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Abstract

The presence of alternans, which is a persistent alternation in the cardiac action potential duration,

has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death.

In this thesis, we examine the problem of alternans annihilation in a 1D cable of cardiac cells

using optimal and model predictive control strategies, through boundary and spatially distributed

actuations. In the first part of the thesis, the system of parabolic partial differential equations

(PDEs) describing the small amplitude of alternans and the alternation of peak intracellular Ca2+

concentration are stabilized by optimal full state feedback control. A model predictive controller

(MPC) was then formulated for the small amplitude of alternans PDE. Finally, to address the issue

of controller robustness with respect to model uncertainties, a robust MPC was implemented on the

small amplitude of alternans PDE. Simulation studies for all three control methods demonstrate

that the proposed strategies can successfully annihilate alternans in cables that are significantly

longer than 1 cm, thus overcoming the limitations of earlier control efforts.
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2.8 Trajectories of input derivative ṽ(t) for the LR1 and Fox ionic models under optimal

full-state feedback control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Trajectory of uCa(t) for the Fox ionic model under optimal full-state feedback control. 22

3.1 Eigenspectrum of Ae for different cable lengths . . . . . . . . . . . . . . . . . . . . . 33

3.2 Stabilization of the amplitude of alternans PDE with model predictive control . . . . 35

3.3 Trajectory of v(t) under model predictive control. Constraints are shown as red

dotted lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Trajectory of uCa(t) under model predictive control. Constraints are shown as red

dotted lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



3.5 Trajectory of y(t) under model predictive control. Constraints are shown as red

dotted lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Stabilization of the amplitude of alternans PDE under robust MPC. . . . . . . . . . 46

4.2 Trajectory of the boundary input v(t). The red dotted line depicts the lower bound

on v(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Trajectory of uCa(t). Constraints are shown as red dotted lines . . . . . . . . . . . . 47

4.4 Trajectory of y(t), which is a(ζ, t) measured at ζc = 4.125 cm. The upper bound on

y(t) is shown as a red dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



Chapter 1

Introduction

1.1 Motivation

Sudden cardiac death (SCD) is a leading cause of death in the United States, claiming over 350,000

lives annually [1]. Specifically, ventricular fibrillation (VF), which is a type of heart rhythm disorder

known as arrhythmia, has been identified as the primary reason behind the majority of fatal cardiac

arrests [2,3]. Multiple studies [4–6] have identified cardiac alternans as a possible precursor to VF.

Alternans are defined as the beat-to-beat alternation in the action potential duration (APD). On an

electrocardiogram (ECG), these alternans appear as alternations in the T-wave segments. Clinical

studies have shown that the presence of T-wave alternans, even in small amounts, increases the

risks of VF [4,7].

Alternations in the APD can be induced in the cardiac tissue by applying a rapid pacing

protocol. Associated with each action potential is a resting period known as the diastolic interval

(DI). Reducing the pacing period shortens the DI, and as a result the tissue does not have enough

time to fully recover before the next stimulus is applied, thus yielding a shorter APD. This leads to

a period-doubling bifurcation, depicted by the black line in Fig. 1.1, where the following pattern

emerges: short APD → long DI → long APD → short DI. The mechanism linking T-wave alternans

to the intiation of reentrant VF was studied in [4]. It was found that discordant alternans, which

is the phenomenon where different regions of the tissue alternate out of phase with each other,

are responsible for creating large spatial gradients (i.e. dispersion) of repolarization, which is an

important condition for the development of reentrant arrhythmia. On the other hand, it was found

that concordant alternans do not produce large enough spatial gradients of repolarization to cause

VF. However, in the presence of heterogeneities of repolarization properties between the cardiac

cells, concordant alternans may transform into discordant alternans.

The effect of electrical wave propagation instabilities caused by alternans is more evident in

two (or higher) dimensional cardiac tissues, where simulation studies have shown that the presence
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Figure 1.1: Time evolution of transmembrane potential (black) and intracellular calcium concen-
tration (red) in the presence of alternans. APD and DI correspond to systolic (high) and diastolic
(low) blood pressures.

of large oscillations in the APD can lead to spiral wave breakup and wave turbulence [8, 9]. A

local wave break is caused by propagation failure (conduction block) which happens when the DI

following a long APD falls below the threshold value required for the propagation of the next wave.

This break will then initiate new spirals, which may also break by a similar mechanism.

Having established a causal link between alternans and VF (and consequently SCD), it is

believed that the annihilation of these spatiotemporal alternans can serve as a promising anti-

arrhythmic strategy.

1.2 Background

Cardiac cells are excitable cells, in which the transmembrane potential goes through a large excur-

sion, called an action potential, when a large enough electrical stimulus is applied to the cell [10].

The cell membrane contains protein channels and carriers, which facilitate the flow of ions across

the membrane. This ionic transport process is critical for the regulation of the cell’s intracellular

ionic composition. The membrane is selectively permeable, meaning that it will allow certain ions

to diffuse through it but not others. Additionally, the membrane is more permeable to certain ionic

species than to others. As a result, the movement of certain ions through the membrane can create

a charge imbalance, which in turn sets up an electric field. An equilibrium is reached when this
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electric field exactly balances the diffusion of the ionic species. At equilibrium, the potential differ-

ence across the membrane, which is dependent on the intra- and extra-cellular concentrations of the

ionic species, is known as the Nernst potential VS [10]. By convention, the transmembrane poten-

tial across the membrane, V , is defined as the difference between the intracellular and extracellular

potentials. When V = VS , there is no net current of the ionic species. When the cell is electrically

stimulated, the movement of ions across the cell membrane results in an action potential.

A 1D cable of cardiac cells can be modeled as an excitable medium, and the propagation of

action potentials along the cable is described by the following cable equation:

∂V (ζ, t)

∂t
=D

∂2V (ζ, t)

∂ζ2
− Iion(ζ, t)

Cm
(1.1)

with boundary conditions:
∂V (0, t)

∂ζ
= Vp(t)

∂V (L,t)

∂ζ
= 0 (1.2)

The first term on the right hand side of (1.1) describes the propagation of action potentials from

one cell to another due to the diffusive coupling between the cells. Vp(t) = Istim/Cm is the electrical

stimulus applied at one end of the cable. Finally, D = 0.001 cm2/ms and Cm = 1 µF/cm2 are the

diffusivity constant and the cell membrane capacitance, respectively. Iion(ζ, t) represents the sum

of the ionic currents that pass through the cell membrane during an action potential. Various

models are available for Iion(ζ, t), with varying degrees of accuracy and complexity. For most of

these models, known as ionic models, the main ionic species that contribute to the overall ionic

current are Na+, K+ and Ca2+.

During an action potential propagation, the transmembrane potential and the intracellular

[Ca2+] transient are bidirectionally coupled [11–13]. In the case of positive V → Ca2+ coupling, a

longer APD corresponds to a higher peak Ca2+ transient, and vice versa. Similarly, for positive

Ca2+ → V coupling, a larger Ca2+ release will prolong the APD, and vice versa. In this work, we

only consider the case when both couplings are positive, as shown in Figure 1.1, which leads to

concordant (spatially synchronized) alternans [12].

1.2.1 The control problem

Most of the existing alternans annihilation methods are solely based on modulating the pacing

interval at the tissue boundary. The pacing interval is modulated based on measurements of

consecutive APDs at the pacing site. This electrical boundary control strategy has been shown to

be effective in small tissues [4,14–16]. However, it has been shown analytically and experimentally

that this control strategy has a finite degree of controllability, such that alternans stabilization in

cardiac tissues > 1 cm cannot be achieved [4, 14–20]. One reason for this limitation is the fact
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that the feedback law is based on only one measurement site and therefore does not account for

the spatially distributed nature of the tissue’s electrical dynamics. Furthermore, since this control

strategy is non-model based, there is an inherent limitation on the controller gain in order to

prevent conduction block. As demonstrated by [21], for alternans suppression in a ring geometry,

a model-based LQR (Linear Quadratic Regulator) control scheme significantly outperforms the

non-model-based control scheme. The same conclusion was reached in [22] for the open fiber (the

Purkinje fiber). However, as demonstrated in [22], the optimal model-based control algorithm

is only successful up to L ≈ 2 cm. Recently, it has been shown that oscillations in the pacing

cycle length can induce alternans in the heart [23]. A stochastic pacing protocol that annihilates

alternans by reducing the slope of the APD resitution curve was then developed by [24]. However,

this study was limited to small cardiac tissues (1 cm x 1 cm).

The intracellular calcium cycle is shown in Figure. 1.2 [25]. This dynamics plays a critical role

in the mechanical contraction and relaxation of the cardiac muscle. For instance, the binding of

Ca2+ to Troponin C leads to the generation of active stress in the sarcomere [26]. Therefore, this

coupling between the transmembrane potential and the Ca2+ dynamics leads to the electromechan-

ical coupling in cardiac tissues, in which mechanically induced stretching of the tissue affects its

electrical activity, and vice versa [27–29]. Specifically, [30] has demonstrated that an axial stretch

in the direction of the fibers will prolong the APD. This electromechanical coupling provides the

motivation for including a Ca2+-based actuator to our control strategy. By modulating the intra-

cellular Ca2+ concentration, the tissue’s mechanical properties are altered, thus affecting the APD.

Through the inclusion of this second actuator, which is completely independent of the boundary

electrical pacing, we believe that the controllability limitation pointed out in [19, 20, 22] can be

overcome.

4



Figure 1.2: Intracellular [Ca2+] dynamics

1.3 Thesis outline and contributions

In this thesis, the annihilation of cardiac alternans is demonstrated through the application of

three different model based control strategies. The system to be controlled is given in the form

of a parabolic partial differential equation (PDE) which describes the spatiotemporal dynamics

of the small amplitude of APD alternans [31]. In Chapter 2, an additional PDE that describes

the spatiotemporal dynamics of the peak intracellular [Ca2+] is also studied [12]. The spatial

operator of each PDE has an eigenspectrum that can be partitioned into a finite-dimensional slow

(unstable) component and an infinite dimensional fast (stable) component. This property allows

for the formulation of a low order controller that is able to stabilize the entire system [32, 33]. In

all three controller formulations, the control inputs include one boundary actuation and a spatially

distributed, Ca2+-based actuator.

In Chapter 2, an optimal full state feedback control strategy is developed for the system of two

PDEs. Two cases are considered: one in which the coupling is unidirectional, and another where

the coupling is bidirectional. The effect of coupling on the controller performance is discussed.

In Chapter 3, a constrained model predictive controller (MPC) is developed for the amplitude

of APD alternans PDE. The MPC framework is suitable for this application, since constraints can
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be handled explicitly in the controller formulation. In working with the cardiac system, certain

constraints must not be violated in order to ensure that the control action will not induce conduction

block. Additional constraints may also be present for the actuators.

The issue of model uncertainty is addressed in Chapter 4, where an LMI (Linear Matrix

Inequality)-based, constrained robust MPC is developed for the amplitude of APD alternans PDE.

In this formulation, the class of uncertain models arise from the uncertainties in the PDE param-

eters. This approach ensures that the resulting controller can achieve closed loop stability for the

specified range of model uncertainties.

Finally, concluding remarks and future research direction are presented in Chapter 5.
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Chapter 2

Optimal control of cardiac alternans

2.1 Introduction

In this chapter, we propose an optimal full state feedback control strategy for the annihilation

of cardiac alternans in a 1D cable of cardiac cells, using a combination of boundary and spatially

distributed, Ca2+-based actuation. The controller is formulated based on a system of two parabolic

PDEs. The first PDE describes the spatiotemporal dynamics of the amplitude of APD alternans

[31], while the second PDE describes he spatiotemporal dynamics of the peak intracellular [Ca2+]

[12]. This model formulation takes into account the coupling between APD and the cardiac cell’s

intracellular Ca2+ concentration.

A similar optimal control strategy was previously developed by [34]. However, in [34], the au-

thors did not account for the spatial evolution of the [Ca2+] transient along the cable of cardiac cells.

In this work, the control strategy is applied to the system of coupled PDEs, such that the cardiac

system’s calcium dynamics is relevantly represented. These PDEs belong to a class of parabolic

PDEs that describe diffusion-convection-reaction processes. By transforming the system of PDEs

into an abstract evolutionary form and partitioning its spectrum into slow (finite dimensional) and

fast (infinite dimensional) subsystems, the finite-dimensional optimal state feedback controller can

be obtained, as presented in [32, 33]. In this method, the boundary actuator, which represents a

pacing algorithm, is applied at one end of the cable, while the calcium-based actuator is applied

over a specific region of the cable. This calcium-based actuator modulates the intracellular Ca2+

concentration and can be realized using a drug that affects the calcium channels in the cardiac cells

(tissue), delivered using either a patch or an implantable device.

The main contribution of the research efforts demonstrated in this work is to extend the un-

derstanding and to provide a theoretical analysis for the novel idea of a combined pacing and

mechano-electric (Ca2+)-based alternans annihilation in a relevantly sized cardiac cable. The dy-

namical analysis of spatiotemporal voltage and calcium coupling arising from relevant ionic models
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(LR1, Fox, etc.) and model based control synthesis provide a foundation to seek alternans annihi-

lation realizations in the cardiac cable of size greater than 1 cm.

This chapter is organized as follows. Section 2.2 introduces the amplitude of alternans PDEs

and the system’s state space representation. The optimal controller formulation is presented in

Section 2.3, and numerical simulation results are given in Section 2.4. To conclude the chapter, a

brief summary is provided in Section 2.5.

2.2 Model description

Amplitude equations

The amplitude of alternans, a(ζ,n), is defined as the difference between two consecutive APDs.

That is,

a(ζ,n) = (APDζ,n −APDζ,n−1)(−1)n (2.1)

Using the fact that close to the critical pacing rate, a(ζ,n) varies slowly from beat to beat, Echebar-

ria and Karma [31] derived the PDE that describes the spatiotemporal dynamics of the small am-

plitude of alternans. Similarly, based on [12], a PDE describing the spatiotemporal dynamics of

the peak intracellular [Ca2+], denoted as aCa(ζ, t), can be written. For a 1D cable, the system of

PDEs is given by:

∂a(ζ, t)

∂t
= Da1

∂2a(ζ, t)

∂ζ2
−ω1

∂a(ζ, t)

∂ζ
+σa(ζ, t)−ga(ζ, t)3 +ηaCa(ζ, t) (2.2a)

∂aCa(ζ, t)

∂t
= Da2

∂2aCa(ζ, t)

∂ζ2
−ω2

∂aCa(ζ, t)

∂ζ
+γa(ζ, t)+

m
∑

i=1

bCa,i(ζ)uCa,i(t) (2.2b)

With boundary conditions

∂a(0, t)

∂ζ
= a(0, t)+v(t)

∂a(L,t)

∂ζ
= 0 (2.2c)

∂aCa(0, t)

∂ζ
= aCa(0, t)

∂aCa(L,t)

∂ζ
= 0 (2.2d)

All the PDE parameters are normalized with respect to τ , the pacing period. In Eqs. 2.2a and 2.2b,

the parameters Dai and ωi describe the propagation of the amplitudes by diffusion and convection,

respectively. Although there is no diffusion of Ca2+ between the adjacent cells, we expect that the

alternations in aCa(ζ, t) will propagate along the cable in a similar fashion to that of a(ζ, t) due

to the bidirectional coupling between them. Therefore, it is assumed that Da1 = Da2 = Da and

ω1 = ω2 = ω. The term σa(ζ, t) represents the growth of the amplitude of alternans along the cable,

while the term ga(ζ, t)3 ensures that the evolution of a(ζ, t) is bounded. In this work, we assume

that alternans arise from the instabilities in the voltage dynamics and not the [Ca2+] dynamics.

8



Therefore, these two terms are omitted in Eq. 2.2b. Finally η and γ are the coupling parameters

that relate the two PDEs.

The boundary actuation, which represents a pacing protocol applied at ζ = 0, is denoted by

v(t), while the spatially distributed actuation is denoted by uCa(t). This calcium-based actuation

acts directly on the aCa(ζ, t) system in order to suppress the alternations in the intracellular Ca2+

concentration, but also helps in stabilizing the a(ζ, t) system through the coupling between the two

PDEs. The placement of the ith calcium-based actuator on the cable is described by the function

bCa,i(ζ), and the summation term in Eq. 2.2b represents the overall effect of the calcium-based

actuator(s) on the system.

The parameters Da, ω, σ and g are obtained from the restitution curve, which describes the

relationship between the (n+1)th APD and the previous DI, i.e. APDn+1 = f(DIn). The restitution

curve for the Fox ionic model is shown in Figure 2.1. This figure was obtained by applying the S1S2

pacing protocol to a single cardiac cell. In this protocol, the cell is initially paced at a sufficiently

large pacing cycle length (PCLS1) for fifty beats, followed by a shorter cycle length (PCLS2). This is

repeated for decreasing values of PCLS2, until conduction block is induced. The electrical stimulus

is applied as square wave pulses with a magnitude of 80 µA/µF and a duration of 1 ms [35]. The

APD was measured as APD90, which is the APD at 90% repolarization.

0 20 40 60 80 100 120
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100
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160

180
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n
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1
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)

Figure 2.1: Restitution curve for the Fox ionic model obtained using an S1 period of 350 ms and
S2 periods ranging from 340 to 200 ms.

For the PDE parameters, two ionic models are considered, namely the Luo-Rudy (LR1) model

given in [36] and the Fox model presented in [35]. The main difference between these two ionic

models lies in the treatment of the intracellular [Ca2+] dynamics. The Fox ionic model explicitly
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accounts for the bidirectional coupling between the transmembrane potential and the intracellular

Ca2+ concentration, while the LR1 model does not.

Based on [31], the PDE parameters are defined as: Da ≈DxAPDc, ω ≈ 2D/c, σ ≈ log(f ′) and

g ≈ (f ′′)2/4 − f ′′′/6, with all derivatives computed at the bifurcation point, defined as the pacing

period at which persistent alternans start to emerge. APDc is the APD at the bifurcation point,

and c is the wave propagation speed computed at the bifurcation point. Refer to [31] for the de-

tailed derivation and physical interpretation of these parameters. To identify γ, the S1S2 pacing

protocol described previously is again applied to the single cell, and the peak Ca2+ concentration

at S2 is plotted against the DI at S1. γ is then obtained by computing the slope of this curve at

the bifurcation point. The identification of η is performed by pacing the single cell at a period close

to the the bifurcation point for approximately 50 beats, and then introducing an external [Ca2+]

signature (obtained from a separate simulation with a different pacing period) for the following

beat. η is then approximated by the ratio ∆a
∆aCa

. Note that since the LR1 model does not account

for the coupling between aCa(ζ, t) and the transmembrane potential, η for this model is set to zero.

2.2.1 State space system representation

For the following procedure, the PDEs given by Eq. 2.2 are first linearized around their spatially

uniform unstable steady states (a(ζ, t) = 0 and aCa(ζ, t) = 0). Eqs. 2.2a and 2.2c can then be

formulated as the following abstract boundary control problem:

da(t)

dt
= Fa(t)+ηaCa(t) t≥ 0

a(0) = a0 (2.3)

Ba(t) = v(t)

Where a(·, t) = {a(ζ, t),0 ≤ ζ ≤ L} and aCa(·, t) = {aCa(ζ, t),0 ≤ ζ ≤ L} are state variables in the

Hilbert space L2([0,L] ; t) [32], t is the time variable and v(t) ∈ R is the boundary actuation. F is

the spatial derivative operator defined as:

Fφ(ζ) =

[

Da
d2

dζ2
−w

d

dζ
+σ

]

φ(ζ) (2.4)

with the domain D(F) = {φ(ζ) ∈ L2(0,L) : φ(ζ),φ′(ζ) are abs. cont., Fφ(ζ) ∈ L2(0,L),and φ′(L) =

0}. Here L2(0,L) denotes the Hilbert space of measurable, square-integrable, real-valued func-

tions with weighted inner product and norm defined as 〈f,g〉µ,L2
=

L
∫

0
e−µζf(ζ)g(ζ)dζ, and ‖f‖2 =
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√

〈f,f〉µ,L2
, respectively. The boundary operator B : L2(0,L) 7→ R can be defined as follows:

Bφ(ζ) =
δφ(0)

δζ
−φ(0), with D(F) ⊂ D(B) (2.5)

Eq. 2.3 is not well posed, due to the fact that the controlled input appears in the boundary

condition. Therefore, we define a new operator A1 such that

A1φ(ζ) = Fφ(ζ), and D(A1) = D(F)∪ker(B) (2.6)

This is based on the assumption that v(t) ∈ C2([0, t];V ) is sufficiently smooth, and one can find a

function B(ζ) such that ∀v(t), B(ζ)v(t) ∈ D(F), and

BB(ζ)v(t) = v(t), v(t) ∈ V (2.7)

Furthermore, without loss of generality, we can choose B(ζ) such that FB(ζ) = 0. Knowing B(ζ),

we define the following state transformation:

a(ζ, t) = p(ζ, t)+B(ζ)v(t) (2.8)

Substituting Eq. 2.8 into Eq. 2.3, we obtain the following well posed abstract differential equation:

∂p(ζ, t)

∂t
= A1p(ζ, t)+FB(ζ)v(t)+ηaCa(ζ, t)−B(ζ)v̇(t) t≥ 0

p(ζ,0) = p0(ζ) (2.9)

Interestingly, in Eq. 2.9, the boundary actuation is manifested as a time derivative when it is

transferred into the domain of the PDE setting. This can be seen as a constraint on the pacing

protocol, since v̇(t) needs to be a sufficiently smooth function. Additionally, it is important to note

that the transformation given by Eq. 2.8 must be exact to ensure that any noise at the boundary

will not be amplified throughout the system.

A similar abstract evolutionary form can be formulated for the aCa(ζ, t) PDE:

daCa(t)

dt
= γa(t)+A2aCa(t)+BCauCa(t) t≥ 0

aCa(0) = aCa0
(2.10)

Where the spatial derivative operator A2 is given by:

A2ψ(ζ) =

[

Da
d2

dζ2
−w

d

dζ

]

ψ(ζ) (2.11)

with the domain D(A2) = {ψ(ζ) ∈ L2(0,L) : ψ(ζ),ψ′(ζ) are abs. cont., A2ψ(ζ) ∈ L2(0,L),ψ′(0) −
ψ(0) = 0,and ψ′(L) = 0}. For the spatially distributed actuators, we define:

BCauCa(t) =
m

∑

i=1

bCa,i(ζ)uCa,i(t), (2.12)
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where bCa,i(ζ) = 1
2ε for ζ ∈ [ζi −ε,ζi +ε], ε > 0 is a function describing the locations of the actuators.

Here, we only consider one spatially distributed actuator and the index i will be dropped.

Combining Eqs. 2.9 and 2.10, and defining v(t) as a new state variable, the PDE system given

by Eqs. 2.2a - 2.2d is reformulated on the extended state space Le
2 := L2 ⊗V , yielding

ẋ(ζ, t) =







0 0 0
FB A1 η
γB γ A2













v(t)
p(ζ, t)
aCa(ζ, t)






+







1 0
−B 0
0 BCa







[

ṽ(t)
uCa(t)

]

= Aex(ζ, t)+Beu(t) (2.13)

x(ζ,0) =
[

v(0) p(ζ,0) aCa(ζ,0)
]′

= x0(ζ)

Here, ṽ(t) = v̇(t). Physiologically, ṽ(t) can be interpreted as the rate of change of pacing period

applied at the boundary.

The eigenvalue problem

By solving the eigenvalue problem Aφ(ζ) = λφ(ζ), the eigenvalues and corresponding eigenfunc-

tions of A1 and A2 can be found analytically through the separation of variables [32]. Further-

more, eigenfunctions of the adjoint operators A∗
1 and A∗

2 that satisfy the orthogonality condition

〈φi(ζ),φ
∗
j (ζ)〉 = δij can also be computed. The eigenvalues for A1 and A2 are respectively given by:

λi = σ−Da

[

αi +
ω2

4Da2

]

, 0< αi < αi+1, i≥ 1 (2.14a)

λ̄i = −Da

[

αi +
ω2

4Da2

]

, 0< αi < αi+1, i≥ 1, (2.14b)

where αi are the solutions to the following transcendental equation:

tan(
√
αiL) =

√
αi

αi − ω
2Da

(

1− ω
2Da

) (2.15)

In Eq. 2.13, the spatial derivative operators A1 and A2 are Sturm-Liouville operators which

can be written in the following form:

Aφ(·) =
1

ρ(·)
d

dζ

[

p(·)dφ
dζ

(·)
]

+ q(·)φ(·) (2.16)

Comparing the coefficients of Eq. 2.16 with those of Eqs. 2.4 and 2.11, we obtain ρ(ζ) := exp− ω
Da

ζ ,

p(ζ) := Daρ(ζ), q(ζ) := σ for A1 and q(ζ) = 0 for A2. For A1, the eigenfunctions and adjoint

eigenfunctions for i≥ 1 are given by:

φi(ζ) =Bi exp
ω

2Da
ζ

[

cos(
√
αiζ)+

1√
αi

(1− ω

2Da
)sin(

√
αiζ)

]

(2.17a)

φ∗
i (ζ) = exp− ω

Da φi(ζ) (2.17b)

12



The coefficients Bi’s are obtained by imposing the orthogonality condition 〈φi(ζ),φ
∗
j (ζ)〉 = δij , and

are evaluated as:

Bi =







L
∫

0

[

cos(
√
αiζ)+

1√
αi

(1− ω

2Da
)sin(

√
αiζ)

]2

dζ







−1/2

(2.18)

For A2, the eigenfunctions and adjoint eigenfunctions are equal to those of A1. This is because

the PDE parameters in Eqs. 2.2a and 2.2b are equal except for the growth term σ, and the

eigenfunctions are independent of this term. Thus,

ψi(ζ) = φi(ζ), and ψ∗
i (ζ) = φ∗

i (ζ) (2.19)

In general, the eigenvalues and eigenfunctions of Ae cannot be determined analytically. However,

in the special case where η = 0 (i.e. the LR1 case), Ae has a lower triangular structure. In this

case, the eigenvalue problem for this extended operator can be solved analytically. First, note that

Ae can be written as:

Ae =

[

0 0
A3 A

]

, with A =

[

A1 0
γ A2

]

and A3 =

[

FB
B

]

.

Since A is a lower triangular matrix, its eigenspectrum is given by Ω(A) = Ω(A1)∪Ω(A2). That is,

Ω(A) = Λj =







λi when j is odd

λ̄i when j is even
(2.20)

Denoting the eigenfunctions of A as Φj(ζ) = [ξ1,j ξ2,j ]′, we have

[

A1 0
γ A2

][

ξ1,j

ξ2,j

]

= Λj

[

ξ1,j

ξ2,j

]

(2.21)

Eq. 2.21 leads to a system of two algebraic equations for each Λj . Solving these equations, and

utilizing the definition of resolvent sets [32], we obtain the following expression:

Φj(ζ) =











[

φi(ζ)
γ
σψi(ζ)

]′
when j is odd

[

0 ψi(ζ)
]′

when j is even
(2.22)

The eigenfunctions of the adjoint operator A∗ can be found using the same procedure. These are

given by:

Ψj(ζ) =











[

φ∗
i (ζ) 0

]′
when j is odd

[

− γ
σφ

∗
i (ζ) ψ∗

i (ζ)
]′

when j is even
(2.23)

The same procedure is again repeated for the extended spatial operator Ae, whose eigenspectrum is

given by Ω(Ae) = {0}∪Ω(A) = {0}∪{λi}∪{λ̄i}. If there are m boundary input variables, the zero
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eigenvalue will be repeated m times. Here, m = 1. The eigenfunction and adjoint eigenfunction

corresponding to the zero eigenvalue are given by:

Φ̂0(ζ) =





1
∞
∑

j=1

1
Λj

〈A3(ζ),Ψj(ζ)〉Φj(ζ)



 and Ψ̂0(ζ) =

[

1
0

]

(2.24)

while those corresponding to the remaining eigenvalues are given by:

Φ̂j(ζ) =

[

0
Φj(ζ)

]

and Ψ̂j(ζ) =

[

1
Λj
A∗

3(ζ)Ψj(ζ)

Ψj(ζ)

]

(2.25)

Modal decomposition

Parabolic systems such as Eq. 2.2 can be realized through modal decomposition. In the case

where the PDE parameters are obtained from the LR1 model, the decomposition can be performed

directly on the extended state x(ζ, t), since the eigenfunctions of Ae can be found analytically, as

given by Eqs. 2.24 and 2.25. By substituting x(ζ, t) =
∞
∑

j=1
cj(t)Φ̂j(ζ) into Eq. 2.13 and projecting

the resulting system onto Ψ̂j(ζ), we obtain the following infinite-dimensional state space system:

ċ(t) = Λc(t)+ 〈Be,Ψ̂(ζ)〉u(t) (2.26)

where Λ is a diagonal matrix whose entries are the eigenvalues of Ae.

On the other hand, when the PDE parameters are obtained using the Fox model, analytical

expressions for Φ̂j(ζ) and Ψ̂j(ζ) are not available. Therefore, each state variable must be decom-

posed separately, namely p(ζ, t) =
∞
∑

i=1
pi(t)φi(ζ) and aCa(ζ, t) =

∞
∑

i=1
aCai

(t)ψi(ζ). After applying the

state transformation Eq. 2.8 and substituting these eigenfunction expansions into Eq. 2.13, for all

i≥ 1 we obtain:






1 0 0
0 φi(ζ) 0
0 0 ψi(ζ)






ẋi(t) = Ae

i







1 0 0
0 φi(ζ) 0
0 0 ψi(ζ)






xi(t)+Beu(t) (2.27)

Projecting Eq. 2.27 onto







1 0 0
0 φ∗

i (ζ) 0
0 0 ψ∗

i (ζ)






, we obtain:

ẋi(t) =







0 0 0
〈FB(ζ),φ∗

i (ζ)〉 λi η

〈B(ζ),ψ∗
i (ζ)〉 γ λ̄i






xi(t)+







1 0
−〈B(ζ),φ∗

i (ζ)〉 0
0 〈bCa(ζ),ψ∗

i (ζ)〉






ũ(t)

=Aexi(t)+Beu(t) (2.28)

In this case, the overall system’s eigenvalues must be computed numerically. Nonetheless, it is

still possible to diagonalize the state matrix Ae using its eigenvectors, since all the eigenvalues
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are distinct. These eigenvalues are dependent on the coupling parameters η and γ. When η

and γ have opposite signs, depending on their magnitudes, one can potentially obtain conjugate

complex eigenvalues, which will result in oscillatory coupling among the APD and calcium alternans.

However, further parametric investigation is required to determine whether or not this can be

realistically achieved. In this study, both η and γ are positive, and all eigenvalues are real.

The stability of the extended system given by Eq. 2.13 is governed by the eigenvalues of Ae,

which are dependent on the eigenvalues of the individual PDEs, namely λi and λ̄i. From Eq. 2.14b,

it is apparent that ∀i, λ̄i < 0. This implies that in the absence of coupling, Eq. 2.2b is inherently

stable. For the LR1 case, the overall system’s eigenvalues are simply a union of λi and λ̄i (see Eq.

2.20). Therefore, in this case, due to the master-slave relationship between voltage and calcium

dynamics, instabilities in the extended system arise solely from the a(ζ, t) (voltage) subsystem. On

the other hand, for the Fox model, each of the overall system’s eigenvalues depend simultaneously

on both λi and λ̄i. As a result, due to the bidirectional coupling between voltage and calcium

dynamics, both subsystems contribute to the instabilities in the extended system.

2.3 Optimal controller formulation

The operators of the parabolic system given by Eq. 2.2 are dissipative, and the structure of their

eigenspectra is beneficial for the formulation of a simple gain-based optimal full-state feedback

control law which stabilizes the unstable modes, while the stable modes remain invariant to this

control law. The eigenspectrum of Ae can be divided into a finite-dimensional unstable (slow)

part and an infinite-dimensional stable (fast) part, i.e. Ω(Ae) = Ω+(Ae) ∪ Ω−(Ae). The finite-

dimensional optimal controller will then be developed based only on the unstable subsystem.

The optimal controller gain is obtained by solving the following minimization problem over an

infinite time horizon:

min
u
J(x(0);u) =

∞
∫

0

[

xs(t)′Qxs +u(t)′Ru(t)
]

dt (2.29)

s.t. ẋs(t) =Ae
sxs(t)+Be

su(t)

where xs(t), Ae
s and Be

s have dimensions corresponding to that of the slow (unstable) subsystem

Ω+(Ae). Q ≥ 0 and R > 0 are the diagonal penalty matrices for the state and input variables,

respectively. Solving this LQR problem, the optimal control law is obtained as:

uopt(t) = −Koptxs(t) = −R−1Be′

s Pxs(t) (2.30)

where P is a symmetric, positive definite solution to the Algebraic Riccati Equation

0 =Ae′

s P +PAe
s +Q−PBe

sR
−1Be′

s P (2.31)
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2.4 Numerical simulation

In this section, we consider the system of PDEs given by Eq. 2.2, with parameters Da, ω, σ and

g obtained from the LR1 ionic model [36] and the Fox ionic model [35]. These parameters, as well

as the coupling parameters η and γ are presented in Table 2.1. The critical pacing periods for the

LR1 model and the Fox model were found to be 311 ms and 215 ms, respectively. For the each

set of parameters, the eigenspectra for the operators A1 and A2 are computed according to Eqs.

2.14 - 2.15. The eigenspectrum of Ae can then be obtained from these individual eigenvalues. The

distribution of the eigenspectrum depends on the cable length L. As can be seen from Figures

2.2 and 2.3, the number of unstable eigenvalues increases with increasing cable length. In these

simulations, a cable length of 6.25 cm is considered. Both Figures 2.2 and 2.3 show that for all

cable lengths, there is a zero eigenvalue. This is because for both models, Ω(Ae) = {0} ∪ Ω(A),

where the zero eigenvalue arises from the presence of boundary actuation. This is a dynamical

feature that has not been recognized in previous works, and implies that the system is effectively

controlled by the time derivative of the boundary input and not the input itself.

Table 2.1: PDE parameter values for the LR1 and Fox ionic models

LR1 Fox

Da 0.4883 0.148

ω 0.03388 0.04

σ ln(2.2) ln(1.314)

g 0 7.221x10−5

η 0 0.6

γ 2.25x10−6 8.575x10−3

In both cases, the Galerkin formulations for p(ζ, t) and aCa(ζ, t) are approximated by 28 modes,

namely p(ζ, t) =
28
∑

i=1
pi(t)φi(ζ) and aCa(ζ, t) =

28
∑

i=1
aCai

(t)ψi(ζ). This leads to a finite-dimensional

approximation to Eq. 2.13, of the form

ẋ(t) = Āex(t)+ B̄eu(t) (2.32)

where Āe and B̄e are (57x57) and (57x2) matrices, respectively. Increasing the number of modes

in the Galerkin formulation will increase the number of fast modes, which are stable. Since the

controller formulation is based only on the slow modes, increasing the total number of modes will

not affect the overall result. The function B(ζ) has the general form

B(ζ) = expaζ [c1 cos(bζ)+ c2 sin(bζ)] (2.33)
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Figure 2.2: Eigenspectrum of Ae for the LR1 model, for different cable lengths.
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Figure 2.3: Eigenspectrum of Ae for the Fox ionic model, for different cable lengths.
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where a and b are the real and imaginary parts of r, which satisfy the characteristic equation of

Eq. 2.2a:

Dar2 −ωr+σ = 0 (2.34)

The coefficients c1 and c2 can be found by applying the following boundary conditions:

dB

dζ

∣

∣

∣

∣

ζ=0

−B(0) = 1
dB

dζ

∣

∣

∣

∣

ζ=L

= 0 (2.35)

The Ca2+-based controller, uCa(t), is applied at ζ ∈ [3.5,4.5] cm. The location of this actuator was

chosen to be far enough from the boundary, such that its effects are independent from the boundary

pacer. In choosing the size of this region, we have considered the trade-off between the magnitude

of actuation and the size of the actuator. This size was therefore selected such that the magnitude

of actuation is not too high, while keeping the affected region relatively small.

Once the finite-dimensional approximation of the system has been obtained, the system is

decomposed into the stable (fast) and unstable (slow) subsystems. The low dimensional unstable

subsystem is then used to compute the optimal control law, given by Eq. 2.30. Computation of

the optimal control law requires solving the Algebraic Riccati Equation. This is done through

Matlab using the ’care’ function. Note that in this procedure, the nonlinear term in Eq. 2.2a is

neglected. However, since this term has a stabilizing effect on the system, this exclusion has no

negative effect on the stability of the closed loop system. In the simulations, this nonlinear term is

added to the closed loop system as Gi(t) = g〈a(ζ, t)3,φ∗
i (ζ)〉. The same penalty matrices are used

in both cases. Q can be partitioned as Q= [qv 0; 0 qaI], where qv = 10 is applied to v(t) and

qa = 5 is applied to p(t) and aCa(t). For the input variables, an equal weight is placed on ṽ(t)

and uCa(t): R = [5 0; 0 5]. The numerical integration is performed using the explicit finite

difference method with ∆t= 0.02.

2.4.1 Case 1: LR1 ionic model

For the parameter values given in Table 2.1 and a cable length of 6.25 cm, Ae has three unstable

eigenvalues (including the zero eigenvalue). As discussed previously, all the unstable eigenvalues

correspond to those of A1. Therefore, for the LR1 model, the aCa(ζ, t) PDE (Eq. 2.2b) is inherently

stable, and only Eq. 2.2a needs to be stabilized.

The finite-dimensional approximation of the system, Eq. 2.32, takes the form of Eq. 2.26, where

Āe and B̄e can be computed by following the procedure outlined in Eqs. 2.20 - 2.25. Since there

are three unstable modes, a third-order optimal controller is obtained. Solving the LQR problem

posed in Eq. 2.29, we obtained the following optimal controller gain:
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Kopt =

[

1 −23.3 4.61
0 0 0

]

(2.36)

As noted earlier, since the aCa(ζ, t) system is already stable, uCa(t) is deemed unnecessary in this

case, and therefore the corresponding controller gains are equal to zero. Applying this controller

gain to Eq. 2.32 (via Eq. 2.30), we obtained the closed loop response for a(ζ, t), shown in Figure

2.4. This figure shows that the low dimensional controller can indeed stabilize all the 28 modes of

a(ζ, t). The corresponding trajectories of v(t) and ṽ(t) are shown in Figures 2.7 and 2.8.
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Figure 2.4: Stabilization of the amplitude of alternans PDE under optimal full-state feedback
control with LR1 model parameters.

2.4.2 Case 2: Fox ionic model

In this case, despite the fact that all the eigenvalues of A2 are negative, instabilities can still arise

in the aCa(ζ, t) system due to the bidirectional coupling between Eqs. 2.2a and 2.2b. Using the

parameter values in Table 2.1, we found that Ae has three unstable eigenvalues. Therefore, both

a(ζ, t) and aCa(ζ, t) need to be stabilized.

As noted in the previous section, analytical expressions for the eigenvalues and eigenfunctions of

Ae are not available when η is nonzero. Therefore, Āe and B̄e must be computed according to Eq.

2.28. A state transformation was then performed to diagonalize Āe before the unstable subsystem

was extracted. The remaining procedure for obtaining the optimal control law is identical to that

employed in the LR1 case. Here, the optimal controller gain was found to be:
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Kopt =

[

0.469 −11.2 2.46
−0.957 −10.1 1.54

]

(2.37)

In contrast to the previous case, the second row of Kopt is now nonzero since the aCa(ζ, t) system is

also unstable. Figures 2.5 and 2.6 show the stabilization of a(ζ, t) and aCa(ζ, t), respectively, under

this optimal control law. Again, these figures demonstrate that stabilization of all the 28 modes

of a(ζ, t) and aCa(ζ, t) can be achieved using the low-dimensional optimal controller. The input

trajectories v(t), ṽ(t) and uCa(t) are shown in Figures 2.7 - 2.9.
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Figure 2.5: Stabilization of the amplitude of alternans PDE under optimal full-state feedback
control with Fox model parameters.

It is important to note that although the exponential stabilization of the infinite-dimensional

state variables is achieved in both cases, this method does not account for the influence of the

feedback control law on the higher (fast) modes. In reality, the higher modes of Ae may be

amplified by the control law. This is known as the spillover effect [34]. In the simulations, this

phenomena is reflected as the high excursion of the state variables away from the boundary pacing

site, as shown in Figures 2.4 - 2.6.

From Figures 2.7 and 2.8, it is apparent that the boundary controller for the LR1 model is

significantly more aggressive compared to that for the Fox model. This is because for the LR1

model, the stabilization of a(ζ, t) must be achieved solely through boundary control. On the other

hand, for the Fox model, stabilization is achieved using both boundary and spatial actuations, and as

a result aggressive controller actions are not required. This is advantageous for the implementation
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Figure 2.6: Stabilization of the amplitude of calcium alternans PDE under optimal full-state
feedback control with Fox model parameters.
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Figure 2.7: Trajectories of boundary input v(t) for the LR1 and Fox ionic models under optimal
full-state feedback control.
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Figure 2.8: Trajectories of input derivative ṽ(t) for the LR1 and Fox ionic models under optimal
full-state feedback control.
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Figure 2.9: Trajectory of uCa(t) for the Fox ionic model under optimal full-state feedback control.
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of the control scheme, since an overly aggressive boundary controller may result in conduction

block, which is highly undesirable.

The results obtained from the LR1 model imply that in the case of full-state feedback realization

(i.e. full knowledge of the APD state evolution), boundary pacing alone can potentially stabilize

alternans along the entire length of the cable. However, in reality this cannot be achieved, because

it is impossible to measure the electrical activity at each cardiac cell within the domain.

An important limitation for the boundary actuator is the fact that the pacing protocol should

not postpone the heart’s natural rhythm, which is governed by the sinoatrial node (SAN). In other

words, the boundary actuation is constrained to negative perturbations only. This provides the

motivation to extend this work further into the framework of model predictive control, such that

input constraints can be explicitly accounted for in the controller formulation.

2.5 Conclusion

In this chapter, an optimal full-state feedback control scheme was developed for the coupled sys-

tem of PDEs describing the dynamics of the small amplitude of cardiac alternans and the peak

intracellular Ca2+ concentration alternations along a 1D cable of cardiac cells. This control scheme

combines a pacer applied at the boundary and a spatially distributed, Ca2+-based controller. The

optimal control law was obtained by solving the standard LQR problem. Simulations were per-

formed using PDE parameters obtained from the LR1 ionic model and the Fox ionic model. In

both cases, we demonstrated the successful annihilation of cardiac alternans along a 6.25 cm cable

of cardiac cells. The annihilation of cardiac alternans using feedback control has been studied

extensively. However, it has been shown in literature that control strategies that are solely voltage-

based are only effective close to the control site. Away from the pacing site, alternans will continue

growing, eventually leading to conduction block. In this work, we have demonstrated that by the

inclusion of a voltage-independent actuator (i.e. calcium-based), we can overcome this limitation in

controllability, and achieve alternans annihilation along the entire cable. In developing these con-

trol strategies, constraints that may be naturally present in the cardiac system were not accounted

for. This issue will be addressed in the next chapter, where the input and state constraints are to

be included explicitly in the controller formulation.
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Chapter 3

Model predictive control of the

amplitude of alternans PDE

3.1 Introduction

In this chapter, we develop a model predictive controller (MPC) for the small amplitude of al-

ternans PDE [31]. The control strategy is implemented as a combination of boundary actuation

and spatially distributed, Ca2+-based actuation. This PDE belongs to a class of parabolic PDEs

that describe diffusion-convection-reaction processes, which can be transformed into an infinite di-

mensional abstract evolutionary form [32, 33]. Similar to optimal control, which is studied in the

previous chapter, the MPC algorithm also involves minimizing a quadratic cost function. However,

in MPC this minimization is performed at every time step. Furthermore, MPC allows the explicit

inclusion of input and state constraints into the minimization problem. This makes it a popular

option for processes in which constraints are present. MPC and its properties (i.e. stability, per-

formance, constraints handling, etc.) have been studied extensively in literature [37–39]. However,

most of the resulting MPC formulations are developed for lumped-parameter models, which are

finite-dimensional.

There are previous studies that address MPC for infinite dimensional systems arising from PDEs

[40–43]. The approach in [42] involve on-line model reduction and linearization, while [43] makes

use of the system’s dissipativity to formulate a plant-wide distributed model predictive control

(DMPC) algorithm. In this work, based on the approach used in [40, 41], the infinite dimensional

system is partitioned into slow (finite dimensional) and fast (infinite dimensional) subsystems,

from which a low order, finite dimensional MPC can be constructed using one of the existing MPC

formulations. Input constraint satisfaction is achieved using this low-order MPC formulation, while

state constraints satisfaction requires a correction factor that accounts for the evolution of the fast

subsystem. In the cardiac system, these constraints are important for avoiding conduction block
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in the tissue.

This chapter is organized as follows. Section 3.2 introduces the amplitude of alternans PDE

and the system’s state space representation. The MPC formulation is presented in Section 3.3, and

a numerical example is given in Section 3.4. Finally, a brief summary is provided in Section 3.5.

3.2 Model description

In this chapter, we only consider the amplitude of APD alternans PDE [31], which is given by

Eq. 2.2a in the previous chapter. Since we are only working with a single PDE, the Ca2+-based

actuation is applied directly to this PDE. The system is therefore given by:

∂a(ζ, t)

∂t
= Da

∂2a(ζ, t)

∂ζ2
−ω

∂a(ζ, t)

∂ζ
+σa(ζ, t)−ga(ζ, t)3 +h

m
∑

j=1

bj(ζ)uCaj
(t) (3.1a)

∂a(0, t)

∂ζ
= a(0, t)+v(t),

∂a(L,t)

∂ζ
= 0 (3.1b)

a(ζ,0) = a0(ζ) (3.1c)

All parameters are normalized with respect to the pacing period τ . Definitions for Da, ω, σ and g

can be found in [31], and are also given in Chapter 2. The parameter h represents a proportionality

factor between the change in the peak intracellular [Ca2+] and the change in a(ζ, t). The magnitude

of h can be obtained by following the same procedure used to obtain the coupling parameter η in

the previous chapter.

In Eq. 3.1a, uCa(t) denotes the spatially distributed, Ca2+-based control input. The spatial

distribution of uCaj
(t) along the cable is given by the function bj(ζ), and the summation term

represents the overall effect of the calcium-based actuator(s) on the system. bj(ζ) is a square

integrable function, and is defined as bj(ζ) = 1
2ν for ζ ∈ [ζb,j −ν,ζb,j +ν] and zero everywhere else,

where ζb,j denotes the location of the jth distributed actuator and ν is a small positive real number.

In Eq. 3.1b, v(t) denotes the boundary actuator applied at ζ = 0. This boundary actuator represents

a pacing protocol applied at the end of the cable. The Ca2+-based actuator is applied locally on the

cable and manipulates the intracellular Ca2+ concentration in that region. This can be achieved

by applying either a drug patch or a mechanical perturbation to the heart tissue.

The output, which represents the measurement of a(ζ, t) at ζc, is defined as

y(t) =

∫ L

0
r(ζ)a(ζ, t)dζ (3.2)

The function r(ζ) is defined similarly as bj(ζ), and is given by r(ζ) = 1
2δ for ζ ∈ [ζc − δ,ζc + δ] and

zero everywhere else.
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3.2.1 State space system representation

Following the same procedure outlined in Chapter 2, the system given by Eq. 3.1 can be represented

as an infinite dimensional state space system. The PDE given by Eq. 3.1 has a spatially uniform

unstable steady state at a(ζ, t) = 0. After linearizing the PDE around this point, the system can

be formulated as the following abstract boundary control problem:

da

dt
= Fa(t)+BCauCa(t) t≥ 0

a(0) = a0 (3.3)

Ba(t) = v(t)

Where a(·, t) = {a(ζ, t),0 ≤ ζ ≤L} is the state variable in the Hilbert space L2([0,L] ; t) [32], t is the

time variable, v(t) ∈ R is the boundary actuation and uCa(t) is the spatially distributed actuation.

F is the spatial derivative operator and is defined in Eq. 2.4. Compared to the previous chapter, the

definition for BCa, which describes the positioning of the spatially distributed actuator, is modified

slightly to incorporate the proportionality factor h:

BCauCa(t) = h
m

∑

j=1

bj(ζ)uCaj
(t) (3.4)

Since there is only one spatially distributed actuator, the index j will be dropped. Finally, the

boundary operator B : L2(0,L) 7→ R is defined in Eq. 2.5.

In Eq. 3.3, the controlled input, v(t), appears in the boundary condition. We want to find

an exact transformation such that v(t) is moved from the boundary into the spatial domain of

the PDE. This transformation is given by Eq. 2.8, and is based on the assumption that v(t) is

sufficiently smooth and that there exists a function B(ζ) such that ∀v(t), B(ζ)v(t) ∈ D(F), and

Eq. 2.7 is satisfied. We then define a new operator, A:

Aφ(ζ) = Fφ(ζ), and D(A) = D(F)∪ker(B) (3.5)

By applying the boundary transformation, we obtain the following:

∂p(ζ, t)

∂t
= Ap(ζ, t)+FB(ζ)v(t)−B(ζ)v̇(t)+BCauCa(t) t≥ 0

p(ζ,0) = p0(ζ) (3.6)

Defining v(t) as a new state variable, the system given by Eq. 3.1 is reformulated on the extended

state space Le
2 := L2 ⊗V , yielding

[

v̇(t)
ṗ(ζ, t)

]

=

[

0 0
FB A

][

v(t)
p(ζ, t)

]

+

[

1 0
−B BCa

][

ṽ(t)
uCa(t)

]

= Aex(ζ, t)+Beu(t) (3.7)
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Here, ṽ(t) = v̇(t). Physiologically, ṽ(t) can be interpreted as the rate of change of pacing period

applied at the boundary. Furthermore, without loss of generality, we can choose B(ζ) such that

FB(ζ) = 0. By doing this, v̇(t) becomes independent of p(ζ, t).

The operator A is the Sturm-Liouville operator. Its eigenvalues and corresponding eigenfunc-

tions can be found analytically by solving the eigenvalue problem Aφ(ζ) = λφ(ζ), through the

separation of variables [32]. The eigenfunctions of the adjoint operator A∗ that satisfies the or-

thogonality condition 〈φm(ζ),φ∗
n(ζ)〉 = δmn can also be computed. The eigenvalues of A are given

by:

λn = σ−Da

[

αn +
w2

4Da2

]

,0< αn < αn+1, n≥ 1 (3.8)

where αn’s are solutions to the following transcendental equation:

tan(
√
αnL) =

√
αn

αn − ω
2Da

(

1− ω
2Da

) (3.9)

The corresponding eigenfunctions and adjoint eigenfunctions for n≥ 1 are given by:

φn(ζ) =Bn exp
ω

2Da
ζ

[

cos(
√
αnζ)+

1√
αn

(1− ω

2Da
)sin(

√
αnζ)

]

(3.10a)

φ∗
n(ζ) = exp− ω

Da
ζ φn(ζ) (3.10b)

The coefficients Bn’s are computed by imposing the orthogonality condition between φn(ζ) and

φ∗
n(ζ), and are evaluated as:

Bn =







L
∫

0

[

cos(
√
αnζ)+

1√
αn

(

1− ω

2Da

)

sin(
√
αnζ)

]2

dζ







−1/2

(3.11)

Parabolic PDEs such as the one given by Eq. 3.1 can be solved by modal decomposition [33].

In this approach, p(ζ, t) is written as the infinite sum p(ζ, t) =
∑∞

n=1 pn(t)φn(ζ). Substituting this

into Eq. 3.7 and projecting the resulting system onto φ∗
n(ζ), we obtain:

[

v̇(t)
ṗn(t)

]

=

[

0 0
0 λn

][

v(t)
pn(t)

]

+

[

1 0
−〈B,φ∗

n〉 h〈b,φ∗
n〉

][

ṽ(t)
uCa(t)

]

, n≥ 1

ẋ(t) =Aex(t)+Beu(t) (3.12)

since FB(ζ) = 0. Following a similar procedure, the state space representation for Eq. 3.2 can be

derived as:

y(t) =
[

〈r(ζ),B(ζ)〉 〈r(ζ),φn(ζ)〉
]

x(t) = Cx(t), n≥ 1 (3.13)

This is the infinite dimensional state space representation for the system given by Eqs. 3.1 - 3.2.
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3.3 Model Predictive Control

In this work, we utilize the MPC formulation developed by Muske and Rawlings [38]. Although the

approach in [38] was developed for finite dimensional systems, here we are using their framework

to address an infinite dimensional system representation. The eigenspectra of dissipative, parabolic

PDEs such as Eq. 3.1a, has a beneficial structure which allows for the formulation of a simple

control law which stabilizes the unstable modes, while the stable modes remain invariant to the

control law. The eigenspectrum of Ae can be divided into a finite-dimensional unstable (slow) part

and an infinite-dimensional stable (fast) part, i.e. Ω(Ae) = Ω+(Ae) ∪ Ω−(Ae). Since the dominant

dynamics of the PDE are captured in the slow subsystem, the finite-dimensional MPC is developed

based on this subsystem, yielding a stabilizing, low-order predictive controller for the entire infinite

dimensional system.

System discretization

In order to apply the MPC formulation, the system given by Eq. 3.12 must first be discretized. To

ensure that the system’s fastest dynamics are not lost in the discretization, the sampling interval

is chosen such that ∆t ≤ 1
2|λn|max

. For finite dimensional systems, the continuous-time system

representation can be discretized exactly. However, this involves taking the exponential of the

state evolution matrix. For infinite dimensional systems, one approach is to employ the Tustin

time discretization scheme, which utilizes the Cayley transform [44]. This method is based on

a modified Crank-Nicholson type discretization scheme. The discrete-time representation of Eqs.

3.12 - 3.13 is given by:

x̄(k+1) = Āx̄(k)+ B̄ū(k), (3.14a)

y(k) = Cx̄(k) (3.14b)

Ā and B̄ are defined as follows:

Ā= (µI−Ae)−1(µI+Ae) (3.15a)

B̄ =
√

2µ(µI−Ae)−1Be (3.15b)

where µ= 2
∆t and I is the identity matrix. In this transformation, the stable (unstable) eigenvalues

of Ae, which lie on the left (right) half plane, are mapped onto the interior (exterior) of the unit

circle. In addition to this transformation from continuous to discrete-time infinite dimensional

system representation, the Cayley transformation maps the unbounded operators Ae and Be into

their bounded, infinite dimensional counterparts Ā and B̄, respectively [45].
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Equation 3.14 can then be partitioned into a slow and a fast subsystem, according to the

eigenspectrum of Ā. These subsystems are given by:

x̄s(k+1) = Āsx̄s(k)+ B̄sū(k) (3.16a)

x̄f (k+1) = Āf x̄f (k)+ B̄f ū(k) (3.16b)

ys(k) = Csx̄s(k) (3.16c)

yf (k) = Cf x̄f (k), k ≥ 0 (3.16d)

In Eqs. 3.16a and 3.16c, the state variables are x̄s(k) = [v(k) ps(k)]′, while in Eqs. 3.16b and

3.16d, x̄f (k) = pf (k). The subscripts s and f denote slow and fast modes, respectively. Note that

for the MPC formulation to be feasible, the slow subsystem must contain at least one stable mode.

3.3.1 Controller formulation

The MPC computes a sequence of N future inputs that will minimize the following infinite horizon

open-loop quadratic objective function at each time instant k:

min
ūN

J∞(k) =
∞

∑

j=0

[

x̄s(k+ j)′Qx̄s(k+ j)+ ū(k+ j)′Rū(k+ j)
]

(3.17)

Here, Q≥ 0 and R> 0 are symmetric penalty matrices for the state and input variables, respectively.

The vector ūN contains the N future control moves that will minimize the cost function, i.e.

ūN =
[

ū(k) ū(k+1) · · · ū(k+N −1)
]′

. For all j ≥N , ū(k+j) is set to zero. At each time step,

the first control move ū(k) is applied to the plant model, and ūN is recalculated using the updated

state vector. Equation 3.17 can be represented as the finite horizon open-loop objective function:

min
ūN

JN (k) = x̄s(k+N)′Q̄x̄s(k+N)+
N−1
∑

j=0

[

x̄s(k+ j)′Qx̄s(k+ j)+ ū(k+ j)′Rū(k+ j)
]

(3.18)

In Eq. 3.18, Q̄ is the terminal state penalty matrix, whose formulation depends on the stability of

the system [38].

In this work, the system is unstable. Thus, the Jordan form of Ās must first be partitioned into

stable and unstable parts:

Ās = V JV −1 =
[

Vu Vs

]

[

Ju 0
0 Js

][

Ṽu

Ṽs

]

(3.19)

where the subscripts u and s correspond to the unstable and stable parts, respectively. For unstable

systems, Q̄ is computed as

Q̄= Ṽ ′
sΣṼs (3.20a)

Σ = V ′
sQVs +J ′

sΣJs (3.20b)
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Algebraic manipulation of Eq. 3.18 leads to the following quadratic program for ūN .

min
ūN

JN (k) =
[

(ūN )′HūN +2(ūN )′Gx̄s(k)
]

(3.21)

For unstable systems, H and G are given by:

H1 =



















B̄′
sKN−1B̄s +R B̄′

sĀ
′
sKN−2B̄ · · · B̄′

sĀ
′N−1

s K0B̄s

B̄′
sKN−2ĀsB̄s B̄′

sKN−2B̄s +R · · · B̄′
sĀ

′N−2

s K0B̄s

...
...

. . .
...

B̄′
sK0Ā

N−1
s B̄s B̄′

sK0Ā
N−2
s B̄s · · · B̄′

sK0B̄s +R



















(3.22a)

G1 =











B̄′
sKN−1Ās

...

B̄′
sK0Ā

N
s











, KN =
N

∑

i=0

Ā
′i

sQĀ
i
s (3.22b)

H2 =



















B̄′
sLN−1B̄s B̄′

sĀ
′
sLN−2B̄s · · · B̄′

sĀ
′N−1

s L0B̄s

B̄′
sLN−2ĀsB̄s B̄′

sLN−2B̄s · · · B̄′
sĀ

′N−2

s L0B̄s

...
...

. . .
...

B̄′
sL0Ā

N−1
s B̄s B̄′

sL0Ā
N−2
s B̄s · · · B̄′

sL0B̄s



















(3.22c)

G2 =











B̄′
sLN−1Ās

...

B̄′
sL0Ā

N
s











, LN = Ā
′N

s Q̄Ās (3.22d)

H =H1 +H2 (3.22e)

G=G1 +G2 (3.22f)

Since Eq. 3.21 is based only on the slow subsystem, the solution to the optimization problem is

only sub-optimal with respect to the whole, infinite dimensional system. However, stabilization of

the whole system will still be achieved.

3.3.2 Constraints

The main advantage of MPC is the ability to explicitly incorporate input and state constraints into

the controller formulation. Here, we wish to apply constraints to uCa(t), v(t) and a(ζ, t) measured

over the region ζ ∈ [ζc − δ,ζc + δ], δ > 0 (i.e. y(t)). Since the MPC is constructed based on the

extended state space system (Eq. 3.12), constraints on y(t) and v(t) are treated as state (output)

constraints, while those for uCa(t) are treated as input constraints.
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The input and state constraints can be formulated as follows:

umin ≤ uCa(k+ j) ≤ umax, j = 0, . . . ,N −1 (3.23a)

vmin ≤ v(k+ j) ≤ vmax, j = j1, . . . , j2 (3.23b)

ymin ≤ y(k+ j) ≤ ymax, j = j̃1, . . . , j̃2 (3.23c)

where {j1, j̃1} ≥ 1 and {j2, j̃2} ≥ {j1, j̃1}. Through algebraic manipulation, Eq. 3.23 can be re-

written as an inequality in terms of ūN :



















I
−I
Dv

−Dv

D
−D



















ūN ≤



















i1
i2
v1

v2

d1

d2



















(3.24)

where I is the identity matrix, and

D =













CsĀ
j̃1−1
s B̄s · · · CsĀ

j̃1−N
s B̄s

...
...

CsĀ
j̃2−1
s B̄s · · · CsĀ

j̃2−N
s B̄s













, where Āj−i
s = 0 if j < i. (3.25a)

For Dv, only rows j1 to j2 are nonzero. For each of these rows, the entries are equal to b1, which is

the first row of B̄s, repeated by the row number. For example, if j1 = 2 and j2 = 3, Dv is given by:

Dv =

















0 0 0 · · · 0
b1 b1 0 · · · 0
b1 b1 b1 · · · 0
...

...
...

...
...

0 0 0 · · · 0

















(3.25b)

For the terms on the right hand side of the inequality,

i1 =







umax
...

umax






, i2 =







−umin
...

−umin






(3.25c)

v1 =







vmax −v(k)
...

vmax −v(k)






, v2 =







−vmin +v(k)
...

vmin +v(k)






(3.25d)

d1 =













ymax −CsĀ
j̃1

s x̄s(k)

...

ymax −CsĀ
j̃2

s x̄s(k)













, d2 =













−ymin +CsĀ
j̃1

s x̄s(k)

...

−ymin +CsĀ
j̃2

s x̄s(k)













(3.25e)
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At each time step, ūN is computed by solving Eq. 3.21, subject to the inequality constraint given

by Eq. 3.24 and the equality constraint x̄s(k+N) = 0. This equality constraint ensures that the

unstable modes are stabilized at time k+N . In terms of ūN and x̄s(k), this equality constraint can

be written as:

Ṽu

[

ĀN−1
s B̄s ĀN−2

s B̄s · · · B̄s

]

ūN = −ṼuĀ
N
s x̄s(k)

Aeqū
N = beq (3.26)

Although the low-order MPC is stabilizing, it does not guarantee state constraints satisfaction.

This is because in solving the optimization problem, at each sampling time the algorithm only takes

the value of x̄s (and therefore ys(k)), thus neglecting the evolution of the fast modes. In order to

satisfy the constraints on y(k), [40] has demonstrated that the contribution of the fast modes must

also be accounted for. This is achieved by shrinking the bounds on ys, based on the input-output

boundedness of the fast subsystem. The revised state constraints are given by

ymin +α≤ ys(k+ j) ≤ ymax −α

smin ≤ ys(k+ j) ≤ smax, j = j̃1, . . . , j̃2 (3.27)

where α is a positive real number. In the implementation, ymax and ymin in Eq. 3.25e are replaced

with smin and smax, respectively.

3.4 Numerical Simulation

In our simulation study, we consider the PDE given by Eq. 3.1 with parameters obtained from the

Fox ionic model [35]. Values for these parameters are as follows: Da = 0.148, ω= 0.04, σ= ln(1.314),

g = 7.221x10−5 and h= 0.6. The eigenvalues and corresponding eigenfunctions for A are computed

according to Eqs. 3.8 - 3.11. The eigenspectrum of Ae can then be obtained as Ω{Ae} = {0}∪Ω(A).

The distribution of Ae’s eigenspectrum is dependent on the cable length L. As shown in Fig. 3.1,

the number of unstable eigenvalues increases with increasing cable length. In this study, we consider

a cable length of 6.25 cm.

The Galerkin formulation for p(ζ, t) is approximated using 44 modes, namely p(ζ, t) ' ∑44
n=1 pn(t)φn(ζ),

leading to a finite dimensional approximation to Eq. 3.12, where the extended state variable x(t)

has 45 elements. The function B(ζ) has the general form

B(ζ) = expaζ [c1 cos(bζ)+ c2 sin(bζ)]

where a and b are the real and imaginary parts of r, which satisfy the characteristic equation of

Eq.3.1a:

Dar2 −ωr+σ = 0
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Figure 3.1: Eigenspectrum of Ae for different cable lengths

The coefficients c1 and c2 can be found by applying the following boundary conditions:

dB

dζ
|ζ=0 −B(0) = 1

dB

dζ
|ζ=L= 0

One Ca2+-based controller, uCa(t), is applied at ζ ∈ [4.0,4.5] cm.

Once the finite-dimensional approximation of the system has been obtained, it is discretized and

decomposed into stable (fast) and unstable (slow) subsystems. The low-dimensional slow subsystem

is then used in the MPC synthesis. Sampling time for the discretization is computed as ∆t= 0.0069.

For a cable length of 6.25 cm, A has two unstable eigenvalues, as seen in Fig. 3.1. For the extended

state space system, there is an additional zero eigenvalue, which also need to be stabilized. Finally,

to ensure that the optimization problem (3.21) is feasible, one additional stable mode is included

in the slow subsystem. Therefore, the slow subsystem contains four state variables. The state

penalty matrix can be partitioned as follows: Q = [qv 0;0 qaI], where qv = 20 is the penalty

for v(k) and qa = 10 is the penalty for p(k). For the input variables, the penalty matrix is given

as R = [5 0;0 15]. The constraints on y(t) are applied at ζ ∈ [4.75,5.0] cm. This constraint is

implemented with α = 3. Note that this MPC formulation does not include the nonlinear term

in (3.1a). However, since this term has a stabilizing effect on the system, this exclusion has no

negative effect on the stability of the closed loop system. In the simulation, this nonlinear term is

added to the closed loop system as Gn(t) = g〈a(ζ, t)3,φ∗
n(ζ)〉.
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The controller action at each time step is computed according to the scheme described in Section

3.3. The control horizon is set to N = 300, such that the optimization problem is feasible. At time

instant k, a sequence of N future control moves, ūN , is obtained by solving the quadratic program

Eq. 3.21, subject to the inequality and equality constraints presented in Section 3.3.2. This is

achieved by using the ’quadprog’ function in Matlab. The first element in ūN , ū(k) is then applied

to the closed loop system, evolving the state variables. The optimization is then repeated using

the updated state variables. The procedure for the implementation in Matlab is as follows:

Starting from k = 0 and the initial condition x̄(0),

1. Compute the matrices H and G according to Eq. 3.22, where Q̄ is given by Eq. 3.20.

2. Let f =Gx̄(k)

3. For the inequality constraints, write Eq. 3.24 as AūN ≤ b, where A and b can be computed

according to Eq. 3.25.

4. For the equality constraint, compute Aeq and beq according to Eq. 3.26.

5. Solve the quadratic problem given in Eq. 3.21 using the function ’quadprog’:

ūN = quadprog(H,f,A,b,Aeq, beq)

6. Since there are two input variables, ū(k) = ūN (1 : 2). That is, the current inputs correspond

to the first two elements of ūN .

7. Given x̄(k) and ū(k), compute x̄(k+1) according to Eq. 3.14.

8. Let k = k+1 and repeat steps 2 - 7, using the updated state variable. Note that matrices H,

G, A, and Aeq remain constant for all time steps and therefore can be computed separately.

The closed loop response for a(ζ, t) is given in Fig. 3.2. As shown by this figure, stabilization of

the alternans from an initial distribution a(ζ,0) = a0(ζ) is achieved after approximately 40 beats.

Trajectories of v(t), uCa(t) and y(t) are given in Figures 3.3 - 3.5, respectively. For all three

variables, constraints satisfaction is achieved.

As mentioned in the previous chapter, an important limitation for the boundary actuator is the

fact that the pacing protocol should not postpone the heart’s natural rhythm, which is governed

by the sinoatrial node (SAN). This means that the boundary actuation is constrained to negative

perturbations only. As shown by Figure 3.3, this constraint is indeed satisfied.
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Figure 3.2: Stabilization of the amplitude of alternans PDE with model predictive control
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Figure 3.3: Trajectory of v(t) under model predictive control. Constraints are shown as red dotted
lines.
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Figure 3.4: Trajectory of uCa(t) under model predictive control. Constraints are shown as red
dotted lines
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Figure 3.5: Trajectory of y(t) under model predictive control. Constraints are shown as red dotted
lines.
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3.5 Conclusion

In this chapter, we developed a model predictive controller for the annihilation of cardiac alternans,

using a combination of boundary and spatially distributed (Ca2+-based) actuators. The dynamics

of these alternans along a 1D cable are described by a parabolic PDE, which can be represented

as an infinite-dimensional state space system. A low-order, stabilizing MPC that minimizes the

infinite horizon cost function was developed based on the discrete-time state space realization of the

PDE. Input and state constraints were explicitly accounted for in this approach, which can ensure

that these control actions will not induce conduction block in the cardiac tissue. Through numerical

simulations, we demonstrated that the low-order MPC can successfully stabilize the entire system,

while simultaneously satisfying the input and state constraints imposed on the system. Following

these results, the issue of controller robustness with respect to uncertainties in the model parameters

need to be addressed, since the PDE parameters can vary significantly depending on the choice of

ionic model. This is presented in the next chapter.
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Chapter 4

Robust model predictive control of

the amplitude of alternans PDE

4.1 Introduction

In this chapter, we consider the problem of cardiac alternans annihilation using robust model

predictive control (MPC). The spatiotemporal dynamics of the cardiac alternans are represented

by the small amplitude of alternans PDE [31], and control action is delivered by a boundary actuator

and a spatially distributed, Ca2+-based actuator. This PDE belongs to a class of parabolic PDEs

that describe diffusion-convection-reaction processes, which can be transformed into an infinite

dimensional abstract evolutionary form [32,33].

In Chapter 3, we have demonstrated that MPC can successfully stabilize the amplitude of al-

ternans PDE, thus annihilating the alternans. However, one shortcoming of the traditional MPC

techniques is their inability to explicitly account for model uncertainties [46]. In most MPC for-

mulations, the minimization is performed on a nominal cost function, based on a single model of

the system. Therefore, when applied to the actual uncertain system, the controller may perform

poorly. This motivates the development of robust MPC algorithms, where the controller is de-

signed to account for the model uncertainties, thus ensuring that closed loop stability and other

performance criteria can be maintained for the specified range of model uncertainties [46–48]. A

review of the various uncertain model descriptions as well as the proposed techniques to satisfy

robust constraints handling, stability and controller performance is presented in [47].

In this work, based on the approach used in [40, 41], the infinite dimensional system is parti-

tioned into slow (finite dimensional) and fast (infinite dimensional) subsystems, from which a low

order, finite dimensional robust MPC can be constructed using one of the existing robust MPC

formulations. The uncertain system is represented as a polytope, and the control objective is to

ensure robust stability with input and state constraints satisfaction. In the cardiac system, these
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constraints are important for avoiding conduction block in the tissue.

This chapter is organized as follows. The amplitude of alternans PDE and the system’s state

space representation is introduced in Section 4.2. Section 4.3 is devoted to the robust MPC for-

mulation for a polytopic system. A numerical example is presented in Section 4.4, and a brief

summary is provided in Section 4.5.

4.2 Model description

The model used in this chapter is identical to that studied in Chapter 3. To summarize, the system

to be studied, which is the small amplitude of alternans PDE [31], is given by:

∂a(ζ, t)

∂t
= Da

∂2a(ζ, t)

∂ζ2
−ω

∂a(ζ, t)

∂ζ
+σa(ζ, t)−ga(ζ, t)3 +h

q
∑

j=1

bj(ζ)uCaj
(t) (4.1a)

∂a(0, t)

∂ζ
= a(0, t)+v(t),

∂a(L,t)

∂ζ
= 0 (4.1b)

a(ζ,0) = a0(ζ) (4.1c)

The system output, which represents the measurement of a(ζ, t) at ζc, is defined as

y(t) =

∫ L

0
r(ζ)a(ζ, t)dζ (4.2)

This system has an infinite dimensional state space system representation, which takes the following

form
[

v̇(t)
ṗn(t)

]

=

[

0 0
0 λn

][

v(t)
pn(t)

]

+

[

1 0
−〈B,φ∗

n〉 h〈b,φ∗
n〉

][

ṽ(t)
uCa(t)

]

, n≥ 1

ẋ(t) =Aex(t)+Beu(t) (4.3a)

y(t) =
[

〈r(ζ),B(ζ)〉 〈r(ζ),φn(ζ)〉
]

x(t) = Cx(t), n≥ 1 (4.3b)

For the derivation of Eq. 4.3, as well as the detailed definitions of the PDE parameters, refer to

Chapters 2 and 3.

For the controller formulation, the system need to be discretized. To ensure that the system’s

fastest dynamics are not lost during in the discretization, the sampling interval is chosen such that

∆t≤ 1
2|λn|max

. To diecretize an infinite dimensional systems, one approach is to employ the Tustin

time discretization scheme, which utilizes the Cayley transform [44]. This method is based on a

modified Crank-Nicholson type discretization scheme. The discrete-time representation of Eqs. 4.3

is given by:

x̄(k+1) = Āx̄(k)+ B̄ū(k), (4.4a)

y(k) = Cx̄(k) (4.4b)
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for k ≥ 0. The matrices Ā and B̄ are defined as follows:

Ā= (µI−Ae)−1(µI+Ae) (4.5)

B̄ =
√

2µ(µI−Ae)−1Be (4.6)

where µ= 2
∆t and I is the identity matrix

4.2.1 Polytopic model for the uncertain system

The parameters for the PDE given by Eq. 4.1 are derived from the restitution curve, and their values

are therefore dependent on the ionic model used to generate the curve. As a result, these parameter

values may vary significantly depending on the choice of the ionic model, giving rise to uncertainties

in the PDE and its state space representation (Eq. 4.3). A controller that is formulated based on

a nominal model may perform very well for that given model, but it may perform poorly in the

presence of model uncertainties. It is therefore necessary to consider a robust controller which

will satisfy the performance requirements in the presence of model uncertainties. To design such a

controller, we first develop a polytopic model to represent the uncertain system.

The parameter uncertainties in the PDE generate a set of linear models that satisfy Eq. 4.4. It

is assumed that these uncertain models, denoted by

[

Āi B̄i

Ci 0

]

, belong to the polytopic set Ω, and

that the actual (nominal) model lies within this polytope. The polytope Ω is defined as

Ω = Co

{[

Ā1 B̄1

C1 0

]

,

[

Ā2 B̄2

C2 0

]

, · · · ,
[

Ām B̄m

Cm 0

]}

(4.7)

where Co denotes the convex hull, and each

[

Āi B̄i

Ci 0

]

are the vertices of the convex hull. If
[

Ā B̄
C 0

]

∈ Ω, then one can find the nonnegative scalars ξi such that

[

Ā B̄
C 0

]

=
m

∑

i=1

ξi

[

Āi B̄i

Ci 0

]

,
m

∑

i=1

ξi = 1 (4.8)

4.3 Robust model predictive control

In this section, we formulate a robust constrained model predictive controller (MPC) for the set of

uncertain models arising from the PDE parameter uncertainties. The robust MPC minimizes the

upper bound of a quadratic function, which is is expressed as a set of linear matrix inequalities

(LMIs). Input and state (output) constraints are also expressed as additional LMIs. In this work,
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we are applying the robust MPC formulation developed by Xia et al. [48], which is based on

parameter-dependent Lyapunov functions. Compared to the earlier formulation presented in [46],

which relies on a single Lyapunov function, this formulation is less conservative. Although the

robust MPC in [48] was developed for a finite dimensional systems, here we are applying it on an

infinite dimensional system representation.

The eigenspectra of dissipative, parabolic PDEs such as that given by Eq. 4.1a has a beneficial

structure which allows for the formulation of a simple control law which stabilizes the unstable

modes, while the stable modes remain invariant to the control law. The eigenspectrum of Ae can

be divided into a finite-dimensional unstable (slow) part and an infinite-dimensional stable (fast)

part, i.e. Λ(Ae) = Λ+(Ae)∪Λ−(Ae). Since the dominant dynamics of the PDE are captured in the

slow subsystem, the finite-dimensional robust MPC is developed based on this subsystem, yielding

a stabilizing, low-order robust controller for the entire infinite dimensional system.

Each of the uncertain models in Eq. 4.7 is partitioned into slow and fast subsystems, according

to the eigenspectrum of Āi. These subsystems are given by:

x̄s(k+1) = Āi,sx̄s(k)+ B̄i,sū(k) (4.9a)

x̄f (k+1) = Āi,f x̄f (k)+ B̄i,f ū(k) (4.9b)

ys(k) = Ci,sx̄s(k) (4.9c)

yf (k) = Ci,f x̄f (k), k ≥ 0 (4.9d)

In Eqs. 4.9a and 4.9c, the state variables are x̄s(k) = [v(k) ps(k)]′, while in Eqs. 4.9b and 4.9d,

x̄f (k) = pf (k). The subscripts s and f denote slow and fast modes, respectively.

At each time step, the robust MPC computes a state feedback law that minimizes the following

robust performance objective function over an infinite horizon:

min
ū(k+j)

max
[Ā B̄]∈Ω,j≥0

J∞(k) =
∞

∑

j=0

[

x̄s(k+ j)′Qx̄s(k+ j)+ ū(k+ j)′Rū(k+ j)
]

(4.10)

where Q > 0 and R > 0 are the symmetric penalty matrices for the state and input variables,

respectively. The state feedback law has the form

ū(k+ j) = F (k)x̄s(k+ j), j ≥ 0 (4.11)

where F (k) is the feedback gain computed at time k. From this sequence of inputs, only the first

control action, ū(k), will be applied to the plant. The minimization is then repeated using the

updated state variables.

Since it is difficult to obtain the objective function J∞(k), the controller is instead designed

to minimize an upper bound on J∞(k). To derive this upper bound, we consider the quadratic
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function V (x̄s(k)) = x̄s(k)′P (ξ)x̄s(k), where P (ξ) is a parameter-dependent positive definite matrix.

At sampling time k, it is assumed that V (x̄s(k)) satisfies the following inequality for all x̄s(k+ j),

ū(k+ j), j ≥ 0 satisfying Eq. 4.9a, and for

[

Ā B̄
C 0

]

∈ Ω:

V (x̄s(k+ j+1))−V (x̄s(k+ j)) ≤ −
[

x̄s(k+ j)′Qx̄s(k+ j)+ ū(k+ j)′Rū(k+ j)
]

(4.12)

For the cost function to be finite, as j → ∞, x̄s(j) should approach zero. That is, x̄s(∞) = 0, and

therefore V (x̄s(∞)) = 0. Summing Eq. 4.12 from j = 0 to j = ∞ leads to:

max
[Ā B̄]∈Ω,j≥0

J∞ ≤ V (x̄s(k)) (4.13)

V (x̄s(k)) is therefore an upper bound on J∞. Thus, at every sampling time k, the controller

is designed to minimize V (x̄s(k)). This problem is then cast as a linear objective minimization

problem (LOP), and the following theorem from [48] gives the conditions for the existence of the

appropriate P (ξ) that satisfies Eq. 4.12 and the corresponding feedback gain F (k).

Theorem 1 If the LOP

min
E,V,P̂i,Ui,Z,H,S

γ (4.14a)

subject to the LMIs

[

−1 x̄s(k)′

∗ P̂i −V −V ′

]

< 0 (4.14b)











−P̂i V ′Ā′
i,s +E′B̄′

i,s E′R V ′Q

∗ P̂i −V −V ′ 0 0
∗ ∗ −γR 0
∗ ∗ ∗ −γQ











< 0 (4.14c)

[

−Z E

∗ −P̂i

]

< 0, where Zhh < ū2
h,max, h= 1,2, · · · , q (4.14d)

[

−Ui Āi,sV + B̄i,sE

∗ −P̂i

]

< 0 (4.14e)

[

−S Ci,sH
′

∗ Ui −H−H ′

]

< 0, where Shh < y2
h,max, h= 1,2, · · · , r (4.14f)

has the solutions E,V,Z,H,P̂i > 0,Ui > 0 ∀i= 1,2, · · · ,m, then the parameter-dependent Lyapunov

function can be taken as V (x̄s(k)) = x̄s(k)′(V ′)−1 ∑m
i=1 ξiP̂iV

−1x̄s(k) and the state feedback control

law is given by ū(k+ j) = F (k)x̄s(k+ j), j ≥ 0, where F (k) = EV −1. Then:
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i the feasible receding horizon state feedback control law ū(k) = F (k)x̄s(k), k ≥ 0, obtained by

solving the LOP at each sampling instant robustly asymptotically stabilizes the resulting closed

loop system given by Eq. 4.4a.

ii the upper bound of V (x̄s(k)) on the robust performance objective function J∞ is minimized

at sampling time k.

iii the component-wise peak bound on ūh(k+ j) satisfies

|ūh(k+ j)| ≤ ūh,max, j ≥ 0, h= 1,2, · · · , q (4.15)

iv the component-wise peak bound on yh(k+ j) satisfies

|yh(k+ j)| ≤ yh,max, j ≥ 0, h= 1,2, · · · , r (4.16)

The proof for this theorem can be found in the original work [48]. Note that LMIs in Theorem 1

are constructed based only on the slow subsystem (Eqs. 4.9a and 4.9c). However, since the fast

subsystem (Eqs. 4.9b and 4.9d) is stable and x̄f (j) → 0 as j → ∞, the feedback law obtained by

solving the LOP is able to stabilize the entire infinite dimensional system given by Eq. 4.4.

4.4 Numerical Simulation

In this simulation study, we consider the PDE given by Eq. 4.1 with parameters obtained from the

Fox ionic model [35]. The nominal values for these parameters are as follows: Da = 0.148, ω = 0.04,

σ = ln(1.314), g = 7.221x10−5 and h= 0.6. A cable length of 6.25 cm is used in the simulation.

For the uncertain models we consider a ±40% uncertainty on Da, ω and σ. In order to make

sure that the eigenfunctions are the same for each set of parameters, Da and ω must be varied

at the same time. This means that the polytope given by Eq. 4.7 can be made up of up to four

uncertain models. The possible combinations are given in Table 4.1. Initially, the polytope was

constructed using all four uncertain models. However, it was found that to satisfy the condition

given by Eq. 4.8, ξ3 = ξ4 = 0. Thus, only the first two uncertain models are considered (i.e., m= 2).

The Galerkin formulation for p(ζ, t) is approximated using 44 modes, namely p(ζ, t) ' ∑44
n=1 pn(t)φn(ζ).

This leads to the finite dimensional approximation to Eq. 4.3a, where the extended state variable

x(t) has 45 elements. The function B(ζ) has the general form

B(ζ) = expaζ [c1 cos(bζ)+ c2 sin(bζ)]
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Table 4.1: Combination of parameters for the uncertain models, in terms of deviation from the
nominal values

i Da ω σ

1 +40% +40% +40%

2 −40% −40% −40%

3 +40% +40% −40%

4 −40% −40% +40%

where a and b are the real and imaginary parts of r, which satisfy the characteristic equation of

Eq.3.1a:

Dar2 −ωr+σ = 0

The coefficients c1 and c2 can be found by applying the following boundary conditions:

dB

dζ
|ζ=0 −B(0) = 1

dB

dζ
|ζ=L= 0

One Ca2+-based controller, uCa(t), is applied at ζ ∈ [3.5,4.0] cm.

Once the finite-dimensional approximation for each system has been obtained, they are dis-

cretized and decomposed into stable (fast) and unstable (slow) subsystems. The low-dimensional

slow subsystems are then used in the robust MPC synthesis. The sampling time for the discretiza-

tion is computed as ∆t= 0.005. For all of the uncertain models and a cable length of 6.25 cm, Āi,

i= {1,2} has two unstable eigenvalues. For the extended state space system, there is an additional

zero eigenvalue, which also need to be stabilized. The number of slow modes was chosen to be five.

The state penalty matrix can be partitioned as follows: Q = [qv 0;0 qaI], where qv = 1 is the

penalty for v(k) while qa = 0.5 is the penalty for ps(k). For the input variables, the penalty matrix

is given as R = [5 0;0 0.1]. The constraints on y(t) are applied at ζ ∈ [4.0,4.25] cm. Note that

the robust MPC formulation does not include the nonlinear term in Eq. 4.1a. However, since this

term has a stabilizing effect on the system, this exclusion has no negative effect on the stability of

the closed loop system. In the simulation, this nonlinear term is added to the closed loop system

as Gn(t) = g〈a(ζ, t)3,φ∗
n(ζ)〉.

At each time step, the feedback gain that minimizes the robust performance objective function is

computed according to the scheme described in Theorem 1. Constraints are applied on uCa(k),v(k)

and y(k). Note that in the extended state space, v(k) is a state variable. Thus the constraint on

v(k) is implemented as a state (output) constraint. The system of LMIs are solved in Matlab using

the LMI solvers in the Robust Control Toolbox. To solve the LOP in Matlab, the procedure is:
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At k = 0, given the initial state x̄(0),

1. Initiate the system of LMIs using the function ’setlmis’.

2. Define the LMI parameters γ, E, V , P̂i, Ui, Z, H and S using the function ’lmivar ’, for

i= 1,2, · · · ,m.

3. For each i, define the LMIs given by Eqs. 4.14b - 4.14f using the function ’lmiterm’.

4. Define the system of LMIs containing all the individual LMIs using the function ’getlmis’.

5. To solve the LOP, we use the function ’mincx’, which minimizes the function c′ ∗x subject to

the LMIs, where x is a vector of all the decision variables, which are the free scalar variables

in each LMI variable. These variables are sorted according to the order in which the LMI

variable is defined in step 2. Since only γ is being minimized, the only entry in c that is

nonzero is the one that corresponds to γ, and this entry is equal to 1.

6. Once the minimization is complete, the decision variables must be converted to matrix vari-

ables. This is achieved using the function ’dec2mat’. The relevant LMI variables are E and

V .

7. Compute F (k) = EV −1, and ū(k) according to the feedback law in Eq. 4.11. Apply ū(k) to

Eq. 4.4 to obtain x̄(k+1).

8. Let k = k+1 and repeat steps 1 - 7, using the updated value of x̄s(k) in the LMI definition.

The resulting closed loop response for a(ζ, t) is given in Figure 4.1. As shown by this figure,

the low order feedback control law is able to stabilize the entire high dimensional system after

approximately 60 beats. The corresponding trajectories of v(t),uCa(t) and y(t) are shown in Figures

4.2 - 4.4. For clarity, only one of the bounds is shown for v(t) and y(t). As shown by these three

figures, all constraints are satisfied.

The stabilization is achieved using the combination of boundary and spatially distributed, Ca2+-

based actuators. The inclusion of the Ca2+-based actuator, which is voltage-independent, allows us

to overcome the controllability limitation encountered by previous control efforts which rely solely

on boundary actuation. The inclusion of model uncertainty in the controller design is important,

since the PDE parameter values may vary widely depending on the choice of ionic model. As

shown by Figures 4.3 - 4.4, the variables uCa(t) and y(t) remains well within their constraints.

This suggests that the robust MPC algorithm is still relatively conservative.

It is worth noting that this robust MPC algorithm, along with most of the other existing al-

gorithms, is only able to handle symmetrical constraints. This poses a problem for the boundary

actuation v(t). As mentioned in previous chapters, the boundary actuation is constrained to nega-

tive perturbations only, because the pacing protocol cannot postpone the heart’s natural rhythm,
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Figure 4.1: Stabilization of the amplitude of alternans PDE under robust MPC.
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Figure 4.2: Trajectory of the boundary input v(t). The red dotted line depicts the lower bound on
v(t).
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Figure 4.3: Trajectory of uCa(t). Constraints are shown as red dotted lines
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Figure 4.4: Trajectory of y(t), which is a(ζ, t) measured at ζc = 4.125 cm. The upper bound on
y(t) is shown as a red dotted line.
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which is governed by the sinoatrial node (SAN). As can be seen from Figure 4.2, this constraint is

violated for a short period of time.

4.5 Conclusion

In this chapter, we demonstrated the annihilation of cardiac alternans along a 1D cable of car-

diac cells through the application of a robust model predictive control strategy. The dynamics of

these alternans are described by a parabolic PDE, with parameters obtained from the Fox ionic

model. This PDE was then represented as an infinite-dimensional state space system. A low-order,

stabilizing robust MPC that minimizes the robust performance objective function was developed

based on the discrete-time state space realization of the PDE, with a ±40% uncertainty in the

PDE parameters. Through numerical simulations, it was shown that the low-order robust MPC

can successfully stabilize the entire system, while simultaneously satisfying the input and state con-

straints. In future work, the robust controller’s ability to handle asymmetrical constraints should

be addressed to make sure that the computed control actions will not result in conduction block.

48



Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, the model-based annihilation of cardiac alternans through the combination of a

boundary actuator and a spatially distributed, Ca2+-based actuator is studied. Three different

control strategies were considered, namely optimal full state feedback control, model predictive

control and robust model predictive control. The effectiveness of each control strategy was demon-

strated through numerical simulations.

Through this work, we have shown that by combining the two types of actuation, we can achieve

alternans annihilation in cardiac cables that are 6.25 cm long. This is a significant contribution,

since many previous research efforts that relied solely on boundary actuation could only stabilize

alternans in cardiac cables that are ≈ 1 cm long. Thus, by applying our control strategy, the

controllability limitation that has been encountered by many previous researchers can be overcome.

In Chapter 2, an optimal full state feedback controller was developed for the coupled system

of PDEs. The first PDE describes the dynamics of the APD alternans, while the second PDE

describes the dynamics of the alternations in the peak Ca2+ concentration. In deriving the PDE

parameters, two ionic modes were considered, namely the LR1 model and the Fox model. For

the LR1 model, the coupling between the PDEs was unidirectional (V → Ca2+). On the other

hand, for the Fox model, the coupling was bidirectional. By analyzing the eigenspectra of each

individual PDE, it was revealed that on its own, the Calcium dynamics is stable. As a result, in

the case where the coupling is unidirectional, only the APD alternans need to be stabilized, and

this was achieved through boundary actuation only. On the other hand, in the case where coupling

is bidirectional, both systems need to be stabilized. Although our simulation results for the LR1

model show that alternans annihilation along a 6.25 cm cable can be achieved through boundary

control alone, experimental results have proved otherwise. Therefore, in simulating the control

strategy, it is important to choose an ionic model where the coupling between voltage and calcium
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dynamics are adequately represented.

In working with the cardiac system, one must be careful to not violate constraints that are

naturally present. One such constraint is the fact that the boundary actuator, which represents

a pacing protocol, should not be allowed to delay the heart’s natural rhythm. In other words,

the boundary actuator can only take on negative values. With this in mind, a model predictive

controller (MPC) was developed in Chapter 3. In this chapter, only the amplitude of APD alternans

PDE was considered. Within the MPC framework, constraints can be explicitly accounted for in

the controller formulation. Through simulations, using parameters obtained from the Fox model,

we demonstrated that the low order MPC is able annihilate alternans along the entire cable, while

making sure that input and state constraints are satisfied.

For the same system, a robust MPC was also developed in Chapter 4. Since the PDE parameters

were obtained from an ionic model, their values can vary greatly depending on the choice of ionic

model. Therefore, it is important to find a controller that can still achieve closed loop stabilization

and constraints satisfaction in the presence of model uncertainties. In this approach, the uncertain

models are assumed belong to a polytope, and an LMI-based optimization was performed at each

time step to determine the optimum feedback law. Our simulation results show that although the

controller is relatively conservative, this robust MPC formulation can indeed achieve closed loop

stabilization and constraints satisfaction for the given range of model uncertainties.

5.2 Future work

One natural extension to the work in this thesis is the development of an output feedback controller,

in which measurements of the alternans at discrete points along the cable are used to reconstruct

their profiles along the entire cable. The estimated profile will then be used to compute the control

action. As shown in [22], if an unstable mode is unobservable, feedback control will not be able

to suppress it. Therefore, the number of sensors must be equal to or greater than the number of

unstable modes in the system. For a cable length of 6.25 cm, there are two unstable eigenvalues

(excluding the zero eigenvalue), so at least two sensors are required for a proper observer design.

This is convenient, since the sensors can be placed at either end of the cable. As the number of

unstable eigenvalues increases with the cable length, more sensors will be required for longer cables.

For the Ca2+-based actuator, modulating the intracellular Ca2+ concentration affects the tis-

sue’s mechanical properties. In general, however, [Ca2+] is a weak modulator for the heart’s me-

chanical activities compared to a direct mechanical stimulus. Furthermore, measurements of the

intracellular Ca2+ concentration may not be readily available. Therefore, it will be beneficial to

have a control scheme in which the feedback algorithm applies direct mechanical perturbations to
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the cable. This can be achieved through the three variable Nash-Panfilov model [49].

As mentioned in Chapter 4, the robust MPC formulation here can only handle symmetrical

constraints. In order to strictly enforce the constraint on the boundary actuation, the formulation

will need to be modified such that asymmetrical constraints can also be applied.

Finally, another possible extension of the work presented in this thesis is to apply the control

strategies to two (or three) dimensional cardiac tissues.
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