
  
 

 

 

 

 

 

 

 

 

 

 

 

 

"Can you do addition?" the White Queen asked. "What's one and one and one and 

one and one and one and one and one and one and one?"  

"I don't know," said Alice. "I lost count."  
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To my father (in memoriam) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

―Oh, pedaço de mim 

Oh, metade afastada de mim 

Leva o teu olhar 

Que a saudade é o pior tormento 

É pior do que o esquecimento 

É pior do que se entrevar‖ 

(Chico Buarque) 

  



 
 

Abstract 

 

Cognitive diagnostic assessments (CDA) is an approach where the 

psychology of learning is combined with methods and models in statistics for the 

purpose of making inferences about students‘ specific knowledge structures and 

processing skills. This study used a four-step principled approach to test design 

characterized by: (1) the development of cognitive models, (2) the construction of 

test items according to the knowledge and skills specified in the cognitive model, 

(3) the use of a diagnostic psychometric analysis to assess the plausibility of the 

underlying cognitive model and to providestudents‘ attribute probability 

estimates, and (4) the creation of  detailed score reports that map examinees‘ 

mastery levels to provide more detailed information about students‘ problem-

solving strengths and weaknesses.Being among the first applications of the AHM 

to non-retrofit data from an operational testing program, the findings of this study 

add substantially to our understanding of the necessity of a principled approach to 

assessment design, and also contribute to a growing body of literature on CDA. 

Results of this study revealed that cognitive models adequately fit the data for the 

total sample of students; however, the fit for the observed and expected response 

data differed for high and low ability students. The average attribute probability 

estimates were ordered, as expected, from least to most difficult. In addition, the 

ordering of the attributes did not differ as function of the performance level of the 

students and the correlational pattern of the probability estimates indicated both 

convergent and discriminant evidence supporting the hierarchical structure of 

attributes. Concerning the reliability of the models, all six attributes in Subtracting 



 
 

2-digit numerals produced consistent interpretations about the mastery of 

attributes, whereas Comparing and ordering numbers, only the decisions made for 

Attribute 1 were found to be consistent. Limitations of the study and 

recommendations for future research were also discussed.  
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CHAPTER I: INTRODUCTION 

Cognitive assessment is now recognized as an important way to improve 

the quality and the validity of score interpretation (Cui & Leighton, 2009; 

Embretson & Gorin, 2001). It has also been recognized as one of the great 

challenges for the field of measurement and evaluation (Snow & Lohman, 1989; 

Pellegrino, Chudosky, & Glaser, 2001). By improving the quality of score 

interpretations, valuable information about students who may be at-risk for failure 

and the delivery of carefully designed remediation programs are made possible.  

Traditionally, educational assessment has been used for the single purpose 

of measuring student success on tests and exams at the end of an instructional 

unit. Students receive feedback such as an overall mark or grade, which provides 

only a general indication of their overall mastery level. This type of feedback does 

not yield specific inferences about the examinees‘ strengths and weaknesses. 

Because traditional assessments are often used for summative purposes, this 

approach to assessment is seen as essentially passive and not having immediate 

impact on learning (Anderson, 1998; Sadler, 1989; Struyven, Dochy, & Janssens, 

2003, 2008). Traditional assessments have also been related to testing only lower-

order thinking skills (e.g., memorizing facts; Law & Eckes, 1995; Simonson, 

Smaldino, Albright, & Zvacek, 2000) and, consequently, providing limited 

feedback about how to improve a student‘s performance (Bailey, 1998).  

As a result of the existing flaws in traditional assessment, this approach 

to testing has been met with reservation by some test users. In addition, the 

context of assessment, as of late, has been marked by the demand for new forms 
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of assessments that can provide useful information to teachers and students.  Huff 

and Goodman in a chapter of the book Cognitive Diagnostic Assessment for 

Education (2007) discuss the recent demand for cognitive diagnostic assessment 

in K-12 education. These authors claim that ―much of the demand for CDA 

[cognitive diagnostic assessment] originates from discussion about the potential to 

inform teaching and learning by changing the way in which we design 

assessments‖ (p. 21). To investigate the extent that results from large-scale 

assessments were being used, Huff and Goodman conducted a national survey 

with mathematics and English language teachers in the United States. Results 

showed that a large proportion of teachers who received assessment results rarely 

or never use them to inform instruction.  

Ideally, assessment should inform instruction, providing teachers and 

students with a clear appreciation about what learners understand and what gaps 

in their knowledge still exist. It is widely accepted that the way students are 

assessed has a major influence on their learning (Black & Wiliam, 2001; Garfield, 

1994; Gibbs & Simpson, 2004; Stiggins, 2002). Most importantly, when 

adequately conducted, assessments have the potential to help motivate students, 

and to empower them to take control of their own learning (Tanner & Jones, 

2003).  

This context constitutes a rich ground for the discussion about the 

importance of cognitive diagnostic assessments and how they can be used to 

improve learning.  

http://medical-dictionary.thefreedictionary.com/empower
http://encyclopedia2.thefreedictionary.com/Tanner
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Educational Measurement and Cognitive Diagnostic Assessments 

Cognitive diagnostic assessment (CDA) can be concisely described as an 

educational test for measuring learners‘ cognitive processes, learning, knowledge 

and skill development for diagnostic purposes (Ketterlin-Geller & Yovanoff, 

2009). CDA is used to ascertain whether a student possesses specific knowledge 

and skills required to solve problems in a particular domain. By establishing a 

profile of students‘ cognitive strengths and weaknesses, the instructor has the 

means to remediate and to adjust program plans to meet each pupil‘s unique 

needs. CDA is also seen as an approach where the psychology of learning and the 

practices in assessment are gathered together for the purpose of making inferences 

about students‘ specific knowledge structures and processing skills (Nichols, 

1994; see also Nichols, Chipman, & Brennan, 1995). Huff and Goodman (2007) 

define CDA as ―the joint practice of using cognitive models of learning as the 

basis for principled assessment design and reporting assessment results with direct 

regard to informing learning and instruction‖ (p. 20).  

These definitions highlight the importance of CDA for providing richer 

and more useful feedback to teachers and students as well as feedback that helps 

them to identify learning problems and remediate these problems (Gierl, Leighton, 

& Hunka, 2007). Also, the use of cognitive diagnostic assessments promises, in 

Nichols and Joldersma‘s words, ―to provide teachers the kind of formative 

information with which to lever higher student achievement‖ (2008, p. 407). The 

term ―formative‖ is used here to mean that the ―results of the assessment are used 

to directly support teaching and learning, as contrasted with summative testing, 
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which evaluates the student after the instruction is over‖ (DiBello, Roussos & 

Stout, 2007, p. 285).  

As acknowledged by DiBello and colleagues (2007), ―there is rapidly 

emerging a powerful need, and demand, for tests designed to formatively assess 

an appropriately chosen moderate number of relatively fine-grained chunks of 

knowledge in major subject or important cognitively defined areas‖ (p. 285). CDA 

results, when properly used, have the potential to guide the design of remedial 

instruction and the placement of students into supplemental intervention programs 

(Ketterlin-Geller & Yovanoff, 2009), as well as to empower students to reconsider 

their study strategies on the basis of CDA‘s feedback. Hence, outcomes from CDA 

may significantly impact the educational opportunities available to students, as 

these outcomes can be used to yield valuable information that can be used by 

practitioners to tailor remediation (de la Torre & Douglas, 2004).  

Next, I will discuss how the combination of cognitive psychology and 

psychometric principles in the design of cognitive diagnostic tests may improve 

the inferences about students‘ strengths and weaknesses.  

Cognitive Models and CDA 

Although cognitive psychology is exerting its influence on testing practice, 

the investigation of the underlying learning processes has been neglected in most 

contemporary large-scale testing programs (Zhou, 2010). More attention has been 

paid to psychometric techniques for analyzing data than to the underlying 

knowledge and response processes students use to produce the data (Leighton, 

Gierl, & Hunka, 2004; Gorin, 2006). Therefore, information about why students 
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perform poorly and how assessment outcomes can be utilized to improve teaching 

and learning has been limited.  

Understanding students‘ knowledge acquisition and cognitive processes is 

essential for diagnosis since it may enhance test validity and reliability. Hence, 

valid measures of students‘ performance and learning processes help the 

enhancement of both instruction and learning. However, as claimed by DiBello et 

al. (2007), ―much of the research and development work needed for skills-level 

formative assessment to truly flower remains to be carried out‖ (p. 286).  

In order to gather diagnostic information, the use of a cognitive model is 

required. This model is intended to guide item development, allowing examinee‘s 

performance to be linked to specific cognitive inferences about their knowledge, 

processes, and strategies. In this way, the CDA approach—combining theories of 

cognition with models in statistics—is a valuable approach for making inferences 

about students‘ strengths and weaknesses on particular cognitive skills or 

attributes
2
. Tatsuoka and Tatsuoka (1997) define attributes as the cognitive 

processing and knowledge required for solving a problem in a target domain. 

Cognitive models are formed by different combinations of attributes. A cognitive 

model is defined by Leighton and Gierl (2007a) as ―a simplified description of 

human problem-solving on standardized tasks at some convenient grain size or 

level of detail in order to facilitate explanation and prediction of students‘ 

performance, including their strengths and weaknesses‖ (p. 6). The expression 

                                                           
2 The term ―attribute‖ is used interchangeably with the term ―skill‖ in this proposal.  
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―simplified description‖ is used to indicate that cognitive models serve as a 

simplified representation of a much more complex phenomenon. This 

representation reflects a small but key set of issues required to understand the 

phenomenon (Leighton & Gierl, 2011). Cognitive models have also been related 

to how people develop structures of knowledge, including the concepts associated 

with a domain and procedures for reasoning and solving problems (Pellegrino et 

al., 2001). Gierl, Roberts, Alves, and Gotzmann (2009) present four defining 

characteristics of cognitive models for CDA: granularity, measurability, hierarchy 

of ordered skills, and instructional relevancy. These four defining characteristics 

are explained in more detail in Chapter 2. Defining characteristics are critical for a 

better fit between the data and the cognitive model since they constitute the bridge 

between the cognitive model and the test items.  

Different conceptual frameworks have been used to develop cognitive 

models. The use of a framework has the potential to enhance a deep understanding 

of the target construct by providing a structure for designing studies, interpreting 

data, and drawing conclusions (Eisenhart, 1991). In this dissertation, three 

frameworkstheoretical, content specialist, and combinedare described and 

discussed. The theoretical framework guides research activities by drawing on a 

formal theory, developed using an established, coherent explanation of certain 

types of phenomena and relationships. In the content specialist framework, the 

accumulated practical knowledge from experts‘ experience with students, 

curriculum, and learning environment serves as basis for cognitive model 

development. Finally, in the combined framework, research activities are based 
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not only on previous research and literature, but also on an array of different 

sources, such as outcomes from theories, expert knowledge, empirical research, or 

other sources relevant to a research problem. Factors to consider when choosing a 

framework are, for example, the availability of human expertise as well as time 

and financial resources allocated for research and assessment implementation. 

Each of these three frameworks has benefits and limitations, as will be discussed 

in Chapter 2. 

Applications of CDA, which entail the identification of cognitive attributes 

involved in learning, have been recognized as a way of bringing psychometrics 

and cognitive science together. This process is explained by Nichols and 

Joldersma (2008): 

The measurement model connects the knowledge, skills, and abilities of 

the construct to the observable performance on the test. The 

measurement model summarizes across tasks the evidence of the 

knowledge, skills, and abilities that is provided in the observable 

performance (p. 408).  

Because the development of cognitive models is a laborious task, the number of 

practical applications of CDA has, so far, been relatively small. Consequently, 

most of the research conducted using this approach has been focused on retrofitted 

data. Retrofitting is a method based on the revision of existing test items with the 

goal of extracting information about the cognitive attributes measured by these 

items, even when the items were not initially developed from a cognitive 
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perspective. In this way, retrofitting the cognitive model to existing test items is 

considered a post hoc procedure.  

Although CDAs have great potential to facilitate instruction by 

identifying learners‘ strengths and weaknesses, the successful application of CDA 

may require new test development procedures and practices that will promote a 

closer match between test items and the cognitive model. Consequently, this 

match will foster more valid inferences about learners‘ knowledge and skills. By 

implication, retrofitting CDA to existing educational data is likely to yield 

unsatisfactory diagnostic classification results (Gierl, Alves, & Taylor-Majeau, 

2010).  

To prevent the problems associated with retrofitting models and items, an 

organizational structure required to implement a cognitive diagnostic assessment 

is discussed in this dissertation. This structure is based on a four-step procedure 

described as a principled test design approach where: (1) attributes are first 

identified and then structured to characterize the cognitive model underlying 

examinees‘ problem-solving skills, (2) test items are constructed to measure the 

attributes in the cognitive model, (3) a confirmatory psychometric procedure is 

used to analyze student response data from the model-based test items, and (4) a 

detailed score report is provided.  

Although the importance of a principled test design approach is 

accentuated by the fact that the cognitive model provides the interpretative 

framework to guide both the development of items and the interpretation of 

examinees‘ scores, conducting these four steps ―is not a standard approach to test 
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design and it rarely, if ever, is used in operational testing situations‖ (Gierl, 2007, 

p. 337).  

The Alberta Education Diagnostic Mathematics Project 

The test created for the Diagnostic Mathematics project is an example of 

an assessment originally designed to follow the four-step process for principled 

test design. This assessment—conceived to be a diagnostic, cognitive-based, and 

non-retrofitted exam—started in January 2008 and it is funded by the Learner 

Assessment Branch at Alberta Education. The purpose of the assessment is to 

provide teachers with diagnostic information about students‘ cognitive knowledge 

and skills in Mathematics from Kindergarten to Grade 6. This project is based 

upon CDA principles, where the test score interpretations are linked to the 

cognitive skills required to solve the test.  

This assessment is implemented with a computer-based, online 

administration system, designed to provide timely score reports to students and 

teachers that can support learning and instruction (Alberta Education, 2007). The 

cognitive model for the Diagnostic Mathematics assessment has its origin in the 

provincial curriculum adopted in Alberta (see The Alberta K-9 Mathematics 

Program of Studies with Achievement Indicators, 2007). Cognitive attributes and 

their hierarchical structure have been outlined for four content areas: Number, 

Patterns and Relations, Shape and Space, and Statistics and Probability at two 

grade levels, 3 and 6. This is an ongoing project and, to-date, only the content 

area Number has been tested. The Number strand, in Grade 3, has 13 cognitive 

models with 83 skills and in Grade 6 it has nine cognitive models with 72 skills.  
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Consistent with the goal of providing diagnostic information about 

students‘ strengths and weaknesses in Mathematics, Alberta Education has created 

the Diagnostic Mathematics assessment with the intention of providing valid and 

accurate information on students‘ mastery of cognitive skills in the Alberta 

curriculum. To meet this requirement, the skills measured by the test items must 

be well understood. To demonstrate the benefits of using the four-step to 

principled test design, my dissertation research was conducted with the purpose of 

analyzing this assessment using the AHM (Attribute Hierarchy Method), a 

cognitively-based psychometric approach.  

Purpose of the Study 

The purpose of this study is to investigate the accuracy and consistency of 

two cognitive models in the Diagnostic Mathematics project using the attribute 

hierarchy method. The accuracy and consistency by which cognitive diagnostic 

assessments classify students‘ test responses are key components to providing 

diagnostic feedback about examinees‘ knowledge and skills (Zhou, 2010). 

Specifically, the study is designed to answer the following research questions:  

1. How does the observed student response data fit the expected response 

data produced by the cognitive models created by content specialists? It is 

also important to begin to evaluate how these results generalize across 

different subgroups of examinees that may differ in their response 

processes. Hence, I will also address the question: Does the fit for the 

observed and expected response data differ for high and low achieving 

students?  
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2. How reliable are decisions about the mastery of specific attributes for the 

students who wrote the diagnostic test? Do the reliability estimates differ 

for high and low achieving students? 

3. Are the attribute probability estimates ordered from easy to difficulty 

across a student sample for each of the attribute hierarchies? Is the 

attribute order the same for high and low achieving students? 

4.  Does the correlations among attributes show convergent and discriminant 

evidence supporting the hierarchical structure of attributes? Do the 

correlational patterns different for high and low achieving students? 

Organization of the Dissertation 

This dissertation is organized into five chapters as follows. The first 

chapter (which is the current chapter) includes a short description of some 

limitations of traditional approaches to educational measurement, a summary of 

the relationship between cognitive models and CDA, an overview of the 

Diagnostic Mathematics assessment, and the statement about the purpose of the 

study. The second chapter contains the literature review of the study. This chapter 

describes the traditional context of test use, the demand for new assessment 

techniques from test users, the importance of CDA in the context of educational 

measurement, characteristics of cognitive models for CDA, methods for 

developing these models, steps for implementing a CDA, and a review of CDA 

studies in the domain of Mathematics. The third chapter describes the 

implementation of the four-step for principled test design: the cognitive model 

development, item development, confirmatory psychometric analyses, and score 
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reporting. In this chapter, I also describe the sample and data collection design as 

well as the proposed procedures and statistical analyses. The fourth chapter 

presents the results from the AHM analysis. Chapter VI discusses the results, 

draws the conclusion and highlights the limitations of the study.  Directions for 

future research are also presented.  
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CHAPTER II: LITERATURE REVIEW 

Demand for New Assessment Techniques from Test Users 

Increasingly, the demand for new ways to assess students is appearing in 

key policy statements. For example, the No Child Left Behind Act of 2001 calls 

for diagnostic information to be provided for each individual student, along with 

information for the parents, teachers, and principals to use in addressing 

individual student educational needs. The necessity to provide innovative 

assessments is also recognized by the Board on Testing and Assessment (BOTA, 

2009). In a Letter Report to the U. S. Department of Education on the Race to the 

Top Fund (RTT), they state:  

Because of the extensive focus on large-scale, high-stakes, summative 

tests, policy makers and educators sometimes mistakenly believe that such 

tests are appropriate to use to provide rapid feedback to guide instruction. 

This is not the case. Tests that mimic the structure of large-scale, high-

stakes, summative tests, which lightly sample broad domains of content 

taught over an extended period of time, are unlikely to provide the kind of 

fine-grained, diagnostic information that teachers need to guide their day-

to-day instructional decisions. (p. 10-11).  

The RTT fund of the American Recovery and Reinvestment Act of 2009 (74 Fed. 

Reg. 37804, proposed July 29, 2009) encouraged the inclusion of a rapid-time 

turnaround system, where they defined rapid-time turnaround as follows: 

Rapid-time, in reference to reporting and availability of school-and LEA 

[Local Education Agency]-level data, means that data is available quickly 

http://www7.nationalacademies.org/bota/
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enough to inform current lessons, instruction, and related supports; in most 

cases, this will be within 72 hours of an assessment or data gathering in 

classrooms, schools, and LEAs (Section IV, p. 37811, in BOTA, 2009).  

The Department of Education supports the use of statewide longitudinal data 

systems through the RTT fund so that the data will help inform and engage, as 

appropriate, key stakeholders (e.g., parents, students, teachers, principals, LEA 

leaders, community members, unions, researchers, and policymakers). Also, the 

data supports decision makers in the continuous improvement of instruction, 

operations, management, and resource allocation (Section III, p. 37809, in BOTA, 

2009).  

The National Association for the Education of Young Children (NAEYC) 

and the National Council of Teachers of Mathematics (NCTM) recognized that 

―well-conceived, well-implemented, continuous assessment is an indispensable 

tool in facilitating all children's engagement and success in mathematics‖ 

(NAEYC, 2002, p. 10). Several researchers have suggested that the assessments 

currently being implemented have not addressed the issues highlighted by the 

BOTA, RTT, NAEYC, and NCTM using the traditional approach to educational 

testing (e.g., Cui, Leighton, & Zheng, 2006; Dietal, Herman, & Knuth, 1991; 

Dikki, 2003; Frisby, 1999; Mislevy, 1994; Nichols, 1994). Mitchell (1992, as cited 

in Dikki, 2003) defines traditional assessment as a ―single-occasion, 

unidimensional, timed exercise, usually in multiple-choice or short-answer form‖. 

This type of assessment has dominated most classroom assessment activities 

(Earl, 2003). Students receive feedback such as overall mark or grade, which 
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provides a general albeit coarse indication of their overall mastery level. However, 

this feedback has limitations when attempting to understand students‘ learning 

processes.  

At least four important limitations of the traditional assessment approach 

can be identified. First, traditional assessments often measure a students‘ overall 

summative proficiency at the conclusion of an instructional module or unit in a 

particular content area. Further, according to Sadler (1989), this type of 

assessment is concerned with: 

summing up or summarizing the achievement status of a student, and 

geared towards reporting at the end of a course of study especially for 

purposes of certification. It is essentially passive and does not normally 

have immediate impact on learning, although it often influences decisions 

which may have profound educational and personal consequences for the 

student (p. 120).  

Second, in the traditional assessment approach, one single score is provided to 

students: the total score. This score is usually represented as a mark or letter grade 

that summarizes the average performance across several topics in a specific 

content area. Total scores do not necessarily indicate which cognitive skills were 

mastered by the examinees and which attributes
3
 were deemed as weaknesses. 

Furthermore, total score often ―obscures important diagnostic information about 

more fine-grained attributes that students use to solve problems within some given 

domain‖ (Briggs & Alonzo, 2009, p. 9). Thus, if the objective is to know whether 

                                                           
3
Attributes can include different procedures, skills, and/or processes that an examinee must 

possess to solve a test item.  
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a student masters a specific skill or strategy, a total score on a set of items—

calculated using the performance across several different topics—will likely not 

help (Junker & Sijtsma, 2001). Consequently, specific inferences about the 

examinees‘ strengths and weaknesses cannot be made.  

Third, the traditional assessment approach provides only a superficial 

understanding of the knowledge and skills examinees‘ use to solve items on the 

test. Some researchers have criticized the traditional approach by asserting that 

most tests assess only lower-order thinking skills (i.e., the learner‘s ability to 

memorize and recall discrete facts and knowledge; Law & Eckes, 1995; 

Simonson, Smaldino, Albright, & Zvacek, 2000). Several researchers claim that 

content-based tests provide only vague evidence of the process and mechanisms 

test takers use in responding to test items (Nichols, 1994), thus, students are held 

accountable only for what they know rather than considering how they know it 

(Briggs, 2007). Leighton and Gierl (2007a) claim that assessments derived from 

content specifications do not usually include a critical mass of items that allow the 

proper measurement of any particular skill. They argue that this deficit occurs 

because traditional assessments are designed to measure many different behaviors 

within a short time, but not with enough frequency or depth. As a result, it is 

difficult to make inferences about students‘ specific cognitive processes and 

problem-solving skills (see also Kato, 2009).  

Fourth, score reports based on the traditional assessment approach often 

provide limited feedback about how to improve a student‘s performance (Bailey, 

1998). The fact that only a single test score is provided to students, in addition to 
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the fact that skills are only superficially measured, contributes to the limited 

nature of the assessment feedback. These score reports also fail to capture the 

breadth and richness of the knowledge and skills that could help students learn 

and teachers instruct more effectively (NRC, 2001). This limited feedback may 

also be due, in part, to the fact that items are written using general content 

specifications and test construction is driven solely by examining psychometric 

properties of those items (Embretson & Gorin, 2001). Given that the 

establishment of what the test measures is frequently conducted after the test 

administration, in an exploratory approach (as opposed to a confirmatory manner), 

the inferences supported by the score reports are generally too vague and too late 

to inform instruction (Kato, 2009).  

Because of these four important limitations, some researchers deem 

traditional assessments as ineffective for promoting instruction and learning in a 

formative context (Bailey, 1998; Simonson, Smaldino, Albright, & Zvacek, 2000). 

Test users have also come to recognize that understanding student knowledge 

structures and processing skillsand how these knowledge and skills may change 

with instructionrequires continuous diagnostic feedback (Nichols, 1994). The 

demand for more useful information about students‘ strengths and weaknesses 

provides an opportunity for a new area of psychometric research based on the use 

of diagnostic testing and feedback. One solution to overcome the limitations of 

the traditional assessment approach is a new form of assessment called cognitive 

diagnostic assessment (CDA).  
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Cognitive Diagnostic Assessment and Educational Measurement 

Over the last two decades, many researchers have argued that advances in 

the cognitive and measurement sciences could provide a powerful basis for 

improving educational assessment (e.g., Baker, 1997; Cui & Leighton, 2009; 

Gierl, 2007; Messick, 1984; Mislevy, 1994; Nichols, 1994; Pellegrino, Baxter, & 

Glaser, 1999; Snow & Lohman, 1989). Pellegrino et al. (2001) assert that this 

merger could be mutually beneficial, with the potential to catalyze further 

advances in both fields. That is, reviewing advances in the sciences of how people 

learn and how such learning can be measured offer the potential for a much richer 

and more coherent set of assessment practices in the learning sciences (Pellegrino 

et al., 2001).  

In addition to meeting psychometric standards, a cognitive diagnostic 

assessment would also yield specific information regarding the individual 

examinee‘s educational needs (McGlohen, 2004). Cognitive diagnosis, as defined 

by Ohlsson (1986), is the process of inferring a students‘ cognitive state from his 

or her test performance. More recently, cognitive diagnostic assessment has been 

defined as an educational test designed to measure students‘ cognitive processes, 

learning, knowledge, and skill development for diagnostic purposes (Ketterlin-

Geller & Yovanoff, 2009). This approach uses the research from the learning 

sciences to structure psychometric models so inferences can be made regarding 

the structure and processes that underlie students‘ test performances (Nichols, 

1994).  
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Researchers also indicate that using CDAs may help overcome some 

limitations of the traditional approach to educational testing (Nichols, 1994; Cui, 

Leighton, & Zheng, 2006). CDA has at least four important strengths. The first 

strength of this approach is that results obtained using CDAs, in addition to the 

summative purpose (CDA can indicate which skills have not been mastered as a 

result of instruction), can also promote formative inferences about student 

learning (revealing, for example, which skills should be taught in the subsequent 

instructional cycle). Formative inferences allow teachers to redesign instructional 

approaches, evaluate instructional resources, and remediate students‘ weaknesses 

(Jang, 2008). Nichols and Joldersma (2008) claimed that CDA ―promises to 

provide teachers the kind of formative information with which to lever higher 

student achievement‖ (p. 407). The use of this formative approach is also viewed 

as a way to promote student engagement in learning by encouraging them to use 

assessment as a learning tool (Jang, 2008).  

The second strength of CDA is the fine grain size of the diagnostic scores, 

as opposed to the coarse grain size of the total score provided by the traditional 

approach. Rather than assigning examinees a single score, CDA provides 

examinees with a profile of diagnostic scores that yield information about 

―whether or not they have mastered each of a group of specific, discretely defined 

skills, or attributes‖ (Huebner, 2010, p. 1). This approach provides opportunities 

for students‘ to enhance their learning by receiving detailed and precise 

information about their cognitive problem-solving strengths and weaknesses in a 

particular content area or area of study.  
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The third strength of CDA is that it provides richer and more detailed 

information about the knowledge and skills measured by an educational test. 

According to Nichols (1994), the substantive assumptions regarding the processes 

and structures a student uses in a testing situation, as well as how the knowledge 

structures develop and how students at various ability levels differ, are made 

explicit. As CDAs provide specific and detailed information about students‘ 

knowledge and skills, we may also gauge a student‘s readiness to move on to 

higher levels of understanding and skill acquisition in a given domain (Gott, 

1990). This type of diagnostic feedback is possible because CDAs offer a more 

complex understanding of students‘ problem-solving skills and a more direct 

method for evaluating a students‘ strategic knowledge. Cui and Leighton (2009) 

claim that empirically analyzing test responses to confirm the cognitive model 

used in test design can also strengthen the validity argument about the construct 

being measured, which helps clarify the psychology that underlies test 

performance and provide more interpretable and meaningful test scores. By 

identifying and measuring complex cognition, knowledge structures, and 

processing skills, one can connect test performance to richer test score 

interpretations, which may help instructors and students design strategies to 

improve the teaching and learning processes.  

The fourth strength of CDA is the potential to enhance the quality of 

diagnostic feedback provided to students. The CDA score report yields detailed 

information about what knowledge and skills were measured by the test and the 

degree to which the examinee has mastered these knowledge structures and 
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processing skills. The reports also provide specific diagnostic feedback that has 

the potential to guide instructors, parents, and students in the teaching and 

learning process. In addition to the potential for identifying particular strengths 

and weaknesses, diagnostic outcomes can also help teachers highlight what a 

student has learned, detect incomplete and incorrect knowledge states, and decide 

how instruction needs to be adapted to meet the needs of the student (Ye, 2005). 

Moreover, diagnostic feedback may encourage students‘ involvement in the 

learning process by providing reporting tools that effectively identify their needs 

thereby allowing the students to identify strategies to foster learning and promote 

educational improvement.  

However, in order to make detailed and useful inferences about an 

examinee‘s cognitive strengths and weaknesses, it is crucial that the assessment be 

based on a cognitive model, of some type. A cognitive model provides the 

interpretative framework to guide both the development of items and the 

interpretation of examinees‘ scores so test performance can be linked to specific 

inferences about examinees‘ knowledge and skills (Gierl, Alves, & Taylor-

Majeau, 2010). A cognitive model is defined by Leighton and Gierl (2007a) as a 

simplified description of human problem-solving at some convenient grain size or 

level of detail that facilitates explanation and prediction of students‘ performance. 

Hence, cognitive models have been related to how people develop structures of 

knowledge, including the concepts associated with a domain, and procedures for 

reasoning and solving problems in that domain (Pellegrino et al.,2001).  
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Thus, in order to develop diagnostic assessment tasks and to generate 

diagnostic scores, a cognitive model must be identified and evaluated, items must 

be developed to measure the knowledge and skills in the cognitive model, and 

confirmatory model-based psychometric procedure must be used to score the data 

(Gierl & Cui, 2008). Leighton (2008) asserts that cognitive psychology, cognitive 

sciences, and/or the learning sciences are ―supposed to guide the application of 

diagnostic cognitive models and to contextualize inferences drawn from their 

results‖ (p. 272-273). She also claims that ―the underlying cognitive demands of 

the test, or the lack thereof, go unquestioned‖ (Leighton, 2008, p. 274). According 

to Gorin (2006) research and development of sophisticated statistical methods to 

model cognitive information has increased, but also claims that equal attention 

must be placed on the cognition behind the statistics. She states: 

The application of these cognitive-psychometric methods is fruitless if the 

tests to which they are applied lack a formal cognitive structure. If 

assessments are to provide meaningful information about student ability, 

then cognition must be incorporated into the test development process 

much earlier than in data analysis (p. 21).  

A similar claim was made by Ye (2005) who declared that ―to diagnose how well 

students learn, it is important to know beforehand how students learn‖ (p. 21). 

These statements indicate the need for continuous research to advance the 

understanding about the fundamental psychological processes underlying 

knowledge and skill acquisition. The terms knowledge and skills are used to 

represent, respectively, declarative knowledge (knowing what), and procedural 
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knowledge (knowing how). Winterton, Delamare Le Deist, and Stringfellow 

(2006) claim that the acquisition of declarative knowledge (factual knowledge) 

must precede the development of procedural knowledge (skills).  

Even though our understanding about how knowledge is organized, how 

children develop conceptual understanding, and how expertise is acquired in 

specific subjects has greatly advanced in the last 20 years (cf. Pellegrino et al., 

2001), much work remains. The structures and processes required for learning 

need to be more clearly understood, so a sound theoretical foundation to 

diagnostic assessments can be developed. A cognitive model is necessary in order 

to generate specific diagnostic inferences underlying test performance. The 

knowledge and skills, also called attributes, are specified at a small grain size in 

order to generate specific diagnostic inferences underlying test performance. 

Attributes can include different procedures, skills, and/or processes that an 

examinee must possess to solve a test item
4
. Hence, cognitive models provide the 

interpretative framework for linking test score interpretations to cognitive 

attributes.  

The use of a psychological perspective to think about cognition, learning, 

and cognitive models provides a framework for deciding ―what to see as a 

problem, how to think about them, and how to solve them‖ (Mislevy, 2006, p. 

261). According to Gierl and Leighton (2007), the information-processing 

perspective is required to model the psychology of test performance in CDA. 

                                                           
4
This definition is fairly similar to the way Mislevy and Riconscente (2006) use KSAs 

(Knowledge, Skills, and Abilities), where they credited industrial psychologists to the use the 

acronym to refer to the targets of the inferences they draw about someone.  
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Mislevy (citing Rupp & Mislevy, 2007) purports a similar idea when he claims 

that cognitive diagnostic models often draw inferences about students under this 

perspective.  

Cognitive Psychology and the Information-Processing Perspective 

Information processing is a dominant psychological perspective used by 

cognitive psychologists (Casey & Moran, 1989; Palmer & Kimchi, 1986; Pashler, 

1995; Solso, MacLin, & MacLin, 2005). According to Berg (2000), the 

information-processing perspective endeavors ―to understand the processes by 

which intellectual products are formed by examining the processes, 

representations, and strategies individuals use to perform specific intellectual 

tasks‖ (p. 131). Hence, this perspective provides methods to tap into the internal 

processes of cognition so specific cognitive models can be developed (Yang & 

Embretson, 2007). Newell and Simon (1972) highlight that an analogy between 

information processing in computers and information processing in people has 

been used for understanding cognition. Even though the computer metaphor 

seems very simplistic to represent human cognition, this metaphor continues to 

have a positive impact on the development of cognitive psychology (Solso et al., 

2005). This positive impact continues to occur because models of human 

cognition bear some similarities to the sequence of events involved in computer 

processing: they may be regarded as carrying out a task in a series of programmed 

steps, in which each step in the sequence changes its immediate predecessor 

(Casey & Moran, 1989). Thus, cognitive processes are assumed to occur as a 

―sequence of successively transformed states‖ (Hayes & Broadbent, 1988, p. 271). 



25 
 

According to Eysenck and Keane (2000), by using computational models—

supported by experimental evidence—it is possible to have a sense about how the 

mind functions and about what takes place between observable input and output. 

Palmer and Kimchi (1986) explain this process as follows: 

Certain information from the environment (the ―input‖) is available to the 

mind through sensory systems, much as input information is available to a 

computer program through peripheral devices such as terminal, card 

readers, and the like. Some of this information is then manipulated in more 

or less complex ways by mental operations, much as a computer program 

manipulates information according to the rules it embodies. Among these 

mental operations are ones that select, transform, store, and match 

information arising from the present situation, from memories of past 

situations, from plans for future situations, or (usually) some combination 

of these. As a result of such operations, the mind produces information in a 

different form (the ―output‖) that is expressed as overt behavior, in much 

the same way that a computer program outputs information through the 

peripheral output devices (pp. 38-39).  

Limitations of the information-processing perspective include (a) 

neglecting affect and conation
5
, (b) lacking understanding about the contextual 

specificity of abilities, and (c) inherent limitations of the short-term memory. 

Lohman (2000) claims that the first limitation has an effect on the information-

                                                           
5
Definitions of conation include: 1) Aspects of mental processes or behavior directed toward 

action or change and including impulse, desire, volition and striving (American Heritage 

Dictionary of the English Language, 1971); and 2) …an aspect of man‘s psychic life having to 

dowith striving and will, traditionally distinguished from cognition and affection (Good, 1973, 

Dictionary of Education).  
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processing perspective as affect can constrict cognition (when represented by 

anxiety and frustration) or enhance or direct cognition (when represented by 

interest and surprise). Conation can affect cognition as people who adopt a 

constructive, motivational orientation will tend to exhibit better self-regulation 

when executing a task. The second limitation refers to the fact that cognitive 

abilities are situated, as Lohman (2000)—referring to Snow (1994)—claims that 

―abilities are reflected in the tuning of particular persons to the particular demands 

and opportunities of situations and thus reside in the union of person in the 

situation, not ‗in the mind‘ alone‖ (p. 329). Twenty years earlier, Norman (1981) 

had already criticized the information-processing perspective for the neglect of 

social, cultural, motivational, and emotional factors in cognition. The third 

limitation refers to the number of units that can be processed at one time. Miller 

(1956) gave the number 7 ± 2 for the number of items one can hold in the short-

term memory. More recent research suggests different spans of numbers, such as, 

three to five items as the population average (Cowan, 2001) and clusters of no 

more than three or four items (Halford, Wilson, & Phillips, 1998).  

Despite these limitations, Palmer and Kimchi (1986) still believe that 

information-processing is a viable theoretical approach to cognition. This is 

because the underlying theory has to be clearly stated—including explicit 

information about its assumptions and necessary steps—in order to be 

implemented computationally. Another strength of the approach stems from the 

fact that the fundamental assumptions of information-processing theories are that 

―the human mind is complex and that changes in mental functioning occur 

http://www.well.com/user/smalin/miller.html
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through some combination of improvements in basic capacities, strategies, and 

content knowledge‖ (Chen & Siegler, 2000, p. 96, citing Klahr, 1992). These 

characteristics have contributed to the information-processing potential to identify 

strengths and weaknesses of students as they build an understanding of problems 

and search for solutions to problems (Zoanetti, 2010). Therefore, this approach is 

also deemed important for developing cognitive models for cognitive diagnostic 

assessments.  

Characteristics of Cognitive Models for CDA 

Cognitive models possess at least four defining characteristics when used 

in CDA (Gierl, Roberts, Alves, & Gotzmann, 2009). The first characteristic, grain 

size, requires that the skills specified in the model are written at a level of 

specificity that allows us ―to provide examinees with information concerning 

whether or not they have mastered each of a group of specific, discretely defined 

skills, or attributes‖ (Huebner, 2010). This specific information can be generated 

because the grain size of these models is fine (as opposed to coarse, which occurs 

when a single test score is used), thereby increasing the depth to which both 

knowledge and skills are measured with the test items. Gierl, Wang, and Zhou 

(2008) claimed that the attribute grain size is a ―constant concern when 

developing a diagnostic test because the attribute must characterize the knowledge 

and skills used by all examinees as they solve items‖ (p. 6). If the attribute grain 

size is too coarse, then the score reports will allow only broad and, potentially, 

uninformative inferences about the examinees‘ cognitive skills, they affirm. The 

specificity of the cognitive inference desired to be reported should help one to 
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choose the appropriate attribute grain size. Depending on the assessment 

characteristics, a finer grain size cognitive model may be used. The frequency and 

amount of time allocated for assessing students, and the amount of time and 

money assigned for the development of cognitive models and test items are 

examples of characteristics that may affect the depth (or the attribute grain size) of 

the assessment. For example, a finer grain size model may be used if an 

assessment does not impose constraints about the frequency that students can be 

assessed (where frequently means having their classes interrupted or requesting 

them to answer the test during their free time), and there are an adequate number 

of content specialists to develop a very detailed cognitive model and the 

associated test items needed to measure the skills in the model.  

A second characteristic is the hierarchical ordering of the skills in the 

cognitive model. Often, a cognitive model reflects a hierarchy of ordered skills 

within a domain as cognitive processes share dependencies and function within a 

much larger network of inter-related processes, competencies, and skills (Gierl, 

Leighton, Wang, Zhou, Gokiert, & Tan, 2009; see also Anderson, 1996; Dawson, 

1998; Kuhn, 2001; Mislevy, Steinberg, & Almond, 2003). In the cognitive model 

development process, the items that measure each attribute must maintain the 

cognitive structure outlined in the hierarchy and must directly measure specific 

cognitive processes of increasing complexity (Gierl, Wang, & Zhou, 2008). As 

explained by Gierl et al. (2008), if test performance is to be linked to information 

about examinees‘ cognitive skills, then items in a cognitive diagnostic assessment 

should be designed systematically using this hierarchical order. Although this is a 
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controversial topic, as many of the current CDA applications do not entail a 

hierarchical cognitive model, the benefits of using a structured fashion to organize 

the attributes are numerous. Ordering the attributes is a desirable characteristic 

because it allows a more structured way to understand examinees‘ cognitive skills. 

It also helps content specialists to comprehend the interconnections between 

items, which facilitates the item development process. This is significant for test 

development because the items that measure the attributes must maintain the 

cognitive structure outlined in the hierarchy and must directly measure specific 

cognitive processes of increasing complexity. In other words, the items in a 

cognitive diagnostic assessment could be designed systematically using this 

hierarchical order, facilitating the link between test performance and examinees‘ 

cognitive skills.  

The third characteristic concerns the measurability of the skills, meaning 

skills must be described in a way that would allow a test developer to create an 

item to measure each skill. For example, to ―employ mathematical reasoning 

throughout a complex problem to reach a solution‖ is not a measurable skill as 

worded because the terms ―mathematical reasoning‖ and ―complex problem‖ are 

vague expressions and do not provide enough information for accurate item 

development. Supposing that three content specialists were asked to develop an 

item for this skill, it is possible that three completely different tasks would be 

designed. That is, the skill is not stated clearly, it does not entail an observable 

outcome, and it is difficult to operationalize using a test item. Usually, a 

measurable skill contains an action verb that requires the examinee to demonstrate 
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a knowledge state or enact a specific problem-solving skill while answering a test 

item. In short, the measurability of the skill is an important feature that facilitates 

the link between the cognitive model, test design, and students‘ performance. 

Thus, in order for a test to accurately measure the application of the knowledge, 

skills, and abilities possessed by the examinee, it is vital that the skills are well 

specified, allowing students to demonstrate their skills mastery or domain using 

some type of permissible test item.  

The fourth characteristic is the instructional relevancy of the skill. The 

structure of an assessment must be developed around the concept that the 

outcomes of a diagnostic assessment are both instructionally relevant and 

meaningful to students, their parents, teachers, and other school officials. Because 

outcomes from a diagnostic assessment can provide information that might be 

used for planning classes, modeling instruction, measuring students‘ progress, and 

offering feedback to students and parents, it is important that the measured skill be 

consistent with instructional objectives and learning outcomes from the 

educational system. The extent to which a diagnostic assessment measures 

relevant skills reflects how meaningful the assessment results will be to the 

stakeholders. For example, instructionally relevant outcomes—based on, for 

example, age-appropriate tasks and real-world situations—may be used by 

teachers to form a picture of student performance across skills, to identify 

struggling students, to better isolate and analyze their deficiencies, and to develop 

interventions with a higher likelihood for success. Hence, by measuring 
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instructionally relevant skills, student performance can be easier linked to 

instructional actions.  

Conceptual Frameworks for Developing Cognitive Models 

Different conceptual frameworks have been used to develop cognitive 

models. In this dissertation, three frameworkstheoretical, content specialist, and 

combinedare described and discussed.  

The first framework, theoretical, guides research activities by its reliance 

on a formal theory developed using an established, coherent explanation of certain 

types of phenomena and relationships (Eisenhart, 1991). The social psychologist, 

Kurt Lewin, once noted that ―there is nothing as practical as a good theory‖ (1952, 

p. 169). Ideally, a theory of task performance would direct the development of the 

cognitive model as theories provide a valuable method for developing cognitive 

models as they are based on knowledge and skills used by students as they 

respond to test items (Gierl, Leighton, Wang, et al., 2009). Although there are few 

theories readily available in the educational or psychological literature, the role of 

cognitive psychology theory cannot be underestimated, as it may provide unique 

information on how to conceptualize complex problem-solving skills (Leighton, 

2008).  

An example of CDA research guided by a theoretical framework can be 

found in Briggs and Alonzo (2009). They developed a diagnostic assessment 

based on the science content domain of The Earth in the Solar System (ESS). The 

cognitive model, called learning progression by the authors, was developed based 

on national science education standards (American Association for the 
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Advancement of Science [AAAS], 1993; NRC, 1996) and research literature on 

students‘ understanding of the targeted concepts [see Briggs and Alonzo (2009) 

for a complete list of the literature]. According to Briggs and Alonzo, each 

learning progression outlines one possible pathway that students might take in 

moving from their initial ideas to fully understanding the construct. In this 

investigation, the attribute hierarchy method (Leighton, et al., 2004) was applied 

to Ordered Multiple-Choice (OMC) item responses to classify a student at a 

distinct location of a learning progression. The authors concluded that the 

reviewed literature provided important information about the prevalence of 

particular ideas at different ages; however, little documentation of students 

actually progressing through these ideas was found in this literature material.  

Although the theoretical framework can be used to help develop cognitive 

models for CDAs, the critical limitation is that there is a scarcity of theories 

applicable to cognitive model development for educational testing in many 

domains. That is, few models are available because cognitive theories specifying 

the underlying processes, strategies, and knowledge structures that are required to 

solve tasks on educational tests are simply not available. Another common 

problem associated with the use of a theoretical framework is the lack of solid 

evidence to support scholars‘ claims and their tendency to address and explain 

research problems by theoretical decree (Einsenhart, 1991). This decree creates a 

disconnection between the conclusions produced by the theoretical description 

and the usefulness of the descriptions in addressing problems in day-to-day 

practice (Lester, 2010; Einsenhart, 1991). Ferrara and DeMauro (2006) 
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highlighted this problem, claiming that empirical outcomes from the 

psychological sciences have, so far, provided little guidance in the development of 

most educational tests. Reasons for this disconnection may include the use of 

technical language, different grade levels or content areas, coarse research 

outcomes that are uninformative for the development of cognitive models, 

outcomes that are too specific thereby limiting construct representation, and 

limited content coverage as measured by a diagnostic assessment.  

The second framework, content specialist, is the process where 

accumulated knowledge and experience from experts serve as a basis for 

cognitive model development. Terms that have been used to refer to the content 

specialist method include: expert judgment (Leighton, Heffernan, Cor, Gokiert, & 

Cui, 2008), subject-matter expertise (Mislevy, Behrens, Bennett, et al., 2010), 

expert practitioner (Shute, Graf, & Hansen, 2006), practical (Eisenhart, 1991), 

and expert elicitation (Knol, Slottje, Sluijs, & Lebret, 2010). These terms refer to 

a structured approach where subject-matter experts organize the knowledge in an 

explicit way (Knol et al., 2010). The content specialist method synthesizes 

available knowledge, when conclusive scientific evidence is still not available. 

The importance of these professionals in the educational research field is also 

described by Leighton, Cui, and Cor (2009), who stated that ―content experts are 

often in a good position to anticipate the knowledge and skills students use to 

respond correctly to test items since many have worked as teachers and therefore 

have insights into student thinking and performance‖ (p. 234). Being directly 

involved with teaching and learning helps experts to identify the knowledge and 
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skills that students may use to solve items. Also, the accuracy of the results is 

increased by aggregating the opinions of multiple experts compared to using the 

opinion of a single expert (NRC, 2009).  

An example of research conducted using the content specialist method is 

provided by Gierl, Wang, and Zhou (2008). The purpose of this study was to 

apply the attribute hierarchy method to a subset of SAT (Scholastic Aptitude Test) 

algebra items to promote cognitive diagnostic inferences about examinees. They 

evaluated examinees' cognitive skills in algebra using a cognitive model 

developed by content specialists. Their cognitive model was developed by asking 

content specialists to review the SAT algebra item, identify their salient attributes, 

and order the item-based attributes into a hierarchy. Gierl et al. (2008) concluded 

that examinees‘ response patterns provided a good approximation to the skills in 

the cognitive model identified by the content specialists.  

Content specialists are used extensively in the design and development of 

educational assessments, from the initial stage of cognitive model development to 

the final stage of item validation (e.g., Gierl, Roberts, et al., 2009; Jang, 2008). 

However, relying solely on expert judgments may have some disadvantages. 

Because knowledge and skills are not directly observable, content specialists may 

provide only a superficial understanding of the knowledge and skills examinees‘ 

use to solve items on the test. Also, as pointed out by Leighton et al. (2009), 

expert and novice problem solvers differ in many ways. Experts not only possess 

more knowledge and skills than novices but these knowledge and skills but also 

organize this knowledge differently, usually more efficiently (Leighton et al., 
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2009). Besides commanding more facts and concepts than novices, experts 

generally make richer interconnections among them, and view, represent, and 

approach problems differently than novices (Mislevy, 1994). Therefore, by having 

experts develop cognitive models for students, it is possible that the generated 

models (and expected response processes) do not generalize to all ability levels in 

the student sample. As content specialists have no direct knowledge about the 

cognitive path invoked by the item (Schmeiser & Welch, 2006), cognitive models 

developed by these specialists may or may not be an accurate representation and 

description of the knowledge and skills that examinees actually use when solving 

items. Another limitation of this method is that of unintentional bias (NRC, 2009). 

Unintentional bias means that the source of the bias is not purposeful, but rather 

unconscious. For example, bias can occur when the experts place too much 

importance on one aspect of an event, do (or believe) things because other experts 

do (or believe) the same, and interpret information in a way that confirms one's 

preconceptions. These limitations are accentuated when a single content specialist 

or small number of them are used for the cognitive model development.  

The third framework, combined, is also based on previous research similar 

to the theoretical method, but this method can encompass an array of current and 

possibly far-ranging resources (Eisenhart, 1991). It may combine outcomes from 

theories, expert knowledge, empirical research, or other sources relevant to a 

research problem. Eisenhart (1991) claims that the researcher is less likely to 

explain empirical evidence using decree, convention, or accident using the 

combined framework because it helps to triangulate theory, expertise, and 
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empirical investigation. The combined method has also been used by educational 

measurement researchers to develop cognitive models. In fact, there are 

similarities between this method and what Nichols (1994) calls ―substantive‖ 

research. Substantive research is based not only on assumptions, but also on 

research reviews and accumulation of scientific evidence. Nichols (1994) claims 

that two elements form the foundation of substantive research in education 

measurement research. The first element is a description of the cognitive 

mechanisms a student uses in a testing situation. The second element is the 

specification of the item characteristics that are hypothesized to influence the 

cognitive mechanisms used by the students when answering a test. By recognizing 

the different processes and knowledge structures that a student brings to a test 

situation, the test developer may construct items that require these structures 

(Nichols, 1994).  

An example of the combined method is provided by Ketterlin-Geller, Jung, 

Geller, and Yovanoff (2008). They evaluated a cognitive diagnostic test that 

measured division of fractions. The cognitive attributes were identified using task 

analysis, mathematics textbooks review, expert review, and verbal protocols. 

During the task analysis of the skills and knowledge needed to divide fractions, 

the fraction problems were classified into three categories: a proper fraction is 

divided by a proper fraction, a fraction is divided by a whole number, and 

problems involving dividing mixed numbers. Mathematics textbooks were 

reviewed to determine the precise steps involved in dividing fractions. According 

to the authors, the attributes were defined by examining the mathematical 
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rationale and isolating the specific steps needed for students to understand and 

execute the problem, as outlined in the texts. Expert review was used to refine the 

attribute list by removing irrelevant attributes or adding necessary skills that were 

missed during the previous steps. Verbal protocols with students were conducted 

to collect additional evidence about the cognitive model. The hierarchical 

relationship among the attributes was also investigated by the research team by 

carefully analyzing the sequence of skills and knowledge needed to divide 

fractions. Members of the research team and a mathematics content specialist then 

wrote 252 items. The data were analyzed using a one-parameter IRT model. Of 

the 252 items, 229 adequately fit the model, as evaluated using the mean square 

residual fit statistics. The authors concluded that the cognitive model and the test 

items were appropriate for the purposes of the project. Hence, the combination of 

task analysis, mathematics textbook review, expert review, and verbal protocols 

was useful for the cognitive model development.  

The combined method plays an important role in the development of 

cognitive models. Nonetheless, as with the theoretical and the content specialist 

methods, the combined method also has limitations. In addition to the limitations 

discussed for the theoretical and content specialist methods, the implementation of 

the combined method is laborious and costly, as it often requires the development 

of cognitive models based on evidence of examinee response processes. Gierl, 

Leighton, Wang, et al. (2009) claimed that cognitive models are ―expensive to 

develop initially and to refine over time because they require extensive—typically 

experimental—studies of problem solving on specific tasks; and they require 
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cognitive measurement expertise, which is uncommon‖ (p. 2). For example, 

research that focuses on the metacognitive techniques can be very time consuming 

as it often involves ―recruiting and interviewing students, audiotaping or 

videotaping their responses, and then transcribing, categorizing, coding, and 

finally interpreting the contents of the reports so as to design plausible cognitive 

models of task or test performance‖ (Leighton et al., 2009, p. 230; see also 

Leighton, 2004). These constraints together with the paucity of information 

currently available on the knowledge, processes, and strategies that characterize 

student performance in many domains accentuates the challenges inherent to 

developing cognitive models using the combined framework.  

In the previous section, three frameworks for cognitive model 

development in educational measurement were discussed. Each framework has 

strengths, weaknesses, and trade-offs. Leighton and Gierl (2007a) suggested that 

in an ideal world, different approaches would be ―blended‖ to reap the benefits of 

one another. However, as added by these authors, blending approaches are not 

always possible in practice. In most practical situations, one must consider the 

desirable breadth of the assessment on the one hand and the depth of the model on 

the other hand (Leighton & Gierl, 2007a), being aware that these two are not 

always compatible. Other factors to consider when choosing a framework concern 

the availability of human expertise as well as time and financial resources for 

research and assessment implementation.  
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Steps for Implementing a Cognitive Diagnostic Assessment 

Next, I outline an organizational structure for delineating the major 

components required to implement a cognitive diagnostic assessment. This 

structure, which can be described as a principled test design approach, is based on 

a four-step procedure: (1) attributes are first identified to characterize the 

cognitive model underlying examinees‘ problem-solving skills, (2) test items are 

constructed according to the cognitive model, (3) a confirmatory psychometric 

procedure is used to analyze the data, and (4) a detailed score report is provided. 

The four steps help gather evidence systematically to support the assessments 

purposes, i.e., to be cognitive and diagnostic, providing useful information about 

students‘ strengths and weaknesses. Gierl (2007) states: 

[A] principled approach to test design and analysis is required where the 

cognitive model is first identified and evaluated, then the test items are 

developed to measure the attributes in the model, and finally model-based 

statistics are used to analyze the data, generate the scores, and guide the 

interpretations of examinees‘ performance (p. 337).  

The principle approach proposed by Gierl draws on the evidence-centered design 

(ECD) framework introduced by Mislevy, Steinberg, and Almond (2003) and 

assessment engineering (AE) introduced by Luecht (2007). Briefly, ECD is 

understood as a set of activities that facilitate explicit thinking about the purpose 

of an assessment, what is the evidence in student performance required to support 

the assessment‘s purpose, and how a test can be developed to offer students an 

optimal opportunity to provide the observable evidence that they achieved the 
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assessment‘s purpose (Huff, Steinberg, & Matts, 2009). As a conceptual 

framework for designing, producing, and delivering educational assessments 

using evidentiary arguments, ECD helps to ensure that evidence supports the 

underlying knowledge the assessment is intended to measure (Mislevy, Steinberg, 

& Almond, 2002). This standpoint is valuable for principled test design because it 

clarifies the conceptualization of assessment as a structured, coherent, and 

purposeful process that should lead to more valid inferences about student 

performance on exams. AE also represents a relatively new area of research in 

educational measurement that provides an integrated framework for assessment 

design, item writing, test assembly, and scoring (Luecht, 2008).  

Masters (2010) claimed that AE consists of defining the progression of 

ordered claims about proficiencies and skills, documenting of the universe of 

observable actions, responses, and/or products that would qualify as evidence for 

a particular proficiency claim, constructing task models, designing templates, 

writing items, and calibrating and scoring data. By emphasizing the importance of 

content expertise and technology, AE is a valuable tool in the principled test 

development approach adopted in this dissertation. The role of content experts is 

critical for the creative task of designing and developing meaningful models 

(Gierl, Zhou, & Alves, 2008). At the same time, the role of technology is 

emphasized in tasks such as executing the algorithms necessary to combine a 

large number of elements and allow the operationalization of many procedures 

such as automatic item generation, test assembly, and psychometric analyses.  
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Step 1: Cognitive Model Development 

The first step in principled test design requires the identification of the 

attributes that students are expected to master in a specific domain. When the 

attributes are structured, they form a hierarchy that approximates a cognitive 

model, which is used to guide item development and to provide the interpretative 

framework needed for linking test score interpretations to cognitive attributes. 

Accordingly to Ketterlin-Geller et al. (2008), ―the cognitive model is composed of 

attributes that are domain specific prerequisite skills and knowledge needed to 

demonstrate mastery in the targeted task‖ (p. 4). Attributes can be identified by 

studying the knowledge, processes, and strategies used by examinees that are 

believed to underlie conceptual understanding in a particular domain. Inquiry 

methods for analyzing student thinking processes such as expert review, task 

analyses, and verbal protocols are useful tools for the identification and/or 

validation of the attributes required to develop a cognitive model (Ketterlin-Geller 

et al., 2008; Gorin, 2006). For example, when using the judgement from content 

specialists for developing cognitive models for diagnostic assessments, these 

specialists draw on their experience in the content domain to anticipate the 

relevant knowledge and skills with which to describe a construct (Leighton et al., 

2009). They may also review textbooks, academic journals, and curricular 

documents to inform the model development process. To facilitate the explanation 

and prediction of students‘ performance, it is desirable to consider some aspects 

during the development of a cognitive model. Namely, the attributes should be 
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written at a fine grain size, ordered by complexity, measurable, and instructionally 

relevant.  

Step 2: Item Development 

The second step consists of using the cognitive model generated in the first 

step as a guide for developing test items. Items should be developed from 

empirically-based cognitive models of learning to support diagnostic inferences 

about examinees‘ thinking processes (Leighton & Gierl, 2007b; Nichols, 1994). 

Item development is often based on an iterative process of generation-revision-

modification of the items in which teachers and/or content specialists participate. 

An example of item development for a diagnostic assessment using a principled 

test design approach is presented in Briggs, Alonzo, Schwab, and Wilson (2006), 

where ordered multiple-choice items (OMC) were  written according to cognitive 

models (which they call construct maps). OMC items combine the efficiency of 

traditional multiple-choice items with the qualitative richness of the responses to 

open-ended questions. The items were developed based on the underlying 

construct map−a central element to the design and interpretation of the OMC 

items. As described by the authors, each item response option is linked to a 

specific developmental level of student understanding. For example, the 

distractors were written to represent different levels of the construct map (based 

on the description of understandings and common errors expected of a student at a 

given level). Responses obtained from open-ended version of the items were also 

examined. Common or expected students‘ responses to those items were 

incorporated into the development of the distracters. The items were revised 
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extensively by their research team, regional directors of a statewide science 

reform program, and developers of an elementary school science curriculum. A 

pilot test was conducted with the items. Results from this pilot test revealed that 

the estimated reliability (Spearman-Brown) for these diagnostic items was 

comparable to traditional multiple-choice items. The study also presents some 

preliminary evidence suggesting that the test scores based on ordered items have 

the potential for greater diagnostic value than test scores based on traditional 

items. In short, this study presents a systematic way of linking item development 

and cognitive modeling. The authors successfully demonstrated that by using 

design principles it is possible to establish a connection between students‘ item 

response and the developmental progression of student understanding, embodied 

in the cognitive model. In other words, using attributes as a foundation for item 

development has the potential to facilitate a direct connection between cognitive 

theory and assessment practice. Evidence for response processes can be gathered 

empirically through pilot and field tests, which constitute an essential aspect of 

the item development process (Briggs et al., 2006). Chapter 3 of this dissertation 

describes another example of item development for diagnostic assessments using 

a principled test design.  

Step 3: Confirmatory Psychometric Analysis 

The third step consists of using a confirmatory psychometric analysis to 

evaluate the cognitive model. The term confirmatory indicates a manner to assess 

the plausibility of the model-data fit relative to the intended underlying cognitive 

model the assessment is designed to measure (Gierl, Zhou, & Alves, 2008). For 
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example, confirmatory analysis may be applied to verify a cognitive model 

developed by expert analysis (which functions like an a priori model) against the 

data collected from students test responses. By using a confirmatory procedure to 

interpret test performance, the test developer gains control over the scores and the 

inferences about processes and skills associated with test performance (Gierl, 

Leighton, Wang, et al., 2009). The number of diagnostic psychometric methods 

created to analyze cognitive data structures has dramatically increased in recent 

years (Gorin, 2006). Interpretation of assessment data is facilitated by using a 

powerful psychometric procedure, such as the attribute hierarchy method. These 

procedures are also necessary to verify whether a given student possesses the 

attributes required to complete a task, such as solving a problem in a certain 

domain. Rather than assigning examinees a general mark or letter grade, some 

diagnostic psychometric tools provide examinees not only with information 

concerning whether or not they have mastered each of a group of specific skills, 

but also with individual skill probabilities. The choice of the psychometric 

procedure affects how reliable and useful the outcomes will be for making 

inferences about students‘ strengths and weaknesses. Complexities of cognitive 

psychological theories (represented by attribute hierarchies, for example) require 

sophisticated psychometric procedures that can handle complex cognitive 

structures and the dependencies among skills, and yield specific cognitive 

inference. Cognitive diagnostic models are deemed to hold great promise for 

enhancing the quality of diagnostic feedback provided to students because they 
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contain complex structures including attribute dependencies and they can guide 

specific cognitive inferences (Huebner, 2010).  

Step 4: Score Reporting 

The forth step specifies how diagnostic scores can be transformed into 

valuable score reports for test users. Score reports must present information that is 

useful to the students, teachers, parents, and relevant school administrators. 

Constructing meaningful reports is not an easy task, however. The difficult role of 

translating scores in informative reports is highlighted when we consider what 

scores represent, or should represent. According to Snow and Lohman (1989) ―...a 

score reflects a complex combination of processing skills, strategies, and 

knowledge components, both procedural and declarative and both controlled and 

automatic, some of which are variant and some invariant across persons, or tasks, 

or stages of practice‖ (p. 268). To construct score reports that better reflect the 

construct being measured, researchers and practitioners need to understand not 

only the relations between cognition and task performance, but also the features 

that affect the usefulness of a score report. In a recent paper published by Roberts 

and Gierl (2010), they claim that establishing a structured approach to the test 

score reporting process is an important way to ensure that relevant features are 

identified and presented in the report. These authors conducted an extensive 

review of current test score reporting practices in education. They also presented a 

sample diagnostic score report illustrating a framework that can be applied to 

CDA using the attribute hierarchy method. This sample report was designed in 

three sections with related but different functional purposes: 
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The top section of the report contains orienting information in the form of 

an overview of contents for the reader. Student identification information 

and a summary score is brought to the attention of the reader by placing it 

in a colored, boxed area in the top-left hand corner of the page. [...] The 

middle section of the report, ―Review Your Answers‖ contains diagnostic 

information regarding attribute mastery along with item-level 

performance. [...] The bottom section of the report is structurally and 

visually separated from the middle section by the use of a box. This 

section contains mostly text-based information using bullets with left 

alignment for clarity in presentation and ease of reading (Roberts & Gierl, 

2010, p. 33).  

The back page of the report provides a description of the skill category as defined 

by the cognitive model, an explanation of how diagnostic profiles are produced 

based on a student‘s response pattern, and contextual information for interpreting 

the contents on the front page of the report (Roberts & Gierl, 2010). The goal of 

score reporting, as defended by Roberts and Gierl, should be focused towards the 

clarity of communication between the test developers and test users. 

Unfortunately, few studies have focused on implementing these guidelines on 

cognitive diagnostic reports (Roberts & Gierl, 2010).   

CDAs in the Context of Mathematics 

Many systematic reviews have been conducted in an attempt to determine 

―how, where, and why people learn or do not learn mathematics‖ (Begle & Gibb, 

1980, p. 8) and, ultimately, to better understand how to offer high-quality early 
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mathematics instruction to students. Siegler (2003) claims that analyzing 

mathematical procedures and concepts is crucial to promote effective learning, 

provide students with instruction and examples that help them learn the 

component skills of the task, help teachers to anticipate types of 

misunderstandings that most often arise in the learning process, and prepare 

teachers with the means for helping students move beyond these 

misunderstandings.  

In order to gather information about mathematical procedures and 

concepts, an increasing volume of research on cognitive diagnostic assessments, 

especially in the domain of mathematics, is accumulating. Examples of areas in 

mathematics that have been the focus of research include pre-algebra patterns (Ye, 

2005), algebra (Gierl, Cui, & Zhou, 2009; Gierl, Wang, & Zhou, 2008; Russell, 

O‘Dwyer, & Miranda, 2009), mixed-number subtraction (Henson, Templin, & 

Willse, 2009; Sinharay & Almond, 2007; Tatsuoka, 1990), proportional reasoning 

(Baxter & Junker, 2001; Béland & Mislevy, 1996), fractions (de la Torre & 

Douglas, 2004, 2008), and multiplication and division with exponents (Birenbaum 

& Tatsuoka, 1993). The application of cognitive diagnostic models to 

mathematics, although not abundant, is more prevalent compared to other domain 

areas such as scientific reasoning and reading comprehension.  

Table 1 presents a list of CDA studies in the domain of mathematics that 

were reviewed for this dissertation. The table contains six columns. The first 

column presents the authors and the publication year of the manuscript (the 

manuscripts are listed from most to least recently published). The second column 
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presents the specific mathematics subject area being studied. Columns three to six 

present information about the four necessary steps for principled test design in 

CDA (i.e., the presence of: cognitive model, item development, confirmatory 

analysis, and detailed score report). Check marks in each these four columns 

indicate that the step was conducted in the study.  
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Table 1. Summary of the reviewed cognitive diagnostic studies in Mathematics. 

  

Authors Subject 
Cognitive Model (CM) 

Item 
development 

Confirmatory 
Analysis 

Detailed 
score 
report 

Presents 
CM 

Describes CM 
development 

Non-
retrofit CM 

1 Daniel & Embretson (2010) 
Problem-solving in 

mathematics 
    

 

2 DeCarlo (2010) Fraction Subtraction 
   


 

3 
Gierl, Alves, & Taylor-Majeau 

(2010) 

Problem-solving in 

mathematics 
     

4 Roberts & Gierl (2010) Algebra and Functions 
    



5 de la Torre & Song (2009) 

Math, Math 

Computation, Spelling, 

Social Studies 
    


 

6 
Gierl, Roberts, Alves, & 

Gotzmann (2009) 
Mathematics  

  


 

7 Gierl, Cui, & Zhou (2009) Algebra  
  


 

8 
Gierl, Leighton, Wang, Zhou, 

Gokiert, & Tan (2009) 
Algebra  

  


 

9 
Gotzmann, Roberts, Alves, & 

Gierl (2009) 
Mathematics   

 


 

10 Henson, Templin, & Willse (2009) 
Mixed-Number 

Subtraction 


   


 

11 
Kunina-Habenicht, Rupp, & 

Wilhelm (2009) 

Arithmetic and modeling 

skills 
    

 

12 Leighton, Cui, & Cor (2009) Algebra   
 


 

13 
Roberts, Alves, Gotzmann, Gierl 

(2009) 
Mathematics     

  

14 Castro (2008) 
Fraction multiplication 

and division 
  

   

15 de la Torre & Douglas (2008) Fraction subtraction 
   


 

16 Dogan & Tatsuoka (2008) Mathematics   
 


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Authors Subject 
Cognitive Model (CM) 

Item 
development 

Confirmatory 
Analysis 

Detailed 
score 
report 

Presents 
CM 

Describes CM 
development 

Non-
retrofit CM 

17 Gierl, Wang, & Zhou (2008) Algebra  
  

 

18 
Ketterlin-Geller, Jung, Geller, & 

Yovanoff (2008) 
Division of fractions    

  

19 Dimitrov (2007) Calculus 
   


 

20 Sinharay & Almond (2007) 
Mixed-number 

subtraction 
 

  


 

21 Sinharay (2006) 
Mixed-Number 

Subtraction 
 

  


 

22 Ye (2005) Pre-Algebra     
 

23 
Birenbaum, Tatsuoka, & Yamada 

(2004) 

Measurement, 

probability, geometry; 

and algebra 


   


 

24 de la Torre & Douglas (2004) Fraction subtraction 
   


 

25 
Tatsuoka, Corter, & Tatsuoka 

(2004) 
Mathematics  

  


 

26 Dimitrov & Raybkov (2003) Algebra 
   


 

27 Baxter & Junker (2001) Proportional Reasoning   
   

28 Tatsuoka & Tatsuoka (1997) Fraction addition  
 

 
 

29 Embretson (1995) 
Mathematical problem 

solving 
  

 


 

30 Birenbaum & Tatsuoka (1993) 
Multiplication and 

division with exponents 
 

  
 

31 
Birenbaum, Kelly, & Tatsuoka 

(1993) 

Linear equations with 

one unknown 


   


 

32 Tatsuoka & Tatsuoka (1992) Fraction      
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Thirty-two studies, including journal articles, conference papers, and dissertations, were 

considered in this section. All studies are related to cognitive diagnosis in mathematics. 

Specifically, the subject areas covered by the studies are: fractions (25.0%), algebra (21.9%), 

general mathematics (21.9%), mixed number subtraction (9.4%), problem solving (6.3%), and 

other domains (15.6%). This review comprises studies from 1992 to 2010. About 84 percent of 

the studies were conducted from 2001 to 2010. From these, 78 percent were published in the past 

5 years.  

The first step in principled test design for CDA is divided into three categories in Table 1. 

The categories include ―presents cognitive model‖, ―describes cognitive model development‖, 

and ―non-retrofit cognitive model‖. Overall, 31 out 32 studies presented a cognitive model, of 

some type. Frequently, the attributes in the cognitive model were organized in a Q-matrix form
6
. 

However, a description about how the cognitive model and/or Q-matrix were developed was 

missing in some of the studies (31 percent did not describe the cognitive model development). 

Another frequent limitation in the studies reviewed is that in many cases the cognitive model is 

developed by having experts code pre-existing test items for attributes, as opposed to using the 

attributes for its original purpose in the test development process, that is, guiding the 

development of items. Only 38 percent of the studies contained information about developing 

new items (i.e., not using pre-existing test items) for the CDA application. This practice of using 

the existing item for a new purpose on the diagnostic test can be described as a retrofitting 

approach because the original items are used to generate a cognitive model. The retrofitting 

approach to cognitive model development is less than optimal because the generated model will 

                                                           
6
A Q-matrix is often used as representation of the underlying knowledge and skills that are required for answering 

test items. This matrix presents a pool of possible items that lists all combinations of attributes, assuming that the 

attributes are independent.  
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be constrained by the attribute specifications that happen to occur among the existing items. 

Consequently, this model might not accurately represent students‘ knowledge and skills required 

for mastering a certain domain, as the model is not based on cognitive theory, expertise
7
, or 

empirical studies.  

While retrofitting is convenient because test items and examinee response data are 

already available for analysis, this approach is also limited because the model is generated post 

hoc, and only existing items are used to operationalize the attributes. Accordingly to Gierl, 

Leighton, Wang, and colleagues (2009), an important consequence when using retrofitting 

approach to cognitive model development is that the fit between the cognitive model and the 

item-based attributes is tenuous. Gierl, Roberts, Alves, and Gotzmann‘s study (2009) used 

content specialists to rate the quality of their item‐by‐skill alignment. Results from this study 

indicated that even when cognitive skills align with some of the existing items, the fit was 

precarious. In 2005‘s assessment data, for instance, of the 55% of the items that aligned to the 

skills, only 23% were judged to be a good fit. The tenuous fit between cognitive model and items 

happens because the items that support the model development were not designed from an 

explicit cognitive framework or a principled approach to test design.  

For the second step, the practice of developing items using a cognitive model as a guide 

was not prevalent in the studies reviewed. Across the 31 studies, item development was 

conducted for seven studies only. However, in two of these seven studies (Tatsuoka & Tatsuoka, 

1997; Tatsuoka & Tatsuoka, 1992), there is no explicit statement concerning the use of the 

cognitive model for guiding item development. For example, in Tatsuoka and Tatsuoka (1997), 

the authors state: ―three fraction diagnostic tests–a pretest, a posttest, and a retention test–were 

                                                           
7
In this case, experts are requested to create the a cognitive model based on their experience, curriculum, and/or 

other material sources, as opposed to simply categorizing pre-existing items into attributes.  
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given in 1988 to students‖ [emphasis added] (p. 14). From this vague description of the test (as 

diagnostic), it is not possible to discern if the items are developed from a cognitive model. The 

24 remaining studies either did not provide information concerning the item development, did 

not use a cognitive model as a guideline for item development, or used existing items from prior 

test administrations. In fact, a frequent practice among researchers is to use items and/or 

students‘ response data sets from existing large-scale assessments for CDA applications. For 

example, the item responses from TIMSS (Trends in International Mathematics and Science 

Study) were analyzed in Dogan and Tatsuoka (2008), Birenbaum, Tatsuoka, and Yamada (2004), 

and Tatsuoka, Corter, and Tatsuoka (2004). Gierl, Cui, and Zhou (2009), Gierl, Wang, and Zhou 

(2009), and Leighton, Cui, and Cor (2009) used existing items from the SAT. Gierl (2007) warns 

readers that although using existing items is convenient, given their availability, the distribution 

of the attributes is likely to be uneven across tasks because the test design of the original 

assessments is not guided by an explicit cognitive model. Hence, precarious inferences for some 

problem-solving skills in the model can be expected as the fit between the retrofit cognitive 

model and the existing test data is tenuous. In addition, attempting to retrofit items and data from 

assessments that were originally developed for unidimensional scaling purposes may result in 

estimation problems (Kunina-Habenicht, Rupp, & Wilhelm, 2009). Luecht, Gierl, Tan, and Huff 

(2006) warn readers about the gravity of applying unidimensional data structure to a 

multidimensional scoring model: 

Inherently unidimensional item and test information cannot be decomposed to produce 

useful multidimensional score profiles—no matter how well intentioned or which 

psychometric model is used to extract the information. Our obvious recommendation is 

not to try to extract something that is not there (p. 6).  
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In summary, retrofitting approaches are not recommended and their use may affect the validity of 

the diagnostic inferences, undermining the value of an assessment (Gierl, 2007).  

For the third step, the majority of the studies (84%) used sophisticated statistical and 

psychometric models to analyze the data. In four studies, however, no statistical analysis was 

used because this step was beyond their objective. One study (Castro, 2008), while presenting an 

elaborate cognitive model and developing diagnostic items according to this model, presented a 

less than ideal statistical analysis (t-test for independent samples). Castro compared pretest and 

posttest scores for two groups, control and experimental. However, an important goal of a 

cognitive diagnostic tool—estimate students‘ mastery of knowledge and skills, providing useful 

diagnostic information about student strengths and weaknesses (Cui & Leighton, 2009)—is not 

attended with the use of t-tests. Hence, the use of diagnostic psychometric procedures yields 

finer information about the mastery of each skill and, consequently, more diagnostic information 

about student‘s learning. In conclusion, 84 percent of the studies used sophisticated psychometric 

models to analyze the data. These results suggest that the third step is receiving most of 

researchers‘ attention and interest in CDA, possibly at the expense of the other three steps.  

 The fourth step was implemented in only four of the 32 studies reviewed. This finding 

confirms what Roberts and Gierl (2010) asserted when stated that the number of studies on score 

reporting has been limited and that few studies focus on the features of student-level score 

reporting. Despite the important role of CDA in providing students and teachers with diagnostic 

score information intended to help remediate students‘ weaknesses and inform instructional 

practices, few CDA studies address the issue of reporting. Given that ―the success of CDA in 

accomplishing its goal of providing more formative feedback to educational stakeholders rests, 
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in part, on the test developer‘s ability to effectively communicate this information through score 

reports‖ (Roberts & Gierl, 2010. p. 25), more research is required on reporting strategies.  

 To conclude, this CDA literature review highlights that few researchers are conducting 

their studies using the four-step approach in principled test design and analysis, where a 

cognitive model is first created, then items are developed accordingly to the cognitive model, a 

confirmatory analysis is conducted, and finally, score reports are produced. Gierl (2007) claimed 

that conducting these four steps ―is not a standard approach to test design and it rarely, if ever, is 

used in operational testing situations‖ (p. 337). Yet the importance of a principled test design 

approach is accentuated by the fact that if the first step is missed, arguably the entire analysis is 

compromised because the final diagnostic scores may not be interpretable.  

In an attempt to contribute to the literature on CDA and to overcome some of the inherent 

limitations associated with CDA research as previously presented, one of the purposes of my 

study is to investigate a cognitive diagnostic assessment that used the four-step process specified 

in principled test design to guide assessment design and implementation. By using this approach 

for implementing CDAs, I expect to achieve better control over the specific attributes measured 

by the test, which, in turn, will lead to more specific inferences about the examinees‘ cognitive 

skills. Hence, by executing a more structured approach to a) cognitive model development, b) 

item development, c) confirmatory diagnostic analysis, and d) detailed score reporting it is hoped 

that the benefits associated with principled test design can be realized and demonstrated in a 

practical testing context.  
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CHAPTER III: METHODOLOGY 

This chapter outlines the substantive and statistical procedures that were used in this 

study. A description of the participants, a framework for the data collection, and subsequent 

statistical analyses is also presented.  

An important step in CDA is to create a clear specification of the construct to be 

measured. In order to provide information about students‘ cognitive strengths and weaknesses, a 

test should be developed using a cognitive model that characterizes the hypothesized knowledge 

structures and processing skills required to solve test items.  

Four Steps for a Principled Approach to Test Design and Analysis 

Before describing the details of the cognitive model development, a brief summary of the 

conceptual framework (namely, theoretical, content specialist, and combined) adopted for the 

Diagnostic Mathematics project will be provided. Each of these frameworks has strengths and 

weaknesses. Even though researchers and practitioners generally have the best intentions, the 

choice of a framework is, often, affected by practical constraints (such as money and time 

availability). Hence, among the three frameworks for cognitive model development, the content 

specialist approach was considered the most appropriate and feasible framework for the 

Diagnostic Mathematics project. The limited availability of financial resources, time, and human 

expertise (such as cognitive psychologists specialized in mathematical reasoning and problem 

solving) were just some of the factors that prevented the development of cognitive models based 

on learning sciences and the validation of these models with human studies (e.g., collecting 

evidence of examinee response processes through verbal reports).  

Fortunately, important benefits are evident when the content specialist framework is 

used. For example, the use of judgments from content specialists serves as a popular and 
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commonlyused methodology for identifying the cognitive skills employed by examinees to solve 

test items, and its continued use has contributed to the consolidation of this framework and its 

practices (such as how to facilitate group discussion, keep the group focused on the task, and 

manage the time). Also, the extensive experience with teaching and learning helps content 

specialists to identify the knowledge and skills that students may use to solve test items. This 

experience contributes to the development of the cognitive models. Additionally, this framework 

yields relatively fast and timely results when compared to studies that require verbal analysis of 

students‘ responses. Finally, costs associated with this framework are often more affordable than 

methodologies that require human studies (such as verbal and protocol analysis) or sophisticated 

technology (such as eye tracking research).  

Next, the procedures used to implement the four-steps for principled test design on the 

Diagnostic Mathematics project are discussed. The specific procedures for developing the 

cognitive model (Step 1) are discussed first. Next, the process of item development (Step 2) is 

described, followed by a discussion of the confirmatory analytical approach used to investigate 

the data collected for the Diagnostic Mathematics project (Step 3). Finally, score reporting (Step 

4) procedures used in this study are considered.  

Step 1: Cognitive Model Development 

One important aspect of developing an assessment is to have a sound conceptual 

foundation for outlining what the test is designed to measure and how the test scores are intended 

to be interpreted. A sound conceptual foundation includes a clear specification of the construct 

measured by an assessment. A cognitive model constitutes the foundation for CDAs. That is, a 

test should be developed using a model that characterizes the knowledge structures and 

processing skills required to solve test items, thus, providing information about students‘ 
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cognitive strengths and weaknesses in a specific domain. Hence, cognitive model development is 

the first step in the principled approach to test design. This step requires the identification of the 

attributes that students are expected to master in a specific domain. These attributes, once 

structured in a cognitive model, are used to guide item development and to provide the 

interpretative framework needed to link test score interpretations with the cognitive attributes 

that are believed to underlie test performance. Attributes can be identified by studying the 

knowledge, processes, and strategies used by examinees as they solve items in a specific 

problem-solving domain. The cognitive models used in the Diagnostic Mathematics project were 

based on judgement from content specialists who drew on their own insights and experiences in 

the content domain to anticipate the relevant knowledge and skills students use to solve items on 

the test. The procedures implemented by these specialists when developing the cognitive models 

are described for Step 1.  

The development of the cognitive models used in the current study was guided by three 

mathematics specialists from Alberta Education: one assessment manager and two test examiners 

in mathematics. The professionals on this team were experienced classroom teachers who had a 

broad range of practical experiences in large-scale test development. The assessment manager 

has a B.Ed. (Music, Mathematics), BA. (Music), and P.D.A.D.
8
 (Education), as well as 20 years 

of teaching experience from Kindergarten to Grade 12 (15 years as a Mathematics instructor), 

and over 10 years of experience in test development at Alberta Education. The first test examiner 

has a B.Ed. (Secondary Mathematics), 32 years as a Mathematics Teacher from Kindergarten to 

Grade 12, and five years of experience in test development. The second test examiner has a 

                                                           
8
P.D.A.D means Professional Diploma After Degree. 
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B.Ed. (Music), BA. (Music), 15 years as a Mathematics Teacher from Kindergarten to Grade 12, 

and 2 years of experience in test development at Alberta Education.  

The assessment manager developed the preliminary cognitive models for the content area 

of Numbers at Grade 3. The two test examiners, together with seven content specialists, used this 

preliminary work as a starting point for their discussions. At this stage of model development, 

the role of the seven content specialists was to review the preliminary cognitive models and the 

development of cognitive models for other strands and grade levels. The seven content 

specialists were all active teachers with a range of backgrounds and experience in teaching (17 

years, on average) and test development (5 years of experience as item writer, on average). 

Following these discussions, the cognitive models developed by the exam manager were 

scrutinized by this group. The first draft of the cognitive models for the remaining areas and 

grade levels was developed by the two test examiners from Alberta Education. 

Preliminary cognitive models were created using the content, knowledge, and skills 

specified in the provincial curriculum for the four western provinces of British Columbia, 

Alberta, Saskatchewan, and Manitoba and the three northern territories, the Yukon, the 

Northwest Territories, and Nunavut. Education across these seven jurisdictions is guided by the 

Western and Northern Canadian Protocol (WNCP) for the Collaboration in Basic Education. In 

the WNCP, the mathematics curriculum from Kindergarten to Grade 9 is described in the 

document, The Alberta K-9 Mathematics Program of Studies with Achievement Indicators 

(2007). The Specific Outcomes (SOs) outlined by this document were used by the content 

specialists to create a list of skills and knowledge the students needed to achieve those outcomes. 

According to this program of studies, specific outcomes are ―statements that identify the specific 

skills, understanding and knowledge that students are required to attain by the end of a given 
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grade‖ (Alberta Education, 2007, p. 13). To provide teachers with examples of evidence that may 

be used to determine whether or not students have achieved a specific outcome, a list of 

achievement indicators is presented in Alberta‘s program of studies. These indicators can be used 

as evidence for the desired learning to be achieved and to form a clear picture of the scope of 

each specific outcome (Alberta Education, 2007).  

It is important to note that a specific student achievement perspective was adopted for the 

development of the cognitive models. The attributes in the cognitive models were developed to 

represent the skills that would be mastered by moderately high achievers
9
. Hence, this 

achievement group serves as the reference point for the cognitive model design used in the 

current study. Students with moderately high ability are capable of applying the mathematical 

concepts with a relatively high degree of consistency to solve problems. This group of students 

are confident learners; they create their own connections and apply their previous knowledge and 

skills to solve novel problems. They demonstrate perseverance when working through 

challenging problems. Students in this reference group are capable of understanding and 

grasping the mathematical concepts at their grade level at an achievement level of approximately 

70-80%. In a practical sense, moderately high achievers can be thought as students that would 

probably achieve around 80% in math classroom assessments and around 75% in large scale 

achievement tests. Moderately high achievers, after receiving instruction, quickly understand 

new concepts, can work independently, and can transfer the skill from one context to another. It 

is also expected that these students will answer the majority of a test‘s items correctly. The 

assumption behind the choice of developing cognitive models based on moderately high ability 

students is that low and moderate ability students will, through instruction, maturation, and 

                                                           
9
This information was provided by two test examiners from the Diagnostic Mathematics project in response to an 

enquiry about the reference group for whom the cognitive models were designed. 
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effort, reach the level of performance characteristic of the moderately high achievers. A 

complete description of the characteristics of the reference group can be found in the third 

column of the document Diagnostic Mathematics: Performance Level Descriptors(see 

appendix). This document was created by the assessment manager and the two test examiners 

when asked to characterize three levels of test performance for the Diagnostic Mathematics 

project.  

The development of the necessary skills and knowledge for each specific outcome was 

directed by the assessment manager. After splitting the teachers into groups—according to grade 

—teachers were asked to work through the specific outcomes. The skills in each SO were placed 

in a hierarchical form, increasing in difficulty, according to the expert judgment of the team. 

According to one test examiner responsible for developing the cognitive models, when writing 

the attributes, she thought about the step-by-step skills she would teach to students in order for 

them to understand an outcome. Therefore, skills were ordered according to what she thought 

should be taught first, second, and so forth.This hierarchy
10

 of ordered skills, or attributes, within 

a domain constituted the cognitive model for the Diagnostic Mathematics project. Using linear 

hierarchies was considered a good starting point in this project because of their simplicity and 

easy interpretability. Given the young age of the student participants, the linear format was 

deemed more appropriate as it yields information that is easier to understand, which increases the 

usefulness of the score reports. Notwithstanding the fact that the linearity of the models can be 

supported by the information-processing perspective—as this approach endorses the ordered 

sequence of stages occurring in the cognitive processes (Mulder, 1983)—I acknowledge that 

linear models (and cognitive models, in general) constitute a relatively simplistic representation 
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Each hierarchy here represents a cognitive model. The two terms are used interchangeably in my study.  
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of a much more complex phenomenon of cognitive information processing. For the current 

study, this representation serves as the starting point. 

The development of cognitive models was accomplished by the team in approximately 

six days. Throughout the development process, the specialists were instructed to ensure that the 

models be written at a fine-grain size, ordered by complexity from simple to complex, the 

attributes contain measurable skills, and the skills in the hierarchy be instructionally relevant. 

Guiding the cognitive models development using these four characteristics is one aspect that 

differentiated the Diagnostic Mathematics project from more traditional approaches to 

achievement test development.  

Once the initial draft of the cognitive models was written, the assessment manager and 

two test examiners evaluated and revised the skills within each category to clarify the skills. That 

is, the content specialists ensured that the necessary knowledge and skills were specified in each 

hierarchy. In addition, they added any important skills that were deemed to be missing in order to 

fill in the gaps in the models using outcomes specified in the Mathematics Program of Studies as 

well as by using their own judgments and experiences.  

After this initial development work, a 1-day round table meeting with another group of 

specialists was conducted. This group included eight experienced teachers from Alberta 

schools. The meeting was led by the assessment manager and the two test examiners. The 

objective of this meeting was to revise and validate the cognitive models based on teachers‘ 

experience and judgment. The teachers were asked to carefully read and evaluate the models. 

After a 15-minute discussion, they were then asked to answer a short questionnaire evaluating 

the hierarchies. Results from this questionnaire showed that the layout of the information was 

easy to follow; the necessary skills and knowledge were included in each hierarchy; the 
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attributes in each hierarchy were ordered from easiest to hardest; and the wording of each 

attribute was clear.  

In total, seven iterations of discussions and revisions were necessary for model 

development in Grade 3. Thirteen models were completed through this process, and two of these 

are presented next. These two models were chosen for analysis in my dissertation because these 

models contained an adequate sample size during student field testing and yielded satisfactory 

preliminary results (e.g., increasing level of difficulty of the items).  

Description of the Cognitive Models. The two outcomes of the Diagnostic Mathematics 

project are in the content strand Develop Number Sense. The first cognitive model is based on 

Comparing and ordering numbers (also known as specific outcome 3 or SO3) and the second 

cognitive model on Applying mental strategies for subtracting two 2-digit numerals (also called 

specific outcome 7 or SO7). These models are described next in more detail.  

Model 1: Comparing and ordering numbers. The first cognitive model measured 

students‘ ability to compare and order numbers from 100 to 1000. The specific skills or attributes 

necessary to master this outcome are presented in Figure 1.  

 

Figure 1. Cognitive attributes required on Comparing and ordering numbers. 
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For Comparing and ordering numbers, six attributes were identified following a linear 

hierarchical form. This means that A1 is the first cognitive skill, and it serves as the prerequisite 

skill to all other skills in this model. This linear hierarchy also implies that A1 is prerequisite to 

A2; A1 and A2 are prerequisite to A3; A1, A2, and A3 are prerequisite to A4, etc. As a 

prerequisite attribute, A1 reflects the most basic skill, ―identify three missing numbers in a 

hundred chart‖. That is, in order to master the second attribute, ―order numbers in ascending or 

descending order‖, the examinee needs to be knowledgeable about identifying missing numbers 

in a hundred chart (i.e., A1), as well as on ordering numbers (i.e., A2). By implication, an 

examinee is not expected to possess A2 unless A1 has been mastered. This characteristic requires 

that the attributes must represent different levels of the construct, from the lower level to the 

higher. In this case, one level of mastering is built upon the other. The right side of Figure 2 

depicts this feature.  

 

Figure 2. Linear hierarchy for Comparing and ordering numbers. 
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This dependent relationship, as specified in the cognitive model and operationalized by 

the linear hierarchy, is then implemented through the development of items specifically created 

to measure the attributes and their dependencies (see the right-hand side of Figure 3).  

 

Figure 3. Linear hierarchy implemented by test items for Comparing and ordering numbers. 

 

Model 2: Subtracting two 2-digit numerals. The second cognitive model measures 

students‘ ability to apply mental mathematics strategies for subtracting two 2-digit numerals, 

such as taking the subtrahend to the nearest multiple of ten and then compensating, thinking of 

addition, and using doubles. The specific skills necessary to master this outcome are presented in 

Figure 4.  
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Figure 4. Linear hierarchy implemented by test items for Subtracting two 2-digit numerals. 

 

For Subtracting two 2-digit numerals, six attributes were identified, as presented on the 

left side of Figure 4. Similarly to Comparing and ordering numbers, this cognitive model 

specifies a linear hierarchical structure, with A1 being the simplest cognitive skill that also serves 

as a prerequisite to all other attributes. As a prerequisite attribute, A1 reflects the most basic skill: 

―apply mental mathematics strategies for subtracting two 2-digit numbers where the minuend 

and subtrahend are multiples of 10‖. That is, an examinee is not expected to possess A2—―apply 

mental mathematics strategies for subtracting ten from a 2-digit number‖—unless A1 has been 

mastered. The middle part of Figure 4 depicts the hierarchical feature of the cognitive model, 

from the lower level to the higher, where one attribute is built upon the other. The right side of 

the figure depicts the attributes and their dependencies after items are developed to 

operationalize the cognitive model.  

Given that a cognitive model is a vital part of the diagnostic assessment design, adhering 

to a principled approach to test design and analysis for constructing cognitive models played an 

important role in the Diagnostic Mathematics project. 
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Step 2: Item Development 

The second step in the principled test design approach consists of using the cognitive 

model generated in the first step as a guide for developing test items. When items are developed 

from cognitive models, assessment results may yield more accurate diagnostic inferences about 

examinees‘ knowledge and skills.  

The process of developing items for the Diagnostic Mathematics project was based on the 

knowledge and skills specified in the cognitive models created prior to item writing. Employing 

the cognitive model as the foundation is a requirement to implement a principled test design 

approach. In this section I describe the specific procedures for developing items for the 

Diagnostic Mathematics project.  

Test development was conducted through the coordinated efforts of qualified item 

writers. The importance of the item-writers‘ qualification cannot be underestimated, as it ensures 

that high-quality test items are produced, and consequently, used in the assessment. According to 

Haladyna (2004), ―the quality of items depends directly on the skill and expertise of the item 

writers. No amount of editing or the various reviews […] will improve poorly written items‖ (p. 

16). The fact that the item writers for the Diagnostic Mathematics project were certified teachers 

in the province who had extensive teaching experience in mathematics (17 years, on average) 

and had experience (5 years, on average) in writing test items for Alberta Education suggests that 

these professionals were qualified for the task of writing mathematics items for this assessment.  

Item writers also received training, including information about the purposes of the 

Diagnostic Mathematics project. Knowing the purposes of the project was important because 

item writers gained a clear idea of how the performance on the test would be translated into 

information that has the potential to identify students‘ cognitive problem-solving strengths and 
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weaknesses, as well as direct teaching and instructional strategies. Six item writers participated 

on this 1-day training conducted by the assessment manager. Among these six people, two were 

permanent members of the Diagnostic Mathematics project (test examiners). The other four 

members were staff from Alberta Education, but not permanent members of the project. This 

training provided item writers with information about the project framework, the purpose of the 

assessment, the cognitive models, and the guidelines for item writing.  

In addition, item writers followed a manual (Alberta Education, 2008, 2009) specifically 

developed to guide the item writing process. This manual comprises a set of established 

principles, such as items should reflect the cognitive attribute (skill), items should be clear and 

contain simple language, items should be free of cultural, gender, or other biases. Careful 

attention to item-writing guidelines is critical for many reasons, including the fact that it helps 

ensure that items perform properly from content and psychometric item-analysis perspectives, 

thus, adding to the precision of scores. Overall, the item writing guidelines adopted by Alberta 

Education were consistent with what is recommended in the item development and test 

construction literature (see Downing, 2006; Haladyna, 2004; Haladyna& Downing, 1989; 

Haladyna, Downing, & Rodriguez, 2002; Schmeiser & Welch, 2006). 

As part of the item development process, the team was asked to construct items at 

different difficulty levels for each attribute. In this way, items for the most basic attribute (A1) of 

a cognitive model should be developed to be very easy and items for the most complex attribute 

(A6) should be more difficult. This requirement helped ensure the items would meet the ordering 

feature and, thus, measure the skills in hierarchy from simple to complex. They were also asked 

to create three parallel items for each cognitive attribute. The reason for creating three items was 
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to enhance the reliability of the measures per attribute. Two types of items were constructed: 

multiple-choice (MC) and numerical response (NR).  

Item development was based on an iterative process of revision-modification. A 6-step 

process was used to develop the items. First, two test examiners were responsible for writing the 

assessment items. Items from half of the cognitive models were written by each examiner. The 

number of items written was equal to the number of skills in the cognitive model times 3, since 

three parallel items were required for each skill. For example, a model that contains six skills 

required the development of 18 items. Second, the first examiner revised all items created by the 

second examiner, and vice-versa. Third, the project manager revised all the items. Fourth, three 

to five
11

 other Alberta Education staff members were invited to revise the items. Specifically, 

they verified the key, checked if the items in each attribute were structured from easiest to 

hardest, and ensured the accuracy of wording in each item. Fifth, the items were sent to the 

graphic designer who created the art for each item, such as pictures, motion, and audio. And 

sixth, the items were again reviewed in order to check if (a) all the requirements for the graphics 

and art work were met, (b) the item matched the intended skill, (c) the item matched the expected 

difficulty level, and (d) the source, stem, and alternatives were correct. For each cognitive model, 

the first three steps took approximately two weeks, if the examiners worked exclusively with that 

hierarchy. Overall, the 6-step process required two months.  

The first cognitive model evaluated in this study, Comparing and ordering numbers, was 

measured by 18 multiple-choice items with four options each. The second cognitive model, 

Subtracting two 2-digit numerals, was measured by 18 numerical-response items. In both 

models, all attributes were assessed by three items.  

                                                           
11

 Depending on the SO, a different number of specialists participated.  
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According to Schmeiser & Welch (2006), item review is a crucial step for the quality of 

assessments and, although it takes time in the developmental schedule, it should not be ignored. 

Haladyna (2004) suggests eight interrelated item-review activities that may provide a substantial 

body of evidence supporting the validity of test score interpretations. Table 2 provides a 

summary of these activities. 

Table 2. Item review activities implemented during the item development process. 

1. Item-writing review: Checks items against guidelines for violations. 

2. Cognitive demand review: Checks item to see if it elicits the cognitive process intended. 

3. Content review: Checks for accuracy of content classification. 

4. Editorial review: Checks items for clarity and any grammar, spelling, punctuation, or 

capitalization errors. 

5. Sensitivity and fairness review: Checks items for stereotyping of persons or insensitive 

use of language. 

6. Key check: Checks items for accuracy of correct answer. Ensures that there is only one 

right answer. 

7. Answer justification: Listens to test takers‘ alternative explanations for their choices and 

gives them credit when justified. 

8. Think-aloud: During the field test, this procedure subjects each item to a round-table 

discussion by test takers. 

*Table adapted from Haladyna, 2004, p.201. 

The following information was provided by one test examiner from the Diagnostic 

Mathematics project in response to an enquiry by me about the item-review process used for this 

assessment. According to her, among the eight steps described in Table 2, Alberta Education 

implemented steps 1 to 6 on a consistent basis. For the Diagnostic Mathematics project, the first 

six activities were completed by the three permanent members of the project (the assessment 

manager, and two test examiners), then by a team of reviewers from Alberta Education. After 

reviewing the items, this team of reviewers submitted the suggested changes on the graphics, 

questions, and alternatives to the permanent members of the project. After consideration, changes 

were made and the items were then sent to the editorial team. Final changes were made and the 

items were sent to field testing. Step 7 was implemented for one specific outcome (SO 4, from 
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Grade 3, Numbers strand). The two test examiners together with a content specialist visited three 

different schools and interviewed individual students as they completed the field test. They asked 

students to explain why they chose a specific alternative and recorded students‘ answers. Based 

on their findings, the test examiners made some changes to the items and alternatives prior to 

field testing them again. Another undertaking also related to Step 7 consisted of sending some of 

the questions from specific outcomes 6 and 7 (from Grade 3, Numbers strand) in written format 

to a few teachers. These teachers were asked to have their students complete the items 

(numerical response) on paper and send them back to Alberta Education. The received responses 

were useful for creating different formats of the questions or different multiple-choice 

alternatives. Due to time and money constraints, interviewing examinees was not feasible for all 

specific outcomes. This scenario is not unique to Alberta Education. As pointed out by Haladyna 

(2004), very few assessments conduct think-aloud methods or report this kind of validity 

evidence.  

In summary, the item-review process conducted by Alberta Education for the Diagnostic 

Mathematics project together with using cognitive models as a foundation for item development, 

and having appropriately qualified item writers, who received proper training, and who used a 

well-established set of principles for item-writing, constitute important actions toward 

implementing a principled test design approach. 

Step 3. Confirmatory Psychometric Analyses 

The third step in the principled approach to test design consists of using a confirmatory 

psychometric procedure to analyse students‘ item response. In order to verify how well the 

cognitive models developed by the mathematics specialists function in an operational testing 

situation, a confirmatory analysis is conducted using data collected from students‘ test item 
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responses. Hence, in the Diagnostic Mathematics project, the examinee item response data were 

analysed using the attribute hierarchy method (AHM).  

The AHM is a sophisticated psychometric procedure that can handle complex cognitive 

structures and the dependencies among skills, yielding not only information concerning whether 

or not examinees have mastered each of a group of specific skills, but also individual skill 

probabilities. Another strength of the AHM lies in the fact that this method is considered a 

confirmatory approach where the plausibility of the model-data fit relative to the intended 

underlying cognitive model is assessed. In addition to estimating the attribute probability, the 

AHM is informed by two other methods for evaluating the cognitive models: the hierarchical 

consistency index (HCI), and the attribute reliability estimates. Using the HCI, it is possible to 

investigate the degree to which an observed examinee response pattern is consistent with the 

specified attribute hierarchy. Attribute reliability assesses the consistency of the decisions made 

with respect to examinees‘ mastery of specific attributes. Additionally, the AHM also has a 

convenient way of providing feedback to examinees, in which score reports map observed 

examinee item response patterns onto expected examinee item response patterns derived from 

the cognitive model (Wang, 2007). By mapping examinee‘s mastery level and providing detailed 

and precise information about their cognitive problem-solving strengths and weaknesses, this 

diagnostic information may help teachers and students to design strategies to improve the 

teaching and learning processes. Another advantage of the AHM approach lies in its facility to 

guide test development, as test developers can create items according to the hierarchical 

organization of the attributes (Wang, 2007). As a result, the test developer achieves control over 

the specific skill measured by the items. In sum, the AHM holds great promise for enhancing the 

quality of diagnostic feedback provided to students because of its capability of modeling 
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complex cognitive structures including attribute dependencies that can indicate specific cognitive 

inferences about students‘ strengths and weaknesses.  

The AHM is a consolidated and reliable method for analyzing cognitive assessments and, 

beginning with its introduction in 2004, many research studies have been conducted using this 

method. Studies conducted using the AHM have been published in journals, book chapters, 

technical reports, conference papers, and dissertations. Applications of the AHM include, but are 

not limited to identifying and interpreting cognitive skills that produce group differences (Gierl, 

Zheng, & Cui, 2008; Gotzmann, Roberts, Alves, & Gierl, 2009), evaluating the technical aspects 

of the AHM and its application to the domain of syllogistic reasoning (Leighton, et al., 2004), 

evaluating the performance of different classification methods (Cui, Leighton, & Zheng, 2006), 

making diagnostic inferences about examinees‘ cognitive skills (Gierl, Leighton, & Hunka, 

2007), comparing expert-based and student-based cognitive models (Leighton, Cui, & Cor, 

2009), evaluating person fit for cognitive diagnostic assessment (Cui, 2007; Cui, Leighton, Gierl, 

& Hunka, 2006; Cui & Leighton, 2009), investigating learning progression assessments with 

ordered multiple-choice items (Briggs & Alonzo, 2009), investigating cognitive models of task 

performance in algebra (Gierl, Leighton, Wang, & Tan, 2005; Gierl, Leighton, Wang, Zhou, et 

al., 2009; Gierl, Tan, & Wang, 2005; Gierl, Wang, & Zhou, 2008), evaluating a diagnostic 

assessment using principled test design (Gierl, Alves, & Taylor-Majeau, 2010), investigating the 

reliability and attribute-based scoring in cognitive diagnostic assessment (Gierl, Cui, & Zhou, 

2009), comparing rule-space model and AHM (Gierl, 2007), developing score reports for 

cognitive diagnostic assessments (Roberts & Gierl, 2009; Roberts & Gierl, 2010), developing 

and validating reading profiles (VanderVeen, Huff, Gierl, McNamara, Louwerse, & Graesser, 

2007), investigating the cognitive processes on critical reading (Wang, 2007; Wang & Gierl, 
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2007), discussing IRT-based cognitive diagnostic models and related methods (Bolt, 2007), and 

estimating attribute-based reliability in cognitive diagnostic assessment (Zhou, 2010). 

The AHM is a cognitively-based psychometric approach used to assess examinees‘ 

performance on a specific domain with the use of a cognitive model of attributes as its 

foundation. For this method, the cognitive model is essential in its development and application. 

The cognitive model is operationalized by the attribute hierarchy, which also serves as a 

framework to guide item development and score interpretation.  

The AHM evolved from Tatsuoka‘s rule-space model (Tatsuoka, 1983) and it is based on 

the assumption that test performance depends on a set of hierarchically ordered competencies or 

attributes. The attributes‘ ordering is based upon their logical and/or psychological properties 

(Leighton & Gierl, 2007b) and requires specific procedures, skills, and/or processes for an 

examinee to solve an item. The attribute hierarchy is representative of a cognitive model that 

allows for the prediction and explanation of students‘ performance.  

In this study, a linear model structure is used to specify the relationships among the 

attributes. Figure 5 depicts a hypothetical linear model containing six attributes aligned in a 

single branch.  
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Figure 5. A linear cognitive model containing six attributes. 

 

This model specifies a linear hierarchical form, where A1 is the first prerequisite cognitive skill. 

From a linear hierarchy perspective, if attribute 1 is not present, then all attributes that follow are 

not expected to be mastered by the examinee (Leighton et al., 2004).  

After defining the attribute hierarchy, four different sequential matrices must be 

developed using the information in the attribute hierarchy: the adjacency, reachability, incidence, 

and reduced incidence matrices. These represent the attribute hierarchy in terms of attribute and 

expected response patterns. The adjacency and reachability matrices represent the relationships 

among the attributes in the hierarchy in a binary form. The incidence and reduced incidence 

matrices relate the relationship of the attributes in the hierarchy to the items available in the 

diagnostic test item bank. For descriptive purposes, the linear hierarchy of Figure 5 is used to 

illustrate these matrices. A detailed description of each matrix is presented next.  

The direct relationship among attributes is specified by a binary adjacency matrix (A) of 

order (k, k), where k is the number of attributes. In this matrix, the diagonal elements are denoted 

as 0s while the off-diagonal elements are 1s or 0s depending on the relationship between the two 
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attributes. If attribute j is a direct prerequisite to attribute k, the position (j, k), where j ≠ k, is 

filled with a 1; if there is no direct prerequisite between them, a 0 is placed in this off-diagonal. 

The adjacency matrix for the hypothetical linear example shown above is presented below: 

     (Matrix 1) 

Because A1 (row 1) is prerequisite to A2 (column 2), the element in position a12 is equal 

to 1. Since A1 is a direct prerequisite to no other attribute, all other elements in this row are filled 

with 0s. Row 6, which is a row of 0s, indicates that attribute A6 is not a prerequisite to any other 

attributes.  

The reachability matrix (R), of order (k, k), is used to specify both the direct and indirect 

relationships among attributes. The R matrix can be derived from the adjacency matrix by 

performing Boolean addition and multiplication. As explained by Tatsuoka (2009), Boolean 

addition is defined by 1+1=1, 1+0=1, 0+1=1, and 0+0=0. Boolean multiplication is defined by 

0*0= 0, 1*0=0, 0*1=0, and 1*1=1. The R matrix is calculated using R = (A + I)
n
, where n = 1, 2, 

…, k, is the integer required for R to reach invariance; A is the adjacency matrix; I is the identity 

matrix; and k is the number of attributes. For the hypothetical example, A + I is equal to 

.    (Matrix 2) 
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In this hypothetical reachability matrix, row 1 indicates that attribute A1 has a 

relationship with A1 and all other attributes through direct or indirect connections as all elements 

in row 1 are 1s. Row 6 indicates that attribute A6 is a direct prerequisite of A6 and is not a direct 

or indirect prerequisite of any of the other attributes (i.e., only r6,6=1).  

The underlying knowledge and skills that are required for answering test items are 

represented in a Q-matrix, where the rows display attributes and the columns display the items, 

or vice-versa (Tatsuoka, 2009). This matrix presents a pool of possible items that list all 

combinations of attributes, assuming that the attributes are independent. Leighton et al. (2004) 

call this pool a set of potential items, in which the total number of items can be calculated by the 

expression 2
k
 - 1, where k is the number of attributes. Since the Q matrix is a Boolean matrix, all 

the entries are 1s or 0s, where qki=1 denotes that attribute k is required for answering the item i 

and qki=0 denotes that attribute k is not a requisite for answering a specific item i.  

(Matrix 3) 

There are 63 columns and six rows in Matrix 3, where each column represents one item 

and each row represents an attribute. The first column of this matrix specifies that only attribute 

A1 is required to correctly answer item 1. Conversely, in order to correctly answer the last item 

(column 63), all six attributes must be mastered. Although 63 patterns are possible when attribute 

and item are matched, as shown in Matrix 3, only seven of these are items that can be used in 

measuring the cognitive model.  
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The set of potential items can be reduced, producing the reduced Q matrix (Qr).The 

second column serves as a good example of an item that must be removed. Item pattern (010000) 

results from attribute pattern (010000)—a student mastered A2 without mastering A1—which 

does not fit the attribute hierarchy as the hierarchical structure states that A1 is prerequisite to 

A2. The Qr matrix is of order (k, i), where k is the number of attributes and i is the reduced 

number of diagnostic items resulting from the constraints in the attribute hierarchy.  

.      (Matrix 4) 

The importance of the Qr matrix is made clear by Gierl et al. (2010) when they claim that 

because this matrix describes all attribute-by-item combinations hierarchy and identifies each 

item that must be developed to measure the attribute, it is significant for principled test design.  

After items are developed and administered, the AHM psychometric procedures can be 

applied to promote specific diagnostic inferences about the students‘ mastery of attributes. But, 

before the examinees‘ observed response patterns are used to produce the attribute‐based scores, 

it is necessary to evaluate the fit between the examinees‘ expected response patterns outlined in 

the hierarchy and the observed pattern produced by examinees responding to the test items. This 

evaluation of model-data fit involves analyzing student item responses produced from their 

responses to the test items with the expected item response patterns predicted by the cognitive 

model.  

Fit Analyses. Few model-data fit statistics that have been found in the literature are 

explicitly designed for cognitive diagnostic assessments (Cui & Leighton, 2009). To address this 
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limitation, Cui and Leighton (2009) developed an index called the Hierarchy Consistency Index 

(HCI; see also, Cui, 2007; Cui, Leighton, Gierl, & Hunka, 2006). They describe the way the HCI 

functions as follows: 

For an educational test that is designed to measure a set of hierarchically ordered 

attributes, students are expected to answer correctly items that measure simple attributes 

if they have also produced correct answers to items requiring complex attributes. The 

logic of the person-fit statistic HCI is to examine whether students‘ actual item response 

patterns match the expected response patterns based on the hierarchical relationship 

among attributes measured by test items (p. 433).  

The degree to which the observed response patterns are consistent with the attribute hierarchy 

and the reduced Q matrix is given by:  

𝐻𝐶𝐼𝑖 = 1 −
2  𝑋𝑖𝑗 (1 − 𝑋𝑖𝑔)𝑔𝜖𝑆 𝑗𝑗𝜖𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖

𝑁𝑐𝑖
  

where S
correcti

 includes items that are answered correctly by examinee i, X
ij
is student i‘s score 

(1 or 0) to item j, S
j
 includes items that require the subset of attributes measured by item j, X

ig
is 

student i‘s score (1 or 0) to item g where item g belongs to Sj, and N
ci

is the total number of 

comparisons for all the items that are answered correctly by examinee i.  

A misfit between examinee i‘s response and the reduced Q-matrix happens when 

𝑋𝑖𝑗
 1 − 𝑋𝑖𝑔 = 1. When examinee i correctly answers item j, Xij=1, the examinee is expected to 

also answer item g that belongs to Sj correctly, Xig= 1 ( ). If the examinee fails to answer 

item g correctly, then Xig= 0, 𝑋𝑖𝑗
 1 − 𝑋𝑖𝑔 = 1, and it is considered a misfit between examinee 

i‘s observed response pattern and the expected response patterns specified by the attribute 

)( jSg
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hierarchy. Thus,   𝑋𝑖𝑗 (1 − 𝑋𝑖𝑔)𝑔𝜖𝑆 𝑗𝑗𝜖𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖
is equal to the total number of misfits. Nci 

contains the total number of comparisons for items that are answered correctly by examinee i. 

When the numerator of the HCI is multiplied by 2, the HCI has the property of ranging from –1 

to +1, which promotes interpretation (Leighton et al., 2009). Values of the HCI range from -1 to 

+1 were a value of 1 indicates an observed response pattern fitting an expected response pattern 

perfectly. Conversely, the HCI value is -1 when the response pattern maximally misfits the 

hierarchy. Cui (2007) claimed that median HCI values above 0.60 suggest moderate model‐data 

fit whereas values above 0.80 indicate excellent fit. Once fit between the cognitive model and the 

observed data is established, the attribute probabilities for each examinee can be estimated. Next, 

I present a method to estimate the probability that examinees master the attributes using the 

artificial neural network (ANN) within the AHM approach.  

Estimating Examinee Attribute Probabilities. ANNs serve as efficient models for 

statistical pattern recognition (Bishop, 2006) that are characterized by a set of nodes and 

connections between nodes. Artificial neurons are computational models inspired by biological 

neurons, so that ANN mimics the way biological neurons function, where a signal is sent to 

neurons through synapses. If the signal is large enough to surpass a particular threshold, then the 

neuron is activated and emits a signal through the axon. This signal might be sent to another 

synapse and might activate other neurons. The ANN functions in a similar way, where three 

components must be in place: inputs (resembling the synapses), weights (strength of the 

respective signals), and the output (whose activation depends on the strength of the signal). The 

neural network model is a nonlinear function from a set of input variables to a set of output 

variables controlled by a vector of adjustable parameters or weights (Bishop, 2006). Neural 

networks can be used to extract patterns and detect trends that are too complex to be noticed by 
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humans or other computer techniques (Sengur, Turkoglu, & Ince, 2007). The process of adjusting 

the weights is called learning or training. Though the training begins with random weights, the 

program‘s goal is to find the set of weight values that will minimize the error.  

The ANN is employed to estimate the probability associated with attribute mastery, given 

the observed item response pattern. In addition to the item responses, a matrix of expected 

attribute patterns and a matrix of expected responses are required to estimate the probabilities for 

attributes specified in the cognitive model. Figure 6 depicts these necessary components for 

computing the attribute probability with the ANN, using the hypothesized linear model 

containing six attributes.

 

Figure 6.Necessary matrices for scoring under the ANN. 

(Figure adapted from Lai & Gierl, 2010) 

 

The expected attribute pattern is the transpose of a Qr matrix with one additional row 

containing 0s for all attributes. The first row of this matrix indicates a possible pattern in which 

none of the attributes in the hierarchy is mastered. The second row of Qr transpose indicates a 

pattern in which attribute 1 is mastered but not attributes 2 through 6; and in the last row, the 
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pattern indicates that all six attributes are mastered. Corresponding to each of the attribute 

patterns is an expected response pattern (notice that the rows correspond). Row 1 of the expected 

response matrix should be interpreted as follows: Supposing that each attribute is measured by 

three items, an examinee who have only mastered attribute A1 (row 2 of the attribute pattern 

matrix) is expected to answer only the first three items correctly, producing the expected 

examinee response pattern (111000000000000).  

From an AHM perspective, the goal of the ANN is to generate an outcome that expresses 

the probability of the student‘s attribute mastery, which is calculated by minimizing the 

differences between any expected response patterns with the student vector to find a pattern that 

is most fitting for the student (Lai & Gierl, 2010). Thus, in order to compute the students‘ 

attribute probability, two steps are necessary: the ANN training and scoring. The training process 

for the ANN is completed using the expected response pattern as inputs and expected attribute 

patterns as outputs. Using these two matrices, the weights are estimated. After the ANN has been 

trained, the network of the trained weights is used to calculate attribute-based probabilities from 

the actual student responses. The items function as input nodes, and the attribute probabilities for 

each student represent the output node. The output ranges from 0 to 1, where a larger value 

indicates that the examinee has a higher probability of possessing a specific attribute. These 

probabilities serve as diagnostic scores that may be reported to students, teachers, and parents.  

Step 4. Score Reporting 

The fourth step for a principled approach to test design specifies how diagnostic scores 

can be transformed into score reports for test users. Score reports must present information that is 

useful to the students, teachers, parents, and relevant school administrators. Because one of the 

purposes of CDA is to make diagnostic inferences about learners‘ cognitive strengths and 
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weaknesses on the attributes required for mastering a specific domain, score reporting has been 

regarded as the ―most critical step‖ (Gierl, Leighton, & Hunka, 2007) in the diagnostic testing 

process. Thus, evaluating score reports used in the Diagnostic Mathematics project was an 

important procedure in the process of implementing an assessment according to principled test 

design. The framework presented by Roberts and Gierl (2010) is used here to evaluate the score 

reports. 

Roberts and Gierl (2010) presented an adaptation of the score reporting framework 

initially developed by Jaeger (1998) and Ryan (2003). In this framework, the following set of 

characteristics is suggested to be important when providing cognitive diagnostic feedback (see 

Table 3).  

Table 3. Framework for diagnostic reporting. 

Reporting Characteristics 

Form of reporting results  

 Scale 

 Assessment unit 

 Reference for interpretation 

 Reporting unit 

Error of measurement 

Mode of reporting results  

 Numerical 

 Graphical 

 Narrative 

Medium for dissemination of results 

Application of design principles 

*Table adapted from Roberts and Gierl (2010), p.30. 

 

Form of Reporting Results.The form of reporting results is discussed by addressing its 

five defining features. Concerning the first feature, scale, the Diagnostic Mathematics project 

used the computed attribute probabilities as diagnostic scores for each examinee (see Figure 7, 
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highlighted area A). Hence, the assessment unit of analysis is at the attribute level (see Figure 7, 

highlighted area B). In this report, the attribute probabilities were classified into three categories: 

―Consistent‖, ―Moderate‖, and ―Limited‖ evidence of mastery. The probability for the consistent 

evidence of mastery ranged from 0.80 to 1.00 and suggested in-depth understanding of the skill. 

The attribute probabilities for moderate evidence of mastery are higher than 0.50 and less than 

0.80 and suggested an inconsistent understanding of the skill. Examinees with limited evidence 

of mastery received probabilities lower than 0.50, suggesting insufficient understanding of the 

skill. These cut offs are the current reporting standards used by Alberta Education for the 

Acceptable Standard and the Standard of Excellent.  Other standards could be used; however, for 

convenience, this study adopted the existing Alberta Education standards. A description of the 

students characteristics (or traits) concerning the expected performance on Subtracting 2-digit 

numbers and Comparing and ordering numbersis presented on Appendix. For example, a student 

who performs at the Consistent Evidence of Mastery is expected to independently and 

confidently solve both familiar and unfamiliar problems while a student at the Limited Evidence 

of Mastery, independently, only can solve familiar problems. As discussed in the first section of 

this chapter, the attributes in thecognitive models were developed to represent the skills that 

would be mastered by moderately high achievers. Using the three levels of performance 

described in the Appendix, moderately high achievers correspond to students performing at the 

Consistent Evidence of Mastery and to some of the students performing at the Moderate 

Evidence of Mastery (i.e., the top performers of this category). 

The cognitive model, together with these standards, served as reference for interpretation 

on the Diagnostic Mathematics project. Students in this reference group are capable of 

understanding and grasping the mathematical concepts at their grade level at an achievement 
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level of approximately 70-80%. In a practical sense, moderately high achievers can be thought as 

a student that would probably achieve around 80% in math classroom assessments and around 

75% on large scale achievement tests. In addition, diagnostic scores were interpreted within a 

criterion-referenced framework and they indicated how well examinees had learned a specific 

body of knowledge and skills and not how their performance compared to a group of students, as 

in norm-referenced tests. In general, score reports were developed to be helpful to teachers, 

students, and parents, as they constitute a major reporting unit. Even though the error of 

measurement was not shown on the Diagnostic Mathematics score reports, the attribute 

reliabilities—which serve as a measure of the precision of diagnostic scores—were computed 

using the AHM for this assessment. The decision to not present the reliability of the attributes 

was framed with a view to make the score reports as simple as possible, due to the young age of 

the examinees. 

 

Figure 7. Form of reporting results on the Diagnostic Mathematics score report. 

A 

B 
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Mode of Reporting Results. The mode of reporting results concerns the use of 

numerical, graphical, or text-based information on a score report. The score reports for the 

Diagnostic Mathematics project relied on visual/graphical and textual sources to inform students. 

Diagnostic information was provided through three categories of mastery. Check marks in the 

category label indicated the level of skill mastery based on the student‘s responses. For example, 

a checkmark in the Limited column for the top skill suggested that this examinee has limited 

skills in verifying the larger or smaller number of two numbers using place value concepts with 

numbers 100 to 1,000 (see Figure 8, highlighted area A). Textual information about how to 

interpret results is provided on the left side of the score report (see Figure 8, highlighted area B). 

Numerical outcomes of the attribute probability (a number ranging from 0.00 to 1.00) were not 

provided, since this information could be confusing and, potentially, misunderstood by the 

students due to their young age. Similarly, the Alberta Education team opted to remove 

information containing the total score from the prototype score report. This decision was based 

on the notion that the total score could be misleading. For example, a teacher could think that a 

student who answered more than half of the items correctly was doing alright, not noticing that 

most of the correctly answered items were of the lower level attributes and the student needed to 

work on the higher level skills. For this reason, Alberta Education decided to eliminate the total 

scores and report only check marks for each attribute, so that teachers and students would have a 

clear understanding of where to focus their efforts. 
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Figure 8. Mode of reporting results on the Diagnostic Mathematics score report. 

 

Medium for Dissemination of Results. The electronic files of the score reports for the 

Diagnostic Mathematics were generated at the Centre for Research in Applied Measurement and 

Evaluation (CRAME) at the University of Alberta. These files were then sent to Alberta 

Education, who distributed them to teachers by e-mail. Teachers printed the files and distributed 

them to their students.  

Application of Design Principles. Clarity of communication was emphasized in the 

process of designing score reports for the Diagnostic Mathematics project. Given students‘ 

young age, score reports were intended to be short and to provide only essential information on 

students‘ skills. 

B 

A 
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Sample and Data Collection Design 

This study is part of a larger project undertaken by Alberta Education, focusing on 

diagnostic mathematics from Kindergarten to Grade 6. Grade 3 was selected as the target 

audience for this study due to its relatively advanced stage of item development, data collection, 

and student participation.  

All schools in the province were given an opportunity to voluntarily participate in the 

study. In September 2009, a letter was sent from Alberta Education to the superintendents of all 

school divisions in the province, which were then forwarded to approximately 1,330 schools. 

Principals, in turn, were asked to convey the information to the teachers whom they supervise 

and teachers from these schools were asked to indicate their interest in participating in a research 

study involving diagnostic mathematics. Eighty teachers who expressed interest in participating 

in the study were contacted by email in February of 2010. Of the 80 teachers, 57 (71%) agreed to 

take part in the study. Forty-six teachers have had their students complete at least one of the 

diagnostic tests. This group of students formed the convenience sample for this study. These 

students were presented with both models; first with the multiple-choice test items (i.e., 18 items 

from Comparing and ordering numbers) and next with the numerical-response test items (i.e., 18 

items from Subtracting 2-digit numerals). Only students who answered more than 50 percent of 

the items were included in the psychometric analyses. From the total of 385 students who 

answered the tests, 12 students left more than 50 percent of the questions blank on Comparing 

and ordering numbers and 61 students on Subtracting 2-digit numerals. Therefore, data from 373 

students were considered for Comparing and ordering numbers and from 324 students for 

Subtracting 2-digit numerals. 
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Students were given 50 minutes to answer the 36 test items. The diagnostic test 

containing both cognitive models was ordered randomly except the first item, which was always 

related to the most basic skill of the model.  

The test was administered at the end of the 2010 school year, after most of the 

instructional units were completed. The delivery method was computer-based, online, supervised 

by the teacher. The online data collection system was developed by Alberta Education and is 

called Quest A+. Students who engaged in problem-solving activities were allowed to use only 

the resources available in the test delivery system and the usage of a calculator, paper, or pencil 

was not permitted after the test was started.  

  



90 

Psychometric Analyses 

Three psychometric analyses—hierarchy consistency index, students‘ attribute 

probability, and attribute reliability—were used to evaluate two cognitive models from the 

Diagnostic Mathematics: Comparing and ordering numbers and Subtracting 2-digit numerals.   

Hierarchy Consistency Index 

The HCI was used to evaluate whether the attribute hierarchies accurately reflected the 

cognitive attributes employed by the examinees on the Diagnostic Mathematics project for 

Comparing and Ordering Numbers and Subtracting 2-digit Numerals. The median HCI across all 

the students was used as the indicator of the overall model-data fit. The HCI ranges from -1.00 to 

1.00, with values close to -1.00 indicating that students respond unexpectedly or differently from 

the responses expected under a given cognitive model (Cui & Leighton, 2009). Syntax developed 

by Cui in the Mathematica programming language was used to calculate the median and standard 

deviations of the HCI values.  

Attribute Probability Estimates 

This stage includes the generation of the Qr, attribute-by-item pattern, expected item 

response pattern matrices, and calculation of attribute probability estimates. After specifying the 

attribute hierarchy, the observed response data was compared to the expected response patterns 

derived from the cognitive model. Through this procedure the identification of the attribute 

combinations students are likely to possess, or not, is made possible.  

Neural network analysis was used to investigate the relationship between the expected 

response patterns and their associated attribute patterns by presenting each pattern to the network 

repeatedly until each association is learned (Wang & Gierl, 2007). Once the network learns the 

associations successfully, a set of weight matrices are produced and used to obtain the 
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probabilities of the individual attributes for any observed response pattern. A probability close to 

1 indicates that the corresponding attribute is likely to be mastered by the examinee. Conversely, 

a probability close to 0 indicates that the corresponding attribute is not likely to be mastered by 

the examinee. This analysis was conducted using SPSS 16.0 software program (SPSS Inc., 

Chicago, IL).  

Attribute Reliability 

Attribute reliability refers to the precision of score decisions about examinees‘ mastery of 

specific attributes. Attribute reliability is calculated as a variation of Cronbach‘s , as follows: 
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where 
k is the reliability for attribute k, nk is the number of items that are probing attribute kin 

the reduced Q-matrix (i.e., the number of elements in Sk), 
2

iX is the variance of the observed 
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Si

XikW 22 is the sum of the weighted variance of the observed scores on the 

items that are measuring attribute k, and 
2


 kSi

iik XW
  is the variance of the weighted observed total 

scores.  

High values of reliability are always preferred. Because  CDA items are usually designed 

to measure a combination of attributes, the attribute dependency implies that prerequisite 

attributes of the hierarchy, such as attribute 1, are expected to have higher reliability estimates 

compared to attributes in the final nodes of the hierarchy, such as attribute 6 (refer to Figure 3 for 

an example). This occurs because the number of items that measure each attribute, either directly 

or indirectly, is influenced by the dependencies among the attributes.   
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CHAPTER IV: RESULTS 

In this chapter I present the psychometric results for the two cognitive models in the 

Diagnostic Mathematics project—Comparing and ordering numbers and Subtracting 2-digit 

numerals (see Figures 1 and 4)—for the Grade 3 student sample that completed the tests. The 

chapter is organized into four main sections. Each of these sections addresses one type of 

psychometric analysis. In the first section I present the characteristics of the items, where 

difficulty and discrimination are discussed. In the second section I discuss the fit of the models 

relative to the actual student response data using the Hierarchy Consistency Index (HCI). In the 

third section I present results from the attribute probability estimates. These estimates provide 

examinees with specific information about their attribute mastery. In the fourth section I present 

results for the attribute reliability estimates, which are used to evaluate the consistency of 

decisions made with respect to the examinees‘ attribute mastery. 

Group and Item Characteristics 

The mean student performance (with standard deviation in parentheses) on the 18 items 

for the content area Comparing and ordering numbers was 10.55 (SD = 3.46); the mean item 

difficulty was 0.59 (SD = 0.18), and the mean item discrimination was 0.41 (SD = 0.17). For the 

content area Subtracting 2-digit numerals, the mean student performance was 13.03 (SD = 4.63), 

the mean item difficulty was 0.72 (SD = 0.18), and the mean item discrimination was 0.83 (SD = 

0.18).  

Table 4 summarizes the difficulty and discrimination level of each item measured as the 

percentage of correct answers (hereafter called p-values) and biserial correlation, respectively.  
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Table 4. Difficulty and discrimination of test items in Comparing and ordering numbers and 

Subtracting 2-digit numerals. 

Comparing and ordering numbers   Subtracting 2-digit numerals 

  Diffic.
a
 Discr.

b
 

 

  Diffic.
a
 Discr.

b
 

A1.1 0.83 0.55  A1.1 0.76 0.58 

A1.2 0.88 0.61  A1.2 0.78 0.87 

A1.3 0.76 0.53  A1.3 0.80 0.96 

A2.1 0.78 0.55  A2.1 0.84 0.89 

A2.2 0.66 0.53  A2.2 0.87 1.11* 

A2.3 0.77 0.52  A2.3 0.85 0.94 

A3.1 0.70 0.36  A3.1 0.86 1.06* 

A3.2 0.60 0.45  A3.2 0.80 0.68 

A3.3 0.63 0.53  A3.3 0.84 1.01* 

A4.1 0.61 0.40  A4.1 0.77 0.79 

A4.2 0.38 0.15  A4.2 0.72 0.78 

A4.3 0.65 0.57  A4.3 0.75 0.82 

A5.1 0.36 0.37  A5.1 0.74 0.82 

A5.2 0.39 0.39  A5.2 0.77 0.92 

A5.3 0.45 0.49  A5.3 0.79 0.98 

A6.1 0.45 0.11  A6.1 0.35 0.56 

A6.2 0.38 0.23  A6.2 0.34 0.57 

A6.3 0.29 0.07  A6.3 0.33 0.53 

Average 0.59 0.41 

 

Average 0.72 0.83 

Stdev 0.18 0.17   Stdev 0.18 0.18 
Notes: 

a
Percent of correct responses (p-values); 

b
Biserial correlation; *Biserial correlation may be larger than 1.0 as 

the distribution of the data assumes a non-normal shape. 

 

As shown on the left side of Table 4 (Comparing and ordering numbers), the lowest p-value 

(0.29) and discrimination (0.07) values were for item A6.3 (that is, the third item measuring 

Attribute 6). Interestingly, one item (A1.2) produced both the highest p-value (0.88) and 

discrimination (0.61) values. This outcome is interesting because items with p-levels in the mid-

range usually have the best discrimination power and both very easy and very hard items are not 

likely to be strongly discriminating (PTI, 2006). In other words, an item with a very high p-value 

may be interpreted as being easy for almost the entire set of examinees and, for that reason, does 
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not usually provide much discrimination or differentiation between high ability and low ability 

examinees (Slatt, Steiner, Hollar, et al., 2011). Dawber, Rogers, and Carbonaro (2004, citing 

Alberta Education, 1999) claim that 0.20 is a minimum level for the point-biserial correlation 

that can be deemed acceptable for differentiating examinees. Given that this value corresponds to 

a biserial correlation between 0.25 and 0.30 (Dawber et al., 2004), items with discrimination 

values lower than 0.20 were removed. Using this decision rule, items A4.2, A6.1, and A6.3 were 

removed from Comparing and ordering numbers, and these items were not included in the 

subsequent psychometric analysis. The decision to delete these items was also influenced by the 

fact that these items did not contribute to the pattern of decreasing p-values in the hierarchy 

(especially item A4.2). This pattern serves as one indicator of the alignment between test items 

and the cognitive model. If these two (items and model) are not aligned, the consistency of the 

hierarchy will decrease and adversely affect the HCI estimate. For these reasons, the three items 

were deleted. 

Figure 9 shows the item characteristics after the three items (i.e., A4.2, A6.1, and A6.3) 

were removed from Comparing and ordering numbers. The grey line in this graph represents the 

discrimination values of the items. The biserial correlations did not vary substantially among 

items. This graph shows a slight decrease in the item p-values, as the attributes increase in 

complexity. Because the cognitive attributes that are believed to underlie test performance were 

placed in a hierarchical form of increasing difficulty, according to the conceptualized cognitive 

model, this pattern of decreasing p-values (as attributes increase in complexity) is expected. 
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Figure 9. Difficulty and discrimination of the test items in Comparing and ordering numbers. 

 

The overall trend for the second model, Subtracting 2-digit numerals, does not follow the 

same pattern of decreasing p-values as in the first model (see Figure 10). Except for attribute 6, 

whose item difficulty level abruptly decreased, the p-values of the remaining items were fairly 

similar (i.e., ranging from 0.72 to 0.86). 

 

Figure 10. Difficulty and discrimination of the items in Subtracting 2-digit numerals. 
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To further evaluate the psychometric properties of the two cognitive models, examinees 

were divided into two groups according to their ability level as indicated by the total scores. The 

division of the examinees into groups according to their ability level was made as an attempt to 

better understand the difference in their response patterns and to investigate how well the 

cognitive models represented students with different ability levels. The cognitive attributes in the 

cognitive models were developed to represent the skills in which the moderately high achievers 

would be proficient
12

. It is assumed that moderately high ability students serve as a target for the 

low and moderate ability students and that the latter two groups will eventually develop the same 

type of skills displayed by the former group with proper instruction and adequate learning 

strategies.  

In order to establish an empirical foundation for evaluating the data across these two 

groups, the K-means clustering method was used. The goal of the K-means algorithm is to find 

the best division of n entities (that is, the total number of students according to their total score) 

in k groups (i.e., two groups), so that the total distance between each group's members and its 

corresponding centroid, representative of the group, is minimized (Lin, Koh, & Chen, 2010). 

Results from the K-means cluster analysis indicated that, in the content area Comparing and 

ordering numbers, the first group consisted of students with the minimum total score of 9.0 and 

the second group consisted of students with a total score of 8.0 or below. For Subtracting 2-digit 

numerals, the first group is formed by students who achieved total score values of 10.0 or higher. 

For the sake of simplicity, the first group is referred to as the ―high‖ ability group and the second, 

the ―low‖ ability group, although both groups would also include those students with ―moderate‖ 

ability. 

                                                           
12

In a practical sense, a moderately high achiever can be thought of as a student that would probably achieve around 

80% on math classroom assessments and around 75% on large scale achievement tests. 
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The total score distributions for Comparing and ordering numbers and Subtracting 2-digit 

numerals are presented in Figures 11 and 12, respectively. 

 

Figure 11. Total score distribution for Comparing and ordering numbers. 

 

 

Figure 12. Total score distribution for Subtracting 2-digit numerals. 
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Figures 13 and 14 depict the difficulty level of the items, for each model, according to the 

two ability levels (low and high). Dark grey columns represent the percentage of high ability 

students who correctly answered each item. Light grey columns represent the percentage of low 

ability students who correctly answered each item. For example, item A1.1 (the first item 

measuring A1) was correctly answered by approximately 94 percent of the high ability students 

and by63 percent of low ability students. The trend line represents the attribute difficulty, which 

is the average of the items that directly measure the corresponding attribute. For example, A2 

was measured by items A2.1, A2.2, and A2.3; thus, the attribute difficulty is the average of these 

three items. As a result, the average difficulty of A2 is 0.88 for the high ability group and 0.47 

for the low ability group. 

 

Figure 13. Item difficulty for Comparing and ordering numbers as a function of students‘ ability 

level. 

 

As shown in Figure 13, changes in the performance of students on attributes 1 to 4 are more 

noticeable for low ability students. In both groups, the decrease in the p-values for attributes 5 

and 6 is more pronounced. 
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Figure 14. Item difficulty for Subtracting 2-digit numerals as a function of students‘ ability level. 

 

In Figure 14, except for attribute 6, the difficulty level of the items only slightly changed for the 

high ability group. In addition, the average difficulty of the least complex attribute, A1, does not 

substantially differ from a more complex attribute, A5, where the former has a p-value of 0.96 

and the latter 0.90. For the low ability students, the average difficulty consistently increased from 

one attribute to the other. 

Summary 

Overall, the two tests developed to measure the two cognitive models were moderately 

easy and, for the most part, highly discriminative (especially Subtracting 2-digit numerals). By 

comparing the results between two ability levels, the percent of correct responses is noticeably 

and consistently larger for the high ability students compared to the low ability students. A 

pattern of decreasing p-values was more evident for Comparing and ordering numbers, 

especially for the high ability group. This is a desirable characteristic because it confirms the 

structure of the cognitive models, where the skills are placed in a hierarchical form of increasing 

difficulty. The first five attributes of Subtracting 2-digit numerals were correctly answered by 
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almost the entire set of high ability students, which reveals that the majority of the items on the 

test were very easy for this group. Implications of these results will be further examined as the 

three psychometric analyses within the AHM—hierarchy consistency index, students‘ attribute 

probability, and attribute reliability —are conducted and described in the next sections. 

Hierarchy Consistency Index 

In this section, the results from the HCI analysis are reported. The HCI results for the 

total sample as well as for the high and low ability groups are reported and compared. The 

median, mean, and standard deviations of the HCI values according to these three groups are 

summarized in Table 5. 

Table 5. HCI statistics for Comparing and ordering numbers and Subtracting 2-digit numerals 

as a function of students’ ability level. 

 Comparing and ordering numbers  Subtracting 2-digit numerals 

 Total High Low  Total High Low 

Median 0.57 0.76 -0.03  0.86 0.90 0.00 

Mean 0.44 0.71 -0.05  0.68 0.83 0.00 

Std. Dev. 0.48 0.22 0.43  0.45 0.19 0.64 

N. of examinees 373 241 132  324 265 59 

 

As shown in Table 5, for Comparing and ordering numbers, a median HCI value of 0.57 was 

obtained when the data for the total sample of students were considered. This median HCI value 

suggests that the fit between the cognitive model and the response data for the total sample was 

moderate. The highest median HCI value was obtained when the data for only the high ability 

students were used. The median HCI value of 0.76 indicates a strong fit between the cognitive 

model and the response data, suggesting that the hierarchical arrangement of attributes 

adequately predicted the response patterns of high ability students. Conversely, the cognitive 
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model poorly predicted the observed response vectors of the low ability students (median HCI = 

-0.03). 

For Subtracting 2-digit numerals, Table 5 indicates a strong fit between the cognitive 

model and the response data obtained from the total sample of students (median HCI = 0.86). 

The highest median HCI (0.90) was obtained when high ability students‘ response data were 

used, which suggests an excellent fit between the cognitive model and students‘ response data. 

However, the cognitive model did not seem to predict response patterns for the low ability 

students well, with the median HCI being 0.00. 

Summary 

Cui (2007) suggested that the median HCI values greater than 0.60 indicate moderate fit, 

whereas values greater than 0.80 suggest excellent fit between the students‘ response patterns 

and the expected response patterns based on the hierarchical relationship among attributes, as 

represented in the cognitive models. If Cui‘s guideline is considered, then the median HCI value 

was considered moderate for Comparing and ordering numbers and strong for Subtracting 2-

digit numerals, when data from the total sample of students are examined. Taking the two ability 

levels into consideration, the median HCI values suggest that the model-data fit was satisfactory 

for the high, but not for the low ability students. The poor fit between the cognitive model and 

the responses of the low ability examinees is not surprising as cognitive models were generated 

using moderately high achieving mathematics students as the point of reference by focusing on 

how these students would solve problems in mathematics (see Chapter III, Step 1). This 

assumption may substantially affect how well the cognitive models predict responses for low and 

high ability groups, as research has shown that expert and novice problem solvers differ in many 

ways (Chi, Glaser, & Farr, 1988; Leighton, et al., 2009; Mislevy, 1994).The HCI results indicate 
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that the cognitive models fit not only the data from the total sample well but also for the intended 

population (i.e., high ability students).  

Attribute Probability 

The artificial neural network (ANN) was employed to estimate the probability associated 

with attribute mastery, given the observed item response pattern. In addition to the item 

responses, a matrix of expected attribute patterns and a matrix of expected responses were 

required to estimate the probabilities for attributes specified in the cognitive model. The process 

for developing the expected attribute pattern and the expected response pattern was described in 

the section Step 3. Confirmatory Psychometric Analyses of Chapter III. 

The input to train the neural network was the matrix of expected responses, which was 

derived from the hierarchy as specified by the cognitive model. This matrix can be justifiably 

used for training the network because the model fit the data, as suggested by the HCI values. The 

relationship between the expected response vectors and their associated expected attribute was 

established by presenting each pattern to the network repeatedly until it learned each association. 

After this training, the network of the trained weights was used to calculate attribute probabilities 

from the actual student responses. The item responses functioned as input nodes, whereas the 

attribute probabilities for each student represented output nodes. Figure 15 displays the position 

of these matrices in SPSS. 
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Figure 15. Required matrices for computing students‘ attribute probability estimates in SPSS. 

 

The descriptive statistics for the attribute probability estimates are presented in Tables 6 

and 7 for Comparing and ordering numbers and Subtracting 2-digit numerals, respectively. 

Table 6. Mean and standard deviation for the attribute probability estimates as a function of the 

students’ ability level on Comparing and ordering numbers. 

  
A1 A2 A3 A4 A5 A6 

Total Mean 0.98 0.91 0.88 0.67 0.54 0.33 

 Std. Deviation 0.12 0.24 0.29 0.43 0.45 0.42 

 
 

            

High Mean 1.00 0.99 1.00 0.87 0.66 0.39 

 Std. Deviation 0.00 0.04 0.01 0.29 0.42 0.45 

 
 

            

Low Mean 0.94 0.75 0.67 0.31 0.31 0.22 

 Std. Deviation 0.20 0.35 0.41 0.40 0.41 0.34 

 

Expected Response Pattern 
Expected 

Attribute Pattern 

Students’ responses 
Attribute 

Probability 
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As shown in Table 6, the average attribute probability level ranged from 0.98 to 0.33 for the total 

sample. For instance, using the total sample of students, the value of 0.98 suggests that, on 

average, students have a high probability of mastering A1. Conversely, A6 received the lowest 

average probability, indicating that this attribute was not mastered by many students (on average, 

students had only a 33 percent chance of mastering it). The average attribute probability 

estimates from A1 to A6 are, ordered from least to most difficult. This pattern of decreasing 

probabilities is expected given the dependent relationship among the attributes—as specified in 

the cognitive model and operationalized by the linear hierarchy—where A1 is the simplest 

cognitive skill that also serves as a prerequisite to all other attributes. As a prerequisite attribute, 

A1 reflects the most basic skill of the cognitive model and is expected to be mastered by the 

majority of students. As the complexity of the skills increases, it is expected that the probability 

of mastering those skills decreases. Comparing high and low ability groups, the average 

probability estimates reveal that high ability students demonstrated higher probability of 

mastering the attributes. For instance, high ability students are much more likely to master the 

attribute A4 (average probability estimate = 0.87) than low ability students (average probability 

estimate = 0.31). The nearly unanimous mastery of the first three attributes (A1, A2, and A3) by 

the high ability students is demonstrated not only by the high average probability estimates (1.00, 

0.99, and 1.00, respectively), but also by the small standard deviation associated with these three 

attributes (0.00, 0.04, and 0.01, respectively). Higher variability of the probability estimates was 

obtained when using data from the low ability students, ranging from 0.20 (A1) to 0.41 (A3 & 

A5).This increase in the variability of response may be related to a higher incidence of random 

or inconsistent responses by the low ability group. In addition the average attribute probability 

estimates from A1 to A6 are, again, ordered from least to most difficult. This pattern of 
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decreasing probabilities for high and low ability students supports the hierarchical structure 

specified in the cognitive models and operationalized by the linear hierarchy. 

Table 7. Mean and standard deviation for the attribute probability as a function of the students’ 

ability level for Subtracting 2-digit numerals. 

 
 

A1 A2 A3 A4 A5 A6 

Total Mean 0.93 0.93 0.90 0.87 0.77 0.44 

 Std. Deviation 0.25 0.24 0.28 0.33 0.38 0.46 

 
 

            

High Mean 1.00 1.00 1.00 0.99 0.91 0.53 

 Std. Deviation 0.00 0.00 0.01 0.08 0.23 0.46 

 
 

            

Low Mean 0.61 0.63 0.46 0.32 0.16 0.03 

 Std. Deviation 0.47 0.46 0.46 0.43 0.32 0.14 

 

Likewise, the average attribute probabilities for Subtracting 2-digit numerals, in general, 

decreased as the complexity of the attribute increased, as shown in Table 7. For the total sample 

of students, the higher average probability values were observed for attributes A1 and A2, with 

the averages being the same (0.93). As expected, attribute A6 had the lower average attribute 

probability for the three comparison groups (0.44 for the total group, 0.53 for the high ability 

group, and 0.03 for the low ability group). As mentioned in Chapter III, the attribute probability 

estimates for the Diagnostic Mathematics project were classified into three categories: 

―Consistent‖, ―Moderate‖, and ―Limited‖ evidence of mastery. The probability for the consistent 

evidence of mastery ranged from 0.80 to 1.00 and suggested in-depth understanding of the skill. 

The attribute probability for moderate evidence of mastery is higher than 0.50 and less than 0.80 

and suggested an inconsistent understanding of the skill. Examinees with limited evidence of 

mastery received a probability lower than 0.50, suggesting insufficient understanding of the skill. 

Taking these ranges into consideration, the performance of the total sample of students on the 

first four attributes (A1 to A4) denoted consistent evidence of mastery. The average probability 



106 

estimates for this group suggest a moderate evidence of mastery on attribute A5, and limited 

evidence on attribute A6.Overall, a trend of increasing variability can be seen for the total group 

as the average attribute probability decreases. The high ability group demonstrated consistent 

evidence of mastery in five of the six attributes; the average probability estimates revealed 

limited evidence of mastery in only one attribute (A6). The variability of the estimates for this 

group was very small for the first four attributes (standard deviations varying from 0.00 to 0.08) 

and high for A6 (standard deviation = 0.46). Conversely, low ability students, on average, did not 

produce consistent evidence of mastery for any of the attributes. For four attributes (A3 to A6), 

the average probability estimates were lower than 0.50, suggesting insufficient understanding of 

these skills by many of the low ability students. Except for A6, the standard deviations for the 

low ability group were consistently higher than the standard deviations for the high ability group. 

As the probability estimate moves away from the extremes (either 0.00 or 1.00) toward 0.50, 

there is more opportunity for the estimates to vary (Fisher, 2009).Therefore, higher values of 

standard deviation were encountered for the low ability group, as their attribute probability 

estimates assumed more intermediate values than the high ability group.   

Tables 8 and 9 show correlations among the attribute probability values for Comparing 

and ordering numbers and Subtracting 2-digit numerals for the three groups (total, high, and 

low), respectively. 
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Table 8. Correlations among attribute probability estimates as a function of the students’ ability 

level for Comparing and ordering numbers. 

Subgroup  A1 A2 A3 A4 A5 A6 

Total A1 1.00      

 A2 .49** 1.00     

 A3 .48** .69** 1.00    

 A4 .28** .57** .64** 1.00   

 A5 .20** .32** .47** .69** 1.00  

 A6 .11*. .11*. .29** .37** .70** 1.00 

        

High A1 1.00      

 A2 .84** 1.00     

 A3 .48** .59** 1.00    

 A4 .60** .40** .37** 1.00   

 A5 .07 .033 .18** .55** 1.00  

 A6 -.18** -.13* .09 .26** .65** 1.00 

        

Low A1 1.00      

 A2 .45** 1.00     

 A3 .43** .59** 1.00    

 A4 .24** .49** .62** 1.00   

 A5 .21* .30** .57** .75** 1.00  

 A6 .13 .09 .44** .48** .81** 1.00 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

 

As shown in Table 8, all the correlations were significant for the total sample of students. For 

instance, the correlations among the attributes ranged from a low of 0.11 (between A1 & A6 and 

A2 & A6) to a high of 0.70 (between A5 & A6). Attributes related to one another most closely in 

the hierarchy yielded the highest correlations. This result likely occurs because these attributes 

are designed to measure the most similar skills and had a direct relationship or dependency (i.e., 
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one is a prerequisite to the other) within the cognitive model. The correlations were lower for 

attributes that were moderately related or unrelated to one another as the skills became more 

distinct from one another in the cognitive model. Most of the correlations were significant for the 

high ability group, with the highest correlation value (0.84) registered between the adjacent 

attributes A1 and A2 and the lowest value (-0.18) between the non-adjacent attributes A1 and 

A6. For the low ability group, only two correlations were not significant (A1 & A6 and A2 & 

A6). The highest correlation value (0.81) was obtained between the adjacent attributes A5 and 

A6, and the lowest (0.09) between the non-adjacent attributes A2 and A6. In sum, similar to the 

total sample group, the correlational pattern for both high and low groups indicates that, in 

general, attributes related to one another most closely yielded the highest correlations, and 

attributes that were only moderately related yielded the lowest correlations, which suggests 

convergent and discriminant evidence supporting the cognitive models, respectively. 
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Table 9. Correlations among attribute probability estimate as a function of the students’ ability 

level for Subtracting 2-digit numerals. 

  A1 A2 A3 A4 A5 A6 

Total A1 1.00      

 A2 .86** 1.00     

 A3 .74** .87** 1.00    

 A4 .67** .74** .85** 1.00   

 A5 .55** .57** .68** .82** 1.00  

 A6 .26** .27** .33** .38** .58** 1.00 

        

High A1 1.00      

 A2 -.17** 1.00     

 A3 -.19** .78** 1.00    

 A4 .00 .78** .43** 1.00   

 A5 -.32** .61** .29** .45** 1.00  

 A6 -.81** .29** .10 .13* .48** 1.00 

        

Low A1 1.00      

 A2 .78** 1.00     

 A3 .54** .79** 1.00    

 A4 .42** .60** .70** 1.00   

 A5 .30* .41** .50** .79** 1.00  

 A6 .08 .20 .24 .38** .60** 1.00 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

 

The correlations among the attributes in Subtracting 2-digit numerals produced a similar pattern 

of results for the three reference groups, where highest correlations were between adjacent 

attributes and the correlational values decreased as the distance between two attributes increased. 

For the total sample of students, the correlations between adjacent attributes ranged from a low 

of 0.58 (between A5 & A6) to a high of 0.87 (between A2 & A3). The correlations between non-
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adjacent attributes were lower because the attributes were more distant from one another in the 

cognitive model. For instance, using the total sample of students, the correlation values among 

A1 and A3 to A6 were 0.74, 0.67, 0.55, and 0.26, respectively. That is, as the distance between 

A1 and the other attribute increases, the correlation decreases. Similar to the total sample group, 

the correlational pattern for the high ability group indicates that, in general, attributes related to 

one another most closely yielded the highest correlations, and attributes that were only 

moderately related yielded the lowest correlations. For instance, a correlation value of 0.78 was 

registered between the adjacent attributes A2 and A3 and a correlation value of 0.10 was 

obtained between the non-adjacent attributes A3 and A6. Likewise, for the low ability group, 

smaller correlation values were registered between non-adjacent attributes (e.g., r16=0.08) and 

greater values between adjacent attributes (e.g., r45= 0.79). 

To demonstrate how the AHM can be used to provide diagnostic feedback, three reports 

are presented in Figures 16to 18. The report in Figure 16 depicts a student who produced 

consistent evidence of mastery (all attributes were mastered); the report in Figure 17 was created 

for an examinee who produced moderate evidence of mastery (half of the skills were mastered); 

and Figure 18 was created for an examinee who produced limited evidence of mastery (only the 

first attribute was mastered). 
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Figure 16. Cognitive diagnostic score report for an examinee producing consistent evidence of mastery. 

 

 

Figure 17. Cognitive diagnostic score report for an examinee producing moderate evidence of mastery. 
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Figure 18. Cognitive diagnostic score report for an examinee producing limited evidence of 

mastery. 

 

The three score reports in Figures 16 to 18were chosen to demonstrate how the results 

from the AHM could be used in score reporting, providing information regarding the examinees‘ 

attribute mastery. The score report has three parts: performance on skills (Evidence of Skill 

Mastery), the cognitive attributes measured by the test (Skill Description), and description of the 

performance (Interpreting the Report). In this report, the attribute probabilities were classified 

into three categories: ―Consistent‖, ―Moderate‖, and ―Limited‖ evidence of mastery. The 

probability for the consistent evidence of mastery ranged from 0.80 to 1.00 and suggested in-

depth understanding of the skill. The attribute probabilities for moderate evidence of mastery are 
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higher than 0.50 and less than 0.80 and suggested an inconsistent understanding of the skill. 

Examinees with limited evidence of mastery received probabilities lower than 0.50, suggesting 

insufficient understanding of the skill. The mastery levels of the attributes are also expressed in 

the form of check marks. For instance, the student who received the score report depicted in 

Figure 16 mastered all six attributes of Comparing and Ordering Numbers. In Figure 17, the 

student showed consistent evidence of mastering the first three skills, but not the remaining 

attributes. Finally, Figure 18 depicts a situation where the student showed limited evidence of 

mastering five out of six attributes (only the most basic attribute was mastered). 

Summary 

Results from the attribute probability analysis for the total sample of students indicated 

that probably most of the attributes in the two cognitive models were mastered by the students 

(i.e., probability estimates greater than 0.80), an outcome that was also found when the total 

score and the item p-values were investigated (see first section of this chapter). In addition, the 

pattern of decreasing probabilities supports the structure specified in the cognitive model and 

operationalized by the linear hierarchy. That is, in the same way as the cognitive models were 

characterized by a set of attributes organized from simple to complex, the probability of 

mastering the attributes consistently decreased in response to this increase of complexity. 

Overall, the same pattern of decreasing probability estimates was also found when analyzing 

both the high and low ability groups, which supports the hierarchical structure specified in the 

cognitive models. 

Another important result concerns the strong correlation between attributes sharing a 

direct relationship and the diminution of the correlation as the relatedness among attributes 

decreased. Gierl et al. (2010) proposed that this type of outcome indicates, respectively, 
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convergent and discriminant evidence supporting the cognitive model. Convergent evidence is 

supported by finding that attributes most closely related to one another yield the highest 

correlations. Discriminant evidence is found when the lowest correlations among attributes occur 

for those attributes most unrelated to one another. In sum, the correlation patterns obtained using 

the total sample of students, as well as the high and the low ability groups, suggest convergent 

and discriminant evidence supporting the cognitive model for Comparing and ordering numbers 

and Subtracting 2-digit numerals. 

Attribute Reliability 

To evaluate the consistency of the decisions made with respect to the examinees‘ 

attribute mastery, reliabilities for the attributes in both models were calculated. Because the test 

items used in this study measured a combination of different attributes, each attribute contributed 

to only a part of the total item variance. When the number of items that both directly and 

indirectly measure a certain attribute decreases, the reliability estimates also decrease. For 

example, in Comparing and ordering numbers, attribute A1 was measured by all 15 items and 

thus had the highest reliability estimate (0.75). Attribute A5, on the other hand, had the lowest 

reliability estimate (0.44) because only four items measured this attribute. The reliability of A6 is 

undetermined because only one item was used to measure this attribute, thus making it 

impossible to compute reliability for this attribute. 
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Table 10. Attribute reliability values for Comparing and ordering numbers and Subtracting 2-

digit numerals as a function of the students’ ability level. 

 
N. of items/ 

ability level 
A1 A2 A3 A4 A5 A6 

Comparing and 

ordering numbers 

* 15 12 9 6 4 1 

Total 0.75 0.67 0.58 0.51 0.44 NA 

High 0.20 0.17 0.25 0.34 0.35 NA 

Low 0.31 -0.01 -0.33 -0.05 0.07 NA 

 
       

Subtracting 2-digit 

numerals 

 18 15 12 9 6 3 

Total 0.89 0.86 0.81 0.78 0.75 0.79 

High 0.48 0.51 0.48 0.46 0.58 0.76 

Low 0.73 0.59 0.44 0.41 0.38 0.73 

Note: * Number of items that directly or indirectly require that attribute. For example, A1 is directly measured by 

three items and indirectly by 12 (in total by 15 items); A2 is directly measure by three and indirectly by six (in total 

by 12 items). 

 

The reliability values for Comparing and ordering numbers ranged from 0.75 (A1) to 

0.44 (A5) for the total sample of students. In social sciences, a widely accepted cut-off for the 

reliability is a value of 0.70 or higher (Nunnaly, 1978). Using this value as a threshold value for 

decision consistency, for the total sample, only the decisions made for Attribute 1 were 

determined to be consistent, given that this was the only attribute with reliability higher than 

0.70. A plausible approach for improving the reliability estimates is the increase in the number of 

items that measure each attribute. The Spearman-Brown formula is used to estimate how much a 

test's reliability would increase if the test is increased by adding parallel items. The Spearman-

Brown formula adapted for the AHM is specified as 
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where
kSBAHM   is the Spearman-Brown reliability of attribute k if nk additional item sets that are 

parallel to items measuring attribute k are added to the test. Supposing that the length of the test 

measuring the cognitive model Comparing and ordering numbers was increased three times (i.e., 

3 x 15 = 45 items), the attribute reliability estimates from A1 to A5 would be, respectively: 0.90, 

0.86, 0.81, 0.76, and 0.70. These results show that the reliability of the attributes would increase 

considerably by tripling the number of items measured by each attribute. These new reliability 

estimates would be above the suggested cut-off (0.70) and would yield consistent outcome 

interpretations.  

The reliability values for the high ability group ranged from 0.35 (A5) to 0.17 (A2) on 

Comparing and ordering numbers. The reliability values for this group are not considered 

satisfactory for two reasons: the reliability values are very small and the pattern of increasing 

reliability estimates (as the number of items increases) was not obtained. A possible explanation 

for this occurrence is related to the fact that reliability estimates are affected by the variability of 

the scores and by the characteristics of the sample (Aguinis, Henle, & Ostroff, 2001). That is, the 

poor reliability estimates obtained when using data from the high ability students is likely to be 

due to the restriction of variance created by the split into two ability groups. For instance, the 

average observed variance for the three items associated with attribute A1 is very low (σ
2
=0.04). 

The reliability values for the low ability group ranged from 0.31 (A1) to -0.33 (A3) on 

Comparing and ordering numbers. Similar to the high ability group, the reliability estimates 

produced by the low ability students‘ data are very small and the pattern of increasing reliability 

estimates was not obtained. The variance of the observed scores for low ability students is not as 
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low as the variance of the observed scores for the high ability students. For instance, the average 

observed variance for the three items associated with attribute A1 was 0.24, almost six times the 

observed variance of the high ability group. However, the pattern of responses produced by low 

ability students does not consistently match the expected response pattern as specified by the 

cognitive models. This divergence between actual and expected responses for the low ability 

group may be due to the students‘ lack of skills for producing correct answers and/or to their 

randomly answering the test items (guessing). 

Due to the problems associated with the high and low ability students‘ data (e.g., small 

variability and random answers), reporting the reliability estimates by subgroup may be 

inappropriate. Interpretations based on the total sample are, therefore, preferred and adopted in 

this study.  

For Subtracting 2-digit numerals, given that the reliability value for all six attributes 

exceeded 0.70 for the total sample, outcomes from these attributes were deemed consistent [the 

reliability values ranged from 0.89 (A1) to 0.75 (A5)]. The values of the attribute reliabilities are 

closely related to the number of items measuring each attribute. Hence, the reliability of 

attributes (directly or indirectly) measured by more items is expected to be higher than those 

measured by fewer items. However, this pattern was not observed throughout the entire 

hierarchy, asthe reliability for A5 (measured by 6 items) was not larger than A6 (measured by 3 

items).  

As with Comparing and ordering numbers, the reliability estimates produced using data 

from high and low ability students were not satisfactory and, overall, a pattern of increasing 

reliability estimates—as the number of items measuring a certain attribute increases—was not 

observed. Again, the use of the reliability estimates obtained from the total sample of students is 
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more appropriate for making interpretations about the decision consistency for Subtracting 2-

digit numerals possibly due to the small variability and high occurrence of random answers.  

Summary 

For Subtracting 2-digit numerals, the entire set of attribute reliability estimates based on 

the total sample of students were higher than the threshold (i.e., greater than 0.70), which 

indicated that decisions made regarding the six attributes would be considered consistent. 

Conversely, adopting the same threshold as the minimum acceptable reliability estimate, only 

one attribute in Comparing and ordering numbers (A1) would be considered to yield consistent 

test interpretations for the total sample of students. Because reliability is largely affected by the 

number of items on a test, an important aspect to consider is the increase in the number of items 

on future assessments, especially for Comparing and ordering numbers, which would increase 

the reliability of the diagnostic feedback provided to examinees, as previously demonstrated by 

the application of the Spearman-Brown formula. The reliability estimates for both cognitive 

models were not deemed satisfactory when splitting the sample into high and low achievers. The 

low reliability among the subgroups may be attributed to the low variability in the subgroups and 

high rates of random answers which, in turn, affects the reliability estimates. Therefore, the use 

of the subgroup reliability estimates is not recommended in this study. Instead, interpretations 

about the decision‘s consistency should be made using the reliability estimates from the total 

sample of students.  
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CHAPTER V: CONCLUSIONS AND DISCUSSION 

Cognitive diagnostic assessments (CDA) can be described as an approach where the 

psychology of learning is combined with methods and models in statistics for the purpose of 

making inferences about students‘ specific knowledge structures and processing skills. In 

practical terms, a cognitive diagnostic assessment is an educational test designed to measure 

students‘ cognitive problem-solving strengths and weaknesses for diagnostic purposes (Ketterlin-

Geller &Yovanoff, 2009). Since cognitive diagnosis is the process of inferring a student‘s 

cognitive state from his or her test performance (Ohlsson, 1986), one purpose of CDA is to 

promote formative inferences about student learning that could, potentially, allow teachers to 

redesign instructional approaches, evaluate instructional resources and strategies, and remediate 

students‘ weaknesses. In addition, these formative assessments have the potential to help 

motivate students and to empower them to take control of their own learning by providing 

detailed score reports to students thereby allowing them to pinpoint both their strengths and their 

difficulties.  

Robert Stakes is quoted as saying, "When the cook tastes the soup, that's formative. 

When the guests taste the soup, that's summative" (quoted in Scriven, 1991, p. 169). The task of 

serving a delightful soup—one that meets the guests‘ needs and expectations while also tasting 

wholesome and delicious—is not an easy one. Applying this analogy in the CDA context, 

improving the soup requires the guidance from research in cognitive psychology combined with 

the principles in educational measurement to direct assessment design and analysis. So if tasting 

the soup is formative, then one needs to investigate, in advance, what kind of assessment is 

required, who needs to be assessed, what skills and abilities should be assessed, and what kind of 

information would be useful for guiding teaching and learning. A cognitive model serves a 

http://medical-dictionary.thefreedictionary.com/empower
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crucial role in the process of improving the taste of the soup as it provides a simplified 

description of human problem solving and a guide for item development (Leighton &Gierl, 

2007a). A cognitive model is formed by different combinations of attributes—which are defined 

as the cognitive processing and knowledge required for solving a problem in a target domain 

(Tatsuoka &Tatsuoka, 1997). In addition, the use of a principled test design approach constitutes 

a critical step toward developing better diagnostic assessment, or using cooking terms, improving 

the taste of the soup.  

This study used a four-step principled approach to test design characterized by: (1) the 

development of cognitive models, (2) the construction of test items according to the knowledge 

and skills specified in the cognitive model, (3) the use of a diagnostic psychometric analysis to 

assess the plausibility of the model-data fit relative to the intended underlying cognitive model 

and to providestudents‘ attribute probability estimates, and (4) the creation of  detailed score 

reports that map examinees‘ mastery levels to provide more detailed information about students‘ 

problem-solving strengths and weaknesses. A cognitive model is critical in principled test design 

because it provides guidance for item development and for making diagnostic inferences about 

student test performance. Given that a cognitive model is a vital part of the design of CDAs, 

adhering to a principled approach to test design and analysis plays an important role in the 

Alberta Education Diagnostic Mathematics project.  

To date, much of the research conducted on CDA has focused on retrofitted data, 

meaning fitting existing test items to an ad hoc cognitive model, rather than developing a 

cognition model first, and then creating items to measure the knowledge and skills specified in 

the model. Retrofitting is a method that uses existing test items in a CDA framework with the 

hope of extracting information about the cognitive attributes measured by these items, even when 
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the items were not initially developed from a cognitive perspective. In this way, retrofitting a 

cognitive model to existing test items is less than optimal because the generated model will be 

constrained by the attribute specifications that happen to occur among the existing items, if it 

occurs at all. Consequently, this retrofit model might not accurately represent students‘ 

knowledge and skills required for mastering a certain domain and, therefore, in most cases will 

yield unsatisfactory diagnostic classification results (Gierl et al., 2010). 

While researchers in educational measurement have recently highlighted the need for 

explicit and clearly conceptualized cognitive models of learning (Leighton& Gierl, 2007a, 

2011;Pellegrino et al., 2001), the number of practical applications in CDA has, so far, been 

relatively small. In addition, to our knowledge, research using the four-step principled approach 

to test design in the context of CDA has been non-existent. Gierl (2007) claimed that conducting 

these four steps ―is not a standard approach to test design and it rarely, if ever, is used in 

operational testing situations‖ (p. 337). In an attempt to address this shortcoming, the purpose of 

my dissertation was to use the attribute hierarchy method to investigate the plausibility of 

modeling students‘ responses in a diagnostic assessment using a principled approach to test 

design and analysis. A principled test design approach is valuable for developing CDAs, 

highlighting the importance of a sound foundation—in this context, cognitive models—to guide 

test development, test scoring, and the inferences drawn about students based on their score 

report results. The Mathematics Diagnostic project serves as one of the first attempts at 

implementing principled test design in an operational testing program.  

This chapter includes four sections. In the first section, the research questions are 

revisited together with a brief summary of the methods used for the present study. In the second 

section, a discussion of the key findings is presented. In the third section, the limitations of the 



 122 
 

study are discussed. In the fourth and final section, the recommendations for future research are 

outlined. 

Restatement of Research Questions and Summary of Methods 

The purpose of this study was to investigate the accuracy and consistency of two 

cognitive models in the Diagnostic Mathematics project. This assessment—characterized as 

diagnostic, cognitive based, and non-retrofit—began in January 2008 and was implemented and 

funded by the Learner Assessment Branch of Alberta Education.  

The accuracy and consistency by which cognitive diagnostic assessments classify 

students‘ test responses are key components to providing diagnostic feedback about examinees‘ 

knowledge and skills (Zhou, 2010). Four research questions were addressed in this study: 

1. How did the observed student response data fit the expected response data produced by 

the cognitive models created by content specialists?  Did the fit for the observed and 

expected response data differ for high and low achieving students?  

2. Were the attribute probability estimates ordered from easy to difficulty across the student 

sample for each of the attribute hierarchies? Was the attribute order the same for high and 

low achieving students? 

3.  Did the correlations among attributes show convergent and discriminant evidence 

supporting the hierarchical structure of attributes?  Were the correlational patterns 

different for high and low achieving students? 

4. How reliable were decisions about the mastery of specific attributes for the students who 

wrote the diagnostic test? Did the reliability estimates differ for high and low achieving 

students? 
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To answer the research questions, a study using a four-step principled approach to test design 

was implemented. Next, I summarize the important methodological aspects adopted in this study. 

This study had four major steps. The first step was the development of the cognitive 

models. Cognitive models were developed by content specialists in two content areas—

Comparing and ordering numbers and Subtracting 2-digit numerals. Each cognitive model had 

six attributes, as described in Chapter III (see Figures 1 and 4). The development of the cognitive 

models happened chronologically before the item development process, as required by the 

principled approach (see Gierl, 2007). Cognitive modeling was initiated as one of the first steps 

in the project, following project conceptualization (i.e., establishing the purposes of the project) 

and methodological planning. Items were developed only after cognitive models were created. 

The development of the cognitive models was conducted by experienced classroom teachers 

(ranging from 13 to 30 years) who also had familiarity developing large-scale educational tests 

(ranging from one to nine years). In addition, a large number of content specialists participated in 

the process of developing the cognitive models. Having 10 specialists involved in cognitive 

model development increases the likelihood that the generated models are accurate and 

trustworthy because multiple perspectives from a large group of knowledgeable and experienced 

participants foster discussion, which, in turn, promotes reasoning and the presentation of 

different opinions. Working in large groups also helps specialists reach new and diverse 

solutions, seek consensus and agreement, and promote collaboration.  

The reference group for whom the cognitive models were designed consisted of 

moderately high achievers, i.e., students capable of applying the mathematical concepts with 

some degree of proficiency to solve problems. Moderately high ability students are expected to 

be confident learners who are able to create their own connections and apply their previous 
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knowledge and skills to solve routine and novel problems. They demonstrate perseverance when 

working through challenging problems. Students in this reference group are capable of 

understanding and grasping the mathematical concepts at their grade level and at an achievement 

level of approximately 70-80%. The assumption behind the choice of developing cognitive 

models based on moderately high ability students is that low ability students will eventually 

reach the former group by having proper instruction and learning opportunities. More 

information about the characteristics of this group can be found in Chapter III, Step 1. 

Content specialists were instructed to follow a set of requirements—that is, granularity, 

ordering, measurability, and instructional relevance—when developing the cognitive models. 

Hence, the knowledge and skills in both models were specified at a fine level of granularity, 

meaning that the skills in these cognitive models were specific and clearly defined. 

Measurability concerns the necessity that each skill be stated clearly enough to enable 

construction of items. The attainment of the skill measurability was enhanced by the fine-level of 

granularity, together with a clear description of the skills. Overall, the skills from both models, 

Comparing and ordering numbers and Subtracting 2-digit numerals, were described in a way 

that allowed a test developer to create three items to measure each skill. Cognitive models were 

also developed using the systematic approach of organizing the skills into an ordered hierarchy 

of increasing difficulty. Overall, the difficulty levels of attributes in both models increased as 

higher order attributes required increasing problem-solving skills, higher-order thinking skills, 

and/or deeper understanding of relevant concepts. Finally, the skills included in the cognitive 

models were developed to be instructionally relevant and meaningful to teachers and students. 

The cognitive models on the Diagnostic Mathematics project were based on the instructional 

objectives and learning outcomes required by the Program of Study for Mathematics. As a result, 
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outcomes from the assessment may have the potential to be used for planning classes, modeling 

instruction, measuring student progress, and offering feedback to students and parents. Defining 

characteristics are critical for a better fit between the data and the cognitive model since they 

constitute the bridge between the cognitive model and the test items.  

The second step was item development. After cognitive models were developed and 

approved, test items were created by a team of item writers who had extensive teaching 

experience in mathematics (17 years, on average) and had vast experience in writing test items 

for Alberta Education(5 years, on average). Hence, the process of developing items for the 

Diagnostic Mathematics project was based on the knowledge and skills specified in the cognitive 

models developed in the first step. Using cognitive models as a foundation for item development 

together with having appropriately qualified item writers, who received proper training and who 

used a well-established set of principles for item writing and item review, constitute important 

procedures implemented in the Diagnostic Mathematics project. Test items were then field tested 

with a sample of 383 grade 3 students. These students were presented with items from both 

cognitive models: 18 multiple-choice test items from Comparing and ordering numbers and 18 

numerical response test items from Subtracting 2-digit numerals.  

The third step consisted of conducting confirmatory psychometric analyses. Psychometric 

analyses using field test data from the Diagnostic Mathematics project were conducted with the 

attribute hierarchy method (AHM). The present study is one of the first applications of the AHM 

to non-retrofit data from an operational testing program.  The AHM is a sophisticated 

psychometric procedure that can handle complex cognitive structures with dependencies among 

skills. The AHM is considered a confirmatory approach, where the plausibility of the model-data 

fit relative to the intended underlying cognitive model can be assessed. This diagnostic 
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psychometric method was used because it supports an integrated view between cognitive 

psychology and educational testing. In this study, the use of the AHM for evaluating the 

cognitive models was performed in three ways. First, the HCI estimates were used to investigate 

the degree to which observed examinee response patterns were consistent with the specified 

attribute hierarchy. Second, the average of the attribute probability estimates and correlations 

among attributes were used to examine the interrelationship among the attributes specified in the 

hierarchy. Third, the attribute reliability estimates were used to assess the consistency of the 

decisions made with respect to examinees‘ mastery of specific attributes. 

The fourth step was score reporting. This was the last step in the Diagnostic Mathematics 

project required to meet the principled approach to test design and analysis adopted in this study. 

This step is critical because it specifies how diagnostic scores can be transformed into reports for 

test users. Score reports must present information that is useful to the students, teachers, parents, 

and relevant school administrators, thereby allowing examinee‘s performance to be linked to 

specific cognitive inferences about their knowledge, processes, and strategies. Score reports play 

an important role in synthesizing cognition and assessment by combining cognitive models with 

statistical methods to permit test users to make inferences about students‘ cognitive strengths and 

weaknesses. 

Key Findings 

The purpose of this study was to evaluate cognitive models in the Diagnostic 

Mathematics project in two content areas—Comparing and ordering numbers and Subtracting 2-

digit numerals—using three psychometric analyses developed for the AHM: the hierarchy 

consistency index, students‘ attribute probability estimates, and attribute reliability estimates. 

Specifically, this study answered four research questions: 
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Research Question 1: How did the observed student response data fit the expected response 

data produced by the cognitive models created by content specialists?  Did the fit for the 

observed and expected response data differ for high and low achieving students? 

Each of the cognitive models for the Diagnostic Mathematics project assessed a small 

number of knowledge components and a few specific cognitive skills in two content areas. This 

level of granularity yielded specific diagnostic inferences about examinees‘ mastery of the 

underlying knowledge and skills required to perform competently on the assessment tasks.  

For Comparing and ordering numbers, a median HCI value of 0.57 was obtained when 

the data for the total sample of students were considered. This median HCI value suggests that 

the fit between the cognitive model and the response data for the total sample was moderate. For 

Subtracting 2-digit numerals, a median HCI value of 0.86 indicated a strong fit between the 

cognitive model and the response data obtained from the total sample of students. Hence, HCI 

values suggest the cognitive models adequately fit the data for the total sample of students. 

Taking the two subgroups into consideration, the observed student response strongly fit the 

expected response data produced by the cognitive model created by content specialists—where 

high achievers data yielded a median HCI of 0.90 on Subtracting 2-digit numerals and a median 

HCI = 0.76 on Comparing and ordering numbers. Conversely, the HCI values for low ability 

students indicated a poor fit between cognitive models and response data (median HCI = 0.00 for 

Subtracting 2-digit numerals and median HCI = -0.03 for Comparing and ordering numbers). 

Hence, the fit for the observed and expected response data differ for high and low ability 

students. The difference in the model data fit for the two subgroups was expected, as cognitive 

models were designed to represent a student who understands and grasps the mathematical 

concepts at an achievement level of approximately 70-80%, i.e., moderately high achievers. 
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In sum, the median HCI estimates suggest a satisfactory model fit between the two 

cognitive models in the Diagnostic Mathematics project and the observed response data from the 

total sample and moderately high ability students. Considering Cui‘s guideline for evaluating the 

fit between the students‘ response patterns and the expected response patterns based on the 

hierarchical relationship among attributes—median HCI values greater than 0.80 suggest 

excellent fit and values greater than 0.60 suggest moderate fit—then, the findings from the two 

cognitive models suggest a strong model-data fit.  

Research Question 2: Were the attribute probability estimates ordered from easy to 

difficulty across the student sample for each of the attribute hierarchies? Was the attribute 

order the same for high and low achieving students? 

Using data from the total sample of students, the average attribute probability estimates 

from A1 to A6 were ordered, as expected, from least to most difficult. The pattern of decreasing 

probabilities was expected given the dependent relationship among the attributes—as specified 

in the cognitive model and operationalized by the linear hierarchy—where A1 is the simplest 

cognitive skill that also serves as a prerequisite to all other attributes. As a prerequisite attribute, 

A1 reflects the most basic skill of the cognitive model and is expected to be mastered by the 

majority of the students. As the complexity of the skill increases, it is expected that the 

probability of mastering those skills decreases. 

Similar attribute order was obtained when taking the high and low ability groups into 

consideration. The pattern of decreasing probabilities for the high and low ability groups 

supports the structure specified by the cognitive models on Comparing and ordering numbers 

and Subtracting 2-digit numerals. That is to say, in the same way as the cognitive models were 

characterized by a set of attributes organized from simple to complex, the probability of 
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mastering the attributes consistently decreased in response to this increase in complexity for 

both, high and low achieving students. Hence, the ordering of the attributes did not differ as a 

function of the performance level of the students. 

Research Question 3: Did the correlations among attributes show convergent and 

discriminant evidence supporting the hierarchical structure of attributes?  Were the 

correlational patterns different for high and low achieving students? 

Gierl et al. (2010) proposed that strong correlations between attributes sharing a direct 

relationship and decreasing correlations among attributes sharing indirect relationships this type 

of outcome indicates, respectively, convergent and discriminant evidence supporting the 

hierarchical structure of attributes that form the cognitive model. Convergent evidence is 

endorsed by finding that attributes most closely related to one another yield the highest 

correlations. This result occurs because these attributes measured the most similar skills and had 

a direct relationship or dependency (i.e., one is direct a prerequisite to the other) within the 

cognitive model. Discriminant evidence is found when the lowest correlations among attributes 

occur for those attributes most unrelated to one another. That outcome occurs because as the 

skills became more distinct from one another in the cognitive model, the correlations between 

attributes decrease.  

Outcomes from the total sample of students indicated convergent evidence supporting the 

hierarchical structure of attributes that form the cognitive model as attributes related to one 

another most closely yielded the highest correlations. Discriminant evidence was also obtained 

as the correlations were lower for attributes that were moderately related to one another. 

The correlational patterns for high and low achieving groups did not differ from the total 

sample of students. Overall, smaller correlation values were registered between non-adjacent 
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attributes and greater values between adjacent attributes, outcome that suggests convergent and 

discriminant evidence supporting the hierarchical structure of attributes for both cognitive 

models, Comparing and ordering numbers and Subtracting 2-digit numerals. 

Research Question 4: How reliable were decisions about the mastery of specific attributes 

for the students who wrote the diagnostic test? Did the reliability estimates differ for high 

and low achieving students? 

A reliability estimate of 0.70 or higher is widely accepted as a threshold value for 

decision consistency (Nunnaly, 1978). Using this cut-off as a reference, all six attributes in 

Subtracting 2-digit numerals produced consistent interpretations about the mastery of attributes, 

when considering the total sample of students. Conversely, for Comparing and ordering 

numbers, only the decisions made for Attribute 1 were found to be consistent for the total 

sample. Using the Spearman-Brown formula it is possible to estimate how much a test's 

reliability would increase if the test is increased by adding parallel items in each attribute.  

Supposing that the length of the test measuring the cognitive model Comparing and ordering 

numbers was increased three times (i.e., 3 x 15 = 45 items), the attribute reliability estimates 

would be 0.70 or greater, that is, above the suggested cut-off for an assessment to yield 

consistent outcome interpretations for all of the attributes in this model. The values of the 

attribute reliabilities are closely related to the number of items measuring each attribute. Hence, 

the reliability of attributes (directly or indirectly) measured by more items is expected to be 

higher than those measured by fewer items. One possible factor that contributed to a higher 

reliability of the assessment measuring Subtracting 2-digit numerals is due to the slightly higher 

number of items in this assessment (18 items) than in the assessment measuring Comparing and 

ordering numbers (15 items). Another potential factor is related to the item format. Results of a 
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study conducted by Oosterhof and Coats (1980), in which they compared the reliability of 

multiple-choice and completion-item formats, indicated that fewer math completion-items are 

required for obtaining reliability equal to that provided by multiple-choice items. This outcome is 

consistent with the findings in the current study, where resulting reliability estimates where 

higher for the numerical-response test (i.e., Subtracting 2-digit numerals) than the multiple-

choice test (i.e., Comparing and ordering numbers). In sum, using the total sample of students, 

the decisions made with respect to examinees‘ mastery of attributes on Subtracting 2-digit 

numerals can be considered reliable. Because reliability is sensitive to the number of items in the 

sample—i.e., when the number of items is small, the calculated reliability tends to be low—one 

should use more caution when interpreting the results from the attribute reliability estimates for 

Comparing and ordering numbers. Alternatively, the developers could enhance their reliability 

estimates by increasing the number of items measuring the knowledge and skills in this model. 

Regarding the second part of this research question, the reliability estimates for both 

cognitive models differed as a function of the students‘ ability level. For instance, the reliability 

estimates for the high ability on both cognitive models—Comparing and ordering numbers and 

Subtracting 2-digit numerals—are very small and the pattern of increasing reliability estimates 

(as the number of items increases) was not obtained. A possible explanation for this occurrence 

is related to the fact that reliability estimates are affected by the variability of the score and by 

the characteristics of the sample (Aguinis, Henle, & Ostroff, 2001). That is, the poor reliability 

estimates obtained when using data from the high ability students is likely to be due to the 

restriction of variance created by the split into two ability groups. The reliability estimates for the 

low ability group on both cognitive models were also very low and the pattern of increasing 

reliability estimates was not obtained. The variance of the observed scores for low ability 
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students is not as low as the variance of the observed scores for the high ability students. 

However, the pattern of responses produced by low ability students does not consistently match 

the expected response pattern as specified by the cognitive models. The divergence between 

actual and expected responses may be due to the students‘ lack of skills for producing correct 

answers and/or to a random pattern of test items answers (e.g., guessing and skipping questions).  

In sum, due to these problems associated with the high and low ability students‘ data 

(e.g., low variability and random answers), reporting the reliability estimates by subgroup may 

be inappropriate. Interpretations based on the total sample are, therefore, preferred and adopted 

in this study.  

Limitations 

The present study has at least four specific limitations. First, cognitive models were 

developed by experienced content specialists, but they were not submitted to empirical validation 

with students.Submitting the cognitive model to empirical validation plays an important role for 

CDAs as it can strengthen the validity argument about the construct being measured, and help 

clarify the psychology that underlies test performance thereby yielding more interpretable and 

meaningful test scores (Cui & Leighton, 2009). The use of inquiry methods for analyzing student 

thinking processes, such as task analyses and verbal protocols, are useful tools for validating the 

attributes required to develop a cognitive model. Relying solely on expert judgments for 

cognitive model development may result in models that provide an inaccurate understanding of 

the knowledge and skills examinees‘ use to solve items on a test, as it may overemphasize how 

content experts solve test items and underemphasize how students solve the same items. In other 

words, content specialists based their assertions on expectations about the cognitive path invoked 

by the item in the minds of their students who take the tests (Schmeiser & Welch, 2006). As a 
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result, the cognitive models developed by these specialists may serve as a better approximation 

of the representations and descriptions of the knowledge and skills used by experts rather than 

students when solving items.  

Second, the excellent fit between response data from high ability students and the 

cognitive model (e.g., median HCI = 0.90 in Subtracting 2-digit numerals) may be mainly due to 

the facility of the items, where nearly all high ability students completely mastered the five initial 

attributes in this cognitive model. The high p-value across these 15 items (0.91) and the small 

standard deviation (0.05) help support the conjecture that the pattern of correctly answering all 

items explains the excellent model-data fit for the high ability students, but not necessary the 

hierarchical structure outlined by the cognitive model. As a result, the order of the attributes 

could be changed without significantly altering the HCI of the model for students at this ability 

level. To enhance our understanding about how cognitive models could better represent the 

differences between high- and low-achievers, future research should be conducted using results 

from think-aloud protocols, as the data from a think-aloud analysis may help illuminate the 

solution paths that lead to both correct and incorrect responses.  

Third, the low attribute reliability estimates, especially when performing subgroup 

analysis, constitutes a potential limitation in this study. Reliability estimation is critical in 

cognitive diagnostic assessment as it concerns to the consistency of the decisions made with 

respect to the examinees‘ strengths and weaknesses (Zhou, 2010). Specifically, the reliability 

estimates for the high and low ability groups were very small and the pattern of increasing 

reliability estimates (as the number of items increases) was not obtained on both cognitive 

models. This outcome may be related to the restriction of variance created by the split into two 

ability groups, the small number of items in the test forms, subgroup sample sizes, and random 
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answers. Future research should be conducted to evaluate the effect of these factors on the 

reliability. 

Fourth, the fact that most of the Alberta Education teachers participating in the cognitive 

model development were not mathematicians constitutes a potential weakness in the content 

specialist approach. Questions have been raised about whether elementary school teachers should 

be considered content specialists (National Council of Teachers of Mathematics, 2000; National 

Mathematics Advisory Panel, 2008; National Research Council, 1989). The Association of 

Mathematics Teacher Educators (2010) claim, for instance, that because most elementary 

teachers are generalists—that is, they study and teach all core subjects—they rarely develop in-

depth knowledge and expertise with regard to teaching elementary mathematics. The current 

debate about the importance of formal education in mathematics, coupled with the fact that only 

30 percent of the cognitive model developers were mathematicians, may indicate a misuse of the 

term ―content specialist‖ in this dissertation. Most importantly, it could suggest that the cognitive 

models may not fully represent the actual knowledge and skills students use when solving test 

items. Perhaps, given the absence of content specialists graduated in mathematics in the 

Diagnostic Mathematic project, this study would benefit from having the cognitive models 

reviewed by external mathematicians specialized on elementary education and also by cognitive 

psychologists specialized in elementary mathematics. 

Future Directions 

Being among the first applications of the AHM to non-retrofit data from an operational 

testing program, the findings of this study add substantially to our understanding of the necessity 

of a principled approach to assessment design, and also contribute to a growing body of literature 

on CDA. However, more research needs to be undertaken to develop an in-depth understanding 
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of the role of cognitive models, as well as to more fully comprehend the factors that affect how 

representative a cognitive model is to students with different ability levels. 

The current study suggests at least four directions for future research. One line of future 

research is related to conducting protocol analysis to validate the cognitive models that have 

been developed by the content specialist approach. Empirically analyzing students‘ verbal 

responses is a vital approach to strengthen the validity argument about the construct being 

measured, and also helps clarify the psychology that underlies test performance which, in turn, 

may provide more interpretable and meaningful test scores (Cui & Leighton, 2009). The 

importance of conducting empirical studies on this topic is accentuated by the lack of literature 

introducing substantive psychological theory to support the development of cognitive models 

and delineating the psychological processes that reflect the construct measured by a test. A study 

could, for example, use the test items from the Diagnostic Mathematics project to collect verbal 

protocol data from a sample of students. Students would be asked to think aloud as they solved 

the items and have their answers audiotaped. Based on students‘ oral and written responses, 

flowcharts representing the cognitive processes reported by students would be created. These 

flowcharts would be used to evaluate both the item attributes and their hierarchical ordering of 

the Diagnostic Mathematics cognitive models. 

A second line of research would involve the investigation of aspects that differentiate 

high- and low-achievers concerning the model fit. Because a single cognitive model does not 

explain the performance of different subgroups of examinees equally well (see Gotzmann, 

Roberts, Alves, & Gierl, 2009; Gotzmann & Roberts, 2010; Leighton et al., 2009), extending 

previous research by evaluating the adequacy of multiple cognitive models—developed not only 

by using the expertise of the content specialists, but also generated from verbal reports taken 
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from different subgroups of students—may enhance the understanding about the subgroup 

differences. The use of the combined framework (see Conceptual Frameworks for Developing 

Cognitive Models section in Chapter II) may also play an important role not only in the 

development of cognitive models but also in their validation. Potentially, a study that combines a 

range of different methods for developing and validating cognitive models—for instance, 

cognitive theories, task analysis, expert review, verbal protocols, and interviewing students—

could highlight the information necessary for understanding the differences in the way low and 

high-achievers perform on a specific cognitive model.  

A third line of future research should consider the investigation of how factors such as 

students‘ response variability, number of items in the test forms, sample sizes, and random 

answers affect the reliability as a function of the subgroup analysis (i.e., high and low ability 

groups). Previous research conducted by Zhou (2010) manipulated the numbers of items on a test 

(12, 24, 36, and 48 items), the sample sizes (e.g., 250, 500, 750, and 1000), and levels of 

discrepancies between expected and observed responses (10%, 15%, 20%, and 25% of model-

data misfit). However, Zhou‘s study did not consider the variability of the students‘ answers and 

the subgroup analysis (high and low groups) as variables of the study. Knowing how subgroup 

group variability affects the consistency of an assessment may help us to understand how to 

develop more reliable tests providing diagnostic information about examinees‘ knowledge and 

skills. Therefore, future simulation studies including these factors are recommended. 

A fourth line of future research should develop and compare linear and non-linear 

cognitive models in mathematics. Due to the complex nature of learning, the linear model can be 

criticized for being too simplistic and for not representing the complex phenomenon in the 

teaching and learning of concepts in mathematics that underlie test performance. Besides 
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regarding human abilities as hierarchically organized, non-linear models have the advantage of 

being able to form increasingly complex networks where the complexity is adjusted according to 

the cognitive problem-solving task (Leighton et al., 2004). The use of non-linear models may 

also add substantially to our understanding of the psychological processes that underlie test 

performance in Mathematics. A study could, for example, use think-aloud reports to generate 

cognitive models of task performance by administering a set of test items to students and 

collecting their reports as they solve the items. In addition, theories in a content domain could 

help to identify the required cognitive skills and the relationships among these skills. The four 

forms of hierarchical structures (namely, linear, convergent, divergent, and unstructured) 

suggested Leighton et al. (2004) could be used as the reference for comparison among the 

models. After the four cognitive models were elaborated, test items should be developed (using 

the respective cognitive model as basis) and administered to comparable sample of students. The 

AHM analyses could then be used to evaluate whether or not non-linear attribute hierarchies 

reflected the cognitive attributes employed by the examinees better than the linear hierarchy. 

Future studies on the topic are therefore recommended. 
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APPENDIX 

Performance level descriptors for the diagnostic mathematics project. 

Diagnostic Mathematics 

Performance Level Descriptors 

Limited Evidence of Mastery 

A student who performs at the 

Limited Evidence of Mastery level 

requires ongoing support, 

instruction, and practice to 

understand many concepts and 

processes.  This student is typically 

characterized by the following traits: 

Moderate Evidence of Mastery 

 A student who performs at the 

Moderate Evidence of Mastery 

level demonstrates inconsistencies in 

his/her understanding.  Mastery of 

most concepts is achieved through 

repeated practice and/or support.  

This student is typically 

characterized by the following traits: 

Consistent Evidence of Mastery 

A student who performs at the 

Consistent Evidence of Mastery 

level has an in-depth understanding 

of concepts.  Mastery is achieved 

quickly.  This student is typically 

characterized by the following traits: 

 Independently solves some 

familiar problems 

 Lacks prerequisite 

knowledge and requires 

repeated instruction of new 

concepts 

 Lacks strategies or chooses 

inappropriate strategies 

 Performs processes 

inefficiently or inaccurately 

 Demonstrates little 

perseverance  

 Unable to correctly solve 

the majority of questions 

 Unable to justify solutions 

 Inconsistent or limited 

understanding of 

mathematical concepts and 

related processes 

 Has difficulty and requires 

support to translate between 

concrete, pictorial, and 

symbolic modes 

 Solves some low 

complexity problems 

independently and some 

moderate complexity 

problems with support 

 Independently solves 

familiar problems and 

solves unfamiliar problems 

with some support 

 Understands new concepts 

and begins to integrate 

them with previously 

learned concepts 

 Chooses appropriate 

strategies 

 Performs processes 

accurately, most of the time 

 Perseveres to successfully 

complete simple questions 

 Solves the majority of 

questions correctly 

 Justifies solutions 

 Understands basic concepts 

and related processes 

 Translates between 

concrete, pictorial, and 

symbolic modes 

inconsistently 

 Solves low and moderate 

complexity problems 

independently and some 

high complexity problems 

with support 

 Independently and 

confidently solves both 

familiar and unfamiliar 

problems 

 Understands new concepts 

and integrates them with 

previously learned concepts 

 Chooses efficient strategies 

 Performs processes 

accurately and efficiently 

 Perseveres to successfully 

complete simple and 

complex questions 

 Rarely solves a question 

incorrectly 

 Justifies and explains 

solutions 

 Understands basic and 

complex concepts and 

related processes 

 Translates between 

concrete, pictorial, and 

symbolic modes readily and 

independently  

 Solves low, moderate, and 

high complexity problems 

independently  


