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Abstract

Most of the forested lands in North America are managed for multiple

objectives and forest management plans are designed in a manner to obtain or

maintain sustainable forest management certification. One strategy for achieving

some of these goals is forest zonation, which allows for different intensities of forest

management (including reserve areas) in different zones of the forest. The focus

of this thesis is the development of a spatially explicit forest estate model which

simultaneously allocates forest land to different management intensity zones and

harvest periods with the goal of satisfying multiple management objectives. The

model was initially developed using mixed integer goal programming. This helped to

identify a basic model structure which was used to guide the development of a genetic

algorithm-based implementation. The development of the model, particularly the

setting of goal weights to describe the decision maker’s preferences is described in

detail.
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Chapter 1

Introduction

Forest management plans are often designed to provide a wide range of

economic, social, and ecological benefits. Drawing upon ideas related to sustainable

forest management and forest zonation, this study develops mathematical program-

ming and heuristic optimization models to solve a spatially explicit harvest planning

problem that has multiple objectives related to sustainable forest management. This

model is developed in several stages. First I formulate a mixed integer programming

model that finds the forest management schedule that maximizes net present value

from a small forested area while satisfying periodic harvest volume and adjacency

constraints. This is model is then reforumulated as a mixed integer goal program-

ming model by recasting the objective function and volume flow constraints as goal

constraints, and changing the objective function to minimize weighted deviations

from the goals. Finally the model is reformulated as a genetic algorithm. This

allows me to include goals that would violate the assumptions of mixed integer pro-

gramming, such as spatial configuration of reserve areas. This introductory chapter

will briefly review the concepts of sustainable forest management and the history of

modelling tools that have been used to help develop sustainable forest management

plans.

1.1 Sustainable Forest Management

The idea of Sustainable Development gained prominence after the release

of the Brundtland Commission Report (Report of the World Commission on Envi-

1



1.1. SUSTAINABLE FOREST MANAGEMENT

ronment and Development: Our Common Future) in 1987 (Brundtland, 1987). In

the report, sustainable development was defined as “. . . development that meets the

needs of the present without compromising the ability of future generations to meet

their own needs.” The concept of sustainable development was applied to forest

management at the United Nations Conference on Environment and Development

(UNCED, 1992) in Rio de Janeiro, resulting in the “Forest Principles”. (UNCED,

1992) applied the concepts of sustainable development to forest management. A

main goal of the Montréal Process (1994) was to develop internationally agreed-

upon criteria and indicators for sustainable forest management (SFM). The twelve

member countries of the Montréal Process, which include Canada, represent 90%

of the area of the world’s temperate and boreal forests and 60% of the world’s to-

tal forest area. In Canada, the criteria and indicators generated by the Montréal

Process have been adopted by the Canadian Council of Forest Ministers’ (CCFM)

as its framework for forest management. This framework was first released in 1995

(CCFM, 1995), and a revised framework was released in 2003 (CCFM, 2003). The

six criteria of sustainable forest management in the revised framework are

1. biological diversity,

2. ecosystem condition and productivity,

3. soil and water,

4. role in global ecological cycles,

5. economic and social benefits, and

6. society’s responsibility.

Sustainable forest management requires consideration of many values (eco-

logical, economic, and social) that are affected by forest management decisions.

1.1.1 Forest Planning Models

The aim of forest planning is to provide support for forestry decision mak-

ing. Each stand in a forest has several different treatment schedules that are possible

alternatives for it, and so each constitutes its own forest planning problem. Forest

2



1.1. SUSTAINABLE FOREST MANAGEMENT

planning can be strategic, tactical or operational in nature. The main idea of strate-

gic planning is to define what is desired from a forest. Tactical planning identifies

how objectives for forest are obtained. Operational planning provides detailed rec-

ommendations for each stand of a forest (Kangas et al., 2008). Forest management

plans are developed to focus on maximizing or minimizing objectives which may

include environmental effects. The strategic level of forest management focuses on

long-term goals (Bettinger and Sessions, 2003).

The large number of variables and constraints of many forest planning

problems can make them difficult to solve. Addressing adjacency constraints is

important for spatial harvest scheduling because it limits the harvesting opening

size, which may be required by forest law or policy. One of the critical components

of spatial forest management modeling is habitat fragmentation, which refers to

the loss or reduction of habitat and the lack of connection between habitats and

natural sources. Forest management planning problems should be examined in terms

of forest values and structures, wildlife habitat, biodiversity, recreation and other

purposes (Shan et al., 2009). Planning problems in forestry must be considered

in terms of environmental issues as well as restrictions and goals. Optimization

models and methods have been applied to solving forest planning problems. The

diversity of decision problems and size of planning tasks have greatly increased. More

information and more restrictions have led to larger models and higher complexity

(Ronnqvist, 2003).

Sustained yield of timber harvest volume as the basis for forest regulation is

probably the original timber sustainability criterion. Sustained yield has been a goal

of forest management for a very long time. There have been several formula based

methods that consider timber inventory and/or growth rates. Computerized models

to determine sustainable timber harvest levels have been in use since the 1960’s.

Early forest planning methods were based on regulated even-aged forests that had

a steady-state structure. The harvest area can be calculated by dividing the total

area by the selected rotation time. The growth is equal to the annual harvest, and it

is the same for each year’s harvest once the forest reaches the regulated stage. The

idea is sustained yield management. Traditional forest planning methods are based

on area control and volume control. The area control method regulates the harvest

area, which, in theory, will lead to a sustained yield of timber harvest volume after

one rotation.

3



1.1. SUSTAINABLE FOREST MANAGEMENT

The volume control technique uses forest growth and age class to decide

the allowable harvest levels (Kangas et al., 2008). There are a number of volume

control formula that have been used to determine sustainable timber harvest levels.

The Austrian formula (Eq. 1.1) assumes that the cut should be equal to

the growth, plus or minus an adjustment factor. The adjustment factor considers

the difference in volumes between desired and actual stand volume (Leuschner et al.,

1990).

Annual Allowable Cut =

(
Vg − Vf

a

)
+ I (1.1)

where Vg is the current growing stock volume and Vf is the desired growing stock

volume of a regulated forest. The arbitrary number of decades used for the growing

stock adjustment period is represented as a.

The Von Mantel formula (Eq. 1.2) estimates allowable harvest levels for

even-aged stands. The assumption of the Von Mantel formula is based on the

inventory volume of regulated forest, growing stock of stand is constant with age.

Annual Allowable Cut =

(
2Vg

R

)
(1.2)

where Vg represents the volume of standing growing stock and R is the rotation age.

The Hanzlik formula (Eq. 1.3) is another method that can be used to

determine harvest volume which ensures that the supply of wood would meet the

demands at the same time. The Hanzlik formulate is used to determine sustained

annual yields while switching virgin forests to normal forests and can be applied at

the stand or forest level for stable harvest volume (Bettinger et al., 2010).

Annual Allowable Cut =

(
Vm

R

)
+ I (1.3)

where Vm represents the volume of mature timber above rotation age. The years in

rotation age can be represented as R and mean annual immature timber is I.

The next development in forest planning was the use of computer models

to determine sustainable timber harvest levels. One of the first computerized forest

planning models was based on the area-volume check method (ARVOL) (Chappelle,

4



1.1. SUSTAINABLE FOREST MANAGEMENT

1966). ARVOL determines the constant annual harvest level that cuts the entire for-

est area exactly one over a rotation period. The Short Run Allowable Cut method

(SORAC) calculates allowable cut using either area or volume regulation at the

beginning of each planning period within a rotation. This program enables a tim-

ber management planner to trace future allowable cut over time, assuming period

recalculation of the allowable cut (Chappelle and Sassaman, 1968). The Simulat-

ing Intensively Managed Allowable Cut program (SIMAC) is a computerized forest

simulation model that estimates the sustainable allowable cut under intensive man-

agement regimes including thinning, mortality salvage, and genetic improvement.

It computes a harvest rate based on present inventory and projected growth (Sas-

saman et al., 1972). It also uses a binary search method to find the maximum

sustainable harvest level. These early computer based models (ARVOL, SORAC,

and SIMAC) focussed on finding a maximum sustained yield of timber considering

forest inventory and growth assumptions.

Beginning in the late 1960s, mathematical programming models of the

forest planning began to appear. These new models allowed for the specification

of alternative objective functions (e.g maximize timber harvest volume, minimize

costs, or maximize net present value) subject to constraints on other outputs of

interest. We begin to see multiple objectives for forest management be explicitly

taken into account in forest planning models. One example of mathematical pro-

gramming within forest planning systems includes the Timber Resource Allocation

Method (RAM) (Navon, 1971). Timber RAM was an early linear programming

model developed to address the question of biological sustainability of a harvest

level on a forest-wide basis. Another example is Max-million (Clutter, 1968) which

was developed for forest products firms and model had merits for timber harvest

and activity scheduling.

The Multiple Use-Sustained Yield Calculation (MUSYC) technique (John-

son and Jones, 1979) was an attempt to improve Timber RAM and provided for

the integration of other forest uses into timber planning. MUSYC then became a

prototype for the development of FORPLAN (Johnson et al., 1986). SPECTRUM

(Greer and Meneghin, 1991) is a graphical user interface version of FORPLAN. Both

are highly flexible modeling programs that incorporate the strata-based information

required for per acre yields as well as an innovative area based formulation required

by recreation, wildlife, water and other environmental outputs needing area-wide

5



1.1. SUSTAINABLE FOREST MANAGEMENT

yields. These areas, also called zones, could receive totally different sets of manage-

ment actions depending on the zones (Von Gadow et al., 2000). Spatial Woodstock

(Remsoft Inc, 2002) is a forest modeling software that deals with management plan-

ning problems such as inventory projections, long-term harvest schedules, land or

silviculture investment queries, biodiversity and, wild-life habitat evaluations. These

systems all take a representation of the forest planning problem and translate it into

a mathematical programming matrix, send the matrix to a mathematical program

solver, and then translate the output of the solver into outputs designed to be eas-

ily interpreted by a forest planner. Linear programming is the most widely used

mathematical programming method in forest resources management.

Recently, there has been an interest in heuristic algorithms that poten-

tially allow for more integer variables and a more flexible relationship than possible

through linear programming and related mathematical programming techniques.

Mathematical programming techniques, including traditional linear programming

(e.g. Weintraub et al., 1995), dynamic programming (e.g. Hoganson and Borges,

1998), Monte Carlo integer programming (e.g. O’Hara et al., 1989), simulated an-

nealing (e.g. Lockwood and Moore, 1993), tabu search (e.g. Murray and Church,

1995), threshold accepting (e.g. Bettinger and Sessions, 2003), and genetic algo-

rithms (e.g. Mullen and Butler, 2000) have all been used for spatial forest planning.

Patchworks (Spatial Planning Systems, 2009) is a commercially available program

that uses heuristic methods to integrate operational-scale decision-making within a

strategic-analysis environment and enables spatially explicit harvest allocations to

be developed over large forest areas and long planning horizons.

Forest zoning is an alternative framework that allocates forest objectives

into separate areas that each have independent management strategies. The aim

of the TRIAD approach is to minimize the negative environmental effects on forest

while maintaining timber production by dividing the forest into three or more broad

land-use zones (Cote et al., 2010). Seymour and Hunter (1992) recommend this

approach for solving conflict between environmental and industrial interests. Forest

zoning limits activities in various zones by establishing values for a forest as well as

objectives, criteria and indicators, and targets to be achieved (Boyland et al., 2004).

The goal of TRIAD zonation approach is to allow timber harvest volumes to be

maintained or possibly increased while simultaneously reducing the impact on the

environment. A policy framework for a coexistence of plantation and reserve areas

6
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could be provided by a TRIAD zoning system. Anderson et al. (2012) used a forest

management scheduling model to estimate how policy impacts the net present value

of the optimal forest plan. Non-harvested areas were assigned in Anderson et al.

(2012) as reserve area. This thesis aims to find a reserve value according to stand

age to decide which areas will be allocated as reserve zones.

1.2 Planning Techniques: Mathematical Programming

Models

The decision-making process in sustainable forest management planning

is complicated because of the multitude of objectives that need to be considered

including protection of ecosystems, the desire for economic development, wood sup-

ply and demand, and habitat preservation (Kaiser et al., 2011). The mathematical

programming models examined here are linear programming and some of its ex-

tensions. A mathematical programming model finds the optimum value (maximum

or minimum) of an objective function which is expressed as a linear function of a

number of decision variables. In most forest planning mathematical programming

models, a large number of the decision variables represent the amount of forested

land of a particular type to be assigned to a particular management prescription,

at a particular time. The model also includes a number of constraints which ensure

that the solution to the model recognizes limitations on resource availability (e.g.

forest land area) and policy goals (e.g. controls on periodic harvest volume).

1.2.1 Linear Programming

A linear programming model of a management problem must satisfy certain

mathematical assumptions, including

1. proportionality. The contribution of each decision variable to the objective

function is proportional to its activity level.

2. additivity. The effects of the decision variables are additive: there are no

interactions among variables.

7
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3. divisibility. The decision variables can take on any non-negative value, in-

cludeing fractions.

4. certainty. All model parameters (the objective function coefficents, constraint

coefficients, and right-hand side constants) are known with certainty.

Together the proportionality and the addtivity assumptions mean that the objective

function and constraints are linear functions. These are strict assumptions, and are

unlikely to be satisfied perfectly in any forest management problems (Buongiorno

and Gilless, 2003). However, these assumptions can be assumed to be a reasonable

approximation of reality in many cases, and useful LP models have been developed.

1.2.2 Mixed Integer Programming

Integer programming techniques have been developed which require the de-

cision variables to take on non-negative integer variables. Many models include both

integer and continuous variables. These mixed models are usually called mixed inte-

ger programming (MIP) models (Bettinger et al., 2010). It is not hard to find forest

manangement problems where the removal of the divisibility assumption would al-

low for a better representation of the problem. For example, many decisions might

be best modeled as binary variables (e.g. harvest stand i in period j or not). In

particular, many spatial forest management problems would lead to a treatment of

a particular stand in a particular time period.

The techniques used to solve an MIP model (e.g. branch-and-bound or the

cutting plane method) can be very time consuming. Because spatially explicit forest

planning models typically contain many integer variables, it may be impractical to

use MIP for realistically sized forest management models.

1.2.3 Goal Programming

A linear programming model must have exactly one objective function.

However, there are methods to accumulate multiple objectives into an objective

function to incorporate multiple goals of the decision maker. When the decision

maker considers multiple objectives, goal programming methods would be useful

(Bettinger et al., 2010). Goal programming is a form of linear programming that

8



1.3. PLANNING TECHNIQUES: HEURISTIC METHODS

could be of value for multiple-use management considerations. Goal programming

is a mathematical procedure to determine of a plan which proposes to minimize sum

of the weighted deviations from goals.

1.3 Planning Techniques: Heuristic Methods

Some spatial forest management problems may be difficult to formulate

as mixed integer programs because the nature of the problem does not satisfy the

assumptions of MIP. In other cases, a reasonable formulation of the problem can be

created, but the solution time required for a mixed integer program might be unac-

ceptably long. In these cases, heuristic optimization methods are worth considering.

Heuristic methods attempt to find a good solution to a problem at a reasonable cost

in terms of computing power. There is no guarantee that the solution from an

heuristic is optimal, but the hope is that it is near-optimal. Heuristic techniques

are becoming popular for developing alternative forest plans that include spatial

constraints. Heuristic methods can be used also for some management planning

problems which have non-linear and/or complex constraints that must be included

simultaneously with the scheduling of management activities (Bettinger et al., 2010).

There are a number of examples of different heuristic methods used for for-

est planning problems including Monte Carlo optimization (e.g. Nelson and Brodie,

1990), simulated annealing (e.g. Murray and Church, 1995), threshold accepting

(e.g. Bettinger et al., 2003), tabu search (e.g. Bettinger et al., 1997) and genetic

algorithms (e.g. Boston and Bettinger, 2002).

1.3.1 Monte Carlo Optimization

Monte Carlo optimization does not guarantee optimality, unlike mixed-

integer programming; however, it is capable of generating feasible solutions to com-

plex problems with a large number of integer variables. The Monte Carlo optimiza-

tion technique consists of generating a random sample of number of feasible solutions

and selecting the best one. The solution returned by a local search after exploring

a neighborhood structure. In other words, a local search is applied repeatedly to

obtain the local optima from the selected neighboring solution. Monte Carlo integer

programming was used by Nelson and Brodie (1990) to solve a combined harvested

9



1.3. PLANNING TECHNIQUES: HEURISTIC METHODS

scheduling and transportation planning problem with adjacency constraints. Monte

Carlo integer programming model in Nelson and Brodie (1990) addressed several

management goals in production harvest schedules with spatial constraints applied

to examine the impact of cut-block sizes and adjacency delays.

Boston and Bettinger (2002) applied Monte Carlo integer programming

model which randomly selects units for harvest, developing a schedule one planning

period at a time, until the volume goal has been met for all periods, or until a

user-specified number of solutions has been examined. Once all units have been

selected, the objective function is calculated, and penalty values for deviations from

the volume goals are applied. If the current solution is better than the best solution,

the current solution replaces the best solution. Another Monte Carlo optimization

model tested by Bettinger and Zhu (2006) which selects harvest schedule from a

list of forest plans physically nearest the original harvest schedules, and the next

best alternative for this plan, that does not result in a constraint violation with the

originally selected forest plan, is chosen and forced into the solution.

1.3.2 Simulated Annealing

Simulated Annealing (SA) simulates the process of physical annealing, in

which a metal is heated and then allowed to cool very slowly. SA is used to explore

the solution space of a problem and allows for escapes from local optima in order

to find a global optimum (Henderson et al., 2003). Simulated Annealing (SA) has

been used in many forestry applications.

Lockwood and Moore (1993) developed a simulated annealing method for

a harvest schedule problem because the size of the forest area is both far larger than

could be handled by integer programming approaches. at the time.

The simulated annealing algorithm designed and illustrated by Boston and

Bettinger (1999) to solve the harvest-scheduling problem is similar to Lockwood and

Moore (1993). By adding more constraints to the problem tends to slow down the

progress of the search. When a problem restricted with lots of constraints, feasible

solutions are hard to find through a permutation operation, then penalty functions

are needed for the heuristic to diversify its search (Crowe and Nelson, 2005).

10
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1.3.3 Tabu Search

An alternative meta-heuristic approach to simulated annealing is tabu

search. Unlike other heuristics, there is no random aspect within a general tabu

search algorithm. Tabu search is designed to deal with local optimality in a more

orderly fashion than simulated annealing.

Tabu search evaluates the potential changes to the plan and choose the

best choice from the set. The short-term and long-term strategies help the process

to search the solution space for better solutions by avoiding unproductive movement

cycle. Defining the neighborhood, intensification, and diversification are the three

main important elements of the tabu search (Murray and Church, 1995). Objective

function or constraints are not require linearity, continuity or convexity. The tabu

search method was applied and evaluated in Richards and Gunn (2003) to solve

spatial forest planning and road access problem with spatial constraints.

1.3.4 Genetic Algorithms

Genetic algorithms (GA) were developed by Holland (1975) to formally

study the phenomenon of adaptation as it occurs in nature and to develop ways

in which the mechanisms of natural adaptation might be imported into computer

systems (Mitchell, 1999). The search process of genetic algorithms is not based

on neighborhood search as in simulated annealing or tabu search. The alternative

solutions are called parent chromosomes, which are processed by crossing over (com-

bining parts of two or more chromosomes) and by mutation (random change in one

or several genes, or compartments).

The simple form of genetic algorithm involves three types of operators:

selection, crossover, and mutation.

Selection selects chromosomes in the population for reproduction. The

fitter the member, the more times it is likely to be selected to reproduce. After

randomly generated population, fitness of each chromosome/individual in the pop-

ulation is calculated by using fitness function. Two parents are randomly selected

from the population with the probabilities proportional to their fitness value. Each

generation is the updated group of individual members which are replaced with ini-

tial population (Pukkala and Kurttila, 2005). Once the fitness has been calculated

11
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for all members of the population, members can be selected which are fit to be-

come parents and place them in a mating pool (Shiffman et al., 2012). Crossover

randomly chooses and exchanges the sequences so that two member create two off-

spring. For example, the strings 10000100 and 11111111 could be crossed after the

third locus in each to produce the two offspring 10011111 and 11100100. Mutation

randomly flips some of the bits in a gene. For example, the string 00000100 might

be mutated in its second position to yield 01000100. Mutation can occur at each

bit position in a string with some probability, usually very small (e.g., 0.001). The

function will produce a numeric score to describe the fitness of a given member of

population (Shiffman et al., 2012).

1.4 Conclusion

The objective of the thesis is to develop a method to solve a multiple-

objective spatial explicit optimization problem using a gentic algorithm. In this

thesis, I will focus on forest management planning from the perspective of spatial

restrictions imposed by environmental concerns. The aim is to develop a model that

will simultaneous zone the forest into harvest and reserve areas, and to select the

period of harvest for the harvest areas. I explore genetic algorithms in this thesis

because I believe they are under-represented in the forestry literature.

In chapter 2 of this thesis, I develop a representation of the forest planning

problem as a mixed integer goal programming (MIGP) model. I use this model to

help develop the structure of the fitness function to be used in the genetic algorithm

model and to help set the target levels for goals.

In chapter 3, I present the genetic algorithm and use it to develop and

to help set target levels for the different goals including net present value, harvest

levels, adjacency violations, reserve quality, and a measure of the proximity of the

stands that make up the reserve area. I explore mechanism for setting goal weights,

and explore impacts of alternative parameters setting such as number of generations,

population size, and mutation rates.

My hope is to develop an understanding of how genetic algorithm might

work in a harvest scheduling problem and to create a prototype model that can be

used as the basis for a real forest management problems.
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The fourth and final chapter will present some overall conclusions and

suggestions for further work.
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Chapter 2

Mixed Integer Programming Model

Formulation and Solution

2.1 Introduction

Mathematical programming models have been used for forest planning since

the 1960’s. Examples of mathematical programming forest planning systems include

Max-million (Clutter, 1968), Timber RAM (Navon, 1971), MUSYC (Johnson and

Jones, 1979), FORPLAN (Johnson et al., 1986), SPECTRUM (Greer and Meneghin,

1991), and Spatial Woodstock (Remsoft Inc, 2002). Linear programming is the most

widely used mathematical programming method in forest resources management.

One reason for this is the computational efficiency of linear programming. Another

is the long history of linear programming based on forest management planning,

which provides a strong foundation for the development of new software. It is also

straightforward to incorporate growth and yield projections from practically any

stand projection model.

Mathematical programming problems in forest management deal with de-

termining optimal allocations of limited resources to reach given objectives by max-

imizing or minimizing a numeric function of a number of variables (Dykstra, 1984).

The objective function in a linear programming model calculates a value for the

main goal (e.g. total harvest volume or net present value) of a decision problem

based on values assigned to decision variables. In forest planning models, decision
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variables are often used to represent the area of individual stands (or aggregates of

stands) scheduled for a particular management action in a particular time period.

Constraints restrict solutions to problems by limiting the choices for the decision

variables (Bettinger et al., 2010).

Linear programming offers an optimal solution to a forest management

problem that meets specific assumptions. The proportionality assumption means

that each decision variable in the objective function must be a constant coefficient.

The additivity assumption implies that the contribution of the objective function for

any variable is independent of the other decision variables. Divisibility means that

the variables can take on fractional values. A linear programming model assumes

that the parameters in the model are known constants (Buongiorno and Gilless,

2003). A linear programming model is helpful for illustrating the economic rela-

tionships among rotation length, period for harvesting, and net present value of the

forest (Steuer and Schuler, 1978). Linear programming does have limitations, how-

ever; not all decisions can be adequately represented by continuous variables. The

divisibility assumption of linear programming limits variables because all decision

variables must be able to take fractional levels. Many constraints and objective func-

tions may be better represented by non-linear functions. Linear programming often

suggests harvest of parts of stands or stand aggregates. In some forest management

problems, particularly those for which spatial relationships need to be considered, it

may be desirable to treat the entire stand or aggregate. I build several models, linear

programming, mixed integer programming, and mixed integer goal programming to

solve the harvest scheduling problem for a small forest.

2.2 Linear Programming Modeling Formulation

Harvest scheduling is the decision making process that specifies where to

harvest, when to harvest and how much to harvest over a planning horizon to best

achieve some predefined set objective. The harvest scheduling problem solved using

linear programming in this study maximizes net present value. The linear pro-

gramming optimization model in this study is formulated and solved using GUSEK

(2013). GUSEK is a Microsoft Windows based integrated development environment

for the GNU Linear Programming Kit (http://www.gnu.org/software/glpk/).

See appendix A for the GUSEK code for the models developed here. This code
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is also available at the University of Alberta Education and Research Archive at

http://hdl.handle.net/10402/era.38715.

The decision variables (Eq. 2.2), Xij, represent the proportional area of

stand i assigned for particular action in period j. The decision variables are re-

stricted between 0 or 1 in this study. The variables in a linear program are a set of

quantities that need to be determined in order to solve the problem. The decision

variables represent the amount of a resource to use or the level of some activity. To-

tal coniferous and deciduous harvest volume in each period of the planning horizon

are represented in the model as accounting variables, Hcv
j and Hdv

j .

The parameter ai represents the area (ha) of stand i. The parameters

vcij and vdij are the coniferous and deciduous harvest volumes (m3/ha) that would

be obtained from a harvested stand i in period j. The price parameters, pc and

pd, ($/m3) are the prices paid for coniferous and deciduous harvests. I represents

the discount rate, mj is the midpoint of the harvest period. The present value of

revenue for stand i harvested in period j is represented PRc
ij for conifer trees (Eq.

2.3) and PRd
ij for deciduous trees (Eq. 2.4). This value is calculated according to

all revenue and costs accrued at the midpoint of a five-year planning period. The

present value of cost parameter PChv
ij is the discounted harvest cost. h represents

the cost of harvesting ($/ha) in the equation Eq. 2.5. The total discounted haul cost

(Eq. 2.6) is calculated by multiplying a stand’s distance from the mill, haul cost, k

($/m3/km), area and harvest volume of each species. The distances between stand i

and sawmill are represented in matrix as dis and the distances between stand i and

pulp mill is dip. The parameter shows the distances from centroid of each stand to

each of two mills (softwood sawmill and hardwood pulp mill) which is calculated by

using ArcGIS. The other parameter for net present value coefficient is calculated as

total revenue minus total cost (Eq. 2.7).

The resource constraint that developed for this problem indicates that the

sum of the proportional area assigned for harvesting over a given time period should

not exceed the total area. In other words, the total proportion of the area harvested

from the stand over the planning horizon should not exceed 1 (Eq. 2.8).

Equation 2.9 was used to calculate total coniferous and deciduous harvest

volumes, Hcv
j and Hdv

j , in each period of the planning horizon to satisfy accounting

constraints.
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Equation 2.10 represents even-flow policy constraints which ensure that

coniferous and deciduous harvest volumes in each time period are equal to the

previous period’s volume.

The form of the objective function is as follows:

maxZ =
N∑
i=1

T∑
j=1

PFijXij (2.1)

where Z is the net present value for i = 1,...,N.

The decision variables are represented as:

0 ≤ Xij ≤ 1 (2.2)

The present value of revenue for conifer harvest volume is calculated as in

equation 2.3 :

PRc
ij =

vcijaipc

(1 + I)mj
∀ i = 1, ..., N ;

j = 1, ..., T

(2.3)

The present value of revenue for deciduous harvest volume is calculated as

in equation 2.4 :

PRd
ij =

vdijaipd

(1 + I)mj
∀ i = 1, ..., N ;

j = 1, ..., T

(2.4)

The present value of harvesting cost, PChv
ij , and haul cost are calculated,

PChl
ij , in equation 2.5 and 2.6 as follows:

PChv
ij =

aih

(1 + I)mj
∀ i = 1, ..., N ;

j = 1, ..., T

(2.5)

PChl
ij =

vcijaidisk + vdijaidipk

(1 + I)mj
∀ i = 1, ..., N ;

j = 1, ..., T

(2.6)
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PF = PRc
ij + PRd

ij − PChv
ij − PChl

ij ∀ i = 1, ..., N ;

j = 1, ..., T
(2.7)

The resource constraint is calculated as follows:

T∑
j=1

Xij ≤ 1 ∀ i = 1, ..., N (2.8)

The accounting constraints are calculated as follows:

N∑
i=1

vcijXijaj −Hcv
j = 0 ∀ j = 1, ..., T

N∑
i=1

vdijXijaj −Hdv
j = 0

(2.9)

The policy constraints are calculated as follows:

(Hcv
j )− (Hcv

j−1) = 0 ∀ j = 2, ..., T

(Hdv
j )− (Hdv

j−1) = 0 ∀ j = 2, ..., T
(2.10)

The non-negativity constraints represented in Eq. 2.11 ensure that all of

the decision variables in the model take non-negative values.

Xij , H
cv
j , Hcv

j ≥ 0 ∀ i = 1, ..., N ;

j = 1, ..., T
(2.11)

2.3 Mixed Integer Programming Modeling Formulation

When the values of some of the decision variables can take only integer

values (either general integers or binary) instead of continuous values, mixed in-

teger programming may be an appropriate technique to solve forest management

problems. The optimization model in this study is formulated and solved by using a

mixed integer programming (MIP) method that is programmed in GUSEK (2013).

See appendix B for the GUSEK code. This code is also available at the University

of Alberta Education and Research Archive at http://hdl.handle.net/10402/
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era.38715. In this section, I developed a mixed integer formulation of the forest-

planning problem that includes number of stands, N, and number of periods, T. The

model includes adjacency constraint, and even-flow constraints are converted to se-

quential flow constraints that restrict harvest volume to within 5 % of the previous

period’s harvest volume. The even flow constraints are converted to the sequential

flow constraints because when whole stand is harvested, the same amount of harvest

volume in each time period is difficult to achieve.

The binary decision variables, Xij, indicate whether or not stand i is har-

vested in period j. Unlike in the linear programming model, decision variables are

binary in the mixed integer programming model. If Xij=1, stand i is harvested in

period j, if Xij=0, stand i is not harvested in period j. In a linear programming

model, Xij=1 would represent the proportion of the area of stand i harvested in

period j. Total coniferous and deciduous harvest volumes calculation in each period

of the planning horizon are similar to the linear programming that are represented

here as accounting variables, Hcv
j and Hdv

j (Eq. 2.9).

The present value of revenue and costs for conifer and deciduous harvest

volume calculation are similar to the one that applied in linear programming model.

Equation 2.14 represents sequential flow policy constraints that resume

coniferous and deciduous harvest volume in each time period within 5 % of the

previous period’s volume. Without sequential flow constraints the model would

harvest most of the harvest volume in the first period to maximize net present

value. The future forest condition, while dependent on many factors, is strongly

influenced by harvest patterns, intensity and schedules. It spatially and temporally

presents how the integration of environmental, economic, and social values will be

achieved. Determining the planned harvest sequence is imperative to achieving the

predicted future forest; thus, 5% sequential flow constraints are included in the

model (ESRD, 2012).

The adjacency constraint limits the opening size, which is often required

for forest planning. Moreover, adjacency constraint will help to predict natural

regeneration such as seeding-in from adjacent stands through wind, birds, or animals

(ESRD, 2012). The adjacency constraint (Eq. 2.15) ensures that if stand i is also

harvested in period j, none of the stands adjacent to stand i is harvested in period j.

The adjacency matrix is output by ArcGIS as two columns. Each line in the output

file represents a pair of stands that share at least one point. There are two records
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in the adjacency file for each matching pair units are indicating that the first stand i

is adjacent to the second, and the other represents that the second stand is adjacent

to the first. Duplication of adjacent stands was removed. If stands are adjacent, it

is assigned as 1, otherwise 0. The mixed integer programming model needs stands

if they are adjacent; thus, stands assigned 0 are removed from the table.

The model is designed to choose levels of the decision variables that max-

imize net present value while satisfying all of the constraints. The system used in

this section consists of a mixed integer programming model focused on a timber har-

vesting problem in four time periods. The objective function (Eq. 2.12) is designed

to maximize net present value of the forest plan.

The form of the objective function is as follows:

maxZ =
N∑
i=1

T∑
j=1

PFijXij (2.12)

where Z is the net present value for i = 1,...,N. The coefficient of net present value

is a calculated parameter in the model that is represented in Equation 2.7.

The resource constraint is calculated as follows:

T∑
j=1

Xij ≤ 1 ∀ i = 1, ..., N (2.13)

The policy constraints are calculated as follows:

(Hcv
j )− 0.95(Hcv

j−1) ≥ 0 ∀ j = 2, ..., T

(Hcv
j )− 1.05(Hcv

j−1) ≤ 0

(Hdv
j )− 0.95(Hdv

j−1) ≥ 0 ∀ j = 2, ..., T

(Hdv
j )− 1.05(Hdv

j−1) ≤ 0

(2.14)

The adjacency constraint is calculated as follows:

N∑
k

adjikXkj ≤ 1, ∀ j = 1, ..., T

∀ i = 1, ..., N

(2.15)
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2.4 Goal Programming Model Formulation

Another extension to linear programming is goal programming. The goal

programming model states the optimization problem as minimizing the aggregate

sum of the individual positive and negative weighted deviations from specific goals

(Field, 1973). The input data and code of the model are in the appendix C and

University of Alberta Education and Research Archive (http://hdl.handle.net/

10402/era.38715) The goal programming model in this study is based on a mixed

integer programming model, focuses on the problem of determining an optimal al-

location of scarce resources to meet a given set of multiple objectives, and seeks a

plan that comes as close as possible to attaining specified goals. Goal programming

models use different weights to attain target values by minimizing the deviations.

The significant difference between goal programming and mixed integer program-

ming is that a solution to MIP requires the fulfillment of constraints; however, these

constraints are set as goals in goal programming models (Bettinger et al., 2010).

Many constraints in a standard linear programming or mixed integer programming

model represent management goals of the decision maker. This is done because

mathematical programming requires exactly one objective function. Another way

of formulating the decision problem would be to use the objective function to repre-

sent deviations from specified targets for the management goals. This formulation

is called goal programming.

Non-preemptive goal programming provides a way of striving toward mul-

tiple objectives simultaneously. The basic approach is to establish a specific target

value for each of the objectives and then to seek a solution that gives a good balance

towards achieving each of these goals. Penalty weights are assigned to the objec-

tives to measure the relative seriousness of missing their numeric goals (Sherali and

Soyster, 1983).

The main advantage of goal programming is its computational efficiency,

provided that the target values are known. A goal programming model would be

inefficient if target values were set wrong, making a feasible region difficult to ap-

proach. In other words, the main disadvantage of goal programming is difficulty of

setting penalty weights, objectively. Another advantage of multiple goal program-

ming is that it does not require a very sophisticated solution procedures. Especially

the linear goal programming problems can be solved by easily available linear pro-
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2.4. GOAL PROGRAMMING MODEL FORMULATION

gramming routines (Field et al., 1980).

The binary decision variables, Xij, represent whether stand i is harvested

in period j or not. Stand i is harvested in period j if the decision variable Xij=1.

If Xij=0, stand i is not harvested in period j. The total coniferous and deciduous

harvest volumes in each period of the planning horizon in the model are represented

as accounting variables, Hcv
j and Hdv

j (Eq. 2.9). The resource constraint formula-

tion is represented in Equation 2.13 and accounting constraints are calculated as in

Equation 2.9. Net present value is included in the model as an accounting variable

(Eq. 2.17). The mixed integer goal programming model has goal variables that are

the deviations of each goal and have to be non-negative in the model.

The present value of revenue and costs for conifer and deciduous harvest

volume calculation are similar to the one that applied in linear programming model.

The policy constraints represent secondary goals of the decision makers

and the primary goals are in the objective function. In the mixed integer goal

programming model, instead of policy constraints, they are converted to the goal

constraints. However, the adjacency constraint is placed in the model as a constraint

instead of a target which is a same formulation of the one used in mixed integer

programming model.

Equation 2.18 represents an example of goal constraints that shows how

negative and positive deviations of goals are calculated in the model.

The objective function of the mixed integer goal programming (Eq. 2.16) is

minimized the weighted deviations among the harvest levels and net present value.

Each target can be weighted in the objective function, which represents the relative

importance to this decision makers.

The objective function is calculated in equation 2.16 and each parameters

and variables are described in Table 2.1 and each variable is in Table 2.2.

minZ =
( T∑

j=1

uhcwjPHCj + ohcwjNHCj + uhdwjPHDj + ohdwjNHDj

)

+ unwPN + onwNN

(2.16)
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Table 2.1: The description of parameters in objective function

Parameters Description

uhcwj Under-achievement penalty weight for conifer harv. vol. in period j

ohcwj Over-achievement penalty weight for conifer harv. vol. in period j

uhdwj Under-achievement penalty weight for deciduous harv. vol. in period j

ohdwj Over-achievement penalty weight for deciduous harv. vol. in period j

unw Under-achievement penalty weight for net present value

onw Over-achievement penalty weight for net present value

Table 2.2: The description of variables in objective function

Variables Description

NHCj Negative deviation of conifer harvest volume in period j

PHCj Positive deviation of conifer harvest volume in period j

NHDj Negative deviation of deciduous harvest volume in period j

PHDj Positive deviation of deciduous harvest volume in period j

NN Negative deviation of net present value

PN Positive deviation of net present value

The net present value as an accounting constraint is calculated as follows:

T∑
j=1

N∑
i=1

PFijXij − npv = 0 (2.17)

The mixed integer goal programming model has goal constraints that con-

tain goal variables. The goal variables measure the deviations between management

objective levels. The goal variables fill the gap between the goal and what is ac-

tually achieved (Buongiorno and Gilless, 2003). Equation 2.18 represents the goal

constraint of the net present value which is an example of how negative and positive

deviations of goals are calculated in the model.

npv − PN +NN = npvgoal (2.18)
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2.5. MODEL APPLICATION

The harvest volume goal constraint:

Hcv
j − PHCj +NHCj = cgoalj ∀ j = 1, ..., T (2.19)

The conifer volume goal constraint:

Hdv
j − PHDj +NHDj = dgoalj ∀ j = 1, ..., T (2.20)

PN and NN represent positive and negative deviation of net present value,

respectively. npv is the net present value calculation of harvest schedule and npvgoal

is the goal of net present value that the model tries to reach. cgoal (Eq. 2.19) and

dgoal (Eq. 2.20) are the target values for coniferous and deciduous harvest volumes

for each time period.

Xij , H
cv
j , Hcv

j , PN,NN,PHCj , NHCj , PHDj , NHDj ≥ 0 ∀ i = 1, ..., N

∀ j = 1, ..., T

(2.21)

The non-negativity constraints represented in equation 2.21 ensure that all

of the variables in the model take non-negative values.

2.5 Model Application

Mixed integer programming and goal programming models were applied to

a small area of forest, Canada which occupies roughly 1,725 ha, located in Alberta,

Canada. The study area is covered mostly by deciduous species. The dominant hard-

wood species include trembling aspen (Populus tremuloides), balsam poplar (Pop-

ulus balsamifera) and white birch (Betula papyrifera) while conifer species include

black spruce (Picea mariana), jack pine (Pinus banksiana), white spruce (Picea

glauca) and tamarack (Larix laricina). Table 2.3 shows the distribution of the cover

type of the species in hectares. The mixed integer programming model developed in

this study was intended to represent a timber harvesting schedule to provide wood
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flow and maximum net present value. The goal programming model was applied to

minimize the weighted deviations of the multiple objectives.

Table 2.3: Broad Cover Type Distribution

Broad Cover Type Area (ha)

Conifer 417.90
Conifer - Deciduous 11.96
Deciduous 891.50
Deciduous - Conifer 29.14
Non-Forest Area 374.77

Two processing facilities, a sawmill and a pulp mill, are represented. The

harvest level was determined for a selected harvest schedule. Linear programming of

the timber harvest schedule model was used to determine the maximum net present

value. Harvested areas were assumed to be replanted immediately after harvesting

occurs. Different factors might limit the supply of timber in distinct timber supply

areas. For instance, the productivity of the land may be the determining factor

in one area, while the age of existing stands may be important in another. Thus,

specific management activities, such as harvesting, maintenance, etc., may influence

the short or long-term timber supply more in some areas than in others. The age

distribution of the study area is shown in Table 2.4.

In this study, yield curve was not used to estimate forest growth; thus,

the tables (see appendix A) show stand volume (m3/ha) was considered constant

over all time periods. The minimum duration, or length, of harvest schedule plan

is shorter than in a classic forest management plan. The length of 20 years was

adopted to create a harvest schedule for four five-year periods.

2.6 Results and Discussion

2.6.1 Linear Programming Model

The objective function, maximizing net present value, is calculated by the

differences between discounted cost and revenue. Cost value included haul cost
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Table 2.4: Age Distribution

Age (years) Area (ha)

50 4.48
60 15.89
65 61.48
70 453.19
80 14.87
85 255.05
90 247.26
100 3.91
105 107.19
110 173.30
120 12.416
130 1.44

($0.0273/m3/km) and harvesting cost ($3000/ha). Revenue values came from the

determined timber harvest schedule with the timber mill-gate price for both conifer

and deciduous species which is $100/m3. The maximum net present value obtained

from linear programming was $11.098 million. When the model ran with even-

flow constraints, the conifer harvest volume was 21,276 m3 for each time period,

and 31,519 m3 for deciduous harvest volume for each time period. The even-flow

constraints were converted to the sequential flow constraints, resulting in net present

value of $11.3 million. Conifer harvest volume distributions for the successive time

periods were 22,940 m3, 21,793 m3, 20,703 m3, and 19,668 m3. The deciduous

harvest volume in each time periods were 33,983 m3, 32,284 m3, 30,670 m3, and

29,137 m3. The harvest schedule plan resulting from linear programming with even-

flow constraints is representing in Figure 2.1.

2.6.2 Mixed Integer Programming Model

Maximum net present value was $8.6 million with adjacency constraints.

Using mixed integer programming, the conifer harvest volume of each period was

17,399 m3, 16,541 m3, 15,714 m3, and 14,937 m3, and deciduous harvest volume

was 23,448 m3, 24,575 m3, 24,604 m3, and 25,823 m3, respectively. The sequential

flow constraints in the model were satisfied with 5% wood flow between each time
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Figure 2.1: Harvest schedule map produced by LP model
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period. The model also was run without adjacency constraint being considered. The

net present value in that situation was $ 11.3 million. The sequential wood flow for

coniferous harvest volumes in successive time periods were 22,952 m3, 21,808 m3,

20,720 m3, and 19,689 m3 and 33,991 m3, 32,297 m3, 30,685 m3, and 29,153 m3 for

deciduous harvest volumes. The results for the mixed integer programming model

found an optimal feasible solution by satisfying sequential flow, resource, accounting

and adjacency constraints. Figure 2.2 shows the harvest schedule map resulting from

mixed integer programming model.

2.6.3 Goal Programming Model

The objective function in the goal programming model is to minimize the

sum of weighted deviations from goals. The goal programming model includes three

objectives for each time period: maximum net present value, target volumes of

softwood harvest and target volumes of hardwood harvest. The net present value

goal was set to $20 x 106 to challenge the goal programming model to reach as high

as profit. The harvest volume goals for both conifer and deciduous species were

adjusted for the model which are also obtained from the mixed integer programming

model. The target value for the coniferous harvest was set 15,000 m3 harvest volume

was assigned. The deciduous harvest volume goal was set at 25,000 m3 for each time

period. Different priorities affect goal achievements such as giving top priority to net

present value and harvest volumes. The goal programming model penalized those

goals when weights were set (Table 2.5). The weights of objectives are determined

according to the idea of relative penalty weight (Gass, 1987). The under-achievement

penalty weight of net present value was penalized at 1 penalty unit (pu). The

over-achievement and under-achievement penalty weights of conifer harvest volume

in period one through four were assigned as 1333 pu which is relative to the net

present value target (20x106 : 1.5x104). The same method was applied to set

deciduous harvest volume penalty weights (20x106 : 1.5x104). The model could find

estimated results for each of the goals separately if other goal weights are assigned

0. However, even though the goal programming model produced a feasible solution,

solution procedure took a long time and was not improved by solving with GUSEK

which ran out of virtual memory to complete the optimization problem. Another

optimization problem solver, Gurobi Optimization (2014), was used to solve the

mixed integer goal programming model. The best objective function of the goal
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Figure 2.2: Harvest schedule map produced by MIP model
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programming model was 1.138 x 107, which has 8 continuous, 924 integer variables.

The time limit was set to two hours to find a feasible solution, and the model was

satisfied with a 0.54% gap. It does not guarantee the optimal solution but does

guarantee that the result within 0.54 % of the optimal one. The resulting conifer

harvest volumes for each time period were 17,640 m3, 14,486 m3, 15,000 m3, and

15,045 m3 while the deciduous harvest volumes were 24,788 m3, 25,000 m3, 25,000

m3, and 24,911 m3, respectively.

Both the mixed integer model and the mixed integer goal model satisfied

the adjacency constraints; however, solution time for goal programming as longer

than for mixed integer programming. The net present value was $8.618 x 106 which is

close to the result of the mixed integer goal programming model. Table 2.6 represents

the summary results of the goal programming model. The harvest schedule of the

goal programming model is represented in the Figure 2.3. The goal programming

model resulted in up an acceptable solution.

The results of three different models with different constraints are compared

and represented in Table 2.7. In developing the linear programming model, the

adjacency constraints were omitted. The extensions to the other linear programming

approaches examined here incorporate the adjacency constraint. When the linear

programming model incorporates sequential flow instead of even flow and decision

variables are not binary, the net present value and harvest volume for coniferous and

deciduous trees in each time period are close to the results derived from the mixed

integer programming model without adjacency constraint. Adjacency constraint

plays a big role in the model, which impacts net present value and harvest volume

in each time period. As shown in Table 2.7, harvest volume of the first period is

higher than in other periods because the model maximizes net present value.
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2.6. RESULTS AND DISCUSSION

Table 2.5: Penalty weights for objective function of the goal programming
model

Goals Under-achievement Over-achievement

NPV 20x106 1 0

Con. Harv. Vol 1.5x104 1333 1333

Dec. Harv. Vol 2.5x104 800 800

Table 2.6: Summary table for goal programming model when all goals are
penalized

Penalty 1.14 x 107

Net Present Value ($) 8.62x 106

Harvest Volume of Coniferous (m3)

Period 1 1.76 x 104

Period 2 1.45 x 104

Period 3 1.50 x 104

Period 4 1.50 x 104

Total Volume 6.21 x 104

Harvest Volume of Deciduous (m3)

Period 1 2.48 x 104

Period 2 2.50 x 104

Period 3 2.50 x 104

Period 4 2.49 x 104

Total Volume 9.97 x 104
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Figure 2.3: Harvest schedule map produced by goal programming model
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2.7. CONCLUSION

2.7 Conclusion

The optimization modeling system in this chapter is composed of a lin-

ear programming, mixed integer programming and mixed integer goal programming

timber supply model, used to determine optimal harvest schedules. Both exten-

sions of linear programming were used in this chapter to provide information and

guidance for the genetic algorithm model that is developed and applied in the next

chapter. The linear programming models are easy to apply, providing immediate

advantages for short and long-term planning periods compared to the empirical

methods traditionally used in harvest planning.

In the next chapter, the mixed integer goal programming model is recast as

a genetic algorithm model to allocate forest zones (harvesting and reserve zone) and

includes some other constraints and complex targets that are difficult to formulate

in a mixed integer programming framework.

39



BIBLIOGRAPHY

Bibliography

Bettinger, P., Boston, K., Siry, J., Grebner, D. L., 2010. Forest Management and

Planning. Academic Press, San Diego, CA.

Buongiorno, J., Gilless, J. K., 2003. Decision Methods for Forest Resource Manager-

ment. Academic Press, New York.

Clutter, J. L., 1968. Max-million: a computerized forest management planning

system. The University of Georgia. School of Forest Resources. Biometrics-

Operations Research Section.

Dykstra, D., 1984. Mathematical programming for natural resource management.

McGraw-Hill Series in Forest Resources. McGraw-Hill, New York. 318p.

ESRD, 2012. Alberta timber harvest planning and operating ground rules

framework. Alberta Environment and Sustainable Resource Develop-

ment. Available at: http://esrd.alberta.ca/lands-forests/forest-management

/documents/TimberHarvest-OperatingGroundRules-Jun2012.pdf. [Accessed

2014-04-21].

Field, D. B., 1973. Goal programming for forest management. Forest Sci. 19 (2),

125–135.

Field, R. C., Dress, P. E., Fortson, J. C., 1980. Complementary linear and goal

programming procedures for timber harvest scheduling. Forest Science 26 (1),

121–133.

Gass, S. I., 1987. The setting of weights in linear goal-programming problems. Com-

puters & operations research 14 (3), 227–229.

40



BIBLIOGRAPHY

Greer, K., Meneghin, B., 1991. Spectrum: An analytical tool for building natu-

ral resource management models. US Department of Agriculture Forest Service

General Technical Report, 174–178.

Gurobi Optimization, I., 2014. Gurobi optimizer reference manual. Available at:

http://www.gurobi.com.

GUSEK, 2013. GLPK Under Scite Extended Kit version 0.2.14. Luiz Bettoni.

Boston, USA.

Johnson, K., Jones, D., 1979. A users guide to multiple use sustained yield resource

scheduling calculation (MUSYC). Washington, DC: USDA. Forest Service, Tim-

ber Management Staff. 242p.

Johnson, K. N., Stuart, T. W., Crim, S. A., 1986. Forplan version 2: An overview.

Washington: USDA Forest Service.

Navon, D. I., 1971. Timber RAM A long-range planning method for commercial

timber lands under multiple-use management. U.S. Pacific Southwest Forest and

Range Experiment Station. USDA Forest Service research paper PSW-70 Berke-

ley, Calif.

Remsoft Inc, 2002. Spatial Woodstock users guide. Frederiction, Canada.

Sherali, H., Soyster, A., 1983. Preemptive and nonpreemptive multi-objective pro-

gramming: Relationship and counterexamples. Journal of Optimization Theory

and Applications 39 (2), 173–186.

Steuer, R., Schuler, A., 1978. An interactive multiple-objective linear programming

approach to a problem in forest management. Operations Research 26 (2), 254–

269.

41



Chapter 3

Genetic Algorithm Model Formulation

and Solution

3.1 Introduction

This chapter describes the genetic algorithm model developed for this the-

sis. The modeling system section will address the methods of problem formulation

for a forest planning model. The forest planning problem investigated here attempts

to find a near optimal solution using the genetic algorithm technique. In this chap-

ter, the formulation of the genetic algorithm is an extension of the decision problem

presented in chapter 2. Unlike the goal programming and mixed integer program-

ming models, the genetic algorithm model is able to count adjacency violations to

allow a few stands to be harvested in the same period and to aggregate reserve

stands for the purpose of a creating a reserve area comprised of stands close to each

other. The solution to this problem will be provided by the model that produces the

harvest schedule with the lowest penalty values across all generations. The forest

management problem in this study considers twelve goals:

1) Maximize present value ($),

2−5) Reach target softwood harvest volumes in each of periods 1-4 (m3),

6−9) Reach target hardwood harvest volumes in each of periods 1-4 (m3),
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3.2. MODELING SYSTEM

10) Minimize number of adjacency restriction violations,

11) Minimize the minimum spanning tree distance between reserve stands (m),

and

12) Reach target value for quality weighted reserve area.

Essentially, the decision maker desires to obtain maximum net present value

while reaching stable target value for conifer and deciduous harvest volume in period

1 through 4, with few adjacency violation, and a created a high quality reserve area

made up of stands close to each other.

3.2 Modeling System

A genetic algorithm provides a heuristic optimization method based on

the mechanisms of natural selection and evolution. The genetic algorithm operates

with a population of possible solutions. Each member in the population represents

a harvest schedule. The initial population of solutions is generated randomly and

subsequently subjected to simulated genetic evolution over a number of generations.

The objective function tries to satisfy multiple conditions and calculates a penalty

value for each member in all generations.

Three genetic operators are used in genetic algorithms to generate diversity.

Selection is an operator that selects parents to breed to produce the next generation.

The probability of a randomly selected individual being selected as a breeder is

proportional to its fitness value. The fitness value is measured in relation to the

penalty function value in the optimization problem. Individuals with high fitness

are more likely to be selected as breeders and the idea is that two parents with high

fitness will likely produce a fit child (Shiffman et al., 2012). Following selection,

the crossover operator combines two breeders to produce new members. Crossover

simulates recombination and allows the children so bred to have a mix of each

parent’s genes. Mutation is a random alteration of genes in children resulting from

a crossover. In this study, all individuals represent a harvesting plan and each gene

is a harvesting period (0-4). The mutation probability is usually very small; thus,

only a tiny portion of genes mutate. Mutation helps in escaping regions of local

optima (Fotakis et al., 2012). The child with the lowest penalty value from each
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breeding becomes a member of the next generation. This process continues for a

number of population.

The model used in this study is an optimizing forest estate model used to

choose optimal timber harvesting plans and reserve areas as solved by a genetic al-

gorithm. The model is programmed in MATLAB (2010) shown in Appendix D and

also available online at the University of Alberta Education and Research Archive

at http://hdl.handle.net/10402/era.38715. The structure of the goal program-

ming model in chapter 2 influenced the design of the genetic algorithm model built

here. As objective function in the goal programming model, the penalty function

minimized the sum of the weighted deviations from specific goals.

Targets were based on the results of the solution to the mixed integer

program in chapter 2. Target values for the goal in penalty function are shown

in Table 3.1. The maximum net present value can be reached by penalizing the

under-achievement weight. Deviations from target harvest volumes for conifer and

deciduous for each time period are included in the penalty function. Instead of

restricting adjacent stands to zero, violations of adjacency are counted with the

idea that some trade off involving a small number of violations could be acceptable.

In the genetic algorithm model, the adjacency constraint is converted to a goal,

which minimizes the total amount of neighboring stands that are harvested in the

same time period. Each stand in the harvesting schedule plan is assigned a value

between 0 and 4. The numbers 1 through 4 represent harvesting periods and 0

means reserve stands (stands not harvested) in the forest plan. The reserve quality

of these reserve stands is related to forest age. The minimum spanning tree is the

shortest path that connects all stands selected as reserve areas. Using the minimum

spanning tree algorithm is conservation strategy that I chose to group reserve stands

in this study. The objective function in the genetic algorithm calculates the penalty

values of members which is the sum of the weighted deviations of goals. In the model

developed here, a forest plan is represented by a vector, h, of length N where N is the

number of stands in the forest. Each element of the vector, hn, represents the harvest

period, for stand i ; where the value of zero represents no harvesting activity. The

optimal harvest schedule conceivably could be found through complete enumeration.

However, this would be impractical for any realistically sized problem. Even with

the small problem examined here with 5 possible harvest periods and 287 stands,

there would be 5287 (4.02x10200) possible solutions to examine.
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Table 3.1: Table of target values for goals in penalty function

Objectives Target Values Units

Net Present Value 11.3x106 $
Conifer Harvest Volume Period 1 1.5x104 m3

Conifer Harvest Volume Period 2 1.5x104 m3

Conifer Harvest Volume Period 3 1.5x104 m3

Conifer Harvest Volume Period 4 1.5x104 m3

Deciduous Harvest Volume Period 1 2.5x104 m3

Deciduous Harvest Volume Period 2 2.5x104 m3

Deciduous Harvest Volume Period 3 2.5x104 m3

Deciduous Harvest Volume Period 4 2.5x104 m3

Adjacency Violation 0 count
Minimum Spanning Tree 0 m
Reserve Value 200 quality-weighted ha

At the beginning of the model, the initial population of harvest schedule

is created randomly. The initial population includes 100 forest plans. One hundred

plans are selected for breeding and produce two candidate plans. Penalty values are

calculated for each plan based on weighted deviations from goals and these are used

to calculate fitness. Low penalties correspond to a high fitness value and vice-versa.

Selection of the potential breeding parents is with the probability of the selection

proportional to the fitness of the parents. The fittest of the two child plans is

selected for inclusion in the next generation. For each generation, a new breeding

population is determined and the current population is replaced by the population

of children. The fitness value for each forest plan plays a significant role in the

algorithm because it changes the structure of the population and directs the model

to an optimal solution. Using the fitness value is a probabilistic method to choose

best breeders. A fitness score is assigned to each solution representing the abilities

of an individual to compete for breeding opportunities.

Net present value is the sum of the discounted cash flow. In this study,

harvest revenue is an income calculated as a dollar value from stands that are as-

signed to harvest (one of the four harvest periods). Each stand in the reserve zone

has a reserve quality score that is a function of the stand age. The purpose of the

reserve quality is to select forest areas that best meet conservation goals. In the
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model presented here, I assume that older forest has a higher conservation value.

The reserve value, the quality weighted area, is the sum of the product of the reserve

stand’s index quality and the stand areas. Some spatial considerations are required

for multiple objective forest planning. Adjacency constraint is spatial requirements

is adjacency constraints that restrict the selected harvesting areas so that neighbor

stands cannot be harvested in the same period. In this algorithm, adjacent stands

that are harvested in the same period are counted. The adjacency violation term is

a penalty function that tends to minimize the count of adjacency violations.

3.2.1 Genetic Algorithm Model Formulation

The harvest scheduling problem in this study attempts to find the best

spatial and temporal arrangements of treatments to achieve multiple objectives.

The penalty is proportional to the extent of the violations. The penalty function

makes the model favor solutions with fewer and less severe deviations from goals

(Mullen, 2000). The penalty function of the genetic algorithm is adopted from the

goal programming objective function in chapter 2.

The most important and difficult part of goal programming is the determi-

nation of appropriate goal weights (Gass, 1987). The penalty function, P, is used to

calculate weighted deviations from goals for a given harvest schedule, P(H). A high

penalty value represents large deviations from the goals while small penalty values

are smaller deviations from the goals. The objective of the genetic algorithm is to

find the harvest schedule that has the lowest penalty- the smallest sum of weighted

deviations from the target. The goal constraints used in the integer goal program

from chapter 2 were extended and included in the genetic algorithm as the penalty

function. The penalty function minimizes the deviations from the target values

that have been specified for objective variables, usually at the planning area level

(Kangas et al., 2008).

The model formulation of the harvest scheduling problem using a genetic

algorithm model is defined as follows:

The penalty function, P(H), is calculated for each candidate harvest schedule H as

follows:
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P (H) =
( T∑

j=1

uhcwjNHCj + ohcwjPHCj + uhdwjNHDj + ohdwjPHDj

)
+

unwNN + onwPN + uawNA+ oawPA+ umwNM + omwPM+

utwNT + otwPT

(3.1)

Each weight in Equation 3.1 is described in Table 3.2 and each variable is

in Table 3.3.

Table 3.2: The description of parameters in objective function

Parameters Description

uhcwj Under-achievement penalty weight for conifer harv. vol. in period j

ohcwj Over-achievement penalty weight for conifer harv. vol. in period j

uhdwj Under-achievement penalty weight for deciduous harv. vol. in period j

ohdwj Over-achievement penalty weight for deciduous harv. vol. in period j

unw Under-achievement penalty weight for net present value

onw Over-achievement penalty weight for net present value

uaw Under-achievement penalty weight for adjacency violation

oaw Over-achievement penalty weight for adjacency violation

umw Under-achievement penalty weight for minimum spanning tree

omw Over-achievement penalty weight for minimum spanning tree

utw Under-achievement penalty weight for reserve value

otw Over-achievement penalty weight for reserve value

Examples of the negative and positive deviations of goals is calculated in

equation 3.2 and 3.3 as:

PN = max(0, npv − npvgoal) (3.2)

NN = max(0, npvgoal − npv) (3.3)

where NN as a negative deviation for net present value is found by net present

value of selected harvest schedule (npv) minus desired net present value goal (npv-
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Table 3.3: The description of variables in objective function

Variables Description

NHCj Negative deviation of conifer harvest volume in period j

PHCj Positive deviation of conifer harvest volume in period j

NHDj Negative deviation of deciduous harvest volume in period j

PHDj Positive deviation of deciduous harvest volume in period j

NN Negative deviation of net present value

PN Positive deviation of net present value

NA Negative deviation of adjacency violation

PA Positive deviation of adjacency violation

NM Negative deviation of minimum spanning tree

PM Positive deviation of minimum spanning tree

NT Negative deviation of reserve value

PT Positive deviation of reserve value

goal). Unlike negative deviations of the goals, a positive deviation is computed by

subtracting the calculated value of harvest schedule from the assigned goal.

The goal variables calculated in the model as follows:

The net present value for each harvest schedule in the population is found

by using following formula:

npv =
T∑

j=1

sc((cv a pc+ dv apd)− (a hc)− (cv dis k + dv dip k))

(1 + I)mj
(3.4)

where sc represents harvest schedule and cv and dv are matrices for stand volume

(m3/ha). The price paid per m3 of conifer and deciduous are represented as pc

and pd ($/ha). The matrices of the area is a (ha). The cost of harvesting is hc

($/ha) and k is the haul cost ($/m3/km). The distance (km) between stand i and

the sawmill matrix is represented in the equation as dis while the distance between

stand i and the pulp mill matrix is dip. The discount rate is represented as I and

mj is the midpoint of the harvested period in years (Eq. 3.4).

Hvc = sc cv (3.5)
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Hvd = sc dv (3.6)

Harvest volumes for conifer (Hvc) and deciduous (Hvd) species are found by

multiplying stand volume by harvest schedule, sc, where each row represents stand

and each column represents harvest periods as shown in equation 3.5 and 3.6.

Av = sc.at.sc′ (3.7)

In the goal programming and mixed integer programming models illus-

trated in chapter 2 no adjacency violations were permitted. Adjacency violation

is calculated in this model by summing the total number of neighbor stands that

are harvested in the same time period. In the genetic algorithm model used here,

adjacency violations are counted and penalized. Equation 3.7 shows the calculation

of adjacency violation in the genetic algorithm model where at represents adjacent

stands as a matrix. The at is an adjacency matrix that is created by the analy-

sis tool in ArcGIS (Maene, 2011). Adjacency matrices are identified if a stand is

adjacent to another stand by sharing at least one point in their boundaries. Multi-

plying the lower triangular part of adjacency matrix (at) and harvest schedule (sc)

and conjugate transpose matrix of harvest schedule creates a table for adjacency

violations. The sum of the diagonals of this matrix gives adjacency violation for a

selected harvest schedule.

One planning goal is to group selected areas into a reserve zone by calcu-

lating a minimum spanning tree. The single large or several small (SLOSS) was a

debate as to whether a single large or several small reserves are a better means of

conserving biodiversity. Single large reserves, even when if several small reserves

can cover the same total area, have been recommended as the most effective means

of protecting endangered populations (Diamond, 1975). I chose to use minimum

spanning tree algorithm as an expression of the level of aggregation of the reserve

stands. The idea is that reserve stands located close to each other would be more

effective for conservation purposes than stands scattered randomly throughout a

management area. The minimum spanning tree needed to connect reserve stands

was calculated for the graph by using Prim’s (1957) algorithm, which minimizes the
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distance of each stand’s centroid.

G = min
∑
e

Ecexe

s.t. :
∑
e

Exe = n− 1 ∀ n = 1, ..., V
(3.8)

The minimum spanning tree function (G) with cost ce for all of the edges in

E finds a spanning tree G(E,V) of minimum total cost. xe is the decision variables, if

edges e is element of E, the cost is assigned as 1; otherwise 0 (Eq. 3.8). The minimum

spanning tree contains the set of links of minimum total cost (summed distance in

meters) that joins all stands into a single connected cluster. The grouped reserve

stand is based on the minimum spanning tree, which is the spatial equivalent to the

dendrogram of the stands. The reserve stands are meshed by Delanuay triangulation.

The Delaunay triangulation described in Smaltschinski et al. (2012) as for a set of

points in a plane, is one that maximizes the minimum angle of all the triangles

in the triangulations. In other words, Delaunay triangulation finds links between

stand centroids and Prim’s algorithm selects the links that make up the minimum

spanning tree. Prim’s algorithm, modelled by Kundur (2005), was used to calculate

the minimum spanning tree cost (distance between stands, in this study). Applying

Delaunay triangulation to fill the distance matrix reduces the distance calculation

time. Without Delaunay triangulation, the minimum spanning tree would consider

every possible links between centroids of each stand that takes longer to create

minimum spanning tree graph. In the minimum spanning tree function, Delaunay

triangulation is created by using a Matlab built-in function from a set of points,

which ensures that the circumcircle associated with each triangle contains no other

point in its interior. Prim’s algorithm uses an adjacency matrix that was generated

by Delaunay triangulation. This adjacency matrix is n by n, where n is select reserve

stands. The procedure that provides optimal solution for reserve areas is to select

the shortest possible link to any other stand without considering the effect this might

have on following operations (Dykstra, 1984).

Prim’s algorithm is an algorithm in graph theory that finds a minimum

spanning tree for connected undirected weighted graph. In this case, weights are

Euclidean distances between stand centers. The algorithm starts with the first node

and keeps track of which nodes are in trees and which are not. The algorithm

iterates until all nodes are in trees. The function gives the cheapest edge from a
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node that is in the tree to one that is not. Prim’s algorithm builds the tree by

adding leaves to the current tree one at a time. The edges of the minimum spanning

tree are returned in array mst (of size n-1 by 2), and the total cost is returned in the

variable cost corresponding to distance in meters (Prim, 1957). Figure 3.1 shows a

selected reserve area connected each other with Delaunay triangulation, and these

connections between stands are linked each other with Prim’s algortihm.

rv =
N∑
i=0

scjaisqi j = 0 ∈ T (3.9)

Reserve value (rv) represents total reserve value, which is found by multi-

plying reserve stands that are assigned as 0 in the harvest schedule (sc0) by its area

(ai) and reserve quality index (sqi) (Eq. 3.9).

3.2.2 Genetic Algorithm Operators

A genetic algorithm model generates solutions to optimization problems

using techniques inspired by natural evolution. The evolution starts from a popu-

lation of randomly generated individuals. The fitness of every harvest plan in the

population is evaluated. Fitness is the value of the penalty function in the optimiza-

tion problem. Each harvest plan in the population is carrying fitness value. f(i) is

the fitness of individual i and is used to determine the probability of an individual’s

being selected. The population in the each generation needs to be evaluated to de-

termine which harvest plans are fit to be selected as parents for the next generation.

The fitness function produces a numeric score to describe the fitness of a member

of a population (Shiffman et al., 2012). The desirable result for the genetic model

in this study is the lowest penalty in the population of each generation. The fitness

score is calculated by dividing the differences between the maximum penalty and

the penalty of the selected harvest plan in the population to the penalty array that

is comprised of the differences between maximum and minimum penalties in the

population.
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Figure 3.1: Minimum spanning tree function selects a set of Delanuay
triangulation that minimize sum of the node lengths
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The fitness value is calculated in the function as follows:

f(i) =
max(P )− Pi

max(P )−min(P )
(3.10)

The fitness value of i is calculated by fitness function, f(i), where Pi is the

penalty value of the individual i, max(P) is assigned as a maximum penalty and

min(P) is the minimum penalty of the generation (Eq. 3.10).

The next step is to produce next generation by applying a combination of

genetic algorithm operators: selection, crossover and mutation.

Selection: The genetic algorithm model calculates the penalty value for

each harvest plan in the population. Some of harvest plans of the population have

the opportunity to be breeders and pass their genetic information to next generation.

The population needs to be evaluated to determine which harvest plans are selected

as parents for the next generation (Shiffman et al., 2012). The pseudo-code of the

selection operator is shown in Figure 3.2. Each harvest plan in the population has a

chance to be selected associated with its fitness value. The selection operator chooses

two harvest schedules as breeders by comparing the fitness value of an individual

harvest plan with a random number between 0 and 1. The fittest member in the

population, represented by ”1”, has the highest chance to be selected as a breeder.

while breed <2

breed=random([sc],1,2) % Randomly selects two potential breeder

%compare fitness value of breeders and random number

between 0 and 1

if fit(breed(1)) >= randomchance[0,1];

parents(1) = breed1;

elseif fit(breed(2)) >= randomchance[0,1];

parents(2) = breed2

end

end

Figure 3.2: Pseudo-code of selection operator

For each member of the next generation, the algorithm selects potential

breeding pairs. Two uniformly distributed random numbers between zero and one
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are drawn and compared to the fitness values for the two potential harvest plans as

breeders. If the values for both potential breeders are greater than the corresponding

random numbers, the pair breeds, otherwise a new potential breeding pair is selected.

Crossover: Crossover is a genetic operator to use to introduce variation

to the next generation by creating a new harvest plan out of the genetic code of

the harvest plans that are selected as breeders from the previous population. In

other words, crossover shuffles the genes of two breeders to create two offspring

showing some of the characteristics better adapted to the environment. In this

study, environment is the goals and the penalty weights.

ch1 = p1(1 : xr), p2(xr : n)

ch2 = p2(1 : xr), p1(xr : n)
(3.11)

Crossover produces two candidates (ch1 and ch2) for a new generation

which are offspring produced by a mix of their parent’s genes. xr is a random

integer between 1 and n-1, where n is the number of stands, to choose which part

of the parents genes are selected to produce new members (Eq. 3.11). Crossover

occurs once for each individual.

Mutation: The last operator of the genetic algorithm is mutation, which

mutates children if they are eligible. The mutation operator is applied to each

gene of each children resulting from the crossover operation of a selected harvest

plans. Each forested stand (or genes) in the individual harvest schedule has a

small probability of mutating. A randomly selected number between 0 and 1 is

assigned for each gene (harvest period) in the individual (harvest plan). If this

randomly generated number is smaller than the mutation rate, the gene (harvest

period) mutates. In the model presented here, a mutation represents a random

change in the harvest period of a harvest schedule candidate. Mutation has been

used in genetic algorithms to help the algorithm move away from a local optimum

in the search for a global optimum. It also adds some diversity to the population

which would likely prove useful in the case of adapting to the environment. The

mutation operator is explained as a pseudo-code in Figure 3.3. One hundred new

harvest plans are added to the new population. For the next generation, breeders are

selected from the previous population. The process used by the genetic algorithm

to generate a harvest schedule is shown in Figure 3.4 as a pseudo-code.

54



3.2. MODELING SYSTEM

for i=n:number of stands

if random[0,1] <= mutation rate; %Random number to compare with

newmutate = random([0,1],nstands) %New pair to mutate with

child1(i) = newmutate(i)

if random[0,1] < mutation rate;

newmutate = random([0,1],nstands)

child2(i) = newmutate(i)

end

end

Figure 3.3: Pseudo-code of mutation operator

#Initialization

for i=n:number of member in the initial population

generate randomly initial population;

set as Z;

calculate hv(i); %harvest volume

calculate npv(i); %net present value

calculate adv(i) ;%adjacency violation

calculate P(i); %penalty value

calculate f(i) %fitness value

(max P - P(i)) / (max P - min P);

end

initialpop=oldpop

for i=n:number of generation

newpop=[]

#Selection

#Crossover

#Mutation for child1 & child2

hv(i); npv(i); adv(i); P(i);

if P(child1) < P(child2)

Z(i) = [Z(i); child1]

else

Z(i) = [Z(i); child2]

end

minpenalties=[minpenalties, P(min) in Z(i)];

oldpop=newpop;

end

Figure 3.4: Pseudo-code of genetic algorithm for harvest scheduling
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3.3 Model Application

The model was applied to a small forest area of 1,725 ha located in Al-

berta, Canada (Fig.3.5). Of the total area, 1350 ha (or 231 out of 287 stands) have

tree cover and are eligible for harvest. Figure 3.6 shows the dominant species in

the area is deciduous. The dominant hardwood species include trembling aspen

(Populus tremuloides), balsam poplar (Populus balsamifera) and white birch (Be-

tula papyrifera) while conifer species include black spruce (Picea mariana), jack

pine (Pinus banksiana), white spruce (Picea glauca) and tamarack (Larix laricina).

Table 3.4 shows the distribution of the cover type of the species in hectares.

Figure 3.5: Location of study area within Alberta, Canada
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Figure 3.6: Cover type of study area
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Table 3.4: Broad Cover Type Distribution

Broad Cover Type Area (ha)

Conifer 417.90
Conifer - Deciduous 11.96
Deciduous 891.50
Deciduous - Conifer 29.14
Non-Forest Area 374.77

The model developed here is intended to represent a timber harvesting

schedule to provide wood flow and a reserve area. Two processing facilities are rep-

resented as a sawmill and a pulp mill. The model run consists of 500 generations and

each generation includes 100 harvest plans. Initial targets for the genetic algorithm

model were based on the results of the mixed integer programming model. In this

volume estimates come from the forest inventory file. No yield curve was used, the

data stand volume was considered to be constant over the planning horizon of four

time periods.

3.3.1 Input Data and Financial Parameters

Various factors limit the supply of timber in different timber supply areas.

For instance, the productivity of the land may be the determining factor in one

area, while the age of existing stands may be important in another. Thus, specific

management activities, such as transportation, forest product manufacturing, and

distribution, may influence the short or long-term timber supply in some areas more

than in others and this affect the way forest grows. The age-class distribution is

shown in Table 3.5, and each stand has a reserve value that is related to stand age

(Fig. 3.7). The reserve quality index is hypothetical, which meant to represent that

an older forest has a higher value for conservation. The area weighted average age

of the study area is 67.5 years. The distribution of the stand age of the study area

is shown in Figure 3.8. The discount rate is used to take into account the time

value of money and the risks or uncertainty of anticipated future cash flows of forest

potential. In this paper, the discount rate was set at 5 %. The mill-gate value of

timber for both conifer and deciduous species was set $100/m3. The harvesting cost
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was set at $3000/ha and haul cost was given as $0.0273/m3/km.

Table 3.5: Age Distribution

Age (years) Area (ha)

50 4.48
60 15.89
65 61.48
70 453.19
80 14.87
85 255.05
90 247.26
100 3.91
105 107.19
110 173.30
120 12.416
130 1.44

Total 1350.4

Figure 3.7: Reserve quality index
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Figure 3.8: Age distribution of study area
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3.4 Results & Discussion

The multi-objective genetic algorithm model was examined in this study

by applying it to forest-planning problem with twelve goals. The purpose of the

multi-objective optimization problem was finding an acceptable balance between all

of the goals. A decision maker is implicitly considering trade-offs between conflicting

goals. The genetic algorithm model rans 500 generations using 100 harvest plans as

the population. The processing time for model run with penalty weights takes less

than seven minutes. Each member represented a harvest schedule, and this harvest

schedule was allocated by the model to the harvesting zone and the reserve zone. A

near optimal harvesting schedule was selected according to the lowest penalty of a

member in the 500 generations. The penalty function included twelve objectives by

summing the individual objective penalty values together.

The manager is able to decide goals weights according to the purposes of

forest land use. The determination of weights in the penalty function (or objective

function in a goal programming framework) may be one of the most difficult tasks in

this kind of problem. According to Gass (1987), it is the analyst’s task to develop a

suitable weighting procedure to capture the interplay between the goals of a decision

makers. The weights themselves do not have intuitive meanings or interpretations.

There is no one optimal solution since different decision makers would be

willing to accept different sets of trade-offs (Hotvedt, 1983). An analyst presents a

decision maker with results of a series of runs in order to find a solution acceptable

to the decision maker. The purpose of changing penalty weights is to reach a com-

bination of achieved goals. In determining the penalty weights, I am playing the

role of both decision makers and analyst. The analyst presents the decision maker

with the results of a number of runs with different penalty weights.

The procedure I used to determine weights is described below.

Set 1 : I started by setting targets for each of the goals (Table 3.6). The

net present value goal was set to $2.00 x 107. The purpose of setting a higher net

present value goal was to challenge the model to reach a higher NPV as much as

possible. Initially the penalty for under-achievement of the net present value goal

was set to 1 penalty unit per dollars (pu/$). In the first run, the penalties for all

other goals were set to zero, which makes this first run essentially a net present value
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maximization problem. The results of this run are shown in Table 3.6, which shows

that the goal for net present value was satisfied; the other goals have unsatisfactory

levels. The summary results presented in Table 3.7 are the results from the harvest

schedule with the minimum penalty value across all generations. The same is true

for the summary tables presented for all the sets of runs discussed here.

Set 2 : Set 2 is used to find penalty weights for periodic conifer harvests

that would result in an acceptable balance between net present value and flow of

conifer harvest volume. As shown in Tables 3.8 and 3.9, the model is able to achieve

the target net present value and periodic coniferous harvest volume flows when the

penalties for under and over-achievement of target harvest volumes are set to 1

pu/m3. However, Table 3.9 also shows that results for the penalty weights are set

to 10, 100 and 1,000 pu/m3 because I found that the penalty needed to be increased

when I ran set 3 to determine acceptable penalty weights for deciduous volume.

Set 3 : In set 3, I hoped to systematically vary the penalty weight for

deciduous volume harvest while holding the penalty weight for coniferous volume

constant at 1 pu/m3. However, this did not work even when the penalty weight for

deciduous harvest volume was set at 1 pu/m3. The strategy I took instead was to

vary the penalty weight for both coniferous and deciduous species simultaneously.

Table 3.11 shows the achieved goals for different harvest volume penalty weights.

I decided that a penalty weight of 1,000 pu/m3 of harvest volume represented the

best balance between net present value and harvest volume goals.

Set 4 : Tables 3.12 and 3.13 represent the penalty weight and results

including the inclusion of penalties for over-achievement of adjacency violations. A

perfect outcome would have zero adjacency violations as was forced through using

constraints in the mixed integer model in chapter 2. Over-achievement of adjacency

violation was penalized at 0 because fewer violations of adjacency are desired. I

settled an 1 million pu/adjacency violation as the appropriate penalty for over-

achievement of adjacency violation. There were only two adjacent stands harvested

in the same time period in the selected solution and the net present value was still

high at $8.94 million.

Set 5 : Tables 3.14 and 3.15 show the results of set 5 which was used

to determine the appropriate penalty weight for over-achievement of the minimum

spanning tree cost goal. The minimum spanning tree represents the minimum length

of connections between all points selected as reserve area. If the goal is to produce
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a single large reserve, the minimum spanning tree should be short. However, at the

extreme, a minimum spanning tree cost of zero could be achieved if no stands were

selected for a reserve area. I selected 1,000 pu/m as the penalty for over-achievement

as the minimum spanning tree cost was low, net present value was high and harvest

volumes were on target. When the penalty was increased to 10,000 pu/m, harvest

volumes departed from target to a level I deemed unacceptable.

Set 6 : Tables 3.16 and 3.17 show parameters and results for the final run

used to determine the penalty weight for under-achievement of the quality-weighted

reserve area goal. In this study, reserve quality is assumed to vary with stand age

according to Figure 3.7. I set a target for the reserve area to be 25% of the total

forested area, which is equal to 337 ha. Stands that are 100 years old have a quality

index of 0.625 according to Figure 3.7. Accordingly, I set the quality-weighted

reserve area target to be 200 ha. I determined the best weight for the reserve value

to be 100,000 pu/ha, which resulted in a quality weighted reserve areas of 176.80

ha.

Tables 3.18 and 3.19 summarize the goals, penalty weights, and results for

the model selected as the best at representing decision makers’ preferences in relation

to specified goals. Some reduction in net present value occurred as a result of the

addition of adjacency violation and reserve goals. Harvest volumes were almost

exactly on target, there were zero adjacency violations and the quality-weighted

reserve area was on target.

The maps in Figure 3.9 and 3.10 show the harvest schedule and reserve

area from the selected plan. These show that the adjacency violation goal was well

satisfied, and the reserve area seemed to be more grouped than would be seen with

a random assignment. When the map of the reserve areas (Fig. 3.10) is compared

to the age class map (Fig. 3.8), it can be seen that many of the oldest stands were

selected for the reserve area. It is likely that the genetic algorithm found a good

balance between the specified minimum spanning tree and quality-weighted reserve

area goals. In order to get a more aggregated reserve area, more stands of a lower

quality would need to be incorporated into the reserve.
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Table 3.6: Set 1: The development of penalty function net present value
(NPV) goal weights

Goals Under-achievement Over-achievement

NPV ($) 2.0x107 1 0
Con. Harv. Vol (m3) 1.5x104 0 0
Dec. Harv. Vol (m3) 2.5x104 0 0
Adj. Viol. 0 0 0
Min. Span. Tree (m) 0 0 0
Res. Value (ha) 200 0 0

Table 3.7: Summary results considering only NPV ($) Goal Weights

Net Present Value Weights

Goals 1 10 100 1,000 10,000

NPV 1.64x107 - - - -

Con. Har. Vol.1 8.47x104 - - - -

Con. Har. Vol.2 478.55 - - - -

Con. Har. Vol.3 73.48 - - - -

Con. Har. Vol.4 72.56 - - - -

Dec. Har. Vol.1 1.26x105 - - - -

Dec. Har. Vol.2 273.67 - - - -

Dec. Har. Vol.3 29.10 - - - -

Dec. Har. Vol.4 5.22 - - - -

Adj. Viol. 347 - - - -

Min. Span. Tree 9.56x103 - - - -

Res. Value 26.16 - - - -

Penalty 3.64x106 - - - -
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Table 3.8: Set 2: The development of penalty function conifer harvest
volume goal weights

Goals Under-achievement Over-achievement

NPV ($) 2.0x107 1 0
Con. Harv. Vol (m3) 1.5x104 variable variable
Dec. Harv. Vol (m3) 2.5x104 0 0
Adj. Viol. 0 0 0
Min. Span. Tree (m) 0 0 0
Res. Value (ha) 200 0 0

Table 3.9: Summary results considering NPV ($) and conifer harvest
volume (m3) goal weights

Conifer Harvest Volume Weights

Goals 1 10 100 1,000 10,000

NPV 1.15x106 1.60x107 1.10 x107 1.03x106 -

Con. Har. Vol.1 1.50x104 1.50x104 1.50x104 1.50x104 -

Con. Har. Vol.2 1.49x104 1.50x104 1.50x104 1.50x104 -

Con. Har. Vol.3 1.50x104 1.50x104 1.50x104 1.50x104 -

Con. Har. Vol.4 1.50x104 1.50x104 1.50x104 1.50x104 -

Dec. Har. Vol.1 8.38x104 1.23x105 4.27x104 1.48x105 -

Dec. Har. Vol.2 2.23x104 2.03x103 3.82x104 2.85x103 -

Dec. Har. Vol.3 1.27x104 268.72 2.74x104 997 -

Dec. Har. Vol.4 5.29x103 50.64 2.13x104 8.46x102 -

Adj. Viol. 177 209 102 146 -

Min. Span. Tree 8.27x103 1.12x104 1.47x104 9.09x103 -

Res. Value 123.76 16.90 86.11 174.18 -

Penalty 1.27x107 4.74 x106 7.38x106 9.87x106 -
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Table 3.10: Set 3: The development of penalty function deciduous harvest
volume goal weights

Goals Under-achievement Over-achievement

NPV ($) 2.0x107 1 0
Con. Harv. Vol (m3) 1.5x104 variable variable
Dec. Harv. Vol (m3) 2.5x104 variable variable
Adj. Viol. 0 0 0
Min. Span. Tree (m) 0 0 0
Res. Value (ha) 200 0 0

Table 3.11: Summary results considering NPV ($), conifer and deciduous
harvest volume (m3) goal weights

Deciduous Harvest Volume Weights

Goals 1 10 100 1,000 10,000

NPV 1.12x107 1.56x107 8.62x106 8.83x106 -

Con. Har. Vol.1 7.25x104 6.83x104 1.50x104 1.50x104 -

Con. Har. Vol.2 1.85x104 1.50x104 1.50x104 1.50x104 -

Con. Har. Vol.3 1.50x104 1.85x104 1.50x104 1.50x104 -

Con. Har. Vol.4 379.01 260 1.50x104 1.50x104 -

Dec. Har. Vol.1 1.24x105 1.005 2.51x104 2.50x104 -

Dec. Har. Vol.2 683.39 2.46x104 2.52x104 2.50x104 -

Dec. Har. Vol.3 1.10x104 578.49 2.51x104 2.50x104 -

Dec. Har. Vol.4 1.06x104 14.72 2.51x104 2.50x104 -

Adj. Viol. 190 47 72 63 -

Min. Span. Tree 9.41x103 8.02x103 1.92x104 1.82x104 -

Res. Value 126.15 16.7 123.02 111.57 -

Penalty 4.02x106 6.40x106 1.39x106 1.12x107 -
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Table 3.12: Set 4: The development of penalty function adjacency
violation goal weights

Goals Under-achievement Over-achievement

NPV ($) 2.0x107 1 0
Con. Harv. Vol (m3) 1.5x104 1,000 1,000
Dec. Harv. Vol (m3) 2.5x104 1,000 1,000
Adj. Viol. 0 0 variable
Min. Span. Tree (m) 0 0 0
Res. Value (ha) 200 0 0

Table 3.13: Summary results considering NPV ($), conifer and deciduous
harvest volume (m3) and adjacency violation goal weights

Adjacency Violation Weights

Goals 100 1,000 10,000 100,000 1,000,000

NPV 8.86x106 8.82x106 8.88x106 8.85x106 8.84x106

Con. Har. Vol.1 1.50x104 1.50x104 1.50x104 1.50x104 1.50x104

Con. Har. Vol.2 1.50x104 1.50x104 1.50x104 1.50x104 1.50x104

Con. Har. Vol.3 1.50x104 1.50x104 1.50x104 1.50x104 1.50x104

Con. Har. Vol.4 1.50x104 1.50x104 1.50x104 1.50x104 1.50x104

Dec. Har. Vol.1 2.50x104 2.50x104 2.50x104 2.50x104 2.50x104

Dec. Har. Vol.2 2.50x104 2.50x104 2.50x104 2.50x104 2.50x104

Dec. Har. Vol.3 2.50x104 2.50x104 2.50x104 2.50x104 2.50x104

Dec. Har. Vol.4 2.50x104 2.50x104 2.50x104 2.50x104 2.50x104

Adj. Viol. 69 77 53 21 2

Min. Span. Tree 1.90x104 1.72x104 1.80x104 1.90x104 1.54x104

Res. Value 105.35 115.53 118.11 119.32 126.89

Penalty 1.12x107 1.13x107 1.17x107 1.34x107 1.22x107
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Table 3.14: Set 5: The development of penalty function minimum
spanning tree goal weights

Goals Under-achievement Over-achievement

NPV ($) 2.0x107 1 0
Con. Harv. Vol (m3) 1.5x104 1,000 1,000
Dec. Harv. Vol (m3) 2.5x104 1,000 1,000
Adj. Viol. 0 0 1,000,000
Min. Span. Tree (m) 0 0 variable
Res. Value (ha) 200 0 0

Table 3.15: Summary results considering NPV ($), conifer and deciduous
harvest volume (m3) and adjacency violation and minimum spanning tree

(m) goal weights

Minimum Spanning Tree Weights

Goals 1 10 100 1,000 10,000

NPV 8.81x106 8.88x106 9.09x106 8.77x106 8.63x106

Con. Har. Vol.1 1.47x104 1.50x104 1.50x104 1.51x104 1.67x104

Con. Har. Vol.2 1.50x104 1.50x104 1.50x104 1.50x104 2.66x104

Con. Har. Vol.3 1.50x104 1.50x104 1.50x104 1.50x104 1.65x104

Con. Har. Vol.4 1.50x104 1.50x104 1.50x104 1.50x104 1.48x104

Dec. Har. Vol.1 2.44x104 2.50x104 2.50x104 2.50x104 2.51x104

Dec. Har. Vol.2 2.50x104 2.50x104 2.50x104 2.50x104 2.61x104

Dec. Har. Vol.3 2.50x104 2.50x104 2.50x104 2.50x104 2.54x104

Dec. Har. Vol.4 2.48x104 2.50x104 2.50x104 2.49x104 2.50x104

Adj. Viol. 6 2 3 2 8

Min. Span. Tree 1.83x104 1.95x104 1.82x104 1.18x104 4.12x103

Res. Value 102.41 125.75 145.11 132.62 86.29

Penalty 8.01x106 3.31x106 9.07x106 2.73x107 7.21x107
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Table 3.16: Set 6: The development of penalty function reserve value goal
weights

Goals Under-achievement Over-achievement

NPV ($) 2.0x107 1 0
Con. Harv. Vol (m3) 1.5x104 1,000 1,000
Dec. Harv. Vol (m3) 2.5x104 1,000 1,000
Adj. Viol. 0 0 1,000,000
Min. Span. Tree (m) 0 0 1,000
Res. Value (ha) 200 variable 0

Table 3.17: Summary results considering NPV ($), conifer and deciduous
harvest volume (m3) and adjacency violation and minimum spanning tree

(m) and reserve value (ha) goal weights

Reserve Value Weights

Goals 10 100 1,000 10,000 100,000

NPV 8.90x106 8.84x106 8.96x106 8.98x106 9.01x106

Con. Har. Vol.1 1.50x104 1.50x104 1.52x104 1.49x104 1.49x104

Con. Har. Vol.2 1.51x104 1.58x104 1.49x104 1.51x104 1.50x104

Con. Har. Vol.3 1.50x104 1.50x104 1.50x104 1.50x104 1.50x104

Con. Har. Vol.4 1.50x104 1.50x104 1.49x104 1.50x104 1.50x104

Dec. Har. Vol.1 2.50x104 2.49x104 2.50x104 2.50x104 2.50x104

Dec. Har. Vol.2 2.51x104 2.50x104 2.50x104 2.50x104 2.50x104

Dec. Har. Vol.3 2.50x104 2.50x104 2.50x104 2.50x104 2.50x104

Dec. Har. Vol.4 2.52x104 2.50x104 2.52x104 2.50x104 2.50x104

Adj. Viol. 3 2 2 2 0

Min. Span. Tree 1.31x104 1.35x104 1.35x104 1.49x104 1.39x104

Res. Value 117.78 130.07 126.08 124.51 176.80

Penalty 1.79x107 2.02x107 1.72x107 1.81x107 3.18x107
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Table 3.18: The final penalty function weights of each goal

Goals Under-achievement Over-achievement

NPV ($) 2.0x107 1 0
Con. Harv. Vol (m3) 1.5x104 1,000 1,000
Dec. Harv. Vol (m3) 2.5x104 1,000 1,000
Adj. Viol. 0 0 1,000,000
Min. Span. Tree 0 0 1,000
Res. Value (ha) 200 100,000 0

Table 3.19: Summary table for selected plan when all goals are penalized

Penalty 3.184 x 107

Net Present Value ($) 8.88 x 106

Harvest Volume of Conifer (m3)

Period 1 1.491 x 104

Period 2 1.504 x 104

Period 3 1.502 x 104

Period 4 1.503 x 104

Total Volume 6.000 x 104

Harvest Volume of Deciduous (m3)

Period 1 2.503 x 104

Period 2 2.501 x 104

Period 3 2.502 x 104

Period 4 2.502 x 104

Total Volume 1.008 x 105

Adjacency Violation 0

Min. Span. Tree Weight (m) 1.364 x 104

Reserve Value (ha) 176.803

Reserve Area (ha) 362.340

Scheduled Stands 231

Harvesting Zone 179

Reserve Zone 52
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Figure 3.9: Harvesting periods for selected solution of study area
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Figure 3.10: Forest zones for selected solution of Study Area
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The Figure 3.11 shows the evolution of minimum penalty in each genera-

tion. The graph was created by a minimum penalty of members in the generation.

By generation 350, the improvement in penalty function was small. The results

represent net present value at $ 8.88 million which is still good when compared to

the results of mixed integer goal programming model (Fig 3.12). Out of 287 stands,

179 are scheduled for the harvesting zone while 52 stands are for the reserve zone.

Total harvest volumes for coniferous and deciduous species are represented in Fig-

ure 3.13, which shows the fluctuation of harvest volumes over all generation that

tends to improve and stabilize with generation over time. Figure 3.14 represents

how adjacency violation changes among 500 generations.

The area weighted stand age of the reserve zone was 95.14 years. The

reserve zone has 356.3418 ha and 176.80 reserve quality value (Fig. 3.15). Reserve

zone consists of 161.68 ha conifer species and 200.66 ha deciduous species. The

management goal of the reserve zone is to group those stands together. In this

study, a single large stand preferred over several small stands. It is assigned that

reserve stands be close together. The final goal finds the minimum distance between

stands by using minimum spanning tree function that aggregate the reserve areas by

minimizing the cost of the minimum spanning tree. The model used in this study is

useful in planning, communication or transportation networks where the objective

function is to provide some connecting route between nodes at the lowest possible

cost. The Delaunay triangulation method created every possible triangle but chose

triangles which were not long and have large angles. Delaunay triangulation helps

to construct a minimum spanning tree. All nodes in a minimum spanning tree are

edges of neighborhood graph. Figure 3.1 shows how minimum spanning tree cost is

found according to the results of the model for selected harvest schedule.

Different mutation rates and numbers of population were tested in this

study. Box plots in 3.17 display differences of minimum penalty values at the y-axis

for different population sizes and mutation rates without making any assumptions

about the underlying statistical distribution. These graphs depict groups of min-

imum penalties across all generations through 50 draws. When compared to the

medians of the each combination, the lowest penalty value is resulting if population

size is 200 and mutation rate is 0.010%. One hundred and two hundreds population

size resulted slightly better solution than population size of 50. A higher mutation

rate has fluctuation of minimum penalty of each generation, which provides more
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variation. The model with a small mutation rate and larger population size ran

longer to find a near optimal solution. For this problem, decreasing population size

helps speed up processing time and increasing the mutation rate might be good for

achieving diversity.

Figure 3.11: Minimum penalties of 500 generations for selected harvest
schedules

Figure 3.12: Net present value for selected harvest schedules of each
generation
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(a) Total harvest volume of conifer

(b) Total harvest volume of deciduous

Figure 3.13: Harvest volume for selected harvest schedules of each
generation
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Figure 3.14: Distribution of adjacency violations for selected harvest
schedules of each generation

Figure 3.15: Reserve value for selected harvest schedules of each generation

76



3.4. RESULTS & DISCUSSION

Figure 3.16: Minimum spanning tree for selected harvest schedules of each
generation
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Figure 3.17: Minimum penalty graphs with different population size and
mutation rate
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3.5 Conclusion

Decision-making in forest planning is a multidimensional decision problem,

concerned with multiple sustainable use of the forests. While performing searches

in a large-scale problem, the genetic algorithm models offer significant benefits over

optimization techniques such as mixed integer programming and goal programming.

Genetic algorithm models are good at taking large, potentially huge search spaces

and navigating them to look for optimal combinations of the solutions that might

otherwise take a lifetime to find (Mangano, 1995).

When problems become bigger, it is difficult to solve with mixed integer

programming model. Moreover, some formulation of constraints are not able to

solve with mixed integer programming framework. Given the computational com-

plexity, finding a goal programming model for a feasible solution is essentially as

hard as actually finding out the optimal solution. Because of the complexity of the

programming and difficulties applying adjacency violation and minimum spanning

tree aspects, the linear programming approaches applied in chapter 2 were converted

to the genetic algorithm model. This problem is well suited to finding an acceptable

solution through a heuristic optimization procedure, developed here as a genetic

algorithm model. The optimization built here started with an initial population of

harvest schedules. These were generated by randomly assigning a harvest period

to each stand in the forest for each member of the initial population. The penalty

function was used to calculate a penalty value for each member population. The

penalty value was the most important part of the decision-making process.

Using a small mutation rate should have a tendency to preserve a good

current solution while using high crossover and mutation rates should suggest new

solutions. The implementation of a genetic algorithm should maintain balance be-

tween these aspects (Lu and Eriksson, 2000). The selection rate in this model was

based on individual fitness. Modifying mutation rate affects the penalties standard

deviation. The population with the smallest mutation rate had smaller standard

deviations. The higher a mutation rate in this model increases the probability of

finding different penalty ranges.

Selection is a mechanism in the genetic algorithm that provides some mem-

bers of the population the opportunity to be parents and pass down their genetic

information. The fitness function designed in this model calculated each individual’s
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fitness value through a comparison of that individual’s penalty score with those of

the rest of the population to find the highest fitness value (Shiffman et al., 2012).

The main idea is to search for contiguous sets of stands that each represent a poten-

tial adjacency violation. The adjacency violation constraint in the penalty function

tries to reach minimum violation occurrence. All of the stands in the management

area are contributing to the adjacency constraint violations and are added to the

adjacency matrix. The adjacency violation goal in this model was set as 0 and com-

pared differences by changing over achievement of the violation. Grouping forest

stands for the harvesting zone with a minimum spanning tree may apply to the har-

vesting area to reduce the movements of the harvester, forwarders and staff. It may

also help to the adjacency restriction, thus maximum land use might be achieved.

This model achieved a solution that allows calculating the area to be har-

vested during each period with profits as high as possible. It ensured a balanced

reserve zone and harvesting zone distribution by the end of the planning horizon,

which satisfies the wishes of the decision-maker. I was able to find a satisfactory so-

lution with added reserve quality, group to the reserve zone and adjacency violation

count thanks to the flexibility of the genetic algorithm.
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Chapter 4

Conclusion

This thesis presented a study related to a forest planning model for tim-

ber harvesting and dividing forest land into zone types based on objectives. The

first chapter focused on an introduction to the general approach to solving spatial

forest planning problems which includes linear programming and heuristic methods

to solve complicated problems. The second chapter represented mixed integer pro-

gramming and mixed goal programming model formulations and solutions of sample

spatial forest planning problem. The third chapter examined the near optimal so-

lution by using a genetic algorithm model that creates harvesting and reserve zones

by gathering information from a mixed integer programming model and the idea is

adapted from a mixed goal programming model.

The main objective of this thesis is the development of a genetic algorithm

model to minimize sum of the weighted deviations of net present value, the har-

vesting goal for the operational planning on a periodic level, count of adjacency

violations, aggregated reserve stands with minimum spanning tree method and tar-

get quality weighted reserve areas. The genetic algorithm was successfully applied

to solve a harvest scheduling problem for a forest area located in Alberta. The prob-

lem involved 287 forest stands to be cut over four periods. Forests have important

functions such as recreation, timber production and nature conservation. Allocat-

ing the zones of a forest landscape is an important and contentious procedure. The

location and suitability of land has to be assigned land use objectives to obtain the

highest value from zoning. Once zones are allocated, it is difficult to move from a

production/intensive use zone to a reserve zone and/or one with conservation objec-
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tives (Bos, 1993). The difference between mixed integer programming and genetic

algorithm is exploring different formulations of penalty/objective function. There is

no linear requirement for penalty function in genetic algorithm. The key idea of the

mixed integer programming was to find out the maximum timber harvesting volume

and net present value by considering the area is not divided into other zones. The

penalty function designed for deviations of the target values (adjacency violation,

net present value and harvest volume) to penalize. Reserve areas are elaborated by

minimum spanning tree algorithm, which helped to create the adjacency matrix and

to achieve minimum cost weight simplifies to manage planning units.

The main advantage of genetic algorithm (GA) over the mixed integer goal

programming (MIGP) approach is that it is easy to modify the model with a complex

algorithm such as adjacency violation and minimum spanning tree function. The

genetic algorithm model is well suited to the solution of forest harvesting scheduling

problems. GA models are efficient and can be easily run with a range of objective

functions. The developed models MIGP model can be successfully applied and

will ensure an optimum harvesting schedule over different time periods. GA model

can find a near optimal solution while providing forest allocation. The mutation

parameter in the genetic algorithm should be decided carefully and also be improved

the role in the model because higher mutation rates force to adopt environment.

Genetic algorithms also produce solutions that work within the test environment

and real world by obtaining other solutions with different weight for the decision

makers. Goals in the genetic algorithm model can be easily modified for decision

makers demands.

In this study, I played the roles of both decision maker and analyst. The

solution produced by the genetic algorithm model would be better representation

of harvest schedule if a real decision maker had participated in the decision making

process. The genetic algorithm model developed here is promising for solving spatial

forest planning problems although the results were hypothetical.

For further studies the genetic algorithm model can be applied to larger

forested areas with realistic data and intended to be better solution especially for the

reserve areas. A systematic approach to determining appropriate penalty weights

can help to identify decision makers preference. Minimum spanning tree algorithm

is only applied to reserve areas to aggregate these areas. The minimum spanning

tree approach might also be used to place harvest blocks close to each other to
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minimize equipment movements costs. The fictional mills represented here would

help to elaborate the value chain optimization in an analysis tool to assess the

sources of the competitive advantage, which examines all activities an organization

performs and how each activity interaction is necessary to analyze the source of

competitive advantage. Forest resource management organizations optimize the

value of activities and maintain a sustainable competitive advantage (Wang et al.,

2012). The model is expected to give a realistic solution when yield curve is applied.

Moreover, the penalty function can incorporate other variables such as road building

and access development for area. The model can be formulated differently and

applied for the real forest management problems tend to set different weights from

goals.

In planning and decision making processes, the roles of analyst and decision

maker are more appropriately prompted by considering multiple objectives. An

analyst generates alternative solutions, and a decision maker uses the solutions.

More realistic models of a problem are elaborated if many objectives are considered.

For this study, I gained knowledge about the process of genetic algorithms and

building a model. I found out that genetic algorithms are not difficult to apply to

spatial forest planning problems and are able to find a near optimal solution for a

harvest schedule and simultaneous zoning approach.
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Appendix A

Chapter 2 Modeling System in GUSEK

LP Code

LP Code

This code is also available at http://hdl.handle.net/10402/era.38715

set S;

/* stands */

set P;

/* periods */

set nextP within P;

/* periods from period 2 to end */

param a{s in S};

/* area of stands (ha) */

param totarea := sum{s in S} a[s] ;

/* total area of the forest (ha) */

param CVOL{s in S, p in P};

/* conifer yield of stands in period p (m3/ha) */

96



APPENDIX A. CHAPTER 2 MODELING SYSTEM IN GUSEK LP CODE

param DVOL{s in S, p in P};

/* deciduous yield of stands in period p (m3/ha) */

set M;

/*node _mill */

param r;

/* discount rate */

param midpoint{p in P};

/* years to midpoint of each period */

param harvestcost;

/*harvesting cost ($/ha)*/

param dist{s in S, m in M};

/* distance between stands and mills */

param price1;

/* price of conifer wood ($/m3) */

param price2;

/* price of deciduous wood ($/m3) */

param dhrevc{s in S, p in P} := CVOL[s,p] * a[s] * price1/ ((1 + r) ^ ...

... midpoint[p]);

/* discounted harvest revenue for conifer */

param dhrevd{s in S, p in P} := DVOL[s,p] * a[s] * price2 / ((1 + r) ^ ...

... midpoint[p]);

/* discounted harvest revenue for decidious */

param disharvcost{s in S, p in P} := (a[s] * harvestcost) / ((1 + r) ^ midpoint[p]);

/*discounted harvest cost*/

param dishaulcost{s in S, p in P, m in M}:= ((CVOL[s,p] * a[s] * dist[s,m] * 0.0273)...

... +(DVOL[s,p] * a[s] * dist[s,m] * 0.0273)) / ((1 + r) ^ midpoint[p]);

/*discounted haul cost*/
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param adjacent{m in S, n in S} default 0;

/*adjacency table*/

param objcoef{s in S, p in P} := dhrevc[s,p] + dhrevd[s,p] - disharvcost[s,p]...

... - sum{m in M} dishaulcost[s,p,m];

/*** DECISION VARIABLES ***/

var x{s in S, p in P} >=0 <=1;

/*** ACCOUNTING VARIABLES ***/

var h_volc{p in P} >= 0;

/* harvest volume in period p (m3) conifer*/

var h_vold{p in P} >= 0;

/* harvest volume in period p (m3) deciduous*/

/*** RESOURCE CONSTRAINTS ***/

subject to area{s in S}: sum{p in P} x[s,p] <= 1 ;

/*** ACCOUNTING CONSTRAINTS ***/

s.t. harvvolc{p in P}: sum{s in S} ((CVOL[s,p] * x[s,p] * a[s])) - h_volc[p] = 0;

/* harvest volume (m3) by period */

s.t. harvvold{p in P}: sum{s in S} ((DVOL[s,p] * x[s,p] * a[s])) - h_vold[p] = 0;

/* harvest volume (m3) by period */

/*** POLICY CONSTRAINTS ***/

s.t. vflowc{p in nextP}: h_volc[p] - h_volc[p-1] = 0;

s.t. vflowd{p in nextP}: h_vold[p] - h_vold[p-1] = 0;

/* even-flow constraints */

/*** OBJECTIVE FUNCTION ***/

maximize npv: sum{s in S, p in P} objcoef[s,p] * x[s,p];

solve;

end;
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data;

set P := 1 2 3 4;

set nextP := 2 3 4;

set S := S711341148 S711340912 S711340874 S711346057 S711340927 S711340945...

S711340884 S711340903 S711340958 S711346046 S711340875 S711340899 S711340882...

S711340951 S711340917 S711340946 S711340937 S711340904 S711340869 S711340906...

S711340860 S711346062 S711340895 S711340878 S711340925 S711340885 S711340867...

...<% (37 lines are removed)

set M := M1 M2;

param price1 := 100;

param price2 := 100;

param harvestcost := 3000;

param r := 0.05;

param midpoint :=

1 2.5

2 7.5

3 12.5

4 17.5 ;

param a :=

S711341148 38.1340715

S711340912 39.0473418

S711340874 29.3435650

S711346057 30.6516369

S711340927 10.4496950

S711340945 6.1446621

S711340884 3.3264650

S711340903 2.4952932

S711340958 20.4434707

S711346046 28.2036150

S711340875 10.2478606

... >% (275 lines are removed)
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param CVOL :1 2 3 4 :=

S711341148 32 32 32 32

S711340912 46 46 46 46

S711340874 53 53 53 53

S711346057 0 0 0 0

S711340927 27 27 27 27

S711340945 0 0 0 0

S711340884 39 39 39 39

S711340903 100 100 100 100

S711340958 122 122 122 122

S711346046 0 0 0 0

S711340875 43 43 43 43

S711340899 0 0 0 0

...>% (275 lines are removed)

param DVOL :1 2 3 4 :=

S711341148 132 132 132 132

S711340912 142 142 142 142

S711340874 158 158 158 158

S711346057 0 0 0 0

S711340927 119 119 119 119

S711340945 0 0 0 0

S711340884 119 119 119 119

S711340903 7 7 7 7

S711340958 10 10 10 10

S711346046 0 0 0 0

S711340875 160 160 160 160

S711340899 0 0 0 0

... >% (275 lines are removed)

param dist :M1 M2 :=

S711341148 5.30669287 1.58678816

S711340912 4.25242897 2.87747645

S711340874 5.24151773 1.21495437

S711346057 5.52641308 0.87711101

S711340927 4.18190148 3.24686740

S711340945 4.02527674 3.73950650

S711340884 4.86040074 1.79522521
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S711340903 4.63372057 2.26455933

S711340958 3.80684916 4.13938629

S711346046 3.73685575 3.28876727

S711340875 4.80245846 1.69942235

S711340899 4.60372162 2.18523906

... >% (275 lines are removed)

param adjacent

S711341148 S711340874 1 ,

S711341148 S711340884 1 ,

S711341148 S711340878 1 ,

S711340912 S711340927 1 ,

S711340912 S711346046 1 ,

S711340912 S711340917 1 ,

S711340912 S711340904 1 ,

S711340912 S711340913 1 ,

S711340912 S711346045 1 ,

S711340874 S711341148 1 ,

S711340874 S711346057 1 ,

... >% (1725 lines are removed)

end;
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Appendix B

Chapter 2 Modeling System in GUSEK

MIP Code

MIP Code

This code is also available at http://hdl.handle.net/10402/era.38715

set S;

/* stands */

set P;

/* periods */

set nextP within P;

/* periods from period 2 to end */

param a{s in S};

/* area of stands (ha) */

param totarea := sum{s in S} a[s] ;

/* total area of the forest (ha) */

param CVOL{s in S, p in P};

/* conifer yield of stands in period p (m3/ha) */
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param DVOL{s in S, p in P};

/* deciduous yield of stands in period p (m3/ha) */

set M;

/*node _mill*/

param r;

/* discount rate */

param midpoint{p in P};

/* years to midpoint of each period */

param harvestcost;

/*harvesting cost ($/ha)*/

param dist{s in S, m in M};

/* distance between stands and mills */

param price1;

/* price of conifer wood ($/m3) */

param price2;

/* price of deciduous wood ($/m3) */

param dhrevc{s in S, p in P} := CVOL[s,p] * a[s] * price1/ ((1 + r) ^ ...

... midpoint[p]);

/* discounted harvest revenue for conifer */

param dhrevd{s in S, p in P} := DVOL[s,p] * a[s] * price2 / ((1 + r) ^ ...

... midpoint[p]);

/* discounted harvest revenue for decidious */

param disharvcost{s in S, p in P} := (a[s] * harvestcost) / ((1 + r) ^ midpoint[p]);

/*discounted harvest cost*/

param dishaulcost{s in S, p in P, m in M}:= ((CVOL[s,p] * a[s] * dist[s,m] * 0.0273)...

... +(DVOL[s,p] * a[s] * dist[s,m] * 0.0273)) / ((1 + r) ^ midpoint[p]);

/*discounted haul cost*/
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param adjacent{m in S, n in S} default 0;

/*adjacency table*/

param objcoef{s in S, p in P} := dhrevc[s,p] + dhrevd[s,p] - disharvcost[s,p]...

... - sum{m in M} dishaulcost[s,p,m];

/* the coefficient of objective function */

/*** DECISION VARIABLES ***/

var x{s in S, p in P} binary;

/* proportion area of stand s cut in period p (ha) */

/*** ACCOUNTING VARIABLES ***/

var h_volc{p in P} >= 0;

/* harvest volume in period p (m3) conifer*/

var h_vold{p in P} >= 0;

/* harvest volume in period p (m3) deciduous*/

/*** RESOURCE CONSTRAINTS ***/

subject to area{s in S}: sum{p in P} x[s,p] <= 1 ;

/*** ACCOUNTING CONSTRAINTS ***/

s.t. harvvolc{p in P}: sum{s in S} ((CVOL[s,p] * x[s,p] * a[s])) - h_volc[p] = 0 ;

/* harvest weight (m3) by period */

s.t. harvvold{p in P}: sum{s in S} ((DVOL[s,p] * x[s,p] * a[s])) - h_vold[p] = 0 ;

/* harvest weight (m3) by period */

/*** POLICY CONSTRAINTS ***/

s.t. vflowc{p in nextP}: (h_volc[p]) - 0.95 * (h_volc[p-1]) >= 0;

s.t. evflowc{p in nextP}: (h_volc[p]) - 1.05 * (h_volc[p-1]) <= 0;

/* sequential-flow constraints for conifer harvest volume */

s.t. vflowd{p in nextP}: (h_vold[p]) - 0.95 * (h_vold[p-1]) >= 0;

s.t. evflowd{p in nextP}: (h_vold[p]) - 1.05 * (h_vold[p-1]) <= 0;

/*sequential-flow constraints for deciduous harvest volume */

s.t. adjacency{i in S, p in P}: sum {k in S} adjacent[i,k] * x[k, p] <= 1;

/* adjacency constraints */
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/*** OBJECTIVE FUNCTION ***/

maximize npv: sum{s in S, p in P} objcoef[s,p] * x[s,p];

solve

end;
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Appendix C

Chapter 2 Modeling System in Gurobi

GP Code

Goal Programming Code

This code is also available at http://hdl.handle.net/10402/era.38715

set S;

/* stands */

set P;

/* periods */

set nextP within P;

/* periods from period 2 to end */

param a{s in S};

/* area of stands (ha) */

param totarea := sum{s in S} a[s] ;

/* total area of the forest (ha) */

param CVOL{s in S, p in P};

/* conifer yield of stands in period p (m3/ha) */
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param DVOL{s in S, p in P};

/* deciduous yield of stands in period p (m3/ha) */

set M;

/*node _mill_ */

param r;

/* discount rate */

param midpoint{p in P};

/* years to midpoint of each period */

param harvestcost;

/*harvesting cost ($/ha)*/

param dist{s in S, m in M};

/* distance between stands and mills (m) */

param price1;

/* price of conifer wood ($/m3) */

param price2;

/* price of deciduous wood ($/m3) */

param adjacent{m in S, n in S} default 0;

/*adjacency table*/

param npvgoal;

param w_npv_under;

param w_npv_over;

param charvgoal{p in P};

param w_charv_under{p in P};

param w_charv_over{p in P};

param dharvgoal{p in P};

param w_dharv_under{p in P};

param w_dharv_over{p in P};
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param dhrevc{s in S, p in P} := price1 * CVOL[s,p] * a[s] / ((1 + r) ^ ...

... midpoint[p]);

/* discounted harvest revenue for conifer */

param dhrevd{s in S, p in P} := price2 * DVOL[s,p] * a[s] / ((1 + r) ^ ...

... midpoint[p]);

/* discounted harvest revenue for decidious */

param disharvcost{s in S, p in P} := (a[s] * harvestcost) / ((1 + r) ^ midpoint[p]);

/*discounted harvest cost*/

param dishaulcost{s in S, p in P, m in M} := ((CVOL[s,p] * a[s] *dist[s,m] * 0.0273)...

... +(DVOL[s,p] * a[s] * dist[s,m] * 0.0273)) / ((1 + r) ^ midpoint[p]);

/*discounted haul cost*/

param objcoef{s in S, p in P} := dhrevc[s,p] + dhrevd[s,p] - disharvcost[s,p]...

... - displantcost[s,p] - sum{m in M} dishaulcost[s,p,m];

/*** DECISION VARIABLES ***/

var x{s in S, p in P} binary;

/* proportion area of stand s cut in period p (ha) */

/*** GOAL VARIABLES ***/

var npvunder >= 0;

var npvover >= 0;

var charvunder {p in P} >= 0;

var charvover {p in P} >= 0;

var dharvunder {p in P} >= 0;

var dharvover {p in P} >= 0;

/*** ACCOUNTING VARIABLES ***/

var h_volc{p in P} >= 0;

/* harvest volume in period p (m3) */

var h_vold{p in P} >= 0;

/* harvest volume in period p (m3) */

var npv;

/* net present value */
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/*** RESOURCE CONSTRAINTS ***/

subject to area{s in S}: sum{p in P} x[s,p] <= 1 ;

/*** ACCOUNTING CONSTRAINTS ***/

s.t. harvvolc{p in P}: sum{s in S} (CVOL[s,p] * x[s,p] * a[s]) - h_volc[p] = 0 ;

/* conifer harvest weight (m3) by period */

s.t. harvvold{p in P}: sum{s in S} (DVOL[s,p] * x[s,p] * a[s]) - h_vold[p] = 0 ;

/* deciduous harvest weight (m3) by period */

s.t. npvcalc: sum{s in S, p in P} objcoef [s,p] * x[s,p] - npv =0;

/*** POLICY CONSTRAINTS ***/

s.t. adjacency{i in S, p in P}: sum {k in S} adjacent[i,k] * x[k, p] <= 1;

/*** GOAL CONSTRAINTS ***/

s.t. npvgoal_c : npv - npvover + npvunder = npvgoal;

s.t. charvgoal_c {p in P}: h_volc[p] - charvover[p] + charvunder[p] = charvgoal[p];

s.t. dharvgoal_c {p in P}: h_vold[p] - dharvover[p] + dharvunder[p] = dharvgoal[p];

/*** OBJECTIVE FUNCTION ***/

minimize wdevgoal: w_npv_under * npvunder + w_npv_over * npvover + sum{p in P}...

... (w_charv_under[p] * charvunder[p] + w_charv_over[p] * charvover[p] + ...

... w_dharv_under[p] * dharvunder[p] + w_dharv_over[p] * dharvover[p])

solve;

end;

data;

param npvgoal := 2e+07;

param w_npv_under := 1;

param w_npv_over := 0;

param charvgoal :=

1 15000

2 15000
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3 15000

4 15000;

param w_charv_under :=

1 1333

2 1333

3 1333

4 1333;

param w_charv_over :=

1 1333

2 1333

3 1333

4 1333;

param dharvgoal :=

1 25000

2 25000

3 25000

4 25000;

param w_dharv_under :=

1 800

2 800

3 800

4 800;

param w_dharv_over :=

1 800

2 800

3 800

4 800;

end;
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Appendix D

Chapter 3 Modeling System in Matlab

GA Code

Genetic Algorithm Code

This code is also available at http://hdl.handle.net/10402/era.38715

% a sample code of genetic algorithm

clear all;

tic;

utm=xlsread(’latlong.xlsx’);

northing=utm(:,3);

easting=utm(:,2);

adjnorthing=northing-6.108e6;

adjeasting=easting-436e3;

load(’forest.mat’)

ngenerations=500;

nperiods=4;

nbreeding=100;

[nstands,t]=size(area);

standlist = (1:nstands)’;
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totvol=cvol(:,1)+dvol(:,1);

forested=zeros(nstands,1);

t=find(totvol > 0);

forested(t,1)=1;

k=find(totvol <=0);

nonforested(k,1)=1;

dprice=100;

cprice=100;

logcost=2000;

chaulcost=0.0273;

dhaulcost=0.0273;

discrate=0.05;

midpoint=[2.5; 7.5; 12.5; 17.5];

mutationrate=0.005;

initialpop=randi([0,nperiods],nbreeding,nstands);

initialpop(:,k)=0;

cstandvol=cvol(:,1) .* area;

dstandvol=dvol(:,1) .* area;

npvgoal=2e7;

npvpnlto = 0;

npvpnltu = 1;

cvolgoal=[15000 15000 15000 15000];

cvolpnlto = 1e3;

cvolpnltu = 1e3;

dvolgoal=[25000 25000 25000 25000];

dvolpnlto = 1e3;

dvolpnltu = 1e3;

adjgoal = 0;

adjpnlto = 1e6;

adjpnltu = 0;
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resmstgoal = 0;

resmstpnlto = 1e3;

resmstpnltu = 0;

resvaluegoal=200;

resvaluepnlto=0;

resvaluepnltu=1e5;

oldpop = initialpop;

penaltyarray=[];

for i = 1:nbreeding

sched=oldpop(i,:);

calcpenalty;

penaltyarray=[penaltyarray penalty];

%{i, totalcon, totaldec, npv, adjacencyviolations,reservearea, mstcost, penalty}

end

penaltylist=[];

maxpenalty=max(penaltyarray);

minpenalty=min(penaltyarray);

fitness=(maxpenalty - penaltyarray)/(maxpenalty-minpenalty);

bestsched=[];

bestpenalties=[];

bestnpv=[];

bestcvol=[];

bestdvol=[];

bestresarea=[];

bestresmst=[];

bestrestri=[];

bestadj=[];

bestresvalue=[];

for igen = 1:ngenerations

{igen,toc}
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breeders=[];

newpop=[];

penaltyarray=[];

npvarray=[];

resareaarray=[];

resmstarray=[];

adjarray=[];

cvolarray=[];

dvolarray=[];

triarray=[];

resvaluearray=[];

for i=1:nbreeding

findapair;

breeders=[breeders;parents];

crossover;

mutate1=rand(1,nstands); % random number for comparison with mutation rate

mutate2=mutate1 <= mutationrate; % identifies stands which mutate

% if the stand mutates, this is what it would mutate to.

mutate3=randi([0,nperiods],1,nstands);

mutate4=child1 - mutate2 .* child1; % zeros the stands that mutate

child1=mutate4 + mutate2 .* mutate3; % puts the mutation in

child1(:,k)=0;

mutate1=rand(1,nstands);

mutate2=mutate1 <= mutationrate;

mutate3=randi([0,nperiods],1,nstands);

mutate4= child2 - mutate2 .* child2;

child2=mutate4 + mutate2 .* mutate3;

child2(:,k)=0;

sched=child1;

calcpenalty;

child1penalty=penalty;

child1npv=npv;

child1resarea=reservearea;

child1mstcost=mstcost;

child1adj=adjacencyviolations;

child1conharvest=conharvest’;
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child1decharvest=decharvest’;

child1tri=tri;

child1resvalue=reservevalue;

sched=child2;

calcpenalty;

child2penalty=penalty;

child2npv=npv;

child2resarea=reservearea;

child2mstcost=mstcost;

child2adj=adjacencyviolations;

child2conharvest=conharvest’;

child2decharvest=decharvest’;

child2tri=tri;

child2resvalue=reservevalue;

if child1penalty <= child2penalty

newpop=[newpop;child1];

penaltyarray=[penaltyarray child1penalty];

npvarray=[npvarray child1npv];

resareaarray=[resareaarray child1resarea];

resmstarray=[resmstarray child1mstcost];

adjarray=[adjarray child1adj];

cvolarray=[cvolarray;child1conharvest];

dvolarray=[dvolarray;child1decharvest];

tevpop(j).penalty=child1penalty;

resvaluearray=[resvaluearray child1resvalue];

else

newpop=[newpop;child2];

penaltyarray=[penaltyarray child2penalty];

npvarray=[npvarray child2npv];

resareaarray=[resareaarray child2resarea];

resmstarray=[resmstarray child2mstcost];

adjarray=[adjarray child2adj];

cvolarray=[cvolarray;child2conharvest];

dvolarray=[dvolarray;child2decharvest];

tevpop(j).penalty=child2penalty;

resvaluearray=[resvaluearray child2resvalue];
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end

end

penaltylist=[penaltylist; penaltyarray];

maxpenalty=max(penaltyarray);

minpenalty=min(penaltyarray);

fitness=(maxpenalty - penaltyarray)/(maxpenalty-minpenalty);

% newpenalties

[minpenalty,ndx]=min(penaltyarray);

bestpenalties=[bestpenalties;minpenalty];

bestsched=[bestsched;newpop(ndx,:)];

bestnpv=[bestnpv;npvarray(ndx)];

bestresarea=[bestresarea;resareaarray(ndx)];

bestresmst=[bestresmst;resmstarray(ndx)];

bestadj=[bestadj;adjarray(ndx)];

bestcvol=[bestcvol;cvolarray(ndx,:)];

bestdvol=[bestdvol;dvolarray(ndx,:)];

bestresvalue=[bestresvalue; resvaluearray(ndx)];

% breeders

oldpop=newpop;

end

[minminpenalty,d]=min(bestpenalties); %lowest penalty in the bestpenalty array

son.sched=bestsched(d,:),

son.sched

son.penalty=minminpenalty;

son.npv=bestnpv(d,:);

son.resarea=bestresarea(d,:);

son.resmst=bestresmst(d,:);

son.adj=bestadj(d,:);

son.cvol=bestcvol(d,:);

son.dvol=bestdvol(d,:);

son.resvalue=bestresvalue(d,:);

son
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bestschedule=bestsched(d,:);

todd=min(penaltylist’);

figure;

plot(bestpenalties’) %figure2 of minimum penalties of each generation

xlabel(’Generation’);

ylabel(’Minimum Penalties’);

set(gcf,’numbertitle’,’off’,’name’,’minimum penalties’);

figure

plot(bestnpv’)

xlabel(’Generation’)

ylabel(’Net Present Value’)

set(gcf,’numbertitle’,’off’,’name’,’NPV’)

figure

plot(sum(bestcvol’))

xlabel(’Generation’)

ylabel(’Harvest Volume’)

set(gcf,’numbertitle’,’off’,’name’,’harvest volume of conifer’)

figure

plot(sum(bestdvol’))

xlabel(’Generation’)

ylabel(’Harvest Volume’)

set(gcf,’numbertitle’,’off’,’name’,’harvest volume of deciduous’)

figure

plot(bestadj)

xlabel(’Generation’)

ylabel(’Adjacency Violation’)

set(gcf,’numbertitle’,’off’,’name’,’Adjacency violation2’)

figure

plot(bestresvalue)

xlabel(’Generation’)

ylabel(’Reserve Value’)

set(gcf,’numbertitle’,’off’,’name’,’Reserve Value’)
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figure

plot(bestresmst)

xlabel(’Generation’)

ylabel(’Minimum Spanning Tree (m)’)

set(gcf,’numbertitle’,’off’,’name’,’MST’)

dlmwrite(’harvsched.csv’, bestschedule’, ’newline’, ’pc’)

dlmwrite(’penaltylist.csv’, penaltylist, ’newline’,’pc’)

dlmwrite(’standardsapma.csv’, aaa’, ’newline’,’pc’)

dlmwrite(’reservevalue2.csv’, bestresvalue, ’newline’,’pc’)

dlmwrite(’bestpenaltylist.csv’, bestpenalties, ’newline’,’pc’)

toc;

---------------------------------------

% Penalty Function %

harvsched=zeros(nperiods,nstands);

for j=1:nperiods

t=find(sched == j);

harvsched(j,t)=1;

end

conharvest=harvsched * cstandvol;

totalcon=sum(conharvest);

cvolo=max(0,conharvest’-cvolgoal);

cvolu=max(0,cvolgoal-conharvest’);

decharvest=harvsched * dstandvol;

totaldec=sum(decharvest);

dvolo=max(0,decharvest’-dvolgoal);

dvolu=max(0,dvolgoal-decharvest’);

adjacencyviolations = ...

sum(diag(harvsched * tril(adjacencytable) * harvsched’));

adjo=max(0,adjacencyviolations-adjgoal);

adju=max(0,adjgoal-adjacencyviolations);

harvrev=harvsched *(cprice * cstandvol + dprice * dstandvol);
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harvcost=harvsched * (logcost * area);

haulcost=harvsched*((distancesawmill .* (chaulcost * cstandvol)) + ...

... (distancepulpmill .* (dhaulcost * dstandvol)));

npv = sum((harvrev - harvcost - haulcost) ./ (1 + discrate) .^ midpoint);

npvo = max(0,npv - npvgoal);

npvu = max(0,npvgoal - npv);

t=find(sched==0);

unharvested=zeros(nstands,1);

unharvested(t,1)=1;

reserve= unharvested .* forested;

reservearea=sum(reserve .* area);

if sum(reserve) <=2

mstcost=0;

else

[mstcost,tri] = calcmst( standlist, reserve,adjnorthing,adjeasting);

resmsto = max(0,mstcost-resmstgoal);

resmstu = max(0,resmstgoal-mstcost);

end

reservevalue= sum(reservequality .* (reserve.*area));

resvalueo=max(0,reservevalue-resvaluegoal);

resvalueu=max(0,resvaluegoal-reservevalue);

penalty = ...

npvpnlto * npvo + npvpnltu * npvu + ...

sum(cvolpnlto * cvolo) + sum(cvolpnltu * cvolu) + ...

sum(dvolpnlto * dvolo) + sum(dvolpnltu * dvolu) + ...

adjpnlto * adjo + adjpnltu * adju + ...

resmstpnlto * resmsto + resmstpnltu * resmstu + ...

resvaluepnlto * resvalueo + resvaluepnltu * resvalueu;

---------------------------------------
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% Function to Find Pair %

breed=0;

cntr=0;

while breed < 2

cntr=cntr+1;

parents=randi([1,nbreeding],1,2);

fit=fitness(parents);

chance=rand(1,2);

breed=sum(chance < fit);

end;

parent1=oldpop(parents(1,1),:);

parent2=oldpop(parents(1,2),:);

---------------------------------------

% Crossing over function %

xover=randi([1,nstands-1],1);

child1=[parent1(1:xover) parent2(xover+1:nstands)];

child2=[parent2(1:xover) parent1(xover+1:nstands)];

---------------------------------------

% Minimum Spanning Tree Function %

function [cost, tri] = calcmst( standlist, reserve,adjnorthing,adjeasting)

if sum(reserve) <= 2

cost=0;

mst=[];

else

reservestandlist = standlist .* reserve;

newreservestandlist=reservestandlist(reservestandlist ~= 0);

north2 = adjnorthing(newreservestandlist,:);

east2 = adjeasting(newreservestandlist,:);

tri=DelaunayTri(horzcat(east2,north2));

edges=unique(sort(...

[tri(:,2) tri(:,1);tri(:,3) tri(:,2);tri(:,1) tri(:,3)],2),’rows’);

point1=edges(:,1);

point2=edges(:,2);

p1=tri.X(point1,:);
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p2=tri.X(point2,:);

edgedistance=sqrt((p1(:,1) - p2(:,1)).^2 + (p1(:,2) - p2(:,2)).^2);

t=size(edges);

nedges=t(1,1);

t=size(tri.X);

nvertices=t(1,1);

newadjacencymatrix=ones(nvertices)*1e6;

for i = 1:nedges

newadjacencymatrix(edges(i,2),edges(i,1))=edgedistance(i);

newadjacencymatrix(edges(i,1),edges(i,2))=edgedistance(i);

end

[mst,cost]=prim(newadjacencymatrix);

end

end

---------------------------------------

% Prim’s Algorithm for Minimum Spaning Tree Function %

function [mst, cost] = prim(A)

% User supplies adjacency matrix A. This program uses Prim’s algorithm

% to find a minimum spanning tree. The edges of the minimum spanning

% tree are returned in array mst (of size n-1 by 2), and the total cost

% is returned in variable cost. The program prints out intermediate

% results and pauses so that user can see what is happening. To continue

% after a pause, hit any key.

[n,n] = size(A); % The matrix is n by n, where n = # nodes.

if norm(A-A’,’fro’) ~= 0 ,% If adjacency matrix is not symmetric,

disp(’Error:Adjacency matrix must be symmetric’)% print error message and quit.

return,

end;

% Start with node 1 and keep track of which nodes are in tree and which are not.

intree = [1]; number_in_tree = 1; number_of_edges = 0;

notintree = [2:n]’; number_notin_tree = n-1;

in = intree(1:number_in_tree); % Print which nodes are in tree and which

121



APPENDIX D. CHAPTER 3 MODELING SYSTEM IN MATLAB GA CODE

out = notintree(1:number_notin_tree);% pause, % are not.

% Iterate until all n nodes are in tree.

while number_in_tree < n,

% Find the cheapest edge from a node that is in tree to one that is not.

mincost = Inf;% You can actually enter infinity into Matlab.

for i=1:number_in_tree,

for j=1:number_notin_tree,

ii = intree(i); jj = notintree(j);

if A(ii,jj) < mincost,

mincost = A(ii,jj); jsave=j; iisave=ii; jjsave=jj;% Save coords of node.

end;

end;

end;

% Add this edge and associated node jjsave to tree. Delete node jsave from list

% of those not in tree.

number_of_edges = number_of_edges + 1;% Increment number of edges in tree.

mst(number_of_edges,1) = iisave;% Add this edge to tree.

mst(number_of_edges,2) = jjsave;

costs(number_of_edges,1) = mincost;

% Increment number of nodes that tree connects.

number_in_tree = number_in_tree + 1;

intree = [intree; jjsave];% Add this node to tree.

for j=jsave+1:number_notin_tree,%Delete this node from list of those not in tree.

notintree(j-1) = notintree(j);

end;

% Decrement number of nodes not in tree.

number_notin_tree = number_notin_tree - 1;

in = intree(1:number_in_tree);% Print which nodes are now in tree and

out = notintree(1:number_notin_tree); %pause,% which are not.

end;

% Print out edges in minimum spanning tree.

cost = sum(costs);
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---------------------------------------

% Area %

38.13407150440

39.04734178520

29.34356498380

30.65163688380

10.44969497560

6.14466210933

3.32646504784

2.49529321907

20.44347068040

28.20361504650

... >% (277 lines are removed)

---------------------------------------

% Conifer Harvest Volume (m3/ha) %

32 32 32 32

46 46 46 46

53 53 53 53

0 0 0 0

27 27 27 27

0 0 0 0

39 39 39 39

100 100 100 100

122 122 122 122

0 0 0 0

... >% (277 lines are removed)

---------------------------------------

% Deciduous Harvest Volume (m3/ha) %

132 132 132 132

142 142 142 142

158 158 158 158

0 0 0 0

119 119 119 119

0 0 0 0

119 119 119 119

7 7 7 7
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10 10 10 10

0 0 0 0

... >% (277 lines are removed)

---------------------------------------

% Distance between pulp mill and stands (km) %

1.58678816

2.87747645

1.21495437

0.87711101

3.2468674

3.7395065

1.79522521

2.26455933

4.13938629

3.28876727

... >% (277 lines are removed)

---------------------------------------

% Distance between sawmill and stands (km) %

5.30669287

4.25242897

5.24151773

5.52641308

4.18190148

4.02527674

4.86040074

4.63372057

3.80684916

3.73685575

... >% (277 lines are removed)

---------------------------------------

% Adjacency Matrix (stand by stand) %

0,0,1,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

124



APPENDIX D. CHAPTER 3 MODELING SYSTEM IN MATLAB GA CODE

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

... >% (277 x 277 lines are removed)

---------------------------------------

% Reserve quality weighted area (ha) %

0.375

0.25

0.625

0

0.25

0

0.125

0.25

0.25

0

... >% (277 lines are removed)

---------------------------------------

% Coordinatres of each stand %

toy_ID POINT_X POINT_Y

711341148 439472.36618000000 6112703.62400000000

711340912 438416.26017400000 6111910.27951000000

711340874 439735.06329900000 6112258.07666000000

711346057 440803.62469700000 6112106.66794000000

711340927 437874.77106600000 6112179.47122000000

711340945 437347.68906200000 6111997.55570000000

711340884 439428.19559500000 6112113.57700000000

711340903 438861.21288700000 6112274.12937000000

711340958 436974.40555000000 6111893.73565000000

... >% (277 lines are removed)

---------------------------------------
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