̂̃uk−1 (4.6)

x̂k|k = x̂∗
k|k + Kk(yk − x̂∗

k|k) (4.7)

where Mk and Kk are obtained using the method given in Gillijns & De Moor (2007).

In order to obtain a minimum-variance unbiased (MVU) estimate of ũk−1, the gain

matrix Mk is calculated based on a weighted Least Square (WLS) estimation scheme.

For this, consider the following definition of the innovation:

ỹk , yk − x̂k|k−1

= bk−1ũk−1 + ek (4.8)

where, ek is given by

ek = ak−1(xk−1 − x̂k−1|k−1) + wk−1 + vk (4.9)

In Gillijns & De Moor (2007), the weighting matrix (E[ekeT
k ])−1, i.e., inverse of

Cov(ek), was used for the WLS estimation of the input. Based on Eq. (4.9), we

obtain

R̃k , E[ekeT
k ]

= a2
k−1Pk−1|k−1 + Q + R (4.10)

where, Pk|k , E[x̃kx̃T
k ] and x̃k , xk − x̂k|k. For the univariate system in Eq. (4.8),

we then obtain

Mk = (b2
k−1R̃−1

k )−1bk−1R̃−1
k

= 1/bk−1 (4.11)

by applying the Theorem 2 given in Gillijns & De Moor (2007). Based on similar

ideas and starting from Eq. (4.6), an optimal gain matrix Kk can be calculated

which will give an MVU estimate of the state. The interested reader is referred to

Gillijns & De Moor (2007) for a detailed derivation of the expressions for Mk and
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Kk in a more general setting. In Gillijns & De Moor (2007), the authors have shown

that the method will give a minimum-variance unbiased estimate if the process

model exactly matches the plant and an unbiased estimate of the initial state x0

is available. Another attractive feature of this method is that no prior knowledge

about the nature of the unknown input is required (Gillijns & De Moor, 2007).

Using the estimated unknown input signal ̂̃uk, we can reconstruct the valve position

signal by substituting for ũk in Eq. (4.2) to obtain,

ûV
k = uk + ̂̃uk (4.12)

Note that one can use any type of unknown input observer that is available in

the literature, or even a simultaneous state and parameter estimation algorithm, in

order to do the above task of estimating the valve position from the process model.

4.3 Detection and Quantification: mv-op plot

A typical control valve consists of two major components, namely the valve body

housing and the actuation unit (Kayihan & Doyle III, 2000). Figure 4.3 shows the

basic parts of a typical pneumatic control valve. The valve body consists of a valve

seat, a valve plug attached to a valve stem and a valve packing. The clearance

between the valve plug and the seating, which determines the flow rate of the fluid,

is varied by the motion of the valve stem. The stem is connected to a diaphragm in

the actuation unit which applies the required force to move it in a controlled fashion.

The friction force between the valve stem and the valve packing helps to keep the

stem in position. Also, the packing prevents leaks from the valve body. During

the course of its operation, when the valve stem becomes temporarily stationary,

this friction force can often become fairly large due to static friction. Stiction is

basically the phenomena of the valve stem becoming temporarily immobile until the

force applied by the diaphragm is able to overcome this static friction.

The phenomena of valve stiction can be easily understood using the phase plot of

input-output behavior as shown in Figure 4.4, as reproduced from Choudhury et al.

(2005). In this figure, the portion AC and EF correspond to the region when the

valve is sticking. It is composed of a dead band (AB) and a stick band (BC). The

points A and E correspond to instances when the valve stem is changing its direction

of motion and hence comes to rest momentarily. At these points, the static friction

comes into play. In order to overcome the static friction, the controller output has

to change by a value equal to the width AC or EF. At C (or F) the valve jumps

(slip jump) to a new position, D (or G), and continues to move. A sticky valve

under closed loop control will follow this cyclic pattern, causing the loop to have

undesirable oscillations which will be reflected in the process variable.
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Figure 4.3: Control valve with actuator (Courtesy: InTech Magazine - April 2005,
ISA).

Figure 4.4: Sticky valve input-output behavior.

Based on this input-output behavior of a sticky valve, an empirical model

containing two parameters was proposed in Choudhury et al. (2005). The first

parameter quantifies the width of the region in which the valve is sticking (AC or EF)

and is denoted by S. The second parameter captures the slip jump phenomena (CD

or FG) and is denoted as J . Both S and J can be specified in terms of percentage

travel of the valve. This model is used in the simulation examples discussed in the

next section.

In order to detect whether a loop is oscillating due to valve stiction, one can

visualize and check the mv-op plot for the above cyclic pattern. The width of the
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cyclic pattern with respect to the op axis (= S) can be considered to be directly

related to the amount of stiction present in the valve and hence can be used to

quantify stiction (Choudhury et al., 2006). However, for the majority of the valves

in industry the valve positioner data (mv) is not available. On the other hand, the

unknown input estimator described in the previous section can be used to obtain

an estimate of the mv and a pattern similar to Figure 4.4 can be identified in order

to detect and quantify stiction. In the process industry the op signal is usually

available in units of percentage opening of valve, which means that stiction will

also be quantified as percentage of the valve travel. This type of quantification is

intuitively understandable and also can be used for any valve irrespective of the

valve type.

4.4 Simulation Study

In this section, the efficacy of the proposed stiction detection and quantification

algorithm is demonstrated through simulation examples, where the stiction is

introduced in the closed loop simulation studies using the stiction model proposed

in Choudhury et al. (2005). First, a simple integrating process with the process

gain being unity (i.e., G(s) = 1/s) and controlled by a discrete PI controller is

considered. The two parameter stiction model was included in between the process

and the controller in closed loop simulation.

A discrete time implementation of the PI controller represented by the transfer

function Kc(1 + 1
τI(1−z−1)

), where Kc = 0.1 and 1/τ I = 0.01, was used in the

simulation. A Gaussian white noise signal, with a variance of 0.01, was introduced

as disturbance in the simulation. A sampling time of 1 sec. was used in all the

simulation studies. The parameter values of S = 4 and J = 2 were used in

the stiction simulation block. Due to the presence of stiction, the loop becomes

oscillatory. Figure 4.5 shows the time trends of the pv and op signals, after the

closed loop system has attained steady state.

In the unknown input estimator, the unity gain integrator model for the process

was used and the unknown input was estimated to obtain the valve position signal

ûV
k . The state noise variance (Q) and measurement noise variance (R) values of 1e-5

and 1e-3, respectively, were used in the estimator. Figure 4.6 shows the true and

estimated mv-op plot. Note that in this simulation the true mv is naturally available.

The noise in the simulation is causing the random variation in the estimated mv-op

plot compared to the true phase plot. Nevertheless, we can clearly see the signature

of stiction present in the estimated mv-op plot pattern and hence we can detect

stiction visually from this figure. As mentioned earlier, the width of the mv-op plot

quantifies stiction. In order to estimate the width of the pattern, a trapezoid was

fitted to the mv-op data which is overlapped onto the estimated mv-op plot. The
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Figure 4.5: Simulated data set with stiction.

trapezoid fitting is done by solving a constrained optimization problem to find the

four corner points of the polygon, where the objective is to find the least squares

error of fit to the mv-op data. The corner points were constrained to fall within

the range of the data. Constraints are also imposed on the points so that two of

the edges will be parallel to the horizontal axis and these edges will correspond to

the sticking region of the valve. The estimated width is denoted as Ŝ . For the

quantification part, it is only the width of the mv-op plot that is of interest and in

the proposed scheme, if the model is fairly precise, then Ŝ will be close to S. In the

simulated example, the estimated width matches the parameter S exactly and thus

we can conclude that the quantification is accurate.

4.4.1 Model plant mismatch

The previous example demonstrated how the method can be applied for detecting

stiction using input-output data and a process model. In this section, the perfor-

mance of the algorithm when there is a mismatch between the coefficients of the

plant and the model will be studied. Robustness to model-plant mismatch is an im-

portant feature of any model based scheme if it has to be applied in practice. The

performance of the algorithm should not be significantly affected by model-plant

mismatch (MPM). This is important because in the real world it is not practical to
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Figure 4.6: mv-op plot (Stiction model parameters: S=4, J=2).

obtain an exact model of the process.

In order to study the effect of MPM on the stiction quantification results, the

performance of the method was evaluated on a first order process with time delay

(FOPDT). The parameters of the FOPDT process and the model (with mismatch)

are shown in Table 4.1. As shown in the table, the gain and time constant parameters

have a 10% mismatch. A unit sample time (=1 sec.) mismatch was introduced in the

delay. For each case of MPM, the S parameter was varied in the range of 0.5 to 10

(in steps of 0.5) and the percentage error in the stiction estimation was calculated.

The J parameter was set at 0.5S. In order to get a realistic value of the estimation

error, the average estimation error was taken over 50 Monte Carlo simulations of

the closed loop with different realizations of simulation noise.

Table 4.1: FOPDT parameters for process and model (with mismatch).

116.50.9Model (with mismatch)

2151Process

Delay (secs)Time constantGainParameters

116.50.9Model (with mismatch)

2151Process

Delay (secs)Time constantGainParameters

Figure 4.7 shows the estimation error for different levels of stiction introduced in

the loop, for the cases of with and without MPM. It can be observed that the error
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Figure 4.7: Stiction estimation error for a FOPDT process in the presence of MPM.

stays below 20% for most of the cases, except when the S ≤ 2 in which case the

error is around 30%. From the Fault Detection and Identification literature, it is well

known that estimating any low magnitude fault, such as stiction with magnitude 2%

or lower, with high accuracy is difficult to achieve; the low magnitude faults usually

get confounded with process noise and disturbances.

The unit gain integrating process illustrated earlier was also considered here.

Different levels of gain mismatch (through parameter bk) was introduced. The

results are summarized in Figure 4.8. The estimation error stays below 15% of

the actual stiction value even at the high level of MPM considered here, for all

stiction levels except for the case of a low stiction (S = 1).

Based on the above two simulation case studies, we can conclude that the pro-

posed algorithm gives reliable estimates even in presence of model-plant mismatch.

The robustness to MPM observed in the above simulation studies also indicates that

the width of the estimated mv-op plot, which quantifies stiction, is fairly invariant

to the effect of MPM.

4.4.2 External oscillatory disturbance

In a typical control loop shown in Figure 4.1, it is very likely that oscillations occur

due to reasons other than stiction. A very common scenario is when an external
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Figure 4.8: Stiction estimation error for an integrating process under different levels
of MPM. Model gain (bk) values were: 1 (No MPM), 0.9 (Low), 0.8 (Medium), 0.7
(High).

oscillatory disturbance enters the closed loop. For example, consider the case of

level control in a tank where the outlet valve is the mv and the inlet flow rate

(unmeasured disturbance) is fluctuating in an oscillatory manner. This would cause

the level in the tank to also oscillate and hence the closed loop will have oscillatory

op, mv and pv. In this section, a simulation example is used to demonstrate how

the proposed algorithm will be able to correctly identify that the valve in a closed

loop is normal when an external disturbance is causing persistent oscillations in the

loop. If the algorithm had lacked this aspect, there would be false alarms whereby

a normal valve will be wrongly reported as a sticky valve.

The same integrating process discussed earlier is considered once again here.

In order to introduce an external oscillatory disturbance, a sinusoidal disturbance

with amplitude 1 and frequency 0.05 rad/sec along with a random noise disturbance

was added in the closed loop simulation. The stiction block was removed from the

Simulink model to emulate the case of a normal valve. The controller tuning settings

are the same as before. Due to the oscillatory disturbance, the pv and op variables

oscillate. The simulation was run for 5000 sampling intervals. The time trend of

the pv and op signals confirmed that they were oscillating. Using the input-output

data and the model of the process, the unknown input estimator was executed and
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Figure 4.9: Diagnosis of external oscillatory disturbance using the mv-op plot.

the results were observed. The plot of the estimated mv vs. op is shown in Figure

4.9. This pattern is clearly an ellipse and is very different from that of a sticky

valve. Hence, we can diagnose that the oscillations are not due to stiction, but are

caused by some oscillatory external disturbance. We can automatically identify this

pattern by fitting an ellipse and checking for the Root Mean Squared Error (RMSE)

of fit to the ellipse. The RMSE value can be used as a test statistic to verify a null

hypothesis that there is no stiction effect in the loop. Figure 4.9 also shows a fitted

ellipse (using the direct least squares method proposed by Fitzgibbon et al. (1996))

and the RMSE of fit of the ellipse was 0.0078 which indicates quantitatively that

the pattern is elliptical. Also, note that the width of the ellipse is very small and

hence the valve can be considered as perfectly linear i.e., the mv and op are almost

the same.

In the unknown input estimator, the basic assumption is that the unmeasured

disturbance is random. If the disturbance is oscillatory, then the sinusoidal part

will be unaccounted for by the model in the state estimator. This unaccounted

portion of the disturbance signal will be captured in the unknown input signal (̂̃u)

by the estimator. Since the system is linear, ̂̃u will also be sinusoidal. Note that

the estimated process input (mv axis of Figure 4.9) is given by Eq. (4.12), which

is the sum of op and ̂̃u. In fact, the estimated mv will not be the actual valve

position (which is equal to the op for normal valve) but is an effective combination

of the op and the disturbance signal. Since the op signal is also sinusoidal, plotting
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Table 4.2: Aggressive controller tuning parameters.
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two sinusoid signal variables (which need not be in phase) against each other will

yield the elliptical pattern. This explains the reason behind an elliptical pattern

appearing in the above situation. Thus the proposed method can clearly detect if

an external oscillatory disturbance is the root cause of oscillations in the loop.

4.4.3 Aggressive controller tuning

An aggressively tuned PID controller can be a cause for oscillations in many

industrial control loops. In such a scenario, a good valve stiction detection algorithm

should confirm that the root cause of the oscillations is not valve stiction. The

efficacy of the current methodology will be demonstrated by deliberately introducing

aggressive tuning specifications into the simulated control loops considered earlier.

The stiction block was removed from the simulation so that the valve can be

considered to be a normal one. The controller tuning parameters and the process

model transfer functions used to generate oscillatory closed loop data are given in

Table 4.2. The steady state time trends for a window of sp, pv and op data from

the simulation of the two processes is shown in Figure 4.10.

With a normal linear valve in closed loop, we would expect the mv-op plot to

be a straight line without any stiction pattern being depicted. Figure 4.11 shows

the estimated and the true mv-op plots for the two processes. From the figure, we

can observe that the estimated mv vs. op line coincides with the actual one and

is clearly showing a linear dependence between the two. Thus, the absence of any

stiction pattern in the estimated mv-op plot clearly shows that the valve is normal.

4.5 Pilot Plant Experimental Study

In this section, the application of the proposed methodology to experimental data

from a laboratory scale level control system will be presented. This system is located

in the Computer Process Control Laboratory in the Department of Chemical and

Materials Engineering at the University of Alberta. The installed facility allows the

level controller of the system to be configured as a master controller, with a slave
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Figure 4.10: Oscillatory control loop simulated with aggressive controller tuning for
(a) Integrating Process, (b) FOPDT Process.
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Figure 4.11: Diagnosis of oscillations due to aggressive controller tuning conditions:
(a) Integrating Process, (b) FOPDT Process.

flow controller cascaded with the master. Hence both flow and level measurements,

which will be part of the flow and level control loops, are available for this process.

The flow control loop was considered for this study. The data for this study was

obtained from the work by Choudhury et al. (2008). It was first confirmed that the

valve was normal by doing bump tests. The two-parameter stiction model was used

to transform the controller output signal before it reaches the valve to deliberately

emulate valve stiction.
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4.5.1 Flow control loop

Figure 4.12 shows the time trend of the pv and op signals which clearly indicate

that the stiction is causing the process variable to oscillate. The parameters of the

Figure 4.12: Laboratory scale flow control loop time trend data with stiction.

stiction model used for this experimental run was chosen to be (S, J ) = (2,1). A

first order model with a time constant of 5 secs. and gain of 0.1 was assumed for

the flow process. Figure 4.13 shows the actual and the estimated mv-op plot when

the proposed method was applied to the flow control loop. The stiction pattern is

clearly visible in the estimated mv-op plot. The quantification of stiction is also

found to be fairly accurate (Ŝ = 2.13).

4.6 Industrial Case Studies

In this section, the performance of the method on real industrial data sets is

shown. The data was taken from the work by Choudhury et al. (2006). First

the data obtained from a level control loop in a power plant was considered, in

which the condenser level is controlled by manipulating the liquid flow rate out

of the condenser. The flow control valve was “sticky” and was causing the loop

to oscillate. One of the attractive features about this industrial example was that

the valve positioner data (mv) was also available from the plant. This was useful

in validating the performance of the proposed UIO-based mv estimation algorithm.
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Figure 4.13: Laboratory scale flow control loop: mv-op plot (True and Estimated).

The full data set consists of 8640 samples for each variable, sampled at 5 sec sampling

interval. In order to obtain data from the DCS at the 5 sec sampling rate, an explicit

data acquisition loop was setup for investigating stiction. The time trend of the

normalized values of all the variables in the data set for a window of the samples is

shown in Figure 4.14.

Clearly, from Figure 4.14 we can observe that the loop is oscillating. Also,

comparing the time trend of the mv and op data we can observe that the mv motion

is restricted at positions where the op turns around because of stiction. For modeling

this process, a discrete time first order model, with a negative gain to capture the

relationship between the pv (level) and mv(outlet valve position), was used. Note

that it is not realistic to use the mv, pv data to identify a model since the mv data

is very rarely available. A model with a pole very close to unity was chosen by

assigning a value of 0.99 to ak in the state-space model Eq. (4.1). From Figure

4.14, we can observe that the pv deviation is roughly 1/10th of the deviation in the

op. Also, the outlet valve position will have an inverse effect on the level. Thus, by

this comparison of the magnitudes of the pv and op deviation the parameter bk was

fixed at -0.1. Using these model parameters, the valve position was estimated. The

true and estimated mv-op plot is shown in Figure 4.15.

From the true mv-op plot, we can clearly see that the valve is actually sticking

and a similar pattern is present in the estimated mv-op plot. Also, from the true
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Figure 4.14: Industrial data from a level control loop with stiction.

Figure 4.15: Industrial level control loop: mv-op plot (True and Estimated).

mv-op plot, the actual amount of stiction can be approximately quantified to be

around 11.25%. The estimated stiction based on the width of the trapezoid fit is

11.9%, which is very close to the actual stiction amount. Note that there exists a

bias between the values of the true and the estimated mv (compare the y-axis of

the true and estimated plot). This can be attributed to the model plant mismatch
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which occurs because an accurate model of the level process is not available. The

quantification is not affected by the mismatch since the width of the pattern with

respect to the op axis quantifies the amount of stiction and this ‘op’ value is of

course always available. Thus, we can conclude based on this industrial case study

that the proposed stiction detection and quantification approach is fairly robust and

therefore is useful for practical applications.

In order to demonstrate the efficacy of the method in preventing false alarms,

the data from another loop (from the same power plant considered before) was used.

The process variable is level in a condenser which was controlled by manipulating the

flow rate of the liquid condensate. Figure 4.16(a) shows the time trend of the data

sets. Though the time trend shows that the loop is oscillating, it was found that the

valve was normal for this loop. Similar to the earlier case, the valve positioner (mv)

data was available for this loop, which was useful to confirm that stiction was not

present in the valve. Figure 4.16(b) shows the actual mv-op plot with the estimated

values superimposed. A simple integrating process model was used to estimate the

mv using the proposed methodology. The actual mv-op plot clearly depicts a normal

valve, with the valve position following the controller signal. The estimated mv-op

plot is clearly able to reproduce this fact and yielded a straightforward conclusion

that the valve is in good condition. The random fluctuations in the estimated mv

can be attributed to the random disturbances affecting the process variable.

Remarks. In the light of industrial applications, there are a few comments we can

make regarding the practical side of the proposed methodology:

• The computational cost of the UIO is very low and is suitable for online

implementation.

• In order to automate the technique, the pattern detection method should be

very robust. In this work, a simple optimization based method of detecting the

stiction pattern was employed. In real applications, the process disturbances can

confound this pattern and make it difficult to get satisfactory result with this simple

method.

• Nonlinear valve characteristics: A nonlinear flow characteristics of a normal

valve is a case that was not analyzed in this work. Such nonlinearity will be reflected

in the estimated mv vs. op plot as a nonlinear curve; this will eliminate the case

of stiction. On the other hand, a nonlinear mv vs. op curve signature can also

appear due to a nonlinear output disturbance affecting the process. It would then

be difficult to diagnose the root cause of nonlinearity in the absence of stiction.
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Figure 4.16: Industrial level control loop: Diagnosis of oscillations in the absence of
stiction.
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4.7 Concluding Remarks

This chapter presented a novel solution to the problem of detection and quantifi-

cation of valve stiction in process control loops for linear processes. The method

is based on the distinct signature that stiction phenomena exhibits in the mv-op

plot of a sticky valve. In this method, the mv (valve position) was estimated by

considering it as an unknown input and employing a Kalman filter type unknown

input estimator which uses a linear model of the process. The simulation examples

showed that the method can accurately detect and quantify stiction by using the

estimated mv-op plot, even in the presence of significant model plant mismatch. For

quantifying stiction, the width of the mv-op plot pattern was estimated by fitting

a trapezoid in a least squares sense which makes it an automated quantification

technique. The simulations also showed that the estimated mv-op plot obtained

with this method can clearly indicate if the oscillations were caused purely by an

external oscillatory disturbance or due to a controller tuning problem. The efficacy

of the method was demonstrated on a laboratory scale flow control loop and also on

industrial level control loops.

Bibliography

Ahmed, S., Shah, S. L., & Huang, B. (2009). Maintenance issues in oil and gas

processes: Detection of valve stiction. In Alfadala, H., Reklaitis, G. V. R., & El-

Hawagi, M. M. (Eds.), Proceedings of the 1st Annual Gas Processing Symposium,

Doha, Qatar, (pp. 202–210).

Chitralekha, S. B., Shah, S. L., & Prakash, J. (2009). Detection and quantification

of valve stiction by the method of unknown input estimation. In Quevedo,

J., Escobet, T., & Puig, V. (Eds.), 7th IFAC Symposium on Fault Detection,

Supervision and Safety of Technical Processes, Barcelona, Spain, (pp. 1432–1437).

Chitralekha, S. B., Shah, S. L., & Prakash, J. (2010). Detection and quantification

of valve stiction by the method of unknown input estimation. Journal of Process

Control, 20 (2), 206 – 216.

Choudhury, M. A. A. S., Jain, M., & Shah, S. L. (2008). Stiction - definition,

modelling, detection and quantification. Journal of Process Control, 18, 232–243.

Choudhury, M. A. A. S., Shah, S. L., & Thornhill, N. F. (2008). Diagnosis of

Process Nonlinearities and Valve Stiction - Data Driven Approaches. Advances

in Industrial Control. Springer.

Choudhury, M. A. A. S., Shah, S. L., Thornhill, N. F., & Shook, D. S. (2006).

98



Automatic detection and quantification of stiction in control valves. Control

Engineering Practice, 14, 1395–1412.

Choudhury, M. A. A. S., Thornhill, N. F., & Shah, S. L. (2005). Modelling valve

stiction. Control Engineering Practice, 13, 641–658.

Desborough, L. & Miller, R. (2001). Increasing customer value of industrial control

performance monitoring-honeywell’s experience. In AIChE symposium series

2001, volume 326, (pp. 172–192).

Fitzgibbon, A., Pilu, M., & Fisher, R. (1996). Direct least squares fitting of ellipses.

In Proceedings of the 13th International Conference on Pattern Recognition,

volume 1, (pp. 253–257).

Gillijns, S. & De Moor, B. (2007). Unbiased minimum-variance input and state

estimation for linear discrete-time systems. Automatica, 43, 111–116.

Horch, A. (1999). A simple method for detection of stiction in control valves. Control

Engineering Practice, 7, 1221–1231.

Horch, A. (2006). Oscillation diagnosis in control loops: Stiction and other causes.

In Proceedings of the 2006 American Control Conference, (pp. 2086–2096).

Horch, A. & Isaksson, A. (2001). Detection of stiction in integrating processes. In

European Control Conference, Porto, Portugal, (pp. 1327–1332).

Jelali, M. (2008). Estimation of valve stiction in control loops using separable least

squares and global search algorithms. Journal of Process Control, 18, 632–642.

Jelali, M. & Huang, B. (Eds.). (2009). Detection and Diagnosis of Stiction in Control

Loops - State of the Art and Advanced Methods. Springer.

Jelali, M. & Scali, C. (2009). Comparative study of valve stiction detection methods.

In M. Jelali & B. Huang (Eds.), Detection and Diagnosis of Stiction in Control

Loops chapter 13. Springer.

Kayihan, A. & Doyle III, F. J. (2000). Friction compensation for a process control

valve. Control Engineering Practice, 8 (7), 799–812.

Lee, K. H., Ren, Z., & Huang, B. (2009). Stiction estimation using constrained

optimisation and contour map. In M. Jelali & B. Huang (Eds.), Detection and

Diagnosis of Stiction in Control Loops chapter 11, (pp. 225–256). Springer.

Peter He, Q., Wang, J., Pottmann, M., & Joe Qin, S. (2007). A curve fitting method

for detecting valve stiction in oscillating control loops. Industrial and Engineering

Chemistry Research, 46, 4549–4560.

99



Rengaswamy, R., Hagguland, T., & Venkatasubramaniam, V. (2001). A qualitative

shape analysis formalism for monitoring control loop performance. Engineering

Applications of Artificial Intelligence, 14, 23–33.

Ruel, M. (2000). Stiction: The hidden menace. how to recognize this most difficult

case of loop cycling. Control Magazine, November, 69–75.

Scali, C. & Ghelardoni, C. (2008). An improved qualitative shape anlaysis technique

for automatic detection of valve stiction in flow control loops. Control Engineering

Practice, 16, 1501–1508.

Srinivasan, R., Rengaswamy, R., Narasimhan, S., & Miller, R. (2005). Control Loop

Performance Assessment. 2. Hammerstein Model Approach for Stiction Diagnosis.

Industrial & Engineering Chemistry Research, 44 (17), 6719–6728.

Stenman, A., Gustafsson, F., & Forsman, K. (2003). A segmentation-based method

for detection of stiction in control valves. International Journal of Adaptive

Control and Signal Processing, 17, 625–634.

Yamashita, Y. (2006). An automatic method for detection of valve stiction in process

control loops. Control Engineering Practice, 14, 503–510.

100



Chapter 5

Simultaneous State and
Parameter Estimation Schemes
for a Continuous Fermentor
Reactor1,2

5.1 Introduction

Stochastic nonlinear state space models are commonly used for modeling dynamic

processes in many diverse fields. Some of the common examples are: the phe-

nomenological models used to study small scale chemical and biological processes

such as bio-reactors; stochastic volatility models used to model the dynamic changes

in stock prices in the area of quantitative finance (Kim, 2005); reservoir simulation

models used to describe the flow of oil and gas in a petroleum reservoir (Evensen,

2007; Lorentzen et al., 2005). In a majority of the cases, the model structure is

based on fundamental laws of mass and energy conservation. While these conser-

vation laws provide the deterministic part of a dynamic model, it is also necessary

to account for unknown disturbances and measurement errors through a stochastic

description of the model.

The following generic discrete time nonlinear state space model is considered:

xk+1 = f(xk, uk, θ) + vk (5.1)

yk = h(xk, θ) + nk

where, vk denotes the process noise to take into account unknown process distur-

bances and nk takes into account the noise in the measurement devices. The state

vector, xk ∈ R
l, is generally considered to be ‘hidden’ and its effect is observed

1An almost full version of this chapter has been published in the Journal of Process Control
(Chitralekha et al., 2010).

2Abbreviated sections of this chapter were also presented at the 15th IFAC Symposium on
System Identification, Saint-Malo, France, July 6 – 8, 2009 (Chitralekha et al., 2009).
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through the measurements, yk ∈ R
m. The measurements are related to the true

states through the measurement function h(xk, θ). For convenience, the process dis-

turbance (vk) and measurement noise (nk) are assumed to follow zero-mean Gaussian

distributions given by N (0, Qv) and N (0, R) respectively. However, this assumption

is not necessary for the algorithm developed in this work. It is also assumed that

the process disturbance and measurement noise are uncorrelated with each other,

i.e., E[vknT
k ] = 0. This assumption is necessary for the standard state estimation

algorithms discussed in this work. However, alternative state estimation algorithms

which take into account cross-correlated noise variables can be incorporated into the

proposed methodologies. The functions f and h are assumed to be known, nonlinear

functions, and are parameterized by a constant but unknown vector θ.

If all the parameters of the model are known a priori, then the problem of state

estimation can be directly solved using any of the standard algorithms such as the

particle filter (Gordon et al., 1993; Arulampalam et al., 2002), unscented Kalman

filter (Julier & Uhlmann, 1997), extended Kalman filter or their variants. The

accuracy of state estimation will directly depend on the model quality, i.e., on the

model’s ability to accurately capture the process dynamics. The parameters in the

model play a crucial role in determining the model quality. Hence, a good estimate

of the parameters is required a priori for state estimation. Usually, in most physical

systems there are at least a few parameters whose values are unknown a priori. Thus,

for a chosen model structure the problem of system identification is to identify the

unknown parameters of the model and simultaneously estimate the hidden states,

using input-output data from the process. In this work, a Continuous Fermentor

reactor is considered in which some of the yield parameters in the dynamic model

are unknown. The substrate concentration is assumed to be unmeasured or hidden.

Thus, the problem is to estimate the unknown parameters simultaneously with the

states, using measured data from the process.

There are several techniques available in the literature that can be employed

to solve this problem. Based on the approach taken for data processing, they can

be broadly classified into batch and recursive techniques. Kantas et al. (2009) have

presented a comprehensive review of the state of the art on joint state and parameter

estimation techniques based on particle filters; a comparison of the pros and cons

of the techniques is also presented. Several authors have proposed the technique of

Expectation Maximization algorithm combined with the particle filter for combined

state and parameter estimation of nonlinear systems (Andrieu & Doucet, 2003; Wills

et al., 2008; Gopaluni, 2008b, 2010). Doucet & Tadic (2003), and Poyiadjis et al.

(2005) have presented gradient based maximum likelihood estimation techniques,

where a particle filter is used to numerically approximate the likelihood function

derivatives. Chen et al. (2005) have presented the application of particle filter
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for recursive state and parameter estimation of a simulated batch polymerization

reactor. Recently, Evensen (2009) has proposed the Ensemble Kalman filter as an

efficient Monte Carlo technique for recursive state and parameter estimation in large

scale models used in atmospheric sciences and oil reservoir simulations. In general,

most of these techniques are based on the maximum likelihood estimation (MLE)

framework. The maximum likelihood framework is an attractive approach for state

and parameter estimation due to the asymptotic consistency and efficiency of the

resulting estimates. There are several ways of defining the likelihood function in

order to solve the problem of combined state and parameter estimation (Maybeck,

1972). In this work, two types of likelihood functions is considered, one of them

suitable for batch estimation and the other for online recursive estimation.

The following are the main contributions of this chapter: (a) Batch and recursive

schemes for simultaneous state and parameter estimation, which are based on the

theory of Expectation Maximization algorithm and nonlinear filters, is derived. (b)

Various versions of the respective schemes, which employ state-of-the-art nonlinear

filters such as particle filter, unscented Kalman filter (UKF), extended Kalman

filter (EKF) and ensemble Kalman filter (EnKF), is presented. (c) An empirical

comparison of batch parameter estimation efficacy and the associated computational

overload is done on a simulated Continuous Fermentor reactor. (d) The efficacy of

the recursive scheme for performing online estimation of time-varying parameters is

demonstrated on the same reactor example.

This chapter is organized as follows. In Section 5.2, a batch parameter estimation

technique based on the Expectation Maximization (EM) principle is explained.

Three popular choices of nonlinear state estimation, which is an important step in

the EM algorithm, are considered: particle smoother, unscented Kalman smoother

and extended Kalman smoother. The effect of the choice of these smoothing

algorithms on the overall computational cost of the EM algorithm is also analyzed.

In Section 5.3, a recursive parameter estimation scheme is explained in which the

parameters can be recursively estimated in a state estimation framework. For

recursive estimation, the application of the ensemble Kalman filter and unscented

Kalman filter is considered. Section 5.4 presents a case study using a Continuous

Fermentor reactor; an empirical comparison of different methodologies is presented

followed by some concluding remarks in Section 5.5.

5.2 Batch Parameter Estimation

Assume that a batch of data {YT , UT } where, YT = {y1, y2, .....yT } and UT =

{u1, u2, ....uT } are collected from a process whose dynamics are defined by Eq. (5.1).

One common approach to estimating the parameters in Eq. (5.1) is to maximize the

likelihood function of the measurements conditioned on the unknown parameters.

103



This parameter estimate can be written as

θ̂ = arg max
θ

p(YT |UT , θ) (5.2)

where, p(YT |UT , θ) represents the joint likelihood of the measurements. It is as-

sumed that UT are measured and known without any error. Hence, the dependence

of the above likelihood on them will not be shown explicitly in the rest of this

chapter. The above maximization problem requires either a functional form of the

likelihood function or an approach to evaluate it for any θ. However, it is well-known

that developing such a functional form is difficult for the general class of state space

models described by Eq. (5.1). Moreover, this classical likelihood function is not

suitable for the joint state and parameter estimation problem considered in this

work.

On the other hand, it is straightforward to derive a functional form of the ‘com-

plete’ likelihood function, p(XT , YT |θ), that includes unmeasured and measured

states. This complete likelihood function is related to the classical likelihood func-

tion through Bayes’ rule as

p(XT , YT |θ) = p(XT |YT , θ) p(YT |θ) (5.3)

where, XT = {x1, x2, .....xT }. Based on Eq. (5.3), it is clear that the complete

likelihood function inherently includes the information contained in the classical

likelihood function. Then, a functional form of the complete likelihood can be

derived using Bayes’ rule and the Markov property of the model as follows

p(XT , YT |θ) = p(XT |θ)p(YT |XT , θ) (5.4)

= p(x1|θ)
T∏

k=2

p(xk|xk−1, θ)
T∏

k=1

p(yk|xk, θ)

It turns out that by iteratively maximizing the expected value of the complete

likelihood with respect to the parameter vector, it is possible to maximize the

measurement likelihood function in Eq. (5.2). This iterative approach is called

Expectation Maximization algorithm or the EM algorithm and was developed by

Dempster et al. (1977). It is essentially an elegant way to maximize the likelihood

function in problems where the data is incomplete or missing as is the case with

state-space models. If we consider the state variables XT as missing data, then the

EM algorithm can be exploited for the simultaneous state and parameter estimation

problem as described below.

5.2.1 Expectation Maximization algorithm

In this section, the EM algorithm is explained which will be used for the parameter

estimation problem defined above. The basic idea of the algorithm is to iteratively
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compute the parameter estimates by taking a two-step procedure at each iteration:

the first step is called the Expectation step and is followed by a second Maximization

step. Before elaborating on the two basic steps, the rationale behind this algorithm

is explained.

Based on Eq. (5.3), the complete log-likelihood function and the classical log-

likelihood function can be related as

log p(YT |θ) = log p(XT , YT |θ) − log p(XT |YT , θ) (5.5)

Consider a probability distribution function p(XT |YT , θ′) defined over the state

variables, where θ′ is any fixed value of the parameter vector. Taking the expectation

of the terms in Eq. (5.5) w.r.t this distribution function (Note: The L.H.S. of Eq.

(5.5) will be unaffected by this operation since
∫

log p(YT |θ)p(XT |YT ,θ′)dXT =

log p(YT |θ)), we obtain

log p(YT |θ) =
∫

log p(XT , YT |θ)p(XT |YT ,θ′)dXT

−
∫

log p(XT |YT ,θ)p(XT |YT ,θ′)dXT

, Q(θ, θ′) − H(θ, θ′) (5.6)

The first term Q(θ, θ′), which is the expected value of the complete log-likelihood

function, is called the Q-function. Since we are interested in finding θ in an iterative

fashion, let us replace θ′ by θi where i denotes the iteration count. Then, we have

log p(YT |θ) = Q(θ, θi) − H(θ, θi) (5.7)

Also, we can derive the following inequality for log p(YT |θ):

log p(YT |θ) = log
[∫

p(XT , YT |θ)dXT

]

= log
[∫

p(XT , YT |θ)
p(XT |YT ,θi)

p(XT |YT ,θi)dXT

]

≥
∫

log
[

p(XT , YT |θ)
p(XT |YT ,θi)

]
p(XT |YT ,θi)dXT (5.8)

where, the last inequality follows from Jensen’s inequality (Boyd & Vandenberghe,

2006) applied to the concave function log
[

p(XT ,YT |θ)
p(XT |YT ,θi)

]
. Expanding the R.H.S of

inequality (5.8), we obtain

∫
log

[
p(XT , YT |θ)
p(XT |YT ,θi)

]
p(XT |YT ,θi)dXT =

∫
log p(XT , YT |θ)p(XT |YT ,θi)dXT

−
∫

log p(XT |YT ,θi)p(XT |YT ,θi)dXT

= Q(θ, θi) − H(θi, θi) (5.9)
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From Eqs. (5.8) and (5.9), we have

log p(YT |θ) ≥ Q(θ, θi) − H(θi, θi) (5.10)

Let θi be an estimate of the parameter vector. Consider a new parameter vector

θi+1 defined as

θi+1 = arg max
θ

Q(θ, θi) (5.11)

Also, substituting for θ = θi+1 in Eq. (5.10), we have

log p(YT |θi+1) ≥ Q(θi+1, θi) − H(θi, θi) (5.12)

From the definition of θi+1, we have

Q(θi+1, θi) ≥ Q(θi, θi)

or

Q(θi+1, θi) − H(θi, θi) ≥ Q(θi, θi) − H(θi, θi) (5.13)

From Eq. (5.7) and (5.13), it follows that Q(θi+1, θi) − H(θi, θi) ≥ log p(YT |θi).

Based on this inequality and Eq. (5.12), we have

log p(YT |θi+1) ≥ log p(YT |θi) (5.14)

Therefore, by maximizing the Q-function w.r.t the parameter vector (Eq. 5.11), it

is possible to obtain a new parameter estimate such that the likelihood function

increases.

The distribution p(XT |YT ,θi) is the conditional distribution of the states con-

ditioned on all the measurements available in the batch of data. It is also known

as the distribution of smoothed states. Finding the expected value of the complete

log-likelihood function with respect to this smoothed state distribution function

constitutes the first step of the EM algorithm and is called the Expectation step

or E-step. Using this smoothed state distribution function, we can evaluate the

Q-function at any θ. Thus, using p(XT |YT ,θi) we can maximize Q(θ, θi) w.r.t θ to

obtain a better parameter estimate θi+1 as was shown earlier. This step constitutes

the Maximization step or M-step which is the second step of a given iteration in the

EM algorithm. For the subsequent iterations, we replace θi by θi+1 and repeat the

E-step and M-step until the parameter converges to a local maximum of log p(YT |θ).

Algorithm: Based on the above theoretical derivations, the iterations involved in

the EM algorithm can be summarized into the following steps. First, we choose an

initial guess θ0 for the parameters and proceed as follows:
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1. Set i = 0.

2. E-step: Find the smoothed distribution p(XT |YT ,θi) by estimating the states
XT using a smoother algorithm with the parameter values in θi.

3. M-step: Maximize the objective function Q(θ, θi) w.r.t θ to obtain

θ̃ = arg max
θ

Q(θ, θi)

4. Set i = i + 1, θi = θ̃

5. Repeat steps 2 to 4 until the change in the parameter vector between two
subsequent iterations is below a specified tolerance level.

Figure 5.1 summarizes the above basic steps involved in the EM algorithm

for parameter estimation. The idea behind this algorithm can be intuitively

explained as follows: Using an initial guess of the parameter vector, the smoothed

estimates of unmeasured states and missing observations are obtained. The Q-

function is then estimated using these smoothed states and maximized with respect

to the parameter vector. In the subsequent steps, the above expectation and

maximization steps are repeated with the latest iterate of the parameter vector.

This procedure is continued until the change in parameters through these iterations

remains within a user specified tolerance limit. The maximization step in the EM

algorithm can be performed numerically using any standard nonlinear optimization

routine. Constraints can be imposed on the parameters, if required, to prevent the

optimization from generating unrealistic parameter estimates.

Estimate missing data using 
Optimal Filter, Predictor, Smoother

Maximize likelihood function

of complete data set

New Model

Σ

‘Complete’
data

Observed Data

Guess Initial model

Estimate missing data using 
Optimal Filter, Predictor, Smoother

Maximize likelihood function

of complete data set

New Model

Σ

‘Complete’
data

Observed Data

Guess Initial model

Figure 5.1: Flowchart of EM based parameter estimation scheme.

From the basic steps involved in the EM algorithm, it is clear that evaluation

of the Q-function is required for maximizing it. However, in general, the complex

multidimensional integrals in Q-function cannot be evaluated analytically for non-
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linear state-space models of the form defined in Eq. (5.1). Hence, we have to resort

to the elegant technique of using Monte-Carlo samples to approximate the integral

equation in the Q-function. In its simplest form, this technique can be seen as a

numerical approximation of integrals of the following form,

E[f(x)] =
∫

f(x)p(x)dx ≈ 1
N

N∑

i=1

f(xi) (5.15)

In Eq. (5.15), f(x) is some function of the random variable x, and xis are N

independent samples from the probability distribution p(x) of the random variable

x. Noting that the integrals in Q-function are of the same form as the one in Eq.

(5.15), one can use Monte-Carlo samples to approximate it. One straightforward

way to approximate Q-function would be to use samples from the joint density

p(XT |YT , θ′). But this method is inefficient as it requires sampling from a high

dimensional density resulting in poor approximation when T is large (Andrieu et al.,

2004). In order to overcome this issue, Gopaluni (2008b) has derived a simplified

form of the Q-function involving only point-wise state densities given by

Q(θ, θi) =
∫

log[p(x1|θ)]p(x1|YT ,θi)dx1 (5.16)

+
T∑

k=2

∫
log[p(xk|xk−1, θ)]p(xk, xk−1|YT ,θi)dxk:k−1

+
T∑

k=1

∫
log[p(yk|xk, θ)]p(xk|YT ,θi)dxk

From equations (5.15) and (5.16), it is clear that we can approximate the Q-function

by using i.i.d samples from the distributions p(xk|YT ,θi) and p(xk, xk−1|YT ,θi).

These density functions are the smoothed density functions of the states whose

approximations can be obtained using different types of nonlinear smoothing algo-

rithms.

5.2.2 Forward-backward smoother algorithms

In this work, the forward-backward (Rauch–Tung–Striebel smoother) type imple-

mentation of smoothing algorithms was considered. The common feature of all such

smoothing algorithms is that they are composed of a forward filter and a backward

smoothing pass. From the Bayesian perspective, the filtering and smoothing steps

in such smoothing algorithms is given by the following equations (see Gopaluni

(2008a)):
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1. Forward Filtering equation (for k = 1 to T , initialized with p(x0) = prior
distribution of initial state)

(a) Prediction step:

p(xk|Yk−1, θi) =
∫

p(xk|xk−1, θi)p(xk−1|Yk−1)dxk−1 (5.17)

(b) Update step:

p(xk|Yk, θi) =
p(yk|xk)p(xk|Yk−1, θi)

p(yk|Yk−1)
(5.18)

2. Backward Smoothing equations (for k = T − 1 to 1, initialized with
p(xT |YT , θi) from Forward Filtering)

(a) Joint smoothed density of xk and xk+1:

p(xk, xk+1|YT , θi) = p(xk|Yk, θi) × (5.19)
p(xk+1|xk, θi)p(xk+1|YT , θi)

p(xk+1|Yk, θi)

(b) Smoothed density of xk:

p(xk|YT , θi) =
∫

p(xk, xk+1|YT , θi)dxk+1

= p(xk|Yk, θi)
∫

p(xk+1|xk, θi)p(xk+1|YT , θi)
p(xk+1|Yk, θi)

dxk+1 (5.20)

The above filtering and smoothing equations are usually intractable for nonlinear

systems and hence numerical approximations are required. In the current work, the

performance of the EM algorithm is compared when three types of such approximate

smoothing algorithms are employed: the particle smoother, the unscented Kalman

smoother and the extended Kalman smoother.

Particle smoother:

Particle smoothers are based on the particle filter algorithm. The particle filter, as

proposed by Gordon et al. (1993), is one of the most versatile filtering algorithms

which uses Monte Carlo simulation and sampling methods. Though computationally

expensive, this algorithm can handle any type of system nonlinearity and noise

distribution. The main idea is to approximate all the required distributions using

independent samples and perform the ‘Bayesian steps’ of filtering. In particle filter

terminology these samples are referred to as ‘particles’. This section explains how

particles can be employed to arrive at an approximate solution to the Bayesian
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filtering problem. Assume that at (k − 1), we have performed filtering and

obtained particles {xi
k−1|k−1}N

i=1, which approximate the posterior distribution

p(xk−1|Yk−1, θ). Using each of these particles as initial conditions and the known

inputs, uk−1, we can do a one step forward simulation of the process with a stochastic

state space model of the process. The new set of particles that we obtain, represented

as {xi
k|k−1}N

i=1, will represent i.i.d samples from the prior distribution density

function, p(xk|Yk−1, θ). The above mentioned one-step simulation constitutes the

prediction step of the particle filter. In order to obtain an estimate of the state at

current time k, we require samples from the posterior distribution, p(xk|Yk, θ),

which incorporates the knowledge of yk. Note that we do not have a direct

way of drawing samples from the posterior distribution since the density function

p(xk|Yk, θ) is not available. By the recurrence relationship in Eq. (5.18), we have

(ignoring the normalizing constant in the denominator and using proportionality)

p(xk|Yk, θ) ∝ p(yk|xk, θ)p(xk|Yk−1, θ) (5.21)

The likelihood, p(yk|xk, θ), can be evaluated for any xk using the density function

for the measurement noise and the measurement equation. Using the samples from

p(xk|Yk−1, θ) and the likelihood function values evaluated at these sample locations,

one can obtain samples representing the posterior p(xk|Yk, θ). This is done by a

method called sampling importance resampling (Rubin, 1988) and constitutes the

update step in the particle filter. This technique makes it possible to recursively

propagate the particles based on the relationship in Eq. (5.21). The method is

useful when a good approximation of the posterior distribution exists from which it

is easy to obtain samples. This distribution is called the importance distribution. In

the current context, it is assumed that the prior distribution, from which we have

samples available, is a good approximation of the posterior. This assumption results

in a particular type of particle filter which is widely known as SIR-particle filter.

For the SIR-particle filter, the importance ratio r(x) of any sample x can be defined

as

r(x) ∝ posterior(x)
prior(x)

(5.22)

From Eq. (5.21), we have

posterior(x)
prior(x)

∝ likelihood(x) (5.23)

Thus, we have the importance ratio at x = xi
k|k−1 as

r(xi
k|k−1) ∝ p(yk| xi

k|k−1, θ)

i.e., the importance ratios are proportional to the likelihood values. By the SIR

approach, we resample from {xi
k|k−1}N

i=1 with probability proportional to r(xi
k|k−1)

to obtain the posterior samples.
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SIR-particle filter algorithm: Assume that we have {xi
k−1|k−1}N

i=1 generated

from p(xk−1|Yk−1). Note that for k = 1, a suitable distribution given by p(x0)

will be used to generate the initial set of samples. Then, we can recursively obtain

posterior samples for the next instant k through the following steps:

1. Generate samples {xi
k|k−1}N

i=1 through N independent forward simulations of
the stochastic state space model of the process as follows:

xi
k|k−1 = f(xi

k−1, uk−1, vi
k−1), for i = 1 to N

where, vi
k−1 is drawn from the process noise distribution. The samples

{xi
k|k−1}N

i=1 represent samples from the prior p(xk|y1:k−1)

2. Calculate the weights wi =
p(yk| xi

k|k−1
)

N∑
i=1

p(yk| xi
k|k−1

)

∀ i

3. Resample N particles {xi
k|k}N

i=1 from the discrete distribution {xi
k|k−1, wi; i =

1 : N}. These represent samples from the posterior p(xk|y1:k).

Note that the Eqs. (5.19) and (5.20) constitute the steps for obtaining the

smoothed distribution. In the particle smoother, these backward smoothing equa-

tions are applied on the filtered particles to obtain an approximation to the smoothed

density. This will result in a sample based approximation of the smoothed density

functions which can be represented as:

p(xk|YT , θi) ≈
N∑

i=1

wi
kδ(xk − xi

k) (5.24)

p(xk, xk+1|YT , θi) ≈
N∑

i=1

wi
k,k+1δ(xk − xi

k)δ(xk+1 − xi
k+1) (5.25)

where, wi
k is the weight computed by the smoothing algorithm for the ith particle.

This weighted approximation of the smoothed density is computed using the

forward-backward implementation of the particle smoother equations given in

Gopaluni (2008a). The approximation of the Q-function, obtained by substituting

Eqs. (5.24) and (5.25) into (5.16), is given by

Q(θ, θi) ≈
N∑

i=1

wi
1 log[p(xi

1|θ)] (5.26)

+
T∑

k=2

N∑

i=1

wi
k,k−1 log[p(xi

k|xi
k−1, θ)]

+
T∑

k=1

N∑

i=1

wi
k log[p(yk|xi

k, θ)]
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Unscented Kalman smoother:

The unscented Kalman filter (UKF), from which the corresponding smoother is

developed, is a sub-optimal and approximate extension of the Kalman filter for

nonlinear systems. The main assumption in this technique is that all the required

densities (posterior or smoothing distribution) can be approximated using just

the mean and covariance. Since the system equations are nonlinear, the basic

Kalman filter equations for propagating the covariance do not directly apply.

Hence, in the UKF algorithm the unscented transform is used to form Gaussian

approximations to random variables that result from nonlinear transformation of

Gaussian random variables (Julier et al., 2000). In the current work, a forward-

backward unscented Kalman smoother (UKS) proposed by Sarkka (2008) was

employed and the performance of the EM algorithm was analyzed. Compared

to the particle smoother, the UKS is computationally far less complex. Unlike

the particle based methods, which require large number of Monte Carlo samples,

the UKS uses a few deterministic samples (2l + 1 samples) for approximating the

smoothed distributions. The Gaussian approximations that are obtained using the

UKS are given by (see Sarkka (2008)):

p(xk|YT , θi) ≈ N(xk|µT
k , P T

k ) (5.27)

p(xk, xk+1|YT , θi) ≈ N(xk|µT
k,k+1, P T

k,k+1) (5.28)

where, µT
k , P T

k are the mean and covariance of the respective density functions. Using

random i.i.d samples from the above Gaussian distributions, we can approximate

the Q-function using Eqs. (5.15) and (5.16) as

Q(θ, θi) ≈ 1
N

N∑

i=1

log[p(xi
1|θ)] (5.29)

+
1
N

T∑

k=2

N∑

i=1

log[p(x∗i
k |x∗i

k−1, θ)]

+
1
N

T∑

k=1

N∑

i=1

log[p(yk|xi
k, θ)]

where, x∗i
k are i.i.d samples from the Gaussian density in Eq. (5.27) and [x∗i

k , x∗i
k−1]

sampled similarly from the joint density in Eq. (5.28).

Extended Kalman smoother:

The application of Kalman smoother for parameter estimation using the EM

algorithm for linear systems was presented in Shumway & Stoffer (1982). In the

extended Kalman smoother approach, a local linearization of the nonlinear dynamic

equations based on Taylor series is used to apply Kalman smoother equations on
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nonlinear systems. In the current work, the Rauch–Tung–Striebel smoother type of

the extended Kalman smoother (EKS) given in Haykin (2001) was employed. Similar

to the UKS, the EKS obtains Gaussian approximation of the smoothed densities.

Then, i.i.d samples can be drawn from the Gaussian densities to approximate the

Q-function as shown in Eq. (5.29). The computational complexity of EKS is

comparable to the UKS. However, the EKS suffers from additional approximation

errors since the error covariance matrices are propagated through the linearized state

space equations.

5.2.3 Computational cost

The particle smoother requires O(N2lT ) computations for each iteration of the EM

algorithm, where l is the state space dimension and T is the data length (number

of samples). The UKS and EKS require O(l3T ) computations, arising from the

smoothed covariance matrix computation equation. Usually the number of particles

in the particle smoother will be much higher compared to the state space dimension,

i.e. N ≫ l; a major factor which will make the EM algorithm based on particle

smoother computationally more demanding than the one with UKS/EKS. One of

the major factors that will contribute to the computational cost in all nonlinear

filters and smoothers is the number of times the differential equations in the state

space model have to be integrated forward in time for each sampling interval. The

particle smoother will require N such integrations per sampling interval; the UKS

will require 2l + 1 and the EKS requires only one integration per sampling interval.

The fact that N ≫ l will significantly increase the computational cost for the particle

smoother compared to UKS and EKS. Also, the calculation of exponential likelihood

functions is a computationally intensive step in the particle smoother. Hence, the

overall cost will be highest for the particle smoother, with little differences between

the UKS/EKS algorithms. However, note that the particle based filter/smoother is

well suited for parallel implementation where different processors can be assigned a

subset of the particles. Also, there is no need to store covariance matrices which is

an advantage for large scale systems in terms of reduced memory usage.

5.3 Recursive Parameter Estimation

The batch estimation algorithm presented above is suitable for off-line parameter

estimation and when the system parameters do not vary within the batch interval.

The technique is computationally intensive due to the particle approximations of

the integrals involved in the expectation step. For systems whose parameters

significantly vary with time, the parameters have to be updated in a recursive

fashion.
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This section presents an approach where the unknown parameters are treated

as random variables in the form of “hidden” states. The states of the process

are augmented with the parameters to create a new state vector, zk = [xk, θk].

Then, ẐT = {ẑ1, ẑ2....ẑT } can be estimated sequentially using a standard state

estimation algorithm. For the case of static parameter estimation, θk can be either

modeled as a process with no dynamics or can be considered to be a ‘slowly’ varying

parameter. In terms of MLE, this method is equivalent to maximizing the likelihood

function defined by the conditional probability density p(zk|Yk, Uk). Note that this

likelihood function represents the probability density of the unknown quantities

conditioned on the observed quantities and belongs to the Bayesian framework.

However, for implementing a state estimation scheme on the augmented state space

system we have to depend on a priori information about the distribution of the

parameters. Though suitable for online implementation, the disadvantage of this

method is that the error in the estimate of the parameters will accumulate over

time and can lead to divergence of the estimates (Andrieu et al., 2004).

In the current work, the evolution of the unknown parameters is modeled using

a random walk model with additive zero-mean Gaussian noise. The evolution of the

extended/augmented state vector for the nonlinear system in Eq. (5.1) will be given

by

zk+1 ≡
[

xk+1

θk+1

]
=

[
f(xk, uk, Θk)

θk

]
+

[
vk

wk

]
(5.30)

yk = h(xk, Θk) + nk

where, Θk represents the complete parameter vector and θk is the subset of the

parameters which have to be estimated. Assume that θk ∈ R
p and that the

noise vector wk is normally distributed as N(0, Qw), Qw ∈ R
p×p. The parameter

covariance matrix Qw can be heuristically chosen to reflect prior knowledge about

the variation in the parameters. In order to estimate the parameters in an online

fashion we can employ any of the popular nonlinear state estimation algorithms,

by providing an initial guess for the state and parameter distributions. A Gaussian

distribution can be assumed as the initial guess for the parameters. A good initial

guess for the mean value of the parameter distribution can be obtained through

an EM-based parameter estimation algorithm on a batch of historical process

operational data, if available. The update step in the nonlinear filter will perform a

combined correction of the state as well as the parameters whenever measurements

are available from the process. In this work two nonlinear filters are compared: the

ensemble Kalman filter (EnKF) and the UKF. Both these filters are more suitable

than the EKF, since in these methods the nonlinear state space equations are directly

used for the error covariance propagation. A detailed description of the basic UKF
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algorithm can be found in Julier & Uhlmann (1997), Wan & van der Merwe (2000).

In the following section, a brief description of the ensemble Kalman filter algorithm

is given.

5.3.1 The ensemble Kalman filter

The ensemble Kalman filter, proposed by Evensen (1994), is a Monte Carlo

based variant of the Kalman filter. Numerous applications of this method for

nonlinear state estimation, especially for large scale systems, have been shown in the

oceanography and meteorology literature (Evensen, 2003). However, the application

of this technique for parameter estimation of chemical and biological systems has

not been investigated in the past literature. As is the case with the particle filter

algorithm, in EnKF it is not required to store the error covariance matrix and no

explicit covariance evolution equations are needed. The main difference between

particle filter and the EnKF is in the state update step - in the EnKF algorithm,

a Kalman gain based linear update is used for each particle (referred as ‘ensemble

members’) whereas a re-sampling step is used in a particle filter (Evensen, 2009).

Therefore, in the EnKF algorithm it is not required to calculate exponential density

functions in the update step. This is a major reduction in computational cost

compared to the particle filter. The main assumption in EnKF is that the prior

distribution of the state follows a multivariate normal distribution. Therefore, the

prior distribution covariance is used in the update step. Typical implementations of

the EnKF in the literature suggest that an ensemble size of O(100) is sufficient to get

acceptable estimates of the states. A comprehensive overview of the EnKF algorithm

is given in Evensen (2007). In the recent past, this method has been demonstrated

to be effective for parameter estimation of highly nonlinear large scale models of oil

and gas reservoirs (Seiler et al., 2009). In this section, the basic steps of the EnKF

algorithm for state estimation is briefly presented.

Assume that a nonlinear state space model of the process is available in the

form of Eq. (5.1). The augmented state vector form, as shown in Eq. (5.30), can

be used in order to directly extend the algorithm for combined state and parameter

estimation. The EnKF uses an ensemble of Monte Carlo samples to represent the

state prediction error and the output error (innovation) statistics. The sample

covariance estimate of these quantities will be used to calculate the Kalman gain.

At time k, assume that we have an ensemble of augmented state estimates given by:

Ẑk|k ≡ (z1
k|k, z2

k|k, ...., zN
k|k)

where, zi
k|k = [xi

k|k, θi
k|k] ∈ R

(l+p), Ẑk|k ∈ R
N×(l+p), N is the ensemble size and (.)k|k

denotes the updated value of the vector given the measurements up to kth time

instant. For the subsequent time instant k + 1, the EnKF proceeds as follows:
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1. Prediction step:

The Prediction step is similar to that of particle filter: a one-step Monte Carlo

forward simulation of each ensemble member is performed using the extended

state evolution equation (5.30), by including the noise vectors vt and wt in the

form of a random sample. We can represent the predicted state ensemble as

Ẑk+1|k ≡ (z1
k+1|k, z2

k+1|k, ...., zN
k+1|k), where zi

k+1|k is obtained by the equation

zi
k+1|k =

[
f(xi

k|k, uk, Θi
k|k)

θi
k|k

]
+

[
vi

k

wi
k

]
(5.31)

Note that vi
k and wi

k are random samples drawn from the distributions N(0, Qv)

and N(0, Qw) respectively. The state prediction error covariance matrix, P̂z
k+1|k, is

approximated as the sample covariance of Ẑk+1|k around the sample mean µz
k+1|k =

1
N

N∑
i=1

zi
k+1|k:

P̂z
k+1|k =

1
N − 1

N∑

i=1

(ei
k+1|k)(ei

k+1|k)T (5.32)

where, ei
k+1|k = zi

k+1|k−µz
k+1|k are the prediction error samples. In order to calculate

output error (innovation) covariance, measurement samples are generated using the

predicted state ensemble and the measurement equation in Eq. (5.30). An ensemble

of perturbed observations, Ŷk+1|k ≡ (y1
k+1|k, y2

k+1|k, ...., yN
k+1|k) are generated using

a stochastic realization of the measurement equation in order to account for the

measurement error variance, i.e.,

yi
k+1|k = h(xi

k+1|k, Θi
k+1|k) + ni

k+1 (5.33)

where, ni
k+1 is a random sample drawn from the distribution N(0, R). The output

error covariance matrix is defined as the sample covariance of yi
k+1|k around the

sample mean µ
y

k+1|k = 1
N

N∑
i=1

yi
k+1|k:

P̂y

k+1|k =
1

N − 1

N∑

i=1

(εi
k+1|k)(εi

k+1|k)T (5.34)

where, εi
k+1|k = yi

k+1|k − µ
y

k+1|k. Similarly, a cross-covariance matrix between

prediction error and output error is defined as

P̂zy

k+1|k =
1

N − 1

N∑

i=1

(ei
k+1|k)(εi

k+1|k)T (5.35)

2. Update step:

The Update step is similar to the Kalman filter, where each of the samples in

the predicted state estimate ensemble is updated using the measurements yk+1 from
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the process. The Kalman gain is computed using the error covariance matrices

computed above as

Kk+1 = P̂zy

k+1|k(P̂y

k+1|k)−1 (5.36)

The updated state ensemble is given by

Ẑk+1|k+1 ≡ (z1
k+1|k+1, z2

k+1|k+1, ...., zN
k+1|k+1) (5.37)

where, zi
k+1|k+1 = zi

k+1|k + Kk+1(yk+1 − yi
k+1|k)

These samples will be used to re-initialize the model for the subsequent time instant

and the algorithm will proceed by following the above steps. The optimal estimate

of the augmented state vector can be defined as the mean of the updated state

ensemble:

ẑ∗
k|k =

1
N

N∑

i=1

zi
k|k (5.38)

The sample covariance of the updated state ensemble, P̂∗
k|k, can be computed as

P̂∗
k|k =

1
N − 1

N∑

i=1

(zi
k|k − ẑ∗

k|k)(zi
k|k − ẑ∗

k|k)T (5.39)

which will provide the quality of the state and parameter estimates generated by

the EnKF.

5.4 Example: Continuous Fermentor

In this section, the performance of the different algorithms mentioned above is

compared on a simulated continuous fermentation reactor example. Initially, the

batch estimation methods are compared and then the recursive estimation methods

using EnKF and UKF. The continuous time nonlinear state space model of the

reactor is as follows (Henson & Seborg, 1997):

dX

dt
= −DX + µ(P, S)X (5.40a)

dS

dt
= D(Sf − S) − 1

Yx/s
µ(P, S)X (5.40b)

dP

dt
= −DP + (αµ(P, S) + β)X (5.40c)

µ(P, S) =
µm

(
1 − P

Pm

)
S

Km + S + S2

Ki

(5.40d)

where the states, measurements and the inputs are respectively defined as xk ≡
[Xk, Sk, Pk] ∈ R3, yk ≡ [Xk, Pk] ∈ R2, uk ≡ [D, Sf ] ∈ R2. The variables in the

reactor model equations in Eq. (5.40 a-d) represent the following reactor attributes:

Biomass concentration (X), Substrate concentration (S), Product concentration
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(P ), Dilution rate (D), Feed substrate concentration (Sf ), Specific growth rate

(µ(P, S)), Yield parameters (Yx/s, α, β), Maximum specific growth rate (µm) and

reaction constants (Pm, Km, Ki).

Table 5.1: Fermentor model parameters.
Parameter Value

µm(= θ1) 0.48 h−1

Km(= θ2) 1.2 g/L
1/Pm(= θ3) 0.02 L/g
1/Ki(= θ4) 0.0455 L/g
1/Yx/s(= θ5) 2.5 g/g

α(= θ6) 2.2 g/g
β(= θ7) 0.2 h−1

The initial conditions for the reactor simulation were assumed to be x0 =

[6, 5, 19.14]. Table 5.1 shows the fermentor model parameter values that were used

in the simulation study. A simple forward Euler integration with an integration

time step of 0.01h was used to numerically solve the continuous time differential

equations in MATLAB. In order to convert the continuous time state space model

into discrete time state space model of the form shown in Eq. (5.1), a sampling

time of 0.1 h was used. The covariance matrices of state noise and measurement

noise were assumed as Qv = [0.01, 0, 0; 0, 0.1, 0; 0, 0, 0.01] and R = [0.1, 0; 0, 0.1]

respectively. A Random Binary Sequence (RBS) based variation in the inputs,

around a nominal value of 0.2, 20 for D and Sf respectively, was used to excite the

process for collecting identification data from the simulation model. The input D

was varied between 0.1 h−1 and 0.3 h−1, whereas Sf was varied between 10 g/L

and 30 g/L. The simulation was carried out for 2000 sampling instants and the

input-output data so generated was used for parameter identification.

The yield parameters in a typical reactor depend on the structure of the underly-

ing reaction network, which are difficult to model for many complex biotechnological

processes. Therefore, it is often desirable to identify the yield parameters using past

data of the process operation. In this work, it was assumed that two of the yield pa-

rameters, θ5 and θ6, are not known. Our objective is to identify these two unknown

parameters using data from the simulation. Note that an initial guess for the un-

known parameter values is required in the batch and recursive estimation algorithms

presented earlier. In all the empirical studies presented in the following sections, an

initial guess of [θ5, θ6] = [1, 1] was used. For all the estimation algorithms (batch and

recursive), it was assumed that the initial conditions of the reactor are accurately

known. Since the state Sk, corresponding to the substrate concentration, is not

measured (θ5 directly influences this state) and the measurements of the other two

states are corrupted by noise, the parameters have to be estimated simultaneously
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with the states.

5.4.1 Batch estimation results

The performance of different cases of the EM algorithm was compared, which

differ in the particular smoother being employed, using the same realization of the

simulation. In order to compare the computational complexity, the EM algorithm

was stopped at the end of 100 iterations for all the cases. N = 100 particles/samples

were used for the Q-function approximation shown in Eqs. (5.26) and (5.29). An

initial state covariance matrix of 0.01I3×3 was used in all the smoother algorithms,

where I3×3 represents a 3 × 3 identity matrix. The sigma points (2l + 1 = 7) for the

UKS were chosen using the scheme in Wan & van der Merwe (2000).

Figure 5.2 shows the parameter trajectories for 100 iterations. In order to analyze

the convergence of the parameters relative to the true values, the ratio between the

estimated and true parameters is shown in the figure. For the particle smoother

based EM algorithm, the parameters converge in the neighborhood of their true

values. However, there exists significant variations in the parameter trajectories

and this is attributed to the Monte Carlo nature of the particle smoother. The EKS

based estimation results show that there exists an offset in one of the parameters and

this can be attributed to the approximation resulting from the linearization of the

system model in the EKS algorithm. The parameter convergence is almost perfect

for the UKS based EM algorithm and can be concluded to give the best performance.

All the MATLAB implementations of the EM algorithm were done on identical

computer platforms (Intel Core 2 CPU @ 2.13 GHz). It took 12 hours of CPU time

for the execution of 100 iterations of the particle smoother based EM algorithm;

whereas, for the UKS and EKS based implementations of the EM algorithm it took

2.5 hours only. Based on this, we can conclude that the particle smoother based

EM algorithm is computationally very intensive. This higher computational cost is

mainly due to the Monte Carlo simulation based smoothing.

5.4.2 Recursive estimation results

In this section, the results of recursive parameter estimation for the fermentor

reactor is compared using EnKF and UKF. As mentioned earlier, the recursive

estimation technique is useful for online implementation, especially when the process

parameters are susceptible to change. For comparing the performance of the EnKF

and UKF based recursive parameter estimation, it was assumed that the yield

parameters in the actual fermentor reactor example undergo a step change during

the simulation as follows:

{θ5 = 2.5, θ6 = 2.2 }, for k < 1000

{θ5 = 1.5, θ6 = 1 }, for k > 1000
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Figure 5.2: Comparison of parameter convergence of EM algorithms employing
different smoothing techniques: (a) Particle smoother, (b) Unscented Kalman
smoother, (c) Extended Kalman smoother.

Using the above parameter switching scheme and keeping all other simulation

settings to be same as described earlier, a new realization of the reactor simulation

was generated. This data set was used for evaluating the performance of EnKF and

UKF based recursive parameter estimation.

The initial conditions x0 of the reactor was assumed to be accurately known.

Similar to the batch estimation study, an initial guess of [θ5, θ6] = [1, 1] was given

for the unknown parameters. In order to do the recursive estimation, the unknown

yield parameters θ5 and θ6 were augmented to the state vector as shown in Eq.

(5.30). The augmented state vector will have a dimension of 5 (3 process states and

2 unknown parameters). The initial covariance matrix of the augmented state was

assumed to be I5×5. A covariance of Qw = [1e − 3, 0; 0, 1e − 4] was assumed in the

random walk model of the unknown parameters. The covariance matrices for the

state noise (Qv) and measurement noise (R) were same as described earlier. The

weak noise variance in Qw is a tuning setting for the filter which specifies that the

dynamics of the parameters is much slower compared to that of the process states.
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Figure 5.3 shows the parameter estimate trajectories using the UKF and EnKF

(ensemble size of 500), for 2000 sampling instants. Note that the parameters are

updated at every sampling instant of the simulation. Hence, the figures show the

temporal evolution in real time with respect to the process simulation. From the

figures, we can observe that the parameter estimates are not only converging in the

neighborhood of the true values but are also tracking the step change that occurred

after 1000 sampling instants. Both the algorithms give similar performance in terms

of accuracy. The EnKF was found to be slower in execution due to the 500 ensemble

model integrations required at each instant. However, this can be brought down by

a parallel implementation of the ensemble operations.
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Figure 5.3: Comparison of parameter convergence for recursive estimation using:
(a) UKF, (b) EnKF.

5.5 Concluding Remarks

In this work, an empirical comparison of different techniques for combined state and

parameter estimation of a continuous fermentor reactor model was presented. Two

methodologies were discussed: a batch parameter estimation scheme based on the

EM algorithm and recursive parameter estimation using a parameter augmented

state vector in a state estimation scheme. The performance of the batch estimation

technique depended on the choice of the nonlinear smoothing algorithm. The UKS

based EM parameter estimation technique was able to generate unbiased parameter

estimates. The particle smoother based EM parameter estimates converged in

the neighborhood of their true values, but had significant variance due to the

Monte Carlo nature of the smoothing technique. The EKS based EM parameter

estimates suffered from a bias problem due to the use of linearized state space models

for finding the smoothing distributions. The particle smoother based technique

was found to be computationally intensive compared to the UKS and EKS based
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techniques. In general, the batch EM based estimation is computationally more

intensive compared to a recursive estimation technique. The performance of EnKF

and UKF algorithms, when employed for recursive estimation of the parameters,

were compared. Both the filters gave similar performance for parameter estimation.

The results also showed that the recursive estimation can track changes in the

unknown parameter values in an online fashion.
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Chapter 6

History Matching of
Unconventional Oil Reservoirs
using the Ensemble Kalman
Filter1,2

6.1 Introduction

History matching is the art of calibrating reservoir simulation models to past

production data available from the field. From a systems engineering point of view,

this can be defined as identifying models that are consistent with data collected from

the process. In the context of petroleum engineering, the process of interest is the

flow of multi-component fluids (mainly mixture of oil, gas and water) through the

heterogeneous geological layers of the reservoir. The reservoir simulation models are

a set of highly nonlinear, partial differential equations in space and time. Typically,

the differential equations are functions of several model parameters - this will include

the spatially varying rock properties (permeability, porosity), initial conditions of the

reservoir, relative permeability curves, and other physical and chemical properties

of the reservoir strata and fluids. All these properties of the reservoir are collectively

known as model parameters. Thanks to the modeling effort of reservoir engineers

and physicists, today there are several sophisticated reservoir simulation packages

available off-the-shelf. These packages can integrate the complex physics along

with efficient numerical algorithms and simulate the reservoir, given the values of

all the model parameters in the differential equations. From the solutions of the

differential equations, we can obtain simulated production data. The predictions

1Some sections of this chapter have been accepted as a paper for presentation at the Canadian
Unconventional Resources & International Petroleum Conference, to be held in Calgary, Alberta,
Canada on October 19 – 21, 2010 (Chitralekha et al., 2010).

2A full version of this study is under review for publication in the Journal of Canadian Petroleum
Technology since August, 2010.

125



that we obtain from the simulations will depend on these model parameters. If

the objective of modeling the reservoir is to get reliable predictions of the future

performance of the reservoir, then it is required to have a good knowledge of the

values of these model parameters. However, in a practical scenario many of these

model parameters will be uncertain or completely unknown because of our inability

to directly measure them in the true reservoir. It is a well accepted fact that all

reservoirs are heterogeneous with different degrees of heterogeneity exhibited by

different properties. For example, the geological properties such as the permeability

and porosity can vary in a spatial scale of a few meters. However, these properties

may only be known for around 1% of the reservoir volume through core samples

taken at well locations (Romeu, 2010). The geological uncertainty is inevitable

in any reservoir simulation based decision making exercise (McLennan & Deutsch,

2006). Through the use of sophisticated geostatistical algorithms, such as GSLIB

(Deutsch & Journel, 1998), SGeMS (Remy et al., 2009) etc., we can capture the

spatial variation to some extent. However, the exact geological heterogeneity is

never known and can only be approximately predicted in between wells through these

stochastic realizations (McLennan & Deutsch, 2010). The geological uncertainty is

usually represented by generating multiple stochastic realizations which honor the

spatial variogram models. The traditional way of validating a particular geological

realization is to manually compare the corresponding flow simulations with the

production data from the true reservoir.

History matching is essentially an iterative model validation procedure - given

some historical production data as the target, the objective is to find a set of model

parameters which when plugged into the model equations will result in a simulated

production data close to the historical production data of the wells. In other words,

it is an iterative task of tuning the model parameters which will yield simulation

results that are consistent with production history of the wells. The production data

will include measurements that are routinely available from the wells such as oil/gas

production rates, steam-to-oil ratios, well water cuts etc. It is well known that such

production variables are sensitive to the geological heterogeneity. Traditionally,

history matching was done by manually adjusting the model parameters, either

directly or indirectly through the geostatistical models. Evidently, this is a

trial-and-error approach and is known to be highly time-consuming, cumbersome

and ineffective (Romeu, 2010). More importantly, the problem is known to be

underdetermined and hence there will exist multiple plausible solutions (Oliver

et al., 2008). A single history matched model will be biased towards a few model

parameters. Hence, modern history matching techniques are aimed at arriving at a

multiple set of history matched realizations. Such solutions will satisfy the needs of

decision making in the face of uncertainty in the production forecasts. Moreover, the

126



advancement in sensor technologies have resulted in the use of permanent sensors

which can provide reservoir production data more frequently than was possible

with the legacy sensors. There is a growing need to develop fast history matching

algorithms that can continuously update the reservoir models by integrating the

most recent information available through such modern day sensors (Seiler et al.,

2009).

Several approaches have been proposed in the literature with a focus on the

modern day needs of continuous history matching of reservoir simulation models

in the face of uncertainty. These techniques broadly fall into two categories:

stochastic global optimization methods (Schulze-Riegert et al., 2001) and Ensemble

Kalman filter based methods (Lorentzen et al. (2001), Evensen (2007), Aanonsen

et al. (2009)). The stochastic optimization methods are based on the idea of

minimizing an objective function which quantifies the mismatch/error between

model predictions and the observed data. The objective function is usually chosen

as a quadratic function, such as the sum of square of the error (SSE). Due to the

highly nonlinear nature of the reservoir simulation models and the large number

of optimization variables, gradient-free evolutionary optimization algorithms are

used. The numerical cost associated with such optimization algorithms become

unacceptably high because of the large number of forward simulations required to

iteratively converge to the optimal solution, especially when there are large number

of unknown parameters. Modern distributed computing technologies are employed

to arrive at a solution within reasonable time frames for decision making in a history

matching project (Schulze-Riegert & Ghedan, 2007).

Recently, the Ensemble Kalman filter (EnKF) has emerged as a very promising

alternative because of its non-iterative nature and requirement of only O(50) forward

simulations for estimating model parameters in real reservoir case studies (Evensen

(2007), Haugen et al. (2008), Zhang & Oliver (2009)). The method is based on

the idea of making probabilistic inference using the classical Bayes’ theorem. It is

based on the classical Kalman filter, which was proposed in the 1960’s for estimating

unmeasured variables in linear systems using a model and data collected from the

real process (Kalman, 1960). The EnKF is an adaptation of the Kalman filter for

handling systems characterized by nonlinear models. The history matching step in

the algorithm is a one-step linear update rule proposed in the Kalman filter and

does not require any iterative solution. The history matching step is given by the

following equation:

θk|k = θk−1|k−1 + Kgain(yobs
k − ypred

k ) (6.1)

where θk|k is the vector of unknown parameters, yobs
k is the vector of newly observed

production data and ypred
k is the vector of predicted reservoir production based on

the most recently history matched models. The subscript k indicates the update
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time index and ‘k|k’ means the value of the parameter at kth update time index

given all the measurements until the kth time index. The vector Kgain is the Kalman

gain proposed by Kalman (Kalman, 1960), the sole variable to be calculated, whose

calculation is adapted for nonlinear systems in the EnKF (refer to Chapter 3, section

3.5.2). As seen in Eq. (6.1), the update magnitude is proportional to the magnitude

of error between the predictions and measured data. The Kalman gain applies

a weighted updating to the unknown parameters in an ‘intelligent fashion’, and

depends on the degree of uncertainty in the models and the measurements. Based

on Eq. (6.1), we can see another advantage of the method in that it is sequential

in nature, i.e., the history matching step depends only on the new measurements

and the most recently history matched set of models. This makes this method well

suited for continuous updating of reservoir simulation models. More details about

the EnKF algorithm steps will be discussed in the next section. Gu & Oliver (2007)

have presented a gradient based optimization approach, combining the ideas of the

EnKF algorithm and the maximum likelihood parameter estimation method. In

this methodology, the prediction step is exactly similar to the EnKF algorithm,

whereas the update step is formulated as a maximum likelihood estimation (MLE)

problem. The main advantage of this approach is that it can efficiently account

for the nonlinear dynamics of the multiphase flow models. Compared to the EnKF

algorithm, the method incurs a high computational cost because of the requirement

for an iterative solution at each update step. This means that at each update step

the method will require O(L × Ne) reservoir simulations, where L is the number of

iterations for convergence of the MLE optimization and Ne is the ensemble size. On

the other hand, the update step in the general EnKF algorithm does not require

any reservoir simulation.

Most of the applications of EnKF in the current petroleum engineering litera-

ture have concentrated on conventional black-oil reservoir models. In this work, the

application of the EnKF algorithm for history matching of unconventional reser-

voir models is investigated. Two simulated case studies are presented: (1) a highly

heterogeneous black-oil reservoir model (2-dimensional), and (2) a heterogeneous

SAGD reservoir simulation model (50x10x5). The heterogeneous grid block perme-

abilities were considered as the unknown model variables in the history matching

problem. In both cases, a set of realistically placed well-core measurements com-

bined with a geostatistical variogram model is used to generate the initial ensembles

for the EnKF algorithm. These application studies will show that using a set of

geostatistical realizations as the initial ensemble is an important step to obtain re-

alistic results when the heterogeneity information is available a priori. Otherwise,

since the history matching problem is an under determined problem, there is a high

chance for the ensembles to move into domains that are unrealistic. This is because
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the solution space of the EnKF algorithm is limited by the span of the ensembles

(Evensen, 2009).

This chapter is organized as follows. In Section 6.2, the basic methodology of the

ensemble Kalman filter algorithm as applied to history matching is explained. Some

modifications to the basic algorithm, that we have employed in this work based on

previous works in the literature, are briefly discussed. Some insights on the critical

tuning factors which can significantly affect the quality of the results are provided.

Two quality measures for measuring the efficacy of the EnKF algorithm in any

history matching application are proposed. In Section 6.3, two synthetic case studies

on the application of the methodology for history matching and characterizing

heterogeneous reservoirs is presented. Section 6.4 summarizes this chapter with

some concluding remarks.

6.2 Methodology: The Ensemble Kalman Filter

The ensemble Kalman filter was first proposed as a novel method for estimating

unmeasured variables, techniques more widely known as data assimilation algo-

rithms, in highly nonlinear ocean models (Evensen, 1994). Numerous applications

of this method for nonlinear state estimation, especially for large scale systems,

have been shown in the oceanography and meteorology literature (Evensen, 2003).

The methodology was introduced as an alternative method for history matching

in petroleum engineering by Lorentzen et al. (2001). Here, the basic formulation

and a few modifications proposed in earlier works in the literature are explained.

The EnKF is a Monte Carlo simulation based variant of the Kalman filter designed

for handling nonlinear systems. In order to explain the methodology, consider the

following stochastic model of the reservoir:

xk = f(xk−1, θ) (6.2)

yk = g(xk) + vk (6.3)

vk ∼ N(0, R)

where, xk denotes the vector of variables which define the reservoir state at the

kth instant. This will include the dynamic variables which directly represent the

internal conditions at all the grid block locations of the reservoir such as pressure,

saturations, temperature. The function f is the state transition function which will

relate the current state of the reservoir to the previous state. The partial differential

equations which define the dynamics of the reservoir simulation can be considered

to be represented by f , i.e.,

f ,

k∫

k−1

.
xdt
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In real reservoirs, the variables in xk are not measured directly since it is not

possible to sample/place online sensor devices at all the grid block locations of the

true reservoir. However, all these variables will have an effect on the production

data that are measured from the reservoir. The variable yk represents the dynamic

production variables that can be measured at well locations such as oil/gas/water

flow rates, monthly/cumulative production, gas-to-oil ratio, steam-to-oil ratio etc.

The production data that is obtained from the real reservoir will depend on the

reservoir states through the measurement function g, and will be contaminated

with some sensor noise vk. It is assumed that vk follows a zero-mean Gaussian

distribution with covariance matrix R. The variable θ is the vector of all the static

model parameters which are unknown such as permeability and porosity (3-D grids

unfolded into a 1-D vector). Since we are uncertain about the true value of θ, we

have to consider them to be a random variable following some distribution.

Both f and g are part of any commercial reservoir simulator which can be

considered as a ‘black-box’ in the EnKF algorithm (Wen & Chen, 2007). In the

EnKF algorithm it is not required to explicitly know any of the functions f and g. It

is only required to obtain the variables xk and yk through a forward simulation of the

reservoir, starting from the initial conditions xk−1. The functions f and g are usually

highly nonlinear due to the coupled nature of the partial differential equations and

the nonlinear mass balance correlations (relating the well production data to the

grid block saturations). Note that one of the basic requirements for the Kalman

filter computations is that the state transition function and the measurement

function be linear functions. Also, the uncertainty in the reservoir parameters

and the measurement noise are required to follow a Gaussian distribution. These

requirements can be relaxed in the EnKF computations. The main idea is to use a

bank of Kalman filters on an ensemble of Monte Carlo simulations of the reservoir.

The sample covariance/cross-covariance of the simulated ensemble of xk and yk are

used in the calculation of the Kalman gain in the EnKF algorithm.

Note that some of the other extensions of the Kalman filter such as the extended

Kalman filter (EKF) and unscented Kalman filter (UKF) may not be practical

for history matching applications. The extended Kalman filter is not a preferred

approach because of the need for explicitly calculating the Jacobian of the functions

f and g. The large scale nature of the reservoir simulation models makes the UKF

a less practical approach for history matching. This is because the UKF will require

O(2×dimension of the parameter vector) reservoir simulations in each prediction

step. Also, the UKF and EKF will be more memory intensive, if applied to reservoir

simulation models since they will involve the computation and storage of covariance

matrices of the high dimensional parameter vectors. The particle filter algorithm

is the most general sequential Monte Carlo filter. The main difference between the
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EnKF and the particle filter is in the update step. The update step of the particle

filter is directly based on the Bayes’ rule which relates the posterior to the likelihood

and the prior distributions. In the update step of the particle filter, the predicted

ensembles are resampled based on an approximation of the posterior probability

distribution which is known as the ‘proposal distribution’. The success of the particle

filter highly depends on the quality of this approximation. In general, it is very

difficult to get good proposal distributions for high dimensional state space systems

such as reservoir simulation models. For poorly chosen proposal distributions,

the particle filter will require enormous number of realizations (particles), which

means enormous computational power requirements, also known as the ‘curse of

dimensionality’ (Daum, 2005). Hence, the particle filter may not be practical for

real world history matching applications. The idea of adding a resampling step to

the EnKF algorithm, after the Kalman update step, is a possibility. However, the

relatively few production measurements in typical reservoirs can cause rejection

of many model realizations in the early update time instants of the algorithm.

This would result in the degeneracy of the ensemble of model realizations and an

underestimation of the production uncertainty after a few sequential updates of the

reservoir parameters.

In the presence of uncertain model parameters and unmeasured state variables,

the history matching problem will have to be considered as a combined state and

parameter estimation problem using measured data. For this, the state vector can

be augmented with the uncertain parameter vector as follows:

zk ≡
[

xk

θk

]
=

[
f(xk−1, θk−1)

θk−1

]
(6.4)

where the augmented state vector zk has to be estimated using the measurements.

Note that the augmented state vector will contain both the dynamic and static

variables. For the static variables, it is a common practice to assume some slow

artificial dynamics in the form of a random walk/Brownian motion (Moradkhani

et al., 2005)

θk = θk−1 + wk−1 (6.5)

where wk−1 is a zero-mean Gaussian random variable with a very low variance Q. A

similar additive Brownian random noise is usually assumed for the state transition

function, to account for modeling errors also (Burgers et al. (1998), Evensen (2009)).

However, in this work it was assumed that the modeling error is captured entirely

through the additive error in the parameter vector. Based on the augmented state

vector zk, with the artificial parameter dynamics defined in Eq. (6.5), the EnKF

algorithm will be explained.

As mentioned earlier, the EnKF will use an ensemble of Monte Carlo samples

to represent the uncertain variables. Assume that at time k = 0, we have a
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multivariate probability distribution p(θ) which represents the prior knowledge

about the parameter vector. In reservoir engineering, this distribution will be defined

by the geostatistical models which define the geological uncertainty, i.e.,

p(θ) ≡ Prior Geological Uncertainty

The first step in the EnKF is to generate Ne samples from the prior probability

distribution p(θ). Let θ0|0 = {θ1
0|0, θ2

0|0, ....θNe

0|0} represent the set of Ne samples of

the parameters. Here it is assumed that the initial conditions of the reservoir is

accurately known and given by x0. If the initial conditions are also uncertain, then

a set of initial conditions representing this uncertainty should also be generated.

Let the production data from the field at the date instance k be represented as yobs
k .

Then, the EnKF algorithm sequentially updates the reservoir as follows:

1. Prediction step:

The prediction step is a forward simulation of the reservoir using each of the Ne

parameter samples. The predicted ensemble is represented as

Ẑk|k−1 ≡ {z1
k|k−1, z2

k|k−1, ...., zNe

k|k−1}

where, zi
k|k−1 is generated using Eq. (6.4), i.e., the reservoir simulator f with the

parameter value defined by θi
k−1|k−1. Thus, we get

zi
k|k−1 =

[
f(xi

k−1|k−1, θi
k−1|k−1)

θi
k−1|k−1 + wi

k−1

]
(6.6)

Let,

µz
k|k−1 =

1
Ne

Ne∑

i=1

zi
k|k−1 (6.7)

be the mean of the predicted ensemble. The notation ‘k|k − 1’ is used to indicate

that the information from the previous time step (k − 1) was used to obtain the

current value of the variable. In the EnKF algorithm, the error/uncertainty in the

predicted states of the reservoir is defined around the predicted state ensemble mean

as

ei
k|k−1 = zi

k|k−1 − µz
k|k−1 (6.8)

Note that for each zi
k|k−1, we will simultaneously obtain an ensemble of simulated

production data in any commercial reservoir simulator. Let,

Ŷk|k−1 ≡ {y1
k|k−1, y2

k|k−1, ...., yNe

k|k−1}

be the ensemble of predicted production data. Similar to Eq. (6.8), the error/ uncer-

tainty in the predicted measurements is defined around the predicted measurement

ensemble mean as

εi
k|k−1 = yi

k|k−1 − µ
y
k|k−1 (6.9)
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where,

µ
y
k|k−1 =

1
Ne

Ne∑

i=1

yi
k|k−1 (6.10)

The uncertainty in the predicted states and measurements are calculated as sample

covariance of the error ensemble generated in Eqs. (6.8) and (6.9). Two covariance

matrices are calculated:

P̂ε,ε
k|k−1 =

1
Ne − 1

Ne∑

i=1

(εi
k|k−1)(εi

k|k−1)T (6.11)

P̂e,ε
k|k−1 =

1
Ne − 1

Ne∑

i=1

(ei
k|k−1)(εi

k|k−1)T (6.12)

The covariance P̂e,ε
k|k−1 is the cross-covariance between the state prediction ensemble

and measurement model ensemble. In other words, it is measure of how strongly

correlated is the production data with respect to the uncertainty in the reservoir

states/parameters. The main assumption in the EnKF is that the distribution of the

state prediction error and measurement error is zero-mean multivariate Gaussian.

2. Correction step:

The correction step is the sequential history matching step in the EnKF algo-

rithm. In the correction step, each of the samples in the predicted ensemble is

updated using the production measurement yobs
k from the actual reservoir. While

using the production data, it is required to treat them as random variable contam-

inated by noise (Burgers et al., 1998). Hence, a set of Ne perturbed measurements

around yobs
k are generated using random samples from the measurement noise dis-

tribution defined in Eq. (6.3) (vk ∼ N(0, R)), as follows:

{
yi,obs

k = yobs
k + vi

k

}
for i=1 to Ne

(6.13)

The perturbed observations are used to update the reservoir states and the unknown

parameters using the well-known Kalman update equation

{
zi

k|k = zi
k|k−1 + Kgain(yi,obs

k − yi
k|k−1)

}
for i=1 to Ne

(6.14)

Note that the subscript notation ‘k|k’ is used to indicate that the information from

observations at the current time instant k is assimilated into the updated variable.

The Kalman gain Kgain is calculated using the sample covariance matrices in Eqs.

(6.11) and (6.12), as follows:

Kgain = P̂e,ε
k|k−1(P̂ε,ε

k|k−1 + R)−1 (6.15)

The Kalman update is applied to each of the predicted state ensemble to obtain

the corrected ensemble, i.e., the history matched ensemble of reservoir states
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and parameters represented as Ẑk|k ≡ {z1
k|k, z2

k|k, ...., zNe

k|k}. The history matched

ensemble so obtained will be propagated forward through the prediction step

until the next history matching date, then the update procedure is repeated,

and so on. This sequential prediction and correction procedure is continued and

stopped when the end of the period selected for history matching is reached. To

our knowledge, selection of the optimal stopping point for the sequential history

matching problem is not investigated in the current literature. A heuristic method,

though computationally expensive, would be to evaluate the predictive accuracy of

the reservoir model by restarting the simulation from k = 0 using the most currently

updated parameter ensemble.

Note that in the update step, the EnKF adjusts the predicted ensemble by a

value proportional to the error in the predicted measurement (yi,obs
k − yi

k|k−1), i.e.,

(zi
k|k − zi

k|k−1) = Kgain(yi,obs
k − yi

k|k−1) (6.16)

The Kalman gain applies a weighted correction where the weighting is roughly given

by the ratio of P̂e,ε
k|k−1 to (P̂ε,ε

k|k−1 + R)−1. If P̂e,ε
k|k−1 is relatively high compared to

P̂ε,ε
k|k−1, it would signify that (a) there is a high correlation between the measurement

error and the estimation error, and (b) the measurement uncertainty is low. In

that case, the Kalman gain will be high and the correction made to the reservoir

states/parameters will be very sensitive to (yi,obs
k − yi

k|k−1). Thus, the Kalman gain

in the EnKF can be interpreted similar to that of the classical Kalman filter for

linear systems.

The general workflow of history matching using the EnKF algorithm is illustrated

in Figure 6.1. As shown in this figure, prior knowledge about the reservoir

geostatistics will be used to ‘bootstrap’ the first ensemble of reservoir model

parameters. This initial ensemble of reservoir models will be used in the prediction

step, which is essentially a one-step forward Monte Carlo simulation. This will

be followed by the correction step, in which the predictions so obtained will be

compared with the production measurements from the actual reservoir and an

updated ensemble of reservoir models will be obtained. Subsequently, the updated

ensemble will be used for predictions until the next scheduled date of history

matching. A suitable post-processing step can be included after the update step to

constrain the parameters, for example to honor the geologic realism of the reservoir.

If no further update of the reservoir parameters is desired, i.e., no further history

matching has to be carried out, then the most recent set of updated reservoir models

can be used for making forecasts of the reservoir production.

6.2.1 EnKF with confirming option

One of the drawbacks of the conventional EnKF algorithm when applied to history

matching is that the update step in Eq. (6.14) can cause the reservoir states to
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Figure 6.1: Block diagram to illustrate the general workflow of petroleum reservoir
history matching using the Ensemble Kalman filter.

be unrealistic after the history matching. This is because the reservoir simulation

equations are not explicitly used in any of the calculations of the update step. For

example, the overall mass balance of the reservoir can be totally violated if the

reservoir states are directly updated using the Kalman update rule. Moreover, due

to the nonlinear nature of the combined state and parameter estimation problem,

the updated reservoir states may not have a consistent relation to the updated

parameters, i.e., if the reservoir is re-simulated with the updated parameters and

the initial conditions, we may not get back the same updated states. In order

to overcome this issue, it was suggested to use the Kalman update only on the

parameters and indirectly update the states by re-simulating the reservoir starting

from the previous history matched date (Wen & Chen, 2006). Following this

suggestion, the EnKF algorithm with the confirming option was used in this work.

With the confirming option, we can separate out the parameter vector from the

augmented state to calculate the state prediction error and the Kalman gain, i.e.,

ei
k|k−1 = θi

k|k−1 − µθ
k|k−1 (6.17)

The update step can be divided into 2 sub-calculations:

2(a) Parameter update: Update the parameters using the Kalman update:
{

θi
k|k = θi

k|k−1 + Kgain(yi,obs
k − yi

k|k−1)
}

for i=1 to Ne

(6.18)

2(b) Confirming step (State update): Re-simulate the reservoir starting

from the previous history matched date, but using the newly updated parameters:
{

xi
k|k = f(xi

k−1|k−1, θi
k|k
}

for i=1 to Ne

(6.19)

By performing the state update using the reservoir simulator model f , we can

ensure that all the updated reservoir states are consistent with the updated model

parameters and also stay within realistic domains. The assumption is that the
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uncertainty in the reservoir model is solely manifested through the parameter

uncertainty. The EnKF algorithm is essentially used as a parameter estimation

algorithm which is the main goal in history matching.

6.2.2 Localized EnKF

In large scale systems, the observations are scattered at various locations on the

entire grid volume. For example, the production wells in a reservoir will be separated

from each other by several grid blocks. We can assume that the heterogeneous

geological properties at the grid block locations will only influence the production

data of nearby wells. In that case, we can perform the update step in a piecewise

fashion, where only the measurements from near-by wells will be used to update a

particular grid block property. This is called localization technique in the EnKF

literature. Later in this chapter, the application of the localized EnKF on a highly

heterogeneous 2-D reservoir will be demonstrated. In order to do this, we have to

first define the region of influence of a particular well a priori. One of the advantages

of this localized analysis scheme is that it will reduce the impact of spurious

correlations from measurements that are insensitive to a particular parameter. In

addition, it is also expected that a lesser number of ensembles will be required

than would be required with a global EnKF, especially for large scale systems. The

localized EnKF described here is one of the several variants available in literature.

Several types of the localization schemes and their respective advantages have been

reviewed by Evensen (2009).

6.2.3 Geostatistical prior

Several authors have used geostatistical models of permeability and porosity to

generate the initial ensembles (Naevdal et al. (2005), Wen & Chen (2007), Haugen

et al. (2008), Zhang & Oliver (2009)). We consider this as a very important

step for history matching using the EnKF algorithm. In all Bayesian estimation

techniques, it is well known that the prior information is very valuable to inference

the posterior. In the EnKF algorithm, the initial ensembles represent the prior

information we have about the distribution of the static variables. The petroleum

engineering literature is rich with techniques such as Kriging algorithms which can

estimate the static variables at unsampled locations given hard data measured

at well locations. Also, there are sophisticated techniques such as the sequential

Gaussian simulation (Deutsch & Journel, 1998) which can perform conditional

simulation to generate multiple plausible realizations of the static parameters. The

geostatistical realizations obtained from such simulations can be conditioned to

honor the histogram and spatial correlations of the random fields. However, the

uncertainty in the predictions from these realizations can be very high if directly
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used for simulating the reservoir. This is evident from the fact that the production

data is not used to condition these simulations. The EnKF is a natural way forward

to assimilate the production data from the wells into the geostatistical realizations.

It is expected that by using geologically realistic covariance models to generate the

initial ensemble, the EnKF algorithm will yield history matched results which are

more realistic with respect to the geological heterogeneity of the reservoir.

6.2.4 Choice of observation variables

One of the critical factors which can affect the quality of any parameter estimation

algorithm is the amount of information about the parameters that the data (vector

yobs
k ) carries. Hence, an important pre-processing step is to choose the production

variables which contain meaningful information about the geostatistical properties.

Usually production variables such as monthly production rate of oil/gas/water,

steam-oil/gas-oil/gas-water ratios etc. are assumed to be sensitive to the reservoir

permeabilities. However, the degree of sensitivity can vary from case-to-case.

For example, the Bottom-Hole-Pressures may remain constant and unaffected by

the permeability in a reservoir simulation model. Hence, a careful choice of

production variables based on a sensitivity analysis can be expected to complement

the history matching results. Sensitivity can be analyzed directly through Monte

Carlo simulations of the reservoir model. The idea is to use random realizations

of the static parameters from the geostatistical prior and check for variability in

the simulated production variables. Higher variability in the simulations can be

interpreted as higher sensitivity.

Another important guideline is to avoid redundancy in the data used for

identifying the parameters. Note that the EnKF algorithm will fuse the information

from different variables in a multivariate fashion through the correction step in Eq.

(6.18). If two variables in yobs
k contain redundant information, then it can cause

spurious update of the parameters in the correction step. For example, the Monthly

Production of Oil (bbl/month) will be highly correlated to the average Monthly

Oil rate (bbl/day). If both these variables are part of the vector yobs
k , then their

respective prediction errors will cause redundant update of the parameters. Hence,

only one of these variables should be chosen in the objective for history matching.

On the other hand, variables such as production rate of oil and that of gas will

usually contain diverse information about the static properties and hence both these

variables can be part of the vector yobs
k .

6.2.5 Choice of Q and R

For history matching applications, the favorable values for parameter noise variance

Q usually fall in the range of 1e-4 to 1e-6. The low noise variance signifies that
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the parameters are static properties such as ln(permeability) and porosity. A low

variance will also ensure that the parameters are not perturbed too far away from the

span of the updated ensembles from the previous time instant. The noise variance

can be chosen to be spatially varying to represent the varying level of uncertainty at

different spatial locations (E.g.: variance resulting from Kriging estimation). The

matrix R should be used as a tuning parameter in the EnKF algorithm and their

favorable values differ from case-to-case. Note that the Kalman gain has an inverse

relationship with respect to the measurement noise matrix R. Hence, the EnKF

update can be expected to be more sensitive to those measurement variables for

which the measurement noise is lower. A good choice for the measurement noise

will require some experience of applying the EnKF on the particular reservoir model.

6.2.6 Quality of history match

In order to measure the quality of the ensemble and rank the realizations after history

matching, a weighted mean square error for the ith realization in the ensemble is

defined, as follows:

WMSEi =
1
N

tN∑

k=t1

(yobs
k − ŷi

k)T R−1(yobs
k − ŷi

k) (6.20)

Here, the variables yobs
k , ŷi

k are assumed to be column vectors containing the

production variables at time instant k. The vector ŷi
k denotes the predictions from

the ith model in the history matched ensemble of models. The measurement noise

variance matrix applies a weighting that is inversely proportional to the amount

of noise in the production variables. Since the EnKF was used as a parameter

estimation algorithm, all predictions are based on simulations starting from the

initial conditions. However, there are several options to choose the time period for

measuring the history match performance (t1 need not necessarily be at the initial

conditions). The history match quality can be evaluated on data within the period of

history matching. If the predictive capability of the model has to be evaluated, then

a more reliable model validation procedure is to cross-validate against data falling

outside the period of history matching. For the latter approach, it is required

to divide the past production data into estimation (i.e. history matching) and

validation data set (Ljung, 1999). The disadvantage would be that we cannot use

all the available historical data for the model building exercise.

In order to evaluate the overall quality of history matching, a normalized measure

of fit is defined which can be expressed in percentage scale. Note that the WMSE

quality measure defined earlier will be dependent on the units of the production

variables and the magnitude of measurement noise covariance matrix. A scale-

independent measure for evaluating the overall quality of history matching will be
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the commonly used R-square value of fit (Ljung, 1999), which is defined as

R2
i,j = 1 −

tN∑
k=t1

(yobsj

k − ŷi,j
k )2

tN∑
k=t1

(yobsj

k − yobsj )2

(6.21)

In Eq. (6.21), the R2 value for the ith realization in the history matched ensemble

and jth production variable is defined. The scalar yobsj in the denominator refers

to the time average of the jth production variable, averaged over the time interval

k = t1 to tN . The aggregate quality of the ith realization can be defined by averaging

over all the j production variables, i.e.,

R2
i =

1
Nprod

Nprod∑

j=1

R2
i,j (6.22)

where, Nprod is the number of production variables selected for history matching. A

value of R2 = 1 should be interpreted as perfect fit between the observed data and

the model predictions; a value close to 0 would mean that the predictions are just as

good as the historical mean of production data (Note: Negative values would mean

that the predictions are worse than forecasting just the average of the past data).

The advantage of the R2 value is that it is always guaranteed to be less than 1 and

can be used as a scale-independent overall measure of history match quality. The

percentage quality can be obtained by multiplying Eq. (6.22) by 100 %.

6.3 Case Studies on Heterogeneous Reservoirs

The methodology described in the previous section was applied to characterize and

history match two synthetic heterogeneous reservoirs. The entire EnKF workflow

was developed in the MATLAB computational environment by interfacing it with

a commercial reservoir simulator. The IMEX and STARS modules of the CMG

reservoir simulation software3 were used to simulate the synthetic reservoir models.

In the two case studies presented here, the reservoir model grid blocks were first

populated with some known permeability values which are assumed as the truth

case. The production data simulated from the truth case is treated as data available

from the field for history matching. The truth case permeability is completely hidden

from the reservoir model used in the EnKF workflow, except for the grid blocks with

core hole measurements (hard data). In the case studies presented in this work,

the algorithms available in the MATLAB geostatistical toolbox ‘mGstat’ (Hansen,

2009) was used to generate the initial ensembles conditioned on the hard data.

Specifically, the mGstat toolbox interfaces to the geostatistical simulation packages

3Software developed by Computer Modeling Group Ltd., Calgary, AB, Canada
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VISIM (Hansen & Mosegaard, 2008) and SGeMS (Remy et al., 2009) were utilized.

The objective is to estimate all the grid block permeabilities using the production

data from the truth case. Since ln(permeability) is usually assumed to follow a

Gaussian distribution, all the EnKF calculations are based on the log-transformed

values of the permeability, i.e., in Eqs. (6.17) and (6.18) we have

θ.|. = ln(permeability)

For the reservoir simulator f in Eq. (6.19), the log-permeabilities were transformed

back into the actual permeability values. Also, it was assumed that prior information

about the upper and lower limit of the grid block permeability is available. These

limits were used to constrain the permeability values at all times during the history

matching process.

6.3.1 Heterogeneous black-oil reservoir (2-D case study)

The first case study was performed on a benchmark data set from the 2001 SPE

Comparative solution project (Christie & Blunt, 2001). The model has a simple

2-dimensional vertical geometry, containing oil and gas (2-phase), modeled using

a black-oil formulation. The fine-scale grid of 100x1x20 was used. The reservoir

was assumed to be fully saturated with oil initially. In the original model, there

was one injector (injecting gas) and one producer well. In this case study, this was

modified with one injector well at the center of the reservoir, with two producer

wells (Pro-1 & Pro-2) placed symmetrically on either side of the injector. The grid

block permeability values in millidarcies (md) in the I direction (2000 values) in

the original benchmark data set are shown in Figure 6.2(a). The J and K direction

permeabilities were assumed to be equal to PERM-I. From the figure, this reservoir

model can be observed to be highly heterogeneous with high permeability grids

surrounded by extremely low permeability layers. The objective was to estimate all

the 2000 grid block permeabilities using the well production data from the truth

case. Figure 6.2(a) also shows the modified well placements. In addition to this, it

was also assumed that two vertical core holes are drilled symmetrically in between

the producer and injector wells (at i = 25, 75) to obtain hard data along these grid

blocks. Figure 6.2(b) highlights the locations of the core holes C-1 and C-2. It was

assumed that the grid block permeabilities along Pro-1, Pro-2, C-1, and C-2 are

initially known (highlighted by the black lines in Figure 6.2(b)).

The regions 1 and 2 shown in Figure 6.2(b) show the localization regions. The

region 1 permeability was updated using the production data from well Pro-1 only

and the region 2 was updated using Pro-2 only. The remaining part of the reservoir

(region between C-1 and C-2) was updated using both Pro-1 and Pro-2. The

production data used for history matching consisted of the Monthly Gas and Oil
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Figure 6.2: (a) Heterogeneous Black-oil reservoir (2-D) with one injector and two
producers. (b) Permeability hard data locations.

productions (ft3) for the two wells. Thus, the yobs
k vector will be given by

yobs
k =




Gas Production of Pro-1
Gas Production of Pro-2
Oil Production of Pro-1
Oil Production of Pro-2




kth month

The measurement noise variance for Gas and Oil productions were chosen as 5 ft3

and 10 ft3 respectively. The parameter noise variance was chosen as 1e-4 at all grid

block locations. These values were arrived through a tuning exercise to obtain a

good history matched result. The fit of the history matched ensemble predictions

to the production data was visually analyzed to tune these values.

The first step in the EnKF workflow is to generate the initial ensemble (ensemble

size = 30 realizations) using prior knowledge of the geostatistics. Thirty realizations

representing the initial ensemble were generated using a direct sequential simulation

in the VISIM package, the simulation being conditioned on the hard data at the

locations shown in Figure 6.2(b). An anisotropic spherical variogram function with

a maximum correlation range of 75 grid blocks in the east-west direction was used

in the conditional simulations. Figure 6.3(b) shows the E-type mean of the initial

ensemble. As can be observed from the figure, the initial ensemble mean is very

homogeneous because very few measurements of the static data is available. The

localized EnKF algorithm was implemented to history match the production data

falling in the period of August, 2001–March, 2013. The update step was carried out

sequentially at 8 consecutive time points in this period. Counting the days from

the beginning of simulation, the update was done sequentially after 250 (August,

2001), 400, 500, 1000, 1750, 2500, 3500, and 4500 (March, 2013) days respectively.

The history matched ensemble mean is shown in Figure 6.3(c). It can be observed

clearly that the mean permeability of the history matched ensemble shows a closer

match to the true reservoir heterogeneity when compared to the initial ensemble.
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Figure 6.3: Grid block permeabilities of the 2-D heterogeneous reservoir showing (a)
True case (SPE benchmark data set), (b) E-type mean of initial ensemble realizations
(30) generated using a geostatistical model, and (c) E-type mean of history matched
ensemble resulting from the localized EnKF algorithm.

Figures 6.4(a)–(d) show the comparison of ensemble predictions of the produc-

tion data, before and after history matching. All the predictions (before and after)

shown in the figure were generated through simulations starting from the initial

conditions of the reservoir. The predictions after history matching were obtained

through simulations initialized with the ensemble of permeabilities resulting from

the last update of the EnKF algorithm (March, 2013). Clearly, the EnKF algorithm

is able to estimate permeabilities that result in predictions matching the reservoir

history more closely compared to the initial ensemble realizations. Note that the

initial/prior ensembles were based on the prior geostatistical model only. However,

the history matched ensembles encompass the information assimilated through the

EnKF update step and hence yield predictions that closely track the true reservoir

production. The error bars clearly indicate the reduction in uncertainty in terms

of the smaller inter-quartile range of the realizations. There is also a significant

reduction in the variance of the model predictions after the history matching. This

is a result of the EnKF algorithm correction step, where each ensemble is updated

by taking into account the error in the production data predictions.

The quality of the ensemble realizations in terms of their WMSE and R-square
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Figure 6.4: Comparison of ensemble predictions (30 realizations) before and after
localized EnKF history matching for (a) Well Pro-1 gas production, (b) Well Pro-2
gas production, (c) Well Pro-1 oil production, and (d) Well Pro-2 oil production.
The starting and ending period of data used for history matching are flagged using
the cyan and magenta lines. Error bars indicate the inter-quartile range of the
ensemble predictions (1st and 3rd quartile of the ensemble).
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Figure 6.5: Quality of the ensembles (30 realizations) after localized EnKF history
matching in terms of (a) WMSE: The ensembles are sorted in the ascending order of
the WMSE and those with relatively poor WMSE can be discarded if necessary, and
(b) R-square value: This will indicate the overall quality of the EnKF history match.
For a reliable history match run, all the realizations will show high R2 values.
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values are shown in Figure 6.5. The realizations are sorted in the increasing order

of their respective WMSE. From Figure 6.5(a), we can clearly see that there is a

sharp decline in quality after the 26th ensemble realization. The high sensitivity

of the WMSE plot makes it a good tool for ranking the ensemble realizations in

terms of their prediction accuracy. On the other hand, the R-square error is less

sensitive to the errors in the individual realizations and is a better indicator of

the overall quality of the history match run. As shown in Figure 6.5(b), the R

square value of most of the realizations is close to 0.9 indicating 90% fit between

the true reservoir data and the ensemble predictions. In order to evaluate the

advantage of localization in this case study, a global EnKF algorithm was also

implemented where all the well measurements were used to update all the grid

block permeabilities, irrespective of the grid block locations. Though there was no

significant improvement in the quality of production data match, it was observed

that the localized scheme yielded permeability values that had lower error compared

to the truth case. This is depicted in Figure 6.6 where the root mean square error

(RMSE) in the estimated permeability for the global and localized EnKF are shown

for the 30 realizations in the ensemble. Note that the true reservoir permeability

is known a priori for this synthetic example. From the figure we can observe that

the RMSE in the estimated permeability of the localized EnKF is consistently lower

than that of the global EnKF algorithm.

Figure 6.7 shows the evolution of the ensemble mean and standard deviation

as the EnKF progressively updates the reservoir. Note that there is a significant

change in the mean permeability of the ensembles from k = 1 to k = 4. This is

an indication of significant correction applied to the permeability ensembles by the

Kalman update step, to compensate for prediction errors with respect to the true

reservoir production. We can also see that the standard deviation progressively

decreases with each update step, which is a manifestation of the reduction in the

uncertainty of the Kalman update technique (variance minimization). Beyond k

= 5, the variance remains at the low range; this is an indication that the EnKF

algorithm has converged and further updates will not bring significant decrease in

the variance. The zero-variance along core hole locations signify that no update is

performed at these locations because the true permeability is measured/available in

the form of hard data along these grid blocks. Figure 6.8 shows the evolution of the

aggregate mean of the E-type standard deviation, the averaging being done over the

entire reservoir at each update time step. The reduction in the overall variance of

the permeability ensemble with the progression of the Kalman updates is reiterated

in this figure.
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Figure 6.6: Comparison of the Root Mean Square Error of estimated permeability
of localized and global EnKF algorithms.
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Figure 6.7: Evolution of E-type mean (on the left) and standard deviation (on the
right) of the permeability ensembles with the progression of localized EnKF update
steps.
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Figure 6.8: Evolution of the aggregate mean of permeability E-type standard
deviation with the progression of localized EnKF update steps.
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6.3.2 SAGD reservoir (3-D case study)

The second case study was performed on a synthetic 3-dimensional Steam Assisted

Gravity Drainage (SAGD) reservoir with 80% initial heavy oil saturation. The

dimensions of the reservoir were 5000x1000x150 ft, modeled using a coarse scale grid

of size 100x100x30 ft in the respective dimensions (Number of grids = 50x10x5).

Two pairs of Injector-Producer wells of length 30 grid blocks (length = 3000 ft)

were assumed as shown in Figure 6.9(a). The horizontal trajectory of the injector

wells (INJ-1, INJ-2) in layer 3, and that of the producer wells (P-1, P-1) in layer

4 are also shown in Figure 6.9(b). Figure 6.10(a) shows the spatial permeability

distribution of the truth case, generated through a geostatistical simulation using

the SGeMS package by assuming a geostatistical variogram model. The sequential

Gaussian simulation (sgsim) technique was chosen as the simulation method and

ln(permeability) was the simulated property. The overall variance of the random

field (variogram sill value) was set at 1. An anisotropic spherical variogram model,

with a maximum correlation range of 15 grid blocks was used. Steam at 6500F

was injected through the injection wells and 10 years of the reservoir production

was simulated to generate the truth case production history. The producer wells

were initially shut-in for a period of 1 year of steam injection, and opened for

production from the 2nd year onwards. The simulated data was used for estimating

the grid block permeabilities using the EnKF, by assuming that the true grid-block

permeability is not known.

 
      (a)           (b) 

INJ-1

INJ-2  
 

P-1

P-2
 

Depth from reservoir top (ft) 

INJ-1 
INJ-2 

P-1 P-2 

Figure 6.9: (a) Synthetic SAGD reservoir of size 50x10x5 containing two Injector-
Producer well pairs. (b) Locations of the Injector wells (INJ-1, INJ-2) and Producer
wells (P-1, P-2) in the 3rd and 4th layer of the reservoir respectively.

The production performance of the SAGD process can be evaluated using two

production variables which are the oil production rate (OPrate) and the cumulative

steam-to-oil ratio (SOR). The geological heterogeneity will affect these production

variables (McLennan & Deutsch, 2010) and hence they were used as the criteria for

history matching in this case study. Thus, the measurement vector in the EnKF

algorithm consists of the total OPrate and the cumulative SOR for the entire field,
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given by

yobs
k =

[
Cumulative SOR of entire field

OPrate of entire field

]

kth month

A measurement noise variance of 1e-4 and 10 were assigned for SOR and OPrate

respectively in the EnKF algorithm. The permeability perturbation noise variance

was chosen as 1e-4 at all grid block locations. Similar to the previous case study, it

was assumed that hard data samples of the true permeability is initially available at

a few core hole locations. Vertical core holes traversing the five layers were assumed

and their spatial locations are as shown in Figure 6.10(b).

A conditional simulation, using the hard data as conditioning data and sgsim as

the simulation algorithm, was performed to generate the initial ensemble realizations

(ensemble size = 30). Figure 6.11(a) shows the E-type mean of the initial ensemble

realizations. The variogram function of the ln(permeability) random field used for

the initial ensemble generation was intentionally made different from the truth case.

A variance of 2 and correlation range of 10 grid blocks were used, instead of the

corresponding values of 1 and 15 in the true reservoir. The error in these variogram

function parameters is a manifestation of the uncertainty/lack of exact knowledge

about the reservoir geology which is the main motivation for characterizing the

reservoir by assimilating the production data using the EnKF algorithm.

In this case study, an additional pre-processing of the initial ensembles was

performed before executing the EnKF algorithm. This was necessary to account

for the fact that the SAGD production variables are more sensitive to layers close

to the well pairs (layers 2, 3 and 4). The variance of the permeability of the grid

blocks in layer 1 and layer 5 after the sequential Gaussian simulation was extremely

high (around 600 md). The pre-processing was done in a localized manner in layer

1 and layer 5 only in order to reduce their variance among the ensembles (E-type

variance). The E-type variance of the layer 1 and layer 5 was reduced by replacing

the geostatistical simulations with the E-type mean of these two layers, with the

addition of a Gaussian random noise of standard deviation 50 md. Note that the

Kalman update is more sensitive to those regions for which the cross-covariance

P̂e,ε
k|k−1 is high. Without this pre-processing step, the high variance of layer 1 and

5 permeabilities was found to induce spurious correlations between the ensemble

production data and these layers, which eventually resulted in false update of the

permeabilities in these layers.

The history matching was performed for a period of 3 years and the production

data in the yobs
k vector was assimilated every 6 months, starting from June, 2004.

Figure 6.11(b) shows the E-type mean of the history matched ensemble of grid

block permeabilities. Comparing Figure 6.11(b) and the true reservoir permeability

in Figure 6.10(a), we can observe that the EnKF updated ensembles contain
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Figure 6.10: (a) Permeability of the true reservoir generated using a sequential
Gaussian simulation. (b) Locations of 12 vertical core holes at which hard data
of the true reservoir permeability were assumed to be available. The hard data at
core holes were used as conditioning data for generating the initial ensembles and
bootstrap the EnKF algorithm.
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Figure 6.11: E-type mean of the ensemble realizations showing permeability (a)
before history matching, and (b) after history matching using the EnKF algorithm.
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more plausible information about the spatial heterogeneity. Figure 6.12 shows the

comparison of ensemble predictions of the production data before and after history

matching. Similar to the previous case study, the ensemble of history matched grid

block permeabilities at the end of the last update step was used to simulate the

‘After history matching’ case. The predictions so obtained were compared to the

simulated predictions of the true reservoir. To compare the effectiveness of history

matching, the initial ensembles were used in a separate simulation to produce the

‘Before history matching’ case. From the comparison of the predictions, we can

clearly observe that the realizations after the EnKF based history matching are

much more plausible when compared to the initial ensembles. The quality of the

ensembles in terms of the WMSE and R-square value is shown in Figure 6.13. The

R-square value suggests more than 90% fit between the predictions and the observed

production data for all the ensembles, thus showing that the history match is reliable.
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Figure 6.12: Comparison of ensemble predictions (30 realizations) before and after
EnKF history matching for (a) Cumulative Steam-to-Oil Ratio (SOR), and (b) Oil
Production Rate (OPrate) for the entire field.

Figure 6.14 shows how the E-type mean and standard deviation of the ensemble

permeability evolves as the EnKF algorithm sequentially updates the reservoir. It

can be observed that a significant shift in the mean of the ensembles happens at the

first update instance. This is due to large errors in the initial ensemble predictions,

which calls for a higher error compensation in the Kalman update step. There

is also a significant reduction in the ensemble variance that occurs at the first

update step. After the third update onwards (June, 2005), the model prediction

errors are significantly lower and hence only minute adjustments are required. The

EnKF algorithm automatically infers this vital information based on the sample

statistics (covariance and cross-covariance) of the ensemble and takes account of

this information when making any parameter updates through the Kalman update
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technique. The reduction in the overall variance of the permeability ensembles can

be clearly observed in Figure 6.15.
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Figure 6.13: Quality of the ensembles (30 realizations) after EnKF history matching
of the SAGD reservoir in terms of (a) WMSE: The realizations after i= 25 can be
considered to have poor accuracy relative to the others, (b) R-square value: The
high R-square value of all the ensembles indicate that the history match is reliable.
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Figure 6.14: Evolution of E-type mean (top row) and standard deviation (bottom
row) of the permeability ensembles with the progression of EnKF update steps,
(a, e): Initial ensemble generated using geostatistical simulation, (b, f): After first
update, (c, g): After 1 year from first update (3rd update), and (d, h): After 2.5 year
from first update (6th update). The ensemble std. deviation significantly reduces
after the first update and remains low thereafter showing significant convergence of
the EnKF algorithm.
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Figure 6.15: Evolution of the aggregate mean of permeability E-type standard
deviation with the progression of EnKF update steps.

Figure 6.16 compares the steam chamber growth predictions after history

matching with that of the truth case. For this comparison, the realization of the

history matched ensemble that yielded the lowest WMSE was used, i.e., ranked

best in terms of the production data history match. Overall, we can observe a

good match between the truth case and the predicted spatial distribution of the oil

saturation. Figure 6.17 shows the steam chamber growth in the 1st and 3rd layer

for comparison. We can observe that the oil saturation in layer 3 shows a better

match with the truth case, compared to the top layer. This can be attributed to the

higher sensitivity of layer 3 to the production data compared to layer 1. The grid

blocks with higher sensitivity will be updated more effectively in the EnKF update

step.

6.4 Concluding Remarks

In this work, the efficacy of the EnKF algorithm for history matching of heteroge-

neous reservoirs, by taking into account the prior knowledge about the geological

heterogeneity was demonstrated. Considering two synthetic case studies, the appli-

cation of this technique for sequentially updating the heterogeneous permeability

at grid block locations was demonstrated. Two quality measures for evaluating the

efficacy of history matching were proposed, which could summarize the overall qual-

ity as well as the quality of individual ensembles at the end of history matching
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Figure 6.16: Comparison of the steam chamber growth of the True case (on the left)
and the EnKF realization ranked highest after history matching (on the right), for
the month of (a) June’05, (b) June’08, and (c) December’10. The figures show the
oil saturation in a reservoir section cut out in the vertical plane containing one of
the well pairs.
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Figure 6.17: Comparison of the steam chamber growth in layers 1 & 3 of the True
case (on the left) and the EnKF realization ranked highest after history matching
(on the right), for the month of (a) June’05, (b) June’08, and (c) December’10. For
each month, the 1st row shows layer 1 and the 2nd row shows layer 3.

156



in the EnKF algorithm. The prior knowledge about the geological heterogeneity

can be easily integrated into the EnKF algorithm through geostatistical simulation

techniques, which modern day reservoir engineers are accustomed to doing as part of

any reservoir uncertainty evaluation project. The entire algorithm is non-iterative in

nature and does not suffer from the limitations of expensive numerical optimization

routines. One of the main advantages of the EnKF algorithm is that it can account

for the uncertainty in the unknown parameters such as permeability and porosity

using a few Monte Carlo realizations (O(50)). The algorithm allows for each of the

Monte Carlo realizations to be simulated on any commercial reservoir simulator and

the computations does not involve the partial differential equations of the reservoir

simulator in any form. Moreover, the technique inherently allows for each of the

simulations to be carried out independently from the others, in a parallel fashion.

Significant reduction of overall time required for history matching is possible by

implementing it on modern day multi-processor computing architectures.
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Chapter 7

General Discussion and
Concluding Remarks

7.1 Major Contributions

The main contributions of this thesis, as explained in each of the earlier chapters,

are summarized below:

• Chapter 2 presented the application of the Support Vector Regression technique

for building nonlinear empirical models of three highly nonlinear processes: (a) an

industrial scale EVA polymer extrusion process, (b) a simulated pH neutralization

process, and (c) a laboratory scale twin screw extrusion process. In the first

case study, a steady state soft sensor for the polymer melt index was successfully

developed. Also, the soft sensor was shown to outperform a nonlinear least square

regression based soft sensor which was previously installed in the plant. In the

latter two case studies, dynamic nonlinear ARX (NARX) models were successfully

built using the SVR technique. A novel heuristic procedure for automatically

choosing the optimal order and delays of the NARX models was also proposed.

The SVR-NARX models were shown to give better predictions than models which

were based on the traditional least square regression criteria.

• Chapter 3 presented a tutorial introduction of the basics of state estimation,

with a special focus on sequential Monte Carlo algorithms for state estimation of

nonlinear systems. Starting from the analytical solution of the Kalman filter,

the ensemble Kalman filter was explained as a Monte Carlo version of the

Kalman filter. Then, the basic computational steps in the particle filter algorithm

were explained in detail through the use of a simple illustrative example. A

comparative study of these algorithms were also presented through simulation case

studies. These case studies serve to clearly bring out the distinct mathematical

assumptions inherent in these filtering algorithms.
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• Chapter 4 presented a novel solution for detection and quantification of stiction

in control valves using a Kalman filter type of unknown input observer. The for-

mulation of valve stiction as an external unknown input affecting the control loop

was the key idea. The process, excluding the valve, was assumed to be described

by a linear state space model. Industrial case studies demonstrated the success of

the methodology in terms of detection and also accuracy of quantification of the

fault. Also, simulation studies demonstrated the robustness of the methodology

in the presence of model-plant mismatch and external oscillatory disturbances.

• Chapter 5 presented a comparative study of combined state and parameter

estimation techniques. A batch estimation algorithm based on an expectation-

maximization framework was presented. Three popular filtering and smoothing

algorithms were considered in the comparative study: (a) particle smoother, (b)

unscented Kalman smoother, and (c) extended Kalman smoother. An online

recursive scheme for combined state and parameter estimation was also presented,

with a focus on the ensemble Kalman filter. Using a simulated fermentor reactor,

empirical case studies were performed to bring out the efficacy of these techniques

in terms of estimation accuracy and computational cost.

• Chapter 6 presented the application of the ensemble Kalman filter for the estima-

tion of parameters of large scale petroleum reservoir systems, commonly referred

to as history matching. Two synthetic, unconventional petroleum reservoir sim-

ulation models were considered: (a) a highly heterogeneous black-oil reservoir,

and (b) a 3-dimensional SAGD reservoir. The objective was to characterize the

heterogeneous grid-block permeability of the entire reservoir taking into account

the geostatistical prior knowledge as well as the production data measurements at

the well locations. Also, quantitative indices which can be used to summarize the

‘history matched’ quality after history matching were proposed. The case stud-

ies successfully demonstrated the efficacy of the methodology for fast, sequential

updating of the heterogeneous reservoir permeability.

7.2 Recommendations for Future Work

During the course of the work in this thesis, some possible areas for future work

were identified which will require additional work. A few of these areas, which merit

additional investigation, are listed below.

7.2.1 Extensions to the Support Vector Regression technique

As mentioned in Chapter 2, one of the key features of the SVR technique is the sparse

nonlinear approximation of the input-output relationship of the process variables.

Recently, there has been a lot of interest in the literature on a novel sampling
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paradigm called Compressive Sampling (CS) with the objective of obtaining sparse

nonlinear approximations of naturally sparse signals (Candes & Wakin, 2008). The

basis functions in CS are required in their explicit form and the ℓ1 norm of the model

weight vector is minimized to obtain the optimal model for signal reconstruction.

For robust recovery of signals from noisy data, hard constraints are included in

the optimization problem formulation in CS. Note that in ε−SVR, noise is handled

through the ε-insensitive loss function which is a soft constraint in the optimization

formulation. The use of ℓ1 norm of w instead of the ℓ2 norm (Weston et al., 1999)

can be considered as a variation on the theme of ε−SVR along similar lines of the

CS theory. However, the link between the CS theory and the SVR technique has

not been explored in the literature. The idea of sparsity is prevalent in both ε−SVR

and CS; a combination of the main ideas in these two formulations may pave ways

to interesting results in future.

7.2.2 Applications of the Unknown Input Observer

In Chapter 3, an unknown input observer (UIO) was used to estimate the valve

position. The estimated valve position was used to detect and quantify stiction.

However, there are several other valve abnormalities which can be detected using

the valve position information. Three of the important ones are (1) valve nonlin-

earity, (2) large deadband, and (3) valve hysteresis. All of the above mentioned

abnormalities will be reflected as a distinct pattern in the mv − op plot of the valve

and hence can be used for fault detection. With some additional work, application

of the unknown input observer technique for detecting such faults can be studied.

A more general area to explore the application of the UIO in the process industry

is the detection of model-plant mismatch in process control loops. If there is a

systematic mismatch between the true process and its best linear approximation,

then the UIO can be applied to estimate the mismatch as an unknown input. Process

nonlinearity can be one of the causes of model-plant mismatch and its detection is a

significant step in the assessment of closed loop performance of a process (Choudhury

et al., 2008).

7.2.3 Advanced techniques for history matching using the EnKF
algorithm

The petroleum engineering literature has been vibrant with the application of the

EnKF algorithm for history matching. However, the application of the EnKF for

the history matching of SAGD reservoirs and other enhanced oil recovery reservoirs

has not been significantly explored. In the SAGD reservoir, one of the important

production variables which we have not considered in this thesis is the spatial

temperature measurements. The inclusion of these measurements in the EnKF-
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based history matching will add more information about the spatial heterogeneity.

Another future challenge in this area is incorporating constraints in the EnKF to

enforce the geologic realism in the updated model. For example, constraints can be

included to efficiently define in some functional form the spatial continuity of the

permeability and porosity. A modified form of the Kalman update rule, which will

incorporate such constraints, will have to be developed.

7.3 Concluding Remarks

Overall, this thesis has presented novel case studies which demonstrate the success of

modern computational tools in transferring the information available from process

data into empirical and physio-chemical models of the process. From a practical

stand point of process control today, it is evident that empirical soft sensors have

already penetrated the work flow of practicing process control engineers (Kern,

2010). However, new computational tools which can make life easier for process

control practitioners are always required as the chemical processes become more and

more complex and nonlinear. An applied research based study of new computational

tools is indispensable for translating the mathematical developments into practical

engineering tools.
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Appendix A

Kalman filter from a Bayesian
perspective

Recalling Eqs. (3.11) and (3.12) from Chapter 3, we have the following expressions

for the prior density and the likelihood for the state at time instant k = 1:

p(x1|y0) =
1√

2πσ1|0
exp

(
−(x1 − µ1|0)2

2σ2
1|0

)
(A.1)

p(y1|x1) =
1√

2πσn

exp

(
−(y1 − x1)2

2σ2
n

)
(A.2)

Consider the posterior probability density for the state, p(x1|y1), at time instant

k = 1. From Eq. (3.3), we can relate p(x1|y0) and p(y1|x1) to p(x1|y1) as follows:

p(x1|y1) =
p(x1|y0)p(y1|x1)

p(y1|y0)
(A.3)

Based on the measurement equation in Eq. (3.10), at time instant k = 1, we have

the following:

y1 = x1 + n1 (A.4)

From Eq. (A.4), the conditional probability density p(y1|y0) can be concluded to be

a Gaussian one, with the following conditional mean and variance:

E(y1|y0) = E(x1 + n1|y0)

= E(x1|y0) + E(n1|y0)

= µ1|0 + 0

= µ1|0

E[{y1 − E(y1|y0)}2|y0] = E[(x1 + n1 − µ1|0)2|y0]

= E{[n2
1 + (x1 − µ1|0)2 − 2(x1 − µ1|0)n1]|y0}

= E[n2
1|y0] + E[(x1 − µ1|0)2|y0] − 2E[(x1 − µ1|0)n1|y0]

= σ2
n + σ2

1|0 + 0

= σ2
n + σ2

1|0
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Note that E[(x1 − µ1|0)n1|y0] = 0, since the measurement noise is zero-mean and

uncorrelated with the state variable. Thus, the density in the denominator of Eq.

(A.3) is given by

p(y1|y0) =
1

√
2π
√

σ2
n + σ2

1|0
exp

(
−(y1 − µ1|0)2

2(σ2
n + σ2

1|0)

)
(A.5)

Substituting Eqs. (A.1), (A.2), and (A.5) into Eq. (A.3), we obtain the following

p(x1|y1) =

1√
2πσ1|0

exp
(

−(x1−µ1|0)2

2σ2
1|0

)
1√

2πσn
exp

(
−(y1−x1)2

2σ2
n

)

1
√

2π
√

σ2
n+σ2

1|0

exp
(

−(y1−µ1|0)2

2(σ2
n+σ2

1|0
)

)

=

1√
2πσ1|0

1√
2πσn

exp −
(

(x1−µ1|0)2

2σ2
1|0

+ (y1−x1)2

2σ2
n

)

1
√

2π
√

σ2
n+σ2

1|0

exp
(

−(y1−µ1|0)2

2(σ2
n+σ2

1|0
)

) (A.6)

Ignoring all the terms which are independent of x1 as a proportionality constant,

we obtain the following relationship

p(x1|y1) ∝ exp −
(

(x1 − µ1|0)2

2σ2
1|0

+
(y1 − x1)2

2σ2
n

)
(A.7)

The exponential factor
(

(x1−µ1|0)2

2σ2
1|0

+ (y1−x1)2

2σ2
n

)
in the above equation will be used to

perform some algebraic manipulations, as explained below. First, by performing a

simple algebraic manipulation of the exponential factor, we obtain the following:

1
2

(
(x1 − µ1|0)2

σ2
1|0

+
(y1 − x1)2

2σ2
n

)
=

1
2σ2

1|0σ2
n

(
σ2

n(x1 − µ1|0)2 + σ2
1|0(x1 − y1)2

)
(A.8)

Expanding the squares in the above equation, we obtain

1
2σ2

1|0σ2
n

(
σ2

n(x1 − µ1|0)2 + σ2
1|0(x1 − y1)2

)

=
1

2σ2
1|0σ2

n

[
σ2

n(x2
1 + µ2

1|0 − 2x1µ1|0) + σ2
1|0(x2

1 + y2
1 − 2x1y1

]

=
1

2σ2
1|0σ2

n

[
x2

1(σ2
n + σ2

1|0) + σ2
nµ2

1|0 − 2x1µ1|0σ2
n + σ2

1|0y2
1 − 2x1y1σ2

1|0
]

=
1

2σ2
1|0σ2

n

[
x2

1(σ2
n + σ2

1|0) + σ2
nµ2

1|0 + σ2
1|0y2

1 − 2x1(µ1|0σ2
n + y1σ2

1|0)
]

(A.9a)
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By grouping the terms containing the random variable x1 in Eq. (A.9a), we obtain

1
2σ2

1|0σ2
n

[
x2

1(σ2
n + σ2

1|0) − 2x1(µ1|0σ2
n + y1σ2

1|0)
]

+
σ2

nµ2
1|0 + σ2

1|0y2
1

2σ2
1|0σ2

n

=
(σ2

n + σ2
1|0)

2σ2
1|0σ2

n

{
x2

1 − 2x1

(
µ1|0σ2

n + y1σ2
1|0

(σ2
n + σ2

1|0)

)}
+

σ2
nµ2

1|0 + σ2
1|0y2

1

2σ2
1|0σ2

n

By completing the square of the terms inside the curly braces in the above equation,

we obtain

(σ2
n + σ2

1|0)

2σ2
1|0σ2

n



{

x1 −
(

µ1|0σ2
n + y1σ2

1|0
(σ2

n + σ2
1|0)

)}2

−
(

µ1|0σ2
n + y1σ2

1|0
(σ2

n + σ2
1|0)

)2



+
σ2

nµ2
1|0 + σ2

1|0y2
1

2σ2
1|0σ2

n

=
(σ2

n + σ2
1|0)

2σ2
1|0σ2

n

{
x1 −

(
µ1|0σ2

n + y1σ2
1|0

(σ2
n + σ2

1|0)

)}2

−
(σ2

n + σ2
1|0)

2σ2
1|0σ2

n

(
µ1|0σ2

n + y1σ2
1|0

(σ2
n + σ2

1|0)

)2

+
σ2

nµ2
1|0 + σ2

1|0y2
1

2σ2
1|0σ2

n

(A.10)

Consider the term
µ1|0σ2

n+y1σ2
1|0

(σ2
n+σ2

1|0
)

in the above equation. By carrying out an algebraic

manipulation, we obtain the following:

µ1|0σ2
n + y1σ2

1|0
(σ2

n + σ2
1|0)

=
µ1|0σ2

n + µ1|0σ2
1|0 − µ1|0σ2

1|0 + y1σ2
1|0

(σ2
n + σ2

1|0)

=
µ1|0(σ2

n + σ2
1|0) + σ2

1|0(y1 − µ1|0)

(σ2
n + σ2

1|0)

= µ1|0 +
σ2

1|0
(σ2

n + σ2
1|0)

(y1 − µ1|0)

= µ1|0 + K1(y1 − µ1|0) (A.11)

, µ1|1 (A.12)

where, K1 is the Kalman gain defined as

K1 =
σ2

1|0
(σ2

n + σ2
1|0)

(A.13)

The final result of this derivation will prove that µ1|1 is the mean value of the

posterior distribution of the state at time instant k = 1. Next, consider the term
(σ2

n+σ2
1|0

)

2σ2
1|0

σ2
n

(
µ1|0σ2

n+y1σ2
1|0

(σ2
n+σ2

1|0
)

)2

in Eq. (A.10). By doing a simple algebraic expansion we

obtain

(σ2
n + σ2

1|0)

2σ2
1|0σ2

n

(
µ1|0σ2

n + y1σ2
1|0

(σ2
n + σ2

1|0)

)2

=
1

2σ2
1|0σ2

n

(µ1|0σ2
n + y1σ2

1|0)2

(σ2
n + σ2

1|0)
(A.14)
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Substituting Eq. (A.14) and Eq. (A.12) into the R.H.S. of Eq. (A.10), we obtain

(σ2
n + σ2

1|0)

2σ2
1|0σ2

n

(x1 − µ1|1)2 − 1
2σ2

1|0σ2
n

(µ1|0σ2
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=
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=
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(A.15)

Thus, we have the following intermediate result which gives an equivalent form for

the exponential factor in Eq. (A.7):

1
2

(
(x1 − µ1|0)2

σ2
1|0

+
(y1 − x1)2

2σ2
n

)
=

1
2

(σ2
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n
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1
2

(y1 − µ1|0)2

(σ2
n + σ2

1|0)
(A.16)

Next, consider the term
(σ2

n+σ2
1|0

)

σ2
1|0

σ2
n

in the above equation. Carrying out an algebraic

manipulation of this term, we obtain the following result:
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(A.17)

where, σ2
1|1 = σ2

1|0 − K1σ2
1|0. The final result of this derivation will prove that

σ2
1|1 is the variance of the posterior distribution of the state at time instant k = 1.

Substituting σ2
1|1 into the R.H.S. of Eq. (A.16), we obtain

1
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2σ2
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2σ2
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Thus, the exponential factor in Eq. (A.7) can be expressed in the following

equivalent form:
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(A.18)

Substituting the result obtained in Eq. (A.18) into Eq. (A.6) and carrying out a

few algebraic manipulations, we obtain the following final result:
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(based on Eq. (A.17))
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=
1√

2πσ1|1
exp −

(
(x1 − µ1|1)2

2σ2
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)
(A.19)

∝ exp −
(

(x1 − µ1|1)2

2σ2
1|1

)
(A.20)

Based on the above final result, we can conclude that the posterior probability

density of the state is Gaussian, with mean µ1|1 and variance σ2
1|1.
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