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Abstract

An atlas is an anatomical representation containing all brain structures well identified in a
stereotaxic space from a single subject or a population. Atlases provide information about
the organization and localization of the different brain tissues.

One may take advantage of this well-organized information for the analysis and processing
of a patient’s image by warping the atlas to the patient’s image, and establishing a one-
to-one correspondence between the two images. This process is also known as atlas to
patient’s image registration and is quite useful for brain tissues segmentation and register-
ing different images to a common reference space. Also, a registered atlas is a model of the
patient that can be used for simulation of medical procedures, such as recession and needle
insertions.

In the presence of brain tumors, the task of atlas to a patient’s image registration becomes
even more challenging since tumors deform referential brain structures and cause intensity
variations in the affected areas thus augmenting the dissimilarity between the atlas and pa-
tient images. Consequently, most of the deformable registration based on intensity or shape
similarities between images fail in this cases.

In order to overcome this issue, some methods use bio-mechanical models to simulate
the tumor’s mass-effect in order to simulate realistic deformations of the brain structures
onto the atlas according to the patient’s reference MRIs. However, these approaches have
weaknesses, mainly related to either the assumption of a spherical growth model of the
tumor, or the limitations of the Finite Element Method to simulate large deformations, or
the computational time that they require.

We propose a new approach for atlas to patient’s image registration with tumor based on
bio-mechanical deformation of the brain. But in contrast to other approaches, our method
simulates tumor growth with irregular shape by segmenting from the multi-modal magnetic
resonance images of a specific patient. We have developed a totally new mesh free method
for the bio-mechanical deformation avoiding the limitations of traditional finite element
methods. Experimental results are structurally very similar to the patient’s image and show
that our approach outperforms two of the current top ranking algorithms.
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Chapter 1

Introduction

Brain tumors are one of the most lethal forms of cancer since they destroy critical structures
of body functions and are the cause of the highest mortality rates. With a median of 70%,
patients diagnosed with brain tumors will die within sixteen months from the date they are
diagnosed [14, 30, 40, 79]. This statistic illustrates the importance of improving diagnosis
and treatment of brain tumors in order to increase patient survival outcome and to improve
treatment efficiency.

Normally, during treatment, patients undergo several imaging sessions at different times
in order to evaluate both the progression of the disease and the success of the treatment.
All image sets are integrated and visually inspected in order to track the evolution of the
disease. Among all the medical image modalities available, Magnetic Resonance Imaging
(MRI) is the preferred choice for imaging brain diseases as it is non-invasive and it can
provide high-contrast between soft tissues. The downside for medical teams is that they
must deal with large volumetric data sets and face some problems with image alignment
as they are commonly acquired without any spatial reference system and diverse voxel
spacings. Tumor segmentation of affected regions tends to be carried out manually and
subjectively with ill-defined boundaries due to the presence of intensity inhomogeneities
and artifacts created by variations of the magnetic fields. All these affect the accuracy of
visual inspection, and make it a difficult and an expensive process. In addition, manual
identification and segmentation of those images are subjective with great variance between
individual oncologists [15, 56, 99].

From the computer science standpoint, one can significantly contribute to this field by
developing computational tools for faster and more accurate processing of the information
required for diagnosis and treatment. An important contribution, for example, has been the
development of automatic tools for accurate medical image segmentation, better known as
automatic image analysis.

Automatic analysis of medical images usually entails a complex processing pipeline
including [72]: registration, re-sampling, and segmentation. Registration is an essential
step when comparing two images because differences in orientation and position of the
head relative to the MRI machine generate differences that have nothing to do with tumor
evolution [29, 33, 34]. Re-sampling and interpolation are necessary in order to spatially
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match the MRIs, especially when the images are acquired with different resolutions and
anisotropic spacing. Segmentation is required to localize Regions-Of-Interest (ROI) [5, 74],
specially, when quantitative measurements are estimated directly from ROIs in the image.

Inhomogeneity and intensity corrections are also commonly included within the pro-
cessing pipeline as preprocessing steps. Inhomogeneity correction is necessary in order to
compensate for the effect of smooth intensity variations created by fluctuations of the mag-
netic field during the acquisition process. This phenomenon is caused by different factors
that occur during the acquisition of MRIs e.g., radio frequency field fluctuation and gradi-
ent driven eddy currents [52, 96]. The intensity inhomogeneities present in all MRIs hinder
image registration, tissue segmentation, and consequently voxel-to-voxel comparison be-
tween images. The need for intensity normalization arises from the fact that there is not a
pulse sequence for a MRI standardized intensity scale as the Hounsfield units in computer-
ized X-ray tomography. In MRI, even for images obtained from the same patient following
the same protocol and scanning device can differ from each acquisition [7, 52, 68]. As
for field inhomogeneity, the lack of correspondence between tissue properties and intensity
values also affects the image registration, segmentation, and the direct comparison between
images. No general solution has been found so far that solves the effect of the inhomoge-
neous fields in the MRI and the lack of intensity normalization between images. Each one
represents a challenge in medical image processing.

Bringing the patient’s images to a common stereo-taxic space such as an atlas can be
the solution of these problems since an atlas is a high resolution image, free of intensity
inhomogeneities, where the patient’s anatomy can be represented with the same resolution
and intensity scale. In this way, atlas images registered to the patient’s images can make
possible the direct comparison between patient’s models to track disease evolution and aid
to an accurate analysis of the images.

One of the main contributions of this thesis is to develop an automatic atlas-based MRI
image registration method for patients with tumors capable of registering these images in
a common stereo-taxic space over time.

1.1 Image Registration
Automatic image registration aims at solving the problem of image miss-alignment. The
purpose is to align, map, or match two or more images such that there is a one-to-one spatial
correspondence between voxels of the the registered sliced images. The registration prob-
lem is often formulated as an optimization problem in order to maximize a cost function ρ

that measures the similarity S between a target image It and a source image Is undergoing
a transformation Tg between them [44], i.e.:

S(It, Is) = argmax
Tg

ρ(It,Tg(Is)). (1.1)

The transformation Tg that maps the source image Is to the target image It applies a con-
strained distortion to Is such that the slice pixels in Is corresponds to the slice pixels in
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(a) Patient Image (b) Atlas Image

(c) No matching edges (d) Matching edges

Figure 1.1: At the top are two slices from a patient image (a) and from an atlas (b), at
the bottom the blue line corresponds to the edge of the patient’s slice and the red line to
the atlas’s slice. The edges deploy the miss-matching without registration in (c), and the
matching after applying demon-based deformable registration in (d). The patient slice was
taken from NCI-MICCAI 2013 and the atlas slice belongs to the SRI24 Atlas [78].

It. The transformation model involves linear and non-linear operations such as rotation,
translation, scaling, shearing, and displacements. Figure 1.1 shows a registration example
between a patient MRI slice image and its corresponding atlas Figure (3.6b). Figure (1.1c)
shows the miss-match between the edges of the patient sliced image and the atlas and Fig-
ure (1.1d) shows the computed transformation after applying a demon-based deformable
registration algorithm [91]. The blue lines corresponds to the patient slice image edges and
the red lines to the atlas image edges.

1.2 Atlas to Patient Registration
The anatomical deformation of brain structures, and intensity variations caused by the pres-
ence of a tumor augment the dissimilarity between patient and atlas images, making the
registration process more complex. Figure 1.2 shows two slices from the same anatomical
region, one from an atlas and another from a patient with a tumor. The patient’s slice shows
deformation caused by the tumor mass-effect that changes the intensity values in the region
occupied by the tumor.
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(a) Atlas Image (b) Patient Image

Figure 1.2: Left an atlas slice, right a patient slice with tumor showing the deformation
caused by the mass-effect, and intensity variation around the tumor.

For a clearer illustration, Figure 1.3 shows the results obtained by two deformable regis-
tration algorithms. The first one, Figure 1.3c, is a symmetric diffeomorphic image registra-
tion algorithm with cross-correlation (SyN), introduced by Avants et al. [3]. This algorithm
was classified as one of the top ranking algorithms for brain MRI registration in [46]. The
second algorithm, Figure 1.3d, is the diffeo-morphic demon registration implemented in
3D Slicer [75] one of the top medical image processing software from Harvard Medical
School. One can immediately see that the resulting deformations produced by both algo-
rithms on the Atlas did not match the shapes of the deformed brain structures in the patient
image.

In order to address these limitations in the registration algorithms due to the pres-
ence of tumor, some approaches propose specialized modifications of some well-known
deformable registration methods, such as the demons algorithm [91] that deals with the
large deformation in localized areas closer to the tumor boundaries [16, 18, 87]. Other
approaches introduce biomechanical models of brain tissues to simulate the mass-effect
deformation using the idea of growing a tumor from a seed [31, 48, 64, 107]. The objec-
tive is to attain a more realistic warping of the atlas after deforming the brain structures
according to the mechanical pressure caused by the tumor growth. Although approaches
that use bio-mechanical models to simulate the brain deformation yield better results than
those that do not, these approaches also have some limitations as there is no satisfactory
model that predicts exactly how tumors grow. Most current methods assume an unreal-
istic omni-directional constant pressure model that causes the tumor to grow spherically.
This is not the case for real tumors. Brain tumors, specially at an advanced stage, such as
glioblastomas, show irregular shapes causing no regular deformation. One way to simu-
late tumor growth is the use of Finite Element Methods (FEM) to compute bio-mechanical
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(a) Patient Image (b) Atlas Image

(c) SyN Registration (d) Diffeomorphic Demon Registration

Figure 1.3: At the top, (a) contains two slices taken from a patient image, and (b) contains
the respective slices from an atlas after affine registration. At the bottom, (c) the result after
Symmetric Diffeomorphic Image Registration with Cross-Correlation (SyN), and (d) the
result after Diffeomorphic Demon registration.

deformation. FEM methods usually use triangular or tetrahedral meshes which are not
suitable to simulate large deformations because large distortions require that the structural
elements deal with non-linear energy functions. The high computational time required by
these approaches is another limitation of these methods.

1.3 Applications of Atlas Registration
The importance of atlas to patient registration relies on its diverse applications. Lets discuss
some of the most important issues.

Likely the most important application is to image segmentation, which consists of as-
signing a label to a region of interest (ROI) or to regions in an image with shared common
features, such as, the localization and labeling of all voxels belonging to different types of
brain tissues. A digital brain atlas facilitates segmentation because it is an anatomical rep-
resentation in a stereotaxic space from a single subject or a population containing common
brain structures clearly identified. When a correspondence between an atlas and an image is
established through registration, one can then use the labeled structures of an atlas and label
a patient image and thus solving the affected structure identification problem. One can find
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Figure 1.4: Flow diagram of the proposed algorithm ARMSTG.

in the literature several works that follow this direction where they segment images using a
classification algorithm guided by prior knowledge provided by an atlas [12, 76, 98].

Another important application of atlas to patient registration is statistical image analysis
of diseases based on population studies. Some research works have provided population-
based atlas of the development and of evolution of diseases such as Alzheimers over time
by registering patient data to a common reference space (an atlas) [2, 92]. Registering
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population data to a common reference space allows to compare neuro-anatomical features
between groups classified by: age, sex, and disease evolution grade.

Registered atlas to patient images can also be useful for patient image comparisons.
This is an important step to quantify tumor progression or assess treatment effectiveness.
Tracking the evolution of a brain tumor in medical images entails direct comparison be-
tween images. Many methods in the literature subtract images acquired at different times
to analyze the differences between them [35, 49, 77, 90]. However, a direct subtraction
of images likely generates artifacts that may be misinterpreted as changes caused by the
disease. By using atlas to patient registration, one can preserve the atlas resolution and
alleviate the problems caused by different intensity scales and slice misalignments.

Also, registered atlases to patients can help for surgical and treatment planning. One
advantages of a registered atlas is that the model is suitable for surgical simulations, such
as recession and needle insertions. In the literature one can find works that aim at using
patient-specific models of the brain for surgery simulation [61, 88] and needle insertion
[101].

1.4 Contributions
In this thesis, we propose a new approach to atlas to patient’s image registration with the
presence of tumor, based on a bio-mechanical deformation model of the brain. While most
approaches assume a regular shape, our method simulates tumor growth following the ir-
regular shape of the tumor segmented from the patient’s multi-modal images. We proposed
a new mesh-free method for the bio-mechanical deformation avoiding the limitations of
FEM. Additionally, our approach is implemented in parallel in a Graphic Processor Unit
(GPU) using Compute Unified Device Architecture (CUDA) which helps us reduce the
computation time required for the simulations.

We will refer to the method proposed in this work as ARMSTG, which stands for Atlas
Registration Based on Mesh-free Simulation of Tumor Growth. Figure 1.4 summarizes the
method consisting of several steps including: tumor segmentation, fitting the segmented
tumor within the brain atlas boundaries through deformable registration, building a dis-
placement map of the tumor boundary from a level set method, sampling and seeding the
atlas to perform mesh-free growth simulations, tumor growth and mass-effect simulations,
and a finally atlas warping to the patient’s image by registering the deformed atlas to the
patient’s images. In the thesis, we demonstrate that our method produces some of the
best results in the literature and that they are structurally more similar to the one obtained
with other methods based on non-linear deformation. We compared ARMSTG with two
of the top ranked algorithms for brain MRI registration reported by Klein et al. in [46] and
demonstrated that it compares favorably. Our most relevant contributions are:

1. A mesh-free Total Lagrangian Explicit Dynamic (TLED) method to simulate the bio-
mechanical brain tissue deformation caused by a tumor;
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2. A tumor growth model based on a level-set displacement map that follows the shape
of the tumor of real patient for the simulation;

3. A GPU implementation of the mesh-free method for brain tumor growth and mass
effect simulation in an atlas.

1.5 Publications
The following papers have been published or are under revision in the context of this work:

1. A Critical Review of the Effect of De-noising Algorithms on MRI Brain, in the An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society [19];

2. An Automatic Brain Tumor Segmenter Tool, in the 35th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society [20];

3. Fully Automated Brain Tumor Segmentation using two MRI Modalities, in the Inter-
national Symposium on Visual Computing [81];

4. Atlas to Patient Registration with Brain Tumor Based on a Mesh-free Method (Sub-
mitted to EMBC 2015, accepted).

1.6 Organization
The rest of this documents is organized as following. Chapter 2 reviews some prior methods
proposed to deal with atlas to patient registration in the presence of a tumor and explains
some challenges entailed by this task. Chapter 3 describes our approach, giving details
of each stage and shows the results obtained from each one. In Chapter 4, we present
some experimental results that demonstrate the performance of our new method. Chapter
5 concludes this work, discussing the pros and cons of the algorithm and describe new
directions of the work.
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Chapter 2

Literature Review of Atlas to Patient
Registration with Tumor

Atlas to patient’s image registration have been used to register patient’s image into a pre-
established high resolution common reference system [93]. Bringing a patient’s MRI to the
stereotaxic space of an atlas has the following advantages:

1. In the atlas space, the distinctive brain tissues are already well segmented and labeled;

2. The atlas image is free of distortions and intensity inhomogeneities, two factors that
hamper the performance of image processing algorithms;

3. A set of images on a common reference system allows the application of many im-
age operations such as direct comparison, and operations for statistical analysis that
otherwise might yield inaccurate results.

The registration of an atlas to patient’s image is usually carried out by warping the
atlas to the target by performing image deformation. Most of the algorithms based on
deformable registration are not designed to deal with large deformations and dissimilarities
as they have to deal with non-linear energy functions that are known to be unstable . This is
why images with brain tumors are very challenging for deformable registration algorithms
because of the lack of topological and intensity equivalences between the atlas and patient
image. In addition, large distortions caused by the tumor mass-effect may not be smooth
as many of the registration algorithms assume [80].

Some approaches deals with the problem of an atlas to a patient registration in the pres-
ence of a tumor by trying to reduce the differences between images by simulating the tumor
growth in the atlas and then performing a classical deformable registration method based
on geometric warping functions [31, 64, 106]. Some other approaches mask the tumor
area in the images in such a way that the affected regions do not influence the deformable
matching process. In both cases, authors have used either bio-mechanical models to deform
the atlas or simpler strategies that do not involve bio-mechanical models at all. The review
presented in this chapter has been divided according to two main categories shown in Fig-
ure 2.1. Section 2.1 describes methods in the first category which do not use brain tissue
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bio-mechanics models. While Section 2.2, reviews methods using bio-mechanical mod-
els that can simulate tumor mass-effect. Section 2.3 presents a summary of the reviewed
methods in Table 2.1.

Figure 2.1: Categorization for atlas to patient’s image registration in the presence of a
tumor.

2.1 Methods Without Bio-mechanical Models
Most of the methods that do not include bio-mechanical models rely on different versions
of deformable registration algorithms using optical flow information. The main modifica-
tion of this simple algorithm is the use of a variable regularization term that allows large
deformation in regions around the tumor and other regions of interest while limiting defor-
mation in others.

A representative algorithm was developed by Dawant et al. [18], which introduces an
approach where an atlas is registered to a volume with a large lesion. The approach involves
seeding a tumor in an atlas and then deforming the seed using a modified version of the
demons-based registration algorithm proposed by Thirion [91].

Thirion’s algorithm is inspired by an analogy to Maxwell’s thermodynamic demons
[91] and is used by many researchers in the field. The algorithm views registration of two
images as a diffusion process where the boundaries in one of the images, called the scene S,
are considered as semi-permeable membranes, and the other image is considered as a de-
formable grid model or a diffusing model M . A set of effectors (demons), situated within
the membranes, artificially diffuses M into S through an iterative process that depends
on: the position of all demons, a deformation operator T composed of a sequence of dis-
crete transformations represented as displacement fields, an interpolation method, and an
equation to estimate the instantaneous force f that the individual demons exert onto the de-
formable model M and the scene S. The demons’ forces are proportional to displacement
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field velocities v and are estimated using:

vi+1(p) = G|Σ| ∗
(
vi(p)−

|M(Ti(p))− S(p)|
∥∇S(p)∥2 + ∥M(Ti(p))− S(p)∥2

si(p)

)
(2.1)

where p is the 3D indexed position in the image, G|Σ| is a zero-mean Gaussian filter with
standard covariance matrix Σ and where ∗ is a convolution operator.

The demon-based registration algorithm assumes that the element positions in the region-
of-interest change but the intensities of individual voxels remain constant. Also, it assumes
that the displacement field slowly varies at each iteration. This assumption is imposed in
order to control stability and yield a more reliable deformation of the demons’ exerting
force. At each iteration, the displacement field is smoothed by a regularization term. In
Thirion’s first implementation, the regularization term is the output of a Gaussian filter
with a multidimensional covariance matrix Σ. Thus the displacement field between two
images is iteratively approximated by Equation (2.1).

In Dawan et al. [18], the initial seed location is extracted by segmenting the image
followed by eroding the segmented region using a morphological operator to smooth its
boundary. Once the seed is estimated, it is registered relative to the atlas using a rigid
transformation. Following these steps, a mask is created by assigning a distinctive inten-
sity value of the seed region that is distinct from the rest of the tissues in the atlas. The
authors implemented a hierarchical version of Thirion’s registration method that maintains
the compatibility between the forward and reverse motion fields. This deformable registra-
tion method is capable of warping the seed atlas to the patient’s image.

In order to control the deformation in the atlas, the authors propose to vary the regu-
larization parameter in Equation 2.1 at each iteration. The regularization parameter is a
Gaussian filter that smooths the deformation caused by the demon forces. In this approach,
the parameter σ in Equation 2.1 varied according to the tissue type in such a way that the
deformation is larger around the tumor and smaller in other regions. The approach reduces
the morphological differences between the atlas and the patient’s image by placing a seed
with almost the same size as the real tumor and with the same intensity value. This is one of
the the major disadvantage of this method since a large seed region may mask other struc-
tures in the brain, e.g. ventricles, and may lead to an erroneous deformation result as the
disturbance of the deformation field is very large. Another disadvantage of this method is
that Dawan et al. did not present any quantitative evaluation of the proposed method. They
mentioned that future work would be done to evaluate the method and select its optimal
parameters.

In order to overcome the problem caused by large tumor seeds, Cuadra et al. [16]
extends the approach in [18] and introduces another method for atlas deformation called
Model of Lesion Growth (MLG). In this approach, the initial seed is manually placed in the
atlas by an expert, according to anatomical and biological knowledge of tumor growth. The
authors propose to use a simple spherical growth model for the seed that is then integrated
into a non-linear demons-based registration algorithm. The algorithm drives the deforma-
tion outside the tumor area with the demons algorithm using Equation (2.1); while inside
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the tumor, the deformation is driven by a spherical growth model. The regularization term
used in this approach is based on an adaptive Gaussian filter that smooths the displacement
field at each voxels. The filter parameters varies according to three area types: inside the
tumor (σ = 0), around the tumor (σ = 0.5), and the rest of the brain (σ = 0.08). The au-
thors did observed a correlation between the brain deformation caused by the tumor growth
and the position of the seed. We will see in the next section that this observation is also
valid for methods based on bio-mechanics models. Moreover, the tumor seed localization
is an unknown parameter that must be identified in order to obtain accurate deformation
results. The major limitation of the Dawant et al. method is the radial growth assumption
for the tumor, which does not resemble the growth of a real tumor. The method only works
well when the tumor is close to a spherical shapes. Figure 2.2 shows a block diagram of
Cuadra’s et al. method. The registration results of this method were visually evaluated by

Figure 2.2: Block diagram of Cuadra’s et al. [16] method (MLG) for atlas to patient regis-
tration in presence of tumor.

an expert. Cuadra et al. [16] also used as a metric the mean square error between the reg-
istered image and the source. However, the authors stated that this metric is not properly
to measure the accuracy of inter-patient matching because of the lack of correspondence
between image intensities.

Stefanescu et al. [87] attempts to solve the problem of atlas to subject registration by
using a tumor mask. The method also relies on a non-rigid registration method based on
optical flow in [86]. The registration method iteratively optimizes a similarity criterion that
uses a regularising term similar to an anisotropic diffusion filter. The procedure allows
some areas to undergo larger deformation than others according to a parameter d that af-
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fects the regularization term and is assigned according to tissue segmentation of the image.
Stefanescu also proposed to assign confidence values to voxels according to the squared
local correlation coefficient used as a second similarity criterion between the source and
the target. Voxels with low confidence do not influence the alignment process. For the tu-
mor cases, the authors assign a null confidence value to all voxels inside the dilation mask.
This approach does not place the tumor in the atlas since the purpose of this method is
only to deform the brain tissues to match the unaffected regions in the patient’s image. The
method was tested over 22 T1-weighted images. However, the author did not present any
quantitative evaluation of the registration results.

A more recent approach for deformable registration of brain MRI with tumor was pro-
posed by Parisot et al. in [71]. The approach consists of a concurrent registration and tumor
segmentation framework, where a sparse grid is superimposed to the volume domain and
each node is simultaneously displaced and classified. The method starts with a first approx-
imation to the tumor segmentation obtained with a Gentle Adaboost Algorithm [26]. The
problem domain is modeled as a unified pairwise discrete Markov Random Field (MRF)
on a graph, where a label is assigned to each node x. Each label is associated to a value
that characterizes the node as tumor or background, and a displacement value. The optimal
segmentation-registration is found out by minimizing a MRF energy equation that involves
unary terms representing classification likelihoods, a similarity metric between the source
and target images, and pairwise terms to control the smoothness of the concurrent regis-
tration and segmentation. This approach relaxes the registration term in areas with high
classification score leading to high dissimilarity between volumes, and at the same time
introduces spatial information on the brain structures to reduce false tumor detection. The
method result were evaluated mostly qualitatively, although the authors also presented a
quantitative analysis of 33 FLAIR volumes based on Dice score, False and True Positive
and mean absolute distance between contours outside of the tumor area.

2.1.1 Discussion

The difference between a normal atlas representing a healthy brain and a patient’s image
with a tumor lies not only with the lesion itself but also with the secondary deformations
present in the rest of brain structures. For example, the ventricles in a patient’s image may
appear displaced and deformed due to the pressure exerted by the tumor, i.e. mass-effect,
or the tissue texture and intensity around the tumor created by the presence of edema and
infiltration. Figure 2.3 shows the deformation caused by the mass-effect to the ventricles
for three different patients. One can see that the tumor’s geometry is quite irregular and
far from the spherical approximation assumed in [16]. All methods proposed by Dawant
et al. [18], Cuadra et al. [16] and Stefanescu et al. [87] consider the tumor as the only
major differences between a healthy and cancerous brain without considering changes to
other structures or reference points. These approximations will result in large differences
between the images that will lead to inexact results. Another general issue with those
methods is the selection of the parameter that controls the regularization term. The value
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should not only vary according to the tissue type, but also with the deformation level caused
by the tumor mass-effect. In general, this parameter is set in an ad hoc manner and there is
no real understanding on what is the effect of this parameter on the registration.

Parisot et al. [71] proposed a more recent method that addresses the problem in another
direction. The registration problem is coupled with the tumor segmentation problem in
a unified pairwise discrete MRF model on a sparse grid. One of the main issues of this
method relies on the initial tumor segmentation carried out with a Gentle Adaboost Algo-
rithm [26] which may introduces initial segmentation errors. Another issue is that similar
to the other methods reviewed in this section, this approach only focuses on handling the
large dissimilarity in the tumor area, and does not consider the dissimilarity caused by the
deformation of the brain structures.

(a) Patient 1 (b) Patient 2 (c) Patient 3

Figure 2.3: Mass-effect from three different patient cases. The slices were taken from a
T1-weighted MRI. The tumors are located in areas pointed out by the arrows. The images
were provided by The Brain Tumor Analysis Project at University of Alberta [67].

2.2 Methods Based on Bio-mechanical Models
In the literature, one can find numerous methods that use bio-mechanics models of brain
tissues to study the deformation generated by the presence of a tumor. One of the most
popular is the Finite Element Method (FEM) [6] that approximate the atlas by using an
irregular 3D mesh and a discretization of the constituent law of continuous mechanics at
each mesh node. A second approach is based on an Eulerian formulation [25, 53]. The
Eulerian description, introduced by d’Alembert, focuses on giving attention to what is oc-
curring at a fixed point in space as time progresses, instead of giving attention to individual
nodes as they move through space and time. Before describing each methods, let’s briefly
review some bio-mechanical models of brain tissues one can find in the literature.

2.2.1 Models For Brain Tissue Mechanical Properties

The equations that govern the mechanics of a continuous materials include fundamental
laws of motion that satisfies various conservation principles such as: mass, momentum,
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and energy. Different constitutive equations to model the brain tissue mechanics have been
formulated in the literature. The models are divided into two main categories: single-phase
viscoelastic and biphasic elastic models. The first class includes: linear elastic model that
represents the brain tissues as an isotropic linear elastic solid obeying Hooke’s law [57].
The constitutive equation proposed by this model is:

σ = λTr(ε)I+ 2µε (2.2)

where σ is the strain tensor, ε is the stress tensor, I is an identity matrix and λ and µ are
the first and second Lamé parameters [55].

The single-phase viscoelastic representation also includes constitutive models based on
quasi-linear viscoelasticity theory [28]. The assumption behind this model is that brain
tissues are non-linear elastic solids that can be represented by equations modeling hyper-
elastic behavior with a linear viscoelastic relaxation term to describe time-dependency.
The Mooney-Rivlin and the Ogdeon are hyper-elastic models used for this purpose [9].
The Mooney-Rivlin equation defines the strain energy potential in terms of the material
constants µi:

W =
µ1

2

(
I1 − 3

)
+

µ2

2

(
I2 − 3

)
(2.3)

I1 = J− 2
3 I1 I1 = λ2

1 + λ2
2 + λ2

3 J = det(F) (2.4)
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2
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2
3 + λ2

3λ
2
1 (2.5)

where W is the energy function, I1 and I2 are the first and the second invariants of the uni-
modular component of the left Cauchy-Green deformation tensor; and F is the deformation
gradient, for an incompressible material, J = 1.

The Ogdeon model defines the strain energy potential in terms of the material param-
eters µi, αi and the principal stretch ratios λi. The most recent constitutive equation that
follows the Ogdeon formulation is proposed by Miller and Chinzei [59], and is defined as:

W =
2

α2

t∫
0

[
µ(t− τ)

d

dτ
(λ2

1 + λ2
2 + λ2

3 − 3)

]
dτ (2.6)

µ = µ0

[
1−

n∑
k=1

gk (1− exp(−t/τk))

]
(2.7)

where W is an energy function; λi ∈ {1, 2, 3} are the principal stretches; µ0 is the in-
stantaneous shear modulus in the un-deformed state; τk are the characteristic times; gk are
relaxation coefficients; and α is a material coefficient.

The other class of models is the biphasic elastic representation, that is based on Hakim
et al. [36] work who stated that brain tissues are similar to porous solids saturated by
fluid where they change according to the hydration and applied loads. This model obeys
the Biot’s consolidation theory [10]. It is well known that the gray matter is stiffer and
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less porous than the white matter [73]. Mechanical loadings cause instantaneous tissue
displacement and deformation due to hydrodynamic changes of the interstitial fluid. The
Partial Differential Equation (PDE) that describe this behavior are:

∇ ·G∇U+∇ G

1− 2 ν
(∇ ·U)− α∇p = 0 (2.8)

α
∂

∂t
(∇ ·U) +

1

S

∂p

∂t
−∇ · k∇p = 0 (2.9)

where G is the shear modulus, ν is the Poisson ratio, α is the ratio of fluid extracted to
volume change of the tissue under compression, k is the hydraulic conductivity and 1/S is
the amount of fluid that can be force into the tissue under constant volume [13].

2.2.2 Atlas Registration Based on FEM

One of the first attempt to use FEM and bio-mechanical models to register atlas to brain
tumor image registration was presented by Kyriacou et al. [48]. They proposed to initially
shrink the tumor in the patient’s image to an infinitesimal mass, and then to register the at-
las to the resulting volume without tumor. Once the atlas is registered, the tumor is seeded
and expanded in the atlas. This method works over cross-sectional images and with plain
stress, assuming zero stress in the normal direction to each section. The displacements
caused by the contraction and expansion of the tumor are determined by using FEM over
a triangular mesh in 2D. The models for tumor growth and mass-effect are based on two
assumptions: that white matter, gray matter, and tumor tissues are non-linear elastic solid
material obeying the Mooney-Rivlin model (see Equation 2.3), and that the tumor is stress
free with a uniform strain e0 that make it grows uniformly. Initially, the method shrinks
the tumor by applying negative strains, i.e. e0 in the range [−0.6,−0.9]. Then, the atlas is
registered to the volume without tumor by using a registration method based on an elas-
tic deformable model, proposed by Davatzikos [17]. Once the atlas and volume without
tumor are registered, a non-linear regression model estimates the seed initial position and
volumetric expansion that generate the best deformation similar to the patient’s image. For
a circular seed of diameter Ds, the growth diameter Dt is estimated by Dt = Ds(e0 + 1).
Thus, for e0 = 0, the tumor does not grow. This approach simulates the mass-effect over
parenchyma, dura, falx membranes, and ventricles. The authors reported some limitations
in the practical implementation of this method regarding the distortion of the the mesh,
especially around the tumor. Another limitation is the uniform tumor growth, which is not
realistic. The authors also reported that the tumor contraction procedure generates unreal-
istic deformations of the brain anatomy.

Mohamed et al. [64] proposed a registration method for brain tumor images that in-
volves: a bio-mechanics model for tumor and peri-tumor edema mass-effects; a statistical
training procedure to estimate the model’s parameters; and a deformable image registration
to refine the deformation in the atlas to the patient’s image. The constitutive model for
the brain tissue mechanic is based on a hyper-viscoelastic model introduced by Miller and
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Chinzei [59] (see Equation 2.6), while the tumor growth model follows Wasserman et al.
proposal in [97]. The force of expansion generated by the neoplasm is approximated by a
constant outward pressure P that acts on the tumor boundary. The edema expansion is also
considered in this model, which is simulated with an isotropic strain e expansion in analogy
to thermal expansion. The approximation of the tumor and edema in the atlas are repre-
sented by two concentric spheres. In order to match the deformation caused by the tumor
and edema, the method estimates the following parameters: the center of the tumor ct, the
radii rt and dr for the size of the tumor and edema respectively, and the pressure P . These
parameters are estimated through a training process that creates a statistical model of the
final deformation χf from a set of ns normal subjects. The procedure can simulate the tu-
mor mass-effect with nm different parameters sets, θ[i] = (ct, rt, rd, P, [i] = {1, . . . , nm})
over the subject images. Thus, the training step obtains (ns × nm) deformations, which
are determined using Principal Component Analysis (PCA). The result is a deformation
map estimated from the sum of two components in orthogonal subspaces representing a
statistical model of the the transformation caused by the simulated tumor on each subject
registered to the atlas. Then, the statistical deformation model is used to warp the atlas to
the patient’s image. The performance of this method was evaluated over two cases: a real
tumor MRI and a simulated volume image with a tumor. In the evaluation, 21 landmarks
were selected around the tumor area in both images, the patient’s image and atlas. The
results show that the maximum and mean errors between the landmarks were reduced by
71% and 57.6% respectively, in comparison to the registration results without the proposed
biomechanics model. To illustrate this process, we have taken one of the graphic results
presented by Mohamed et al. in their paper. In Figure 2.4 one can see the difference be-
tween the result obtained by directly applying a registration method to match the atlas to
the patient’s image without any biomechanics model and the result obtained by Mohamed’s
et al. method.

Figure 2.4: A registration result obtained by the method proposed by Mohamed et al. [64].
Left to right: atlas image, patient’s image, registration result without using bio-mechanical
model, and registration result using Mohamed’s method.

The statistical procedure proposed in [64] is computationally expensive because of the
number of simulations required to apply the PCA is large. Therefore, the use of an opti-
mization process to estimate the possible best model’s parameters is computationally un-
feasible. For these reasons, Zacharaki et al. built a new approach based on Mohamed et al.
work, i.e. a multi-resolution framework called ORBIT [106]. The framework searches for
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the best parameters, including: initial position of the tumor seed and size of the seed, that
deform the atlas to match the patient’s image. The mechanical models for mass-effect and
tumor growth used by this approach are the same as the one proposed by Mohamed et al..
However, this approach implements a new strategy to approximate the displacement field
caused by initial parameters, and an optimization procedure to find the best parameters for
a given patient. The approaches consists of three principal steps:

1. A simulation model for tumor growth and the computation of mass-effect based on
local PCA: In order to make feasible the use of an optimization process, Zacharaki
et al. propose to separate the training step from the model’s parameter search. This
approach searches for the tumor seed position xt and the sizes of the seed rt. In the
training process, ORBIT obtains N displacements fields u(xt[i]), i = {1, . . . , N},
with parameters θi = (xt[i], rt[i]), i = {1, . . . , N}. The training process is carried
out only once to estimate a mean displacement ū, a matrix V containing the eigen-
vectors of the covariance matrix that correspond to the M largest eigenvalues, and a
vector ẑ = [ẑ(1), . . . , ẑ(M)]T corresponding to the eigenvalue coefficients. The esti-
mation of these parameters is carried out using PCA over the N displacement fields.
Once ū, V, and the vector ẑ are determined, a new displacement field û(xt[j]) can
be approximated for a new tumor parameters θ by û(xt[j]) = ū + Vẑj , where the
value of the new ẑj is interpolated from the previous ẑi coefficients in the vector ẑ.

2. A deformable registration method: The authors extended the HAMMER method, an
elastic deformation method proposed by Dinggang and Davatzikos in [22] for atlas
to brain tumor image registration. The deformation method calculates displacement
field by maximizing a similarity criterion based on an attribute vector. Each voxel is
represented by an attribute vector involving features of the brain structure and tumor
geometry in both images: the target and the source.

3. An optimization process: The optimality criterion for θ is given by:

θ = argmin
θ

E

E =
3∑

k=1

∑
x∈ΩE

ckhk(x)Ek(x; θ)
(2.10)

where E consists of three normalized measures, E1 : the residual volume between the
co-registered atlas and patient’s image, E2 : the distance between attribute vectors,
E3 : the laplacian of the deformation field. ck : is a weight for each measure Ek

and hk : is a weight according to the voxel location x. The weight value is inversely
proportional to the distance from the tumor boundary and ΩE is the volume over
which E is calculated.

Figure 2.5 shows a block diagram of this method. ORBIT was evaluated over synthetic
and real images. The registration error was estimated to be 1.9± 0.2mm around the tumor
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and 0.8 for the rest of the tissues. Also, the authors used landmarks to evaluate the method’s
performance and the distance between the ventricle boundaries. ORBIT results where bet-
ter than the original HAMMER method and a non-rigid registration method implemented
in the Segmentation and Registration Toolkit (ITK) [45]. In another work, Zacharaki et al.
in [107] proposed a new method based on a statistical model to reduce the computational
time [107].

Figure 2.5: Method proposed by Zacharaki et al. [106] for atlas to patient registration in
the presence of tumor

2.2.3 Methods Based On Eulerian Formulation

Methods based on FEM present some issues related to the need for domain meshing and
re-meshing during simulations and to its high computational cost. In addition, large defor-
mations generate non-linearity in the energy function that produce instability and inaccu-
racies. In the light of these challenges, alternative formulations that do not require meshes
have been developed. In this subsection, we present some methods based on two Eulerian
Formulations introduced by [37] and [38]. In both models, the brain tissues are represented
as a linear inhomogeneous elastic material, with different mechanical properties for white
matter, gray matter, and ventricles. The first model in Hogeas et al. [37], represents the
tumor mechanical action on the surrounding tissues through a uniform outward force at the
tumor boundary, i.e. as an inhomogeneous linear elastic material that can be represented
by a Maxwell-Wiechert model with Neumann boundary conditions. At each iteration of

the model, the boundary of the tumor is expanded with a predefined velocity v =
∂u

∂t
.

The motion of the boundary is tracked with a level set function of an evolving fronts. All
this representation is embedded in a regular grid containing the brain plus a surrounding
fictitious material. Figure 2.6 illustrates the grid representation.

Zacharaki et al. in [105] compared the first Eulerian model with the model for mass-
effect implemented by Mohamed et al. in [64]. Similar to the ORBIT structure, the two
models were evaluated as a pre-processing step before applying the deformable registration
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Figure 2.6: This figure illustrates the regular grid used to represent the brain and tumor and
to solve the system equations derived from the Eulerian formulation [37].

method based on the HAMMER algorithm [106]. The comparison was performed over four
brain tumor patients and the accuracy of the models was assessed by setting landmarks
points in the registered atlas and the patient’s image. The results indicate a non-significant
difference between the models. However, the model in [37] was computed ten times faster
than the model used by Mohamed et al. [63].

Motivated by the reduction of computational time that Eulerian methods requires, Zacharaki
et al. presented another work for spatial normalization of MRIs from patients with brain
tumors in a common stereotaxic space, with the goal of analyzing groups of patients. The
method is an extension of ORBIT using the Eulerian formulation proposed by Hogea et
al. [37]. In this framework, the authors embedded the simulation framework in an objec-
tive function that is solved with an asynchronous parallel patter method called APPSPACK
[32]. The method searches for the position and size of the seed as well as a tumor factor
to control that the expanding tumor in the atlas does not exceed the size of the real tumor.
Tumor growth is simulated in the atlas for a parameter set with a tumor seed that is cre-
ated by eroding the tumor in the patient’s image. Then, the deformable registration method
derived from HAMMER is applied. If the similarity between the registered atlas and the
patient’s image is below a threshold, then the method selects a new set of parameters and
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starts again. According to the authors, the registration error of this new implementation
was reduced by 55% for the majority of 21 cases in comparison with ORBIT.

The second Eulerian model proposed by Hogeas et al. in [38] pursues two different
interests: improving the deformable registration from images of brain tumor patients to
a common stereotactic space and improving the prediction of glioma growth. In this
approach, the glioma growth is represented by a non-linear reaction-advection diffusion
model while the brain tissues is modeled as a linear elastic inhomogeneous material as in
the previous approach. The tumor exerts a local pressure field on the surrounding tissues,
which is given by a parameterized function of the tumor cell density. The equation that
represents the tumor density through the time involves three terms: a diffusion term with
different coefficients for white matter and gray matter; an advection term that accounts for
displaced tumor cells as a consequence of the underlying tissue mechanical deformation;
and a reaction term representing the cell proliferation and death.

Gooya et al. [31] adopted this second Eulerian formulation with the purpose of regis-
tering atlases to brain images with glioblastoma multi-forme, which is a malignant brain
tumor with a high fatality rate. Gooya et al. use four MRI types, T1, T2, T1C and FLAIR,
which are segmented in six different tissues types WM, GM, CSF, enhancing tumor (ET),
non-enhancing tumor (NET) and edema (ED). The approach calculates posterior proba-
bility maps from the segmented images using the Support Vector Machine (SVM) algo-
rithm. The probability maps from the atlas and the patient’s image are registered in an
optimization process that involves an expectation maximization procedure to find the joint
maximum probabilities for each class. The expectation maximization procedure is in turn
encapsulated in a more general optimization process carried out by APPSPACK [32] which
searches for the bio-mechanical model parameters, including: seed position, the diffusion
coefficients for gray and white matters, a proliferation coefficient, and two parameters re-
quired by the function that estimates the local pressure field of the tumor. According to the
evaluation, this approach outperforms ORBIT over fifteen patient cases. Gooya et al. as-
sessed the accuracy of the method qualitatively, and also quantitatively. The quantitatively
evaluation relied on the computation of Jaccard ratios between labels of four segmented
regions: grey matter, CFS, tumor and ventricles.

2.2.4 Discussion

According to this review and the published results, the best strategy so far to tackle the prob-
lem of atlas to image patient registration with a tumor is by simulating the tumor evolution
in the atlas including the mass-effect before applying non-rigid registration. The simula-
tion is carried out via a bio-mechanics model that describes the tumor-growth dynamics
and the parenchyma mechanical response to the pressure exerted by the tumor. Most of the
methods that follow this direction have been proposed as an optimization problem whose
objective is to find optimum values for some parameters such as seed position, seed size,
and tumor pressure.
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The methods currently developed to simulate tumor evolution and mass-effect in at-
las use either Lagrangian formulations by FEM, or Eulerian formulations whose equations
are solved using a regular grid. Methods that use FEM present some challenges inherent
to the computational cost that they imply, which hamper the use of optimization tech-
niques. One of the reasons for FEM’s high computational cost is related to the fact that the
brain-structure geometry is represented with an unstructured mesh composed of triangu-
lar or tetrahedral elements, i.e. a regular geometry approximating a non-regular geometry.
Therefore, the larger the number of nodes, the better the brain geometry approximation
is. However, as the the number of nodes increases, the computational requirement also
increases. Another important factor is that the strain field frequently deteriorates the mesh
quality. Consequently, the mesh must be constantly recalculated, which is computationally
expensive.

On the other hand, the Eulerian formulation proposed by Hogea et al. [37, 38] re-
quires less computational time and can be integrated in one optimization framework, e.g.
Zacharachi et al. [107], Gooya et al. [31] and Hogea et al. [37, 38]. The Eulerian formu-
lation uses a regular grid, that is simpler to generate than a tetrahedral mesh and does not
require being re-meshed. In addition, for simplicity Hogea et al. represent brain tissues
with a linear-elastic model, which is computationally faster than a hyper-elastic model.
However, issues related to the accuracy of a brain structure geometry approximation with
a regular grid and the use of a linear-elastic model in this context should be further evalu-
ated. Regular grids whose elements are the same size do not provide the same flexibility
of an unstructured mesh to fit irregular geometry with different size elements and density
according to the designer’s interest. In Figure 2.7 shows an iso-surface triangular mesh
over a bone geometry. One can see how different triangle sizes fit the object’s surface.

Figure 2.7: Illustration of an iso-surface triangular mesh fit to a bone geometry [75].
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2.3 Summary
The following Table summarizes the methods reviewed in this chapter for atlas to brain
tumor image registration.

Table 2.1: Methods for Atlas to Brain Tumor Image Registration.

Method Brain Tissue Model Tumor Growth Model Contributions

Dawant et al.,
2002, [18]

N/A N/A Introduces a large seed in
the atlas and propose a reg-
istration method based on
Thirion’s Algorithms [89].

Cuadra et al.,
2004, [16]

N/A Radial Growth Extends [18], introduces a
small tumor seed with radial
growth.

Stefanescu et
al., 2004, [87]

N/A N/A Masks the tumor and intro-
duces a non-rigid registration
method based on optical flow
with diffusion filter as regu-
larization term.

Kyriacou et al.,
1999, [48]

Non-linear
elastic solid

Uniform growth
with a constant

strain

Contracts the tumor from the
patient’s image before regis-
tering the atlas. Then, grows
a seed in the atlas.

Mohamed et al.,
2006, [64]

Non-linear
hyperelastic

material

Wasserman’s
Proposal in [97]

Includes tumor and edema
extension in the biomechan-
ical model, implements a sta-
tistical strategy to find the
model parameters.

Zacharaki et al.,
2008, [106]

” ” Proposes a statistical model
to estimate deformation field,
uses an optimization frame-
work and introduces a de-
formable registration method
based on HAMMER algo-
rithm [22].

continued in page 24
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Method Brain Tissue Model Tumor Growth Model Contributions

Zacharaki et al.,
2009, [107]

Inhomogeneous
hyperelastic

material

Non-linear
reaction-advection

diffusion model

Is an extension of [106] intro-
ducing the Eurlerian formu-
lation proposed by Hogea et
al. in [37].

Gooya et al.,
2011, [31]

” Non-linear
reaction-advection

diffusion model

Registers atlas to brain im-
ages with Glioblastoma im-
plementing the Eurlerian for-
mulation proposed by Hogea
et al. in [38].

Parisot et al.,
2014, [71]

N/A N/A Introduces a concurrent tu-
mor segmentation and at-
las to patient registration
framework.
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Chapter 3

A New Approach for Atlas to Patient
Image Registration with Tumor

In the last chapter, we reviewed methods that attempt to solve the problem of atlas to
patient registration with tumors, and classified them in two main categories: methods with
vs without bio-mechanical models. Following the exceptional success of bio-mechanical
models over optical flow methods, we will introduce in this chapter a new approach to atlas
to patient image registration capable of dealing with brain tumor based on tumor growth and
mass-effect simulations. The aim of the simulation is to increase the registration accuracy
between the atlas and the original patient image by deforming the atlas’s brain structures
according to the mechanical behaviour of the brain tissue and tumor pressure. Once the
brain structures has been deformed due to the tumor growth and mass-effect simulation,
our method applies a common deformable registration procedure to complete the process.
The results obtained in this way are more accurate than the results obtained by simply
registering the images directly. Our approach consists of a set of steps involving tumor
segmentation, deformable registration of the tumor to the atlas space, a level set method
to build a displacement map that guides the tumor growth simulation according to the
segmentation, sampling and seeding, atlas deformation with a mesh free method, and a
finally deformable registration of the atlas after the mass-effect simulation to the patient’s
image. All these stages are illustrated in Figure 1.4 in Chapter 1, and explained with further
details in this chapter.

Our main contributions are focused on the tumor growth simulation in the atlas. The
strength of our approach is that it relies on a simulation of tumor growth based on an
actual tumor boundary extracted from the patient’s image instead of assuming an unrealistic
spherical or uniform growth model. Our method also relies on a mesh-free method to
compute the mass-effect deformation, and avoid the troubles with mesh-based methods
when dealing with large deformations. As an added bonus, our method is implemented in
parallel in GPUs using the CUDA language which reduces the computational time required
for the simulation. For simplicity, we will refer to our method as ARMSTG, which is an
acronym for Atlas Registration Based on Mesh-free Simulation of Tumor Growth. Sections
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3.1 to 3.6 correspond to a description of each step illustrated in Figure 1.4. Section 3.7
explains the GPU implementation of the tumor growth and mass-effect simulation.

3.1 Tumor Segmentation
The first stage of ARMSTG as shown in Figure 1.4 consists of segmenting the tumor in the
patient’s image. ARMSTG works with a binary tumor mask covering all the areas affected
by the tumor including edema, tumor core, cysts, and necrotic tissue.

3.1.1 Segmentation Method

During the development of ARMSTG, we used images from the Multi-modal Brain Tumor
Segmentation Challenge (BRATS 2013) [58]. This database provides a training data set
containing multi-modal MRI scans of patients with low-grade and high-grade gliomas,
skull stripped. The database also provides manual segmentation of the tumors that we used
to check the accuracy of the segmentation.

As part of this thesis, we have developed an automatic segmentation algorithm, named
Simple Tumor Segmenter (STS) [20, 81], which segments brain tumors based on enhanced
tumor contrast from standard clinical MRI sequences. This algorithm was designed as part
of the the Brain Tumor Analysis Project’ objective, which is a collaboration between the
University of Alberta’s Computing Science Department and the Cross Cancer Institute to
improve the treatment of brain tumors by applying machine learning and image processing
techniques.

STS segments three distinctive tissues associated to a brain tumor: edema, tumor core,
and enhancing rim from four standard clinical MRI sequences: T1-weighted (T1), T1-
weighted with gadolinium contrast agent (T1C), T2-weighted (T2), and Fluid Attenuated
Inversion Recovery (FLAIR). The core of this algorithm is an automatic histogram multi-
thresholding procedure followed by morphological operations that include geodesic trans-
formations [84]. Although segmentation methods based on histograms are very sensitive to
the poor contrast at the boundaries of the tissues, STS overcomes this challenge by using
the information provided by the different modalities and with the use of a double threshold-
ing at different intensity levels. Figure 3.1 summarizes the segmentation method presented
in [20].

This algorithm automatically searches and places different thresholds in the histogram
envelope of brain MRIs such as the one depicted in Figure 3.2. In general, brain MRI
histograms are bimodal. The first mode contains the most common intensity values in
the image background, which are zero or close to zero while the second mode mostly
contains intensity values corresponding to brain parenchyma (white and gray matter) and
the surrounding soft tissues.

With the use of the localized thresholds, the initial stage of the STS yields binary images
that contains all different regions of interest (e.g. background, foreground, skull, edema and
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Figure 3.1: Segmentation method based on multi-thresholding

Figure 3.2: Bi-modal function with modes ω1 and ω2 and multiple thresholds: thα, th1, th2

and thΩ

.

enhancing rim) corresponding with high contrast values along the different MRI sequences.
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As Figure 3.2 shows, STS localizes three specific thresholds and their resulting binary
images are illustrated in Figure (3.3) and Figure (3.4)

Figure 3.3: Thresholding results on one slice from FLAIR. The top left is the slice in
FLAIR and top right is the result of thresholding with th1. The bottom images are the
results obtained by thresholding with th2 on Flair.

Figure 3.4: Thresholding results on one slice from different MRI sequences. On the top
row from left to right: T1, T1C, T2, T1C-T1. On the bottom row from left to right, the
thresholding results for th2 over the respective modality above.

In order to automatically localize the thresholds, STS analyses inflexion points on the
histogram envelopes where the sign of the curve slope changes between the first and second
modes of the histogram, and after the second mode and thΩ. This analysis is perform over
a smoothed histogram envelope of the MRI using a Savitzky-Golay FIR filter [82].
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Thresholds thα and thΩ segment the image background and the last fluctuating intensi-
ties of the histogram respectively. The threshold th1 segments the image background plus
regions of low intensity such as ventricles and sulci. The resulting image can be seen in
Figure 3.2 and at the top right of Figure 3.4 and is a segmentation of the brain tissue, ex-
cluding CFS. In the case of BRATS’ images the segmentation of the brain tissue is more
clear since these images are skull stripped, examples of this can be seen in Figure 3.16. We
will refer to this threshold in different part of this document. The threshold th2 segments
high intensity values yielding an image that contains edema or part of the tumor represented
with high intensity values and skull.

In order to establish a baseline for the method, we compared segmentation results from
a set of sixteen patient cases with glioblastoma at different stages of development. The
original clinical sequences were provided by the case database at the Cross Cancer Insti-
tute, Alberta. An oncology clinical expert provided a hand-segmentation for these sixteen
cases identifying two tumor tissue classes: edema, and enhancing rim around the tumor
core. The segmentation results were compared using Dice coefficient [21] to assess the
similarity between the images segmented by our method and the images segmented by the
expert. The results showed a high degree of agreement between the manual and automatic
segmentations for edema and tumor core with the Dice coefficient averages for Edema and
Core of 81% and 85% respectively. Figure 3.5 shows a segmented image by STS and the
comparison with a manual segmentation.

Figure 3.5: STS segmentation.
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3.2 Tumor Registration from MRI Space to Atlas Space
Once the tumor is segmented in the patient’s MRI images, ARMSTG uses the information
related to the position, size, and the segmentation boundaries to guide the simulation of the
tumor growth in the atlas. For this purpose, ARMSTG brings the segmented tumor from
the patient image space to the high resolution atlas space. The purpose of this step is to
grow the tumor in the atlas in a similar location, size, and shape of the original tumor in the
patient’s image. This step is carried out with the following procedure:

1. ARMSTG extracts two masks representing the brain tissues for the patient and atlas
images. (see Figures 3.6a and 3.6b). The masks images are obtained with a simple
threshold Thα in Figure 3.2 that is automatically estimated using the segmentation
method in 3.1.

2. The patient mask boundary is then registered to the atlas mask boundary using a
deformable registration based on the Demons algorithm [89] (Figure 3.7a).

3. The displacement field of the registration between boundaries is applied to the tumor
mask (Figure 3.7b). The result of the deformable registration is a matrix of the same
dimension as the atlas image, containing the displacement for each point to match
the atlas image. ARMSTG adds the displacement field to the segmented tumor and
uses bilinear interpolation to complete the missing information of the reconstructed
image.

3.3 Displacement Map for Tumor Growth Simulation us-
ing Time Reversal

In this step, ARMSTG shrinks the segmented tumor boundary to a unique seed point using
a level set method (see Figure 3.8). During this shrinking process, our method inwardly
propagates the boundary of the segmented tumor with a constant velocity in the inverse nor-
mal direction of the boundary until it becomes a single point (tumor center). This shrinking
process is carried out in the binary mask that was brought to the atlas resolution.

During the tumor growth simulation, ARMSTG regrows the tumor from the tumor
center in the outward direction using the evolution of the level set boundaries saved during
the shrinking process. Using this boundary evolution, the algorithm computes at each time
step the deformation produced by the presence of the tumor based on a bio-mechanical
deformation simulation. This reverse procedure is carried out over the atlas image and will
later be explained in Section 3.5.1

The level set method was introduced by Osher and Sethian [70] for tracking interface
motion. As illustrated in Figure 3.9, an interface is defined as the boundary between two
different regions in a given domain. The general idea behind the level set method is to
follow the evolution of a function φ whose zero-level set always corresponds to the position
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(a) Patient (b) Mask

(c) Atlas (d) Mask

Figure 3.6: At the top, (a) a slice from a patient image, and (b) the mask of the patient slice.
At the bottom, (c) the respective slice in an atlas, and (d) the mask of the atlas slice.

of the propagating interface [1]. The motion of φ is governed by the partial differential
equation:

∂φ

∂t
+ v · ∇φ = 0 (3.1)

where t is the time, ∇ is the gradient operator, and v is the velocity field. The function φ

moves along its normal vector n =
∇φ

∥∇φ∥
with velocity v over time.

The velocity field v can be defined by v = an, where a is a constant such that when
a > 0 the interface moves in the normal outward direction and when a < 0 the interface
moves in the normal inward direction [69]. Using this notation, the level set equation is
defined by:

∂φ

∂t
+ a∥∇φ∥ = 0. (3.2)
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(a) Boundaries (b) Tumor

Figure 3.7: (a) Boundaries of the patient slice (blue) and the atlas slice (red) after registra-
tion, and (b) the registered tumor in the atlas slice after deformation.

(a) Tumor Segmentation (b) Tumor Boundary (c) Level set Contours

Figure 3.8: (a) tumor segmentation, (b) boundary of the segmentation, and (c) inward level
set and the seed in green

In addition, the velocity field v can be defined as a scalar function F (·) of one or various
parameters such as the interface curvatures. Using this notation, the corresponding level
set equation is:

∂φ

∂t
+ F (·)∥∇φ∥ = 0. (3.3)

One can solve the level set equation by approximating ∂φ
∂t

with:
φn+1 − φn

∆t
.
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The function φ at a point x ∈ RN is set to be equal to the signed distance function
defined by: ⎧⎨⎩

φ(x) = 0 ∀x ∈ ∂Ω
φ(x) < 0 ∀x ∈ Ω−

φ(x) > 0 ∀x ∈ Ω+

(3.4)

where Ω− indicates the region inside the interface and Ω+ the region outside the interface
as illustrated in Figure 3.9. The simplest implementations of a level set algorithm is to

interface

+

outside

inside

Figure 3.9: Interface Propagation

use the spatial derivatives approximations such as: upwinding, Hamilton-Jacobi Eno, and
Hamilton-Jacobi Weno. More details about these methods can be found in [69] and [83].

3.3.1 Building the Displacement Map

At each iteration of the level set, during the propagation of the segmented tumor boundary
inverse to the normal direction, ARMSTG saves the points on the evolving interface in a
list of point coordinates. Each point in the list contains a link to its previous position in
the evolving interface, generating a displacement map. The point coordinates computation
entails tracking the displacements ∆x for each point x produced by the level set procedure.
ARMSTG uses a Lagrangian formulation for the boundary evolution equation in order to
estimate the displacements:

∆x

∆t
= v(x). (3.5)

The velocity field that moves the boundary (Equation 3.1) is expressed by:

v = a

(
φx

∥∇φ∥
,

φy

∥∇φ∥
,

φz

∥∇φ∥

)
(3.6)

where each component of v is the velocity in x−direction, y−direction, and z−direction
respectively, a is a constant defined previously, and φx, φy, φz are the partial derivative of
φ with respect to each coordinate.

For each point ARMSTG assumes the displacement in the z−direction equal zero and
its velocity components are estimated using the Hamilton-Jacobi Weno method [69, 83].
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The displacement map built in this phase is used later during the tumor growth and mass-
effect simulation described in Section 3.5.1.

3.4 Sampling and Seeding the Atlas
ARMSTG performs the tumor growth and mass-effect simulation over a set of points rep-
resenting the problem domain and its boundary. Those points are scattered in the image
space representing brain tissue, and serve as force field nodes and integration points for a
mesh-free simulation that computes the deformations created by the presence of the tumor
(Section 3.5). Figure 3.10 shows a slice from an atlas image with the sampled points in
blue and the tumor seed location in red.

Figure 3.10: Node distribution (blue points), and tumor seed (red point)

The result of this step is a list containing some sampled point coordinates in the atlas
space, including some tumor seed points. Each point in the list contains an integer number
that identifies the brain tissue type to which it belongs. ARMSTG defines tissue types from
0 to 5 corresponding to: (0) brain tissue, (1) brain boundary, (2) ventricles and sulci, (3)
tumor, (4) tumor boundary, and (5) tumor seed points.

Initially, the set of point only belongs to brain tissue, brain boundary, ventricles and
sulci, and tumor seed. They are sampled points taken from the atlas space using different
sampling methods, plus some added points located at the same position of the tumor level
set center. As the simulation runs, the point’s labels can change.

3.4.1 Sampling Methods

In this thesis, we implemented three different algorithms for sampling the domain: an
adaptive method, a Poisson-Disk sampling, and a regular distributed sampling. For adaptive
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sampling, we implemented the algorithm proposed in [103] by Yang et al., which generates
nodes with non uniform distribution and spatial density based on the local image variations.
The method computes a feature map of the image according to the spatial distribution of the
largest magnitude of the second directional directive, then employs the Floyds-Steinberg
error-diffusion algorithm [24] to distribute the sampling nodes in the areas with the most
image details, e.g. using this method the boundaries around ventricles receive the highest
node density. The feature map estimated by the method σ(i, j) for the pixel i, j is base on
this method and is defined by:

σ(x, y) =

(
G(x, y)

A

)γ

where

G(x, y) = max
θ∈ [ 0, 2π]

|f ′′
θ (x, y)| .

(3.7)

In Equation 3.7 the parameter A is the largest value of G(x, y) over the image domain and
γ is a positive constant set to 1. The feature map is used to compute an indicator function
b(i, j):

b(i, j) ≡

{
1 if σ(i, j) ≥ q

0 otherwise
(3.8)

which indicates the presence of a node if b(i, j) = 1, the variable q is a threshold introduced
as a parameter. The procedure uses the indicator function values to estimate a quantization
error for each pixel (i, j) as shown in Equation 3.9. Then the quantization error are diffused
at (i, j) in proportions to its four immediate neighbors.

e(i, j) = σ(i, j)− (2q)b(i, j). (3.9)

The Poisson-Disk node generation is based on Dunbar and Humphrey’s work in [23].
Poisson-disk distributions mimic the distribution of photo-receptors in a primate eye, and
is able to generate nodes with blue noise characteristics for computer graphic applications.
This sampling method begins with an initial set consisting of a single point randomly cho-
sen in the atlas image domain. The initial point is added to an output list or processing list.
Iteratively the method generates k more points randomly within an annulus surrounding
a chosen point from the current set in the processing list. The annulus around the chosen
point is limited to a minimum allowable distance between two radius r and 2r. If the gener-
ated point is close (within radius r) to an existing sample in the current processing list, then
the point is rejected else the point is added to the processing list. This procedure continues
until it is no longer possible to add more points to the processing list.

The last sampling, regular distributed, was performed by selecting points from the atlas
image with a constant nodal spacing in x, y and z directions [51]. Figure 3.11 shows an
atlas slice with the three different sampling methods implemented in this work. All three
methods were applied to the atlas image slice by slice. Then we joined all the sample points
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(a) Adaptive (b) Poisson Disk (c) Uniform

Figure 3.11: Three different samplings over an atlas slice: adaptive, Poisson disk, and
uniform.

from the slices and added the slice number as a third dimension 3D point samples for each
sampling method.

The sample size for the three methods depends on the certain parameters. For the
adaptive sampling, the number of nodes generated depends on the threshold q which is also
called quantization step size parameter. For Poisson-Disk method the number of nodes
generated depends on the minimum distance r where it is allowed to place the next point
of the sample. For the uniform sampling, the number of nodes depends on the sampling
intervals in the x-direction and y-direction.

3.4.2 Seed Points

In our algorithm, the seed location coincides with the center of the inner contour gener-
ated by the level set method evolution (red point in Figure 3.10) once the boundary has
collapsed to a minimum size. The size of the seed is a parameter that must be set before
the simulation. All the seed points initially share the same location in the atlas image, later
they are distributed around the tumor expanding boundary as the simulation runs. The seed
points are added to the list containing the generated nodes and are initially labeled as seed
points.

3.5 Tumor Growth and Mass-effect Simulation Using a
Mesh-free Method

After generating the nodes and seeding the model, the next steps is to perform the tumor
growth and mass-effect simulation. The simulation of the deformation in the brain struc-
tures produced by the presence of the patient’s tumor necessitates the development of a
novel mesh-free method that simulates the bio-mechanical evolution of the atlas deforma-
tion over time starting from a tumor when it was at the seed size to a tumor fully grown.
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This is done by growing the tumor using the inner contours generated by the level set
method. Before explaining how this simulation is implemented, let us briefly introduce
mesh-free methods.

3.5.1 Mesh-free Methods Overview

Mesh-free methods are an alternative to solve partial differential equation systems without
the need for a fixed mesh or grid. One of the big advantage of mesh-free methods over fixed
mesh methods is that they can easily deal with large deformations that create non-linear en-
ergy function in mesh based method which are hard to stabilize and compute. Mesh-free
method also do not require re-meshing, which reduces computational cost significantly.
Contrary to mesh-based FEM, mesh-free methods approximate continuous mechanic prob-
lems by using a set of scattered nodes that carry the value of the field variables. The
methods fit the shape functions representing the problem domain for each point of interest
based on a set of local nodes called support domain (see Figure 3.13), thus the shape func-
tions are not limited to mesh geometry as in FEM. They can have different shapes so they
can fit closely the geometry of the problem to solve. This advantage allows for more accu-
rate approximations of curve boundaries as illustrated in e.g. Figure 3.12, where a curved
boundary is approximated in mesh-based methods by straight edges of triangular elements
as opposed to a set of scatted nodes in mesh-free methods. The process of node generation
in mesh-free methods is simpler than mesh-based as there is no artificial topology imposed
on the placement. The nodal distribution is usually not uniform and often denser in ar-
eas where the displacement gradients are larger. The domain representation and the shape
function are the most relevant differences between mesh-based FEM and mesh-free meth-
ods while the system of equations representing the physics of deformation are obviously
very similar [6].

Triangular
Elements

Nodes

(a) Triangular Mesh

Nodes

(b) Mesh-free representation

Figure 3.12: Triangular mesh vs. mesh-free domain representation.
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Domain

X

X

X

(a) Support Domains

Figure 3.13: Different support domains defined around points x. The support domain
around a point x is determined by the nodes marked by the donuts ◦.

Tumor Growth

The tumor growth simulation starts by growing the seed boundary points using the bound-
aries generated during the shrinking stage. Each boundary obtained by the level set in Sec-
tion 3.3 is again re-generated in the opposite direction (outwards) during the simulation. At
each iteration, each new point on the tumor boundary moves according to the displacement
map saved during shrinking until the original tumor boundary is reached. During the first
iterations, the size of the seed should be large enough to shape the first contours without
leaving gaps in the boundary. However, as the boundary grows, it is necessary to add new
points in order to avoid the creation of gaps.

First, the current tumor boundary points move to their new positions according to the
displacement map. Then, at each iteration ti, the method checks for all the field nodes
enclosed within the new tumor boundary and changes their labels to tumor boundary or
tumor according to these rules:

1. For each point falling inside of the tumor ARMSTG searches for the closest point
in the list of contour points given by the displacement map. If there is another point
labeled as a tumor boundary in that location, then the point inside of the tumor is
labeled as a tumor point.

2. If there is not any tumor boundary point at the location of the closest point in the
displacement map, then ARMSTG displaces the new point falling inside of the tumor
to the position of the given point in the displacement map and labeled it as a tumor
boundary point.

The tumor growth simulation is carried out in this way during N iterations, where N is the
number of contours produced by the level set method described in Section 3.3.
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Mass-effect Simulation

As the simulated tumor grows from the seed toward the original tumor segmentation bound-
ary, the displacements propagate to the rest of the atlas field nodes. In this way, the brain
structures are deformed according to the tumor progression slowly, avoiding numerical in-
stabilities and converging to stable solutions. ARMSTG estimates the displacement u at
every point x = (x, y, z) by interpolating this field variable from neighboring points falling
inside a local support domain around the point of interest (Figure 3.13). The following
paragraphs describe how the algorithm is implemented.

1. Domain Representation and Support Domain. The field nodes representing the
problem domain are the list of points generated in Section 3.4. A support domain is
defined as a domain in the vicinity of a point of interest that can be or not be a node
[50, 51]. ARMSTG computes support domains for all the field nodes in the list of
sampled points. Equation 3.10 defines the support domain dimension ds around a
point of interest x.

ds = αsdc (3.10)

where αs is the dimensionless size of the support domain which is defined as a scal-
ing of the average nodal spacing dc. The distance dc is initially estimated from the
average distance of K neighbors around x. In our implementation, following similar
ideas as [51, 65], we set αs = 3.0 and treated K as a program parameter.

2. Shape Functions. Shape functions describe the local geometry of the object at any
point of interest x. Shape functions are involved in the approximation of the field
variable u by:

u(x) =
ns∑
i=1

φi(x)ui (3.11)

where ns is the number of nodes sampling the support domain of the point x, φi(x)

and ui are the shape function and nodal field variable at the ith node. In the proposed
mesh-free method the approximation of φi is performed using using Radial Basis
Functions (RBF) [11]. We chose the Thin Plate Splines (TPS) RBF because of its
simplicity (only requires one parameter i.e. an exponent η), and because it produced
less singularities than other functions tested during the method evaluation. This is
defined as:

Ri(x,xi) = rηi (3.12)

where η and ri is the Euclidian distance between the point of interest x and its neigh-
bor xi. In this work η was set to 1

dc×dc
.

3. Mass and Volume. One can see the set of sampled points as physical elements car-
rying on all the simulation variables required to solve the equation system governing
its mechanical behaviour. Two of these variables are mass and volume.
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ARMSTG estimates the mass m and the volume V for each point of the list of nodes
by assuming a constant mass at each point in the neighbourhood x that does not
change during the simulation. The interpolation function is similar to the one defined
by Müller et al. [65, 66] and is defined by:

W (r, h) =

⎧⎨⎩
315

64πh9
(ds

2 − r2) if r ≤ h,

0 if otherwise
(3.13)

where r is the distance to the point x and ds is the support domain dimension defined
in Equation 3.10. The volume Vx associated with the point x is defined as:

Vx =
mx

ρx
, mx = sdc

3ρ, ρx =
n∑

i=1

miwxi (3.14)

mx = sdc
3ρ, (3.15)

ρx =
ns∑
i=1

miwxi (3.16)

where
mx: is the mass of the point x;
ρx: is the density at point x;
dc: is the average distance between x and all its neighbors in the support domain;
ρ: is the material density;
s: is the scaling factor chosen such that ρx is close to ρ;
ns: is the number of nodes conforming the support domain of x; mi: is the mass of
the node xi, i = 1, ..., n in the support domain of x;
and wxi = W (∥x− xi∥, ds).

4. Bio-mechanical Model The implemented mesh-free formulation is similar to the
model for soft tissue deformation for surgical simulation described in [8, 39, 60].
These approaches introduce Total Lagrangian Explicit Dynamic algorithm (TLED)
which differs from the common updated Lagrangian formulation as it calculates the
system of equation variables with reference to the initial configuration instead of the
previous system configuration [6]. The TLED algorithm formulate the system of
equations of the mesh-free radial point interpolation method by computing the force
associated to each support domain [39] and is defined as:

t
0F =

∫
0V

t
0B

T
L
t
0Sd

0V (3.17)

where t
0BL is the full strain-displacement matrix and t

0S is the second Piola-Kirchoff
stress vector. Equation 3.17 is solved by numerical integration applied over the set of
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nodes. In the notation, the left superscript represents the current time or iteration and
left subscript represents the time of the reference configuration which in this case is
0 (initial configuration).

The strain-displacement matrix is defined as:

t
0BL = [t0B

(1)
L , t0B

(2)
L , . . . , t0B

(n)
L ],

t
0B

(i)
L = D′t

0X
T

(3.18)

where D is the shape function derivatives matrix and t
0X is the deformation gradient

computed from the shape derivatives matrix and the nodal displacements u, i.e. t0X =

D′tu+ I3, I3 is a 3× 3 identity matrix.

The second Piola-Kirchoff stress-vector is defined as [62]:

t
0S = µJ−2/3(I3 −

1

3
It0C

−1) + λ(J− 1)Jt
0C

−1 (3.19)

where I is the first invariant of the Deviatoric Right Cauchy Green deformation tensor
C, J is the determinant of the deformation gradient, and µ and λ are the shear and
bulk modulus of the material respectively.

The Cauchy Green tensor is the squared of local change in distances due to the de-
formation and define the state of stress at a point inside a material in the deformed
placement or configuration. Invariants of a tensor are scalar functions of the tensor
components which remain constant under a basis change [6].

Equation 3.19 is a neo-Hookean model describing a hyper-elastic mechanical be-
haviour of the brain tissue implemented in ARMSTG’s mesh-free method. Table 3.1
contains the values for Young’s modulus (E) and Poisson’s ratios (v) for different
kind of brain tissue considered in this work. These values were taken from Miller et
al. works in [59, 62], and they are used to calculate the lambda λ and bulk modulus
µ involved in Equation 3.19 which are defined by:

λ = E
v

(1 + v)(1− 2v)
, (3.20)

µ = E
v

2(1 + v)
. (3.21)

Table 3.1: Young’s modulus and Poisson’s ratio for the constitutive model of the brain
tissue. The values in this table were taken from [59, 62]

Tissue E (Pa) v

Parenchyma 3, 000 0.49
Tumor 3, 000 0.49
Ventricles and sulci 10 0.1
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The values in Table 3.1 has been used in several works to simulate brain tissue be-
haviour [39, 62, 100, 108]. Although CFS has mechanical properties similar to wa-
ter, the values assigned to Young’s modulus (E) and Poisson’s ratios (v) in Table 3.1
mimic a soft compressible elastic solid to allow ventricles deform as the the tumor
grows. In this way, we are not simulating the properties of the liquid contained into
ventricles and sulci, but the brain structures that deform as the intracranial pressure
increases due to a tumor presence.

5. Displacement Calculation. As in TLED, ARMSTG uses the central difference
method derived from Newton’s second law to calculate the global nodal displace-
ment defined as:

t+∆t
0 u =

−∆t2

M
tF+ 2t0u− t−∆t

0 u. (3.22)

6. Boundary Conditions. At each iteration ARMSTG updates the coordinates of each
point in the problem domain by:

t+∆tx = tx+ t+∆t
0 u. (3.23)

However, the algorithm updates some points according to a preestablished displace-
ment. These points are those corresponding to the tumor boundary that create the
displacement map given in Section 3.5, and the points belonging to the boundary of
the brain tissue whose displacements are set to 0 during the simulation.

Points belonging to the brain tissue boundary in the atlas are part of the list loaded at
the beginning of the simulation and are identified by their respective labels (Section
3.4). At each iteration, the algorithm checks after computing x(t + ∆t) if it does
not fall beyond the brain boundary. In case that the new coordinate is outside the
regions representing brain tissue, then u(t+∆t) is re-estimated such that x(t+∆t)

approximates the position of the closest brain boundary point, and the label of x(t+
∆t) changes to brain boundary for the rest of the simulation. Figure 3.14 illustrates
the brain tissue boundary in one atlas slice.

7. The Algorithm Scheme. Figure 3.15 shows a pseudo code of the TLED mesh-
free method implemented in this thesis. ARMSTG executes the main loop of the
algorithm nl times, where nl is the number of contours generated by the level set
method in Section 3.3. ARMSTG enumerates the contours from 1 to nl, starting by
the inner contour to the outer contour. At each iteration, one contour is reproduced by
the displacement of the points at the tumor boundary according to the displacement
map, then the displacements are propagated to the rest of the atlas using the mesh-
free algorithm.
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(a) Boundary Points

Figure 3.14: One atlas slice with brain boundary points.

Figure 3.15: Mesh-free algorithm.

3.6 Deformable Registration
The result of simulating the tumor growth and mass-effect mechanics is an image con-
taining the patient’s tumor in the atlas space. If successful, the deformed brain structure
in the atlas will be similar to the patient’s image. However, each patient image contains
some other features that distinguish it from a standard atlas e.g. brain shape. Hence, it is
necessary to apply a deformable registration algorithm to adjust the atlas deformation by
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bringing some other particular shape features from the patient’s image to the atlas space.
This is the last stage of our method for which we used a deformable registration method
based on a diffeomorphic Demons algorithm [41, 91, 95].

In a similar way that we carried out the segmented tumor registration to the atlas space
3.2, in this stage we applied the diffeomorphic Demons algorithm over binary images rep-
resenting the brain tissues of the patient and the atlas with tumor (see figure 3.16), instead
of the patient and deformed atlas directly. The registration of binary images instead of
intensity images gives better results since the algorithm does not have to deal with the ir-
reconcilable intensity differences between the source and target images. The deformation
field obtained from registering the binary images of the patient tissue and deformed atlas
tissue is then applied to the deformed atlas in intensity scale.

The binary images of the brain tissue for this stage are obtained by the threshold th1

obtained by STS as shown in Figure 3.2. The procedure can be summarized in the following
steps:

1. ARMSTG uses STS to obtain the threshold th1 from both the patient image and the
deformed atlas with tumor.

2. The respective thresholds for each image are applied, obtaining in this way binary
images of the brain tissue as the illustrated in Figure 3.16.

3. ARMSTG applies a diffeomorphic Demon registration algorithm to the binary im-
ages and saves the generated displacement field.

4. The resulting displacement field, which is represented in a matrix with the same di-
mension of the atlas image and contains the displacement in x, y and z coordinates,
is applied to the intensity atlas image with the tumor using the same procedure ex-
plained in Section 3.2. This step is the final result of ARMSTG, and the final intensity
images shown in the second column of Appendix A.

3.7 GPU Implementation with CUDA
One can find in the literature some research works [42, 88, 102] that implemented the TLED
algorithm presented in [60] using FEM and structural meshes using Graphic Processing
Units (GPU). These works use GPU with the purpose of speeding up the algorithm, and
improving the accuracy of the method by using larger numbers of structural elements than
what is possible using a CPU implementation.

In our implementation, we also took advantage of the high computational power of-
fered by GPU to speed up the mesh-free TLED implementation. The algorithm in Figure
3.15 can be divided in two parts. The first part is conformed by a set of initialization steps
such as load points and displacement map, support domain computation, and mass and
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(a) Atlas (b) Patient

Figure 3.16: (a) brain tissue segmented from the atlas, (b) brain tissue segmented from the
patient.

volume computations. Although this first part is performed only once in the whole simu-
lation, it requires high computational time because it needs to compute the shape function
derivatives, the mass, and the volume estimations which must be done for each node of the
problem domain. For this first part, we used six GPU kernels that carried out the following
procedures:

1. Computation of shape functions and derivatives. This step of the algorithm is ac-
complished by two GPU kernels, one to built the assembled equation system for
each node [50], and another to solve the equation systems using gaussian elimina-
tion. The computational time required by this step was considerably reduced with
GPU compare to CPU. Once the GPU kernel is launched, the computations are made
in parallel and independently for each node.

2. Mass and volume estimations. Equations 3.13 to 3.16 are also computed in parallel
with the GPU kernels. We designed three kernels, one to compute Equation 3.13
for each node, one to compute mass for each node with Equation 3.15, and one to
compute mass with Equation 3.14.

3. Support domain dimension. We designed a GPU kernel to compute in parallel each
support domain dimension with Equation 3.10.

The second part of the algorithm, shown in Figure 3.15, is computed by a set of itera-
tive steps that include the following operations: deformation gradient, stiffness matrix and
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forces computations, boundary conditions and displacement updates. Similarly to Joldes
et al. [42] and Wittek et al. [102], we implemented three main kernels for this second part
of the algorithm to perform the computation of deformation gradient, calculation of forces,
and the update of displacements in parallel. Additionally, we also designed an extra GPU
kernel that is able to speed-up the calculations during the tumor growth stage. The GPU
kernel finds possible points inside of the tumor each time that a new contour is recreated
during the growth simulation. It computes the distance between individual points in the
domain of the tumor center and verifies that this distance is less than a given ratio. If the
condition is not fulfilled, the point is immediately considered outside of the tumor bound-
aries. In this way, the number of points to be considered for more exhaustive computations
is reduced to points only inside of the tumor. The distance ratio that is compared is the max-
imum distance of the tumor center to the points on the current tumor boundary. Figure 3.17
illustrates this mechanism. As explained in Section 3.5.1 ARMSTG generates a new tumor
contour at each iteration of the simulation and checks for points falling inside of the current
tumor contour. This procedure becomes quite expensive if all the points in the domain are
checked. Therefore, we reduced the set of point to be checked to only those falling inside
of the sphere of minimum ratio enclosing completely the current tumor contour using the
GPU.

Figure 3.17: Selecting points inside of the tumor. Tumor center in blue, current tumor
contour in blue, points selected by the implemented GPU kernel in red, and the rest of the
domain points in green.

All the kernels were implemented with CUDA using a NVIDIA graphic card with the
specifications given in Table 3.2 which was installed in a workstation with the specifications
given in Table 3.3.
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Table 3.2: GPU Specifications

NVIDIA GT780 GPU Engine Specifications

CUDA Cores: 2304
Clock Freq (MHz): 863
Memory Clock (MHz): 2500
Memory Type: GDDR5
Memory Interface Width: 384 bit
Memory Bandwidth (GB/sec): 188.4
Total Memory: 3072 MB

Table 3.3: CPU Specifications

Intel Core i7-7490K Specifications

Number of Cores: 4
Clock Freq (GHz): 4.00
Memory Clock (MHz): 2500
Memory Type: DDR3
Total Memory: 32768 MB
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Chapter 4

Evaluation of the ARMSTG Algorithm

In this chapter, we present experimental results that evaluate how the proposed atlas to
patient registration method performs under various conditions and cases. We evaluated
ARMSTG’s performance against three non-linear registration algorithms: diffeomorphic
demons registration [41, 91, 95], the Automatic Registration Toolbox (ART), and the sym-
metric diffeomorphic image registration algorithm with cross-correlation SyN [4]. The last
two methods were ranked as the best non-linear registration method for brain MRI in [46].
We also evaluated the influence of various ARMSTG parameters on the method accuracy,
the benefit of our tumor growth simulation model based on the real shape of the tumor, and
the method’s computational performance on standard CPU and on parallel GPU hardware
using CUDA.

The experiments were conducted over twelve MRIs taken from the MICCAI’S 2013
Multimodal Brain Tumor Segmentation (BRATS) challenge training data set [58]. The
experiments yielded several registered images whose similarities to the respective original
MRIs were measured using a metric based on a distance field. Before presenting the ex-
perimental results, we will first introduce the data set and the similarity metric used in this
work. Then, in section 4.3, we will describe each experiment and their results, and we will
also discuss the pros and cons of the evaluated methods.

4.1 MICCAI’s Data Set
We selected twelve cases from the thirty multi-contrast MRIs of the training data set pro-
vided by MICCAI’s BRATS challenge [58], these include ten high-grade and two low-
grade glioma cases. The data set contains T1, T2, FLAIR, and post-Gadolinium T1 MRI
sequences of size 216 × 160 × 176 voxels for each patient. All volumetric images in the
BRAT’s data set are already linearly co-registered to the T1 contrast image, skull stripped,
interpolated at 1 mm isotropic resolution, and are already manually segmented by a hu-
man expert as a gold standard. The only criterion considered for the data selection was the
completeness of the manually segmented brain tissues. We discarded cases where the brain
parenchyma appears incomplete from the training data set. The 12 selected images were
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aligned to the sagittal plane of the image using an algorithm proposed by Liu and Collins
[104].

4.2 Similarity Metric
In order to assess the similarity between the registered atlas images to a patient case, we
computed a metric based on a distance field. A distance field is a collection of distances
between each point of an image to the closest point of any object within the domain [43].
Figure 4.1 is an example of a distance field. The procedure applied to obtain a distance field
is commonly called the distance transform D, e.g. the image in Figure 4.1 was obtained with
an Euclidian distance transform, i.e. the distance of each pixel to the closest non-zero pixel
in the image is estimated with the equation of the Euclidian distance.

Let Ia and Ib be two binary images in ℜ3 containing the ventricle boundaries of the
atlas and the patient respectively, then we define the similarity metric S between these two
images as an integration mapping S : ℜ3 ↦→ ℜ1 as:

S(Ia, Ib) = Ia ⊙D(Ib) (4.1)

where D is the mapping D : ℜ3 ↦→ ℜ3 and ⊙ is the integration operator over all image set,
which is defined as:

A⊙B =

M,N,O∑
i,j,k

A(i, j, k)B(i, j, k) (4.2)

where A and B are 3D matrices of size (M,N,O).
We computed Equation 4.1 with the following steps:

1. Segment ventricles from the atlas binary images of the brain tissue registered to the
patient images in Section 3.6, and the binary image of the patient brain tissue;

2. Extract boundaries of the segmented ventricles from both the atlas and patient ven-
tricle images (this step yields two binary images as shown in Figure 4.2);

3. Compute the distance transform D of the patient ventricle boundary. In this work we
used Euclidian distance transform similar to the example shown in Figure 4.1;

4. Multiply point to point the Euclidian distance transform image to the binary image
of the ventricle boundaries in the atlas, the result of this step is an image containing
only the distance of the atlas ventricles boundary to the patient ventricle boundary;

5. Compute the summation of the resulting image’s voxels.

The ventricle segmentation was semi-automatically performed over the brain tissue
masks obtained in the last step of ARMSTG, Section 3.6, (see Figure 3.16). In the image
we first manually selected some points in the ventricles, then we extract the largest con-
nected component to these points. The largest connected component mostly corresponds
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0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 1 0 0

0 1 0 0 0 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

1(a) Binary Image

2.8284 2.2361 1.4142 1.0000 1.4142 2.2361 2.8284

2.2361 1.4142 1.0000 0 1.0000 1.4142 2.2361

1.4142 1.0000 0 1.0000 0 1.0000 1.4142

1.0000 0 1.0000 1.0000 1.0000 0 1.0000

1.4142 1.0000 0 0 0 1.0000 1.4142

2.2361 1.4142 1.0000 1.0000 1.0000 1.4142 2.2361

1(b) Distance Transform

Figure 4.1: (a) original binary where a value of 1 represents an edge pixel and zero a
background pixel. (b) distance transform where each value represents the distance to the
closest edge pixel in mm.

to the image’s ventricles. Then, we cleaned up the resulting image to eliminate any part
that didn’t belong to the ventricles. Figure 4.2 shows some examples of the segmented
ventricles for a patient data and for an atlas.

4.3 Experimental Results
We designed a series of experiments in order to evaluate the accuracy and performance of
ARMSTG. The experiments will be presented in five groups: the first group evaluates the
effect of sampling sizes, some parameters of the level set, and the time-step parameter of the
mesh-free simulation. The second group compares the three sampling methods explained
in Section 3.4.1. The third group compares our tumor growth simulation model based
on the real tumor shape vs a spherical tumor growth model. The fourth group compares
ARMSTG with three other non-linear deformation registration methods. The fifth group
analyzes the computation performance of the algorithm for a CPU based implementation
and its parallel implementation using CUDA on a GPU.

4.3.1 Parameter Evaluations
Effect of the sampling size

As mentioned in Section 3.4.1, the number of samples generated by the three mesh-less
sampling methods depends on certain control parameters for the distance between sample
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(a) Patient Image (b) Ventricles (c) Boundary

(d) Registered Atlas Image (e) Ventricles (f) Boundary

Figure 4.2: Ventricle Segmentation of a patient and registered atlas images.

points [23, 51, 103]. Due to how the control parameters between methods affect the sample
spacing, it was not possible to match the exact sample size between the three methods. We
selected a set of different values for these parameters as described in Table 4.1 in order
to generate set for our statistical analysis. For the adaptive sampling method, the sample
size depends on a quantization step-size q that is inversely proportional to the number of
samples generated. For the Poisson-disk sampling method, the sample size depends on the
minimum ratio or distance r at which the points can be placed from each other. For the
uniform sampling method, the sample size depends on the constant spacing parameter s.

For our statistical tests to evaluate the influence of the sample size, we computed a total
of 108 atlas to patient registrations for each sampling method, i.e., 3 sampling instances ×
12 cases × 3 control parameter value in order to evaluate the influence of the sampling
size on the results. Each sampling method with the different sizes was separately analyzed
using Kruskal-Wallis test [85] in order to detect if there were any differences in choosing
specific values.

Kruskal-Wallis test is a nonparametric ANOVA statistical method that analyzes the
variance for one-way classification or one-factor experiments by ranks. This test is applied
for small samples when the data do not meet the normality assumption of its homologous
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Table 4.1: Different sample sizes for each sampling method.

Sampling Method Parameter Value Sample Size

Adaptive Quantization step-size (q)
0.004 67,767
0.01 157,268
0.25 208,582

Poisson-disk Minimum distance (r)
2.0 222,881
3.0 41,831
4.0 61,041

Uniform Spacing (s)
3.0 166,132
4.0 96,214
5.0 63,848

parametric test one-way ANOVA. This test is applied to test whether the samples come
from the same distribution. Like most non-parametric tests, Kruskal-Wallis is performed
over ranked data.

We generated groups of twelve observations, one per patient, for each parameter value
for each individual sampling method. Tables 4.2 to Table 4.6 and Figures 4.3 to 4.5 sum-
marize the results of the Kruskal-Wallis test for each individual sampling method. The
mean rank of each group is represented by a small circle and their respective error interval
represented by a line extending out from the circle.

Table 4.2: Kruskal Wallis ANOVA table to evaluate the sample size effect over ARMSTG’s
performance with adaptive sampling.

Source SS df MS χ2 Prob > χ2

Columns 30.5 2 15.25 0.27 0.8716
Error 3,854.5 33 116.803
Total 3,885 35

In the ANOVA tables produced by Kruskall-wallis tests the first row called Columns
contains the estimated values to measure the sum of squares of the differences between
each group mean and the total mean of the whole data. The second row Error contains
the estimated values to measure the sum of squared differences between each data and
its respective group means. The third row Total measures the sum of squared differences
between each data points and the mean of the whole data. The value SS is the respective
result of the sums of squares for each measure, and df is the freedom degree which is
equivalent to the number of data point taken into account in the statistic calculation minus
1. The Kruskal-wallis test replaces the classical F-statistic used in one-way ANOVA by a
χ2 (chi-square) statistic. Thus, Prob > χ2 is the p − value that measures the significance
of the statistic.
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Figure 4.3: Pairwise comparison of mean ranks to evaluate the sample sizes effect over
ARMSTG’s performance with adaptive sampling.

Table 4.3: Mean distances between ventricles of the twelve patient’s images and the regis-
tered atlases obtained with ARMSTG using adaptive sampling and three different sample
sizes.

ARMSTG Quantization-step q
For Adaptive Sampling

q Size Mean of S Metric

0.004 67,767 9,691.23
0.01 157,268 9,673.74
0.25 208,582 9,317.92

Table 4.4: Kruskal Wallis ANOVA table to evaluate the sample size effect over ARMSTG’s
performance with poisson-disk sampling.

Source SS df MS χ2 Prob > χ2

Columns 1,590.62 2 795.308 12.24 0.0022
Error 3,349.38 36 93.038
Total 4,940.00 38

Similar to other non-parametric statistical test, Kruskal-wallis is performed over ranked
data. The statistical procedure followed by this test first arranges the data within each group
such that the smallest value gets a rank of 1, the next smallest gets a rank of 2, and so on.
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Figure 4.4: Pairwise comparison of mean ranks to evaluate the sample sizes effect over
ARMSTG’s performance with poisson-disk sampling.

Table 4.5: Mean distances between ventricles of the twelve patient’s images and the reg-
istered atlases obtained with ARMSTG using Poisson-disk sampling and three different
sample sizes.

ARMSTG Minimum Distance r
For Poisson-disk Sampling

r Size Mean of S Metric

2.0 222,881 9,681.530
3.0 41,831 9,224.632
4.0 61,041 33,220.210

Table 4.6: Kruskal Wallis ANOVA table to evaluate the sample size effect over ARMSTG’s
performance with uniform sampling.

Source SS df MS χ2 Prob > χ2

Columns 1,082 2 541.00 9.75 0.0076
Error 2,803 33 84.94
Total 3,885 35

Figure 4.3 to Figure 4.5 and so all the pairwise comparison of mean rank plots in this
documents illustrates the differences of mean ranks between the evaluated groups. In these
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Figure 4.5: Pairwise comparison of mean ranks to evaluate the sample sizes effect over
ARMSTG’s performance with uniform sampling.

Table 4.7: Mean distances between ventricles of the twelve patient’s images and the regis-
tered atlases obtained with ARMSTG using uniform sampling and three different sample
sizes.

ARMSTG Spacing s
For Uniform Sampling

s Size Mean of S Metric

3.0 166,132 9,030.57
4.0 96,214 33,293.80
5.0 63,848 49,336.16

figures the x-axis represents the compared groups, and the y-axis represents the mean ranks
of groups.

The p − value of 0.8716 in Table 4.2 is large enough to reject the hypothesis of a
difference between the distribution of the observations for the adaptive sampling algorithm
with a 5% significance level; while the p − value obtained for Poisson-disk and uniform
sampling algorithms in Tables 4.4 and 4.6 shows that at least one group of observations with
the different sample sizes dominates over the others for each test. In Figure 4.3, Figure 4.4,
and Figure 4.5 one can observe that ARMSTG performed better using small ratios with
Poisson-disk sampling, and a spacing of s = 3 using uniform sampling.
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Effects of the Seed Size

The seed is the starting point of the tumor growth simulation. In Section 3.4, we mentioned
that we located p seed points at the center of the inner tumor contour. The purpose of
having p points is to allow the initialization of the growth simulation to pass from the
seed location to the first tumor contour and also to preserve the mass for the mass-effect
simulation. Commonly, the first contours of the tumor only contain a few points because the
level set procedure is applied inwardly until there is not enough internal points to generate
another contour in the image. Therefore, the number of seed points p could be set to a
small number of points. We tested three values for three parameter values 3, 7 and 10. In
our experiments, we found that larger number of seed points frequently created singular
solution when computing the RBF interpolating function. This is because the larger the
number of seed points at the same location, the greater probability of singular linear system
where the determinant is close to zero.

In order to analyze the effect of the seed size in ARMSTG’s results, we generated 108

observations, i.e. 3 seed size values × 3 samplings × 12 patient’s cases. The results were
analyzed using the Friedman test [27].

The Friedman test is a non-parametric statistical test for testing the difference between
several samples. The test ranks each row (block) from low to high separately, then considers
the values of the ranks by columns (groups). The null hypothesis evaluated by this test is
that the column effects are all the same against the alternative that they are not all the same
[54].

In this context the observations were organized in 36 rows grouped by sampling method,
i.e. 3 groups of 12 patient’s MRI in each one, and three columns, each one representing a
seed size value. An ANOVA analysis of this experiment is summarized in Table 4.8. Figure
4.6 shows the pairwise comparison of the mean ranks of the three groups as a function of
the three seed size values, from top to bottom for the number of seed points equal to: 3, 7,
and 10.

Table 4.8: Friedman ANOVA table to evaluate the effect of the seed size over ARMSTG’s
performance

Source SS df MS χ2 Prob> χ2

Columns 126.7 2 63.361 1.14 0.565
Iterations 12.9 4 3.236
Error 11,511.3 99 116.276
Total 11,651 107

In Table 4.8 a p − value of 0.65 means that there were no significant differences in
ARMSTG’s performance using either seed size within a 5% of significance level, and Fig-
ure 4.6 shows the mean values obtained at evaluating ARMSTG with the different seed
sizes very close to each other.
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Figure 4.6: Pairwise comparison of mean ranks to evaluate the effect of the seed size over
ARMSTG’s performance.

Table 4.9: Number of tumor contours generated by the level set with different iteration
number for each patient’s cases.

Iterations/Patients 1 2 3 4 5 6 7 8 9 10 11 12

2 24 21 34 32 37 40 38 29 35 37 25 47
4 12 11 17 16 19 20 19 15 18 19 13 24
6 8 7 12 11 13 14 13 10 12 13 9 16
8 6 6 9 8 10 10 10 8 9 10 7 12

Effect of the Level Set Parameters

We evaluated the effect of two parameters required by the level set method described in
Section 3.3. The first parameter is the number of iterations for the level set and second
parameter is the constant value a in Equation 3.2. The number of iterations has a direct
effect on the number of tumor contours generated by the level set. This number determines
the number of times that the advancing front is updated until it reachs the center of the
tumor (see Section 3.3). We selected four different values for this parameter: 2, 4, 6, and 8.
Table 4.9 lists the number of tumor contours generated for each iteration number for each
patient’s cases.

The four values for the iteration number of the level set were tested using ARMSTG
with the different sampling methods. Hence, we generated a total of 144 observations for
this experiment, i.e., 4different values× 3sampling methods× 12patient cases. The results
were analyzed using Friedman test [27]. The ANOVA analysis of this test is summarized
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in Table 4.10, and the pairwise comparison of the mean values for the four groups is shown
in Figure 4.7. The respective mean ranks are shown from top to bottom in the same order.

Table 4.10: Friedman ANOVA table to evaluate the effect of the iteration number of the
level set on ARMSTG’s performance.

Source SS df MS χ2 Prob > χ2

Columns 243.7 3 81.241 1.24 0.7426
Iterations 8.4 6 1.407
Error 2,783.8 132 207.453
Total 3,036 141

Figure 4.7: Pairwise comparison of mean ranks to evaluate the effect of the level set itera-
tion number over ARMSTG’s performance.

In the same way, we also evaluated the effect of the parameter a on the level set. For
this purpose, we chose three different values for this parameter: 0.1, 0.5, and 0.9. Contrary
to the number of iterations, these three values did not cause any observable variation in
the number of contours generated by the level set. In this experiment, 108 observations
were produced, i.e., 3 different values × 3 sampling methods × 12 patient cases. The
ANOVA analysis generated by Friedman test is summarized in Table 4.11 and the mean
value comparison for the three parameter’s values are shown in Figure 4.8.

The two p− values in Table 4.10 and Table 4.11 of 0.74 and 0.99 indicate that both the
number of iterations and the level set a parameter do not have any effect over ARMSTG’s
performance at a 5% significance level.
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Table 4.11: Friedman ANOVA test to evaluate the effect of the constant level set parameter
a on ARMSTG’s performance.

Source SS df MS χ2 Prob > χ2

Columns 0.7 2 0.333 0.01 0.997
Iterations 0.9 4 0.229
Error 11,600.4 99 117.176
Total 11,602 105

Figure 4.8: Pairwise comparison of mean ranks to evaluate the effect of the level set pa-
rameter a over ARMSTG’s performance.

Effect of the Simulation Time Step (∆t)

In this experiment, we analyze the effect of the the simulation time step involves in Equa-
tion 3.23. The time step is related to the dilation wave speed across the material, and pro-
duces stable results only under certain critical value ∆tc [39]. In this thesis, we evaluated
6 different values for these parameter: 0.0025, 0.005, 0.01, 0.05, 0.09, and 0.13. In total,
216 observations were generated for this analysis, i.e., 6 parameter values × 3 samplings ×
12 patient cases. The analysis was performed with the Friedman test. Table 4.12 contains
a summary of the ANOVA analysis, and Figure 4.9 shows the pairwise comparison of the
mean values in the same order.

The p− value of Table 4.12 means that ∆t affected ARMSTG’s performance. At least
two observation groups are different between each other at 5% significance. In Figure 4.9
one can see that ARMSTG yielded better results with ∆t less than 0.05. This observation
is corroborated by Figure 4.10 where ARMSTG’s performance with the three different
sampling methods and (∆t ≤ 0.05) looks very similar and very disparate for (∆t > 0.05).
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Table 4.12: Friedman ANOVA table to evaluate the effect of the simulation time step on
ARMSTG’s performance.

Source SS df MS χ2 Prob > χ2

Columns 12,706.9 5 2541.39 34.48 1.91e-06
Iterations 5,027.4 10 502.74
Error 54,121.6 180 300.68
Total 71,856 197

Figure 4.9: Pairwise comparison of mean ranks to evaluate the effect of the simulation time
step ∆t over ARMSTG’s performance.

Discussion

The Kruskal-Wallis test is applied in order to evaluate the null hypothesis that all obser-
vations, organized by columns (groups), arise from the same distribution. When Kruskal-
Wallis null hypothesis is rejected, then one can conclude that at least one group is different
from the others, and at least one group is stochastically dominant over one or more groups
[47].

In our first experiment, we analyzed the effect of the sample size for the various sam-
pling strategies, where one can observe that the p − value of the ANOVA analysis in Ta-
ble 4.2 did not reject the null hypothesis for adaptive sampling at 5% significance level.
One can not conclude that the three groups corresponding to the registration results of the
method with adaptive sampling, and with the three different sampling sizes evaluated for
this case were different, and came from different distributions. Figure 4.3 and Table 4.3
show that the mean distances of the ventricles for the twelve MRI cases and the registered
atlases with the different sample sizes were very similar.
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Figure 4.10: ARMSTG’s performance with different time step ∆t. The similarity metric is
in mm.

According to Tables 4.4 and 4.6, the same conclusion cannot be made for the Poisson-
disk and uniform samplings. The Kruskal-Wallis test rejected the null hypothesis for both
samplings, which means that the sample size yield significant differences in both sampling
strategies. Figure 4.4 and Figure 4.5 illustrate the pairwise mean rank differences between
the groups. In the case of the Poisson-disk sampling, one can observe that the third group
corresponds to the largest of the three maximum ratios evaluated in this test, and is signifi-
cantly different to the other two groups. In Table 4.5 one observe that this group obtained
the worst mean distance in comparison to the other two groups. In the case of the uniform
sampling, the first group corresponds to the minimum spacing evaluated in this experiment
and is significant different to the other two groups which had larger mean distances than
the first. This can also be seen in Table 4.7. Evaluating smaller spacing values for uniform
sampling was not possible because of the computational intractability of large sample size.

From these results, one can conclude that the spacing between samples influences the
ARMSTG performance more than the sample size. This can be the reason why there is no
significant difference for the adaptive sampling case with the sample sizes. Independently
of the sample size, this sampling tends to take points very close between each other where
features of the image are located e.g. ventricle or sulci boundaries. Contrary to this, the
other two sampling methods take samples with a minimum ratio or with a constant spacing,
controlling in this way the distance between samples.

Other parameters analyzed in this thesis were the seed size, the iteration number of the
level set, and the constant a that multiplies the velocity in Equation 3.2 of the level set. For
these evaluations we used the Friedman test to prove the null hypothesis that there were
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no differences between groups of the parameter measures under different conditions. Table
4.8, Table 4.10, and Table 4.11 show that for these three parameters, the Friedman test did
not rejected the null hypothesis, with p − values of 0.565, 0.7426, and 0.997 respectively.
These results mean that these parameters did not have any effect over ARMSTG’s perfor-
mance with the selected values. The mean distances of the tested groups confirm that the
results obtained with these parameters are all very close to each other as can be seen in
Figure 4.6, Figure 4.7, and Figure 4.8.

With the Friedman test, we also evaluated the effect of the simulation time step ∆t over
ARMSTG’s performance. The p − value = 1.91 × 10−6 yielded by this test rejected the
null hypothesis, meaning there was a significant difference between at least two groups of
observations for this parameter. Figure 4.9 shows that the mean values of the four first
groups are very close to each other. They only differ by the mean value generated for the
fifth and sixth time step during the experiment. Observing Figure 4.10, one can say that the
method produced stable results under the critical value of ∆tc = 0.05.

Selected Parameters for ARMSTG

Based on the observations discussed previously and the results presented so far in this
Section, we selected the set of parameters shown in Table 4.13 to perform other tests of our
method:

Table 4.13: ARMSTG’s parameters.

Parameter Value

Sample size - adaptive 208,582
Sample size - Poisson 41,831
Sample Size - uniform 166.132
Seed Size 10.0
Level set iteration number 2.0
Level set Parameter a 0.3
Simulation time step 0.05

The sample size for each sampling method was selected based on the results in Table
4.3, Table 4.5, and Table 4.7. Among the three tested sample sizes for each sampling
method, the selected values yielded the best mean distances for each method, i.e. q = 0.25

in the third row in Table 4.3 for adaptive sampling, r = 3.0 in the second row in Table
4.5 for Poisson-disk, and s = 3.0 the first row in Table 4.7 for uniform. In a similar way,
despite the non-significant difference, we selected a seed size, an iteration number for the
level set, and a value for the parameter a of the level set. For the simulation time step we
selected the critical value ∆tc = 0.05.
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4.3.2 Difference Between Samplings

The experiments shown previously evaluated the effect of the sample size over ARMSTG’s
performance for each sampling method individually. The results of these experiments alone
do not allow us to give any conclusion about which method performed better with ARM-
STG. The results in Table 4.3, Table4.5, and Table 4.7 intuitively indicates that uniform
sampling is the best choice since the first row of the respective table contains the smallest
mean distance of all the experiments. In order to test this hypothesis we performed Kruskal-
Wallis test over three groups, each one representing each sampling method. The selected
groups correspond to the parameters values that yielded the smallest mean distances (Table
4.13). A total of 36 observations, i.e., 3 sampling methods × 12 patient cases were arranged
in three groups: adaptive, Poisson-disk, and uniform. Table 4.14 summarizes the ANOVA
analysis result and Figure 4.11 shows the distribution of the means in a difference box plot
diagram.

Table 4.14: ANOVA table generated with Kruskal Wallis to compare sampling methods.

Source SS df MS χ2 Prob > χ2

Columns 2.17 2 1.083 0.02 0.9903
Error 3,882.83 33 117.662
Total 3,885 35

Figure 4.11: Box plot comparison between sampling methods. The similarity metric is in
mm

A p − value = 0.9903 in Table 4.14 does not reject the null hypothesis at the 5%

significance level. The three groups corresponding to the best results obtained with each
sampling come from the same distribution. The box plot in Figure 4.11 shows that the
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mean distances for each group are very close, although the range of distance of the group
corresponding to adaptive sampling, differs from the other two.

Discussion

Although ARMSTG yielded the smallest mean distance with uniform sampling, one can
not conclude that this is the best sampling method. Neither can one conclude that adaptive
sampling is the best choice although the results obtained with this method, using different
sample sizes, look more consistent than the other methods in Table 4.3. This observation
is statistically supported by the comparison between the best groups for each sampling
evaluation carried out in these experiments. The p−value = 0.9903 in Table 4.14 indicates
that there is no significant difference between the selected groups representing the different
sampling methods, and the box plot in Figure 4.11 confirms this result.

We observed that ARMSTG produced more singular matrices with adaptive sampling
when estimating the RBF than the other two methods. This is because adaptive sampling
can generate spatially consecutive samples that induce linearly dependent equations. For
this reason, despite of being the method that generated the result most consistent with the
selected parameter values, one cannot state that it is the best choice for sampling.

4.3.3 Shape-based vs Semi-spherical Tumor Growth Simulation Mod-
els

In this thesis, we have remarked than one of the main differences of our method in compar-
ison with other methods is the fact that it simulates the tumor growth process in the atlas
space and that we used a tumor model based on the real tumor shape as opposed to a simple
spherical model. The purpose of this experiment is to evaluate the tumor growth simulation
model introduced in Chapter 3 in comparison to a spherical model.

For this experiment, we took each segmented tumor for each patient case and built a
semi-spherical tumor mask following this procedure:

1. For each axial slice containing a part of the tumor, we fit the tumor segmentation in a
circular mask as shown in Figure 4.12. The segmented tumor is circumscribed in the
best circle that enclosed the whole segmented tumor, i.e. the circle with the minimum
ratio to cover the whole segmented area (Figure 4.12a);

2. We then applied AND binary image operator to fit each circular mask in the brain
tissue as shown in Figure 4.12b.

Then, we used ARMSTG’s level set procedure to built a displacement map as explained
in Section 3.3 (see Figure 4.12c), and performed a ARMSTG simulation using the three
sampling methods implemented in this thesis. In this way, we obtained three groups of
observations, one for each sampling method: adaptive, poisson and uniform, and each one
containing the twelve MRI cases. These three groups plus the three groups evaluated in the
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(a) (b) (c)

Figure 4.12: Circular tumor growth model. (a) segmented tumor circumscribed by a circle.
(b) circular mask representing the tumor area. (c) level set.

experiment previously, i.e. the three groups in Figure 4.11, were compared using Kruska-
Wallis test. The results of this experiments are summarized in Table 4.15 and Figure 4.13 is
a box plot where one can see the differences between the similarity metric means for each
tumor growth model and each sampling. Figure 4.14 shows the deformation obtained over
one slice using the semi-spherical tumor growth model and the deformation obtained with
our model.

Table 4.15: ANOVA table generated with Kruskal Wallis to compare circular tumor growth
model vs real shape tumor growth model.

Source SS df MS χ2 Prob > χ2

Columns 4,218.6 5 843.72 13.83 0.0167
Error 13,776.4 54 255.119
Total 17,995 59

We obtained a p − value = 0.0167, less than 0.05, which means that the null hypoth-
esis is rejected at the 5% significance level. At least one group stochastically dominates
another group. Figure 4.13 shows that ARMSTG implemented with the tumor growth
simulation model based on real shape performed better than the implementation with the
semi-spherical model. Although, circular masks are individually fit for each slice contain-
ing part of the segmented tumor, the growth simulation is carried out over the set of node
representing 3D sampled points in the problem domain. Therefore, in this thesis we have
used the term semi-spherical tumor growth model.

Discussion

With this experiment, we have demonstrated that the proposed tumor growth model based
on the real tumor shape and level set contributes to a good ARMSTG’s performance. The
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Figure 4.13: Box plot comparison tumor growth models, based on tumor shape and semi-
spherical. The similarity metric is in mm.

p − value = 0.0167 indicates that the groups can not be treated as equal, and Figure 4.13
makes clear that ARMSTG performed better with the different sampling methods and our
tumor growth model, than with the different samplings and the spherical tumor growth
model. Figure 4.14b shows that a possible cause of the bad results obtained with the semi-
spherical model could be the extension of the area covered by the circular mask, which is
much larger than the area covered by the real tumor. Therefore, one can intuitively say
that the method performs a more extensive deformation which leads to bad results. For our
patient cases, circles circumscribed inside of the tumor area, which would cover less tumor
area, could not be the solution either, since large areas of the real tumor would be excluded
of the tumor mass-effect simulation, also leading to highly dissimilar images.

4.3.4 ARMSTG vs Other Brain Registration Methods
ARMSTG vs Direct Registration With Diffeomorphic Demons Algorithm

In Section 3.6, we proposed to register binary masks of the brain tissue from the atlas with
patient images instead of performing the registration directly over the images with their
original intensity scales. The purpose of this analysis was to evaluate whether the process of
the tumor growth and mass-effect simulation proposed in this thesis improves the results of
the binary mask registration. In order to carry out this evaluation, we registered the binary
masks of the atlas and patient images using the same diffeomorphic demons registration
[41, 91, 95] employed in the last stage of ARMSTG, i.e. we performed the registration
directly without introducing the patient’s tumor into the atlas image. For this experiment,
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(a) Original Slice

(b) Circular level set (c) Circular tumor growth

(d) Real shape level set (e) Proposed tumor growth

Figure 4.14: Circular tumor growth model result. (a) original slice taken from a patient
case. (b) level set of the circular mask. (c) registration result using the circular level set.
(d) registration result using the tumor real shape.

we took the binary mask of the atlas brain tissue and registered it with a binary mask of each
patient brain tissue. The binary masks of the patient were generated using the threshold th1

compute by STS algorithm and described in Section 3.1.
The registration results of these experiment were analyzed using Kruskal-Wallis test.

We performed the experiment with 4 groups corresponding to ARMSTG with the three

67



sampling methods, and the diffeomorphic demon registration of the binary masks without
tumor. The ANOVA analysis is presented in Table 4.16 and Figures 4.15 and 4.16 shows
the means distribution for the the 4 groups.

Table 4.16: Anova table generated with Kruskal-Wallis to compare ARMSTG’s with direct
diffeomorphic demon registration.

Source SS df MS χ2 Prob > χ2

Columns 2,537.17 3 879.056 13.45 0.0037
Error 6,574.83 44 149.428
Total 9,212 47

Figure 4.15: Box plot ARMSTG vs direct diffeomorphic demon registration.

The p − value obtained in this test was 0.0037 as the last column in Table 4.15 shows.
This p− value rejects the null hypothesis of similar distribution between groups at the 5%

confidence level, meaning that there is at least one group of observations dominating the
others. Figure 4.16 shows the mean distances between the ventricles of the patient’s im-
ages and the registered images. The three first box plots represent the evaluation of the
registered images with ARMSTG using the three implemented sampling methods, and the
fourth group represents the evaluation of the registered images with diffeomorphic demon
registration directly. In this figure one can see that ARMSTG obtained a better evaluation
with any of the sampling methods, than the direct registration of the images using dffeo-
morphic demon registration. Figure 4.16 also illustrates the difference of the similarity
distance means between ARMSTG results and direct diffeomorphic demons registration
results, showing the superiority of ARMSTG.
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Kruskal-Wallis Group Ranking

Figure 4.16: Pairwise comparison of mean ranks to evaluate ARMSTG vs direct diffeo-
morphic demon registration.

ARMSTG vs Other Brain MRI Registration Methods

We also compared the performance of ARMSTG with other registration methods, such as
the Automatic Registration Toolbox (ART) [94], and the symmetric diffeomorphic image
registration with cross-correlation (SyN), described in [3, 4]. Both algorithms yielded the
best registration results in the evaluation described by Klein et al. [46], who evaluated
fourteen non-linear deformation algorithms applied to human brain MRI registration. In
that evaluation, ART and SyN were classified as the top ranking.

In order to perform these comparisons, we added two more groups to the data set ob-
tained by ARMSTG with different sampling methods. The two new groups represented
the results obtained by SyN and ART. This time sixty data sets divided in five groups were
analyzed with the Kruskal-Wallis test. The results are summarized in Table 4.17 and Figure
4.17 and Figure 4.18.

Table 4.17: Kruskal-Wallis results comparing ARMSTG vs SyN and ART.

Source SS df MS χ2 Prob > χ2

Columns 9,532.83 4 2,383.21 31.26 2.17e-06
Error 8,462.17 55 153.86
Total 17,995 59

In this test, we obtained a p − value = 2.17 × 10−6 which indicates that at least one
group dominates the others at the 5% confidence level. Figure 4.17 shows that ARMSTG
with the different sampling methods (Adaptive, Poisson-disk and Uniform) produced better
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Figure 4.17: Box plot ARMSTG vs other registration methods

Figure 4.18: Pairwise comparison of mean ranks to evaluate ARMSTG vs other registration
methods.

results than SyN and ART. Figure 4.18 also shows the differences between the similarity
distance mean values between the evaluated methods.

Discussion

The experiment designed to compare ARMSTG vs Direct Diffeomorphic Demons proves
that introducing the patient’s tumor in the atlas via tumor growth and mass-effect simulation
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improves the results of the atlas registration. This result is supported by a p − value =

0.0037 obtained in the respective statistical test and illustrated in Figures 4.15 and 4.16.
One can see that the figures show evident visual improvement of ARMSTG over the direct
Diffeomorphic Demons registration. Figure 4.19 also supports this affirmation; the atlas
image after applying the displacement field produced by the direct diffeomorphic demon
registration looks distorted in comparison to the original patient image; while the image
produced by ARMSTG looks structurally similar to the patient image. The patient image
in the figure was rotated to be aligned with the sagittal axis.

ARMSTG also outperformed SyN and ART as the p − value = 2.17 × 10−6 as the
statistical test points out. Figure 4.17 and Figure 4.18 show the difference between the
methods. ARMSTG obtained the smallest mean distance in comparison to the other two
methods; while SyN obtained the worst performance result. The superiority of ARMSTG
in comparison with SyN and ART can also be seen in Figure 4.20 which shows an example
of the registration obtained with the three methods. Figure 4.19 only shows the registration
result obtained by ARMSTG’s with uniform sampling for simplicity as the rest of results
obtained with the other sampling methods are very similar.

(a) Patient (b) Diffeomorphic Registra-
tion

(c) ARMSTG

Figure 4.19: ARMSTG vs direct diffeomorphic registration.

4.3.5 Running Time between CPU and GPU Implementations

The purpose of this test was to evaluate the advantage of using GPU and CUDA to com-
pute the tumor growth and mass-effect simulation. We compared the computation time of
ARMSTG implemented with the compute power of GPU, and an identical version of the
method implemented with CPU. This test was carried out over the data set for the twelve
patient’s cases. Figure 4.21 shows a plot of the total computation time for both versions and
for all the cases. The red line correspond to the total time spent by the CPU version on each
case, and the blue line corresponds to the total time spent by the parallel implementation of
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(a) Original Patient

(b) SyN (c) ART (d) ARMSTG

Figure 4.20: ARMSTG vs SyN and ART registrations.

ARMSTG using GPU and CUDA. Both results were obtained using Poisson-disk sampling
method and the set of parameter values given in Table 4.13.

Both version GPU and CUDA were implemented on the same workstation with the
specifications given in Tables 3.2 and 3.3.

Discussion

All the registration results analyzed in this work were generated using a version of the
method implemented with CUDA on a GPU. We evaluated the advantage of this imple-
mentation in comparison to a version of the method implemented on CPU. Figure 4.21
illustrates the differences in computation time between the two versions. The use of GPU
reduced the total computation time required to carried out a tumor growth and mass-effect
simulation by 45% . The mean computation time for the GPU version was 85 seconds,
while the mean computation time of the CPU version was 188.58 seconds. This perfor-
mance could be improved by using newer more powerful GPUs like the new Titan Z from
NVIDIA which has 5760 CUDA cores. In addition, more powerful architectures using mul-
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Figure 4.21: Running time for ARMSTG with GPU vs CPU for each patient case.

tiple GPUs based on unified memory architecture can be used to accelerate this simulation
further.

4.4 Qualitative Evaluation
Additionally to the quantitative evaluation presented in this chapter, we also evaluated
ARMSTG results visually. The registration results of the atlas to the twelve patient with
different grades of glioma selected in this thesis are illustrated in Figures A.1, A.2, and
A.3 in Appendix A. From left to right, first column shows the patient images, the second
column shows ARMSTG’s registration results, and the third and fourth columns show the
registration results obtained with SyN and ART. In general one can observe very good
similarity between the atlas image registered to the patients cases using ARMSTG in com-
parison with the other two methods. In cases with large deformations such as the last row
in Figure A.1, the third row in Figure A.2 and the last row in Figure A.3 one can see the
advantage of ARMSTG in pushing and deforming the atlas brain structures according to
the source image. The results obtained with the three algorithms compared in these figures
might look more similar for cases with small tumors causing small deformation as the case
in the third row in Figure A.1 shows.
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Chapter 5

Conclusion

Registering atlas to brain MRI is a challenging task due to the differences between the
target and source images. The challenge is compounded even more when the patient’s
image contains a tumor because the mass-effect deforms the brain structure and augments
the anatomical differences between the atlas and the patient’s image.

Some authors have concluded that many traditional non-linear registration methods fail
when tumors are present [16, 18, 31, 48, 64, 107]. Our work has confirmed this conclusion
with the experiments conducted in Section 4.3.4, where we were able to show that without
simulation of the tumor growth process some non-linear methods for brain registration are
not capable of representing accurately the deformation. The results presented in Section
4.3.4 shows that our approach outperformed two of the top ranking algorithms found in the
literature SyN [3, 4] and ART [94], as well as the famous diffeomorphic demon registration
[41, 91, 95]. These three methods have been widely used for non-linear registration of brain
MRIs.

In particular, Avants et al. [3] states that SyN obtains good results when the distance
between the template brain and the target brain is large, which is the case for patients with
brain tumor. However, this method had the worst performance in experiments carried out in
Section 4.3.4. One reason for this result is that Avant’s et al. does not consider images with
tumor in the development of his method. The authors used images of normal and dementia
patients whose brain structural differences are not as large as the differences between a
normal and a patient brain with tumor.

ART is a program of non-linear inter-subject registration of 3D structural MRI scans
provided by the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)
[94]. This tool for brain image registration is not able to deal with large deformation caused
by brain tumor as shown in Figure 4.17 and Table 4.17. Klein et al. [46] used both meth-
ods ART and SyN to co-register brain images and to establish correspondences across
brain structures. Both methods were evaluated with several image data sets and ranked as
the best methods to co-register brain MRI images and perform comparative morphometry.
However, our experiments show that these two methods are not as good as our method.

Figure A.1, Figure A.2, and Figure A.3 in Appendix A illustrate the great capabilities
of the proposed method. In the figures one can see the similarity between slices of the
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patient images used in the experiments and the registration results and how it outperform
results obtained with SyN and ART methods.

Section 4.3.4 also shows that ARMSTG outperformed the diffeomorphic demon regis-
tration [41, 91, 95] of the images without the process of introducing the tumor patient in
the atlas image. Algorithms based on demon registration [91] have been evaluated before
in other works for the purpose of registering images with large deformation caused by dis-
eases [3, 16, 18], and it has been demonstrated that this algorithm alone fails when large
differences between the target and the source images are present. In this work, we have
proved that the results of diffeomorphic demon registration considerably improves when
ARMSTG is first applied. We use diffeomorphic demon registration in ARMSTG only as
a last step because of its availability and easy use trough 3D Slicer [41, 75].

5.1 ARMSTG Advantages
The key component of ARMSTG is that contrary to the other three non-linear methods
evaluated in this work, our method deforms the brain structures in the atlas by simulating
the tumor growth and mass-effect using a bio-mechanical model. The experimental results
in Section 4.3.4 proved that the strategy of introducing the tumor in the atlas simulating
an actual tumor growth lessens the difference between the target and the source, which
improves the registration results. Although other authors introduced a similar strategy [31,
64, 107], ARMSTG extends the concept by using a total Lagrangian mesh-less method for
the simulation, and a guided tumor growth model using the actual shape of the segmented
tumor from the original multi-modal MRI’s of a patient.

The use of a mesh-less method provided many advantages to ARMSTG, such as the
ability of handling large deformations without re-meshing, and making possible the use
of the proposed tumor growth model guided by the actual shape of the tumor instead of a
spherical or regular shape. Our tumor growth model does not deal with the problem of seed
initialization as the methods in [31, 64, 107]. ARMSTG does not require to search for the
initial seed position with an optimization procedure and is not sensitive to the initial seed
size, as demonstrated in Section 4.3.1.

Moreover, experimental results in Section 4.3.3 demonstrated that our tumor growth
model guided by segmented patient multi-modal MRIs is superior and more realistic than
a simple regular shape model, such as a sphere. As demonstrated in this thesis, if one
uses a semi-spherical growth tumor model, the shape over deforms the atlas structures and
produce bad results. The strategy of using a regular shape to deform the atlas could work
well for cases with small tumors that look like spheres. However, in most cases tumors
have irregular shapes.

Besides the robustness of ARMSTG to parameter variation related to seed size, we
found that the method is also robust to different sampling methods such as: adaptive,
Poisson-disk and uniform. The experimental results in Section 4.3.2 support this con-
clusion. Also, one can see in Section 4.3.1 that ARMSTG performance is not affected by
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parameter variations related to the level set procedure, such as the iteration number and the
parameter a in Equation 3.2.

Another advantage of ARMSTG is that it uses GPU, which substantially helped to
reduce the computational time required for the tumor growth and mass-effect calculations.
Although, some authors [42, 88, 102] have implemented the TLED algorithm proposed
in [60] in GPU, our mesh-less implementation is unique and efficient. Besides, we not
only implemented in parallel the iterative main loops of the algorithm as illustrated in
Figure 3.15, but also implemented in parallel the computation of the shape functions and
its derivatives.

The proposed method is an alternative that can be used to register brain MRIs with
tumor to a common stereotaxic space for the purpose of segmenting brain structures or
doing image comparisons. Another interesting application of the method is the interactive
surgical simulation when deformation of virtual organs is required. One of the major limi-
tation for this kind of application is the significant computation time to perform large organ
deformation if one use FEM methods. A GPU implementation of non-linear constitutive
model such as the algorithm implemented for ARMSTG overcomes this limitation.

With ARMSTG, we have extended non-linear registration methods based on bio-mechanical
simulation in the following aspects:

1. We have developed a complete mesh-free implementation of TLED for brain atlas to
patient registration with tumor;

2. We have integrated the mesh-free TLED implementation with a tumor growth model
based on the real shape of the tumor using a simple segmentation of multi-modal
MRIs of the patient;

3. We have implemented in parallel our method with GPU, reducing considerably the
computation time.

5.2 Some Implementation Issues
During the development of ARMSTG there were some implementation issues that are also
important to mention here:

One of them is that ARMSTG yielded better results when the distances between nodes
are small. This observation make sense since mesh-free computations rely on point neigh-
borhoods to which shape functions are fitted. The more compact the neighborhoods (sup-
port domain) are, the better the geometry representation is. However, processing large point
samples requires a lot of computation power and time. Fortunately, because of the large
computational power of GPU’s, one can use large sample sizes as seen in Table 4.1.

Another important issue observed during the development of ARMSTG is that, al-
though Section 4.3.1 shows that there were not effects created by the seed size, we found
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that it is better to use a small number of seed points to avoid singularities in the linear equa-
tion systems. This is because if the initial position of the seed points at the beginning of the
simulation are located at the same place as the center of the inner tumor contour generated
by the level set, singularities can be produced. If the number of seed points is large, the
method will have a support domain where the majority of the seed points are too close to
each other and may generate a singular equation system. A small numbers of seed points
i.e. less than the half of the support domain size, did not create singularity problems. In
the future, we will distribute the seed points randomly around the tumor center in order to
reduce the possibility of producing singular equation systems.

5.2.1 Limitations

They are also some limitations to ARMSTG:
An important limitation was the quality and quantity of the set of MRIs taken from

BRATS challenge. Although BRATS challenge provides four MRIs sequence for each
patient, some of them look like reconstructed images with aliasing effects. The parenchyma
in some patient’s cases are not complete for all the modalities, as a consequence, we had to
discard these cases. As a future work, we would like to evaluate ARMSTG’s performance
with a better quality set of images. The main reason to persist in the use of BRATS data
set is that, in spite this problem, the data set provides manual tumor segmentations for each
patient case which have been use for benchmark the segmentation methods. Hence, during
the development of ARMSTG, we did not worry about the problem relating to the accuracy
of tumor segmentation. This can be an issue of our method when other data set without
tumor segmentations are selected.

Another limitation that we had during our GPU implementation is the use of some spe-
cialized schemes that improve memory access speed to texture and shared memories. These
limitation was due to the large number of samples handled in the calculations for differ-
ent sampling methods (see Table 4.1). However, one can obtain a considerable reduction in
running time when compared with a CPU version of the algorithm as shown in Figure 4.21.
Although we used local memory, which is not the fastest type of memory in a GPU, we
reduced the amount of CPU-GPU communication by loading the most used variables in the
initialisation part of the simulation to the GPU memory such as: nodal support domains,
shape function derivatives, forces and displacements. All the operations related to these
variables were carried out directly in GPU when the simulation starts.

5.3 Future Work
As a future work, we would like to extend ARMSTG’s structure or pipeline to be applied
to other human organ registration such as lung, bladder and others. Also, we would like
to extend ARMSTG to simulate brain deformation during surgery and compare the result
with the method designed for this purpose such as [8, 42, 102].
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We would also like to evaluate ARMSTG over other data set containing images with
better quality, and to improve the initial distribution of tumor seed points in the atlas. Also,
we would like to evaluate other non-linear registration algorithm (other than the diffeomor-
phic demon) for the last stage of ARMSTG.

Another future work is the improvement of STS for brain tumor segmentation. Al-
though, our segmentation method yield good results for the image set provided by the
Brain Tumor Analysis Project at University of Alberta (Section 3.1), we would like to eval-
uate the method with other data set, and to implement a more robust technique to localize
the tumor threshold th2 (Figure 3.2, in Section 3.1).
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Sébastien Ourselin, and Anthony Maeder, editors, Medical Image Computing and Computer

86

http://dx.doi.org/10.1007/978-3-540-39903-2_98
http://dx.doi.org/10.1007/978-3-540-39903-2_98
http://dx.doi.org/10.1007/978-3-540-30135-6_86
http://dx.doi.org/10.1007/978-3-540-30135-6_86
http://dx.doi.org/10.1109/TMI.2007.913112
http://dx.doi.org/10.1007/BF00054999
http://dx.doi.org/10.1109/NAMW.1997.609861
http://dx.doi.org/10.1016/S1361-8415(98)80022-4
http://dx.doi.org/10.1016/S1361-8415(98)80022-4
http://dx.doi.org/10.1093/cercor/11.1.1
http://dx.doi.org/10.1016/B978-012373904-9.50053-2
http://dx.doi.org/10.1016/B978-012373904-9.50053-2
http://www.nitrc.org/projects/art/


Assisted Intervention (MICCAI’07), volume 4792/2007 of Lecture Notes in Computer Sci-
ence, pages 319–326, Brisbane, Australia, October 29 – November 2 2007. Springer. ISBN
978-3-540-30135-6. doi:10.1007/978-3-540-75759-7 39.

[96] U. Vovk, F. Pernus, and B. Likar. A Review of Methods for Correction of Intensity Inho-
mogeneity in MRI. IEEE Trans. Med. Imaging, 26(3):405–421, 2007. ISSN 0278-0062.
doi:10.1109/TMI.2006.891486.

[97] Richard Wasserman, Raj Acharya, Claudio Sibata, and K H Shin. A patient-specific In Vivo
tumor model. Math. Biosci., 136(2):111–140, sep 1996. ISSN 00255564. doi:10.1016/0025-
5564(96)00045-4.

[98] L. Weizman, Ben Sira L., Joskowicz L., Constantini S., Precel R., Shofty B., and
Ben Bashat D. Automatic segmentation, internal classification, and follow-up of optic
pathway gliomas in MRI. Med. Image Anal., 16(1):177–188, 2012. ISSN 1361-8415.
doi:10.1016/j.media.2011.07.001.

[99] Caroline Weltens, Johan Menten, Michel Feron, Erwin Bellon, Philippe Demaerel, Frederik
Maes, Walter Van den Bogaert, and Emmanuel van der Schueren. Interobserver variations
in gross tumor volume delineation of brain tumors on computed tomography and impact of
magnetic resonance imaging. Radiother. Oncol., 60(1):49–59, July 2001. ISSN 0167-8140.
doi:10.1016/S0167-8140(01)00371-1.

[100] Adam Wittek, Karol Miller, Ron Kikinis, and S.K. Warfield. Patient-specific model of brain
deformation: application to medical image registration. J. Biomech., 40(4):919–929, 2007.
doi:doi:10.1016/j.jbiomech.2006.02.021.

[101] Adam Wittek, T. Dutta-Roy, Z. Taylor, A. Horton, T. Washio, K. Chinzei, and
Karol Miller. Subject-specific non-linear biomechanical model of needle insertion
into brain. Comput Methods Biomech Biomed Engin, 11(2):135–146, feb 2008.
doi:10.1080/10255840701688095.

[102] Adam Wittek, Grand Joldes, Mathieu Couton, Simon K. Warfield, and Karol Miller. Patient-
specific non-linear finite element modelling for predicting soft organ deformation in real-
time; application to non-rigid neuroimage registration. Prog. Biophys. Mol. Biol., 103(2–3):
292–303, dec 2010. ISSN 0079-6107. doi:10.1016/j.pbiomolbio.2010.09.001.

[103] Yongyi Yang, Miles N. Wernick, and Jovan G. Brankov. A fast approach for accu-
rate content-adaptive mesh generation. IEEE Trans. Image Proc., 12(8):866–881, 2003.
doi:10.1109/TIP.2003.812757.

[104] Liu Yanxi, Robert T. Collins, and William E. Rothfus. Robust midsagittal plane extraction
from normal and pathological 3D neuroradiology images. IEEE Trans. Med. Imaging, 20(3):
175–192, 2001. doi:10.1109/42.918469.

[105] Evangelia I. Zacharaki, Cosmina S. Hogea, George Biros, and Christos Davatzikos. A com-
parative study of biomechanical simulators in deformable registration of brain tumor images.
IEEE Trans. Bio-Med. Eng., 55(3):1233–1236, 2008. doi:10.1109/TBME.2007.905484.

[106] Evangelia I. Zacharaki, Dinggang Shen, Seung-Koo Lee, and Christos Davatzikos. ORBIT:
A multiresolution framework for deformable registration of brain tumor images. IEEE Trans.
Med. Imaging, 27(8):1003–1017, aug 2008. doi:10.1109/TMI.2008.916954.

87

http://dx.doi.org/10.1007/978-3-540-75759-7_39
http://dx.doi.org/10.1109/TMI.2006.891486
http://dx.doi.org/10.1016/0025-5564(96)00045-4
http://dx.doi.org/10.1016/0025-5564(96)00045-4
http://dx.doi.org/10.1016/j.media.2011.07.001
http://dx.doi.org/10.1016/S0167-8140(01)00371-1
http://dx.doi.org/doi:10.1016/j.jbiomech.2006.02.021
http://dx.doi.org/10.1080/10255840701688095
http://dx.doi.org/10.1016/j.pbiomolbio.2010.09.001
http://dx.doi.org/10.1109/TIP.2003.812757
http://dx.doi.org/10.1109/42.918469
http://dx.doi.org/10.1109/TBME.2007.905484
http://dx.doi.org/10.1109/TMI.2008.916954


[107] Evangelia I. Zacharaki, Hogea Cosmina S, Dinggang Shen, George Biros, and Chris-
tos Davatzikos. Non-diffeomorphic registration of brain tumor images by simulating tis-
sue loss and tumor growth. NeuroImage, 46(3):762–774, jul 2009. ISSN 10538119.
doi:10.1016/j.neuroimage.2009.01.051.

[108] Johnny Zhang, Grand Joldes, Adam Wittek, A.T. Horton, S. K. Warfield, and Karol Miller.
Neuroimage as a biomechanical model: Toward new computational biomechanics of the
brain. In P. M. F. Nielsen, A. Wittek, and K. Miller, editors, Computational Biomechanics
for Medicine, pages 19–28. Springer, 2012. ISBN 9781461431718.

88

http://dx.doi.org/10.1016/j.neuroimage.2009.01.051


Appendix A

Results of ARMSTG vs. SyN and ART
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Figure A.1: ARMSTG’s results in comparison to SyN’s results and ART’s results. Each
row corresponds to the cases 1 to 4 taken from the data set provided by the BRATS chal-
lenge [58]. From left to right the original image, ARMSTG, SyN and ART registrations
containing the manual segmented tumor provided by the BRATS data set. The colors in
the tumors represent, yellow edema, red enhancing tumor, magenta non-enhancing tumor,
cyan necrosis.
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Figure A.2: ARMSTG’s results in comparison to SyN’s results and ART’s results. Each
row corresponds to the cases 5 to 8 taken from the data set provided by the BRATS chal-
lenge [58]. From left to right the original image, ARMSTG, SyN and ART registrations
containing the manual segmented tumor provided by the BRATS data set. The colors in
the tumors represent, yellow edema, red enhancing tumor, magenta non-enhancing tumor,
cyan necrosis.
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Figure A.3: ARMSTG’s results in comparison to SyN’s results and ART’s results. Each
row corresponds to the cases 9 to 12 taken from the data set provided by the BRATS chal-
lenge [58]. From left to right the original image, ARMSTG, SyN and ART registrations
containing the manual segmented tumor provided by the BRATS data set. The colors in
the tumors represent, yellow edema, red enhancing tumor, magenta non-enhancing tumor,
cyan necrosis.
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