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Abstract 

 
In this paper, we present a structured light method to 

recover depth maps. Contrary to most temporal coding 
methods which require projecting a series of patterns, our 
method needs one color pattern only. Unlike most spatial 
coding methods which establish correspondence only 
along the edges of the captured images, our method 
produces a dense set of correspondence. Our method is 
built upon an important observation that a Gaussian 
blurred De Bruijn pattern preserves the desirable 
windowed uniqueness property. A Gaussian blurred De 
Bruijn pattern is used so that the color of every 
illuminated pixel is used to its fullest advantage. The 
simulated experiments show that the proposed method 
establishes a correspondence set whose density and 
accuracy are close to that of using temporal coding 
methods. We also demonstrate the robustness of our 
approach by applying it to several real-world datasets. 
 

1. Introduction 
Stereo matching refers to the process of taking two or 

more images as input, and establishing correspondence 
among pixels in the images, and finally converting their 
2D positions into depths. It has been extensively 
researched in the computer vision community, and 
continues to be an active research area. There are many 
applications for stereo vision in the various fields. For 
example, it is an important step for a robot to extract 
information about relative positions of objects in a scene. 
It can also be used in object recognition and is applied to 
view morphing, image-based rendering, 3D model 
building and so on. 

Stereo methods can be classified into two major 
categories, which are passive and active methods. Passive 
stereo methods established correspondence among images 
with no priori information. Passive stereo research has 
reached a new era since the introduction of a publicly 
available performance evaluation site called Middlebury 
Computer Vision Page [14], which allows researchers to 
compare their methods with other state-of-the-art methods. 

However, passive stereo methods have limitations when 
there are occlusions and textureless regions present in the 
scenes. In contrast, active methods such as laser scanning 
and structured light, project illumination pattern into the 
scenes to create identifiable features and hence to 
minimize the difficulty of establishing correspondence. In 
fact, the structured light method [22] is used to construct 
the ground truth for the depth maps used in the 
Middlebury site [14]. Therefore, the active methods are 
much more accurate comparing with the passive methods. 

In this paper, a structured light method is proposed to 
recover depth maps. Unlike the method in [22] that 
requires projecting a series of illumination patterns, our 
method projects only one single color pattern. At the heart 
of our approach is a very important but overlooked 
observation that a Gaussian blurred pattern can be used to 
construct easily identifiable features, the property of which 
is proved in Section 3. The usage of a Gaussian blurred 
pattern provides dense and accurate correspondence. The 
advantages of using a Gaussian blurred pattern are further 
discussed in Section 5. 

Our major contributions include the following. 
 An important observation that a Gaussian blurred 

De Bruijn pattern can be used in a structured light 
system. 

 A new method that requires only one-shot of the 
scene to produce dense stereo correspondence. 

The organization of this paper is as follows. Section 2 
introduces some related work. Our method is proposed in 
Section 3. Following that, Section 4 shows some 
experimental results. We discuss the advantages of our 
method in Section 5. Finally we conclude and present 
future work in Section 6. 

2. Related Work 
In the early stage of active stereo vision research, a laser 

or light stripe is used to scan the scene. This kind of 
techniques can be time consuming. Later on, much faster 
methods are developed which project coded patterns into 
the scene. These methods are referred to as the coded 
structured light methods, and there are some excellent 
surveys exist [2] [20] [21]. To provide an exhaustive 
review of previous work is certainly beyond the capacity 
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there are two sets of ݊ contiguous pixels that are different 
from each other, then there exists at least one color 
channel that is different and we only focus on that 
channel. Denote the pixel value of that channel to be ܲ 
and ܳ for the two sets. To be more specific, ܲ =
ଶଵ ܳ  and… = ଶݍଵݍ … ܲ .ݍ ≠ ܳ represents that there 
exists one or more ݅ such that  ≠ ݅  whereݍ ∈
{1, 2, … ,݊}. After applying Gaussian blur to ܲ and ܳ, the 
results are denoted as ܲᇱ = ଶᇱଵᇱ ᇱ…  and ܳᇱ =
ଶᇱݍଵᇱݍ … ᇱݍ , respectively. We need to prove that ܲ ≠ ܳ →
ܲᇱ ≠ ܳᇱ. It states that if two sets of ݊ contiguous pixels are 
different, then the results of applying Gaussian blur to 
them are different, which means that the result has the 
windowed uniqueness property. 
Theorem. Given the above assumptions, ܲ ≠ ܳ → ܲᇱ ≠
ܳᇱ. 
Proof. According to the definition of Gaussian blur, ᇱ is 
the weighted sum of the neighboring pixels of . We 
denote the neighboring pixels of  as a vector घ =
,ି} … ,ିଵ, ,ାଵ, … ା}. Similarly, घ, =
,ିݍ} … , ݍ,ିଵݍ , ,ାଵݍ …  ା} is the vector denoting theݍ,
neighboring pixels of ݍ. Since ܲ ≠ ܳ, we can always find 
an ݅ such that घ ≠ घ. We divide the relationship 
between घ and घ into two scenarios.  

1) घ is the mirror of घ and घ ≠ घ. In this case 
ି = ିଵ	,…,ାݍ =  ,ାଵݍ = ାଵ ,ݍ =  … ,ିଵݍ
ା	, =   .ିݍ

2) All the other possibilities where घ ≠ घ. 

● We prove the second scenarios first. We denote the 
weight of the Gaussian kernel as a vector ࢝. Then 
ᇱ = ᇱݍ and घࢀ࢝ =  is the transpose ࢀ࢝ where घࢀ࢝
of ࢝. We need to prove that घ ≠ घ → ᇱ ≠  ᇱ. Theݍ
reason is that if there exists an ݅ where ᇱ ≠  ᇱ, thenݍ
ܲᇱ ≠ ܳᇱ. 
 :can be written as घࢀ࢝ and घࢀ࢝

घࢀ࢝ = ିିݓ + ⋯+ ݓ + ⋯+  (1)				ାାݓ

घࢀ࢝ = ିݍିݓ + ⋯+ ݍݓ + ⋯+  (2)				ାݍାݓ

Notice that there could exist some  and ݍ such that 
 = ݓ  andݍ =  . All the terms with the sameݍݓ
  are cancelled once the following operationݍݓ  andݓ
is performed: ࢀ࢝घ  Since we assume that .घࢀ࢝−
घ ≠ घ, we can always find an ݅ such that  ≠  .ݍ
Therefore the equation can be re-written as in the 
following equation. 

ᇱ − ᇱݍ = घࢀ࢝ घࢀ࢝− = 

1
ଶߪߨ2√

ቆܿ݁
ି బమ

ଶఙమ + ܿଵ݁
ି భమ

ଶఙమ + ⋯+ ܿ݁
ି

మ

ଶఙమቇ								(3) 

Here ݇ denotes all the remaining indices that are not 

cancelled. None of the items in (3) is 0, i.e. ܿ ≠ 0, ܿଵ ≠
0, … , ܿ ≠ 0. Denote ܽ = ݁ି

భ
మమ. Assume that	ߪ is a 

rational number. Since ݁ is a transcendental number, it 
follows that ܽ is also transcendental. On the other hand, 
(3) can be re-written as: 

ᇱ − ᇱݍ = घࢀ࢝ घࢀ࢝− = 

1
ଶߪߨ2√

ቀܿܽబ
మ + ܿଵܽభ

మ + ⋯+ ܿܽ
మ
ቁ								(4) 

Since ܿ ≠ 0, ܿଵ ≠ 0, … , ܿ ≠ 0, we conclude that (4), 
which is ᇱ −  ᇱ, can never equal to 0. It can be seen byݍ
Reductio ad absurdum, if ᇱ − ᇱݍ = 0, then ܽ is algebraic, 
which is clearly a contradiction. Therefore, घ ≠ घ →
ᇱ ≠  .ᇱݍ
● Next we prove the first scenario when घ is the mirror 
of घ and घ ≠ घ. Consider (1) and (2), the weight 
of the Gaussian kernel is symmetric with respect to its 
center. That is, ݓି = ିଵݓ	,…,ାݓ =  ାଵ. Since घݓ
is the mirror of घ, which means that ି =
ିଵ	,…,ାݍ =  ,ାଵݍ =  , we can easily see thatݍ
घࢀ࢝ = This is the only case when घ .घࢀ࢝ ≠ घ 
yet ࢀ࢝घ = घࢀ࢝ because घࢀ࢝ घࢀ࢝− = 0, 
which means that ᇱ =  ,ᇱ. In order to prove the theoremݍ
we need to show that if घ is the mirror of घ, then 
घశ is not the mirror of घశ. If that is true, the 
relationship between घశ and घశ belongs to the 
second scenario which we have proved already. 
The basic procedure of proving that घశ is not the 
mirror of घశ is by using Reductio ad absurdum and can 
be described as follows. From the definition of घ and 
घ, we have: 

घశ = ିାଵ ାଵ…  ାାଵ…

घశ = ିାଵݍ … ାଵݍݍ …  ାାଵݍ

Suppose घశ is the mirror of घశ, then we can prove 
that घ is a mirror of itself. Since घ is the mirror of 
घ, we conclude that घ = घ, which is clearly a 
contradiction to our assumption. 
Suppose घశ is the mirror of घశ, we infer that: 

ିାଵ = ିାଶ,ାାଵݍ = ,ାݍ … , =  ,ାଶݍ

ାଵ = ,ାଵݍ … ା, = ାାଵ,ିାଶݍ =  (5)				ିାଵݍ

We can see that  ାଵ and ݍାଵ are the centers of घశ 
and घశ, respectively. Since घ 	is the mirror of घ, 
then: 

ିାଵ = ିାଶ,ାିଵݍ = ,ାିଶݍ … , = ݍ ,	 

ାଵ = ,ିଵݍ … ାିଵ, = ା,ିାଵݍ =  (6)				ିݍ

Putting (5) and (6) together, घ has the following 
property. 



ାݍ = 	 ݍ

ାଷݍ =

ିାସݍ =

The above property can be re
ାݍ = ାݍ
ାିଵݍ = 	

This property indicates that 
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and the percentage and NRMS are used as measurement 

Table 1 shows the evaluation results.
that using intensity-based methods 

provides better results constantly. Moreover,
based with blurred pattern 

Blurred pattern Non-blurred pattern

13.44%
0.02822
76.00%
0.01702

Table 1: Evaluation of four possible methods.

Computed depth map by applying our method with the 

using a Gaussian 
blurred pattern and there are four reasons. First, we made 

 pattern also 
maintains the windowed uniqueness property, which is 

so that DP can be applied to 
nd, with the GBDB 

of the illuminated pixels is 
correspondence 

comparing to the traditional spatial coding methods. It has 
been illustrated in both simulated and real-world 

traditional spatial coding methods 
detection of edges in the captured 

image. This step may not be robust enough due to the 
image processing techniques that are applied. However, 

edge detection, and hence 
reases the robustness. Last but not least, since 

, thus the in-focus 
region is very limited. Therefore, the patterns can be 
blurred when projected onto the scene if the depth range of 

the edge detection in the 
traditional spatial coding method would fail. However, our 
method can still establish correspondence since it works 

compare our method 
ith other methods. The traditional spatial coding methods 

based. Moreover, 
blurred. Therefore, there 

are four possible combinations. We apply these four 
sets. In particular, a non-

blurred pattern and a Gaussian blurred pattern with kernel 
tative evaluation is provided 

and the percentage and NRMS are used as measurement 
Table 1 shows the evaluation results. From the 

based methods 
provides better results constantly. Moreover, the 

based with blurred pattern 

blurred pattern 

13.44% 
0.02822 
76.00% 
0.01702 

Table 1: Evaluation of four possible methods. 

Computed depth map by applying our method with the 
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6. Conclusion and Future Work 
We have presented a depth recovery method which 

requires only one shot and yet provides accurate depth 
map whose density is much higher than traditional spatial 
coding methods. Moreover, the projector needs not be 
focused on the objects, which is more realistic in real 
world applications. 

To our best knowledge, the proposed method is the first 
one that requires absolutely no temporal information, and 
yet provides dense recovery that are close to applying 
temporal coding methods. We believe that with a proper 
design of the color pattern and the configuration of the 
cameras, this method could be used to recover the ground 
truth of the depth of a scene, which achieves the same 
accuracy of temporal coding methods [22]. The limitation 
of [22] is that it uses a series of patterns and therefore 
cannot be applied to dynamic scenes. However, our 
method has no such limitation. 

An interesting future direction is to investigate on the 
blurred De Bruijn pattern. We believe that it could be 
useful in some other areas if they are properly applied. 
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