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Abstract

Glioblastoma Multiforme (GBM) is a grade IV brain tumour. It is the most common

brain malignancy and is extremely aggressive. Ionizing radiation plays a vital role in

the treatment of this tumour. Growth of the GBM is sustained by a subpopulation of

the tumour cells often called the glioma stem cells (GSC). Kim et al. and Gao et al.

presented in vitro and in silico data respectively where GSC population seemed unnatu-

rally increased. We created four nested ODE models for GBM growth. Parameters were

estimated from the available data using the least squares error method and the Akaike

Information Criterion was used to choose a suitable model for tumour growth. The as-

pect of irradiation treatment was incorporated into the glioma growth model using the

linear-quadratic model. My analysis on the treatment ODE model supports the findings

of Gao et al. that the increased stem cell ratios can only be explained if the stem cell

population divides more aggressively after radiotherapy.
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Chapter 1

Introduction

1.1 Glioblastoma Multiforme: why must we study it?

Glioblastoma Multiforme (GBM) is a grade IV brain tumour. It is the most common

and an extremely aggressive brain malignancy [15, 17, 20, 25, 26]. According to the

World Health Organization, the median survival period after treatment is 14.6 months

(just over a year!) [25]. There are 17,000 new patients diagnosed with GBM every year

in the USA alone [18].

GBM has a high growth rate and the rapid division of glioma cells requires oxygen. In

addition to that, this tumour has poor vasculature. Therefore, hypoxia (deprivation

of oxygen) is a common feature in GBM tumours. Other characteristics of GBM are

existence of necrotic regions and blood vessels that are irregular and chaotic [20].

Metastasis is rare in GBM tumours [26]. This may be because the short survival time

of GBM patients is not enough for frequent metastasis. In fact, after treatment, most

tumours will reoccur at the primary site where the tumour was originally found. This is

because GBM tumour’s cells are extremely penetrative and disperse deep into the brain

tissue, hence, complete removal by surgery is nearly impossible. This phenomenon is

demonstrated in Figure 1.1.

Treatment mainly includes ionizing radiation with surgery. However, the diffuse tissue

distribution often makes the surgical removal of GBM difficult or ineffective [15, 25].

In addition to that, this tumour’s cells are known to acquire resistance to cytotoxic

1
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Figure 1.1: This figure demonstrates the fast growth rate of GBM tumours and how
ineffective surgical resection can be. These are MRI scans from a patient with GBM
before and after treatment [15]. (A) The arrow points to the pre-surgical tumour. (B)
The arrow points to the clear cavity after surgical removal. (C) The arrows point to
the surgical margins where tumour returns, 6 months after the surgery. (D) Removal
of the secondary tumours is conducted with surgery. (E) Tumour returns at resection
margin within 3 months and has spread into the neighbouring hemisphere.

treatment [27]. Therefore, ionizing radiation plays a vital role in the treatment procedure

of this tumour. Even though numerous studies have been conducted over the past

decades and there have been great advances in therapy, the survival rates of the patients

have not improved [17]. Therefore, it is essential that the dynamics of GBM tumours

be studied.

GBM comprises of a heterogenous set of mutated cells that are extremely infiltrative.

It has been discovered recently that the growth of the GBM is sustained by a subpop-

ulation of tumour cells called the glioma stem cells (GSC). These cells are also known

to acquire resistance to chemotherapy. These cells not only have tumour-initiating but

also high-proliferation powers. The glioma stem cells make the glioblastoma multiforme

an extensively invasive tumour. In Section 1.3 we will talk about glioma stem cells and

how they differ from healthy neural stem cells.
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1.2 Outline of the thesis

In Sections 1.1 and 1.3 we discussed the biological background of the glioblastoma mul-

tiforme tumour. In addition to that, in Section 1.4, we will look at literature that use

individual-based and mathematical models to analyze glioma growth. In the following

chapters, Chapters 3 and 5, we will analyze data published by Kim et al. [16] and Gao

et al. [11]. The experimental data of GBM growth, as published in [16], show an en-

richment of GSC in a treated tumour. Gao et al. [11] explained this enrichment via an

individual based Cellular Potts Model (CPM).

The goal of my research is to explain the unusual enrichment of stem cells in the in vitro

tumours [16] using an ordinary differential equation (ODE) model for glioma growth

and treatment. In this research we will try to answer the following question: how does

ionizing radiation treatment of the GBM tumour encourage the stem cell population to

grow more aggressively?

Gao et al.’s CPM already looks at the behaviour of GSC after radiotherapy. The CPM

provided some valuable insight as to how cell dynamics may change as a result of radi-

ation. We adapted the assumptions of the CPM to create an ODE model. There are

many benefits of using an ODE system to model glioma growth. In addition gaining

new observations on radiation-induced cell kinetics, our ODE model also allows us to

perform mathematical analysis. Compared to the CPM, numerical solutions to ODE

systems are calculated efficiently and are computationally inexpensive. In addition to

that, a realistic range of parameters for the ODE system is easily estimated from biolog-

ical studies as these parameters have bio-physical interpretations. These parameters can

then be varied over their biologically significant ranges to choose for ones that fit best

to data (the least-squares error method is a popular technique to predict parameters).

Choosing parameters for the CPM, however, is not as straight forward.

A chapter by chapter breakdown of this project is as follows. In Chapter 2, we construct

a differential equation model for the GBM tumour growth and we perform quantitative

analysis for the basic model. We will also create models that take detailed assumptions

into account. In Chapter 3, we will compute numerical solutions and conduct data

fitting, parameter estimation (using the least-squares error method) and test to see

which model (basic or the detailed) is the best representation for tumour growth (using
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the Akaike Information Criterion). In Chapter 4, we look at the mathematics behind

tumour treatment. The concept of “cell death due to treatment” is incorporated into

our model in Chapter 5, numerical solutions are calculated and the ODE results are

compared with experimental data. In Chapter 6, we will conduct a sensitivity analysis

on several parameters to see how the tumour growth is affected by certain parameters,

especially after a tumour is exposed to radiotherapy. In Chapter 7, we discuss our

findings. For our future work, a delay differential equation model is proposed where the

phenomenon of growth arrest is added to our differential equation model.

The main results are that our ODE model for radiotherapy treatment of glioma growth

confirms Gao et al.’s results [11] in suggesting that the increment of GSC ratio in an in

vitro tumour treated with irradiation cannot be explained simply by the resistance of

GSC to irradiation. In fact, the cell dynamics of the GSC have to change after radiation

treatment. These radiation-induced changes in cell division dynamics include either stem

cells dividing into daughter stem cells (symmetric division) rather than differentiating

into other types of tumour cells (asymmetric division) or that the stem cell is dividing

faster. The dominant mechanism for the increase in GSC fraction in the ODE-simulated

GBM is the shorter cell cycle induced by radiotherapy. The increase in the probability

of symmetric division alone is not enough to explain the enrichment of GSC ratios in the

GBM tumour. The available experimental data [16] considers two treatment scenarios, a

single fraction treatment and a multiple fraction treatment. While Gao et al.’s individual

based model [11] can only explain data for fractionated treatment, our ODE model fits

both treatment scenarios.

1.3 Comparing healthy versus glioma stem cells

Neural stem cells

Recent discovery of continued adult neurogenisis (production of neurons in the brain)

implies that there are stem cells present in the brain [25]. Healthy neural stem cells in the

central nervous system are essential for normal brain activity. Neural stem cells reside

in confined regions in the central nervous system and make up a very small population

of the brain cells [17].
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Neural stem cells are mitotically active and can differentiate into several types of cells

including neurons, astrocytes (glial cells that provide nourishment to neurons and re-

move waste) and oligodendrocytes (glial cells that support the axon and produce the

Myelin sheath), and therefore are responsible for generating most of the differentiated

components of the brain [17]. Other properties of these stem cells include extensive pro-

liferation capacity and the ability to maintain and renew their population in the adult

human brain.

Glioma stem cells

GBM tumours usually occur in older adults. Hence, this tumour is not inherited or

developmental. Instead, genetically unstable tumour-initiating cells form the seed of

GBM tumours [17]. Steindler et al. were the first scientists to identify cells in a GBM

mass that displayed qualities of neural stem cells [25]. These qualities included self-

renewal and high multipotency (ability to differentiate into many different kinds of

cells). These cells, called the glioma stem cells, also express some of the markers that are

specific to healthy stem cells. Additionally, the glioma stem cells possess the properties

of repopulation and infinite proliferation capacity. When injected into organisms such

as mice (in vivo), these cells created new tumours that were invasive and migratory.

Vescovi et al. in their review, ”brain tumour stem cells” discuss the definition of brain

tumour stem cells [25]. A cell found in a brain tumour can be classified as a brain

tumour stem cell if:

• they initiate tumours when grafted in brain tissue,

• they are capable of regenerating their population,

• they are genetically mutated,

• their differentiation process is faulty, and

• they are able to create non-tumour cells.

Figure 1.2 discusses various theories on how GBM is created [17]. Originally, it was

believed that healthy glial cells would mutate to become tumour cells and would divide

and form a GBM mass. But recently is has been discovered that neural stem cells, neural
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or glial progenitor cells, and even mature glial cells may give rise to tumour-initiating

cells that further proliferate into colonies of glioma stem cells.

Figure 1.2: This figure [17] discusses the theories for GBM genesis. (A) it was thought
that mature glial cells mutated and replicated to form tumour masses. But recently
evidence suggests that neural stem cells mutate to form tumour initiating cells (TIC)
(C), or glial stem cells mutate and become TIC (D), or that differentiated glial cells
mutate and become TIC (B). Some literature suggests that differentiated glial cells may
dedifferentiate into glial stem cells that mutate and become TIC (E). The TIC then
reproduce and form a colony of Glioma stem cells that give rise to a GBM tumour
mass.

It is difficult to differentiate between glioma stem cells and the rest of the cells that

make up the tumour. Some studies use the CD133 transmembrane protein as a marker

for neural and glioma stem cells [17].

Glioma stem cell’s ability to renew and repopulate the tumour is dangerous because it

means that during treatment if most of the glioma stem cells are not killed or removed,

the tumour will return. In fact, even more surprising is that when GBM is irradiated, the

glioma stem cells become more aggressive and proliferate with greater fervour. Hence,

after the treatment, the growth rate of the tumour becomes larger than if it had received

little or no treatment [16].



Chapter 1. Introduction 7

1.4 Mathematical modelling and relevant literature

Several mathematical and individual-based models exist that discuss the role of tumour

stem cells in tumour progression. Ganguli and Puri (2006) [10] and Sole et al. (2008)

[22] modelled the evolution of healthy stem cells into cancer stem cells. In 2006, Dingli

and Michor [7] used a mathematical model to show that the cancer stem cells drove

tumour development. They concluded that “successful therapy must eradicate cancer

stem cells”. In 2009, Enderling et al. [9] compared how different cell kinetics parameters

impacted tumour growth. In 2012, Hillen and Enderling [14] used differential equations

to model the tumour growth paradox (this concept will be described in detail in Section

1.4.2). There has been much work done in this field using individual-based models

also. Enderling et al. [8] investigated how cancer stem cells and tumour cells compete

for space. Gao et al. [11] constructed a Cellular Potts Model (CPM) to analyze how

treatment affects cell division kinetics in the GBM tumour.

We will now discuss the literature that forms the basis of the current project in more

detail. These papers are as follows:

1. Acute and fractionated irradiation differentially modulate glioma stem cell divi-

sion kinetics. This paper was written by X. Gao, T. McDonald, L. Hlatky and

H.Enderling [11], and discusses an individual-based, Cellular Potts Model for

glioma growth.

2. The tumour growth paradox and immune system-mediated selection for cancer stem

cells. This paper was written by T. Hillen, H. Enderling and P. Hahnfeldt [14]. In

this paper a differential equation model for glioma growth is discussed.

We will use the technique of paper 2 to create an ODE model that predicts how the

glioma stem cell number changes due to irradiation treatment. We will validate our

results using the findings of paper 1.
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1.4.1 “Acute and fractionated irradiation differentially modulate glioma

stem cell division kinetics” X. Gao, T. McDonald, L. Hlatky and

H.Enderling.

Gao et al. used a Cellular Potts Model (CPM) to show how the cell division kinetics of

a tumour that undergoes fractionated radiation treatment vary from that of a tumour

that undergoes irradiation in a single dose.

The tumour that is being discussed in this study is the GBM tumour that we are already

familiar with. The GBM is treated by Ionizing Radiation (IR) with or without surgical

removal. Even with treatment, GBM’s prognostic risk is very high. Data from in vitro

experiments [16] as shown in Figure 1.6, using the U87-MG human GBM line, was used

to compare to CPM results.

Mechanism behind the Cellular Potts Model (CPM)

Gao and his fellow researchers [11] used a two-dimensional Cellular Potts Model to

simulate GBM growth. This was done by creating a grid that consists of sets of lattice

sites that correspond to biological cells (refer to Figure 1.3). This CPM simulation

consists of a list of cells, their types, a description of cellular interaction and appropriate

initial conditions.

Figure 1.3: Magnification of the lattice [23]. Each cell is represented by an index σ,
for example, 4 or 7 in this figure. Different types of cells are represented by different
colours.

In the Cellular Potts Model (CPM), each lattice point or pixel is denoted by its coor-

dinate vector
−→
i . Neighbouring lattice sites are represented by

−→
i and

−→
j . As shown in

Figure 1.3, each cell is a set of pixels. Each cell has a unique index σ(
−→
i ) (for example,

4 or 7 in Figure 1.3). And the cell type, τ(σ(
−→
i )), is represented by different colours.
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The Hamiltonian function, E, calculates cell properties such as the shape of a cell,

its movement, its interaction or adhesion with other cells and its response to external

signals. These properties will determine how a mass of cell grows. Adhesion is an

important biological property. The capability of cells to adhere to one another and

to an extracellular matrix is the reason why complex tissue structures exist. In the

Cellular Potts Model, this property of adhesion is described by the contact energy term.

The contact energy term, J(τ(σ(
−→
i )), τ(σ(

−→
j ))), represents the difference in energy due

to adhesion between neighbouring cells. This term depends on the cell type, τ , of

the neighbouring cells. In addition to the contact energy term, the energy function is

restricted by a surface area and a volume constraint term. The parameter λsurface is a

cell’s inverse membrane compressibility and λvolume is its inverse volume compressibility.

The surface area and volume constraint energy terms keep the cell close to a target

surface area, Starget, and a target volume, Vtarget.

E =

boundary energy term︷ ︸︸ ︷∑
−→
i ,
−→
j neighbor

J(τ(σ(
−→
i )), τ(σ(

−→
j ))(1− δ(σ(

−→
i ), σ(

−→
j )))

+

volume constraint energy︷ ︸︸ ︷∑
σ(
−→
i )

λsurface(σ(
−→
i ))(v(σ(

−→
i ))− Vtarget(σ(

−→
i )))

+

surface area constraint energy︷ ︸︸ ︷∑
σ(
−→
i )

λsurface(σ(
−→
i ))(s(σ(

−→
i ))− Starget(σ(

−→
i ))).

The Kronecker delta function, δ, is non-zero when neighbouring lattice sites belong to

the same cell. This means that:

δ(σ(
−→
i ), σ(

−→
j )) =


1, if σ(

−→
i ) = σ(

−→
j ),

0, if σ(
−→
i ) 6= σ(

−→
j ).

The Cellular Potts Model works by updating cell position and cell growth by using

the Hamiltonian function E. Numerous attempts are made in order to copy a lattice

site’s index to its neighbour. For each attempt, a pixel
−→
i and a neighbouring pixel

−→
j

are randomly selected. If these pixels belong to the same cell (that is σ(
−→
i ) = σ(

−→
j ))
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then no change occurs. If the neighbouring pixels do not belong to the same cell (that

is σ(
−→
i ) 6= σ(

−→
j )) then an attempt to copy the pixel

−→
i ’s index onto its neighbour is

being made. At each time step, cells try to move into their neighbour’s boundary. E is

calculated for both, the system with change and the system without change. A negative

value of 4E indicates that this change is favourable. Hence the cell movement will

occur. If 4E is positive, cell movement will occur with a probability of P = e−4E/T ,

where T is the temperature. This process of lattice updates is summarized in Figure

1.4.

Figure 1.4: Conditions for lattice update [23]. The Hamiltonian function is calculated
for the event that the cell boundary moves and the event that no movement occurs.
The change in Hamiltonians is then calculated. If this value is negative, the lattice is
updated and the cell boundary moves. If this value is positive, the cell boundary will
move with a probability P .

Modeling GBM growth using CPM

For the Cellular Potts Model, Gao et al. [11] used the following assumptions. The GBM

consists of only three kinds of cells. These cells and their properties are listed below:

1. Glioma Stem Cells (GSC): these cells have high resistance to IR (ionizing

radiation). After an irradiation dose, these cells are able to repair DNA damage

and regenerate and hence, are able to repopulate the tumour. These cells are also

immortal.

2. Cancer Cells (CC): these cells have low resistance to IR and will eventually die.
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3. Quiescent Cells (QC): these cells have average resistance to IR and are growth-

arrested (they neither grow, nor die).

Gao and his team also added the following properties to a CPM so that the area of cells

resembled a GBM tumour as much as possible:

• The medium, or the brain, is a 4000 times 4000 pixelated square with periodic

boundary conditions.

• Cells grow in area with a growth rate of k until the cell area, v(σ) is doubled. The

cell then splits into two. This process describes cell division.

• When4E is extremely large, that is cell growth is not favourable, the cell becomes

growth-arrested (QC).

• GSC may divide symmetrically into two daughter stem cells, with a probability of

ps, or asymmetrically into a daughter stem cell and a daughter cancer cell, with a

probability of 1− ps. CC can only divide symmetrically.

• ρ is the proliferation capacity of a cell. A non-zero value of ρ means that a cell

is capable of dividing. GSC are immortal having infinite proliferation capacity,

so ρ = ∞ . Whereas the CC have a maximum proliferating capacity, ρmax, of 10

(which means that CC are allowed no more than ten cell divisions). With each

CC division, the proliferation capacity decreases.

The result for GBM growth simulation, using the CPM, is shown in Figure 1.5. In this

figure a stem cell is placed on the centre of the grid and growth is monitored for 15 days.

Snap shots of the CPM grid are taken at day 4, 9 and 15 and compared to pictures

from in vitro experiments. When compared to experimental tumour growth in petri

dishes, the CPM closely predicts the glioma growth found in vitro. Hence, the CPM

was validated as a good glioma growth model.

Adding irradiation effect to GBM growth model

The CPM for GBM growth results closely resemble in vitro tumour growth (refer to

Figure 1.5). The next step was to irradiate both, the simulated and the in vitro, tumours.
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Figure 1.5: CPM simulation for tumour growth. The pictures in the top row are from
experiments and the snap-shots in the bottom row are from the CPM on day 4, 9 and
15. In the CPM, a GSC is placed in the centre of the grid and growth is monitored for
15 days. Glioma growth in CPM is comparable to the in vitro growth of the tumour
[11]. In the CPM simulation, the GSC are red, CC are green and the QC are blue.

Adding IR effect to the CPM was done by using the linear-quadratic (LQ) model (more

detail about the LQ model is covered in Chapter 4). The following equation calculates

the ratio of cells that survive a radiation dose d:

S = e−λi(αd+βd2),

where i = GSC, CC and QC. The parameter α measures the radiosensitivity of single-

hit killing, β is the radiosensitivity parameter of double-hit killing, λi is the radiopro-

tection factor of cell type i.

Gao et al. studied three cases:

1. Control case: The tumour received no IR treatment.

2. Single Treatment: A single dose of 6 Gy (Gray) was administered.

3. Fractionated treatment: Three doses of 2 Gy were administered, each one

administered a day apart.

Both the in vitro and the CPM tumours were allowed to grow. 48 hours after the last

treatment, the percentage of GSC present in these tumours was calculated. The stem

cell percentage from Kim et al.’s in vitro experiments are shown in Figure 1.6 [16]. The

authors used the stem cell percentages from the U87 glioma cell line and compared these

fractions with those calculated from the CPM. The results are discussed below:
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Figure 1.6: In vitro GSC% calculated 48 hours after the last irradiation dose [16].
The error bars depict the standard deviation from six experiments.The lightest grey
bar represents the case where the tumour receives no treatment. The medium grey bar
represents the case where the tumour receives 6 Gy units of radiotherapy administered
on a single day. And the darkest grey bar represents the case where the GBM tumour
receives 2 Gy units of radiation administered on 3 consecutive days. U87 and U373 are
glioma cell lines. For comparison with in silico results, we will use the GSC percentages
from the U87 cell line.

The case 1 (control) results, for both in vitro and CPM, matched closely. The per-

centages of GSC in these tumors are 1.84% and 1.8% respectively. In case 2 (single

treatment), a slight overestimation of the GSC% observed in vitro by the CPM. Gao

concluded that this may be due to the larger portions of CC death in the CPM that

were not observed in vitro. The greatest discrepancy, however was observed in case 3,

the fractionated treatment case. The percentage of GSC in in vitro were a lot larger

than what the CPM predicted. The fact that GSC have high resistance to IR alone does

not explain this discrepancy. Gao and his team researched why the ratios of GSC in in

vitro tumours that receive fractionated treatment are so high.

The ratio of stem cells in the CPM-simulated tumour is lower than that in vitro. To

increase the stem cell ratio in the CPM for the fractionated treatment the authors tried

the case where stem cells were not allowed to become quiescent after the irradiation.

The resultant stem cell percentage is demonstrated by the centre red bar in Figure 1.7

labeled “3x2 Gy: No GSC arrested”. The stem cell percentage did increase as stem cells

stayed active even after treatment. However, this increase in stem cell ratios was not

significantly higher.

The authors proposed that the enrichment of stem cells in vitro was not just a result of
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radio-resistance of stem cells. Instead, the stem cell population is aggressively increas-

ing. Gao hypothesized that the division kinetics of GSC change as a result of repeated

exposure to radiation. It has been shown that radiation activates the AKT/ cyclin

D1/Cdk4 pathway in human glioblastoma cells. Activation of this pathway results in

stem cells having a shorter G1 phase and hence, a shorter cell cycle. In addition to this,

Gao hypothesized that multiple exposures to irradiation causes a shift from asymmetric

to symmetric division.

These hypotheses were adapted to the CPM and are summarized below:

1. An increase in the probability of symmetric division, due to radiation treatment

2. Radiation induces a shorter cell cycle, and

3. Radiation induces a combination of both, the increase in probability of symmetric

division and shorter cell cycle.

CPM results using the hypotheses 1, 2 and 3

The bar graph in Figure 1.7 shows that incorporating the three hypotheses in the CPM

predict in vitro results closely. This paper’s main result was that an increase in the

symmetric division of the glioma stem cells (from 35% to 75%) or an increase in the

speed of cell cycle of the glioma stem cells (from a slow cell cycle of 25 hours to a

significantly faster cell cycle of 12 hours) explains the enrichment of glioma stem cells in

the tumour after repeated radiotherapy. In fact, the increase in the symmetric division

is claimed to be the dominant mechanism for increasing the GSC fraction in the tumour

that undergoes fractionated irradiation.

Once the model’s stem cell ratios were compared with in vitro results, Gao went on to

calculate the glioma growth rates, calculated by the CPM, in all three treatment cases:

control, single and fractionated irradiation treatment of tumours. Figure 1.8 compares

the number of GSC in all CPM simulated cases. It is easy to observe that tumours that

receive fractionated treatment contain more GSC than tumours that received a single

treatment or no treatment. As GSC are aggressive cells that are able to regenerate

and repopulate the tumour, presence of high numbers of GSC in a treated tumour is of

concern.
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Figure 1.7: This bar graph [11] describes the GSC% 2 days after the last treatment
dose. The gray bars are GSC% determined in vitro. The error bars depict the standard
deviation from six experiments. The red bars are GSC% calculated using the CPM.
The error bars depict the standard deviation from five simulations. The last three
red bars on the right-hand side represent the GSC% calculated using the CPM after
applying hypotheses 1, 2 and 3. The three hypotheses closely approximate the GSC%
to that of the tumour created with fractionated dose in vitro. Two days after the last
IR treatment, snapshots were taken of the CPM glioma growth and are shown in the
top row in this figure. The GSC are red, CC are green and QC are blue.

Figure 1.9 compares the total number of cells in all simulated cases. In other words, this

is a comparison of the mass of the simulated tumours. These findings are astonishing!

The CPM predicts that tumours that receive fractionated treatment eventually outgrow

the control tumour that receives no treatment. The condition has been observed in vitro

and is called the tumour growth paradox.

Figures 1.8 and 1.9 describe the other major result of this paper. Fractionated irradiation

treatment selects, and hence, increases the population of glioma stem cells. These cells,

due to their aggressive and immortal nature, are responsible for the accelerated regrowth

of the tumour. So tumours that are exposed to radiation multiple times can have higher

growth rates and worse prognoses than tumours that are treated once or not at all.
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Figure 1.8: This figure [11] records the glioma stem cell numbers calculated by the
CPM before and after treatment starts for all treatment cases including hypotheses.
The error bars indicated the standard deviation in the data calculated by running the
CPM 5 times.

Figure 1.9: This figure [11] records the total cell numbers calculated by the CPM
before and after treatment starts for all treatment cases including the hypotheses. The
error bars indicated the standard deviation in the data calculated by running the CPM
5 times.
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1.4.2 “The tumour growth paradox and immune system-mediated se-

lection for cancer stem cells” T. Hillen, H. Enderling and P.

Hahnfeldt.

In [14] Hillen et al. have constructed an integro-differential equation model that is

simplified to an ordinary differential equation system. This ODE is used to model the

tumour growth paradox using geometric singular perturbation theory. This model takes

into account the interactions between cells within the tumour and basic cell properties

that are often neglected.

Assumptions of this model

A mass of tumour contains a subpopulation of glioma stem cells and the remaining cells

in the tumour population are classified as non-stem or cancer cells (CC). Similar to the

assumptions in Gao’s paper, and subsequently in my thesis, the stem cells are assumed

to be immortal with infinite proliferation capacity whereas the CC reproduce a finite

number of times and die once their proliferation capacity is exhausted.

A GSC can divide into two daughter GSC or it can divide into a daughter GSC and a

daughter CC. The authors refer to this cellular reproduction scenario as the no sym-

metric commitment model. The no symmetric commitment model is used to construct

a mathematical model to simulate stem-cell-powered tumour growth.

A mathematical model of stem-cell-powered tumour growth

The tumour is made up of stem cells (GSC) and non-stem or cancer cells (CC). The

number of cells per unit cell space (fraction of the interval (x, x+dx) covered by cells) is

defined as the cell density. u(x, t) and v(x, t) is the cell density at time t and location x

for stem cells and cancer cells respectively. The authors define the total tumour density,

p(x, t), as follows:

p(x, t) = u(x, t) + v(x, t).

The maximum density per unit cell space is one cell only. Therefore, the total cell

density is not greater than one (p(x, t) ≤ 1). Cells can divide only if there is space for an



Chapter 1. Introduction 18

additional cell. A non-linear integral term (
∫

Ω k(x, y, p(x, t))u(y, t)dy) is introduced to

conduct spatial search for location for the daughter cells, where the kernel, k(x, y, p(x, t))

represents cell division occurring at location x from a mother cell at location y. If there

is no space, cell division ceases. This is equivalent to the biological phenomenon of

growth arrest.

Another assumption is that every ancestral cell at location y can give birth to only one

daughter cell at location x in one cell cycle period. Therefore, k(x, y, p(x, t)) ≤ 1. And∫
Ω k(x, y, p(x, t)) ≤ 1. This integral is the rate of cell division in one cell cycle over the

domain from a parent cell at y. This integral cannot be greater than one as that implies

that new particles, other than the daughter cells, are entering the system.

The frequency of cell cycles of the stem cells and the cancer cells are represented by γ and

ρ respectively. Both these parameters are positive. The parameter δ is the probability

of symmetric GSC divisions and α is the CC death rate. The system allows cell move-

ment of GSC and CC through positive diffusion coefficients, Du and Dv respectively.

The domain of this system, Ω = Rn, is smooth and bounded with either homogenous

Neumann or Dirichlet boundary conditions.

Using the assumptions made above, the authors develop a system describing stem cell

and cancer cell growth and interaction:

∂u(x, t)

∂t
= Du∆u+ δγ

∫
Ω
k(x, y, p(x, t))u(y, t)dy,

∂v(x, t)

∂t
= Dv∆v + (1− δ)γ

∫
Ω
k(x, y, p(x, t))u(y, t)dy (1.1)

−αv + ρ

∫
Ω
k(x, y, p(x, t))v(y, t)dy.

Homogenous Neumann boundary conditions can be used to model tumour growth in

tissues where cells cannot permeate through bones or strong fibrous muscles. The ho-

mogenous Dirichlet boundary conditions can be used to model tumour growth where

cells can leave blood vessels but are not allowed to return.
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Reducing the system into ordinary differential equations

In order to simplify the integro-differential equation System 1.1, a few reductions and

assumptions are made.

Reduction 1: Placement of a daughter cell only depends on the density, p(x, t), of the

final location of the daughter cell x, that is, k = k(p(x, t)). In addition to this reduction,

the authors assume that the domain has unit volume. The mean densities of stem cells

and cancer cells are

ū(t) =

∫
Ω
u(y, t)dy, v̄(t) =

∫
Ω
v(y, t)dy,

and so the mean density of the tumour population is p̄(t) = ū(t) + v̄(t).

Reduction 2: Setting the density to be uniform across the domain, Ω. Along with

this reduction, the authors assume uniform tumour growth across Ω. This implies that

k(p(x, t)) = k(p̄(t)), u(x, t) = ū(t), v(x, t) = v̄(t) and Du = Dv = 0.

These reductions simplify the integro-differential equations into the following ODE sys-

tem:

ūt(t) = δγk(p̄(t))ū(t),

v̄t(t) = (1− δ)γk(p̄(t))ū(t)− αv̄(t) + ρk(p̄(t))v̄(t). (1.2)

Assumption 1: k(p̄(t)) is piecewise differentiable, k(p̄(t))>0 for 0 ≤ p̄(t), k(p̄(t)) = 0

for p(t) ≥ 1 and k(p̄(t)) is decreasing for 0 ≤ p̄(t)<1. The authors choose k(ξ) =

max{1− ξσ, 0} where σ ≥ 1.

Assumption 2: The GSC and CC growth rates, γ and ρ, are equal to 1.

System 1.2 is further simplified to:

ūt(t) = δk(p̄(t))ū(t),

v̄t(t) = (1− δ)k(p̄(t))ū(t)− αv̄(t) + k(p̄(t))v̄(t). (1.3)
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Stability analysis of the ODE system

Adding the two equations above provides insight as to how the total tumour population

density, p̄(t), changes over time, namely

p̄t(t) = k(p̄(t))p̄(t)− αv̄(t).

The growth rate of the total population of the cells, p̄t(t)/p̄(t) = k(p̄(t)) − αv̄(t)/p̄(t).

This implies that CC slow down the overall tumour growth. Proliferation only occurs for

ū(t)+ v̄(t) ≤ 1. Therefore, the authors only perform stability analysis for the triangular,

positively invariant region

∆ = {(ū(t), v̄(t)) : 0 ≤ ū(t) ≤ 1, v̄(t) ≥ 0, ū(t) + v̄(t) ≤ 1}.

This system of simplified ODEs has three steady states. These steady states are:

X0 = (0, 0), XV = (0, v0), and XU = (1, 0).

By finding the Jacobian and analyzing the eigenvalues, the authors conclude that X0 =

(0, 0) is a saddle for α>k(0) and an unstable node for α<k(0). The second fixed point,

Xv = (0, v0), is a saddle for α<k(0). And the third fixed point, Xu = (1, 0) is stable

node or a stable spiral. In fact, Xu is the only attractor in the positively invariant region,

∆. Due to the absence of any equilibrium points in this region, the Poincare-Bendixon

theorem says that Xu = (1, 0) is globally asymptotically stable. This implies that for

large time, the tumour will primarily consist of stem cells. However, the authors are

mostly concerned about the short term dynamics of the system.

The authors varied α as a bifurcation parameter and discovered that the ratio u(t)/v(t)

over time varies for different values of α. For a small value of α, the tumour consists

mainly of CC. However, for larger death rates, GSC thrive and, hence, the tumour size

increases.
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The tumour growth paradox

The authors provide a formal definition for this phenomenon:

Definition Let Pα(t) for times t ≥ 0 denote a tumour population with a spontaneous

death rate α for cancer cells. The population exhibits a tumour growth paradox if there

exist death rates α1<α2 and times t1, t2 and T0>0 such that

Pα1(t1) = Pα2(t2) and Pα1(t1 + T )<Pα2(t2 + T ) for (0<T<T0).

Hillen et al. [14] provided a proof of the tumour growth paradox. The following section

contains a summary of the proof, employing geometric singular perturbation analysis.

Geometric singular perturbation analysis

In biological systems comprising of varied time scales, the geometric singular pertur-

bation analysis is a helpful tool. This geometric approach uses invariant manifolds in

phase space to understand the overall behaviour of the populations [13]. In the slow-

fast system that the authors have studied is Equation (1.3), the parameter δ is a small

parameter (0 < δ � 1). With a change in time scale, τ = δt, the System (1.3) can be

rescaled to

ūτ (τ) = k(p̄(τ))ū(τ),

δv̄τ (τ) = (1− δ)k(p̄(τ))ū(τ)− αv̄(τ) + k(p̄(τ))v̄(τ). (1.4)

System 1.3 with a time scale represented by t, is the fast system, whereas System 1.4

with a time scale represented by τ , is the slow system. These systems are equivalent as

long as δ 6= 0. When the limit δ → 0 is applied, System (1.3) becomes

ūt(t) = 0,

v̄t(t) = k(p̄(t))ū(t)− αv̄(t) + k(p̄(t))v̄(t). (1.5)
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The solutions to 1.5 are called the inner solutions. The slow manifold of the system is

described by the fixed point of this system, M = {(ūM , v̄M ) : k(p̄M )p̄M − αv̄M , p̄M =

ūM + v̄M}.

The long-scale dynamics of the system is given by the outer solution. Solutions for 1.4

quickly reach the slow manifold. To study the slow manifold in more detail, the authors

provide a lemma:

Lemma The slow manifold can be written as a graph (ū, v̄) = (ū, vM (ū)). Furthermore,

d

dū
vM (ū) =

k′(p̄)p̄+ k(p̄)

α− k′(p̄)p̄− kp̄
, with p̄ = ū+ vM (ū).

Given two death rates α1>α2 then the slow manifold for α1 is below the slow manifold

of α2, i.e,

v
(1)
M (ū)<v

(2)
M (ū).

The tumour growth paradox is a property of the slow manifold. A general result for the

occurrence of the tumour growth paradox is outlined in the theorem below:

Theorem Assume α1 > α2 > 0 and let p̄1(t) = ū1(t) + v̄1(t) and p̄2(t) = ū2(t) + v̄2(t)

denote the corresponding solutions of the stem cell model. We assume that the tumour

dynamics has settled onto the slow manifold M and that at time t0 ≥ 0, two tumours of

equal size are presented p̄1(t0) = p̄2(t0) = p̄, with 0 < p̄<1. Then

d

dt
p̄1(t0)>

d

dt
p̄2(t0)

and

p̄1(t) > p̄2(t), for all t>t0.

The authors show that using Assumption 1, a large range of models display the property

of the tumour growth paradox. This paradox is the accelerated growth of tumours as a

result of increased cell death.

We will use the ODE model from this paper [14], namely (1.2). But instead of cell

densities, u(t) and v(t) represent stem cell and cancer cell populations. We also use a



Chapter 1. Introduction 23

different kernel function. In our model, k(p) = 1− p
C , where C is the carrying capacity.

We will use this ODE model, adapt it to include treatment by irradiation and compare

the findings with that of the CPM [11].

1



Chapter 2

Modelling glioma growth using

Ordinary Differential Equations

The papers we have reviewed look at a simplified relationship between different types

of cells in the GBM tumour. We will use the same assumptions to create our ODE

model. The GBM consists of glioma stem cells (GSC), cancer cells (CC) and quiescent

cells (QC). The glioma stem cells divide symmetrically with a probability of ps (into

daughter stem cells) or asymmetrically with a probability of 1 − ps (into a daughter

stem cell and a daughter cancer cell). This relationship is demonstrated in Figure 2.1.

Glioma stem cells are known to have infinite proliferation capacity, which means that

they are capable of reproducing forever, and they are immortal. However, cancer cells

have finite proliferation capacity. This means that after reproducing a certain number

of times, these cells die. The death rate of cancer cells is σ. A cell, stem or cancer,

may become quiescent for a while to repair cellular injuries such as DNA damage. After

recovering, these quiescent cells activate again into their former cell type.

2.1 A model with stem and non-stem cells

We will now develop a simple model that contains only stem and non-stem cells. Using

the concepts we have learnt about symmetric and asymmetric division of stem cells (in

Figure 2.1) and the assumptions made in the previous section, we construct a compart-

ment figure. As shown in the compartmental diagram, Figure 2.2, the stem cells are

24
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allowed to reproduce symmetrically with a probability of ps or asymmetrically with a

probability of (1 − ps). The growth rate of stem cells is kG and the growth rate of

cancer cells is kC . The stem cells are immortal, therefore, they do not die. However,

the cancer cells may die due to natural causes and the death rate for the cancer cells is σ.

Figure 2.1: Symmetric and asymmetric division of glioma stem cells. The GSC divide
symmetrically with a probability of ps or asymmetrically with a probability of 1− ps.
CC on the other hand only divide symmetrically. The GSC (blue circles) are very
powerful cells and are therefore represented by a crown, whereas the CC (red squares)
are represented by a casual worker.

Figure 2.2: Model U,V: Glioma stem cells are denoted by U and non-stem (cancer)
cells are denoted by V. There is no quiescent cell compartment in this model. GSC can
divide into more GSC with a rate of pskG and can contribute to the CC compartment
with a rate of (1− ps)kG. The growth rate of CC is kC and the death rate of CC is σ.

The corresponding ODE system (2.1) has volume constraint in all growth and division

terms. Without this volume constraint, the ODE would be a linear system resulting

in exponential growth of cells which is biologically unrealistic. The factor (1 − U+V
C )

restricts the growth of cells to a carrying capacity of C.
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U̇ =

symmetric division; growth︷ ︸︸ ︷
pskGU(1− (U + V )

C
),

V̇ =

assymetric division︷ ︸︸ ︷
(1− ps)kGU(1− (U + V )

C
) +

growth︷ ︸︸ ︷
kCV (1− (U + V )

C
)−

natural death︷︸︸︷
σV. (2.1)

This ODE system resembles System 1.2 [14]. Our ODE system is a special case of Hillen

et al.’s model [14]. We use a different kernel function, k, than that used in [14]. In our

model, k(p) = k(U + V ) = 1− U+V
C , where C is the carrying capacity.

2.1.1 Fixed points and stability analysis

From (2.1), we see that U̇ = 0 when either U = 0 or (1 − U+V
C ) = 0. Using these and

setting V̇ = 0 we find the following fixed points:

(Ū1, V̄1) = (0, 0), (Ū2, V̄2) = (0, C(1− σ

kC
)), (Ū3, V̄3) = (C, 0). (2.2)

In order for all these fixed points to be realistic, populations must be positive. Therefore,

kC>σ, (2.3)

otherwise, V̄ would be negative.

We now consider the stability of these fixed points. We start by finding the Jacobian

matrix for this system,

J(Ū , V̄ ) =

 pskG(1− 2U+V
C ) −pskGU

C

(1− ps)kG(1− 2U+V
C )− kC VC −(1− ps)kGUC + kC(1− U+2V

C )− σ

 .

(2.4)

At the fixed point (Ū1, V̄1), J(0,0) =

 pskG 0

(1− ps)kG kC − σ

.
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The eigenvalues for the Jacobian at (0, 0) are λ1 = pskG>0 and λ2 = kC − σ>0, using

the condition stated in Equation (2.3). Therefore, the origin is an unstable fixed point.

At the fixed point (Ū2, V̄2) = (0, C(1− σ
kC

)) the Jacobian is

J(0,C(1− σ
kC

)) =

 pskG
σ
kC

0

(1− ps)kG σ
kC
− kC(1− σ

kC
) kC(−1 + 2σ

kC
)− σ

 .

The eigenvalues for the Jacobian at (0, C(1− σ
kC

)) are λ1 = pskG
σ
kC
>0 and λ2 = kC(−1+

2σ
kC

)− σ<0. Therefore, this fixed point is also unstable.

At the fixed point (Ū3, V̄3) = (C, 0) the Jacobian is:

J(C,0) =

 −pskG −pskG

−(1− ps)kG −(1− ps)kG − σ

 .

The trace of this Jacobian is −pskG− (1−ps)kG−σ<0, the determinant of the Jacobian

is pskG>0. Hence, (C, 0) is a stable node or a stable spiral.

In order to determine the stability of these fixed points I performed a phase plane

analysis. Refer to Figure 2.3, the triangular domain is a biologically significant region.

We call this region biologically significant because firstly, cell populations (U(t) and V (t))

cannot be negative. Secondly, when the total population is greater than the carrying

capacity (U(t) + V (t) > C) the logistic function in Equation 2.1 is negative, therefore

proliferation does not occur. So we will restrict our analysis to the region

∆ = {(U, V ) : 0 ≤ U ≤ C, 0 ≤ V ≤ C,U + V ≤ C}.

Theorem 2.1. For System 2.1, the region ∆ is positively invariant.

Proof. The boundaries of ∆ are U = 0, V = 0 and U + V = C. Along the nullcline

U = 0, the vector fields are as follows: U̇ = 0, V̇ <0 for V >C(1 − σ
kC

) and V̇ >0 for

V <C(1 − σ
kC

). Along the second nullcline U + V = C, the vector field is (0,−σV )

and points into the region ∆. Lastly, along the third line V = 0 that bounds ∆, the

vector fields is described by U̇ = pskGU(1 − (UC ))>0 and V̇ = (1 − ps)kGU(UC )>0 for

U<C. As shown in Figure 2.3, the vector fields along the boundary or into the region
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∆. Therefore, any solution trajectory that starts in ∆ will stay within this region for

t ≥ 0. Hence, ∆ is a positively invariant region.

Theorem 2.2. The steady state (C, 0) of the System 2.1 is globally asymptotically stable

in the region ∆.

Proof. The region ∆ is positively invariant and (C, 0) is the only stable equilibrium

point in this invariant region. Therefore by the Poincare-Bendixon theorem, all solution

trajectories tend to this equilibrium as t→∞.

We confirm this result by plotting the phase portrait on MATLAB using pplane7 (Figure

2.4) using biologically relevant parameters. These parameters are contained in a table

in Chapter 7. In the phase portrait, we see that a slow manifold exists in the triangular

invariant region that tends to the globally stable fixed point of (C, 0). Biologically this

means that as time goes to infinity, the entire tumour population (having a carrying

capacity of C number of cells) will comprise of only stem cells. All other populations

will die out. Even though we expect the tumour to consist purely of glioma stem cell

population occurring at t→∞, we are concerned with what is happening at smaller

time. The experimental data available to us only looks at stem cell composition of the

GBM tumour over a few days. In addition to that, the survival period of the GBM

tumour is approximately one year. This makes analyzing long time dynamics futile.

Figure 2.3: Phase portrait highlighting biologically significant invariant region (blue
triangle), fixed points (black circles) and vector fields (red arrow)
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Figure 2.4: Phase portrait containing numerous numerical solution trajectories (blue
lines), all of which are tending to the globally asymptotically stable steady state (C,0).
The direction of the vector fields are depicted by the black arrows.

2.2 Models with quiescence

After performing some mathematical analysis on the simple U,V model containing only

stem cells and non-stem cells, we move on to create models that contain quiescence so

that we can test those on the data which we have available. Quiescence is an important

feature in biological systems. When cells suffer physiological or DNA damage due to

changes in the environment, the cell’s defence mechanism causes it to become growth

arrested. As energy is not being utilized in increasing the cell’s size or preparing it to

divide, the cell can focus its energy on repairing DNA damage or producing proteins

that help repair cell damage [5].

We have three models that contain quiescence. Model U,V,Qu allows stem cells to be-

come quiescent with a rate of ν and return back into the stem cell compartment with a

rate of µ. Similarly, model U,V,Qv allows cancer cells to become quiescent with a rate

of ν and return back into the cancer cell compartment with a rate of µ. Lastly, the

third model is the full model containing compartments U, V, Qu and Qv, where both

the stem and the cancer cells are allowed to become growth arrested with a rate of ν1

and ν2, respectively and return to their corresponding previous compartments with a

rate of µ1 and µ2, respectively.
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These ODE systems with their corresponding compartment figures are shown below:

Figure 2.5: Model U,V,Qu. This di-
agram is an extension of Figure 2.2. In
addition to the assumptions of Model
UV, the stem cells are allowed to be-
come quiescent at a rate of ν and revert
back at a rate of µ.

U̇ = pskGU(1− U + V

C
) + µQU − νU,

V̇ = (1− ps)kGU(1− U + V

C
) + kCV (1− U + V

C
)

− σV,

Q̇U = νU − µQU .

Figure 2.6: Model U,V,Qv. This di-
agram is an extension of Figure 2.2. In
addition to the assumptions of Model
UV, the cancer cells are allowed to be-
come quiescent at a rate of µ and revert
back at a rate of µ.

U̇ = pskGU(1− U + V

C
),

V̇ = (1− ps)kGU(1− U + V

C
) + kCV (1− U + V

C
)

− σV + µQV − νV,

Q̇V = νV − µQV .

Figure 2.7: Model U,V,Qu,Qv: qui-
escence attributed to both stem cells
(U) and cancer cells (V). U and V can
become quiescent at a rate of ν1 and ν2
respectively and revert back at a rate
of µ1 and µ2 respectively.

U̇ = pskGU(1− U + V

C
) + µ1QU − ν1U,

V̇ = (1− ps)kGU(1− U + V

C
) + kCV (1− U + V

C
)

− σV + µ2QV − ν2V,

Q̇U = ν1U − µ1QU ,

Q̇V = ν2V − µ2QV .



Chapter 2. Modelling glioma growth using Ordinary Differential Equations 31

Which of these models best predicts tumour growth? In the next chapter we will compare

the UV , UV QU , UV QV and the UV QUQV models. We will use the least squares error

method to fit the solutions of these models with tumour growth data from the Cellular

Potts Model to find the most appropriate parameter set. Then we will compare these

four models using the Akaike Information Criterion.



Chapter 3

Data fitting and model

comparison

3.1 Estimating parameters to fit data

From the previous chapter, we now have four ODE models describing GBM tumour

growth at our disposal. However, we are curious to find out which of these models best

describes the tumour growth process. We will use statistical tests to compare these

models amongst themselves and with glioma growth data. In order to compare these

models, we will calculate the difference between the ODE solution and tumour growth

data.

The glioma growth data is not experimentally determined. In vitro cell counting is done

by a process called flow cytometery and requires glioma tissues growing in petri dishes

to be broken down, thus collection of data containing cell numbers over a large period

of time is difficult. Instead we use glioma growth data that was simulated by the CPM.

We contacted the authors of “Acute and fractionated irradiation differentially modulate

glioma stem cell division kinetics” [11] at the Tufts University School of Medicine and

obtained the data they had collected from the Cellular Potts Model. The Cellular Potts

Model supplied 16 data points indicating the glioma stem cell numbers and the total cell

numbers over a period of 30 days. We use this information to create a set of parameters

that would make my ODE biologically realistic and comparable to the Cellular Potts

32
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Model. In addition to that, once the data fit has been completed, the difference between

the ODE solution and the in silico results from the CPM will be used to determine the

best model using the Akaike Information Criterion (AIC).

3.1.1 The least-squares error method

In order to do parameter estimation, we used the least-squares error method [6] . The

error calculated is the difference between the ODE solution of a GBM growth model

and the matrix of cell numbers obtained from the CPM model. The solution to the

ODE is denoted by x = x(ti; p, x0), where p is the parameter vector, x0 is the initial

condition and the experimental data is denoted by yi at time points ti for i = 1, · · · , n.

We received 16 data points depicting tumour growth over a time period of 30 days and so

the number of data points is N = 16. Observed or experimental quantities are assumed

to have stochastic effects. We assume that the error ei is distributed normally with

mean µ = 0 and some variance σ2, ei ∼ N(0, σ2). Hence,

yi = x(ti; p, x0) + ei.

The likelihood for the ODE solution to be close to the experimental data is

L(p) =
n∏
i=1

1√
2πσ

e−
yi−xi
2σ2 .

However, calculating products is computationally more challenging than calculating

sums. Consequently, we will work with the log of likelihoods:

LL(p) = −
n∑
i=1

ln(
√

2πσ)− 1

2σ2

n∑
i=1

(yi − xi)2.

In order for the log-likelihood to be maximal for a parameter vector p, the residual sum

of squares, or the error, must be minimized:

Residual Sum of Squares (error)︷ ︸︸ ︷
D(p;x0) =

n∑
i=1

(

Observed data (CPM)︷︸︸︷
yi −

Expected data (ODE)︷ ︸︸ ︷
x(ti; p, x0) )2.
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We will now vary the parameters in our models over a biologically relevant range in

order to find the values that best matches CPM results. The only parameter that is

kept unchanged is ps, the probability of symmetric division in glioma stem cells, as this

value was determined experimentally [11].

Using the simplest model (UV: no quiescence) we vary the carrying capacity of our

system, C, the growth rates of glioma stem cells and non-stem (or cancer) cells, kG and

kC , respectively, and the death rate of non-stem cells, σ. Once we have a set of optimal

values for these basic parameters, we move on to the more complicated quiescence models

and vary the rate ν at which active cells become quiescent and the rate µ at which

quiescent cells become active again.

3.1.2 Data fit using the optimal parameter set

Once we have obtained the optimal parameter set, we will use it to fit the correspond-

ing models to the data. The data fit for the four models U, V , U, V,Qu, U, V,Qv and

U, V,Qu, Qv are shown in Figures 3.1, 3.2, 3.3 and 3.4.

The first three models, UV, UVQu and UVQv seem to fit the data very closely. The

fourth model, which is the full model UVQuQv does not look as effective. The formal

comparison between models is conducted in the next section.

3.1.3 Improving the data fit

We notice that the initial stem cell number is approximately 2,000 stem cells and the

initial total cell number is close to 100,000. As the magnitude of the total cell number

is so high, while performing the least squares error method we are primarily fitting the

ODE solution to the data representing the total cell number. In order to acknowledge

the small stem cell population and have it contribute to the error, we should use the

weighted least squares error method. In this method, the square of the difference between

the stem cell data and the stem cell ODE solution is multiplied by a weight so that this

error is of the same magnitude as the error calculated by the difference between the total

cell data and total cell ODE solution. We will leave the exercise of implementing data

fit using the weighted least squares error method as part of our future work.



Chapter 3. Data fitting and model comparison 35

Figure 3.1: Data fitting for Model U,V: no quiescence. In the figure above, the green
circles represent the CPM data and the blue line represents the ODE solution. The
ODE model, containing stem (U) and non-stem (V), fits the CPM glioma growth data
extremely well. The top graph is the number of stem cells (U x 106) against time (in
days), whereas the bottom graph is the total cell number ((U+V) x 106) against time
(in days).

Figure 3.2: Data fitting for Model U,V,Qu: quiescence attributed to stem cells (U)
only. In the figure above, the green circles represent the CPM data and the blue line
represents the ODE solution. The ODE model, containing stem (U), cancer (V), and
stem-derived-quiescent (Qu) cells, fits the CPM glioma growth data well. The top
graph is the number of stem cells (U x 106) against time (in days), whereas the bottom
graph is the total cell number ((U+V+Qu) x 106) against time (in days).
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Figure 3.3: Data fitting for Model U,V,Qv: quiescence attributed to cancer cells (V)
only. In the figure above, the green circles represent the CPM data and the blue line
represents the ODE solution. The ODE model, containing stem (U), cancer (V), and
cancer-derived-quiescent (Qv) cells, fits the CPM glioma growth data well. The top
graph is the number of stem cells (U x 106) against time (in days), whereas the bottom
graph is the total cell number ((U+V+Qv) x 106) against time (in days).

Figure 3.4: Data fitting for Model U,V,Qu,Qv: quiescence attributed to both stem
cells (U) and cancer cells (V). In the figure above, the green circles represent the CPM
data and the blue line represents the ODE solution. The ODE model, containing
stem (U), cancer (V), stem and cancer-derived-quiescent (Qu and Qv) cells, does not
fit the CPM glioma growth data well. The top graph is the number of stem cells
(U x 106) against time (in days), whereas the bottom graph is the total cell number
((U+V+Qv+Qv) x 106) against time (in days). Resultant bad fit is due to the absence
of information on how quiescent cell populations behave in the glioma growth CPM
model.
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3.2 Model comparison using the Akaike Information Cri-

terion

Suppose we have two models to explain a given set of data. If both of these models have

the same number of parameters, np, then comparing the likelihoods or the log-likelihoods

is enough to compare these models. The model with the higher likelihood is better suited

to describe the process. How then do we compare models that have a different number

of parameters? The Akaike Information Criterion (AIC) is used to compare models that

contain a different number of parameters [6]. It is defined as follows:

AIC =

maximum log-likelihood︷ ︸︸ ︷
2LL(p̂) −2

number of parameters︷︸︸︷
np .

The larger the AIC, the better the model. However, if the number of data points, N , is

small (N ≤ 40), then the following corrected AIC should be used [6]:

AICc = 2LL(p̂)− 2np
N

N − np − 1
.

As our analysis uses only 16 data points (N = 16), we will use the corrected AIC to

compare the four ODE models.

We used the ODE solutions and the tumour growth data to find the residual sum of

squares (or the error), the variance, the log-likelihoods, and the corrected AIC for all

four models. The results are shown in Table 3.1.

model U, V U, V,Qu U, V,Qv U, V,Qu, Qv

np 5 7 7 9
Error (D) 1.889(10−4) 2.0213(10−4) 1.9974(10−4) 1.4792(10−4)

σ2 = D
N=16 1.1806(10−5) 1.2633(10−5) 1.2359(10−5) 9.2452(10−6)

LL(p) 68.0722 67.5303 67.7060 70.0282
AICc 120.1444 107.0610 107.4119 92.0564

Table 3.1: Comparing models. This table contains the number of parameters, np,
error, D, variance, σ2, log-likelihoods, LL(p), and the corrected AIC for the four ODE
models (UV, UVQu, UVQv, UVQuQv) that we wish to compare. As the AICc of
model UV is the highest, it is the best model amongst the four.
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3.3 Conclusion

The model containing no quiescence, that is the UV model, has the highest AIC and is

therefore the best model for our data.

This makes sense because the data available to us only gives the number of stem cells and

the total number of cells. There is no information about the behaviour of the quiescent

cell population, nor do we know how to differentiate between the cancer cells and the

quiescent cells. Thus predicting the rates ν and µ from the limited data is difficult. We

will base our future analysis on model U, V .



Chapter 4

Mathematics of the derivation of

radiation treatment: The

Linear-Quadratic Model

In the previous chapters, we constructed ODE systems that modelled tumour growth

and we chose the best amongst them. In this chapter, we will add the aspect of treatment

of tumours to the model. The linear quadratic model is used to incorporate irradiation

treatment into mathematical and individual-based models. In the Cellular Potts Model

[11], the number of cells that survived treatment was calculated by the survival ratio

based upon the linear-quadratic model. In the next section, we will discuss the survival

ratio in more detail and will construct a function which represents the linear quadratic

model that we can use in our differential equation model.

4.1 The Linear-Quadratic Model

Cell death occurs in a tumour in response to radiotherapy. The linear-quadratic model

(LQ) is an apt choice to model cell killing due to ionizing radiation. The linear-quadratic

model describes the effect of radiation on tissues and was developed by considering the

bio-physical events that occur in the cellular nucleus when a tissue undergoes radiother-

apy.
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Figure 4.1: Two cases discussing how lethal damage to a cell happens when a double
strand break occurs in the DNA caused by gamma-ray photons.

The linear-quadratic model assumes that cell death due to radiation can occur either as

a result of a single ionizing event or as a result of two separate ionizing events. In the

former case, a cell undergoes a DNA double strand break due to a single photon. In the

latter case, the cell undergoes a double strand break in the DNA due to two separate

radiation tracks (in other words, two separate photons, each photon damaging one DNA

strand). This is summarized in Figure 4.1. If the time between the photon attacks is

large, the single strand break may be repaired, in which case there is no lethal damage

[3]. Also, in order for cell death to happen, the two single strand breaks should occur

within a few base pairs of each other.

The linear-quadratic model predicts that the yield of lethal DNA damage is proportional

to αD+βD2, where D is the radiation dose and parameters α and β are radio-sensitivity

coefficients [12]. The probabilistic measure of DNA’s double strand break occurring due

to a single photon is α (of units Gy−1), whereas β (of units Gy−2) is the probabilistic

measure of DNA’s double strand break occurring due to two separate photons [4].

The parameters α and β are rarely known, individually. However, the α
β ratio is known

and provides insight as to how effective different kinds of radiation treatments will be

on a tissue. In other words, this ratio is a quantitative measure of the sensitivity of a

tissue to variation in dose fractionation [4]. The ratio α
β is the dose (in units of Gy)

at which the two types of DNA damage (damage due to single photon and separate,

double photons) are equal. At doses smaller than α
β Gy, cell death occurs primarily due
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to DNA damage by a single photon, whereas at doses greater than α
β , cell death occurs

due to two separate ionizing events.

The α
β value for tumours (5-25 Gy) is higher than normal tissues values (2-5 Gy) [4].

The glioblastoma multiforme tumour has a very high α
β value. The GBM tumours are

usually treated by external beam radiotherapy. In this form of radiotherapy, radiation

is administered from a source outside the patient’s body. Treatments where high doses

have to be administered are usually broken down into fractions so that the healthy tissue

can repair between treatments. In order to calculate the ratio of cells in a tumour that

survive after irradiation treatment, the survival ratio is used:

S(D) = e−λ(αD+βD2), (4.1)

where D is the ionizing radiation dose, the parameter λ describes the radio-protection of

different cells found in a single tissue and λU , λV andλQ are the radio-protection parame-

ters for stem cells, cancer cells and quiescent cells, respectively. When a total treatment

of dose D is broken up into n fractions of smaller dose d, the linear-quadratic survival

ratio is modified as the cell survival for each dose is independent [12]. The LQ survival

ratio for fractionated treatment is:

S(D) = e−λ(α+βd)D, (4.2)

where D = nd.

The linear-quadratic model is the most commonly used mechanism to predict the effects

of radiotherapy. This is because it requires few parameters and is derived by biological

reasoning. The LQ model has been tested clinically and it has been said to predict cell

death successfully in tissues that have received radiotherapy for up to 10 Gy units per

fraction of total dose [2].

The Cellular Potts Model used the parameter values given in Table 4.1 to calculate the

GBM tumour’s response to radiotherapy [11]. In the numerical analysis for the ODE

models, the experimentally determined values mentioned in Table 4.1 will be used.
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Parameter Meaning Value

α radio-sensitivity parameter for single-hit cell death 0.3859 Gy−1

β radio-sensitivity parameter for single-hit cell death 0.01148 Gy−2

λU radio-resistance parameter for glioma stem cells 0.1376
λV radio-resistance parameter for cancer cells 1
λQ radio-resistance parameter for quiescence cells 0.5

Table 4.1: This table contains experimentally determined values of the
radio-sensitivity coefficients (α and β) and the radio-protection coefficients
(λU , λV and λQ) of the cells present in the GBM tumour. These values were used in
the CPM [11] and have also been used in the current project.

4.2 Hazard Function

In order to incorporate the linear-quadratic survival ratio into the ODE system, we use

the hazard function. The hazard function, hLQ(t), is described as the decay rate of the

survival ratio [12]:

dS(D(t))

dt
= −hLQ(t)S(D(t)). (4.3)

Equation (4.3) can be obtained using Equation (4.1), the initial conditions t = 0, D(0) =

0, and S(D(0)) = S(0) = 1, and a hazard function (4.4) (This function was first proposed

by Zaider and Minerbo [12]) such as

hLQ(t) = λ(α+ 2βD(t)) ˙D(t). (4.4)

The derivation of Equation (4.3) from (4.4) is shown below:
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S(D(t)) = e−λ(αD(t)+βD(t)2)

lnS(D(t)) = −λ(αD(t) + βD(t)2)

lnS(D(t))− ln 1 = −[(λ(αD(t) + βD(t)2))− λ(αD(0) + βD(0)2)]

lnS(D(t))− lnS(D(0)) = −λ(αD(t) + βD(t)2)|t0
S(D)∫
S(0)

1

q
dq = −

t∫
0

λ(α+ 2βD(p))dD(p)

S(D)∫
S(0)

1

q
dq = −

t∫
0

λ(α+ 2βD(p))
dD(p)

dp
dp

let: hLQ(t) = λ(α+ 2βD(t)) ˙D(t) [12]

S(D(t)∫
S(0)

1

q
dq = −

t∫
0

hLQ(p)dp

1

S(D(t))
dS(D(t)) = −hLQdt

dS(D(t))

dt
= −hLQ(t)S(D(t))

Case 1: If the treatment includes a single dose, d, of ionizing radiation, then D(t) = d.

This preserves the linear quadratic model as the survival ratio remains the same. That

is, S(D(t)) = S(d) = eλ(−αd−βd2).

Case 2: If a fractionated dose is administered, which means that the treatment consists

of n fractions of dose d, then by the end of the treatment, the survival ratio looks like

S(D(t)) = eλ(−αnd−β(nd)2). In this case, the term containing β is exaggerated due to the

presence of n2. This is not in line with the linear-quadratic model and so a different

hazard function for fractionated treatment is proposed [12]. This hazard function is

hfLQ(t) = (α+ βd)Ḋ(t).

Using the same derivation technique used above and hfLQ(t), we can derive the LQ

survival ratio for fractionated treatments (Equation 4.2).

Figures 4.2 and 4.3 demonstrate what the hazard functions looks like for two different

kinds of treatment. Figure 4.2 describes the ionizing radiation treatment that occurs at
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day zero and is of 6 Gy units. The treatment depicted in Figure 4.3 is of 2 Gy units of

ionizing radiation conducted at day zero, one and two. We approximate each fraction

by a smooth Gaussian concentrated at the corresponding treatment time. In all future

analysis, we will be using the treatments depicted in Figures 4.2 and 4.3, namely the

single ionizing radiation (IR) treatment and the fractionated IR treatment, respectively.

Figure 4.2: The hazard function for a single ionizing radiation treatment of 6 Gy
administered on day 0.

Figure 4.3: The hazard function for fractionated ionizing radiation treatment of 2 Gy
administered on three consecutive days (Day 0, 1, and 2)



Chapter 5

Glioma stem cell model with

radiation treatment

We created several systems containing glioma stem cells and non-stem cells to model

tumour growth in Chapter 2. In Chapter 3, we went on to test these models and

concluded that the model containing no quiescence best predicted the data. In Chapter

4, we discussed how the linear-quadratic survival ratio of cells, after they have been

exposed to ionizing irradiation, can be adapted to ordinary differential equations using

a hazard function. We will now bring the findings of the last three chapters together. By

including a “death by irradiation term”, that is accounted for by the hazard function, we

are modifying our glioma growth model (Equations 2.1) into a glioma treatment model

(Equations 5.1) . The treatment model is as follows:

U̇ = pskGU(1− U + V

C
)− hLQU (t)U,

V̇ = (1− ps)kGU(1− U + V

C
) + kCV (1− U + V

C
)− σV − hLQV (t)V. (5.1)

For treatments comprised of a single dose D = d, the hazard function is hsLQ(t). For

treatments where the dose D is administered in multiple (n) fractions of smaller dose

(d), that is D = nd, the hazard function is hfLQ(t) (refer to Equation set 5.2).
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hsLQi(t) = λi(α+ 2βD(t)) ˙D(t), (5.2)

hfLQi(t) = λi(α+ βd) ˙D(t), (5.3)

where i = U, V . As the stem cells (U) and cancer cells (V) have different tolerance to

radiotherapy, we require the hazard function to take that into account. Therefore, the

radio-protection coefficient, λi, in the hazard function varies for the two types of cells.

The hazard functions for the stem cells and cancer cells are given by hLQu and hLQv

respectively. The parameters α and β are radio-sensitivity parameters for single and

double hit cell killing respectively.

5.1 ODE results and comparison with experimental data

The ODE system (Equations 5.1) is solved numerically using the ode45 function in

Matlab. The ODE solution is plotted from the time of the treatment (day zero) to 48

hours after the last treatment (as shown in Figure 5.1).
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Figure 5.1: ODE solutions for growth of tumour that received no treatment (control
case), for tumour that received treatment by single irradiation dose at t = 0 and for
tumour that received treatment by fractionated irradiation dose at times t = 0, 1, 2.
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In order to validate our results, we will compare outputs obtained by the ODE model

with in vitro results. I have chosen to compare my results with the data obtained by

experiments on the U87 glioma cell line [16]. The stem cell percentage is calculated 2

days after the last treatment and is compared to experimentally determined glioma stem

cell percentages shown in Figure 1.6 [16].

The bar graph in Figure 5.2 compares glioma stem cell fraction obtained experimentally

to that obtained by our ODE model. In the control case, both the in vitro and ODE

glioma stem cell percentages are close to ≈ 1.8%. This is because in Chapter 3, we

determined a set of parameters that minimized the least-squares error of the difference

between the ODE solution and the CPM results of stem cell numbers. As a result, the

no-treatment case’s stem cell percentage is very close to the experimental results.

However for the treatment cases (both, single and fractionated treatments), the ODE

system underestimates the stem cell percentage. The predicted percentage of glioma

stem cells in a tumour that has been treated using a single dose of 6 Gy of ionizing

radiation is ≈ 2.8% and those treated using a fractionated dose of 2 Gy administered on

three consecutive days have a GSC% of ≈ 4.8%. Experimentally however, the glioma

stem cells make up a larger fraction of the tumour. Despite the underestimation, the

trend observed in vitro seems to be conserved by the ODE system. The percentages

obtained from the ODE predict an increase in the glioma stem cell ratios as treatment

type varies from single to fractionated dose. In addition, the glioma stem cell percentage

for fractionated treatment in both, in vitro and ODE simulations, are almost twice that

of the stem cell percentages for the single treatment case.

We observe a discrepancy between the percentage of glioma stem cells predicted by our

ODE system and the data provided by the lab. Even though the trend is conserved,

there is a ≈ 47 − 54% difference between ODE results and in vitro data. Is there a

biological change occurring due to irradiation that causes glioma stem cell percentage

to increase after the tumour is exposed to irradiation in the lab? As it turns out, there

is!
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Figure 5.2: This figure compares the GSC% calculated from the ODE solution to
those determined experimentally 48 hours after the last irradiation dose. The black
bars are the U87 glioma stem cell percentages from Figure 1.6. The blue bars are the
GSC percentages calculated from the ODE solutions.

5.2 Cell behaviour changes after irradiation treatment

Ionizing radiation affects several glioma stem cell signalling pathways. SHh, Notch, Wnt,

EGFR and AKT/cyclin D1/Cdk4 are amongst the pathways that are most affected [1].

When a tumour is exposed to γ-radiation, the Notch2 and the Wnt pathways are up-

regulated in the glioma stem cell [24]. This results in a higher probability of symmetric

division. In other words, glioma stem cells divide symmetrically into two glioma stem

cells more often than dividing asymmetrically into a stem cell and a cancer cell. In

addition to the Notch and Wnt pathways, ionizing radiation activates the AKT/ cyclin

D1/Cdk4 pathway in human glioma stem cells which results in a shorter G1 phase [21].

Hence, a shorter cell cycle results. A shorter cell cycle implies that the glioma stem cells

are growing faster, or that the growth rate of these stem cells has increased.

These biological findings imply that there are changes that need to be made in our ODE

model. We can do this by allowing the parameters that control the type of division and

growth rate of the glioma stem cells to vary. The two parameters we will now vary are

ps, the probability of symmetric division and kG, the growth rate of glioma stem cells.

In the next chapter, we will perform sensitivity analysis for these parameters to see how

they impact the ODE system’s outcome.
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Sensitivity analysis

In the previous chapter, we discussed how irradiation can affect the chemistry of a glioma

stem cell resulting in a faster growth rate and a higher chance of symmetric division.

We can account for these changes in our ODE model by varying the parameters ps, the

probability of symmetric division in glioma stem cells and kG, the growth rate of glioma

stem cells. We will now perform sensitivity analysis to see how these two parameters

impact the output from the ODE model.

Sensitivity analysis is a technique used to determine how the model responds to pertur-

bation of an input. Or in other words, it is an investigation of how different values of

a parameter will impact a particular dependent variable. To calculate the sensitivity,

Sp(y), of a dependent variable, y(p), we use the following formula (Equation 6.1). The

variable, y(p), depends on a parameter, p, and p∗ is the reference value of p:

Sp(y) =
∂y

∂p

p∗

y(p∗)
. (6.1)

For our model, the dependent variable is G, the glioma stem cell percentage. And the

parameters that affect G are ps, the probability of symmetric division, and kG, the

growth rate of glioma stem cells. Using (6.1) to calculate sensitivity, we deduce the

sensitivity of G on ps and kG for different treatments using reference points ps = 0.35

and kG = 0.167 (these values are from the optimal parameter set for the control case and

were determined using the least squares error method in Chapter 3). The sensitivities

are computed as follows:
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• For treatment using a single dose of 6 Gy:

– Sps(G) = 0.159,

– SkG(G) = 0.299.

What this implies is that, in the ODE model of single dose treatment, for a 1% increase in

the probability of symmetric division, ps, the glioma stem cell percentage, G, calculated

2 days after the last treatment, increases by 0.159%. And for a 1% increase in the growth

rate of glioma stem cells, kG, the glioma stem cell percentage, G, increases by 0.299%.

This means that G is more sensitive to changes in kG than ps. This is also depicted in

Figure 6.1, as the slope of the curve of G due to changes in kG is steeper than the slope

of the curve of G as ps varies.

• For treatment using a fractionated dose of 2 Gy administered on three consecutive

days:

– Sps(G) = 0.323,

– SkG(G) = 0.546.

In the fractionated dose treatment, for a 1% increase in the probability of symmetric

division, ps, in the ODE model, the glioma stem cell percentage, G, calculated 2 days

after the last treatment, increases by 0.323%. And for a 1% increase in the growth rate

of glioma stem cells, kG, the glioma stem cell percentage, G, increases by 0.546%. Just

as was observed in the single treatment case, this means that G is more sensitive to

changes in kG than ps. This is also depicted in Figure 6.2 as the slope of the curve of G

due to changes in kG is steeper than the slope of the curve of G as ps varies.

We can therefore conclude that in both cases, variation in kG impacts the glioma stem

cell percentage more than variation in ps.

Also, Figure 6.1 indicates that simply varying either the growth rate of glioma stem

cells or the probability of symmetric division, in the ODE model, will not get us a

result that corresponds with the experimental data. In fact, both kG and ps need to be

increased in order to obtain a stem cell percentage that is close to the in vitro data. In

the fractionated case, we notice that a high enough increase in kG in the ODE model,

predicts the stem cell percentage to be the same as experimental data. But in order to
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have a universal explanation that explains both, the single and fractionated treatment

results, we will hypothesize that not one but both parameters, ps and kG, are altered

when a tumour undergoes ionizing radiation treatment.

Figure 6.1: Parameters ps and kG are varied in the ODE model for tumours treated
with a single irradiation dose and GSC% is compared with that found in in vitro
experiments. The graph demonstrates that GSC% is more sensitive to the parameter
kG than ps. In tumours treated with a single irradiation dose, variation in either ps or
kG is not enough to explain the enrichment of GSC % in in vitro tumours. Hence, an
increase in both ps and kG must occur in order to accommodate this change.

Figure 6.2: Parameters ps and kG are varied in the ODE model for tumours treated
with fractionated irradiation dose and GSC% is compared with that found in in vitro
experiments. The graph demonstrates that GSC% is more sensitive to the parameter
kG than ps. In tumours treated with multiple irradiation doses, increase in kG is enough
to explain the enrichment of GSC % in in vitro tumours. However, only increasing ps
does not predict the GSC % enrichment observed in vitro.
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6.1 Main results

We varied the values of ps over the interval (0, 1) and kG over a realistic range. The stem

cell percentage for these values were calculated using our glioma treatment ODE model.

The difference between the stem cell percentage calculated from the single treatment

ODE and that observed in vitro was calculated and squared. The same was done for the

fractionated treatment. These differences were then added, this made up the total error.

Errors were calculated for all values of ps and kG. The values for ps and kG for which

the error was minimum were selected. In this way, we obtained the best possible fraction

of glioma stem cells when compared to experimental result. The outcome is shown in

Figure 6.3. The optimal values are ps = 0.55 and kG = 0.56. When compared to the

parameter values from the control case, there is a ≈ 57% increase in the probability

of symmetric division and a ≈ 229% increase in the glioma stem cell growth rate once

ionizing radiation therapy is applied to the tumour. With these new parameter values,

the glioma stem cell percentage 48 hours after the last dose is better predicted. In the

single dose radiation treatment case, the modified ODE predicts that the GSC percentage

will be 4.16% (experimentally, this percentage was 5.26%). In the fractionated dose

radiation treatment, the modified ODE predicts that the GSC percentage will be 10.59%

(experimentally, this percentage was 10.5%). These are better results than that of the

unmodified ODE.

A possible improvement to our model would be to set the parameters ps and kG as

functions of the irradiation treatment. That is, these parameters would be functions of

the dose D(t). Therefore, when the radiotherapy dose is non-zero, the values of ps and kG

will increase depending on the number of fractions the dose is split into. Incorporating

ps(D(t)) and kG(D(t)) in our glioma treatment model is left as an exercise for future

work.
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Figure 6.3: GSC% calculated 2 days after the last irradiation dose. The black bars
represent the GSC% determined experimentally using the U87 glioma cell line (illus-
trated in Figure 1.6 [16]). The dark blue bar represent the GSC% calculated from the
solution of the unmodified ODE. The light blue bars represent the GSC% calculated
from the solution of the ODE that was modified after sensitivity analysis was performed
on parameters ps and kG.



Chapter 7

Discussion

7.1 Future work: Adding quiescence to our model using a

delay

One of the biological properties of tumours that undergo irradiation treatment is the

property of growth arrest. Growth arrest occurs when a cell is distressed and needs to

take some resting time in order to recover from damage. When a tumour is irradiated,

DNA damage occurs. To recover from that, glioma stem cells go into quiescence mode.

This phase lasts for approximately 16 hours [11]. As we are comparing outcomes from the

differential equations to that of the Cellular Potts Model, we want all the assumptions

made in the Cellular Potts Model to be reflected in our differential equation model also.

The Cellular Potts Model accounts for growth arrest of cells as a consequence of irra-

diation treatment. Our ODE model, on the other hand, does not. In Chapter 3, we

considered models where quiescent cells existed in addition to stem and cancer cells.

But a comparison of the models by the Akaike Information Criterion we concluded that

the quiescence models did not fit the tumour growth data as nicely as the no-quiescence

model did. Hence, the models containing quiescence were rejected.

In Chapter 6, we compared the results from the Cellular Potts Model to that of our

ODE. But can we compare two models that do not have the same assumptions? We

will now try to incorporate growth arrest into our differential equation system in order

to obtain a system that has the same assumptions as the Cellular Potts Model.
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We construct a delay differential equation system that incorporates growth arrest, caused

by radiation treatment, into our ODE model. In layman terms, this delay differential

equation system says that from all the glioma stem cells that were eradicated by treat-

ment, some of these cells return with a rate of γU after a delay of τ = 16 hours. Similarly,

amongst all the cancer cells that were removed due to treatment, some return with a

rate of γV after a delay of τ = 16 hours. However, as the glioma stem cells are greatly

resistant to radiation and the cancer cells are far less resilient, we keep γV � γU . The

corresponding delay model reads:

U̇ = pskGU(1− (U + V )

C
)− hLQU (t)U + γUhLQU (t− τ)U(t− τ),

V̇ = (1− ps)kGU(1− (U + V )

C
) + kCV (1− (U + V )

C
)− σV (7.1)

−hLQV (t)V + γV hLQV (t− τ)V (t− τ).

For variable recovery time, that is when the delay τ is not fixed, the recovery rate

of growth-arrested stem cells is γU = θUe
−ηU τ , where θU is the rate of transition of

a quiescent stem cell to become an active stem cell again and the term e−ηU τ is the

proportion of cells that survive treatment. Similarly, γV = θV e
−ηV τ is the recovery rate

of growth-arrested cancer cells.

Does incorporating growth arrest into our differential equation actually make a differ-

ence? The Cellular Potts Model’s results that we have seen so far are outcomes of a

system that allows growth arrest after treatment. However, for fractionated treatment,

the Cellular Potts Model also considered a case where the cells do not go into arrest. We

will use that result to observe how a model containing quiescence compares to a model

that does not consider quiescence. We notice that in both, the Cellular Potts Model and

the differential equation model, the glioma stem cell percentage is lower in models that

contain quiescence to those models who did not consider quiescence. This is shown in

the bar graphs in Figure 7.1

As part of our future work, we will do sensitivity analysis on the DDE model. Consider

Figure 7.2. In this figure, we compare the GSC percentages predicted by the unmodified

ODE and DDE with the in vitro GSC percentages. The results from the DDE are
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Figure 7.1: This bar graph compares GSC % calculated using both CPM and differ-
ential equation models, in cases where quiescence (using delay) is considered and when
quiescence is not considered. The red bars represent the model that does not account
for quiescence in the system. Whereas, the grey bars represent models that incorporate
the assumption of quiescence.

Figure 7.2: GSC% calculated 2 days after last irradiation dose. The black bars
represent GSC% determined in vitro, the blue bars represent GSC% calculated from
the ODE model and the grey bars represent GSC% calculated using the DDE model.

similar to ODE results. Sensitivity analysis using the parameters ps and kG may give

us a similar observation as that made in the modified ODE model.

7.2 Discussion and Conclusions

The Glioblastoma Multiforme (GBM) is a heterogenous mass of tumour cells. These

tumour cells have different characteristics. We have created a mathematical model that

uses ordinary differential equations to predict population dynamics of these cells. Our

model uses the following assumptions: The stem cells (known throughout this thesis as
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glioma stem cells (GSC)) are powerful cells that are capable of dividing continuously

without dying. Whereas, the non-stem cells (referred to as cancer cells (CC)) are mortal

cells that divide till their proliferation capacity runs out. We conduct analysis on our

model and conclude that as time tends to infinity, the tumour will comprise only of stem

cells.

We include treatment to this mathematical model using the linear-quadratic concept

of cell death due to radiotherapy. Different types of treatment, including treatment

administered in a single dose and treatment administered in multiple smaller doses are

compared. We analyze how different treatments may affect the tumour composition

of cells. As the glioma stem cells are resistant to radiation (an assumption that was

considered in our ODE model), an increase in the stem cell ratio in the tumour was

expected after treatment. Our mathematical model results confirmed this. However,

the in vitro data demonstrated that the GSC percentages in the GBM after irradiation

were a lot higher than that predicted by the ODE model. Gao et al. [11] claimed that

there is a radiation-induced biological alteration occurring in the glioma stem cell that

causes enrichment in their population.

Gao et al. hypothesized that after radiotherapy that has been administered in fraction-

ated doses, the glioma stem cell dynamics change. The likelihood of a glioma stem cell to

undergo symmetric division is higher. The chances of symmetric division to occur may

increase from as low as 35% to as high as 75% (literature suggests that these conditions

are possible [11]). In addition to that, the glioma stem cell has a significantly shorter

cell cycle of 12 hours instead of the normal length of 25 hours. The authors also include

the case where both radiation-induced events occur, that is, the chances of symmetric

division increase partially and the cell cycle shortens to 18.5 hours. If the CPM takes

these changes into account, the fraction of glioma stem cells in the simulated GBM tu-

mour is comparable to in vitro data. The authors conclude that even though the CPM

predicts a suitable glioma stem cell percentage two days after the last irradiation dose

for all three cases, increase in the rate of symmetric division seems to be the dominant

reason as to why there is radiation-induced enrichment of GSC in the tumour.

Using our ODE model, we set out to test Gao et al.’s hypotheses. We do not only

consider the case where the tumour is irradiated with fractioned doses but also the case

where the tumour receives a single dose of ionizing radiation. We perform sensitivity
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analysis using the parameters that influence the glioma stem cell cycle’s length and the

cell’s ability to divide symmetrically, namely kG and ps respectively.

Our major finding was that contrary to the conclusion derived from a CPM-simulated

GBM, the dominant mechanism for the increment in GSC fraction in the ODE-simulated

GBM is the shorter cell cycle induced by radiotherapy. In other words, in any kind of

radiotherapy treatment, single-dosed or fractionated, the GSC percentage is more sensi-

tive to the growth rate of stem cells. In fact, the increase in the probability of symmetric

division alone is not enough to explain the enrichment of GSC ratios in the GBM tu-

mour. Another important finding of our ODE model was that as the treatment dose is

broken up into more fractions, the model becomes increasingly sensitive to variation in

parameters ps and kG. In addition to that, these parameters increase GSC percentage

in the ODE model for fractionated treatment more than in the ODE model for single

dose treatment.

In conclusion, similar to the Cellular Potts Model, our ODE model indicates that the

radio-resistant feature of glioma stem cells is not enough to explain the abnormal en-

richment of stem cell ratios after radiotherapy in vitro. This increase in the stem cell

fractions is instead a result of radiation-induced increased stem cell population. The

increase in stem cell population, after treatment, is attributed to faster cell cycle and a

shift in symmetric division of glioma stem cells.



Chapter 7. Discussion 60

P
ar

am
et

er
s

C
p
s

k
G

k
C

σ
α

β
λ
U

λ
V

γ
U

τ

C
on

tr
ol

0.
52

21
0.

35
0.

16
64

0.
07

67
0.

00
53

D
et

er
m

in
ed

b
y

L
ea

st
-s

q
u

ar
es

G
ao

et
al

.
[1

1]
L

ea
st

-s
q
u

ar
es

L
ea

st
-s

q
u

ar
es

L
ea

st
-s

q
u

a
re

s

IR
tr

ea
tm

en
t

0
.3

8
5
9

0
.0

1
1
4
8

0
.1

3
5
6

1
1
.5

0
.6

6
7

D
et

er
m

in
ed

b
y

T
h

e
sa

m
e

va
lu

es
w

er
e

u
se

d
[1

1
]

[1
1
]

[1
1
]

[1
1
]

T
a
b
l
e
7
.1
:

T
h

is
ta

b
le

re
co

rd
s

th
e

p
ar

a
m

et
er

va
lu

es
u
se

d
th

ro
u

gh
ou

t
th

is
p

ro
je

ct
.

T
h

is
ta

b
le

al
so

m
en

ti
on

s
th

e
so

u
rc

e
w

h
er

e
th

es
e

p
ar

am
et

er
s

w
er

e
d

er
iv

ed
fr

om
.



Bibliography

[1] Beachy, P. A., Karhadkar, S. S., Berman, D. M. (2004) Tissue repair and

stem cell renewal in carcinogenesis. Nature, 432(7015),324-31.

[2] Brenner, D. J. (2008) Point: the linear-quadratic model is an appropriate method-

ology for determining iso-effective doses at large doses per fraction. Semin. Radiat.

Oncol., 18(4),234-239

[3] Dale, R. G. (1985) The application of the linear quadratic dose-effect equation to

fractionated and protracted radiotherapy. Brit. J. Radiol., 58(690),515-528.

[4] Dale, R. (2004) Use of the linear-quadratic radiobiological model for quantifying kid-

ney response in targeted radiotherapy. Cancer Biotherapy and Radiopharmaceuticals,

19(3),363-370.

[5] Dawson, A., Hillen, T. (2006) Derivation of the tumor control probability (TCP)

from a cell cycle model. Computational and Mathematical Methods in Medicine,

7(2-3),121-141.

[6] DeVries, G., Hillen, T., Lewis, M., Muller, J., Schonfisch, B. A course in

mathematical biology: Quantitative modelling with mathematical and computational

methods. (2006) SIAM

[7] Dingli, D., Michor, F. (2006) Successful therapy must eradicate cancer stem cells.

Stem Cells, 24(12), 2603-2610.

[8] Enderling, H., Hlatky, L., Hahnfeldt, P. (2009) Migration rules: tumours are

conglomerates of self-metastases. Br. J. Cancer, 100(12), 1917-1925.

[9] Enderling, H., Anderson, A. R. A., Chaplain, M. A. J., Beheshti, A.,

Hlatky, L., Hahnfeldt, P. (2009) Paradoxical dependencies of tumor dormancy

and progression on basic cell kinetics. Cancer Res., 69(22), 8814-8821.

61



Chapter 7. Discussion 62

[10] Ganguli, R., Puri, I. K. (2006) Mathematical model for the cancer stem cell

hypothesis. Cell Prolif., 39, 3-14.

[11] Gao, X., McDonald, J. T., Hlatky, L., Enderling, H. (2013) Acute and frac-

tionated irradiation differentially modulate glioma stem cell division kinetics. Cancer

Research. 73(5)1481-90.

[12] Gong, J., Dos Santos, M. M., Finlay, C., Hillen, T. (2011) Are more compli-

cated tumor control probability models better? Mathematical Medicine and Biology,

30(1),1-19.

[13] Hek, G. Geometric singular perturbation theory in biological practice. (2010) Jour-

nal of Mathematical Biology. 60(3), 347-386.

[14] Hillen, T., Enderling, H., Hahnfeldt, P. (2013) The tumor growth paradox and

immune system-mediated selection for cancer stem cells. Bulletin of Mathematical

Biology, 75(1),161-84.

[15] Holland, E. C. (2006) Glioblastoma multiforme: the terminator. Proceedings of

the National Academy of Sciences, 97(12),6242-6244.

[16] Kim, M. J., Kim, R. K., Yoon, C. H. (2011) Importance of PKCδ signalling

in fractionated-radiation-induced expansion of glioma-initiating cells and resistance

to cancer treatment. Journal of Cell Science, 124(18)3084-3094.

[17] Nduom, E. K., Hadjipanayis, C. G., Meir, C. G. (2012) Glioblastoma cancer

stem-like cells: Implications for pathogenesis and treatment. The Cancer Journal,

18(1),100-106.

[18] Omuro, A., DeAngelis, L. M. (2013) Glioblastoma and other malignant gliomas:

a clinical review. Journal of the American Medical Association, 310(17),1842-1850.

[19] Powathil, G. G., Adomson, D. J. A., Chaplain, M. A. J. (2013) Towards

predicting the response of a solid tumour to chemotherapy and radiotherapy treat-

ments: clinical insights from a computational model. PLOS Computational Biology,

9(7), 1-14.

[20] Ramirez, Y. P., Weatherbee, J. L., Wheelhouse, R. T., Ross, A. H. (2013)

Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals,

6,1475-1506.



Chapter 7. Discussion 63

[21] Shimura, T., Noma, N., Oikawa, T., Ochiai, Y., Kakuda, S., Kuwahara,

Y. et al. (2012) Activation of AKT/cyclin D1/Cdk4 survival signalling pathway in

radioresistant cancer stem cells. Nat. Rev. Cancer, 1(6):e12.

[22] Sole, R. V., Rodriguez-Caso, C., Diesboeck, T. S., Saldance, J. (2008)

Cancer stem cells as the engine of unstable tumor progression. Journal of Theoretical

Biology, 253(4), 629-637.

[23] Swat, M. H., Belmonte, J., Heiland, R. W., Zaitlen, B. L., Glazier, J.

A., Shirinfard, A. Introduction to CompuCell3D: Version 3.6.2. Biocomplexity

Institute and Department of Physics, Indiana University.

[24] Ulasov, I., Nandi, S. (2011) Inhibition of Sonic Hedgehog and Notch pathways

enhances sensitivity of CD133+ Glioma stem cells to temozolomide therapy. Mol.

Med. The Feinstein Institute for Medical Research, 17(1-2):1

[25] Vescovi, A. L., Galli, R., Reynolds, B. A. (2006) Brain tumour stem cells.

Nature Reviews Cancer. 6, 425-436.

[26] Xie, Q., Mittal, S., Berens, M. E. (2014) Targeting adaptive glioblastoma: an

overview of proliferation and invasion. Neuro-Oncology, 0,1-10.

[27] Zhang, X., Zhang, W., Mao, X. G., Zhen, H. N., Cao, W. D., Hu, S. J.

(2013) Targeting role of glioma stem cells for glioblastoma multiforme. Curr. Med.

Chem. 20(15),1974-84.


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Glioblastoma Multiforme: why must we study it?
	1.2 Outline of the thesis
	1.3 Comparing healthy versus glioma stem cells
	1.4 Mathematical modelling and relevant literature
	1.4.1 ``Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics" X. Gao, T. McDonald, L. Hlatky and H.Enderling.
	1.4.2 ``The tumour growth paradox and immune system-mediated selection for cancer stem cells" T. Hillen, H. Enderling and P. Hahnfeldt.


	2 Modelling glioma growth using Ordinary Differential Equations
	2.1 A model with stem and non-stem cells
	2.1.1 Fixed points and stability analysis

	2.2 Models with quiescence

	3 Data fitting and model comparison
	3.1 Estimating parameters to fit data
	3.1.1 The least-squares error method
	3.1.2 Data fit using the optimal parameter set
	3.1.3 Improving the data fit

	3.2 Model comparison using the Akaike Information Criterion
	3.3 Conclusion

	4 Mathematics of the derivation of radiation treatment: The Linear-Quadratic Model
	4.1 The Linear-Quadratic Model
	4.2 Hazard Function

	5 Glioma stem cell model with radiation treatment
	5.1 ODE results and comparison with experimental data
	5.2 Cell behaviour changes after irradiation treatment

	6 Sensitivity analysis
	6.1 Main results

	7 Discussion
	7.1 Future work: Adding quiescence to our model using a delay
	7.2 Discussion and Conclusions


