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Abstract

Chevalley’s theorem on the conjugacy of split Cartan subalgebras is one of the

cornerstones of the theory of simple finite dimensional Lie algebras over a field

of characteristic 0. Indeed, this theorem affords the most elegant proof that

the root system is an invariant of the Lie algebra.

The analogous result for symmetrizable Kac-Moody Lie algebras is the cele-

brated theorem of Peterson and Kac. However, the methods they used are

not suitable for attacking the problem of conjugacy in “higher nullity”, i.e. for

extended affine Lie algebras (EALA). In the thesis we develop a new cohomo-

logical approach which we use to prove

1) conjugacy of Cartan subalgebras in affine Kac-Moody Lie algebras;

2) conjugacy of maximal abelian ad-diagonalizable subalgebras (MADs) of

EALA of finite type, coming as a part of the structure, where me assume

that the centreless core is not isomorphc to sl2(R), R is a ring of Laurent

polynomials in more then 1 variables.

We give a counterexample to conjugacy of arbitrary MADs in EALA.

Some relevant problems on the lifting of automorphisms are discussed as well.
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Chapter 1

Introduction

Throughout the dissertation, k denotes an algebraically closed field of charac-

teristic 0.

Infinite dimensional Lie algebras became a useful tool in physics in the 1960s.

They were the right mathematical apparatus to describe the supersymmetric

phenomena. Currently, amongst the others infinite dimensional Lie algebras

ones of particular interest to physicists are affine Kac-Moody Lie algebras and

extended affine Lie algebras (EALAs for short).

Kac-Moody Lie algebras appeared in mathematics as a generalization of finite

dimensional simple Lie algebras over a field of characteristic 0. While a general

Kac-Moody Lie algebra is defined by generators and relations, this definition

is quite elusive (often it is hard to say how the algebra looks), an affine Kac-

Moody Lie algebra has a nice description: its derived subalgebra modulo its

centre is a twisted loop algebra. Therefore, it can be considered not only as

a Lie algebra over a base field k, but as a simple Lie algebra over a Laurent

polynomial ring k[t±1] in the sense of [SGA3] and it is a twisted form of a loop

algebra g⊗ k[t±1].

Let us recall the description of an affine Kac-Moody Lie algebra.

Split case. Let g be a split simple finite dimensional Lie algebra over a field

k and let Aut(g) be its automorphism group. If x, y ∈ g, we denote their

product in g by [x, y]. We also let R = k[t±1] and L(g) = g ⊗k R. We again

denote the Lie product in L(g) by [x, y], where x, y ∈ L(g).

The main object under consideration in Chapter 4 is the affine (split or twisted)
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Kac-Moody Lie algebra L̂ corresponding to g. Any split affine Kac-Moody Lie

algebra is of the form (see [Kac])

L̂ = g⊗k R⊕ k c⊕ k d.

The element c is central and d is a degree derivation for a natural grading of

L(g): if x ∈ g and p ∈ Z then

[d, x⊗ tp]L̂ = p x⊗ tp.

If l1 = x⊗ tp, l2 = y⊗ tq ∈ L(g) are viewed as elements in L̂, their Lie product

is given by

[x⊗ tp, y ⊗ tq]L̂ = [x, y]⊗ tp+q + p κ(x, y) δ0,p+q · c,

where κ is the Killing form on g and δ0,p+q is Kronecker’s delta.

Twisted case. Let m be a positive integer and let S = k[t±
1
m ] be the ring of

Laurent polynomials in the variable s = t
1
m with coefficients in k. Let

L(g)S = L(g)⊗R S

be the Lie algebra obtained from the R-Lie algebra L(g) by the base change

R→ S. Similarly, we define Lie algebras

L̃(g)S = L(g)S ⊕ kc and L̂(g)S = L(g)S ⊕ kc⊕ kd.1

Fix a primitive root of unity ζ ∈ k of degree m. The R-automorphism

ζ× : S → S s 7→ ζs

generates the Galois group Γ = Gal(S/R), which we may identify with the ab-

stract group Z/mZ by means of ζ×. Note that Γ acts naturally on Aut(g)(S) =

AutS−Lie(L(g)S) and on L(g)S = L(g)⊗R S through the second factor.

Next, let σ be an automorphism of g of order m. This gives rise to an S-

automorphism of L(g)S via x⊗ s 7→ σ(x)⊗ s, for x ∈ g, s ∈ S. It then easily

1Unlike L(g)S , these object exist over k but not over S.
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follows that the assignment

1 7→ z1 = σ−1 ∈ AutS−Lie(L(g)S)

gives rise to a cocycle z = (zi) ∈ Z1(Γ,AutS−Lie(L(g)S)). This cocycle, in

turn, gives rise to a twisted action of Γ on L(g)S. Applying Galois descent

formalism, we then obtain the Γ-invariant subalgebra

L(g, σ) := (L(g)S)Γ = (L(g)⊗R S)Γ.

This is a “simple Lie algebra over R” in the sense of [SGA3], which is a twisted

form of the “split simple” R-Lie algebra L(g) = g ⊗k R. Indeed, S/R is an

étale extension and from properties of Galois descent we have

L(g, σ)⊗R S ' L(g)S = (g⊗k R)⊗R S.

Note that L(g, id) = L(g).

For i ∈ Z/mZ, consider the eigenspace

gi = {x ∈ g : σ(x) = ζ ix}.

Simple computations show that

L(g, σ) =
⊕
i∈Z

gi ⊗ k[t±1]si.

Let

L̃(g, σ) := L(g, σ)⊕ kc and L̂(g, σ) := L(g, σ)⊕ kc⊕ kd.

We give L̂(g, σ) a Lie algebra structure such that c is a central element, d is

the degree derivation, i.e. if x ∈ gi and p ∈ Z then

[d, x⊗ t
p
m ] := px⊗ t

p
m (1.0.0.1)

and if y ⊗ t qm ∈ L(g, σ) we get

[x⊗ t
p
m , y ⊗ t

q
m ]L̂(g,σ) = [x, y]⊗ t

p+q
m + p κ(x, y ) δ0,p+q · c,

where, as before, κ is the Killing form on g and δ0,p+q is Kronecker’s delta.
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1.0.1 Remark. Note that the Lie algebra structure on L̂(g, σ) is induced by

that of L̂(g)S if we view L̂(g, σ) as a subset of L̂(g)S.

1.0.2 Remark. Let σ̂ be an automorphism of L̂(g)S such that σ̂|L(g)S = σ,

σ̂(c) = c and σ̂(d) = d. Then L̂(g, σ) = (L̂(g)S)σ̂.

Realization Theorem. (a) The Lie algebra L̂(g, σ) is an affine Kac-Moody

Lie algebra, and every affine Kac-Moody Lie algebra is isomorphic to some

L̂(g, σ).

(b) L̂(g, σ) ' L̂(g, σ
′
), where σ

′
is a diagram automorphism with respect to

some Cartan subalgebra of g.

Proof. See [Kac, Theorems 7.4, 8.3 and 8.5].

Although there were some precursors (papers by Saito and Slodowy for nullity

2), it was in the paper [HT] by the physicists Hoegh-Krohn and Torrésani

that the class of discrete extended affine Lie algebras was introduced, however

not under this name. Rather, they were called “irreducible quasi-simple Lie

algebras” and later ([BGK],[BGKN]) “elliptic quasi-simple Lie algebras.” The

stated goal of the paper [HT] was applications in quantum gauge theory. The

theory developed there did not, however, stand up to the scrutiny of mathe-

maticians. The errors of [HT] were corrected in the AMS memoir [AABGP]

by Allison, Azam, Berman, Gao and Pianzola, and it was here that the name

“extended affine Lie algebra” first appeared, but not in the sense we use it in

this work. Rather, the authors develop the basic theory of what is currently

called discrete EALAs. Nevertheless, [AABGP] has become the standard ref-

erence for the more general EALAs, since many of the results presented there

for discrete EALAs easily extend to the more general setting. The definition

of an EALA that we will use in this work (see Section 2.1) is due to E. Neher

in [Ne2].

Extended affine Lie algebras form a category of Lie algebras which contains the

categories of finite-dimensional simple and affine Kac-Moody Lie algebras. An

EALA is defined by a set of axioms prescribing its internal structure, rather

than by a potentially elusive presentation. In particular, one of the axioms is

that an EALA is a pair (E,H), where E is a Lie algebra over a field k and H

is its maximal abelian ad-diagonalizable subalgebra. It is known that the set

of weights of the adjoint representation of H on E form a so-called extended
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affine root system. The structure of an EALA is now well understood and is

quite similar to that of an affine Kac-Moody Lie algebra. It is obtained from an

invariant Lie torus by taking a central extension and adding some derivations.

This invarant Lie torus is called the centreless core Ecc of an EALA (E,H), its

central extension is called the core Ec of the EALA (E,H), and this really is

the core of the matter. As Lie algebras invariant Lie tori have been classified:

they are either multiloop Lie algebras or isomorphic to sln(q), where q is a

quantum torus.

In this work we will be primarily interested in studying extended affine Lie

algebras with centreless cores isomorphic to some multiloop Lie algebra. As

in the case of affine Kac-Moody Lie algebras, derived modulo centre, they can

be viewed as simple finite dimensional Lie algebras not only over k, but also

over a Laurent polynomial ring in several variables R = k[t±1
1 , . . . , t±1

n ]; they

are the twisted forms of the split Lie R-algebra g⊗R.

The method of studying the structure and representation theory of a twisted

(multi)loop Lie algebra by applying non-abelian Galois cohomology and de-

scent theory to the corresponding untwisted (multi)loop Lie algebra has been

successfully used in the research on the following topics:

• the central extensions of twisted forms of Lie algebras in [PPS], [Sun],

• the derivations of the twisted forms of Lie algebras in [P3],

• the conjugacy theorem of maximal abelian diagonalizable subalgebras

(analogues of Cartan subalgebras) of twisted loop Lie algebras in [P1],[CGP].

• the finite-dimensional irreducible representations of twisted forms of Lie

algebras in [Lau], [LP].

The primary goal of this dissertation is to obtain conjugacy theorems of max-

imal abelian adjoint-diagonalizable subalgebras (MADs) of affine Kac-Moody

Lie algebras and EALAs analogous to the classical theorem of Chevalley, which

says that Cartan subalgebras of a finite dimensional simple Lie algebra over

an algebraically closed field of characteristic 0 are conjugate. The above ob-

servation on the shape of the centreless core of EALA (or affine Kac-Moody

Lie algebra) will enable us to employ non-abelian Galois cohomology tech-

niques, which serve as an important tool in getting the result. Even though

the conjugacy theorem for affine Kac-Moody Lie algebras was known (due to
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[PK]), it is relevant to point out that the cohomological methods that we are

putting forward do have their advantages. The group under which conjugacy

is achieved in this work has a very transparent structure (given in terms of

Laurent polynomial points of simply connected group scheme.) This is in con-

trast to the Kac-Moody groups used in [PK] which, in the twisted case, are

quite difficult to “see”.

It is known that EALAs of nullity 0 are precisely finite dimensional simple Lie

algebras and EALAs of nullity 1 are precisely affine Kac-Moody Lie algebras.

Therefore, one can think of EALAs as generalizations of finite dimensional

simple Lie algebras and affine Kac-Moody Lie algebras to higher nullity.

It may be possible to give a Lie algebra E multiple structures of an EALA.

Therefore the fundamental question to ask is the following:

Is an extended affine root system corresponding to some EALA structure on

E an invariant of E, i.e. does not it depend on a choice of an EALA structure

on E?

Of course, this question has an affirmative answer, if all the structure MADs

of E are conjugate:

1.0.3 Theorem. (Conjugacy theorem for EALAs.) Let (E,H) be an

extended affine Lie algebra with centreless core a multiloop Lie algebra, which

is not isomorphic to sl2(R), where R is a ring of Laurent polynomials in more

then 1 variable. Assume E admits the second structure (E,H ′) of an extended

affine Lie algebra. Then H and H ′ are conjugate, i.e. there exists an auto-

morphism φ ∈ Autk−Lie(E) such that φ(H) = H ′.

As a corollary, we have that an extended affine root system of an EALA (E,H)

is an invariant of E, i.e. it does not depend on the choice of an EALA structure

on E, if the centreless core of E is a multiloop Lie algebra.

Further, the following natural question arises:

Are all MADs of EALAs conjugate?

The answer to this question is “No!”: we have constructed a counterexample,

i.e. an EALA and its two MADs which are not conjugate, (see 8.2.9).

The structure of the dissertation is as follows. Chapters 2 and 3 will serve as

preliminaries required for our subsequent discussions. In Chapter 2, we will
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provide a review of the general theory of Affine Kac-Moody Lie algebras, Lie

tori and EALAs. In Chapter 3, we will review the basic terminology and facts

from non-abelian Galois cohomology theory. Chapter 4 is devoted to the proof

of the conjugacy theorem for affine Kac-Moody Lie algebras:

1.0.4 Theorem. (Conjugacy theorem for affine Kac-Moody.) Let L̂(g, σ)

be an affine Kac-Moody Lie algebra and zG̃R be a simple simply connected

group scheme over R corresponding to L(g, σ) (in the sense that we will make

precise in Chapter 4). Let zĜR(R) be the preimage of {Ad(g) : g ∈ zG̃R(R)}
under the canonical map Autk(L̂(g, σ)) → Autk(L(g, σ)). Then all MADs of

L̂(g, σ) are conjugate under zĜR(R).

The rest of the dissertation consists of Chapters 5-8, where our focus is on the

conjugacy problem of MADs in EALAs. In Chapter 5, we deduce two impor-

tant properties of the core of an EALA, namely, that it does not depend on

the choice of the EALA structure and is automorphism-invariant. These allow

us to consider a natural restriction map rescc : Autk−Lie(E)→ Autk−Lie(Ecc),

whose image and kernel are studied in Chapter 6. There we prove that the

group AutR−Lie (Ecc) of R-automorphisms of the centreless core Ecc is in the

image of the restriction map rescc (6.4.1), if Ecc is not isomorphic to sl2(R),

where R is a ring of Laurent polynomials in more then 1 variable. Results of

this chapter play a crucial role in Chapter 7, where we prove the main theorem

of the dissertation (1.0.3), that is, the conjugacy theorem of structure MADs

for EALAs with multiloop centreless core, which is not isomorphic to sl2(R),

where R is a ring of Laurent polynomials in more then 1 variable. In Chapter

8, we construct an extended affine Lie algebra E and its two MADs H and H ′

such that they are not conjugate, i.e. there is no φ ∈ Autk−Lie(E) such that

φ(H ′) = H (see 8.2.9). In particular, this implies that not all MADs of EALA

are structure MADs.

7



Chapter 2

Lie tori and EALAs

This chapter contains a review of the theory of Lie tori and extended affine

Lie algebras. We will often refer to it in the following chapters of this work.

2.1 Definition of an extended affine Lie alge-

bra

2.1.1 Definition. An extended affine Lie algebra, or EALA for short, is a

pair (E,H) consisting of a Lie algebra E over k and a subalgebra H satisfying

the following axioms (EA1) - (EA6).

(EA1): E has an invariant nondegenerate symmetric bilinear form (−,−).

(EA2): H is a nontrivial finite-dimensional ad-diagonalizable and self-centralizing

subalgebra of E.

Recall, that a bilinear form (−,−) is called invariant if ([u, v], w) = (u, [v, w])

for any u, v, w ∈ E; a subalgebra H is called ad-diagonalizable if there is a

decomposition of E into a sum of eigenspaces for H with respect to the adjoint

action, i.e.

E = ⊕α∈H∗Eα,

where

Eα = {x ∈ E|[h, x] = α(h)x for all h ∈ H}.

8



Before we state the other four axioms, we have to define the notion of a root

(null or anisotropic) of E and a core of E. Since the form (−,−) is invariant

we get that

(Eα, Eβ) = 0 if α + β 6= 0.

Since the form is nondegenerate this implies that its restriction to H = E0 is

still nondegenerate. Therefore we can transfer the form to a nondegenerate

symmetric bilinear form (−,−) on H∗ in an obvious way. We can now define

Φ = {α ∈ H∗|Eα 6= 0} (set of roots of (E,H)),

Φ0 = {α ∈ Φ|(α, α) = 0} (set of null roots),

Φan = {α ∈ Φ|(α, α) 6= 0} (set of anisotropic roots).

We call Φ the set of roots and not a root system because we reserve the latter

for the root system in its usual meaning.

We define the core of E as the subalgebra Ec generated by its anisotropic root

spaces, i.e.

Ec = 〈∪α∈ΦanEα〉subalg.

Now we can state the remaining four axioms.

(EA3): For every α ∈ Φan and any xα ∈ Eα the operator ad(xα) is locally

nilpotent on E.

(EA4): Φan is connected in the sense that for any decomposition Φan = Φ1 ∪ Φ2

with (Φ1,Φ2) = 0 we have Φ1 = ∅ or Φ2 = ∅.

(EA5): The centralizer of the core Ec of E is contained in Ec.

(EA6): Λ = spanZ(Φ0) ⊂ H∗ is a free abelian group of finite rank.

The rank of the free abelian group Λ in the axiom (EA6) is called the nullity

of (E,H).

2.1.2 Remark. The set Φ of roots of an EALA E has special properties:

it is a so-called extended affine root system in the sense of [AABGP, Ch. I].

More precisely, let V be a finite dimensional vector space over k equipped

with a symmetric bilinear form (−,−) and let Φ be a subset of V. A triple

(Φ, V, (−,−)) is called an extended affine root system, if the following axioms

(EARS1)− (EARS7) are fulfilled:

(EARS1): 0 ∈ Φ and Φ spans V .

9



(EARS2): Φ has unbroken finite root strings, i.e., for every α ∈ Φan and β ∈ Φ

there exist d, u ∈ N = {0, 1, 2, . . . } such that

{β + nα|n ∈ Z} ∩ Φ = {β − dα, . . . , β + uα} and d− u = 2
(α, β)

(α, α)
.

(EARS3): Φ0 = Φ ∩ rad(V ).

(EARS4): Φ is reduced: for every α ∈ Φan we have kα ∩ Φan = {±α}.

(EARS5): Φ is connected: whenever Φan = Φ1 ∪Φ2 with (Φ1,Φ2) = 0, then Φ1 = ∅
or Φ2 = ∅.

(EARS6): Φ is tame, i.e. Φ0 ⊂ Φan + Φan.

(EARS7): The abelian group spanZ(Φ0) is free of finite rank.

We will next present some examples of EALAs.

2.2 Examples of EALAs

2.2.1 EALAs of nullity 0.

Let g be a finite dimensional simple Lie algebra over k with Cartan subalgebra

h. Then (g, h) is an EALA of nullity 0.

(EA1) Up to a scalar multiple, there exists unique invariant nondegenerate sym-

metric bilinear form on g, namely, the Killing form κ. Therefore we take

(−|−) = κ.

(EA2) By definition of Cartan subalgebra, the Lie algebra g has a root space

decomposition

g = g0 ⊕
⊕
α∈Σ

gα, g0 = h,

where Σ is the root system of (g, h).

Hence the set of roots of (g, h) is Φ = Σ∪ {0}. It is a standard fact that

κ(tα, tα) 6= 0 for tα ∈ h such that α(x) = κ(tα, x) for all x ∈ h. Therefore,

Φan = Σ and Φ0 = {0}.
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(EA3) Since [gα, gβ] ⊂ gα+β and g is finite dimensional, adxα is nilpotent for

any element xα ∈ gα.

(EA4) Since g is simple Σ is irreducible and hence connected.

(EA5) We defined the core gc of g to be a subalgebra generated by the root

spaces gα, α ∈ Σ. But h =
∑

α∈Σ[gα, g−α]. This implies that gc = g and

therefore the axiom (EA5) holds.

(EA6) Λ = spanZ(Φ0) = {0}.

It worth to be pointed out that this example exhaust all the EALAs of nullity

0.

2.2.2 EALAs of nullity 1.

We wil show that any affine Kac-Moody Lie algebra is an extended affine Lie

algebra of nullity 1.

We will use some basic facts about affine Kac-Moody Lie algebras all of which

can be found in Kac’s book [Kac]. This reference uses the field of complex

numbers C for the base field, but everything we say here is true for an arbitrary

algebraically closed field k of characteristic 0.

Let g be a finite-dimensional simple Lie algebra over k and σ is a diagram

automorphism of g. We let m be the order of σ, and denote the canonical map

Z→ Z/mZ by n 7→ n. Then

L̂ = L̂(g, σ) =
⊕
i∈Z

gi ⊗ k[t±1]si ⊕ kc⊕ kd

is an affine Kac-Moody Lie algebra corresponding to g and σ (see Chapter 1).

We now verify the axioms (EA1)-(EA6).

(EA1) We define a bilinear form on L̂ by

(uλ ⊗ tλ + s1c+ s′1d|vµ ⊗ tµ + s2c+ s′2d)

= κ(uλ, vµ)δλ,−µ + s1s
′
2 + s2s

′
1.

One can check that this form is invariant symmetric nondegenerate.

(EA2) To construct a subalgebra H as required in axiom (EA2) we start with a

11



Cartan subalgebra h of g. Since σ is a diagram automorphism, it leaves

h invariant. We let

h0 = h ∩ g0 = {h ∈ h : σ(h) = h}

and put

H = h0 ⊕ kc⊕ kd.

It is known that g0 is a simple Lie algebra with Cartan subalgebra h0

([Kac, Proposition 7.9]). The grading property implies that [g0, gn] ⊂ gn

for n ∈ Z. Hence g0 acts on gn by the adjoint action. Let ∆n be the set

of weights of the g0-module gn with respect to h0:

gn =
⊕

γ∈∆n
gn,γ

gn,γ = {x ∈ gn| [h0, x] = γ(h0)x for all h0 ∈ h0}.

In particular, ∆0\{0} is the root system of g0 with respect to h0 and

h0 = g0,0.

We extend ∆n ⊂ h0
∗ to a linear form on H by zero, i.e., for γ ∈ ∆n we

put

γ(h0 + sc+ s′d) = γ(h0)

and define a linear form δ on H by

δ(h0 + sc+ s′d) = s′.

Then for γ ∈ ∆n, n ∈ Z, we have

L̂γ⊕nδ = {u ⊂ L̂| [h, u] = (γ ⊕ nδ)(h)u for all h ∈ H}.

That is L̂γ⊕nδ = gn,γ ⊗ tn, if γ ⊕ nδ 6= 0, and L̂0 = H.

This implies that H is an ad-diagonalizable subalgebra of L̂ with the set

of roots

Φ = {γ + nδ| γ ∈ ∆n}.

This establishes (EA2).
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One checks that

Φan = {γ + nδ ∈ Φ| γ 6= 0} and Φ0 = Zδ,

which in the theory of affine Kac-Moody Lie algeras are usually called real and

imaginary roots. Now we can verify the remaining axioms.

(EA3) From the description of the root spaces we see that this axiom holds in

a stronger form: ad(xα) is nilpotent for any xα ∈ L̂α, α ∈ Φan.

(EA4) This is easy.

(EA5) It follows from the description of the root spaces L̂γ+nδ that the core L̂c

of L̂ coincides with the derived subalgebra L̃ = [L̂, L̂]. It easy to check

that the centralizer of L̂c in L̂ is kc ⊂ L̂c.

(EA6) spanZ(Φ0) = Zδ. In particular, the nullity of L̂ is 1.

2.2.3 EALAs of higher nullity

Let R = k[t±1
1 , . . . , t±1

n ] be a ring of Laurent polynomials in n variables with

coefficients in field k. Let L = L(g) = g ⊗ R be an associated untwisted

multiloop algebra. L has a 2-cocycle σ : L× L→ C = kn, given by

σ(u⊗ tλ, v ⊗ tµ) = δλ,−µκ(u, v)λ.

We can therefore define a central extension

K = L⊕ C

with a product

[l1 + c1, l2 + c2]K = [l1, l2]L + σ(l1, l2).

Define the i-th degree derivation ∂i of K by

∂i(u⊗ tλ + c) = λiu⊗ tλ for λ = (λ1, . . . , λn) ∈ Zn

and put

D = spank{∂i|1 ≤ i ≤ n},

13



the space of degree derivations.

Define a Lie algebra E as a semi-direct product

E = K oD.

Let h be a Cartan subalgebra of g and put

H = h⊕ C⊕D.

We claim that (E,H) is an extended affine Lie algebra of nullity n.

(EA1) We will mimic the construction of an invariant nondegenerate symmetric

bilinear form in 2.2.2. Thus, we require

– (L(g),C⊕D) = 0.

– C⊕D is a hyperbolic space with (C,C) = 0 = (D,D) and

(
∑
i

sici,
∑
i

s′idi) =
∑
i

sis
′
i,

where c1, . . . , cn is the canonical basis of kn. In other words, C⊕D

is an orthgonal sum of n hyperbolic planes kci ⊕ kdi.

– On L(g) the form is a tensor product form of the Killing form κ on

g and the natural invariant bilinear form on R.

Putting all these requirements together, we get a bilinear form on E,

given by

(u⊗ tλ +
∑

i sici +
∑

j s
′
jdj, v ⊗ tµ +

∑
i tici +

∑
j t
′
jdj)

= κ(u, v)δλ,−µ +
∑

i(sit
′
i + tis

′
i).

Let h be a splitting Cartan subalgebra and let Σ be the root system of (g, h).We

put ∆ = {0} ∪ Σ and hence have a weight space decomposition g =
⊕

γ∈∆ gγ

with g0 = h.

We embed ∆ ↪→ H∗ by requiring γ|C ⊕ D = 0 for γ ∈ ∆. Also we embed

Λ = Zn ↪→ H∗ by λ(h⊕ C) = 0 and λ(di) = λi for λ = (λ1, . . . , λn) ∈ Λ. Then

14



E has a root space decomposition E =
⊕

α∈Φ Eα with root spaces

Eγ⊕λ = gγ ⊗ tλ (γ ⊕ λ 6= 0), E0 = H.

Moreover, Φan = Σ × Λ and Φ0 = Λ. It is easy now to verify axioms (EA2)-

(EA6).

2.2.4 Remark. There are many more EALAs in nullity n ≥ 2.Other examples

can be found in [AABGP, Chapter III], some of them involving nonassociative

algebras, like octonion algebras and Jordan algebras over Laurent polynomial

rings.

2.3 Lie tori

2.3.1 Definition of a Lie torus

Here the term “root system” means a finite, not necessarily reduced root sys-

tem ∆ in the usual sense, except that we will assume 0 ∈ ∆, as for example in

[AABGP]. In other words, a root system ∆ is a finite subset of k-vector space

V such that:

(RS1): 0 ∈ ∆ and ∆ spans V .

(RS2): For every nonzero α ∈ ∆ there exists a linear form α∨ such that α∨(α) =

2 and sα(∆) = ∆, where sα is the reflection of V defined by sα(y) =

y − α∨(y)α.

(RS)3: For every nonzero α ∈ ∆ the set α∨(∆) is contained in Z.

We denote by

∆ind = {0} ∪ {ξ ∈ ∆ : ξ/2 6∈ ∆}

the subsystem of indivisible roots and by Q(∆) = spanZ(∆) the root lattice of

∆. To avoid some degeneracies we will always assume that ∆ 6= {0}.

Let ∆ be a finite irreducible root system, and let Λ be an abelian group. A

Lie torus of type (∆,Λ) is a Lie algebra L satisfying the following conditions

(LT1) – (LT4).
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(LT1) (a) L is graded by Q(∆)⊕Λ. We write this grading as L =
⊕

ξ∈Q(∆),λ∈Λ L
λ
ξ

and thus have [Lλξ , L
µ
ζ ] ⊂ Lλ+µ

ξ+ζ . It is convenient to define

Lξ =
⊕

λ∈Λ L
λ
ξ and Lλ =

⊕
ξ∈∆ L

λ
ξ .

(b) suppQ(∆) L = {ξ ∈ Q(∆);Lξ 6= 0} = ∆, so that L =
⊕

ξ∈∆ Lξ.

(LT2) (a) If Lλξ 6= 0 and ξ 6= 0, then there exist eλξ ∈ Lλξ and fλξ ∈ L−λ−ξ such

that

Lλξ = keλξ , L−λ−ξ = kfλξ ,

and for all τ ∈ ∆ and xτ ∈ Lτ we have

[[eλξ , f
λ
ξ ], xτ ] = ξ∨(τ)xτ .

(b) L0
ξ 6= 0 for all 0 6= ξ ∈ S with ξ/2 6∈ ∆.

(LT3) As a Lie algebra, L is generated by
⋃

06=ξ∈∆ Lξ.

(LT4) As abelian group, Λ is generated by suppΛ L = {λ ∈ Λ : Lλ 6= 0}.

We define the nullity of a Lie torus L of type (∆,Λ) as the rank of Λ and the

root-grading type as the type of ∆. We will say that L is a Lie torus (without

qualifiers) if L is a Lie torus of type (∆,Λ) for some pair (∆,Λ). A Lie torus

is called centreless if its centre Z(L) = {0}. If L is a Lie torus, then L/Z(L)

is a centreless Lie torus of the same type as L and nullity.

Among the axioms (LT1) – (LT4), the axioms (LT1) and (LT2) are the crucial

ones. One can weaken (LT1b) by only assuming suppQ(∆) L ⊂ ∆. It then

follows that either suppQ(∆) L = ∆ or suppQ(∆) L = ∆ind := {ξ ∈ ∆ : ξ/2 6∈
∆} ∪ {0}, in which case L is a Lie torus of type (∆ind,Λ). Similarly, if a Lie

algebra satisfies (LT1) and (LT2), the subalgebra generated by all Lξ, 0 6= ξ ∈
∆, satisfies (LT1) – (LT3). The analogous remark applies to (LT4).

An obvious example of a Lie torus of type (∆,Zn) is a k-Lie algebra g ⊗k R
where g is a finite-dimensional split simple Lie algebra of type ∆ and R =

k[t±1
1 , . . . , t±1

n ] is a Laurent polynomial ring. Another important example, stud-

ied in [BGK], is sll(kq) for kq a quantum torus.

Lie tori have been classified, see [Al] for a recent survey of the many papers

involved in this classification. Some more background on Lie tori is contained
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in the papers [ABFP, Ne3].

2.3.2 Some known properties of centreless Lie tori

We review the properties of Lie tori used in the following. This is not a

comprehensive survey. The reader can find more information in [ABFP, Ne3,

Ne4].

Let L and L′ be two Lie tori of type (∆,Λ) and (∆′,Λ′) respectively, thus

L =
⊕

ξ∈∆,λ∈Λ L
λ
ξ and L′ =

⊕
ξ′∈∆′,λ′∈Λ′ L

′λ′
ξ′ . An isotopy from L to L′ is an

isomorphism f : L→ L′ of Lie algebras for which there exist

1. group isomorphisms ϕr : Q(∆)→ Q(∆′) and ϕe : Λ→ Λ′, and

2. a group homomorphism ϕs : Q(∆)→ Λ′

such that

f(Lλξ ) = (L′)
ϕe(λ)+ϕs(ξ)
ϕr(ξ)

(2.3.2.1)

holds for all ξ ∈ ∆ and λ ∈ Λ. One calls L and L′ isotopic if there exists an

isotopy from L to L′. It is immediate that isotopy is an equivalence relation

on the class of Lie tori. The maps in (1) and (2) are uniquely determined by

(2.3.2.1).

We will need the following result.

2.3.3 Theorem ([Al, Theorem 7.2]). Suppose that L and L′ are centreless

Lie tori of type (∆,Λ) and (∆′,Λ′) respectively. Let h = L0
0 and h′ = L

′0
0 . If

φ : L→ L′ is an algebra isomorphism, then

φ is an isotopy ⇐⇒ φ(h) = h′.

In the remaining part of this section we will assume that L is a centreless Lie

torus of type (∆,Λ) and nullity n.

For eλξ and fλξ as in (LT2) we put hλξ = [eλξ , f
λ
ξ ] ∈ L0

0 and observe that

(eλξ , h
λ
ξ , f

λ
ξ ) is an sl2-triple. It follows from (LT3) that weight space L0

0 of

L is equal to

L0
0 = h = spank{hλξ}, (2.3.3.1)
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and is a toral (= ad-diagonalizable) subalgebra of L whose root spaces are the

Lξ, ξ ∈ ∆.

Up to scalars, L has a unique nondegenerate symmetric bilinear form (·|·)
which is Λ-graded in the sense that (Lλ | Lµ) = 0 if λ + µ 6= 0, [NPPS, Yo3].

Since the subspaces Lξ are the root spaces of the toral subalgebra h we also

know (Lξ | Lτ ) = 0 if ξ + τ 6= 0.

Recall that the centroid of a Lie algebra A defined over k is

Ctdk(A) = {χ ∈ Endk(A)| [χ(a1), a2] = χ([a1, a2]) for all a1, a2 ∈ A}.

The centroid Ctdk(L) of a Lie torus L is isomorphic to the group ring k[Γ] for

a subgroup Γ of Λ, the so-called central grading group (see [BN, Prop. 3.13]).

Hence Ctdk(L) is a Laurent polynomial ring in ν variables, 0 ≤ ν ≤ n, (all

possibilities for ν do in fact occur). We will write Ctdk(L) =
⊕

γ∈Γ kχ
γ,

where the χγ satisfy the multiplication rule χγχδ = χγ+δ and act on L as

endomorphisms of Λ-degree γ.

One knows that Ctdk(L) acts without torsion on L ([Al, Prop. 4.1]) and as a

Ctdk(L)-module, L is free ([Ne5, Th.7]). If L is fgc (finitely generated module

over its centroid), it is a multiloop algebra [ABFP].

If L is not fgc, equivalently ν < n, one knows ([Ne1, Th. 7]) that L has

root-grading type A. Lie tori with this root-grading type are classified in

[BGK, BGKN, Yo1]. It follows from this classification together with [NY, 4.9]

that L ∼= sll(kq) for kq a quantum torus in n variables.

Let us recall a construction of a multiloop Lie algebra, since we will work

mainly with fgc Lie tori. Let g be a finite dimensional Lie algebra over k and

σσσ = (σ1, . . . , σn) be an n-tuple of commuting k-automorphisms of g satisfying

σmii = 1. Let

R = k[t±1
1 , . . . , t±1

n ] and S = k[s±1
1 , . . . , s±1

n ], si = t
1
mi
i , 1 ≤ i ≤ n.

The extension S/R is Galois and we can identify

Γ := Gal(S/R) = Z/m1Z⊕ Z/m2Z⊕ · · · ⊕ Z/mnZ
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via our choice of compatible roots of unity: if ζi is a fixed primitive mi-th root

of unity in k, 1 ≤ i ≤ n, the generators of Γ are automorphisms γi of S such

that γi(s
λ) = ζλii s

λ, 1 ≤ i ≤ n.

We have a natural action of Γ on LS := g ⊗ S and Aut(g)(S) via the second

component. Note that the action of Γ on Aut(g)(S) can be equivalently de-

scribed as follows: if φ ∈ Aut(g)(S) and γ ∈ Γ then γ(φ) : LS → LS is given

by l→ γ(φ(γ−1(l))) where l ∈ LS.

The family σσσ gives rise to a natural loop cocycle

η = η(σσσ) ∈ Z1
(
Γ,Aut(g)(k)

)
⊂ Z1

(
Γ,Aut(g)(S)

)
defined by η(σσσ) = (aλ) where

a(0,...,1,...,0) = σ−1
i ∈ Aut(g)(S).

The cocycle η(σσσ) in turn gives rise to a new twisted action of Γ on g⊗ S and

the multiloop algebra L(g,σσσ) based on g corresponding to σσσ is the invariant

subalgebra (g ⊗ S)Γ of g ⊗ S with respect to the twisted action of Γ. More

precisely,

L(g,σσσ) =
⊕

(i1,...,in)∈Zn
gi1...in ⊗ t

i1
m1
1 . . . t

in
mn
n ⊂ g⊗k S, (2.3.3.2)

where

gi1...in = {x ∈ g : σj(x) = ζ
ij
j x for 1 ≤ j ≤ n}.

Thus, L(g,σσσ) is a twisted form of the R–Lie algebra g⊗k R splitting by S :

L(g,σσσ)⊗R S ' g⊗k S ' (g⊗k R)⊗R S.

2.3.4 Remark. Let G̃ be the simple simply connected algebraic group over k

corresponding to g. Since Aut(g) ∼= Aut(G̃) we can also consider by means of

the cocycle η the twisted R-group ηG̃R. It is well known (see for example the

proof of [GP1, Prop 4.10]) that the determination of Lie algebras commutes

with the twisting process. Thus L(g,σσσ) is a Lie algebra of zG̃R.

Before giving a nice explicit realization of EALA, we have to introduce certain

types of derivations of a Lie torus.
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Any θ ∈ HomZ(Λ, k) induces a so-called degree derivation ∂θ of L defined by

∂θ(l
λ) = θ(λ)lλ for lλ ∈ Lλ. We put D = {∂θ : θ ∈ HomZ(Λ, k)} and note that

θ 7→ ∂θ is a vector space isomorphism from HomZ(Λ, k) to D, whence D ∼= kn.

We define evλ ∈ D∗ by evλ(∂θ) = θ(λ). One knows ([Ne1, 8]) that D induces

the Λ-grading of L in the sense that Lλ is the evλ-weight space of L.

If χ ∈ Ctdk(L) then χd ∈ Derk(L) for any derivation d ∈ Derk(L). We call

CDerk(L) := Ctdk(L)D =
⊕

γ∈Γ χ
γD

the centroidal derivations of L. Since

[χγ∂θ, χ
δ∂ψ] = χγ+δ(θ(δ)∂ψ − ψ(γ)∂θ)

it follows that CDer(L) is a Γ-graded subalgebra of Derk(L), a generalized Witt

algebra. Note that D is a toral subalgebra of CDerk(L) whose root spaces are

the χγD = {d ∈ CDer(L) : [t, d] = evγ(t)d for all t ∈ D}. One also knows

([Ne1, 9]) that

Derk(L) = IDer(L) o CDerk(L). (2.3.4.1)

For the construction of EALAs, the Γ-graded subalgebra SCDerk(L) of skew-

centroidal derivations is important:

SCDerk(L) = {d ∈ CDerk(L) : (d(l) | l) = 0 for all l ∈ L}

=
⊕

γ∈Γ SCDerk(L)γ,

SCDerk(L)γ = χγ{∂θ : θ(γ) = 0}.

Note SCDerk(L)0 = D and [SCDerk(L))γ, SCDerk(L)−γ] = 0, whence

SCDerk(L) = Dn
(⊕

γ 6=0 SCDer(L)γ
)
.

2.4 Construction of EALAs

To construct an EALA we will use data (L,D, τ) described below. Some

background material can be found in [Ne3, §6] and [Ne4, §5.5]:

• L is a centreless Lie torus of type (∆,Λ). We fix a Λ-graded invariant

nondegenerate symmetric bilinear form (·|·) and let Γ be the central
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grading group of L.

• D =
⊕

γ∈Γ D
γ is a graded subalgebra of SCDerk(L) such that the eval-

uation map evD0 : Λ → D0 ∗, λ → evλ |D0 is injective. We denote by

C = Dgr∗ the graded dual of D. It is well-known that

σD : L× L→ C, σD(l1, l2)(d) = (d · l1 | l2) (2.4.0.2)

is a central 2-cocycle.

• τ : D×D → C is an affine cocycle defined to be a bilinear map satisfying

for all d, di ∈ D

τ(d, d) = 0 and
∑

	 d1 · τ(d2, d3) =
∑

	 τ([d1, d2], d3),

τ(D0, D) = 0, and τ(d1, d2)(d3) = τ(d2, d3)(d1)

Here d · c denotes the natural action of D on C. It is important to point

out that there do exist non-trivial affine cocycles, see [BGK, Rem. 3.71].

To data (L,D, τ) as above we associate a Lie algebra

E = L⊕ C ⊕D

with product (li ∈ L, ci ∈ C and di ∈ D)

[l1 ⊕ c1 ⊕ d1, l2 ⊕ c2 ⊕ d2] =
(
[l1, l2]L + d1(l2)− d2(l1)

)
⊕
(
σD(l1, l2) + d1 · c2 − d2 · c1 + τ(d1, d2)

)
⊕ [d1, d2]D.

(2.4.0.3)

Here [., .]L and [., .]D are the Lie algebra products of L and D respectively, and

di(lj) is the natural action of D on L sometimes also written as di · lj.

It is immediate from the product formula that

(i) L⊕Dgr∗ is an ideal of E, and the canonical projection L⊕Dgr∗ → L is

a central extension.

(ii) The Lie algebra Dgr∗ ⊕D is a subalgebra of E.

The Lie algebra E has a subalgebra

H = h⊕D0 ∗ ⊕D0
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where h = spanF{hλξ : ξ ∈ ∆×, λ ∈ Λ} = spanF{h0
ξ : 0 6= ξ ∈ ∆ind}. We embed

∆ into the dual space h∗, and extend ξ ∈ ∆ ⊂ h∗ to a linear form of H by

ξ(D0 ∗ ⊕ D0) = 0. We embed Λ ⊂ D0 ∗, using the evaluation map, and then

extend λ ∈ Λ ⊂ D0 ∗ to a linear form of H by putting λ(h⊕C0) = 0. Then H

is a toral subalgebra of E with root spaces

Eξ⊕λ =

Lλξ , ξ 6= 0,

Lλ0 ⊕ (D−λ)∗ ⊕Dλ, ξ = 0.

Observe H = E0 since h = L0
0. The Lie algebra E has a toral subalgebra

H = h⊕ C0 ⊕D0

for h as in 2.3.2. The symmetric bilinear form (·|·) on E, defined by

(
l1 ⊕ c1 ⊕ d1, l2 ⊕ c2 ⊕ d2

)
= (l1, l2)L + c1(d2) + c2(d1),

is nondegenerate and invariant. Here (−,−) is of course the given bilinear

form of the invariant Lie torus L. One can check that thus constructed pair

(E,H) satisfies the remaining axioms (EA3)-(EA6) of an EALA, (see [Na,

Proposition 5.2.4]). This then shows the part (a) of the following theorem.

2.4.1 Theorem ([Ne2, Theorem 6]). (a) The pair (E,H) constructed above

is an extended affine Lie algebra, denoted EA(L,D, τ). Its core is L ⊕ Dgr ∗

and its centreless core is L.

(b) Conversely, let (E,H) be an extended affine Lie algebra, and let L =

Ec/Z(Ec) be its centreless core. Then there exists a subalgebra D ⊂ SCDerF (L)

and an affine cocycle τ such that E ∼= EA(L,D, τ).
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Chapter 3

Algebraic groups and

non-abelian Galois cohomology

This chapter serves as a review of some concepts and results from the theory

of algebraic groups and non-abelian Galois cohomology which will be used in

the following chapters.

First let us review the definition and basic properties of non-abelian Galois

cohomology sets H0 and H1. This material is taken from [Ser].

Let Γ denotes a profinite group. A Γ-set E is a discrete topological space on

which Γ acts continuously. If γ ∈ Γ and x ∈ E, we will denote the image γ(x)

of x under γ as γx. If E and E ′ are two Γ-sets, a morphism of E to E ′ is a map

f : E → E ′ which commutes with the action of Γ. A Γ-group G is a group

in this category; in other words, it is a Γ-set with a group structure invariant

under Γ. Notice that when G is commutative, one recovers the notion of a

Γ-module. If E is a Γ-set, we put H0(Γ, E) = EΓ, the set of elements fixed by

Γ. If E is a group, H0(Γ, E) is a group.

If G is a Γ-group, one defines a 1-cocycle of Γ in G as a continuous map

a = (aγ) : Γ→ G, γ 7→ aγ such that

aδγ = aδ ·δ aγ (δ, γ ∈ Γ).

The set of all 1-cocycles will be denoted Z1(Γ, G). Two cocycles a and a′ are
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said to be cohomologous if there exists g ∈ G such that

a′γ = g−1aγγg.

This is an equivalence relation on Z1(Γ, G), and the quotient set is denoted

H1(Γ, G). This is the “first cohomology set of Γ in G”. It has a distinguished

element: the class of the unit cocycle, denoted usually by 0 or 1.

The cohomology sets H0(Γ, G) and H1(Γ, G) are functorial in G and coincide

with the usual cohomology groups in dimensions 0 and 1 when G is commu-

tative.

The non-abelian H1 is a pointed set and therefore the notion of an exact

sequence does make sense, i.e. the image of the map is equal to the preimage

of a neutral element.

By the functoriality of H0 and H1, for a Γ-equivariant exact sequence of groups

1→ G1 → G→ G2 → 1

there are induced sequences

H0(Γ, G1)→ H0(Γ, G)→ H0(Γ, G2)

and

H1(Γ, G1)→ H1(Γ, G)→ H1(Γ, G2).

Also, one may define a boundary map δ : H0(Γ, G2)→ H1(Γ, G1) as follows:

for g2 ∈ G2 choose g ∈ G such that g2 is the image of g. Let aγ = g−1 ·γ g. We

define δ(g2) as the class of the cocycle (aγ) ∈ Z1(Γ, G1).

3.0.2 Proposition. [Ser, Chapter I, Proposition 38] Let 1 → G1 → G →
G2 → 1 be a Γ-equivariant exact sequence of groups. Then the sequence of

pointed sets

1→ GΓ
1 → GΓ → GΓ

2
δ→ H1(Γ, G1)→ H1(Γ, G)→ H1(Γ, G2)

is exact.

We will now recall the definition of an affine group scheme. Let R be a ring.
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An affine group scheme G over R is a representable functor

G : R−alg→ grp,

where R−alg is the category of commutative associative unital R-algebras and

grp is the category of groups. The functor G is called representable if

G = HomR−rng(R[G],−),

for some R[G] in R−rng, which is called the ring of regular functions of G. By

Yoneda’s Lemma, the group structure on G is translated to the coassociative

Hopf algebra structure on R[G] (cf. [Wat]). For an R-algebra S we call the

elements of G(S) the S-points of G.

3.0.3 Examples. (1) The multiplicative group scheme Gm:

Gm(S) = S× is the group of units in S. R[Gm] = R[t±1].

(2) The special linear group SLn for n ≥ 1:

SLn(S) is the group of n×n-matrices with entries in S and determinant

1. R[SLn] = R[xij]1≤i,j≤n/〈det(xij)− 1〉.

If k is an algebraically closed field, an affine group scheme G over k is semisim-

ple if it is smooth connected and if its radical is trivial [Hum]. A semisimple

group scheme G over k is called simple if G(k) does not have any infinite

closed normal subgroups. The definition of a simple group scheme over an

arbitrary ring R is the following:

3.0.4 Definition. An affine R-group scheme G is simple if it satisfies the two

following requirements:

(1) G is smooth.

(2) For each x ∈ Spec(R), the geometric fiber G ×R κ(x) is simple, where

κ(x) stands for an algebraic closure of the residue field κ(x).

Let X be a scheme and G a group scheme over X. For any scheme Y over X

we denote by pi, for i = 1, 2, the corresponding projection Y ×X Y → Y on the

i-th component and by pij, for i, j = 1, 2, 3, the projection Y ×X Y ×X Y →
Y ×X Y on the ij-th component. These projections naturally induce group
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homomorphisms

G(Y )→ G(Y ×X Y ) and G(Y ×X Y )→ G(Y ×X Y ×X ×Y )

which we denote by p∗i and p∗ij respectively. Assume now that Y/X is an étale

cover. For such a covering Y → X, we define the corresponding set of cocycles

to be

Ž1(Y/X,G) := {g ∈ G(Y ×X Y ) | p∗23(g)p∗12(g) = p∗13(g)}

and the non-abelian cohomology to be

Ȟ1(Y/X,G) := Ž1(Y/X,G)/G(Y ),

where G(Y ) acts on Ž1(Y/X,G) by g · z = p∗2(g)zp∗1(g)−1. We define

Ȟ1(X,G) := lim−→
Y

Ȟ1(Y/X,G),

where the limit is taken over all étale covers Y → X which are locally of finite

type.

3.0.5 Proposition. [Mil, Proposition 4.5] To any exact sequence of affine

group schemes over a scheme X

1→ G1 → G→ G2 → 1,

there is an associated exact sequence of pointed sets

1→ G1(X)→ G(X)→ G2(X)→ Ȟ1(X,G1)→ Ȟ1(X,G)→ Ȟ1(X,G2).

3.0.6 Proposition. [Mil, Proposition 4.9] H1(Xet,Gm) ∼= Pic(X).
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Chapter 4

A cohomological proof of

Peterson-Kac’s theorem on

conjugacy of Cartan subalgebras

for affine Kac-Moody Lie

algebras

In this chapter1 we prove the conjugacy theorem for affine Kac-Moody Lie

algebras using cohomological techniques.

Let us fix notation that will be used in this chapter and recall the construc-

tion of an affine Kac-Moody Lie algebra. R will denote the ring of Laurent

polynomials k[t±1] with coefficients in the field k.

Let g be a split simple finite dimensional Lie algebra over a field k and let

Aut(g) be its automorphism group. Let G̃ (resp. G) be a simple simply

connected (resp. adjoint) algebraic group over k corresponding to g. If x, y ∈ g,

we denote their product in g by [x, y]. We also letR = k[t±1] and L(g) = g⊗kR.

We again denote the Lie product in L(g) by [x, y], where x, y ∈ L(g).

Split case. The main object under consideration in Chapter 4 is the affine

(split or twisted) Kac-Moody Lie algebra L̂ corresponding to g. Any split

1A version of this chapter has been published. V. Chernousov, P. Gille, A. Pianzola
and U. Yahorau,“A cohomological proof of Peterson-Kac’s theorem on conjugacy of Cartan
subalgebras for affine Kac-Moody Lie algebras,” Journal of Algebra. 399: 55-78.
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affine Kac-Moody Lie algebra is of the form (see [Kac])

L̂ = g⊗k R⊕ k c⊕ k d.

The element c is central and d is a degree derivation for a natural grading of

L(g): if x ∈ g and p ∈ Z then

[d, x⊗ tp]L̂ = p x⊗ tp.

If l1 = x⊗ tp, l2 = y⊗ tq ∈ L(g) are viewed as elements in L̂, their Lie product

is given by

[x⊗ tp, y ⊗ tq]L̂ = [x, y]⊗ tp+q + p κ(x, y) δ0,p+q · c,

where κ is the Killing form on g and δ0,p+q is Kronecker’s delta.

Twisted case. Let m be a positive integer and let S = k[t±
1
m ] be the ring of

Laurent polynomials in the variable s = t
1
m with coefficients in k. Let

L(g)S = L(g)⊗R S

be the Lie algebra obtained from the R-Lie algebra L(g) by the base change

R→ S. Similarly, we define Lie algebras

L̃(g)S = L(g)S ⊕ kc and L̂(g)S = L(g)S ⊕ kc⊕ kd.2

Fix a primitive root of unity ζ ∈ k of degree m. The R-automorphism

ζ× : S → S s 7→ ζs

generates the Galois group Γ = Gal(S/R), which we may identify with the ab-

stract group Z/mZ by means of ζ×. Note that Γ acts naturally on Aut(g)(S) =

AutS−Lie(L(g)S) and on L(g)S = L(g)⊗R S through the second factor.

Next, let σ be an automorphism of g of order m. This gives rise to an S-

automorphism of L(g)S via x⊗ s 7→ σ(x)⊗ s, for x ∈ g, s ∈ S. It then easily

2Unlike L(g)S , these object exist over k but not over S.
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follows that the assignment

1 7→ z1 = σ−1 ∈ AutS−Lie(L(g)S)

gives rise to a cocycle z = (zi) ∈ Z1(Γ,AutS−Lie(L(g)S)). This cocycle, in

turn, gives rise to a twisted action of Γ on L(g)S. Applying Galois descent

formalism, we then obtain the Γ-invariant subalgebra

L(g, σ) := (L(g)S)Γ = (L(g)⊗R S)Γ.

This is a “simple Lie algebra over R” in the sense of [SGA3], which is a twisted

form of the “split simple” R-Lie algebra L(g) = g ⊗k R. Indeed, S/R is an

étale extension and from properties of Galois descent we have

L(g, σ)⊗R S ' L(g)S = (g⊗k R)⊗R S.

Note that L(g, id) = L(g).

For i ∈ Z/mZ, consider the eigenspace

gi = {x ∈ g : σ(x) = ζ ix}.

Simple computations show that

L(g, σ) =
⊕
i∈Z

gi ⊗ k[t±1]si.

Let

L̃(g, σ) := L(g, σ)⊕ kc and L̂(g, σ) := L(g, σ)⊕ kc⊕ kd.

We give L̂(g, σ) a Lie algebra structure such that c is a central element, d is

the degree derivation, i.e. if x ∈ gi and p ∈ Z then

[d, x⊗ t
p
m ] := px⊗ t

p
m (4.0.6.1)

and if y ⊗ t qm ∈ L(g, σ) we get

[x⊗ t
p
m , y ⊗ t

q
m ]L̂(g,σ) = [x, y]⊗ t

p+q
m + p κ(x, y ) δ0,p+q · c,

where, as before, κ is the Killing form on g and δ0,p+q is Kronecker’s delta.
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Since Aut(g) ∼= Aut(G̃) we can also consider by means of the cocycle z the

twisted R-group zG̃R. It is well known (see, for example, the proof of [GP1,

Prop 4.10]) that the determination of Lie algebras commutes with the twisting

process. Thus L(g, σ) is a Lie algebra of zG̃R.

The following theorem is the main theorem of this chapter. We keep all the

preceeding notations.

4.0.7 Theorem. (Conjugacy theorem for affine Kac-Moody.) Let L =

L(g, σ) be an affine Kac-Moody Lie algebra. Let zĜR(R) be the preimage of

{Ad(g) : g ∈ zG̃R(R)} under the canonical map Autk(L̂) → Autk(L). Then

all MADs of L̂ are conjugate under zĜR(R).

∗ ∗ ∗

Let L̂(g) be an affine Kac-Moody Lie algebra corresponding to a finite di-

mensional simple Lie algebra g. Let φ ∈ Autk−Lie(L̂(g)S). Since L̃(g)S is

the derived subalgebra of L̂(g)S the restriction φ|L̃(g)S
induces a k-Lie auto-

morphism of L̃(g)S. Furthermore, passing to the quotient L̃(g)S/kc ' L(g)S

the automorphism φ|L̃(g)S
induces an automorphism of L(g)S. This yields a

well-defined morphism

Autk−Lie(L̂(g)S)→ Autk−Lie(L(g)S).

Similar considerations apply to Autk−Lie(L̂(g, σ)). The aim of the next few

sections is to show that these two morphisms are surjective.

4.1 S-automorphisms of L(g)S

In this section we construct a “simple” system of generators of the automor-

phism group

Aut(g)(S) = AutS−Lie(L(g)S)

which can be easily extended to k-automorphisms of L̂(g)S. We produce our

list of generators based on a well-known fact that the group in question is

generated by S-points of the corresponding split simple adjoint algebraic group

and automorphisms of the corresponding Dynkin diagram.
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More precisely, let G̃ be the split simple simply connected group over k corre-

sponding to g and let G be the corresponding adjoint group. Choose a maximal

split k-torus T̃ ⊂ G̃ and denote its image in G by T. The Lie algebra of T̃ is

a Cartan subalgebra h ⊂ g. We fix a Borel subgroup T̃ ⊂ B̃ ⊂ G̃.

Let Σ = Σ(G̃, T̃) be the root system of G̃ relative to T̃. The Borel sub-

group B̃ determines an ordering of Σ, hence the system of simple roots Π =

{α1, . . . , αn}. Fix a Chevalley basis [St67]

{Hα1 , . . . Hαn , Xα, α ∈ Σ}

of g corresponding to the pair (T̃, B̃). This basis is unique up to signs and

automorphisms of g which preserve B̃ and T̃ (see [St67, §1, Remark 1]).

Since S is a Euclidean ring, by Steinberg [St62] the group G̃(S) is generated

by the so-called root subgroups Uα = 〈xα(u) | u ∈ S〉, where α ∈ Σ and

xα(u) = exp(uXα) =
∞∑
n=0

unXn
α /n! (4.1.0.1)

We recall also that by [St67, §10, Cor. (b) after Theorem 29], every auto-

morphism σ of the Dynkin diagram Dyn(G̃) of G̃ can be extended to an

automorphism of G̃ (and hence of G) and g, still denoted by σ, which takes

xα(u) −→ xσ(α)(εαu) and Xα −→ εαXσ(α).

Here εα = ±1 and if α ∈ Π then εα = 1. Thus we have a natural embedding

Aut(Dyn(G̃)) ↪→ AutS−Lie(L(g)S).

The group G(S) acts by S-automorphisms on L(g)S through the adjoint rep-

resentations Ad : G → GL(L(g)S) and hence we also have a canonical em-

bedding

G(S) ↪→ AutS−Lie(L(g)S).

As we said before, it is well-known (see [P2] for example) that

AutS−Lie (L(g)S) = G (S) o Aut(Dyn(G̃)).
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For later use we need one more fact.

4.1.1 Proposition. Let f : G̃ → G be the canonical morphism. The group

G(S) is generated by the root subgroups f(Uα), α ∈ Σ, and T(S).

Proof. Let Z ⊂ G̃ be the center of G̃. The exact sequence

1 −→ Z −→ G̃ −→ G −→ 1

gives rise to an exact sequence in Galois cohomology

f(G̃(S)) ↪→ G(S) −→ Ker [H1(S,Z)→ H1(S, G̃)] −→ 1.

Since H1(S,Z)→ H1(S, G̃) factors through

H1(S,Z) −→ H1(S, T̃) −→ H1(S, G̃)

and since H1(S, T̃) = 1 (because PicS = 1) we obtain

f(G̃(S)) ↪→ G(S) −→ H1(S,Z) −→ 1. (4.1.1.1)

Similar considerations applied to

1 −→ Z −→ T̃ −→ T −→ 1

show that

f(T̃(S)) ↪→ T(S) −→ H1(S,Z) −→ 1. (4.1.1.2)

The result now follows from (4.1.1.1) and (4.1.1.2).

4.1.2 Corollary. One has

AutS−Lie (L(g)S) = 〈Aut(Dyn(G̃)), Uα, α ∈ Σ, T(S) 〉.
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4.2 k-automorphisms of L(g)S

We keep the above notation. Recall that for any algebra A over a field k the

centroid of A is

Ctd (A) = {χ ∈ Endk(A) |χ(a · b) = a · χ(b) = χ(a) · b for all a, b ∈ A }.

It is easy to check that if χ1, χ2 ∈ Ctd(A) then both linear operators χ1◦χ2 and

χ1 +χ2 are contained in Ctd (A) as well. Thus, Ctd (A) is a unital associative

subalgebra of Endk(A). It is also well-known that the centroid is commutative

whenever A is perfect.

Example. Consider the k-Lie algebra A = L(g)S. For any s ∈ S the linear

k-operator χs : L(g)S → L(g)S given by x→ sx satisfies

χs([x, y]) = [x, χs(y)] = [χs(x), y],

hence χs ∈ Ctd (L(g)S). Conversely, it is known (see [ABP, Lemma 4.2]) that

every element in Ctd (L(g)S) is of the form χs. Thus,

Ctd (L(g)S) = {χs | s ∈ S } ' S.

4.2.1 Proposition. ([P2, Proposition 1]) One has

Autk−Lie(L(g)S) ' AutS−Lie(L(g)S) o Autk(Ctd (L(g)S))

' AutS−Lie(L(g)S) o Autk(S).

4.2.2 Corollary. One has

Autk−Lie(L(g)S) = 〈Autk (S),Aut(Dyn(G̃)), Uα, α ∈ Σ, T(S) 〉.

Proof. This follows from Corollary 4.1.2 and Proposition 4.2.1.

4.3 Automorphisms of L̃(g)S

We remind the reader that the centre of L̃(g)S is the k-span of c and that

L̃(g)S = L(g)S ⊕ kc. Since any automorphism φ of L̃(g)S takes the centre into
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itself we have a natural (projection) mapping

µ : L̃(g)S → L̃(g)S/kc ' L(g)S

which induces the mapping

λ : Autk−Lie(L̃(g)S)→ Autk−Lie(L(g)S)

given by φ→ φ′ where φ′(x) = µ(φ(x)) for all x ∈ L(g)S. In the last formula

we view x as an element of L̃(g)S through the embedding L(g)S ↪→ L̃(g)S.

4.3.1 Remark. It is straightforward to check that φ′ is indeed an automor-

phism of L(g)S.

4.3.2 Proposition. The mapping λ is an isomorphism.

Proof. See [P2, Proposition 4].

In what follows if φ ∈ Autk−Lie(L(g)S) we denote its (unique) lifting to

Autk−Lie(L̃(g)S) by φ̃.

4.3.3 Remark. For later use we need an explicit formula for lifts of automor-

phisms of L(g)S induced by some “special” points in T(S) (those which are not

in the image of T̃(S) → T(S)). More precisely, the fundamental coweights

give rise to the decomposition T ' Gm,S × · · · × Gm,S. As usual, we have

the decomposition T(S) ' T(k) × Hom (Gm,T). The second factor in the

last decomposition is the cocharacter lattice of T and its elements correspond

(under the adjoint action) to the subgroup in AutS−Lie(L(g)S) isomorphic to

Hom(Q,Z) where Q is the corresponding root lattice: if φ ∈ Hom(Q,Z) it

induces an S-automorphism of L(g)S (still denoted by φ) given by

Xα → Xα ⊗ sφ(α), Hαi → Hαi .

It is straightforward to check the mapping φ̃ : L̃(g)S → L̃(g)S given by

Hα → Hα + φ(α)〈Xα, X−α〉 · c, Hα ⊗ sp → Hα ⊗ sp

if p 6= 0 and

Xα ⊗ sp → Xα ⊗ sp+φ(α)

is an automorphism of L̃(g)S, hence it is the (unique) lift of φ.
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4.4 Automorphisms of split affine Kac-Moody

Lie algebras

Since L̃(g)S = [L̂(g)S, L̂(g)S] we have a natural (restriction) mapping

τ : Autk−Lie (L̂(g)S)→ Autk−Lie (L̃(g)S).

4.4.1 Proposition. The mapping τ is surjective.

Proof. By Proposition 4.3.2 and Corollary 4.2.2 the group Autk−Lie(L̃(g)S)

has the distinguished system of generators { φ̃ } where

φ ∈ Aut(Dyn(G̃)), T(S), Autk(S), Uα.

We want to construct a mapping φ̂ : L̂(g)S → L̂(g)S which preserves the

identity

[d, x⊗ t
p
m ]L̂ = p x⊗ t

p
m

for all x ∈ g and whose restriction to L̃(g)S coincides with φ̃. These two

properties would imply that φ̂ is an automorphism of L̂(g)S lifting φ̃.

If φ ∈ Uα is unipotent we define φ̂, as usual, through the exponential map. If

φ ∈ Aut(Dyn(G̃)) we put φ̂(d) = d. If φ is as in Remark 6.1.2.2 we extend it

by d→ d−X where X ∈ h is the unique element such that [X,Xα] = φ(α)Xα

for all roots α ∈ Σ. Note that automorphisms of L(g)S given by points in T(k)

are in the image of T̃(k) → T(k) and hence they are generated by unipotent

elements. Lastly, if φ ∈ Autk (S) is of the form s→ as−1 where a ∈ k× (resp.

s → as) we extend φ̃ by φ̂(d) = −d (resp. φ̂(d) = d). We leave it to the

reader to verify that in all cases φ̂ preserves the above identity and hence φ̂ is

an automorphism of L̂(g)S.

4.4.2 Proposition. One has Ker τ ' V where V = Homk(kd, kc).

Proof. We first embed V ↪→ Autk−Lie(L̂(g)S). Let v ∈ V . Recall that any

element x ∈ L̂(g)S can be written uniquely in the form x = x′ + ad where

x′ ∈ L̃(g)S and a ∈ k. We define v̂ : L̂(g)S → L̂(g)S by x → x + v(ad). One

checks that v̂ is an automorphism of L̂(g)S and thus the required embedding

is given by v → v̂.
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Since v̂(x′) = x′ for all x′ ∈ L̃ we have v̂ ∈ Ker τ . Conversely, let ψ ∈ Ker τ .

Then ψ(x) = x for all x ∈ L̃(g)S. We need to show that ψ(d) = ac + d

where a ∈ k. Let ψ(d) = x′ + ac + bd where a, b ∈ k and x′ ∈ L(g)S. Since

[d,Xα]L̂(g)S
= 0 we get

[ψ(d), ψ(Xα)]L̂(g)S
= 0.

Substituting ψ(d) = x′ + ac+ bd we obtain

[x′ + ac+ bd,Xα]L̂(g)S
= 0

or [x′, Xα]L̃(g)S
= 0. Since this is true for all roots α ∈ Σ, the element x′

commutes with g and this can happen if and only if x′ = 0.

It remains to show that b = 1. To see this we can argue similarly by considering

the equality

[d,Xα ⊗ t
1
m ]L̂(g)S

= Xα ⊗ t
1
m

and applying ψ.

4.4.3 Corollary. The sequence of groups

1 −→ V −→ Autk−Lie (L̂(g)S)
λ◦τ−→ Autk−Lie (L(g)S) −→ 1 (4.4.3.1)

is exact.

4.5 Automorphism group of twisted affine Kac-

Moody Lie algebras

We keep the notation introduced in the beginning of this Chapter. In particu-

lar, we fix an integer m and a primitive root of unity ζ = ζm ∈ k of degree m.

Consider the k-automorphism ζ× : S → S such that s→ ζs which we view as

a k-automorphism of L(g)S through the embedding

Autk (S) ↪→ Autk−Lie (L(g)S) ' AutS−Lie (L(g)S) o Autk (S)
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(see Proposition 4.2.1). As it is explained in § 4.4 we then get the automor-

phism ζ̂× (resp. ζ̃×) of L̂(g)S (resp. L̃(g)S) given by

x⊗ si + ac+ bd −→ x⊗ ζ isi + ac+ bd

where a, b ∈ k and x ∈ g.

Consider now the abstract group Γ = Z/mZ (which can be identified with

Gal (S/R) as already explained) and define its action on L̂(g)S (resp. L̃(g)S, L(g)S)

with the use of ζ̂× (resp. ζ̃×, ζ×). More precisely, for every l ∈ L̂(g)S we let

i(l) := (ζ̂×)i(l). Similarly, we define the action of Γ on Autk−Lie (L̂(g)S) by

i : Autk−Lie (L̂(g)S) −→ Autk−Lie (L̂(g)S), x→ (ζ̂×)ix(ζ̂×)−i.

Therefore, Autk−Lie (L̂(g)S) can be viewed as a Γ-set. Along the same lines one

defines the action of Γ on Autk−Lie (L(g)S) and AutS−Lie(L(g)S) with the use of

ζ×. It is easy to see that Γ acts trivially on the subgroup V ⊂ Autk−Lie (L̂(g)S)

introduced in Proposition 4.4.2. Thus, (6.2.5.1) can be viewed as an exact

sequence of Γ-groups.

We next choose an element π ∈ Aut(Dyn(G)) ⊂ Autk(g) of order m (clearly,

m can take value 1, 2 or 3 only). Like before, we have the corresponding

automorphism π̂ of L̂(g)S given by

x⊗ si + ac+ bd −→ π(x)⊗ si + ac+ bd

where a, b ∈ k and x ∈ g.

Note that ζ̂×π̂ = π̂ζ̂×. It then easily follows that the assignment

1→ z1 = π̂−1 ∈ Autk−Lie (L̂(g)S)

gives rise to a cocycle z = (zi) ∈ Z1(Γ,Autk−Lie (L̂(g)S)).

This cocycle, in turn, gives rise to a (new) twisted action of Γ on L̂(g)S and

Autk−Lie (L̂(g)S). Analogous considerations (with the use of π) are applied to

Autk−Lie (L(g)S) and L(g)S. For future reference note that π̂ commutes with

elements in V , hence the twisted action of Γ on V is still trivial. From now on

we view (6.2.5.1) as an exact sequence of Γ-groups, the action of Γ being the

twisted action.
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4.5.1 Remark. As we noticed before the invariant subalgebra

L = L(g, π) = (L(g)S)Γ = ((g⊗k R)⊗R S)Γ

is a simple Lie algebra over R, a twisted form of a split Lie algebra g ⊗k R.

The same cohomological formalism also yields that

AutR−Lie (L) ' (AutS−Lie (L(g)S))Γ. (4.5.1.1)

4.5.2 Remark. It is worth mentioning that the canonical embedding

ι : (Autk−Lie (L(g)S))Γ ↪→ Autk−Lie ((L(g)S)Γ) = Autk−Lie (L) '
AutR−Lie (L) o Autk (R),

where the last isomorphism can be established in the same way as in Proposi-

tion 4.2.1, is not necessary surjective in general case. Indeed, one checks that

if m = 3 then the k-automorphism of R given by t → t−1 and viewed as an

element of Autk−Lie (L) ' AutR−Lie (L) o Autk (R) is not in Im ι. However

(6.4.1.1) implies that the group AutR−Lie (L) is in the image of ι.

4.5.3 Remark. The k-Lie algebra L̂ = (L̂(g)S)Γ is a twisted affine Kac–

Moody Lie algebra. Conversely, by the Realization Theorem every twisted

affine Kac–Moody Lie algebra can be obtained in such a way.

4.5.4 Lemma. One has H1(Γ, V ) = 1.

Proof. Since Γ is cyclic of order m acting trivially on V ' k it follows that

Z1(Γ, V ) = {x ∈ k | mx = 0 } = 0

as required.

The long exact cohomological sequence associated to (6.2.5.1) together with

Lemma 4.5.4 imply the following.

4.5.5 Theorem. The following sequence

1 −→ V −→ (Autk−Lie (L̂(g)S))Γ ν−→ (Autk−Lie (L(g)S))Γ −→ 1

is exact. In particular, the group AutR−Lie (L) is in the image of the canonical
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mapping

Autk−Lie (L̂) −→ Autk−Lie (L) ' AutR−Lie (L) o Autk (R).

Proof. The first assertion is clear. As for the second one, note that as in

Remark 4.5.2 we have the canonical embedding

(Autk−Lie (L̂(g)S))Γ ↪→ Autk−Lie ((L̂(g)S)Γ) = Autk−Lie (L̂)

and the commutative diagram

(Autk−Lie (L̂(g)S))Γ ν−−−→ (Autk−Lie (L(g)S))Γy y
Autk−Lie (L̂) −−−→ Autk−Lie (L)

Then surjectivity of ν and Remark 4.5.2 yield the result.

4.6 Some properties of affine Kac-Moody Lie

algebras

Henceforth we fix a simple finite dimensional Lie algebra g and a (diagram)

automorphism σ of finite order m. For brevity, we will write L̂ and (L̃,L) for

L̂(g, σ) and (L̃(g, σ), L(g, σ)) respectively.

For all l1, l2 ∈ L one has

[l1, l2]− [l1, l2]L̂ = ac (4.6.0.1)

for some scalar a ∈ k. Using (4.0.6.1) it is also easy to see that for all y ∈ L
one has

[d, ytn]L̂ = mnytn + [d, y]L̂ t
n (4.6.0.2)

4.6.1 Remark. Recall that L has a natural R-module structure: If y =

x⊗ t pm ∈ L then

yt := x⊗ t
p
m

+1 = x⊗ t
p+m
m ∈ L.
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Therefore since [d, y]L̂ is contained in L the expression [d, y]L̂ t
n is meaningful.

Henceforth we will denote by G the simple simply connected group scheme

over R corresponding to L.

The infinite dimensional Lie algebra L̂ admits a unique (up to non-zero scalar)

invariant nondegenerate bilinear form (·, ·). Its restriction to L ⊂ L̂ is nonde-

generate (see [Kac, 7.5.1 and 8.3.8]) and we have

(c, c) = (d, d) = 0, 0 6= (c, d) = β ∈ k×

and

(c, l) = (d, l) = 0 for all l ∈ L.

4.6.2 Remark. It is known that a nondegenerate invariant bilinear form on L̂
is unique up to nonzero scalar. We may view L̂ as a subalgebra in the split Kac-

Moody Lie algebra L̂(g)S. The last one also admits a nondegenerate invariant

bilinear form and it is known that its restriction to L̂ is nondegenerate. Hence

this restriction is proportional to the form (−,−).

Let h0 be a Cartan subalgebra of the Lie algebra g0.

4.6.3 Lemma. The centralizer of h0 in g is a Cartan subalgebra h of g.

Proof. See [Kac, Lemma 8.1].

The algebra H = h0⊕ kc⊕ kd plays the role of Cartan subalgebra for L̂. With

respect to H our algebra L̂ admits a root space decomposition. The roots are

of two types: anisotropic (real) or isotropic (imaginary). This terminology

comes from transferring the form to H∗ and computing the “length” of the

roots.

The core L̃ of L̂ is the subalgebra generated by all the anisotropic roots. In

our case we have L̃ = L ⊕ kc. The correct way to recover L inside L̂ is as its

core modulo its centre.3

If m ⊂ L̂ is an abelian subalgebra and α ∈ m∗ = Hom(m, k) we denote the

corresponding eigenspace in L̂ (with respect to the adjoint representation of

3In nullity one the core coincides with the derived algebra, but this is not necessarilty
true in higher nullities.
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L̂) by L̂α. Thus,

L̂α = { l ∈ L̂ | [x, l]L̂ = α(x)l for all x ∈ m }.

The subalgebra m is called diagonalizable in L̂ if

L̂ =
⊕
α∈m∗
L̂α.

Every diagonalizable subalgebra of m ⊂ L̂ is necessarily abelian. We say that

m is a maximal (abelian) diagonalizable subalgebra (MAD) if it is not properly

contained in a larger diagonalizable subalgebra of L̂.

4.6.4 Remark. Every MAD of L̂ contains the center kc of L̂.

4.6.5 Example. The subalgebra H is a MAD in L̂ (see [Kac, Theorem 8.5]).

Our aim is to show that an arbitrary maximal diagonalizable subalgebra m ⊂ L̂
is conjugate to H under an element of Autk(L̂). For future reference we record

the following facts:

4.6.6 Theorem. (a) Every diagonalizable subalgebra in L is contained in a

MAD of L and all MADs of L are conjugate. More precisely, let G be the

simple simply connected group scheme over R corresponding to L. Then for

any MAD m of L there exists g ∈ G(R) such that Ad(g)(m) = h0.

(b) There exists a natural bijection between MADs of L̃ and MADs of L. Every

diagonalizable subalgebra in L̃ is contained in a MAD of L̃. All MADs of L̃
are conjugate by elements in Ad(G(R)) ⊂ Autk(L) ' Autk(L̃).

(c) The image of the canonical map Autk(L̂)→ Autk(L̃) ' Autk(L) obtained

by restriction to the derived subalgebra L̃ contains AutR−Lie(L).

Proof. (a) From the explicit realization of L one knows that h0 is a MAD of

L. Now (a) follows from [CGP].

(b) The correspondence follows from the fact that every MAD of L̃ contains

kc. A MAD m̃ of L̃ is necessarily of the form m ⊕ kc for some MAD m of L
and conversely. The canonical map Autk(L̃)→ Autk(L) is an isomorphism by

Proposition 4.3.2.

(c) This was established in Theorem 6.4.1.
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4.6.7 Lemma. If m ⊂ L̂ is a MAD of L̂ then m 6⊂ L̃.

Proof. Assume that m ⊂ L̃. By Theorem 4.6.6 (b), there exists a MAD m′

of L̃ containing m. Applying again Theorem 4.6.6 we may assume that up to

conjugation by an element of Autk(L̂), in fact of Ĝ(R), we have m ⊂ m′ =

h0⊕kc. Then m is a proper subalgebra of the MADH of L̂ and this contradicts

the maximality of m.

In the next three sections we are going to prove some preliminary results

related to a subalgebra Â of the twisted affine Kac-Moody Lie algebra L̂ which

satisfies the following two conditions:

a) Â is of the form Â = A ⊕ kc ⊕ kd, where A is an R-subalgebra of L such

that A⊗RK is a semisimple Lie algebra over K where K = k(t) is the fraction

field of R.

b) The restriction to Â of the nondegenerate invariant bilinear form (−,−) of

L̂ is nondegenerate.

In particular, all these results will be valid for Â = L̂.

4.7 Weights of semisimple operators and their

properties

Let x = x′ + d ∈ Â where x′ ∈ A. It induces a k-linear operator

ad(x) : Â→ Â, y → ad(x)(y) = [x, y]Â.

We say that x is a k-diagonalizable element of Â if Â has a k-basis consisting

of eigenvectors of ad(x). Throughout we assume that x′ 6= 0 and that x is

k-diagonalizable.

For any scalar w ∈ k we let

Âw = { y ∈ Â | [x, y]Â = wy }.
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We say that w is a weight (= eigenvalue) of ad(x) if Âw 6= 0. More generally, if

O is a diagonalizable linear operator of a vector space V over k (of main interest

to us are the vector spaces Â, Ã = A⊕kc, A) and if w is its eigenvalue following

standard practice we will denote by Vw ⊂ V the corresponding eigenspace of

O.

4.7.1 Lemma. (a) If w is a nonzero weight of ad(x) then Âw ⊂ Ã.

(b) Â0 = Ã0 ⊕ 〈x 〉.

Proof. Clearly we have [Â, Â] ⊂ Ã and this implies ad(x)(Ã) ⊂ Ã. It then

follows that the linear operator ad(x)|Ã is k-diagonalizable. Let Ã = ⊕ Ãw′
where the sum is taken over all weights of ad(x)|Ã. Since x ∈ Â0 and since

Â = 〈x 〉 ⊕ Ã we conclude that

Â = 〈x, Ã0 〉 ⊕ (⊕w′ 6=0 Ãw′),

so that the result follows.

The operator ad(x)|Ã maps the center 〈 c 〉 = kc of Ã into itself, hence it

induces a linear operator Ox of A ' Ã/kc which is also k-diagonalizable. The

last isomorphism is induced by a natural (projection) mapping λ : Ã→ A. If

w 6= 0 the restriction of λ to Ãw is injective (because Ãw does not contain kc).

Since Ã = ⊕wÃw it then follows that

λ|Ãw : Ãw −→ Aw

is an isomorphism for w 6= 0. Thus the three linear operators ad(x), ad(x)|Ã
and Ox have the same nonzero weights.

4.7.2 Lemma. Let w 6= 0 be a weight of Ox and let n ∈ Z. Then w + mn is

also a weight of Ox and Aw+mn = tnAw.

Proof. Assume y ∈ Aw ⊂ A, hence Ox(y) = wy. Let us show that ytn ∈
Aw+mn. We have

Ox(yt
n) = λ(ad(x)(ytn)) = λ([x, ytn]Â). (4.7.2.1)
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Substituting x = x′ + d we get

[x, ytn]Â = [x′, ytn]Â + [d, ytn]Â

Applying (4.6.0.1) and (4.6.0.2) we get that the right hand side is equal to

[x′, y] tn + ac+ [d, y]Â t
n +mnytn

where a ∈ k is some scalar. Substituting this into (4.7.2.1) we get

Ox(yt
n) = λ([x′, y] tn + ac+ [d, y]Â t

n +mnytn)

= [x′, y] tn + λ([d, y]Â t
n) +mnytn

By (4.6.0.1) there exists b ∈ k such that

[x′, y] tn = ([x′, y]Â + bc) tn.

Here we view [x′, y] tn as an element in Â. Therefore

Ox(yt
n) = mnytn + λ(([x′, y]Â + bc) tn + [d, y]Â t

n)

= mnytn + λ(([x, y]Â + bc) tn).

We now note that by construction [x, y]Â + bc is contained in A ⊂ Ã. Hence

λ(([x, y]Â + bc)tn) = λ([x, y]Â + bc) tn = λ([x, y]Â)) tn.

Since λ([x, y]Â) = Ox(y) = wy we finally get

Ox(yt
n) = mnytn + wytn = (w +mn)ytn.

Thus we have showed that Awt
n ⊂ Aw+nm. By symmetry Aw+nmt

−n ⊂ Aw

and we are done.

We now consider the case w = 0.

4.7.3 Lemma. Assume that dim Ã0 > 1 and n ∈ Z. Then mn is a weight of

ad(x).

Proof. Since dim Ã0 > 1 there exists nonzero y ∈ A such that [x, y]Â = 0.

Then the same computations as above show that [x, ytn]Ã = mnytn.
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Our next aim is to show that if w is a weight of ad(x) so is −w. We remind

the reader that Â is equipped with the nondegenerate invariant bilinear form

(−,−). Hence for all y, z ∈ Â one has

([x, y]Â, z) = −(y, [x, z]Â). (4.7.3.1)

4.7.4 Lemma. If w is a weight of ad(x) then so is −w.

Proof. If w = 0 there is nothing to prove. Assume w 6= 0. Consider the root

space decomposition

Â =
⊕
w′

Âw′ .

It suffices to show that for any two weights w1, w2 of ad(x) such that w1+w2 6= 0

the subspaces Âw1 and Âw2 are orthogonal to each other. Indeed, the last

implies that if −w were not a weight then every element in Âw would be

orthogonal to all elements in Â, which is impossible.

Let y ∈ Âw1 and z ∈ Âw2 . Applying (4.7.3.1) we have

w1(y, z) = ([x, y]Â, z) = −(y, [x, z]Â) = −w2(y, z).

Since w1 6= −w2 we conclude (y, z) = 0.

Now we switch our interest to the operator Ox and its weight subspaces. Since

the nonzero weights of ad(x), ad(x)|Ã and Ox are the same we obtain, by

Lemmas 4.7.2 and 4.7.3, that for every weight w of Ox all elements in the set

{w +mn | n ∈ Z }

are also weights of Ox. We call this set of weights by w-series. Recall that by

Lemma 4.7.2 we have

Aw+mn = Awt
n.

4.7.5 Lemma. Let w be a weight of Ox and let AwR be the R-span of Aw in

A. Then the natural map ν : Aw ⊗k R → AwR given by l ⊗ tn 7→ ltn is an

isomorphism of k-vector spaces.

Proof. Clearly, the sum
∑

nAw+mn of vector subspaces Aw+mn in A is a direct
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sum. Hence

AwR =
∑
n

Awt
n =

∑
n

Aw+mn =
⊕
n

Aw+mn (4.7.5.1)

Fix a k-basis {ei} of Aw. Then {ei ⊗ tj} is a k-basis of Aw ⊗k R. Since

ν(ei ⊗ tn) = eit
n ∈ Aw+mn

the injectivity of ν easily follows from (4.7.5.1). The surjectivity is also obvious.

Notation: We will denote the R-span AwR by A{w}.

By our construction A{w} is an R-submodule of A and

A =
⊕
w

A{w} (4.7.5.2)

where the sum is taken over fixed representatives of weight series.

4.7.6 Corollary. dimk Aw <∞.

Proof. Indeed, by the above lemma we have

dimk Aw = rankR (Aw ⊗k R) = rankRAwR = rankRA{w} ≤ rankRA <∞,

as required.

4.7.7 Corollary. There are finitely many weight series.

Proof. This follows from the fact that A is a free R-module of finite rank.

4.7.8 Lemma. Let w1, w2 be weights of Ox. Then [Aw1 , Aw2 ] ⊂ Aw1+w2 .

Proof. This is straightforward to check.

4.8 Weight zero subspace

4.8.1 Theorem. A0 6= 0.
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Proof. Assume that A0 = 0. Then, by Lemma 4.7.2, Amn = 0 for all n ∈ Z.

It follows that for any weight w, any integer n and all y ∈ Aw, z ∈ A−w+mn

we have [y, z] = 0. Indeed

[Aw, A−w+mn] ⊂ Aw+(−w)+mn = Amn = 0. (4.8.1.1)

For y ∈ A the operator ad(y) : A→ A may be viewed as a k-operator or as an

R-operator. When we deal with the Killing form 〈−,−〉 on the R-Lie algebra

A we will view ad(y) as an R-operator of A.

4.8.2 Lemma. Let w1, w2 be weights of ad(x) such that {w1} 6= {−w2}. Then

for any integer n and all y ∈ Aw1 and z ∈ Aw2+mn we have 〈 y, z 〉 = 0.

Proof. Let w be a weight of ad(x). By our condition we have {w} 6= {w +

w1 + w2}. Since (ad(y) ◦ ad(z))(A{w}) ⊂ A{w+w1+w2}, in any R-basis of A

corresponding to the decomposition (4.7.5.2) the operator ad(y) ◦ ad(z) has

zeroes on the diagonal, hence Tr (ad(y) ◦ ad(z)) = 0.

4.8.3 Lemma. Let w be a weight of ad(x), n be an integer and let y ∈ Aw.

Assume that ad(y) viewed as an R-operator of A is nilpotent. Then for every

z ∈ A−w+mn we have 〈 y, z 〉 = 0.

Proof. Indeed, let l be such that (ad(y))l = 0. Since by (4.8.1.1), ad(y) and

ad(z) are commuting operators we have

(ad(y) ◦ ad(z))l = (ad(y))l ◦ (ad(z))l = 0.

Therefore ad(y) ◦ ad(z) is nilpotent and this implies its trace is zero.

Since the Killing form is nondegenerate, it follows immediately from the above

two lemmas that for every nonzero element y ∈ Aw the operator ad(y) is not

nilpotent. Recall that by Lemma 4.7.8 we have ad(y)(Aw′) ⊂ Aw+w′ . Hence

taking into consideration Corollary 4.7.7 we conclude that there exits a weight

w′ and a positive integer l such that

ad(y)(A{w′}) 6= 0, (ad(y) ◦ ad(y))(A{w′}) 6= 0, . . . , (ad(y))l(A{w′}) 6= 0

and (ad(y)l(A{w′}) ⊂ A{w′}. We may assume that l is the smallest positive
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integer satisfying these conditions. Then all consecutive scalars

w′, w′ + w, w′ + 2w, . . . , w′ + lw (4.8.3.1)

are weights of ad(x), {w′+iw} 6= {w′+(i+1)w} for i < l and {w′} = {w′+lw}.
In particular, we automatically get that lw is an integer (divisible by m) which

in turn implies that w is a rational number.

Thus, under our assumption A0 = 0 we have proved that all weights of

ad(x) are rational numbers. We now choose (in a unique way) representatives

w1, . . . , ws of all weight series such that 0 < wi < m and up to renumbering

we may assume that

0 < w1 < w2 < · · · < ws < m.

4.8.4 Remark. Recall that for any weight wi, the scalar −wi is also a weight.

Since 0 < −wi+m < m the representative of the weight series {−wi} is m−wi.
Then the inequality m−wi ≥ w1 implies m−w1 ≥ wi. Hence out of necessity

we have ws = m− w1.

We now apply the observation (4.8.3.1) to the weight w = w1. Let w′ = wi be

as in (4.8.3.1). Choose the integer j ≥ 0 such that wi+ jw1, wi+ (j+ 1)w1 are

weights and wi+jw1 < m, but wi+(j+1)w1 ≥ m. We note that since m is not

a weight of ad(x) we automatically obtain wi + (j + 1)w1 > m. Furthermore,

we have wi+ jw1 ≤ ws = m−w1 (because wi+ jw1 is a weight of ad(x)). This

implies

m < wi + (j + 1)w1 ≤ ws + w1 = m− w1 + w1 = m

– a contradiction that completes the proof of the theorem.

4.9 A lower bound of dimensions of MADs in

L̂

4.9.1 Theorem. Let m ⊂ L̂ be a MAD. Then dimm ≥ 3.

By Lemma 4.6.7, m contains an element x of the form x = x′+d where x′ ∈ L
and it also contains c. Since x and c generate a subspace of m of dimension 2
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the statement of the theorem is equivalent to 〈x, c 〉 6= m.

Assume the contrary: 〈x, c 〉 = m. Since m is k-diagonalizable we have the

weight space decomposition

L̂ =
⊕
α

L̂α

where the sum is taken over linear mappings α ∈ m∗ = Hom (m, k). To find

a contradiction we first make some simple observations about the structure of

the corresponding eigenspace L̂0.

If L̂α 6= 0, it easily follows that α(c) = 0 (because c is in the center of L̂).

Then α is determined uniquely by the value w = α(x) and so instead of L̂α
we will write L̂w.

Recall that by Theorem 4.8.1, L0 6= 0. Our aim is first to show that L0

contains a nonzero element y such that the adjoint operator ad(y) of L is k-

diagonalizable. We will next see that y necessarily commutes with x viewed as

an element in L̂ and that it is k-diagonalizable in L̂ as well. It then follows that

the subspace in L̂ spanned by c, x and y is a commutative k-diagonalizable

subalgebra and this contradicts the fact that m is a MAD.

4.9.2 Lemma. Let y ∈ L be nonzero such that Ox(y) = 0. Then [x, y]L̂ = 0.

Proof. Assume that [x, y]L̂ = bc 6= 0. Then

(x, [x, y]L̂) = (x, bc) = (x′ + d, bc) = (d, bc) = βb 6= 0.

On the other hand, since the form is invariant we get

(x, [x, y]L̂) = ([x, x]L̂, y) = (0, y) = 0

– a contradiction which completes the proof.

4.9.3 Lemma. Assume that y ∈ L0 is nonzero and that the adjoint operator

ad(y) of L is k-diagonalizable. Then ad(y) viewed as an operator of L̂ is also

k-diagonalizable.

Proof. Choose a k-basis { ei } of L consisting of eigenvectors of ad(y). Thus

we have [y, ei] = uiei where ui ∈ k and hence

[y, ei]L̂ = uiei + bic
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where bi ∈ k.

Case 1: Suppose first that ui 6= 0. Let

ẽi = ei +
bi
ui
· c ∈ L̃.

Then we have

[y, ẽi]L̂ = [y, ei]L̂ = uiei + bic = uiẽi

and therefore ẽi is an eigenvector of the operator ad(y) : L̂ → L̂.

Case 2: Let now ui = 0. Then [y, ei]L̂ = bic and we claim that bi = 0. Indeed,

we have

(x, [y, ei]L̂) = ([x, y]L̂, ei) = (0, ei) = 0

and on the other hand

(x, [y, ei]Â) = (x, bic) = (x′ + d, bic) = (d, bic) = βbi.

It follows that bi = 0 and thus ẽi = ei is an eigenvector of ad(y).

Summarizing, replacing ei by ẽi we see that the set { ẽi } ∪ { c, x } is a k-basis

of L̂ consisting of eigenvectors of ad(y).

4.9.4 Proposition. The subalgebra L0 contains an element y such that the

operator ad(y) : L → L is k-diagonalizable.

Proof. We split the proof in three steps.

Step 1: Assume first that there exists y ∈ L0 which as an element in LK = L⊗R
K is semisimple. We claim that our operator ad(y) is k-diagonalizable. Indeed,

choose representatives w1 = 0, w2, . . . , wl of the weight series of ad(x). The

sets Lw1 , . . . ,Lwl are vector spaces over k of finite dimension, by Lemma 4.7.6,

and they are stable with respect to ad(y) (because y ∈ L0). In each k-vector

space Lwi choose a Jordan basis

{eij, j = 1, . . . , li}

of the operator ad(y)|Lwi . Then the set

{ eij, i = 1, · · · , l, j = 1, . . . , li } (4.9.4.1)
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is an R-basis of L, by Lemma 4.7.5 and the decomposition given in (4.7.5.2).

It follows that the matrix of the operator ad(y) viewed as a K-operator of

L ⊗R K is a block diagonal matrix whose blocks corresponds to the matrices

of ad(y)|Lwi in the basis {eij}. Hence (4.9.4.1) is a Jordan basis for ad(y)

viewed as an operator on L⊗RK. Since y is a semisimple element of L⊗RK
all matrices of ad(y)|Lwi are diagonal and this in turn implies that ad(y) is

k-diagonalizable operator of L.

Step 2: We next consider the case when all elements in L0 viewed as elements

of the R-algebra L are nilpotent. Then L0, being finite dimensional, is a

nilpotent Lie algebra over k. In particular its center is nontrivial since L0 6= 0.

Let c ∈ L0 be a nonzero central element of L0. For any z ∈ L0 the operators

ad(c) and ad(z) of L commute. Then ad(z)◦ad(c) is nilpotent, hence 〈c, z〉 = 0.

Furthermore, by Lemma 4.8.2 〈c, z〉 = 0 for any z ∈ Lwi , wi 6= 0. Thus c 6= 0

is in the radical of the Killing form of L – a contradiction.

Step 3: Assume now that L0 contains an element y which as an element of

LK has nontrivial semisimple part ys. Let us first show that ys ∈ L{0} ⊗R K
and then that ys ∈ L0. By Step 1, the last would complete the proof of the

proposition.

By decomposition (4.7.5.2) applied to A = L we may write ys as a sum

ys = y1 + y2 + · · ·+ yl

where yi ∈ L{wi} ⊗R K. In Step 1 we showed that in an appropriate R-basis

(4.9.4.1) of L the matrix of ad(y) is block diagonal whose blocks correspond to

the Jordan matrices of ad(y)|Lwi : Lwi → Lwi . It follows that the semisimple

part of ad(y) is also a block diagonal matrix whose blocks are semisimple parts

of ad(y)|Awi .

Since LK is a semisimple Lie algebra over a perfect field we get that ad(ys) =

ad(y)s. Hence for all weights wi we have

[ys,Lwi ] ⊂ Lwi . (4.9.4.2)

On the other hand, for any u ∈ Lwi we have

ad(ys)(u) = [y1, u] + [y2, u] + · · ·+ [yl, u].
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Since [yj, u] ∈ L{wi+wj} ⊗R K, it follows that ad(ys)(u) ∈ L{wi} if and only

if [y2, u] = · · · = [yl, u] = 0. Since this is true for all i and all u ∈ Lwi
and since the kernel of the adjoint representation of LK is trivial we obtain

y2 = · · · = yl = 0. Therefore ys ∈ L{0} ⊗R K.

It remains to show that ys ∈ L0. We may write ys in the form

ys =
1

g(t)
(u0 ⊗ 1 + u1 ⊗ t+ · · ·+ um ⊗ tm)

where u0, · · · , ul ∈ L0 and g(t) = g0 + g1t + · · · + gnt
n is a polynomial with

coefficients g0, . . . , gn in k with gn 6= 0. The above equality can be rewritten

in the form

g0ys + g1ys ⊗ t+ · · ·+ gnys ⊗ tn = u0 ⊗ 1 + · · ·+ um ⊗ tm. (4.9.4.3)

Consider an arbitrary index i and let u ∈ Lwi . Recall that by (4.9.4.2) we

have

ad(ys)(Lwi) ⊂ Lwi .

Applying both sides of (4.9.4.3) to u and comparing Lwi+n-components we

conclude that [gnys, u] = [un, u]. Since this is true for all u and all i and since

the adjoint representation of LK has trivial kernel we obtain gnys = un. Since

gn 6= 0 we get ys = un/gn ∈ L0.

Now we can easily finish the proof of Theorem 4.9.1. Suppose the contrary.

Then dim(m) < 3 and hence by Lemma 4.6.7 we have m = 〈c, x′ + d〉 with

x
′ ∈ L. Consider the operator Ox on L. By Theorem 4.8.1 we have L0 6= 0. By

Propositions 4.9.4 and 4.9.3 there exists a nonzero k-diagonalizable element

y ∈ L0. Clearly, y is not contained in m. Furthermore, by Lemma 4.9.2, y

viewed as an element of L̂ commutes with m and by Lemma 4.9.3 it is k-

diagonalizable in L̂. It follows that the subspace m1 = m ⊕ 〈y〉 is an abelian

k-diagonalizable subalgebra of L̂. But this contradicts maximality of m.

4.10 All MADs are conjugate

4.10.1 Theorem. Let Ĝ(R) be the preimage of {Ad(g) : g ∈ G̃(R)} under

the canonical map Autk(L̂) → Autk(L). Then all MADs of L̂ are conjugate
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under Ĝ(R) to the subalgebra H in 4.6.5.

Proof. Let m be a MAD of L̂. By Lemma 4.6.7, m 6⊂ L̃. Fix a vector x =

x′ + d ∈ m where x′ ∈ L and let m′ = m ∩ L. Thus we have m = 〈x, c,m′ 〉.
Note that m′ 6= 0, by Theorem 4.9.1. Furthermore, since m′ is k-diagonalizable

in L, without loss of generality we may assume that m′ ⊂ h0 given that by

Theorem 4.6.6(b) there exists g ∈ G(R) such that Ad(g)(m′) ⊂ h0 and that

by Theorem 6.4.1 g has lifting to Autk−Lie(L̂).

Consider the weight space decomposition

L = ⊕
i
Lαi (4.10.1.1)

with respect to the k-diagonalizable subalgebra m′ of L where αi ∈ (m′)∗ and

as usual

Lαi = { z ∈ L | [t, z] = αi(t)z for all t ∈ m′}.

4.10.2 Lemma. Lαi is invariant with respect to the operator Ox.

Proof. The k-linear operator Ox commutes with ad(t) for all t ∈ m′ (because

x and m′ commute in L̂), so the result follows.

4.10.3 Lemma. We have x
′ ∈ L0.

Proof. By our construction m′ is contained in h0, hence d commutes with the

elements of m′. But x also commutes with the elements of m′ and so does

x′ = x− d.

L0 = CL(m′), being the Lie algebra of the reductive group scheme CG(m′) (see

[CGP]), is of the form L0 = z ⊕ A where z and A are the Lie algebras of the

central torus of CG(m′) and its semisimple part respectively. Our next goal is

to show that A = 0.

Suppose this is not true. To get a contradiction we will show that the subset

Â = A ⊕ kc ⊕ kd ⊂ L̂ is a subalgebra satisfying conditions a) and b) stated

at the end of § 4.6 and that it is stable with respect to ad(x). This, in turn,

will allow us to construct an element y ∈ A which viewed as an element

of L̂ commutes with x and m′ and is k-diagonalizable. The last, of course,

contradicts the maximality of m.
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Let H denote the simple simply connected Chevalley-Demazure algebraic k-

group corresponding to g. Since G is split over S we have

HS = H×k S ' GS = G̃×R S.

Let Cg(m
′) = t ⊕ r where t is the Lie algebra of the central torus of the

reductive k-group CH(m′) and r is the Lie algebra of its semisimple part.

Since centralizers commute with base change, we obtain that

tS = t⊗k S = z⊗R S = zS, rS = r×k S = A⊗R S = AS.

4.10.4 Lemma. We have ad(d)(A) ⊂ A and in particular Â is a subalgebra

of L̂.

Proof. Since r consists of “constant” elements we have [d, r]L̂(g)S
= 0, and this

implies that [d, rS]L̂(g)S
⊂ rS. Also, viewing L as a subalgebra of L̂(g)S we have

[d,L]L̂ ⊂ L. Furthermore, S/R is faithfully flat, hence A = AS ∩ L = rS ∩ L.

Since both subalgebras rS and L are stable with respect to ad(d), so is their

intersection.

4.10.5 Lemma. The restriction of the nondegenerate invariant bilinear form

(−,−) on L̂ to L0 is nondegenerate.

Proof. We mentioned before that the restriction of (−,−) to L is nondegener-

ate. Hence in view of decomposition (4.10.1.1) it suffices to show that for all

a ∈ L0 and b ∈ Lαi with αi 6= 0 we have (a, b) = 0.

Let l ∈ m′ be such that αi(l) 6= 0. Using the invariance of (−,−) we get

αi(l)(a, b) = (a, αi(l)b) = (a, [l, b]) = ([a, l], b) = 0.

Hence (a, b) = 0 as required.

4.10.6 Lemma. The restriction of (−,−) to A is nondegenerate.

Proof. By lemma(4.10.5) it is enough to show that z and A are orthogonal in

L̂. Moreover, viewing z and A as subalgebras of the split affine Kac-Moody

Lie algebra L̂(g)S and using Remark 4.6.2 we conclude that it suffices to verify

that zS = tS and AS = rS are orthogonal in L̂(g)S.
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Let a ∈ t and b ∈ r. We know that

(at
i
m , bt

j
m ) = κ(a, b)δi+j,0

where κ is a Killing form of g. Since r is a semisimple algebra we have r = [r, r].

It follows that we can write b in the form b =
∑

[ai, bi] for some ai, bi ∈ r. Using

the facts that t and r commute and that the Killing form is invariant we have

κ(a, b) = κ(a,
∑

[ai, bi]) =
∑

κ([a, ai], bi) =
∑

κ(0, bi) = 0.

Thus (at
i
m , bt

j
m ) = 0.

4.10.7 Remark. It follows immediately from Lemma 4.10.6 that the restric-

tion to Â of the nondegenerate invariant bilinear form (−,−) is nondegenerate.

Indeed, we have Â = A ⊕ 〈 c, d 〉. We know that the restriction of our form

to 〈 c, d 〉 is non-degenerate. By the lemma its restriction to A is also non-

degenerate. Since A and 〈 c, d 〉 are orthogonal to each other our assertion

follows.

4.10.8 Lemma. The k-subspace A ⊂ L is invariant with respect to Ox.

Proof. Let a ∈ A. We need to verify that

[x, a]L̂ ∈ A⊕ kc ⊂ L̂.

But [d,A]L̂ ⊂ A+ kc by Lemma 4.10.4. We also have

[x′, A]L̂ ⊂ A⊕ kc

(because x′ ∈ L0, by Lemma 4.10.3, and A viewed as a subalgebra in L0 is an

ideal). Since x = x′ + d the result follows.

According to Lemma 4.10.3 we can write x′ = x′0+x′1 where x′0 ∈ z and x′1 ∈ A.

4.10.9 Lemma. We have Ox|A = Ox
′
1+d|A. In particular, the operator Ox

′
1+d|A

of A is k-diagonalizable.

Proof. By Lemma 4.10.8, we have Ox(A) ⊂ A. Since Ox is k-diagonalizable

(as an operator of L), so is the operator Ox|A of A. Therefore the last assertion

of the lemma follows from the first one.
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Let now a ∈ A. Using the fact that x′0 and a commute in L we have

[x′, a]L̂ = [x′0, a]L̂ + [x′1, a]L̂ = [x′1, a]L̂ + bc

for some b ∈ k. Thus Ox(a) = Ox′1+d(a).

4.10.10 Lemma. The operator ad(x′1 + d) : Â→ Â is k-diagonalizable.

Proof. Since by Lemma 4.10.9 Ox′1+d|A : A → A is k-diagonalizable we can

apply the same arguments as in Lemma 4.9.3.

Now we can produce the required element y. It follows from Lemma 4.10.6 that

the Lie algebra Â satisfies all the conditions stated at the end of Section 4.6.

By Lemma 4.10.10, ad(x′1+d) is k-diagonalizable operator of Â. Hence arguing

as in Theorem 4.9.1 we see that there exists a nonzero y ∈ A such that [y, x′1 +

d]L̂ = 0 and ad(y) is a k-diagonalizable operator on Â. Then by Lemma 4.10.9

we have Ox(y) = Ox′1+d(y) = 0 and hence, by Lemma 4.9.2, x and y commute

in L̂.

According to our plan it remains to show that y is k-diagonalizable in L̂. To

see this we need

4.10.11 Lemma. Let z ∈ m′. Then [z, y]L̂ = 0.

Proof. Since y ∈ A ⊂ CL(m′) we have [z, y]L = 0. Then [z, y]L̂ = bc for some

b ∈ k. It follows

0 = (0, y) = ([x, z]L̂, y) = (x, [z, y]L̂) = (x
′
+ d, bc) = (d, bc) = βb.

This yields b = 0 as desired.

4.10.12 Proposition. The operator ad(y) : L̂ → L̂ is k-diagonalizable.

Proof. According to Lemma 4.9.3, it suffices to prove that ad(y) : L → L
is k-diagonalizable. Since y viewed as an element of A is semisimple it is

still semisimple viewed as an element of L. In particular, the R-operator

ad(y) : L → L is also semisimple.
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Recall that we have the decomposition of L into the direct sum of the weight

spaces with respect to Ox :

L =
⊕
w

Lw =
⊕
i

⊕
n

Lwi+mn =
⊕
i

L{wi}.

Since y and x commute in L̂, for all weights w we have ad(y)(Lw) ⊂ Lw. If we

choose any k-basis of Lw it is still an R-basis of L{w} = Lw⊗kR and in this basis

the R-operator ad(y)|L{w} and the k-operator ad(y)|Lw have the same matrices.

Since the R-operator ad(y)|L{w} is semisimple, so is ad(y)|Lw , i.e. ad(y)|Lw is

a k-diagonalizable operator. Thus ad(y) : L → L is k-diagonalizable.

Summarizing, assuming A 6= 0 we have constructed the k-diagonalizable ele-

ment

y 6∈ m = 〈m′, x, c 〉

in L̂ which commutes with m′ and x in L̂. Then the subalgebra 〈m, y 〉 in L̂
is commutative and k-diagonalizable which is impossible since m is a MAD.

Thus A is necessarily trivial and this implies CL(m′) is the Lie algebra of the

R-torus CG(m′), in particular CL(m′) is abelian.

Note that x′ ∈ CL(m′), by Lemma 4.10.3, and that h0 ⊂ CL(m′) (because

m′ ⊂ h0, by construction). Since CL(m′) is abelian and since x = x′ + d it

follows that ad(x)(h0) = 0. Hence 〈 h0, x, c 〉 is a commutative k-diagonalizable

subalgebra in L̂. But it contains our MAD m. Therefore m = 〈 h0, x, c 〉. To

finish the proof of Theorem 4.10.1 it now suffices to show that x′ ∈ h0. For

that, in turn, we may view x′ as an element of L(g)S and it suffices to show

that x′ ∈ h because h ∩ L = h0.

4.10.13 Lemma. x′ ∈ h.

Proof. Consider the root space decomposition of g with respect to the Cartan

subalgebra h:

g = h⊕ ( ⊕
α6=0

gα).

Every k-subspace gα has dimension 1. Choose a nonzero elements Xα ∈ gα.

It follows from m′ = h0 that CL(g)S(m′) = hS. Thus x′ ∈ hS. Then gα ⊗k S
is stable with respect to ad(x′) and clearly it is stable with respect to ad(d).

Hence it is also stable with respect to Ox.
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Arguing as in Lemma 4.7.2 one can easily see that the operator Ox, viewed as

an operator of L(g)S, is k-diagonalizable. Since gα ⊗k S is stable with respect

to Ox, it is the direct sum of its weight subspaces. Hence

gα ⊗k S = ⊕
w

(L(g)S){w}

where {w} = {w + j/m | j ∈ Z} is the weight series corresponding to w.

But gα ⊗k S has rank 1 as an S-module. This implies that in the above

decomposition we have only one weight series {w} for some weight w of Ox.

We next note that automatically we have dimk(L(g)S)w = 1. Any its nonzero

vector which is a generator of the S-module gα ⊗k S is of the form Xαt
j
m . It

follows from Lemma 4.7.2 that gα = 〈Xα〉 is also a weight subspace of Ox.

Thus for every root α we have

[x,Xα]L̂(g)S
= [x′ + d,Xα]L̂(g)S

= [x′, Xα] = bαXα

for some scalar bα ∈ k. Since x′ ∈ hS this can happen if and only if x′ ∈ h.

By the previous lemma we have x′ ∈ h0, hence

m = 〈 h0, c, d 〉 = H.

The proof of Theorem 4.10.1 is complete.
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Chapter 5

Two properties of a core of

EALA

Now we go on towards the conjugacy result for EALA. But before we do this,

we shall establish some properties of the core of EALA in this chapter.

5.1 Core is the same for two structures

Let (E,H) and (E,H ′) be two extended affine Lie algebra structures on E

and let

π : Ec −→ Ecc

be the natural (quotient) map. Here Ec (resp. Ecc) is the core (resp. centreless

core) of E with respect to the first structure.

In this section we want to show the following.

5.1.1 Theorem. Ec = E ′c.

We split the proof of the proposition in a few steps.

Since Ec and E ′c are ideals of E, Ec ∩ E ′c is an ideal of Ec. We realize E as in

Theorem 2.4.1:

E ' L⊕Dgr∗ ⊕D,

where L is a Lie torus of type (∆,Λ) (recall that Λ is a free abelian group of

finite rank), D ⊂ SCDerk(L) is a graded subalgebra. Using this notation we
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have

Ec ' L⊕Dgr∗ , Ecc ' L

and π is identified with a canonical projection

prL : L⊕Dgr∗ −→ L.

5.1.2 Lemma. Let I = prL(Ec ∩ E ′c). Then I 6= 0.

Proof. Let e′ ∈ E ′c be an arbitrary element. Write it in the form e′ = l+c+d ∈
E ′c where l ∈ L, c ∈ Dgr∗, d ∈ D. Pick an arbitrary a ∈ L. Then

[e′, a]E = [l + c+ d, a]E = [l, a]E + [c, a]E + [d, a]E = adL(l)(a) + d(a) + c1

for some c1 ∈ Dgr∗.(Recall that d ∈ Derk(L), hence d(a) is well-defined.) It

follows that

prL([e′, a]E) = (adL(l) + d)(a).

By (2.3.4.1)

Derk(L) = IDerk(L) o CDerk(L).

Clearly we have adL(l) ∈ IDerk(L) and

d ∈ SCDerk(L) ⊂ CDerk(L).

Therefore, if 0 6= l + d ∈ E, then there exists a ∈ L s.t. prL([e′, a]E) 6= 0.

Notice that E ′c is not a subset of Dgr∗ (since E ′c is not commutative). Hence

E ′c contains an element e′ = l + c+ d with l + d 6= 0. As we saw above this in

turn implies that prL(E ′c ∩ Ec) 6= 0.

5.1.3 Lemma. d(x) ∈ I for all d ∈ D and x ∈ I.

Proof. By the definition of I there exists c ∈ Dgr∗ such that

x̃ := x+ c ∈ Ec ∩ E ′c.

Since Ec∩E ′c is an ideal of E we have [d, x̃]E ∈ Ec∩E ′c. Hence prL([d, x̃]E) ∈ I.

On the other side, since [d, c]E ∈ Dgr∗ we obtain that

prL([d, x̃]E) = prL([d, x]E) = prL(d(x)) = d(x).
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The assertion follows.

5.1.4 Lemma. I is a graded ideal with respect to the degree grading on L.

Proof. We argue by induction. Let l ≥ 2 be a positive integer. Assume that

for any element x′ ∈ I containing at most l − 1 weight components (with

respect to the degree grading on L) all these components are contained in I.

Let now

x =
l∑

j=1

xλj ∈ I

where λj ∈ Λ and 0 6= xλj ∈ Lλj .

Notice that there exists d0 ∈ D0 such that evλ1(d0) 6= evλ2(d0). Indeed, this is

obvious since by construction the map

ev : Λ→ D0∗, λ 7→ evλ

is injective.

According to Lemma 5.1.3 for any d ∈ D0 we have

d(x) =
l∑

j=1

evλj(d)xλj ∈ I.

Therefore

d0(x)− evλ2(d0)x ∈ I

and this element has at most l− 1 nonzero components with a non-zero com-

ponent (evλ1(d0) − evλ2(d0))xλ1 . By induction hypothesis this implies that

xλ1 ∈ I. Then x− xλ1 ∈ I and the induction completes the proof.

5.1.5 Lemma. I = L.

Proof. Recall that L, being a centreless Lie torus of type (∆,Λ), is a centreless

division (∆,Λ)-graded Lie algebra. Therefore, by [Yo2, Lemma 4.4], L is a

Λ-graded simple. Now the statement of the lemma follows from 5.1.2 and

5.1.4.

Proof of Proposition 5.1.1. Let us first show that Ec ⊂ E ′c. Since [L,L]E = Ec

by perfectness of Ec, it is enough to see that L ⊂ E ′c.
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Let c ∈ Dgr∗ be an arbitrary element. Since [L,L]E = Ec we can write c in

the form

c =
s∑
i=1

[xi, yi]E

where xi, yi ∈ L. By Lemma 5.1.5 there exist elements ei, fi ∈ Ec ∩ E ′c such

that

prL(ei) = xi, prL(fi) = yi.

Let ei = xi + zi, fi = yi + ti where zi, ti ∈ Dgr∗. Then

[ei, fi]E = [xi + zi, yi + ti]E = [xi, yi]E,

since zi, ti ∈ Z(Ec) = C. Therefore

c =
s∑
i=1

[ei, fi]E ∈ Ec ∩ E ′c.

Since c ∈ Dgr∗ is arbitrary we conclude that Dgr∗ ⊂ E ′c.

Take now arbitrary l ∈ L. Again, by Lemma 5.1.5, there exists e′ ∈ Ec ∩ E ′c
such that e′ = l + c with c ∈ Dgr∗. But c ∈ E ′c; this implies l ∈ E ′c and

therefore L ⊂ E ′c.

To sum up, we have showed that Ec = L⊕Dgr∗ ⊂ E ′c. Similarly E ′c ⊂ Ec and

we are done.

5.2 Core is automorphism stable

In this section we draw one important corollary of the Proposition 5.1.1 (which

allows us to talk about the core Ec of an EALA E without specifying a choice

of a toral subalgebra H).

5.2.1 Corollary. The core Ec of an EALA E is stable under automorphisms

of E, i.e. φ(Ec) = Ec for any φ ∈ Autk−Lie(E).

Proof. Let φ ∈ Autk−Lie(E). Denote H ′ = φ(H). Let (−|−)′ be a bilinear

form on E given by

(x | y)′ = (φ−1(x) |φ−1(y)).

Clearly, (E,H ′, (−|−)′) is another structure of an EALA on E. Therefore,
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by Proposition 5.1.1, we have that the core E ′c of (E,H ′) is equal to Ec. It

remains to show that E ′c = φ(Ec).

Let α ∈ R be a root with respect to H. There exists a unique element tα in

H such that (tα |h) = α(h) for all h ∈ H. Recall that α is called anisotropic

if (tα | tα) 6= 0 and that Ec is generated (as an ideal) by ∪α∈RanEα.

Let R′ be the set of roots of (E,H ′). A mapping tφ−1
|H : H∗ → H ′∗ satisfies

tφ−1
|H (R) = R′. Notice that φ(tα) = t(tφ)−1(α). Indeed, this follows from

(φ(tα) |h′)′ = (tα |φ−1(h′)) = α(φ−1(h′)) = (α ◦ φ−1)(h′) = tφ−1(α)(h′).

We next have

(t(tφ)−1(α) | t(tφ)−1(α))
′ = (φ(t|α) |φ(tα))′ = (tα | tα).

Therefore,
tφ−1(Ran) = (R′)an, φ(Eα) = E ′tφ−1(α),

and this implies φ(Ec) = E ′c = Ec.
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Chapter 6

Lifting of automorphisms

The corollary 5.2.1 allows us to introduce a well-defined natural map

rescc : Autk−Lie(E)→ Autk−Lie(Ecc),

which is a composite of a natural restriction map

resc : Autk−Lie(E) −→ Autk−Lie(Ec)

and a natural map π : Autk−Lie(Ec)→ Autk−Lie(Ec/Z(Ec)).

In this chapter we will study the image of this map.

6.1 Lifting automorphisms in the split case

Let E be an extended affine Lie algebra whose centreless core Ecc is split. Thus

E = L⊕C ⊕D where L = g⊗R, C = Dgr∗, g is a simple Lie algebra over an

algebraically closed field k of characteristic 0 and R = k[t±1
1 , . . . , t±1

n ]. For the

puprose of this chapter we may assume that an invariant form (−,−)L on L

is given by

(x⊗ p, y ⊗ q)L = κ(x, y)CT(pq), x, y ∈ g, p, q ∈ R,

where CT is a constant term function.

The following theorem is the main result of this section, and it says that all
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R-linear automorphisms of g⊗R can be lifted to automorphisms of the entire

algebra E, if g is not isomorphic to sl2(k).

6.1.1 Theorem. AutR−Lie(g⊗R) is in the image of

rescc : Autk−Lie(E) −→ Autk−Lie(g⊗R),

if g is not isomorphic to sl2(k).

Proof. Notice that

AutR−Lie(g⊗R) = G(R) o Aut(Dyn(g)),

where G is an adjoint simple group corresponding to g.

We will proceed in 3 steps.

Let G̃ denote a simple simply connected group corresponding to g.

Step 1. Lifting of automorphisms from the image of a natural map G̃(R) →
AutR−Lie(g⊗R).

Choose a maximal split k-torus T̃ ⊂ G̃. The Lie algebra of T̃ is a Cartan

subalgebra h ⊂ g. We fix a Borel subgroup T̃ ⊂ B̃ ⊂ G̃.

Let Σ = Σ(G̃, T̃) be the root system of G̃ relative to T̃. The Borel sub-

group B̃ determines an ordering of Σ, hence the system of simple roots Π =

{α1, . . . , αn}. Fix a Chevalley basis [St67]

{Hα1 , . . . Hαn , Xα, α ∈ Σ}

of g corresponding to the pair (T̃, B̃).

In [Sta], A. Stavrova showed that the group G̃(R) is generated by the so-called

root subgroups Uα = 〈xα(p) | p ∈ R〉, where α ∈ Σ and

xα(p) = exp(pXα) =
∞∑
n=0

pnXn
α /n! . (6.1.1.1)

6.1.2 Lemma. ad(Xα ⊗ p) is a nilpotent endomorphism of a Lie algebra E.

Proof. It follows easily from Serre’s relations that ad(Xα ⊗ p) is a nilpotent
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endomorphism of a Lie algebra g⊗R. Let a ∈ Z be such that

(adg⊗R(Xα ⊗ p))a = 0.

It follows from the multiplication rule on E that ad(Xα ⊗ p)(e) ∈ g ⊗ R ⊕ C
for any e ∈ E. Therefore it suffices to show, that ad(Xα ⊗ p)|g ⊗ R ⊕ C is

nilpotent. Since C is the center of g ⊗ R ⊕ C we have ad(Xα ⊗ p)(c) = 0 for

any c ∈ C. Finally, for any l ∈ g⊗R, we have

(adE(Xα ⊗ p))a+1(l) =

= adE(Xα ⊗ p)((adE(Xα ⊗ p))a(l))
= adE(Xα ⊗ p)((adg⊗R(Xα ⊗ p))a(l) + c)

= adE(Xα ⊗ p)(c) = 0,

where c ∈ C.

This proves the lemma.

Now we are ready to prove the lifting result.

Since G̃(R) is generated by root subgroups Uα’s we can write

g =
∏
α

exp(Xα ⊗ pα). (6.1.2.1)

By Lemma 6.1.2, adE(Xα ⊗ pα) is a nilpotent operator on E. Therefore the

sum

exp(adE(Xα ⊗ pα)) =
∑
i≥0

(ad(Xα ⊗ pα))i/i!

is finite and, hence exp(adE(Xα ⊗ pα)) ∈ Autk−Lie(E).

Notice, that for any i ≥ 0 and l ∈ g⊗R we have

prg⊗R ◦ (adE(Xα ⊗ pα))i(l) = adg⊗R(Xα ⊗ pα))i(l).

Therefore

(prg⊗R◦exp(adE(Xα⊗pα)))|g⊗R = exp(adg⊗R(Xα⊗pα)) = Ad(exp(Xα⊗pα)).
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For an element g ∈ G̃(R) fix its presentation as in 6.1.2.1. Define

AdE(g) =
∏
α

exp(adE(Xα ⊗ pα)). (6.1.2.2)

Then
(prg⊗R ◦ AdE(g))|g⊗R
= (prg⊗R ◦

∏
α exp(adE(Xα ⊗ pα)))|g⊗R

=
∏

α(prg⊗R ◦ exp(adE(Xα ⊗ pα)))|g⊗R
=
∏

α Ad(exp(Xα ⊗ pα))

= Ad(
∏

α exp(Xα ⊗ pα))

= Ad(g),

therefore we can lift automorpisms of the form Ad(g), g ∈ G̃(R), to automor-

phisms AdE(g) of E.

Step 2. Lifting of automorphisms from the image of a natural map G(R) →
AutR−Lie(g⊗R).

6.1.3 Lemma. Let π : G̃ → G be the canonical covering. There exists an

étale extension R′/R such that G(R) ⊂ π(G̃(R′)) ⊂ G(R′).

Proof. Let T̃ ⊂ G̃ be a split maximal torus and T = π(T̃) be its image under

π. Consider an exact sequence

1 −→ Z −→ T̃ −→ T −→ 1

where Z is the kernel of π. For an arbitrary étale extension R′/R it gives rise

to an exact cohomological sequence

T̃(R′) −→ T(R′)
αR′−→ H1(R′, Z) −→ H1(R′, T̃) = 1.

(The last equality is due to the fact that T̃ is split and Pic(R′) = 1). Since

Z has finite exponent, say m, so is H1(R′, Z). Take R′ = k[s±1
1 , . . . , s±1

n ] with

si = t
1
m
i , i = 1, . . . , n.

Consider now a similar exact cohomological sequence

G̃(R) −→ G(R)
β−→ H1(R,Z)

γ−→ H1(R, G̃).
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The image of γ is trivial since γ factors through

H1(R,Z) −→ H1(R, T̃) −→ H1(R, G̃)

and as we explained above H1(R, T̃) = 1. Thus αR and β are surjective and

this implies

G(R) = π(G̃(R)) ·T(R).

Fix a decomposition T ' Gm × · · · ×Gm. It allows us to identify

T(R) ' R× × · · · ×R×.

It follows that T(R) is generated by T(k) and elements of the form

(1, . . . , 1,
∏

tnii , 1, . . . , 1)

where ni are integers. Clearly, all these generators are in T(R′)m, hence

T(R) ⊂ T(R′)m. Since αR′(T(R′)m) = 1 we get

T(R) ⊂ T(R′)m ⊂ π(T̃(R′))

and the assertion follows.

Let R′ be as in Lemma 6.1.3. Consider a vector space

ER′ := g⊗R′ ⊕Dgr∗ ⊕D.

We want to equip it with a structure of an extended affine Lie algebra such

that E becomes a Lie subalgebra of ER′ . First we extend a non-degenerate

symmetric invariant bilinear form on g⊗R to such a form on g⊗R′, putting

(x⊗ sm|y ⊗ sn)g⊗R′ := κ(x, y)δm,−n.

One checks immediately that (x | y)g⊗R′ is a non-degenerate symmetric invari-

ant bilinear form and its restriction to g⊗ R coincides with the original form

(−|−)g⊗R.

Now let us define an action of D on g⊗R′ by skew-centroidal derivations. By

the Realization Theorem, D = ⊕γDγ is a graded subalgebra of SCDerk(g⊗R).
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Any dγ ∈ Dγ is of the form χγdθ, where χγ ∈ Ctd(g ⊗ R)γ = Rγ, θ ∈
HomZ(Zn, k) and

dγ(lλ) = θ(λ)χγ(lλ)

for any lλ ∈ (g ⊗ R)λ. There is an obvious extension θR′ ∈ HomZ(( 1
m
Z)n, k)

of θ. Also, we have an inclusion R = Ctdk(g⊗ R) ↪→ R′ = Ctdk(g⊗ R′). We

now define an action of dγ on g⊗ R′ as follows: for l ∈ (g⊗ R′)λ, λ ∈ ( 1
m
Z)n

we let

dγR′(l) = θR′(λ)χγ(l).

It follows from the construction that dγR′|g⊗R = dγ. Also, dγR′ is a centroidal

derivation, which is still skew-centroidal. Indeed, the criterion for χγdθR′ to be

skew-centroidal derivation is θR′(γ) = 0. This holds, since θR′(γ) = θ(γ) = 0,

the latter because χγdθ is a skew-centroidal derivation of g⊗R.

It follows from the Realization Theorem for EALAs that ER′ equipped it with

the Lie bracket structure

[l1 + c1 + d1, l2 + c2 + d2]ER′ = ([l1, l2]g⊗R′ + d1(l2)− d2(l1))+

+(σR′(l1, l2) + d1 · c2 − d2 · c1 + τ(d1, d2)) + ([d1, d2]D),

where σR′(l1, l2)(d) = (dS(l1) | l2)g⊗R′ is an EALA.

6.1.4 Lemma. Let E ↪→ ER′ be a natural embedding. Then E is a Lie

subalgebra of ER′.

Proof. We need only to show that σR′ |g⊗R = σ. If d ∈ D and l1, l2 ∈ g ⊗ R
then we have

σR′(l1, l2)(d) = (dR′(l1) | l2)g⊗R′ = (d(l1) | l2)g⊗R = σ(l1, l2),

as required.

Let g ∈ G(R) and g̃ ∈ G̃(R′), where R′ is as in Lemma 6.1.3, be such that

π(g̃) = g. Clearly,

Adg⊗R′(g) = Adg⊗R′(g̃). (6.1.4.1)

We know from Step 1 that there is a lifting

AdER′ (g̃) ∈ Autk−Lie(ER′)
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of Adg⊗R′(g̃).

6.1.5 Lemma. One has AdER′ (g̃)(E) = E.

Proof. It follows from the construction in Step 1 and from (6.1.4.1) that

AdER′ (g̃)(g⊗R⊕Dgr∗) = g⊗R⊕Dgr∗.

It remains to check only that

AdER′ (g̃)(d) ∈ g⊗R⊕Dgr∗ ⊕D.

We can write AdER′ (g̃)(d) = l+c+d, for some l ∈ g⊗R′, c ∈ Dgr∗. Therefore,

it is enough to prove that l ∈ g⊗R.

Let l1 ∈ g ⊗ R. Then AdER′ (g̃)(l1) = Ad(g̃)(l1) + c1, for some c1 ∈ C. Since

AdER′ (g̃) is a Lie algebra automorphism we have

AdER′ (g̃)([d, l1]ER′ ) = [AdER′ (g̃)(d),AdER′ (g̃)(l1)]ER′ .

That is

AdER′ (g̃)(d(l1)) = [l + c+ d,Ad(g̃)(l1) + c1]ER′ .

Comparing g⊗R′-components we get

Ad(g̃)(d(l1)) = [l,Ad(g̃)(l1)]g⊗R′ + d(Ad(g̃)(l1)).

Since, of course,

Ad(g̃)(d(l1)) = Ad(g)(d(l1)) ∈ g⊗R

and

d(Ad(g̃)(l1)) = d(Ad(g)(l1)) ∈ g⊗R,

we get that [l,Ad(g̃)(l1)]g⊗R′ ∈ g⊗R for any l1 ∈ g⊗R, i.e. [l, l1]g⊗R′ ∈ g⊗R
for any l1 ∈ g⊗R.

Let us show that l ∈ g ⊗ R. As before, let h be a Cartan subalgebra of g,

Σ = {α} be a root system of (g, h), {αi} be simple roots. Let ωj ∈ h be such

that αi(ωj) = δi,j.
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Then {Xα, ωi} form a basis of g. Write l =
∑

α∈Σ Xα⊗ pα +
∑

i ωi⊗ ri, where

pα, ri ∈ R′.

We have [l, Xαi ]g⊗R′ ∈ g⊗R and has Xαi-coordinate equal to
∑

j ωj(αi)rj = ri.

Hence ri ∈ R.

For α ∈ Σ choose h ∈ h such that α(h) 6= 0. We have [l, h]g⊗R′ ∈ g ⊗ R and

its Xα-component is −α(h)pα. Hence pα ∈ R.

Therefore, l ∈ g⊗R and hence AdER′ (g̃)(d) ∈ E. This proves the lemma.

Summarizing, Adg⊗R(g) admits a lifting AdE(g) := AdER′ (g̃)|E.

Step 3. Lifting automorphisms from Aut(Dyn(g)).

We view automorphisms of g also as automorphisms of g ⊗ R by identifying

an automorphism f of g with the automorphism f ⊗ IdR of g⊗R. It is shown

in [NPPS, Cor. 7.4] that

6.1.6 Lemma. The form (−|−)g⊗R is invariant under any automorphism of

g.

Proof. It is well known that (− |−)g⊗R = ν ◦ κ for some ν ∈ Homk(R, k),

where κ is the Killing form on g⊗R. Since κ is invariant with respect to any

automorphism of g so is (−|−).

Let φ ∈ Aut(Dyn(g)). Abusing notation we denote a (graph) automorphism of

g⊗ R corresponding to φ by the same letter. Note that since φ is “constant”

one has (φ ◦ d)(l) = (d ◦ φ)(l) for all l ∈ L = g⊗R.

6.1.7 Lemma. Let φ̃ : E → E be a map given by

φ̃(l + c+ d) = φ(l) + c+ d

where l ∈ g ⊗ R, c ∈ C, d ∈ D. Then φ̃ is an automorphism of E extending

φ.

Proof. Since φ̃ acts trivially on C ⊕D it suffices to show

φ̃([l1, l2]E) = [φ̃(l1), φ̃(l2)]E
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for all l1, l2 ∈ g⊗R. But

φ̃([l1, l2]E)− [φ̃(l1), φ̃(l2)]E = σ(l1, l2)− σ(φ(l1), φ(l2)).

For d ∈ D we have

σ(l1, l2)(d) = (d(l1) | l2)g⊗R

and

σ(φ(l1), φ(l2))(d) = (d(φ(l1)) |φ(l2))g⊗R = (φ(d(l1)) |φ(l2))g⊗R = (d(l1) | l2)g⊗R.

The last equality is due to Lemma 6.1.6.

This completes the proof of Theorem 6.1.1 as well.

6.2 Automorphisms of EALA with split cen-

treless core

Let E = g ⊗ R ⊕ Dgr∗ ⊕ D be an EALA with centreless core split multiloop

algebra. The following statement is well known.

6.2.1 Proposition. One has

Autk−Lie(Ecc) ∼= AutR−Lie(Ecc) o Autk(R).

Recall that we denote by resc a natural restriction map

resc : Autk−Lie(E)→ Autk−Lie(Ec)

and by π a natural map

π : Autk−Lie(Ec)→ Autk−Lie(Ecc)

so that rescc = π ◦ resc.
6.2.2 Lemma. π is injective.

Proof. Let θ1, θ2 ∈ Autk−Lie(Ec) be such that π(θ1) = π(θ2). Then for all

x, y ∈ Ec there are xc, yc ∈ Z(Ec) = Dgr∗ such that θ1(x) = θ2(x) + xc and
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θ1(y) = θ2(y) + yc. Therefore

θ1([x, y]Ec) = [θ1(x), θ1(y)]Ec

= [θ2(x) + xc, θ2(y) + yc]Ec

= [θ2(x), θ2(y)]Ec

= θ2([x, y]Ec).

Since Ec = [Ec, Ec] and x, y ∈ Ec were arbitrary we get that θ1 = θ2.

6.2.3 Corollary. Ker(f) = Ker(resc)

6.2.4 Proposition. Ker(resc) is a torsion-free abelian group.

Proof. Let φ be an automorphism of E such that φ|Ec = IdEc . Let x ∈ D.

Write φ(x) = l+ c+ d where l ∈ L, c ∈ Dgr∗, d ∈ D. For every y ∈ g we have

[φ(x), φ(y)]E = [φ(x), y]E = φ([x, y]E).

Since y is constant, [x, y]E = x(y) = 0. Therefore

[l, y]E = [l + c+ d, y]E = φ(0) = 0.

It follows [l, y]L = 0. Since Z(g⊗R) = 0 this implies l = 0. Thus

φ(x) = c+ d ∈ Dgr∗ ⊕D.

We next show that d = x. For any 0 6= y ∈ g we have

[φ(x), φ(y ⊗ ti)]E = φ([x, y ⊗ ti]E),

1 ≤ i ≤ n, or equivalently

[c+ d, y ⊗ ti]E = [x, y ⊗ ti]E

or

[d− x, y ⊗ ti]E = 0 for 1 ≤ i ≤ n. (6.2.4.1)

Write d− x =
∑

λ t
λdθλ . Substituting this expression in (6.2.4.1) we get that

θλ = 0. This, in turn, implies dθλ = 0 and therefore x− d = 0.
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Now we define a homomorphism

µ : Ker(resc)→ Homk(D,D
gr∗), φ→ µ(φ)

where µ(φ) : z 7→ prDgr∗(φ(z)) for z ∈ D. From what we have already seen it

follows that µ is injective. Since Homk(D,D
gr∗) is a torsion-free abelian group

so is Ker(resc).

6.2.5 Corollary. The sequence of groups

1 −→ Ker(resc) −→ Autk−Lie (E)
rescc−→ Im(rescc) −→ 1 (6.2.5.1)

is exact.

6.2.6 Remark. We proved already that the group AutR−Lie(Ecc) is contained

in Im(rescc), if Ecc is not isomorphic to sl2(R). This will be an important fact

in the next sections.

6.3 EALA as a subalgebra of a “split” EALA

Let E be an extended affine Lie algebra. We know from the Realization The-

orem (see [Ne5], Th. 5.15) that

E = L⊕Dgr∗ ⊕D,

where L ∼= Ecc is a centreless Lie torus, D ⊂ SCDerk(L) is a graded subalgebra

of the Lie algebra of skew-centroidal derivations of L. Recall that L, being fgc,

is a multiloop Lie algebra (twisted or split), hence of the form L = L(g,σσσ) as

in 2.3.3.2.

We now consider the vector space ES = LS ⊕ Dgr∗ ⊕ D and we would like

first to equip it with a structure of an extended affine Lie algebra. Recall

that L = L(g,σσσ) (resp. D) has a natural Λ-grading where Λ = Zn (resp.

mZn-grading). Here mZn := m1Z⊕ · · · ⊕mnZ.

We define the action of D on LS by the skew-centroidal derivations (such

that the induced action on L coincides with the original one) as follows. Any

homogeneous element d ∈ Dλ is of the form d = χλdθ where λ ∈ mZn,
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θ ∈ HomZ(Zn, k). For any homogeneous element x⊗ sµ ∈ LS = g⊗ S we let

d(x⊗ sµ) := θ(µ)x⊗ χλsµ.

It is straightforward to check that this formula indeed defines an action of D

on LS by the skew-centroidal derivations.

Furthermore, it is known that there exists a unique (up to scalar) graded non-

degenerated invariant bilinear symmetric form on g⊗S and its restriction to L

has the same properties. It then follows that a canonical invariant symmetric

form (−|−) on L has a unique extension to g⊗ S.

The action of D on LS and the invariant symmetric form on LS defined above

allow us to define a structure of extended affine Lie algebra on ES. (Notice

that the evaluation map ev : Zn → D0∗ is injective since it is the same for LS

as for L.)

We next remark that the standard action of Γ on LS = g ⊗ S (through the

second factor) can be extended to its standard action on ES: if γ ∈ Γ and

l + c+ d ∈ ES we let

γ(l + c+ d) := γ(x) + c+ d.

This in turn induces the standard action of Γ on Aut(ES): if γ ∈ Γ and

φ ∈ Aut(ES) then

γ(φ)(l + c+ d) = γ(φ(γ−1(l + c+ d))).

Furthermore, the cocycle

η(σσσ) = (aλ) ∈ Z1(Γ,Aut(g)(S))

can be lifted to a cocycle

η̂(σσσ) = (âλ) ∈ Z1(Γ,Autk−Lie(ES))

where âλ is an automorphism of ES given by

âλ(x+ c+ d) = aλ(x) + c+ d.
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(It is straightforward to verify that âλ is an automorphism of ES and that η̂(σσσ)

is a cocycle.) As a consequence of all our constructions we obtain a twisted

action of Γ (through the cocycle η̂(σσσ)) on ES which satisfies (ES)Γ = E.

6.4 The automorphism group of EALA with

twisted centreless core

Throughout the section we assume that the centreless core Ecc of E is not

isomorphic to sl2(R).

We keep the notation from the last section. Recall that resc is the restriction

map

resc : Autk−Lie(ES)→ Autk−Lie((ES)c).

It is easy to see that the standard action of Γ on Ker(resc) is trivial and hence

so is the twisted one; in particular Ker(resc) is a Γ-group. Also Im(rescc)

contains AutR−Lie(LS) and hence stable with respect to the twisted action of

Γ. Thus (6.2.5.1) can be viewed as an exact sequence of Γ-groups (The action

is twisted!). The long exact cohomological sequence associated to (6.2.5.1)

implies the following.

6.4.1 Theorem. (a) The following sequence

1 −→ Ker(resc) −→ (Autk−Lie (ES))Γ res′cc−→ Im(rescc)
Γ −→ 1

is exact. Here res′cc is the restriction of rescc.

(b) The group AutR−Lie (Ecc) is in the image of a canonical mapping

Autk−Lie (E) −→ Autk−Lie (Ecc).

Proof. Since Γ acts trivially on Ker(resc) and since Ker(resc) is a torsion free

abelian group we have H1(Γ,Ker(resc)) = 1 and so the first assertion is clear.

As for the second one, note that we have a canonical embedding

(Autk−Lie (ES))Γ ↪→ Autk−Lie (EΓ
S) = Autk−Lie (E)
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and similarly

(Autk−Lie (LS))Γ ↪→ Autk−Lie ((LS)Γ) = Autk−Lie (E);

hence a commutative diagram

(Autk−Lie (ES))Γ res′cc−→ Im(rescc)
Γ ⊂ (Autk−Lie (LS))Γ

↓ ↓
Autk−Lie (E) −→ Autk−Lie (Ecc)

Recall that due to Galois descent for group schemes we have

AutR−Lie (Ecc) ' (AutS−Lie (LS))Γ. (6.4.1.1)

This, together with Remark 6.2.6 and surjectivity of res′cc yield the result.

6.5 Lifting of k-automorphisms

We will see that in contrast to the case of R-automorphisms, it is not always

possible to lift all the k-automorphisms of g ⊗ R to the entire algebra E. In

this section we discuss a lifting problem for k-automorphisms of g⊗R, induced

by k-automorphisms of R.

As before, let L = g⊗ R be a centreless core of an EALA E, which we write

as E = L ⊕ C ⊕ D. Let D = SCDer(L) and C = Dgr∗. By [Ne1], L ⊕ C is a

universal central extension of L. More precisely, for x ⊗ r ∈ L, y ⊗ s ∈ L we

define

[x⊗ r, y ⊗ s]L⊕C = [x, y]⊗ rs+ σ(x⊗ r, y ⊗ s),

where σ(x⊗r, y⊗s)(d) = (d(x⊗r), y⊗r). Then prL : L⊕C → L is a universal

central extension of L. By [VKL, Proposition 1.3], any φ ∈ Autk−Lie(L) has a

unique lifting φ̃ ∈ Autk−Lie(L⊕ C), i.e. such that the diagram

L⊕ C prL //

φ̃
��

L

φ
��

L⊕ C prL
// L

commutes.
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Let φ ∈ Autk(R). Then φ induces an automorphism of L given by

x⊗ r 7→ x⊗ φ(r)

which we still will denote by φ.

6.5.1 Remark. Notice, that

Autk(R) ∼= HomZ(Zn, k×) n GLn(Z).

For χ ∈ HomZ(Zn, k×), A ∈ GLn(Z) and tλ ∈ R one has (χ, A)(tλ) = χ(λ)tAλ.

6.5.2 Lemma. The bilinear form (−,−) = κ ⊗ (−,−)R on L is invariant

under φ ∈ Autk(R).

Proof. Let φ = (χ,A) ∈ Autk(R), x⊗ tλ, y ⊗ tµ ∈ L. Then

(φ(x⊗ tλ), φ(y ⊗ tµ)) = (x⊗ φ(tλ), y ⊗ φ(tµ))

= κ(x, y)(φ(tλ), φ(tµ))R

= κ(x, y)(χ(λ)tAλ, χ(µ)tAµ)R

= κ(x, y)χ(λ+ µ)δA(λ+µ),0

= κ(x, y)δλ+µ,0

= κ(x, y)(tλ, tµ)R

= (x⊗ tλ, y ⊗ tµ),

thus the claim.

6.5.3 Corollary. Let d ∈ D. Let φ ∈ Autk−Lie(R). Then φ ◦ d ◦ φ−1 ∈ D.

Proof. Using Lemma 6.5.2 , for any l1, l2 ∈ L we get

(φ ◦ d ◦ φ−1(l1), l2) + (φ ◦ d ◦ φ−1(l2), l1) =

(d(φ−1(l1)), φ−1(l2)) + (d(φ−1(l2)), φ−1(l1)) = 0,

thus the claim.

Let φD ∈ Autk−Lie(D) be a map d 7→ φ ◦ d ◦ φ−1 and φC ∈ Autk(C) be a map

α 7→ α ◦ φ−1
D .

6.5.4 Lemma.

(χ,A)D(tλdθ) = tAλdχ(λ)θ◦A−1 .

Proof. Straightforward computations.
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6.5.5 Lemma. Let φ ∈ Autk−Lie(R). Then the lifting φ̃ is defined by φ̃(l+c) =

φ(l) + φC(c), for any l ∈ L, c ∈ C.

Proof. We only have to check that a mapping φ̃ is a Lie algebra homomor-

phism. Since C is a centre of L⊕ C, it is enough to show

φ̃([l1, l2]L̃) = [φ̃(l1), φ̃(l2)]L̃ (6.5.5.1)

for any l1, l2 ∈ L. The left hand side of (6.5.5.1) is

φ̃([l1, l2]L + σ(l1, l2)) = [l1, l2]L + φC(σ(l1, l2))

and the right hand side is

[φ(l1), φ(l2)]L̃ = [φ(l1), φ(l2)]L + σ(φ(l1), φ(l2))

= φ([l1, l2]L) + σ(φ(l1), φ(l2)).

Hence we have to check

φC(σ(l1, l2)) = σ(φ(l1), φ(l2)).

For any d ∈ D we have

φC(σ(l1, l2))(d) = σ(l1, l2)(φ−1
D (d))

= (φ−1
D (d)(l1), l2)

= (φ−1(d(φ(l1))), l2)

= (d(φ(l1)), φ(l2))

= σ(φ(l1), φ(l2)),

thus the claim.

6.5.6 Lemma. Let D be a graded subalgebra of D. Let C = Dgr∗. Let i :

D → D be an inclusion map. And let i∗ : Dgr∗ → Dgr∗ be a corresponding map

between the graded duals. The map i∗ is surjective, i.e. Dgr∗ ∼= Dgr∗/Ker(i∗).

Proof. Obvious.

By the universal property of a universal central extension L̃ → L there is a

unique Lie algebra map π : L̃→ L⊕ C over L.

6.5.7 Lemma. π = idL ⊕ i∗.
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Proof. Obvious.

6.5.8 Lemma. π is a universal central extension of L⊕ C.

Proof. We have to check that for any central extension

θ : K = (L⊕ C)⊕ C ′ −→ L⊕ C

there is a unique map π̃ such that the diagram

L̃

π

��

π̃

ww
(L⊕ C)⊕ C ′ θ // L⊕ C

commutes.

Let ψ be a 2-cocycle corresponding to an extension θ : K → L⊕ C.

First notice that K
prL◦θ // L is a central extension. For this we have to show

that C ⊕ C ′ ⊂ Z(K). Of course, C ′ ⊂ Z(K). Let c ∈ C, x ∈ L ⊕ C. Since

L ⊕ C is a core of an extended affine Lie algebra E, it is perfect. Therefore

c =
∑

[xi, yi]L⊕C , xi, yi ∈ L⊕ C.

We get

[c, x]K =
∑

[[xi, yi]L⊕C , x]K

=
∑
ψ([xi, yi]L⊕C , x)

= −
∑

(ψ([yi, x]L⊕C , xi) + ψ([x, xi]L⊕C , yi))

= 0,

thus K → L is indeed central.

Therefore, by the universal property of prL : L̃→ L, there is a unique map λ

such that the outer triangle of the diagram

L̃

π

��

λ

ww

prL

""
(L⊕ C)⊕ C ′ θ // L⊕ C prL // L

commutes. But then again by the universal property of prL : L̃ → L we get

that the left triangle commutes and λ is a unique map with this property. This

proves the lemma.
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From now on we assume that τ = 0.

6.5.9 Lemma. Let φ ∈ Autk−Lie(R). Then φ has a lifting to the core L ⊕ C
of E iff φD(D) = D. In this case φ has a lifting to the entire EALA E.

Proof. It follows from [VKL, Proposition 1.3] that φ has a lifting to Autk−Lie(L⊕
C) iff φ̃(Ker(i∗)) = Ker(i∗). By Lemma 6.5.5 φ̃(Ker(i∗)) = φC(Ker(i∗)).

Let us show that φC(Ker(i∗)) = Ker(i∗) iff φD(D) = D.

Assume φC(Ker(i∗)) = Ker(i∗). Let d ∈ D. We want to show that φD(d) ∈ D
and φ−1

D (d) ∈ D. For any α ∈ Ker(i∗) we have

0 = φC(α)(d) = α(φ−1
D (d)).

This shows that φ−1
D (d) is in a kernel of any functional α ∈ Ker(i∗). It follows

that φ−1
D (d) ∈ D. Similarly, for any α ∈ Ker(i∗) we have

0 = φ−1
C (α)(d) = α(φD(d)).

Hence φD(d) ∈ D.

Conversely, assume that φD(D) = D. Let α ∈ Ker(i∗). We want to show that

φC(α) ∈ Ker(i∗) and φ−1
C (α) ∈ Ker(i∗). For any d ∈ D we have φD(d) ∈ D and

φ−1
D (d) ∈ D. Therefore

φC(α)(d) = α(φ−1
D (d)) = 0

and

φ−1
C (α)(d) = α(φD(d)) = 0

Therefore φC(α) ∈ Ker(i∗). Thus we proved the first part of the lemma.

Now assume that φD(D) = D. Let us show that φ can be lifted to an auto-

morphism φE of E. From the above it follows that the map φC induces an

isomorphism φC : C → C. The lifting φ′ of φ to Autk−Lie(L⊕ C) is given by

φ′(l + c) = φ(l) + φC(c),

for any l ∈ L, c ∈ C.
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We define φE by

φE(l + c+ d) = φ′(l + c) + φD(d),

for any l ∈ L, c ∈ C, d ∈ D.

Of course, φE is an automorphism of E as a k-vector space. We want to check

that it preserves the Lie bracket. For this it is enough to check

φE([d, l]E) = [φE(d), φE(l)]E (6.5.9.1)

and

φE([d, c]E) = [φE(d), φE(c)]E (6.5.9.2)

for any d ∈ D, l ∈ L, c ∈ C.

The left hand side of 6.5.9.1 is

φE([d, l]) = φ(d(l)) = (φ ◦ d)(l).

The right hand side of 6.5.9.1 is

[φD(d), φ(l)]E = φD(d)(φ(l)) = (φ ◦ d ◦ φ−1)(φ(l)) = (φ ◦ d)(l).

Hence 6.5.9.1 holds.

The left hand side of 6.5.9.2 evaluated at d1 ∈ D is

φE([d, c]E)(d1) = φC(d · c)(d1) = (d · c)(φ−1
D (d1)) = c([φ−1

D (d1), d]D).

The right hand side of 6.5.9.2 evaluated at d2 ∈ D is

[φE(d), φE(c)]E(d1) = (φD(d) · φC(c))(d1)

= φC(c)([d1, φD(d)]D)

= c(φ−1
D ([d1, φD(d)]D))

= c([φ−1
D (d1), d]D).

Hence 6.5.9.2 holds. This ends the proof.

6.5.10 Corollary. • The map Autk−Lie(E)→ Autk−Lie(g⊗ R) is surjec-

tive if D = D or D = D0.
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• If φ = (χ, 1) then φ always has a lifting to E.

Proof. Follows immediately from 6.5.4 and 6.5.9.

6.5.11 Example. Let R = k[t±1
1 , t±1

2 ]. Let D = kdθ ⊕ kt1∂2, where θ ∈
HomZ(Zn, k) is given by θ(e1) = 1, θ(e2) =

√
2. Then (1, A) can be lifted if

and only if A = I2.
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Chapter 7

A conjugacy theorem of Cartan

subalgebras in extended affine

Lie algebras

In this chapter we prove the main result of this dissertation.

Throughout we assume that all extended affine Lie algebras are of fgc type,

i.e. their centreless cores are finitely generated modules over the corresponding

centroids.

7.0.12 Theorem. (Conjugacy theorem for EALAs.) Let (E,H) be an

extended affine Lie algebra of fgc type, which is not isomorphic to sl2(R), where

R is a ring of Laurent polynomials in more then 1 variable. Assume E admits

a second structure (E,H ′) of an extended affine Lie algebra. Then H and H ′

are conjugate, i.e., there exists an automorphism φ ∈ Autk−Lie(E) such that

φ(H) = H ′.

7.1 Some auxiliary properties

From now on we assume (E,H) and (E,H ′) are two structures of EALA on

E. We set Hc = H ∩ Ec and H ′c = H ′ ∩ E ′c = H ′ ∩ Ec. Let π : Ec → Ecc be a

canonical projection. We denote Hcc = π(Hc) and H ′cc = π(H ′c). On L = Ecc

we have two Lie torus structures coming from (E,H) and (E ′, H ′), say L and

L′. Then L0
0 = Hcc and (L′)0

0 = H ′cc.
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Both subalgebras Hcc and H ′cc of L are MADs for which the conjugacy theo-

rem in [CGP] can be applied. Hence there exists g ∈ AutR−Lie(L) such that

g(H ′cc) = Hcc; moreover, g can be choosen in the image of a natural map

ηG̃R(R) → AutR−Lie(L) where ηG̃R is the simple simply connected group

scheme over R corresponding to L as defined in Remark 2.3.4.

According to Theorem 6.4.1, part (b), AdL(g) ∈ AutR−Lie(L) ⊂ Autk−Lie(L)

can be lifted to an automorphism, say φ, of E. So replacing the second struc-

ture (E,H ′, (−|−)′) by (E, φ(H ′), (−|−)′◦(φ−1×φ−1) we may assume without

loss of generality that Hcc = H ′cc.

7.1.1 Lemma. Hc = H ′c.

Proof. Take any x ∈ Hc. Since Hcc = H ′cc there exists y ∈ H ′c such that

π(x) = π(y). Then c = x− y ∈ Ker(π) = C. Since C = Z(Ec) the elements x

and y commute and by construction both of them are k-ad-diagonalizable in

E. It follows that c is also k-ad-diagonalizable in E.

We now note that it follows from the inclusion [C,D]E ⊂ C and from [C,Ec]E =

0 that any eigenvector of ad(c) with a nonzero D-component necessarily com-

mutes with c. Therefore c ∈ Z(E) ⊂ H ′c implying x = y + c ∈ H ′c. Thus we

have showed that Hc ⊂ H ′c and similarly H ′c ⊂ Hc.

The above lemma says that Hc = H ′c = Hcc⊕C0 and we have decompositions

H = Hcc ⊕ C0 ⊕D0 and H ′ = Hcc ⊕ C0 ⊕D′0.

7.1.2 Lemma. One has D′0 ⊂ L0 ⊕ C ⊕D where L0 = CL(Hcc).

Proof. Let x ∈ D′0. By Lemma 7.1.1 we have [x, y]E = 0 for all y ∈ Hcc. Let

x = l + c+ d where l ∈ L, c ∈ C, d ∈ D. Then

0 = [x, y]E = [l, y]E + [c, y]E + [d, y]E = [l, y]E.

Therefore, l ∈ L0, as required.

7.1.3 Lemma. Let d = dθ ∈ D0 and assume that y ∈ L satisfies [d, y]E = ωy

for some ω ∈ k. Then

[d, χγy]E = (θ(γ) + ω)χγy

for any χγ ∈ Rγ = Ctrd(L)γ.
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Proof. Indeed, we have

[d, χγy]E = d(χγy) = θ(γ)χγy + ωχγy = (θ(γ) + ω)χγy.

7.1.4 Lemma. D′0 ⊂ L0 ⊕ C ⊕D0.

Proof. Let d′0 ∈ D′0. Then by Lemma 7.1.2 we can write d′0 = l0 + c+ d with

l0 ∈ L0, c ∈ C and d ∈ D. Let χγ ∈ Rγ. By Lemma 7.1.3 we know that

[d′0, χγh]E ∈ kχγh for any h ∈ L0
0. On the other hand

[d′0, χγh]E = [l0, χ
γh]E + [c, χγ]E + [d, χγh]E

and
[c, χγh]E = [c, χγh]Ec = 0,

[l0, χ
γh]E = [l0, χ

γh]L + σ(l0, χ
γh),

[d, χγh]E = d(χγh).

Since [d′, χγh]E ∈ kχγh we get σ(l0, χ
γh) = 0; also [l0, χ

γh]L = χγ[l0, h]L = 0.

Hence d(χγh) ∈ kχγh.

Write d =
∑

µ d
µ. Comparing degrees we have that dµ(χγh) = 0 for all µ 6= 0.

Let dµ = χγ
′
dθ where µ 6= 0 and χγ

′ ∈ Rγ′ . Then we have χγ+γ′θ(γ)h = 0,

whence θ(γ) = 0 for all γ in the grading group Γ of R. Since [Λ/Γ] <∞, this

implies θ = 0 and so dµ = 0 for all µ 6= 0 . Thus d = d0 and we are done.

7.1.5 Lemma. D′0 ⊂ Hcc ⊕ C ⊕D0.

Proof. Let d′0 ∈ D′0. By Lemma 7.1.4 we can write d′0 = l0 + c + d0 with

l0 ∈ L0, c ∈ C, d0 ∈ D0. Since Ec is an ideal of E we have [d′0, Ec]E ⊂ Ec.

Since the operator adE(d′0) is k-diagonalizable it then follows that Ec has a

basis consisting of eigenvectors. This implies that the operator adL(l0) +d0 on

L is also k-diagonalizable.

We already mentioned that we have two Lie tori structures on L, the second

one is denoted by L′; the L′-structure has a Λ′-grading L′ = ⊕λ′∈Λ′L
λ′ , induced

by D′0. Similarly, L = ⊕λ∈ΛL
λ is induced by D0. Applying 2.3.3 with φ = Id

we get that Lie tori L and L′ are isotopic, i.e.

Lλα = (L′)
φΛ(λ)+φs(α)
φr(α) .
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Then (adLl0 + d0)(Lλα) ⊂ Lλα (because this holds for (L′)
φΛ(λ)+φs(α)
φr(α) ), and it

acts by a scalar multiplication on each space Lλα. But d0 also acts by a scalar

multiplication on Lλα, hence the same is true for adLl0. In particular adLl0 is a

k-ad-diagonalizable operator, commuting with Hcc, whence l0 ∈ Hcc since Hcc

is a MAD by [Al].

7.2 Final conjugacy

We keep the above notation. Let C 6=0 = ⊕µ6=0C
µ.

7.2.1 Lemma. There exists a subspace V ⊂ H ′ such that

(i) H ′ = Hc ⊕ V , V ⊂ C 6=0 ⊕D0, and

(ii) V is a graph of some linear mapping ψ ∈ Hom(D0, C 6=0).

Proof. By Lemma 7.1.1, H ′ = H ′c ⊕ D′0 = Hc ⊕ D′0 and by Lemma 7.1.5,

D′0 ⊂ Hcc ⊕ C ⊕D0. We decompose

Hcc ⊕ C ⊕D0 = (Hcc ⊕ C0)⊕ (C 6=0 ⊕D0).

Let p : Hcc⊕C⊕D0 → C 6=0⊕D0 be a natural projection and put V = p(D′0).

Since D′0 ∩ (Hcc ⊕ C0) ⊂ D′0 ∩ Ec = 0, we get V ∼= D′0 as vector spaces.

Moreover the inclusions

V ⊂ C 6=0 ⊕D0 ⊂ Hcc ⊕ C ⊕D0

imply V ∩ (Hcc ⊕ C0) = 0. Note also that V ⊂ H ′. Indeed, every v ∈ V is

of the form v = p(d′0) for some d′0 ∈ D′0, whence d′0 = h + c0 + v for unique

c0 ∈ C0, h ∈ Hcc. Since h, c0 ∈ H ′ it follows that v = d′0 − c0 − h ∈ H ′.

By dimension argument we now get H ′ = Hc ⊕ V . That V ⊂ C 6=0 ⊕ D0 is

clear from the construction. Finally, to see (ii) we observe that

E = [E,E]E ⊕ V = [E,E]E ⊕D0

and this implies that a natural projection C 6=0 ⊕D0 → D0 restricted to V is

an isomorphism.
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7.2.2 Lemma. Let ξ ∈ Homk(D
0, C 6=0) be such that

V = {ξ(d0) + d0 | d0 ∈ D0}

is a toral subalgebra of C ⊕D. Then

(a) The weights of V in C ⊕D are of the form ev′λ ∈ V ∗ where

ev′λ(ξ(d
0) + d0) = evλ(d

0).

(b) Every Cµ is contained in the ev′µ-weight space.

(c) There exists a unique linear map ψ : D → C such that for every µ ∈ Λ

and dµ ∈ Dµ, the element ψ(dµ) + dµ is an eigenvector for V with weight

ev′µ and

ψ(dµ) ∈ C 6=µ = ⊕λ6=µCλ.

(d) The map φ : C ⊕D → C ⊕D given by

φ(c+ d) = (c+ ψ(d)) + d

is an automorphism of C ⊕D mapping C0 ⊕D0 onto C0 ⊕ V .

Proof. (b) Let c ∈ Cµ and d0 ∈ D0. Then

[ξ(d0) + d0, c]E = d0 · c = evµ(d0)c,

as required.

(a) Let c+ d be a nonzero eigenvector for ad(V ). Since τ(D0, D) = 0 we get

[ξ(d0) + d0, c+ d]E = (d0 · c− d · ξ(d0)) + [d0, d]D.

If d = 0, then substituting the decomposition c =
∑
cµ we get

d0 · c =
∑
µ

evµ(d0)cµ

for all d0 ∈ D0. Since d0 · c is proportional to c it follows immediately c = cµ

for some µ.

88



If d 6= 0, it follows from [d0, d]D ∈ kd that d = dµ for some µ whence the

weight of c+ d is as defined in (a).

As a by-product we note that if c + dµ and c′ + dµ are two eigenvectors for

V then λ-components of c and c′ are the same for each λ 6= µ. Indeed, as

we have already seen c + dµ and c′ + dµ are contained in the same weight

subspace (C ⊕ D)ev′µ , hence so is (c + dµ) − (c′ + dµ) = c − c′. But then we

have automatically that c− c′ ∈ Cµ, as required.

(c) It follows from the above that

ev′µ(ξ(d0) + d0)(c+ dµ) = evµ(d0)(c+ dµ) = [ξ(d0) + d0, c+ dµ]E

= (d0 · c− dµ · ξ(d0)) + evµ(d0)dµ,

whence evµ(d0)c = d0 · c − dµ · ξ(d0). Substituting decomposion c =
∑

λ∈Λ c
λ

we have

evµ(d0)cλ = evλ(d
0)cλ − (dµ · ξ(d0))λ

for every λ ∈ Λ, hence

(dµ · ξ(d0))λ = evλ−µ(d0)cλ. (7.2.2.1)

If λ 6= µ there exists d0 ∈ D0 such that evλ−µ(d0) 6= 0. Thus cλ is defined

uniquely by (7.2.2.1) (uniqueness follows from the argument at the end of part

(a)). As for λ = µ we note that the µ-component of dµ · ξ(d0) is zero, because

ξ(d0) ∈ C 6=0, and so no conditions on cµ.

We now define Dµ → C 6=µ by (7.2.2.1) and then extend it linearly to all of

ψ : D → C. It follows from the above discussions that ψ has all the required

properties.

(d) φ is clearly bijective and takes C0 ⊕ D0 onto C0 ⊕ V . Let us check that

φ is a homomorphism. Let c1, c2 ∈ C. Since [C,C]E = 0 we obviously have

φ([c1, c2]) = [φ(c1), φ(c2)]. Let now c ∈ C and d ∈ D. Since φ(c) = c and

[C,D]E ⊂ C the equality

φ([c, d]E) = [φ(c), φ(d)]E
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holds if and only if

−d · c = [c, ψ(d) + d]E = −d · c.

To finish the proof it remains to check that

φ([dλ, dµ]E) = [φ(dλ), φ(dµ)]E

for all λ, µ and all nonzero dµ, dλ.

Case (1): [dλ, dµ]D 6= 0. Notice that by construction φ(dµ) = ψ(dµ) +dµ is the

unique ev′µ-eigenvector for V whose projection on D is dµ and ψ(dµ) ∈ C 6=µ.

Then we have

[φ(dλ), φ(dµ)]E = (dλ · ψ(dµ)− dµ · ψ(dλ) + τ(dλ, dµ)) + [dλ, dµ]D

is an eigenvector of weight ev′λ+µ since this holds for the left side. Its Cλ+µ-

component is τ(dλ, dµ) since

ψ(dλ) ∈ C 6=λ, ψ(dµ) ∈ C 6=µ, τ(dλ, dµ) ∈ Cλ+µ and Dα · Cβ ⊂ Cα+β.

It follows that

[φ(dλ), φ(dµ)]E − τ(dλ, dµ) = (dλ · ψ(dµ)− dµ · ψ(dλ)) + [dλ, dµ]D

= ψ([dλ, dµ]D) + [dλ, dµ]D

= φ([dλ, dµ]E)− τ(dλ, dµ).

Case (2): [dλ, dµ]D = 0. As before,

[φ(dλ), φ(dµ)]E = (dλ · ψ(dµ)− dµ · ψ(dλ) + τ(dλ, dµ)) + 0

is an eigenvector for V with weight ev′λ+µ. Also,

φ([dλ, dµ]E) = φ(τ(dλ, dµ)) = τ(dλ, dµ).

Hence φ is an automorphism if and only if

dλ · ψ(dµ) = dµ · ψ(dλ) (7.2.2.2)
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holds for all dλ ∈ Dλ, dµ ∈ Dµ with [dλ, dµ]D = 0.

Both sides of (7.2.2.2) are contained in C. To check this condition we compare

their homogeneous components with respect to the decomposition C = ⊕Cρ.

Both sides do not contain components in Cλ+µ. Let now ρ 6= λ + µ. Recall

that by construction of ψ if τ ∈ Λ and d0 ∈ D0 then

evτ−µ(d0)ψ(dµ)τ = dµ · (ξ(d0)τ−µ) if τ 6= µ,

evτ−λ(d
0)ψ(dλ)τ = dλ · (ξ(d0)τ−λ) if τ 6= λ.

Choose d0 ∈ D0 such that the scalar

e−1 := evρ−λ−µ(d0) 6= 0.

Then with the use of [dλ, dµ]D = 0 we get

dλ · ψ(dµ)ρ−λ = dλ · (e dµ · ξ(d0)ρ−λ−µ)

= e dµ · (dλ · ξ(d0)ρ−λ−µ)

= e dµ · (evρ−λ−µ(d0)ψ(dλ)ρ−µ)

= dµ · ψ(dλ)ρ−λ,

thus proving 7.2.2.2.

7.2.3 Theorem. The map ν : E → E given by

ν(l + c+ d) = l + φ(c+ d) = l + (c+ ψ(d)) + d

for all l ∈ L, c ∈ C, d ∈ D is an automorphism of E such that ν(H) = H ′.

Proof. It is obvious that

ν([l, c]E) = [ν(l), ν(c)]E, ν([l1, l2]E) = [ν(l1), ν(l2)]E, ν([l, d]E) = [ν(l), ν(d)]E

for all l, l1, l2 ∈ L, c ∈ C and d ∈ D. Now the rest follows from Lemma 7.2.2,

part (d).
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Chapter 8

A counterexample to conjugacy

The aim of this section is to give a counterexample to the conjugacy of maximal

k-ad-diagonalizable subalgebras in extended affine Lie algebras.

But first we will give another example of an EALA; we will use it for a con-

struction of a counterexample.

8.1 One more example of an Extended Affine

Lie Algebra

Let Q = (t1, t2) be a quaternion Azumaya algebra over R = k[t±2
1 , t±2

2 ]. Thus,

it has generators ı,  and relations ı2 = t1, 
2 = t2 and ı = −ı.

Recall, that a unital associative Λ-graded k-algebra A = ⊕λ∈ΛA
λ is called an

associative Lie torus of type Λ if it satisfies the following axioms:

(AT1): Every non-zero Aλ contains an invertible element.

(AT2): dimAλ ≤ 1 for all λ ∈ Λ.

(AT3): spanZ(suppΛA) = Λ.

One easily checks that Q has a structure of an associative torus ([Ne3], Defi-

nition 4.20) of type Z2. Indeed,

Q =
⊕
a,b∈Z

Q(a,b)
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is a Z2-graded Lie algebra over k with one-dimensional graded components

Q(a,b) = kıab, a, b ∈ Z.

In general, if A is an associative torus of type M then sln(A) is a Lie torus of

type (An−1,M) (see, for example, [Ne5], Example 4.21). Thus, L = sl2(Q) is

a Lie torus of type (A1,Z2). In particular, it has a double grading such that

L
(a,b)
0 = k

[
ıab 0

0 −ıab

]

if a, b are even and

L
(a,b)
0 = k

[
ıab 0

0 −ıab

]
⊕ k

[
ıab 0

0 ıab

]

otherwise; also we have

L
(a,b)
−2 = k

[
0 0

ıab 0

]
,

L
(a,b)
2 = k

[
0 ıab

0 0

]
,

where a, b ∈ Z.

An invariant bilinear form (−,−) on L is given by([
x11 x12

x21 x22

]
,

[
y11 y12

y21 y22

])
= (x11y11 + x12y21 + x21y12 + x22y22)0,

where a0 for a ∈ Q denotes the Q0-component of a. This form is symmetric,

nondegenerate, invariant, graded, i.e. (Lλξ , L
µ
τ ) = 0 if λ + µ 6= 0 or ξ + τ 6= 0.

(Recall, that a form (−,−) is invariant if ([a, b], c) = (a, [b, c]) for all a, b, c.)

Choose θ ∈ HomZ(Z2, k) such that θ(1, 0) = 1 and θ(0, 1) is not in Q. Consider

d = dθ ∈ Endk(L) where d(l) = θ(λ)l for l ∈ Lλ, λ ∈ Z2. Let D = kd and

C = D∗ = Homk(D, k). Finally we set E = L⊕ C ⊕D and equip it with the

multiplication given by

[l1 ⊕ c1 ⊕ d1, l2 ⊕ c2 ⊕ d2]E = ([l1, l2]L + d1(l2)− d2(l1))⊕ σ(l1, l2).

It follows easily from 2.4, that E is an extended affine Lie algebra.
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The symmetric bilinear form on E given by

(l1 ⊕ c1 ⊕ d1, l2 ⊕ c2 ⊕ d2) = (l1, l2) + c1(d2) + c2(d1)

is nondegenerate and invariant.

8.2 Construction of the Counterexample

Let Q = (t1, t2) be as above and let A = M2(Q). We may view A as the

Q-endomorphism algebra of a free right Q-module V = Q⊕Q of rank 2.

Let m : V = Q⊕Q→ Q be a Q-linear map given given by

(u, v) 7→ (1 + ı)u− (1 + )v.

Denote its kernel by W . It is shown in [GP2] that m is split and that W is

a projective Q-module of rank 1 which is not free. Since m is split there is a

decomposition V = W ⊕ U where U is a free Q-module of rank 1.

Let s ∈ A be the matrix (in the standard basis) of the Q-linear endomorphism

S of V given by S(w) = −w and S(u) = u, w ∈ W , u ∈ U .

8.2.1 Lemma. ad(s) : A→ A is a k-diagonalizable operator.

Proof. Notice that there is a canonical isomorphism

EndQ(W ⊕ U) ∼= EndQ(W )⊕ HomQ(W,U)⊕ HomQ(U,W )⊕ EndQ(U).

Let φ ∈ EndQ(W ). Then

[φ, S] = φ ◦ S − S ◦ φ = −φ− (−φ) = 0.

Similarly, if φ ∈ EndQ(W ) then [φ, S] = 0. It follows

EndQ(W )⊕ EndQ(U) ⊂ EndQ(V )0.

Let now φ ∈ HomQ(W,U). Then

[φ, S] = φ ◦ S − S ◦ φ = −φ− φ = −2φ
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implying

HomQ(W,U) ⊂ EndQ(V )−2.

Similarly,

HomQ(U,W ) ⊂ EndQ(V )2

and the assertion follows.

Since s ∈ sl2(Q) ⊂ A we get immediately

8.2.2 Corollary. s is a k-ad-diagonalizable element of sl2(Q) whose eigenval-

ues are 0,±2.

Let E be the EALA from Example 8.1 so that L = sl2(Q). Our next goal

is to show that s is k-ad-diagonalizable considered as an element of E. The

following lemma shows that s is k-ad-diagonalizable as an element of Ec.

8.2.3 Lemma. Let s ∈ L be a k-ad-diagonalizable element in L, i.e.

L =
⊕
α

Lα,

where as usual

Lα = {x ∈ L | [s, x]L = αx}.

Then it is also k-ad-diagonalizable viewed as an element of Ec.

Proof. We denote by Lα the eigenspace of ad s with eigenvalue α ∈ k. For

lα ∈ Lα and lβ ∈ Lβ we have σ(s, [lα, lβ]L) = (α + β)σ(lα, lβ), since

0 = σ(s, [lα, lβ]) + σ(lα, [lβ, s]) + σ(lβ, [s, lα])

= σ(s, [lα, lβ])− βσ(lα, lβ) + ασ(lβ, lα).

Hence

[
s, [lα, lβ]Ec

]
Ec

=
[
s, [lα, lβ]L + σ(lα, lβ)

]
Ec

=
[
s, [lα, lβ]L

]
Ec

=
[
s, [lα, lβ]L

]
L

+ σ(s, [lα, lβ]L) = (α + β)[lα, lβ]Ec

proving [Lα, Lβ]Ec ⊂ (Ec)α+β. It then follows from Ec = [Ec, Ec]Ec = [L,L]Ec =∑
α,β∈k[Lα, Lβ]Ec ⊂

∑
γ∈k(Ec)γ that Ec is spanned by eigenvectors of ad s,

whence the result.
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Let d ∈ D and let [s, d]E = y = y0 + y2 + y−2 where yλ ∈ Lλ.
8.2.4 Lemma. One has y0 = 0.

Proof. Assume y0 6= 0. Since (−,−)|L0 is nondegenerate there is u ∈ L0 such

that (u, y0) 6= 0. Then taking into consideration the fact that (L0, L2) =

(L0, L−2) = 0 we get

0 6= (y0, u) = (y0 + y2 + y−2, u) = ([s, d]E, u) = −(d, [s, u]E).

But it follows from Lemma 8.2.3, that [s, u]E = 0, – a contradiction.

Let d′ = d− 1
2
y2 + 1

2
y−2.

8.2.5 Lemma. One has [s, d′]E = 0.

Proof. We first observe that

[s, d′]E = [s, d− 1
2
y2 + 1

2
y−2]E

= y − 1
2
[s, y2]E + 1

2
[s, y−2]E

= y − y2 − 1
2
ψ(s, y2)− y−2 + 1

2
ψ(s, y−2)

= 1
2
ψ(s, y−2 − y2) ∈ C.

Also, using the invariance of the form (−,−) we get

([s, d′]E, d
′) = (s, [d′, d′]E) = (s, 0) = 0.

But (c, d) = c(d) is 0 if and only if c = 0. Then since [s, d′]E ∈ C it follows

that [s, d′]E = 0.

8.2.6 Corollary. s is a k-ad-diagonalizable element of E.

Proof. This follows from Lemma 8.2.3 and Lemma 8.2.5.

Let p = a

[
1 0

0 −1

]
where a ∈ k× is an arbitrary scalar and H = k ·p⊕C⊕D be

the ”standard” MAD in E. Let H ′ be any MAD of E which contains s (such

a MAD does exist). We are going to show that H and H ′ are not conjugate

in E. We will need some auxiliary lemmas.

8.2.7 Lemma. Two elements s and p in sl2(Q) are not conjugate by an R-

linear automorphism of sl2(Q).
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Proof. AnyR-linear automorphism of sl2(Q) is a conjugation with some matrix

in GL2(Q) or a map

π :

[
a b

c d

]
→

[
a c

b d

]−1

(which is a nontrivial outer R-automorphism of sl2(Q)) followed by a conju-

gation. Assume that φ(p) = s for some φ ∈ AutR−Lie(sl2(Q)).

Case 1: φ is a conjugation. Then the eigenspaces in V = Q⊕Q of the Q-linear

transformation φ(p) are free Q-modules of rank 1 (because they are images of

those of p). Since W is an eigenspace of s which is not free Q-module we get

a contradiction.

Case 2: φ is π followed by a conjugation. But π(p) = p, hence we are reduced

to the previous case.

We may identify R = Ctd(sl2(Q)).

8.2.8 Lemma. s and p are not conjugate by a k-automorphism of sl2(Q).

Proof. Assume the contrary. Let φ ∈ Autk−Lie(sl2(Q)) be such that φ(p) = s.

It induces an automorphism C(φ) : R→ R of the centroid of sl2(Q). Consider

a new Lie algebra L′ = sl2(Q)⊗φ R over R. As a set it coincides with sl2(Q).

Also, the Lie bracket in L′ is the same as in sl2(Q), but the action of R on L′

is given by the composition of C(φ) and the standard action of R on sl2(Q).

Thus we have a natural k-linear Lie algebra isomorphism

ψ : L′ = sl2(Q)⊗φ R→ sl2(Q)

which takes p into p. It follows from the construction that φ ◦ψ : L′ → sl2(Q)

is an R-linear isomorphism.

Note that since the action of R on sl2(Q) is componentwise we have a natural

identification

L′ = sl2(Q)⊗φ R ∼= sl2(Q⊗φ R)

and it easily follows from the construction that Q⊗φR is a quaternion algebra

(φ(t1), φ(t2)) over R. Thus sl2(Q) and sl2(Q⊗φR) are R-isomorphic and they

are R-forms of sl4(R). Moreover they are inner forms, hence correspond to an

element [ξ] ∈ H1(R,PGL4).
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The boundary map H1(R,PGL4)→ H2(R,Gm) maps [ξ] to the Brauer equiv-

alence class of both Q and Q⊗φR. Since [Q] = [Q⊗φR] it follows that there is

an R-algebra isomorphism θ : Q⊗φ R→ Q which in turn induces a canonical

R-Lie algebra isomorphism

θ : sl2(Q⊗φ R)→ sl2(Q)

by componentwise application of θ. Clearly, θ(p) = p.

Finally, consider an R-linear automorphism

φ′ = φ ◦ ψ ◦ θ−1 ∈ AutR−Lie(sl2(Q)).

We have

φ′(p) = φ(ψ(θ−1(p))) = φ(ψ(p)) = φ(p) = s

which contradicts Lemma 8.2.7.

8.2.9 Theorem. There is no φ ∈ Autk−Lie(E) such that φ(H ′) = H.

Proof. Assume the contrary. Let φ ∈ Autk(E) be such that φ(H ′) = H. We

proved before that the core Ec is φ-stable. Hence

φ(H ′ ∩ Ec) = H ∩ Ec = k · p⊕ C. (8.2.9.1)

Of course, k · s ⊕ C ⊂ H ′ ∩ Ec, because C is the center of E. Therefore by

dimension reasons we have k · s⊕ C = H ′ ∩ Ec.

The automorphism φ induces a k-automorphism φcc : Ecc → Ecc. In our

example Ecc = sl2(Q). By (8.2.9.1), φcc(k · s) = k · p. Hence there exists a

scalar α ∈ k× such that φcc(s) = α · p. But this contradicts Lemma 8.2.8.
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