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Abstract. In gene expression microarray data analysis, biclustering has been
demonstrated to be one of the most effective methods for discovering gene ex-
pression patterns under various conditions. We present in this study a framework
to take advantage of the homogeneously expressed genes in biclusters to construct
a classifier for sample class membership prediction. Extensive experiments on8
real cancer microarray datasets (4 diagnostic and4 prognostic) show that our pro-
posed classifier performed superior in both cancer diagnosis and prognosis, the
latter of which was regarded quite difficult previously. Additionally, our results
demonstrate that sample classification accuracy can serve as a good subjective
quality measure for biclusters.

1 Introduction

The advance of high-throughput hybridization microarray technology provides the op-
portunity to measure the expression levels of thousands of genes simultaneously, thus
to present a snapshot of the transcription levels within the cell. Such a technology en-
ables researchers to look at the cellular systems globally, for example, to improve our
understanding on the disease related processes, yet also challenges us on effectively an-
alyzing the vast volume of measured data such that key features of the cellular systems
can be uncovered.

One of the major current applications of gene expression microarrays, particu-
larly the high-density oligonucleotide arrays such as the Affymetrix GeneChip oligonu-
cleotide (Affy) arrays, is cancer diagnosis and prognosis. The underlying principle for
this application (and many other applications) is that, two cells with dramatically dif-
ferent biological characteristics, such as a normal cell versus a cancerous cell from the
same tissue, are expected to have different gene expression profiles. However, it is im-
portant to realize that the majority of the active cellular mRNA is not affected by the
differences. In other words, a dramatic biological difference does have a gene expres-
sion level manifestation, but the set of genes that is involved can be rather small. The
microarray classification is to partition the arrays (also called samples, or chips, or con-
ditions) such that there are an extremely larger-than-expected number of genessharply
separating the classes.
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These genes that sharply separate the classes are referred to asinformativeor dis-
criminatorygenes, orbiomarkers. Since these genes expressed differentially under dif-
ferent conditions, they can be selected to compose gene expression profiles for the
purpose of class prediction, upon the arrival of a new sample. However, some early
works on classification and/or class discovery are rather direct in that their focus is
on the sample partition (not prediction).[1] Some others investigate two-way clustering
of both genes and samples for defining sample classes and the class associated gene
identification.[2] Note that sample partitioning requires homogeneous expression for
all the genes while gene clustering assumes homogeneous expression of genes across
all samples. With the increased understanding that not all genes express similarly in
all samples, an alternate clustering framework, which produces local models, has been
proposed to group genes and samples simultaneously, the so-calledbiclustering, which
is also known (in several other areas of studies) as co-clustering, bi-dimensional clus-
tering, and subspace clustering.[3]

In the literature, there are several types of biclusters been defined and investigated
[4–9]. Among them,constant,[10] additive,[6] andmultiplicative[9, 5] are three most
studied types. Associated with different types of biclusters, various algorithms for find-
ing them have been proposed,[10, 6, 9] together with some theoretical studies on com-
putational complexity.[3, 6] In these works, several bicluster quality measures have been
examined, using methods such as value of the merit function defined for biclusters,
statistical significance of the solution measured against the null hypothesis, and com-
parison against known solutions.[3, 6] Note that the first two methods emphasize the
numerical quality of the identified biclusters, while the third can incorporate existing bi-
ological knowledge such as gene functional annotation, gene co-regulation, and sample
class membership.[3] For example, several works reviewed by Madeira and Oliveira[3]
examine the relation between biclusters and sample class memberships.[5, 7] Unfortu-
nately, it is unclear from the context on how biclusters can be used for sample class
membershipprediction, or sample classification, which is our main target in this study.

In this paper, we present a detailed framework for sample classification using bi-
clusters, and we design experiments to show that good quality biclusters can be taken
advantage for human cancer diagnosis and prognosis. Furthermore, the experimental
results demonstrate that sample classification accuracy can serve as a good quality mea-
surement for the discovered biclusters, disregarding their types.

The rest of paper is organized as follows: In the next section, we briefly introduce
the concept of biclusters, particularly the constant and the additive, and two existing al-
gorithms for finding them. With the discovered biclusters, we present the framework on
using the genes in the biclusters for sample classification within the leave-one-out cross
validation (LOOCV) scheme. Section 3 presents the cancer (diagnosis and prognosis)
microarray datasets included in this study, and our experimental results on them. Sec-
tion 4 contains our discussion on both the classification framework and computational
results. We conclude the paper in Section 5.

2 Methods

We useA to denote the gene expression data matrix in the study. In this case,A is an
n ×m matrix, withn being the number of genes andm being the number of samples.
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The entryaij records the expression level of thei-th gene in thej-th sample. Note
that the order of genes and the order of samples are (normally) arbitrary and irrelevant
in this study. Given a subset of genesI ⊆ {1, 2, . . . , n} and a subset of samplesJ ⊆
{1, 2, . . . ,m}, AIJ denotes the sub-matrix ofA by removing genes not inI and samples
not inJ .

Different from clustering (on genes or samples) which seeks for homogeneous gene
expression (across all samples, or for all genes, respectively), biclustering performs
clustering in the two dimensions simultaneously, and thus to produce local models con-
trast to global models produced by clustering. A bicluster is defined by a pair of a
gene subsetI and a sample subsetJ , expecting that genes inI have similar behav-
ior across the samples inJ . The notion of “similar behavior” can be characterized in
several ways.[3] In this paper we are particularly interested in two types of biclusters:
constant and additive.

A perfectconstant bicluster is a sub-matrixAIJ in which all entries are equal, that
is, aij = µ, for all i ∈ I and j ∈ J . A perfectadditive bicluster is a sub-matrix
AIJ with coherentvalues, which can be expressed asaij = µ + αi + βj , whereαi is
theadjustmentfor the i-th gene andβj is theadjustmentfor the j-th sample. Clearly,
a perfect constant bicluster is a special case of a perfect additive bicluster. Although
these “ideal” biclusters can be found in some expression matrices, in real data, they are
masked by noise.

Many algorithms have been proposed for discovering these two types of bi-clusters
or alike. In this paper, we employ two of them, to be detailed next. In their seminal
work,[10] Cheng and Church defined a bicluster to have a highmean squared residue
score, which is used as a measure of the coherence of the genes and samples in the
bicluster. Given a biclusterAIJ , setaiJ = 1

|J|
∑

j∈J aij , aIj = 1
|I|

∑
i∈I aij , and

aIJ = 1
|I||J|

∑
i∈i,j∈J aij . Theresidue scoreof entryaij in the bicluster isaij − aiJ −

aIj + aIJ . Themean squared residue scoreof AIJ , denoted asH(I, J), is calculated
as

H(I, J) =
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2.

AIJ is aδ-bicluster ifH(I, J) ≤ δ for someδ ≥ 0.
Clearly, a0-bicluster is a perfect constant bicluster. Cheng and Church proposed

several heuristic algorithms to discoverδ-biclusters by removing rows and columns
from the original matrix.[10] It is worth mentioning that their proposed algorithms
have a tendency to find constant biclusters, but not necessarily other types of biclusters
such as additive or multiplicative. The particular algorithm we employ in this study is
theMultiple Node Deletion(MND) algorithm, which iteratively removes genes whose
contributing residue scores (defined as1

|J|
∑

j∈J (aij − aiJ − aIj + aIJ)2) are greater
thanαH(I, J), or when no such genes, only the gene with the highest such score, and
samples whose contributing residue scores (defined as1

|I|
∑

i∈I (aij − aiJ − aIj + aIJ)2)
are greater thanαH(I, J), or when no such samples, only the sample with the highest
such score, untilH(I, J) does not exceedδ. We denote this algorithm as MND(δ, α)
for the particular pair ofδ andα.

Recently, Liu and Wang proposed several algorithms for finding multiple (may
be overlapping)maximum similaritybiclusters,[6] which include constant and addi-

3



tive ones. GivenI andJ , and a reference genei∗ ∈ I, finding a maximum similarity
bicluster withinI andJ is to find a subset of genesI ′ ⊆ I and a subset of samples
J ′ ⊆ J such that thedistancesbetween the reference genei∗ and genes inI ′ are min-
imized. In more details, definedij = |aij − ai∗j |, and we want to discard those large
dij ’s to achieve the target bicluster. To this purpose, define the average difference as
d̄ = 1

|I||J|
∑

i∈I,j∈J dij . With a thresholdα, a similarity matrixSIJ is defined forAIJ

in whichsij = 0 if dij ≥ αd̄, or otherwisesij = 1−dij/αd̄+β (whereβ ≥ 0 is abonus
for smalldij ’s). Define the similarity score of thei-th gene inSIJ assiJ =

∑
j∈J sij ,

the similarity score of thej-th sample inSIJ assIj =
∑

i∈I sij , and the similarity
score of matrixAIJ assIJ = min{mini∈I siJ ,minj∈J sIj}. The particular algorithm
we employ in this study is the MSB algorithm, which starts with the whole matrixA,
repeatedly deletes the gene or the sample whose similarity score is the currently small-
est to obtainn + m− 1 biclusters, and returns the one having the maximum similarity
scoresIJ while its average similarity scorēsIJ = 1

|I||J|
∑

i∈I,j∈J sij is at leastγ. We
denote this algorithm as MSB(γ, α, β) for the three associated parameters.

2.1 Bicluster Generation

We use two algorithms, MND(δ, α) and MSB(γ, α, β), to generate biclusters in the
(training) dataset, in which every sample has a known class membership. For each al-
gorithm, a range is pre-determined for every parameter, resulting in a number of distinct
settings. First of all, we partition the expression matrixA (the training dataset) into sub-
matrices which have the same set of genes but each contains only the samples from a
particular class. (The number of such sub-matrices is equal to the number of classes in
the dataset.) Separately or together, every setting of the biclustering algorithms is run
on these sub-matrices to generate one bicluster per class.

In MND(δ, α) algorithm,δ was chosen based on a trial and error policy. With this
policy, first, we ran MND(δ, α) algorithm (with some randomδ value) on the whole
dataset while noting down the residue score (H(I, J)) and the size of the generated bi-
cluster. When the size of the gene set in the generated bicluster was less than half of the
total number of genes, we chose that particularδ value as the initial value. Afterwords,
we ran the algorithm multiple times while incrementally decreasing theδ value. For
example, if the initialδ value for a given dataset was 700, we subsequently ran MND(δ,
α) algorithm withδ values being 600, 500, and 400, and so on. Under this policy of
parameter setting, the size of the gene set in the generated biclusters varied from 30%
to 10% of the total number of genes in the whole dataset. Parameterα was kept at1.1
throughout the experiments.

For MSB(γ, α, β) algorithm, parametersα, β, andγ were chosen based on the
original recommendations[6], where the authors suggested thatα ∈ [0.2, 0.4], β ∈
[0.0, 0.5], andγ ∈ [β + 0.7, β + 0.9]. We triedα = 0.3, 0.4, and fixedβ at0.4 andγ at
1.2. With these settings the sizes of the gene sets of the generated biclusters varied from
20% to 8% of the total number of genes in the whole dataset. For each setting of (γ, α,
β), (a maximum of)5 reference genes were randomly selected from the gene pool.
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2.2 Distance Calculation

The generated biclusters are considered as important and the genes in them are believed
to strongly correlate to the sample classes. We take all the genes included in these top
quality biclusters for calculating distances between a testing sample and the sample
classes in the training dataset. Assume these genes form a setI and the training sample
set isJ . For each samplej ∈ J , the distance between testing samples and samplej is
calculated as the normalizedL1 distance using gene setI:

dL1(s, j) =
1
|I|

∑
i∈I

|ais − aij |.

Note that a sample not inJ has no distance to testing samples. The distance between
testing samples and a sample class is defined as theaveragedistance over all the
samples in the class which have distances tos. The aboveL1 distance can be substituted
by other distance measures such as the euclidean distance.

2.3 Classification and LOOCV Accuracy

Given all the discovered biclusters which define the gene set used in the distance calcu-
lation, whenever a testing sample arrives, we can calculate its distance to every sample
class in the (training) dataset. The label of the closest class to the testing sample is taken
as the predicted class label for the testing sample. In our experiment, we adopt the leave-
one-out cross validation (LOOCV) scheme to calculate the classification accuracy. At
each iteration, one sample is selected as the testing sample whose class membership is
blinded to the classifier. Using the rest of the samples, biclustering algorithms are run to
generate the target biclusters and the subsequent genes used in the distance calculation.
One correct prediction is arrived when the predicted class label is the same as the true
one. The LOOCV scheme iterates through all samples and the percentage of correct
predictions is the LOOCV classification accuracy.

3 Experimental Results

3.1 Overview

All experiments were conducted in Matlab environment. We have coded both algo-
rithms, MND(δ, α) and MSB(γ, α, β), ourselves and thoroughly tested their correct-
ness. For example, using the same datasets in their original paper, our coded algorithms
were tested on to generate biclusters, which were compared to the biclusters generated
by the original authors. A test case is considered successful only if these two sets of
biclusters matched with each other. The correctness is guaranteed by 100% matching
results in several test cases.

Afterwords, complete LOOCV sample classification was performed, using these
two algorithms either separately or jointly, on several real cancer gene expression mi-
croarray datasets, for either diagnosis or prognosis purpose. The classification accu-
racies were reported and compared to the previously achieved best accuracies on the
individual datasets.
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3.2 Cancer Gene Expression Datasets

We have used4 cancer diagnosis datasets and4 prognosis datasets in our experiments,
listed as follows.

Diagnostic DatasetsAML-ALL Leukemia dataset[11] consists of72 samples in two
classes:acute lymphoblastic leukemia(ALL) and acute myeloid leukemia(AML). The
gene expression levels were measured using Affymetrix high-density oligonucleotide
arrays containing7, 129 probes (from6, 817 human genes),47 samples of ALL (38 B-
cell ALL and9 T-cell ALL) and25 samples of AML. After filtering the dataset contains
3, 571 genes. In one of our previous works[12], we achieved an LOOCV classification
accuracy98.60%, which is the best known on this dataset.

Lung Cancer dataset[13] is used for classification betweenmalignant pleural mesothe-
lioma (MPM) andadenocarcinoma(ADCA) of the lung. There are181 tissue samples
(31 MPM and150 ADCA), on 12,533 genes. We do not have any known LOOCV result
on this dataset.

The Brain tumor dataset consists of50 high-grade glioma samples of which28
are glioblastomasand22 are anaplastic oligodendrogliomas.[14] Glioblastomas and
anaplastic oligodendrogliomas samples are further classified intoclassicandnon-classic
tumors (14 and14, 7 and15, respectively). This dataset contains 12,625 genes. The best
ever achieved LOOCV classification accuracy on this dataset is 80%.[15]

The Carcinomas dataset (U95a GeneChip) contains174 samples in11 classes:
prostate, bladder/ureter, breast, colorectal, gastroesophagus, kidney, liver, ovary, pan-
creas, lung adenocarcinomas, and lung squamous cell carcinoma, which have 26, 8,
26, 23, 12, 11, 7, 27, 6, 14, and 14 samples, respectively.[16] Each sample originally
contained 12,533 genes. We preprocessed the dataset as described in Suet al.[16] to
include only those probe sets whose maximum hybridization intensity is≥ 200 in at
least one sample; Subsequently, all hybridization intensity values≤ 20 were raised to
20, and the values were log transformed. After preprocessing, we obtained a dataset of
9,183 genes. The best ever achieved LOOCV classification accuracy on this dataset is
93.6%.[15]

Prognostic DatasetsBreast Cancer (training) dataset[17] contains78 patient samples,
34 of which are from patients who had developed distance metastases within 5 years
(labeled asrelapse), the rest44 samples are from patients who remained healthy from
the disease after their initial diagnosis for interval of at least 5 years (labeled asnon-
relapse). The original dataset contains 24,481 genes. Our version of dataset contains
only 23,625 genes and32 relapse samples and44 non-relapse samples. The authors
applied a selection scheme on genes and constructed a classifier based on the correlation
coefficient to good prognosis templates and poor prognosis templates. The achieved
LOOCV classification accuracy on this dataset is 73%.

AML-Leukemia is a subset of the above described AML-ALL Leukemia dataset[11],
which contains7, 129 probes (from6, 817 human genes) and15 samples of AML.8
treatments failed and the other7 were successful. There is no LOOCV result for this
dataset.
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Central Nervous System dataset[18] is used to analyze the outcome of the treatment.
Survivors are patients who are alive after treatment whiles the failures are those who
succumbed to their disease. The dataset contains60 patient samples,21 aresurvivors
and39 arefailures, on 7,129 genes. The authors selected a subset of genes to construct
a KNN-classifier and achieved a LOOCV classification accuracy of 78%.

Prostate Cancer dataset[19] for prediction of clinical outcome contains21 patients
were evaluable with respect to recurrence following surgery with8 patients havingre-
lapsedand13 patients having remained relapse free (non-relapse) for at least 4 years.
The dataset contains 12,600 genes. The authors selected a subset of genes to construct
a KNN-classifier and achieved a LOOCV classification accuracy of 90%.

3.3 LOOCV Classification Accuracies

Table1 summarizes our results. The size column records the size of an individual dataset
using the number of genes and the numbers of samples in all the classes. On each
dataset, the previously best classification accuracy, to the best of our knowledge, is
added for comparison purpose. We have three LOOCV classification accuracies, by
only MND(δ, α) algorithm, by only MSB(γ, α, β), and by both of them jointly.

Table 1. The LOOCV classification accuracies achieved by our bicluster-based methods, com-
pared with the previously achieved best accuracies, on the eight cancer gene expression microar-
ray datasets. The bold ones are the currently best LOOCV classification accuracies.

Dataset Prev. Best Our Accuracies (%)
Name Size Accuracy (%) MND MSB MND+MSB

ALL-AML Leukemia 3,371× {47, 25} [12]98.60 97.22 98.66 97.22
Lung Cancer 12,533× {150, 31} - 88.95 84.53 88.95
Brain Tumor 12,625× {14, 14, 7, 15} [15]80.00 88.00 92.00 88.00
Carcinomas 9,183× {26, 8, 26,. . .} [15]93.60 91.95 96.55 91.95
Breast Cancer 23,625× {32, 44} [17]73.00 53.94 71.05 53.94
Leukemia-AML 7,129× {8, 7} - 100.00100.00 100.00
Central Nervous System 7,129× {39, 21} [18]78.00 40.00 53.33 40.00
Prostate Cancer 12,600× {8, 13} [19]90.00 80.95 95.23 80.95

On six of the eight dataset for which we know the previously best LOOCV results,
4 of them are updated by our proposed method (in bold in Table 1). In particular, on the
Carcinomas dataset, the detailed prediction results by MSB(0.3, 0.45, 1.2), using three
randomly chosen reference genes, on all the classes are recorded in Table 2, where the
correct predictions are in bold.

On the Breast Cancer dataset, our method performed competitively,71.05% versus
73.00%. On the last Central Nervous System dataset, our method did not perform satis-
factorily. It is worth noting that the small Leukemia-AML prognostic dataset was con-
sidered challenging for computational prognosis previously[11]. Our method achieved
the perfect result on this small dataset.
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Table 2. The detailed prediction results by MSB(0.3, 0.45, 1.2), using three randomly chosen
reference genes, on all the classes in the Carcinomas dataset, where the correct predictions are in
bold.

# Samples P BU B C G K LI O PA LA LS

Prostate (P) 26 26
Bladder/Ureter (BU) 8 8
Breast (B) 26 1 1 23 1
Colorectal (C) 23 23
Gastroesophagus (G) 12 11 1
Kidney (K) 11 11
Liver (LI) 7 7
Ovary (O) 27 1 26
Pancreas (PA) 6 6
Lung Adeno. (LA) 14 14
Lung Squamous (LS) 14 1 13

4 Discussion

4.1 Gene Selection

In the past several years, many sample classification algorithms have been proposed,
most of which deal with the dimensionality issue (that is, tens of thousands of genes
versus only tens of samples) through a step called gene selection. Essentially, various
mechanisms have been set up to identify the most discriminatory genes, which express
substantially different under different conditions, followed by classifier construction
based on the selected genes.

Our classification method based on discovered biclusters may also be regarded as
one of the kind, in that our selected genes are those that are included in the discovered
biclusters. Nevertheless, our “gene selection” is very different from the existing ones
in principle. Within the biclustering context, we partition the whole expression matrix
into sub-matrices such that each contains only those samples in one sample class. The
employed biclustering algorithms uncovered those genes that strongly correlate to the
class. Therefore, using them in distance calculation is adequate and when the testing
sample does belong to the particular class, the distance is expected to be small, or large
otherwise.

4.2 Using Class-Dependent Genes Only

We have also tested the distance calculation between the testing sample and a particular
class by using only those genes that are included in the biclusters generated for that
class. The intention was similar in that when the testing sample belongs to this class, the
calculated distance is expected small, or large otherwise. However, the computational
results show that such a scheme is inferior, though not much, to the scheme of using all
the occurring genes in the distance calculation. We thus chose not to report this set of
results.

8



4.3 The Number of Biclusters

For each class, MND(δ, α) algorithm generated only one bicluster, and MSB(γ, α, β)
algorithm generated no more than5 biclusters. The percentage of genes occurring in
these biclusters is roughly 30% to 8% of the total number of genes in the whole dataset.
We have also tested to generate many more biclusters, by changing the parameter set-
ting, and then to select a few of them for distance calculation. It turned out that the latter
did not perform better, while increased the complexity.

4.4 The Size of Dataset

Most of the running time was consumed by the biclustering algorithms. The problem
became more sever with increasing dataset size. With the tens of thousands of genes,
the bottleneck is the class size, i.e., the number of samples in the particular class. We
experienced some delays on several datasets, such as the diagnostic Lung Cancer dataset
and the prognostic Breast Cancer dataset, of which the class sizes are relative large. Note
that in the LOOCV scheme, the biclustering algorithms were run for a huge number of
times. For example, on the diagnostic Lung Cancer dataset, each algorithm was run for
150 times on a dataset of size 12,533× 149 and for31 times on a dataset of size 12,533
× 30. When the class sizes are all relatively small, such as the diagnostic Carcinomas
dataset (9,183 genes, the maximum class size is27), the computation was quickly done.

5 Conclusions

In this paper, we presented formally a sample classification framework using the dis-
covered biclusters. The extensive experiments demonstrated that the top ranked constant
biclusters generated by two previously proposed algorithms can be taken advantage for
the sample classification purpose. As a byproduct, the results demonstrated that sample
classification accuracy can serve as an effective and biologically meaningful measure-
ment for the bicluster quality, contrast to previously proposed measures that largely
look at the numerical aspects matching to the bicluster definitions. Our proposed sam-
ple classification method is a generic framework, in that any biclustering algorithms for
finding various types of biclusters can be plugged in.

Some of our future work subjects include investigating which type(s) of biclusters
are more helpful for cancer diagnosis and prognosis purposes, better criteria for biclus-
ter selection, better use of the genes included in the selected biclusters, a substantial
comparative study to other most advanced classification algorithms, and the limit of our
framework in terms of the dataset class number.
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