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Abstract

Significant research has gone into engineering representations that can identify high-level semantic

structure in images, such as objects, people, events and scenes. Recently there has been a shift

towards learning representations of images either on top of dense features or directly from the

pixel level. These features are often learned in hierarchies using large amounts of unlabeled data

with the goal of removing the need for hand-crafted representations.

In this thesis we consider the task of learning two specific types of image representations from

standard size RGB images: a semi-supervised dense low-dimensional embedding and an unsuper-

vised sparse binary code. We introduce a new algorithm called the deep matching pursuit network

(DMP) that efficiently learns features layer-by-layer from the pixel level without the need for

backpropagation fine tuning. The DMP network can be seen as a generalization of the single layer

networks of Coates et. al. to multiple layers and larger images. We apply our features to several

tasks including object detection, scene and event recognition, image auto-annotation and retrieval.

For auto-annotation, we achieve competitive performance against methods that use 15 distinct

hand-crafted features. We also apply our features for handwritten digit recognition on MNIST,

achieving the best reported error when no distortions are used for training. When our features

are combined with t-SNE, we obtain highly discriminative two dimensional image visualizations.

Finally, we introduce the multi-scale DMP network for domain independent multimodal segmen-

tation of medical images. We obtain the top performance on the MICCAI lung vessel segmentation

(VESSEL12) competition and competitive performance on the MICCAI multimodal brain tumor

segmentation (BRATS2012) challenge.

We conclude by discussing how the deep matching pursuit network can be applied to other

modalities such as RGB-D images and spectrograms.
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Chapter 1

Introduction

The use of machine learning in computer vision has led to several successful applications such

as object detection, image segmentation, scene labeling and real-time recognition. These tasks

require systems to identify higher order structure in images that go beyond the representation of

pixel intensities. Furthermore, these representations have to be sufficiently useful for a classifier in

order to learn the desired task from often large amounts of labeled examples.

We illustrate these points with a concrete example. Consider the examples of people in fig-

ure 1.1 1. Each image depicts a person with his/her right hand in the air, under various lighting

conditions and background scenery. At a high level, one would arguably agree that these images

are semantically similar due to the same pose that is exhibited in each image. Now consider the

task of performing image retrieval, where our goal is to return semantically similar images from

a given query 2. Suppose that each image is represented as a collapsed vector of pixel intensities

across RGB channels and retrieval is performed through Euclidean distance. Our retrieval system

would perform poorly, since pixel distance cannot capture higher order semantics. As an example,

a person standing in front of a blue background will be more likely to return images that also have

a blue background but with other objects in front. Consequently, such representations would be of

little use as input to a classifier, even if large amounts of labeled data were to exist for the desired

task. Thus, an important task for successful deployment of recognition algorithms comes from the

development of useful image representations.

Much work in past decades has gone into hand-crafting representations, that for example, could

successful be used for our toy retrieval task in figure 1.1. Experts on vision and natural image

1Images taken from https://www.ipam.ucla.edu/publications/gss2012/gss2012_10755.
pdf

2We discuss and experiment with retrieval further in Chapter 5.
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Figure 1.1: A depiction of 6 people raising their right hand. These images are semantically similar
but have large Euclidean pixel distances between them.

statistics can import their prior knowledge into feature construction algorithms. Furthermore, these

engineered features can be of a much lower dimension than the size of the image, allowing for

improved scalability on learning tasks. Examples of hand-crafted features include SIFT [Lowe,

1999], HoG [Dalal and Triggs, 2005], SURF [Bay et al., 2006], Geometric Blur [Berg et al.,

2005], RIFT [Lazebnik et al., 2004], Shape Context [Belongie et al., 2001] and many more. Given

an image, one or more engineered descriptors can be computed from the image. The resulting

output after processing will be a vector of fixed length. These vectors can then be used as input to

a standard classifier, such as an SVM. At test time, descriptors for a new image are computed and

a prediction is made from the trained classifier.

Over the past decade, many improvements and modifications have been introduced into this

generic pipeline [Lazebnik et al., 2006, Bosch et al., 2007, Lampert et al., 2008, Yang et al., 2009,

Wang et al., 2010]. Figure 1.2 illustrates a sample of these modifications. In a general setting,

features are extracted from either interest points or densely across grids. An unsupervised learn-

ing algorithm, such as k-means, is applied to the features where centroids are then used to form

a codebook. A histogram is computed from the codebook entries which serve as means of com-

puting a specialized kernel, such as chi-squared or an intersection. These can then be used for

training an SVM. Modifications to this standard pipeline include the use of spatial pyramid match-

ing [Lazebnik et al., 2006] which aggregate features across multi-scale grids, as well as the use

of sparse coding for quantization [Yang et al., 2009] leading to the effectiveness of linear spatial

pyramid matching. As a result, features could be constructed that lead to high performance with

linear classifiers, removing the extra computation demands of computing kernels.

Although this progression led to an improvement of recognition algorithms, what remained

was the need to extract an initial representation, such as dense SIFT or HoG from the image which

can be fed into further pipeline routines. This leads to several problems. Firstly, the choice of

descriptor is largely task dependent. For example, HoG performs well on various pedestrian detec-

tion tasks [Dalal and Triggs, 2005], GIST [Oliva, 2005] is often used for scene recognition while

2



Figure 1.2: Two pipelines used for extracting and using features from images.

for image annotation, often a dozen or more descriptors are computed and aggregated [Guillaumin

et al., 2009, Zhang et al., 2010]. Due to this, the choice of initial representation leads to a strong

prior from which the remaining pipeline operations are to work with. Consequently, the choice of

descriptor adds an extra dimension of experimentation when designing vision algorithms. Finally,

it is often not clear how traditional descriptors can be used. An example of this is with RGB-D

images, where depth information is included for most of the pixels.

These downsides lead to the alternative of instead learning useful features, as opposed to hand-

crafting. In contrast to figure 1.2, we may feed an input image to a representation learning algo-

rithm, which can output features appropriate to a classifier. If we reconsider our example of image

retrieval in figure 1.1, a representation learning algorithm could instead learn an image representa-

tion that is more useful at identifying higher-order semantics of the image. Several other benefits

exist in the usage of learning features, which are summarized as follows:

• Use of unlabeled data. Representation learning algorithms can employ the use of self-

taught learning [Raina et al., 2007], which is a means of performing transfer learning on

unlabeled data. For example, if our desired task is to construct a pedestrian detector, we can

utilize random images off the internet, even those that may not include people in them, to

build representation that improve pedestrian detection performance. Self-taught learning has

been demonstrated to be especially effective in settings where only small amounts of labeled

data are available [Raina et al., 2007, Lee et al., 2009a]. Throughout this thesis we reference

learning features on different image distributions. By this we simply mean that features can

be learned via self-taught learning on different objects and scenes that do not appear in the

labeled training data.

3



• Task applicability. Learning features alleviates the need to not only experiment with hand-

crafted features but also invent or modify new features for input images that are not grayscale

or RGB. For example, existing representation learning algorithms are easily extended to

RGB-D images [Blum et al., 2012, Bo et al., 2012a]. Furthermore, the focus can be shifted

to better improving classifiers for the intended task.

• Prior alleviation. As previously mentioned, the choice of engineered features used intro-

duces a strong prior on the remaining pipeline. As opposed to this, representation learning

algorithms can harness the rich, high dimensional structure of an image and benefit from

learning from low-level inputs. An extreme example of this is attempting to learn a short

binary code to describe an image. A code construction algorithm could only work as well

as the input descriptors. Alternatively, if code construction is combined with representation

learning, the algorithm can make use of encoding semantic concepts learned directly from

the pixel level.

Recently, much research has been invested into constructing deep, or hierarchical representa-

tion learning algorithms which are motivated by the successful approaches of training deep neural

networks [Hinton et al., 2006, Bengio et al., 2007, Ranzato et al., 2006]. Deep learning algorithms

aim to learn hierarchical representations of inputs in a layer-by-layer fashion. Consider the ex-

ample of learning feature hierarchies of face images in figure 1.3, 3 which are computed from a

convolutional deep belief network [Lee et al., 2009a]. The first layer of the algorithm identifies

edge-detectors (gabors), the second layer learns features of parts of faces while the third layer

features can identify the whole face. In this setting, the algorithm is able to learn higher order

semantic concepts at each layer. The new representations that are encoded in a hierarchical fashion

perform better at facial recognition then using a single layer alone [Lee et al., 2009a, Huang et al.,

2012]. A survey of deep learning algorithms applied to images is detailed in Chapter 2.

A consequence of recent feature learning algorithms is a focus on the importance of encoding

and development of efficient dictionary learning algorithms [Coates and Ng, 2011a]. Furthermore,

these approaches can be successful without the need for backpropagation fine-tuning. As a conse-

quence, the final representation of an image is often of very high dimension but with no guarantee

3Images obtained from https://www.ipam.ucla.edu/publications/gss2012/gss2012_
10595.pdf
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Figure 1.3: Sample features learned from a convolutional deep belief network. Each progressive
layer extracts features that encompass higher level representations.

on its sparsity. While these representations have enjoyed good performance on a variety of recog-

nition tasks, several vision tasks can benefit from compressed representations, such as our retrieval

example in figure 1.

1.1 Thesis Contributions

The goal of this thesis is to consider the task of learning hierarchical embeddings and codes of full

sized color and medical images directly from the pixel level. In particular, we develop algorithms

for the following three tasks:

• Semi-supervised learning of dense low dimensional embeddings

• Unsupervised learning of sparse binary codes

• Learning voxel-based representations from medical images

where we focus on inexpensive dictionary learning algorithms that do not require the use of

backpropagation to train. The first task of learning discriminative embeddings allows one to map

an image to a low dimensional space (e.g. 50 dimensions) where the embeddings aim to be re-

spective of object classes. The two main advantages of this setting is memory efficiency and

visualization. Representing an image as a 50 dimensional real-valued vector allows for low mem-

ory consumption which can be applicable in settings where classification is performed on a large

number of images. Finally, these representations are easily visualized in two or three dimensions

using a visualization algorithm such as t-SNE [Van der Maaten and Hinton, 2008]. These low

dimensional representations can be computed in a semi-supervised setting and make use of large

amounts of unlabeled images to further improve performance.
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Figure 1.4: Two types of representations we focus on learning: semi-supervised, dense low dimen-
sional embeddings and unsupervised sparse binary codes.

The second task involves the unsupervised learning of a mapping of a full-sized image to a short

code (e.g. 256 bits). The learned codes are able to represent semantic concepts allowing the codes

to be used for tasks such as the retrieval example in figure 1.1. As we show in Chapter 5, our codes

can also be used in classification tasks where they are applied as a base representation for image

auto-annotation. Finally, shorter codes (e.g. 30 bits) can be used to perform semantic hashing

[Salakhutdinov and Hinton, 2009] on massive datasets, where retrieval is performed independent

of the size of the database.

The final task, learning voxel-based representations from medical images, can be used to re-

place hand-crafted representations for segmentation algorithms. Our features can easily be inte-

grated with variational methods and discriminative random fields, or used to train classifiers for

classifying each voxel independently. In Chapter 6, we use our features on two medical imaging

competitions: vessel segmentation in the lungs and multimodal brain tumor segmentation, where

we achieve performances comparable or better to the current state of the art. Furthermore, our

representations can be learned independent of the medical imaging domain used.

The algorithms used for performing the first two tasks are based on the premise of disentan-

gling the factors of variation in high dimensional data [Bengio et al., 2012]. In a general setting,

our approach of learning embeddings can be decoupled into two tasks. First, we construct a highly

non-linear mapping of an image into a space where the recognition task can use linear classifiers.

From there, simple existing linear mappings can be used to embed the data to the desired dimen-

sionality. The principle is highly reminiscent of kernel learning and in particular we show that

spectral embeddings fall into this setting. The non-linear mapping is parametrized in the form of

a (possibly deep) convolutional architecture where the output representation combines encodings

from multiple hierarchies. It is in this setting that the factors of variation as essentially ”disentan-

gled” for which linear algorithms become applicable. Moreover, since these representations are

6



Figure 1.5: The deep matching persuit network described in Chapter 4. Each module consists of
dictionary learning, convolutional feature extraction and pooling.

learned directly from the pixel level, no use of hand-crafted image descriptors is ever required. Fi-

nally, the networks described in this thesis can be trained unsupervised in a layer-by-layer fashion

without any need for backpropagation fine-tuning.

The outline of this thesis is as follows:

• Chapter 2 gives a detailed summary of related deep learning, representation learning and

dimensionality reduction algorithms.

• Chapter 3 studies the use of convolutional feature learning combined with linear mappings

applied to tiny (thumbnail) images. We further relate the idea of disentangling the factors of

variation to spectral embedding algorithms. Finally, experimental results of object detection

are evaluated on two datasets: MNIST and CIFAR-10. We obtain competitive classification

performance on CIFAR-10 with k-NN and 50 dimensional features compared to existing

algorithms with tens of thousands of features. Using simple modifications to existing feature

extraction algorithms, we obtain the best reported classification accuracy on MNIST when

no additional image distortions are augmented to the training set.

• Chapter 4 introduces a new deep learning algorithm, which we call the deep matching pursuit

network. DMP is able to learn multiple modules of features on full-sized color images. Each

module consists of contrast normalization, dictionary learning, feature encoding and pooling

phases. Benchmarking on the STL-10 datasets achieves state-of-the-art results. Furthermore,
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we obtain similar embedding performance as our experiments in Chapter 3 but on full-sized

images from the UIUC-Sports and MIT-Scenes datasets.

• Chapter 5 describes how the deep matching pursuit network can be used to learn short bi-

nary codes on full sized images. We apply our learned features to the task of image auto-

annotation, where we achieve competitive results on the Natural Scenes, IAPRTC-12 and

ESP-Game datasets. Furthermore, we compete with approaches that use over a dozen hand-

crafted features, further illustrating the usefulness of learned feature hierarchies. Finally, we

perform qualitative analysis of our codes for image retrieval, showing that our codes can

capture high level semantic concepts of images.

• Chapter 6 introduces the multi-scale deep matching persuit network. The multi-scale DMP

is used to learn pixel features, as opposed to global descriptors, by incorporating multiple

scales and modules into the feature learning procedure. We apply the multi-scale DMP to

two medical image segmentation challenges: vessel segmentation in the lungs (VESSEL12)

and multimodal brain tumor segmentation (BRATS2012). We obtain the top result on VES-

SEL12 and competitive performance in the BRATS2012 competition.

• Chapter 7 concludes this work. In particular, we describe how simple modifications of our

algorithms can allow them to be used for tasks beyond RGB images such as RGB-D, and

audio. Finally, we discuss additional avenues of future research.

1.2 Publications and Public Research Challenges

This thesis is based on the following peer-reviewed papers:

• Ryan Kiros and Csaba Szepesvari. On Linear Embeddings and Unsupervised Feature Learn-

ing. Representation Learning Workshop, International Conference of Machine Learning

(ICML), 2012. (Chapter 3)

• Ryan Kiros and Csaba Szepesvari. Deep Representations and Codes for Image Auto-Annotation.

Proceedings in Neural Information Processing Systems (NIPS), 2012. (Chapters 4 and 5)

Other related peer-reviewed papers that do not appear in this thesis:
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• Yaoliang Yu, James Neufeld, Ryan Kiros, Xinhua Zhang and Dale Schuurmans. Regulariz-

ers Versus Losses for Nonlinear Dimensionality Reduction. Proceedings in the International

Conference on Machine Learning (ICML), 2012.

• Ryan Kiros. Training Neural Networks with Stochastic Hessian-Free Optimization. Pro-

ceedings in the International Conference on Learning Representations (ICLR), 2012.

The algorithms in this thesis were also used in public competitions:

• MICCAI Vessel Segmentation in the Lung , 2012. 1st place (out of 21). http://vessel12.

grand-challenge.org/

• MICCAI Multi-modal brain tumor segmentation, 2012. Top 3 (out of 8, depending on the

evaluation criteria). http://www2.imm.dtu.dk/projects/BRATS2012/

• Kaggle Gender Prediction from Handwriting, 2013. 7th place (out of 194). http://www.

kaggle.com/c/icdar2013-gender-prediction-from-handwriting

• Kaggle Challenges in Representation Learning: Multi-Modal Learning, 2013. 5th place (out

of 26).

http://www.kaggle.com/c/challenges-in-representation-learning

-multi-modal-learning

• Kaggle Challenges in Representation Learning: Facial Expression Recognition Challenge,

2013. 6th place (out of 56).

http://www.kaggle.com/c/challenges-in-representation-learning

-facial-expression-recognition-challenge
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Chapter 2

Background

2.1 Deep Learning and Unsupervised Feature Learning

Since the development of the backpropagation algorithm [Rumelhart et al., 1986], much research

was spent on training neural networks with many hidden layers, otherwise known as deep net-

works. Unfortunately, backpropagation was only successful on training networks with one or two

hidden layers [Bengio et al., 2007]. The lack of success in training deep architectures can be ex-

plained by the vanishing gradient problem and the existence of difficult to optimize pathological

curvature [Martens, 2010]. In a deep network, gradients that are backpropagated are most effective

on layers that are near the output. As the signal passes towards the first layers of the network, the

gradient is decayed due to the successive products being computed at each layer. By the time the

signal reaches the first layer, the update on the first layer weights is too small to be effective. Since

the updates are most effective at the output, this has the effect of averaging the error across the

network. In shallow networks with a single hidden layer, the vanishing gradients are not as drastic

and so such networks can be effectively trained in practice.

The first successful attempt at training deep architectures was the convolutional network [Le Cun

et al., 1990]. Convolutional networks differ from standard multilayer perceptrons in that two types

of layers are used: a convolutional layer and an aggregation (or pooling) layer. A signal is propa-

gated in a convolutional layer by convolving the input with a filter kernel followed by a nonlinear

activation function. In this sense, convolution acts as a form of weight sharing. As opposed to

fully connected connections between layers, connections are arranged spatially as a receptive field

across the input. Weight sharing is biologically motivated 1 and allows one to encode spatial ar-

1More details regarding biological motivation can be found at http://www.iro.umontreal.ca/

˜pift6266/H10/notes/lenet.html
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rangements in the input, making it particularly applicable to images. After convolution, the pooling

layer aggregates responses over a small spatial region and uses this as input to the next layer. Typ-

ical forms of pooling are max, average and Lp (p-norm). Pooling also has the effect of hard coding

translational invariance into the network. Training is done using standard backpropagation.

One of the criticisms of neural networks is the non-convexity of its loss with respect to the

input. In the mid 1990s, Vapnik and Cortes developed kernel support vector machines [Cortes and

Vapnik, 1995], which offered nonlinear classification with a convex loss. Moreover, kernel SVMs

could be seen as special type of perceptron with one hidden layer where the first layer computes the

kernel and the second layer computes an output based on the support vectors. Due to the black box

nature of SVMs, research in neural networks quickly faded and was replaced by kernel machines,

particularly due to the success of the kernel trick.

It was not until 2006 that a successful approach to training non-convolutional deep networks

was developed. Hinton et al. [2006] showed that a sigmoid belief network with infinitely many

layers was equivalent to a restricted Boltzmann machine (RBM). An RBM is a bipartite Markov

random field with a layer of visible units and a layer of hidden units, both of which were Bernoulli

distributed. The RBM is governed by an energy function whose joint, marginal and conditional

distributions over the visible and hidden units are defined through a Boltzmann distribution. RBM

training is done through contrastive divergence [Hinton, 2002] which gives an approximation to the

log likelihood of the marginal distribution over inputs. More specifically, training is performed to

minimize the difference between expectations over the data and model distributions. Once training

is complete, inference is performed on the hidden units, which can serve as inputs to another

RBM. This kind of stacking, under certain conditions, can be used to prove a lower bound on the

variational log likelihood on the input distribution. The resulting trained model after RBM stacking

is known as a deep belief network (DBN). The deep belief network differs from a sigmoid belief

network in that the top layer is undirected. Generating from the model simply involves running

block Gibbs sampling between the top two layers followed by top-down propagation through the

remaining layers. Due to the bipartite connections between layers, inferring the states of the hidden

(visible) given the visible (hidden) units can be done exactly.

Besides proving a variational lower bound, Hinton et al. [2006] showed that the weights learned

from RBM stacking could be used to initalize the weights of a deep neural network. This is known

as ’pre-training’ the network. It is exactly this pre-training step that allowed backpropagation to
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be applied successfully in training deeper architectures. Shortly after this discovery, Bengio et al.

[2007] generalized this procedure as greedy layer-by-layer training and showed that autoencoders

with a single hidden layer could also serve as an alternative module to pre-training. Furthermore

Ranzato et al. [2006] showed more generally how energy-based models could also be used in

training deep networks.

These discoveries have led to a resurgence in neural networks. In just 6 years, deep learning

researches have developed algorithms to attack several problems in vision, audio, speech, natu-

ral language processing and more generally any type of problem that involves learning from high

dimensional raw sensory input. Furthermore, the pretraining procedure can be seen as a type of

unsupervised learning. This led to the hypothesis that first modeling the marginal input distribution

allows one to better model the conditional distribution of labels given inputs. In other words, gen-

erative learning can be used to improve discriminative learning. This has opened much research

in using large amounts of unlabeled data to build a model which, when trained discriminatively

works better than just discriminative training alone. In our framework, unsupervised model learn-

ing can be seen as learning a map from one representation to another, from which the learned

representation works better for discriminative training.

Since the focus on this thesis is learning representations from standard sized images, we spend

the next section reviewing recently proposed representation learning algorithms for images. This

is followed by a review of parametric dimensionality reduction as well as its applications in deep

learning.

2.2 Large Scale Pixel-Level Representation Learning

Developing algorithms that were scalable to standard-size images remained a challenging task af-

ter the first developments in deep learning, with the exception of convolutional networks. One of

the first proposed algorithms to challenge this was the convolutional deep belief network (CDBN)

[Lee et al., 2009a]. The CDBN could viewed as a deep belief network that utilized a convolu-

tional restricted Boltzmann machine for layer-by-layer training. Training the CRBM was identical

to contrastive divergence in an RBM with the exception that the hidden activations were com-

puted across a localized receptive field with tied weights. Furthermore, sparsity was no longer

optional and was required due to the overcompleteness of the feature maps. Lee et al. [2009a]
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also modified the energy function to incorporate pooling units that were computed probabilisticly.

The CRBM then could be stacked to train multiple layers and could incorporate both bottom-up

and top-down information and was used for hierarchical probabilistic inference. The CDBN has

since been extended to many applications including audio classification and face verification [Lee

et al., 2009b, Huang et al., 2012]. It could also be used to learn features on top of dense low-level

descriptors [Sohn et al., 2011]. Figure 1.3 shows sample features learned from different layers of

a convolutional DBN.

One of the difficulties that arises with the CDBN is difficulty in training due to the sensitivity of

several parameters such as learning rate, momentum and weight decay. Sparse coding algorithms,

on the other hand, required tuning at most 2 parameters and dealt with L1 optimizations that

could be solved using algorithms such as FISTA [Beck and Teboulle, 2009] and feature-sign [Lee

et al., 2007], alternating optimization of the dictionary and coding matrices. Sparse coding could

be used on extracted patches from an image or trained convolutionally. The shortcoming that

arises is the need to solve an optimization problem to obtain codes for each new image, which

can be tedious. Kavukcuoglu et al. [2010a] proposed Predictive Sparse Decomposition (PSD) and

a convolutional variation [Kavukcuoglu et al., 2010b] that uses a learned feedfoward encoder in

addition to the L1 sparse coding objective. A special case of this algorithm, denoted reconstruction

ICA [Le et al., 2011a], was used as a means of replacing the orthonormality constraint of ICA with

a reconstruction cost. A variation of this algorithm was used by Google [Le et al., 2011c] to train

a deep network which could identify faces and cats with unsupervised learning alone. The idea of

mixing and matching the dictionary learning algorithm and the encoder was explored in detail by

Coates and Ng [2011a], who concluded that emphasis should be placed on the encoder phase. Our

proposed algorithm in Chapter 4 may be seen as a generalization of this work to larger images and

deeper networks.

Almost all representation learning algorithms can be categorized as one of three categories:

encoders, decoders and encoder-decoder. For example, PCA can be viewed as an encoder-decoder

network, a one layer autoencoder with a linear activation while convolutional networks are en-

coders. Zeiler et al. [2011] proposed the deconvolutional network that is a decoder. In particular,

feature maps are learned as to minimize the reconstruction of an image from these feature maps.

Deeper networks can be trained jointly by taking the feature maps from the top layer and adjusting

all weights as to minimize the reconstruction from the input. Deconvolutional networks also use a
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differentiable form of max pooling [Zeiler and Fergus, 2012] for easy error propagation.

Even with the development of the above representation learning methods, SIFT + sparse coding

and linear spatial pyramid matching [Yang et al., 2009] was still the dominant pipeline for recog-

nition tasks. It was not until the development of Hierarchical sparse coding [Yu et al., 2011] that

led to a pixel-based representation learning algorithm that could outperform SIFT + sparse cod-

ing pipelines. Hierarchical sparse coding was followed by Hierarchical matching pursuit (HMP)

[Bo et al., 2011b]. HMP utilized K-SVD dictionary learning [Rubinstein et al., 2008] combined

with an efficient encoder using batch tree orthogonal matching persuit. The codes learned in one

layer where then used to train a second layer of dictionary learning and encoding. HMP, as well

as its followup for RGB-D recognition [Bo et al., 2012b] led to many state-of-the-art results in

recognition and to this date is the current best performer for many of these tasks. The followup

version of HMP uses separate dictionary training on multiple channels, such as grayscale, RGB,

depth and surface normals for RGB-D images as well as multi-layer pooling. The consequence of

this training results in having output vectors with over a hundred thousand features.

Due to the flexibility of training and the number of parameters and pre-processing operations,

one may ask which operations are most relevant for representation learning and which pipelines

are the most successful. Jarrett et al. [2009] performed an analysis of several pipelines and archi-

tectures for object recognition, such as the activation function, encoder, pooling and local contrast

normalization. Coates et al. [2011] also performed analysis on single layer networks using au-

toencoders, RBMs, k-means and Gaussian mixture models with or without whitening and varying

stride lengths. The concluding results were the significance of whitening and localized contrast

normalization. Other forms of pooling have also been utilized such as Lp [Sermanet et al., 2012].

While most representation learning algorithms for images utilize convolution in some form,

Hinton et al. [2011] argue that convolutional networks are sub-optimal and that the goal should be

equivariance as opposed to hardwired invariance. To address this, Hinton et al. [2011] proposed the

transforming autoencoder and Zeiler and Fergus [2012] utlized a ”what”/”where” decomposition in

their deconvolutional networks. Hinton et al. [2012] recently introduced dropout backpropagation

which may be viewed as a type of model averaging and regularization in neural networks. During

a forward pass, a percentage of inputs and hidden units are randomly zeroed out as a means of

reducing dependency amongst neurons. This training is reminiscent of denoising autoencoders

[Vincent et al., 2008]. Hinton et al. [2012] utilized dropout backpropagation to zero out units in
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a fully connected top layer of a convolutional network, leading to state-of-the-art results on the

1000-way ImageNet classification task. Dropout backpropagation acts as a strong regularizers and

removes the need for early stopping when training neural networks.

Other representation learning algorithms adapted to full size images include the deep-gated

MRF [Ranzato et al., 2011], which can be viewed as convolutionally applying a factored, 3rd order

RBM with mean and covariance hidden units, while Le et al. [2011b] utilized a convolutional form

of independent subspace analysis for action recognition in video.

2.3 Parametric Dimensionality Reduction and Metric Learn-
ing

Methods for learning embeddings of high dimensional data can be broken into two categories:

parametric and non-parametric methods. Non-parametric methods minimize an objective to learn

a direct embedding of the input, do not learn an explicit mapping and have a data-dependent num-

ber of model parameters. This makes their applicability to out-of-sample data difficult and requires

an extension such as a Nystrom approximation [Bengio et al., 2004]. Methods that fall into this cat-

egory include Isomap [Tenenbaum et al., 2000], LLE [Roweis and Saul, 2000], Sammon mapping

[Sammon Jr, 1969], Semidefinite embedding [Weinberger and Saul, 2004], stochastic neighbour

embedding [Hinton and Roweis, 2002] and t-SNE [Van der Maaten and Hinton, 2008]. Since our

goal is to learn a semi-supervised embedding from images, this requires us to consider an explicit

mapping that can be used for unseen test datapoints, which is parametric in the sense that the num-

ber of model parameters is independent of the data. Thus, in this review we focus on parametric

methods as well as nonlinear parametric embeddings developed from the use of deep architectures.

The simplest parametric embedding can be constructed through a linear transformation of the

data with a learned, low rank matrix. This is done through the use of a learned Mahalanobis metric,

for which the learned distance corresponds to Euclidean distance under the linear transformation.

This type of metric learning is typically motivated for use in settings where nearest neighbor classi-

fiers are used, avoiding the difficulty in choosing an appropriate distance between datapoints. This

idea was first developed through neighborhood components analysis (NCA) [Goldberger et al.,

2004]. NCA learned a supervised transformation of the data to maximize a smooth, stochastic

variant to leave one out nearest neighbor classification accuracy on the training set. Maximally
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collapsing metric learning (MCML) [Globerson and Roweis, 2006], constructed two distributions,

one proportional to the labels of the training data and the other to their distances in the embedding

space, learning a metric as to minimize the KL divergence between these distributions. Large-

margin nearest neighbor [Weinberger et al., 2006] (LMNN) proposes a semidefinite program to

preserve neighbors in the embedding space with a precomputed set of target neighbors in the in-

put space using a hinge loss. Correlative matrix mapping (CMM) [Strickert et al., 2010] learned

a metric that maximizes the correlation of the embedding distance with the Euclidean distances

between indicator label vectors.

Conceivably, one could replace the linear mapping with a nonlinear map such as a neural

network. An objective is computed at the network output and the weights are updated through

backpropagation. Prior to the use of pretraining, attempts at learning nonlinear mappings like this

failed [Salakhutdinov and Hinton, 2007b]. With RBM pretraining, several new methods have been

proposed. The first of these, by Hinton and Salakhutdinov [2006] who utilized RBM pretraining

to learn a deep autoencoder. After pretraining several layers, the encoder was unravelled using

tied weights and finetuned using backpropagation. This became the first successful attempt at

training autoencoders with more than one hidden layer in its encoding and decoding phase. The

same pretraining steps were also used for developing nonlinear NCA and LMNN [Salakhutdinov

and Hinton, 2007a, Min et al., 2009]. van der Maaten [2009] proposed a parametric extension to

t-SNE that uses a pretrained network and the t-SNE objective, adapting a heavy tailed distribution

for modeling latent space similarities due to the crowding problem [Van der Maaten and Hinton,

2008], which is discussed in more detail in Chapter 3. Modifications for NCA and MCML that use

heavy tailed distributions and a nonlinear embedding were proposed by Min et al. [2010] and led

to improve k-NN performance over the same algorithms that instead use a Gaussian for identifying

neighbors in the latent space.

Another class of algorithms for learning embeddings are based on the use of siamese archi-

tectures [Bromley et al., 1993]. Siamese architectures are used when training is performed on

pairs of datapoints instead of the points themselves. A copy of the network is made and pairs of

datapoints are ran through the networks. A distance is computed under the network mapping and

an objective is minimized based on assigned labels to each image pair. Hadsell et al. [2006] pro-

posed dimensionality reduction through learning an invariant mapping (DrLIM), which utilized a

siamese convolutional network and a hinge loss for manifold learning with images. The gradient of
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the objective was further backpropagated through the convolutional network to updated the param-

eterization. [Taylor et al.] introduced convolutional NCA regression that proposes a modification

of NCA for k-NN regression with application to pose estimation.
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Chapter 3

Linear Embeddings of Convolutional
Representations

3.1 Introduction

The ability to pre-train deep neural networks using modules such as an autoencoder or restricted

Boltzmann machine have allowed for the development of highly non-linear parametric mappings

for dimensionality reduction. These embeddings are parametrized by the network weights at each

layer and further fine-tuned with backpropagation from the embedding objective function. Such

methods outperform their linear counterparts when k-NN classification is used in the embedding

space.

Surprisingly, little research has been done for producing embeddings of images that were ex-

tracted in convolutional settings such as [Coates et al., 2011] and [Coates and Ng, 2011a]. Such

methods that were based on simple dictionary construction procedures such as k-means and or-

thogonal matching pursuit allow for thousands of bases and consequently thousands of extracted

features. While the bases activations may be sparse, the final representations produced are dense

and not guaranteed to have many non-zero elements. While these features can be efficiently used

for linear classification, storage can become expensive for large image databases. Furthermore,

tasks such as image retrieval would benefit from a small representation due to the need to compute

pairwise distances on often millions of images.

In this chapter we study the task of learning embeddings of images whose representations

have been convolutionally extracted. In particular, we show that linear embeddings are effective

in reducing the dimensionality of the learned features from similar pipelines to Coates and Ng

[2011a]. Using 50-dimensional supervised mappings is sufficient to obtain k-NN classification
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performance that is competitive with a linear SVM and significantly more features. Moreover, we

show that self-taught learning is effective in this setting by utilizing datasets whose images come

from a different distribution then that of the target dataset. Experimentation is performed on two

datasets: CIFAR-10 and MNIST. Using simple modifications to existing architecture pipelines,

we obtain a classification error of 0.40% on MNIST, the best reported result without appending

distortions to the training set. The main advantage to this 2-step pipeline of representation learning

and embedding over deep neural networks such as van der Maaten [2009] and Min et al. [2010] is

no backpropagation is needed. Thus, low dimensional representations can be obtained by training

each module one at a time without the need to re-adjust the weights learned from lower operations

in the pipeline.

The organization of this chapter is as follows. We first introduce the pipeline for dictionary

learning and convolutional feature extraction followed by a discussion on intrinsic dimensionality

of data and the crowding problem. Next, we introduce the embedding algorithms as well as the

modifications made to latent space representations to remove the crowding problem. We give an

additional motivation for our approach by observing that all spectral methods for dimensionality

reduction fall into the same 2-step embedding procedure. This is followed by experimental results

and conclusion.

3.2 Representation Extraction

Let I = {I(1), . . . , I(m)} be a set of m training images of size nV × nH denoting the height and

length of an image. Let n = 3nV nH denote the dimensionality of a color image and n = nV nH for

a grayscale image. For simplicity, assume that each image in I is of the same dimension, although

this need not be the case. Further assume that I contains either all color or all grayscale images.

Our goal is to learn a mapping φ : Rn → RdR parametrized by a learned dictionary with k bases.

The output dimensionality dR is equal to f(k) for some function f . We will assume that f is linear

in the number of feature aggregation operations performed from spatial pooling and is independent

of the final desired low dimensional embedding. We note that the training images I need not be

the same as the training images from the target datasets. In other words, we can apply self-taught

learning where I is an arbitrary image database. The pipeline operations for training, which mostly

follows that of Coates and Ng [2011a] is as follows:
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1. Randomly extract mP patches of size r × c across all images. Pre-process each patch indi-

vidually for brightness and contrast normalization.

2. Construct feature mean matrix M across all patches. Apply ZCA-whitening to the patches

to obtain a whitening transform W .

3. Use orthogonal matching persuit (OMP) to learn a sparse dictionaryD from whitened patches.

Let θ = {M,W,D} be the constructed extraction parameters. Given an image, the mapping φ

consists of the following operations:

1. Convolutionally extract features using θ and a receptive field size of r×c. Encode the outputs

using a soft-activation function.

2. Spatially pool the features using a 2 layer pyramid. Concatenate the resulting features into a

final feature vector of dimension dR.

In the following subsections we describe each of these operations in detail.

3.2.1 Patch Extraction and Normalization

Let P = {p(1), . . . , p(mP )} denote a set ofmP patches randomly extracted from I of dimensionality

nP = 3rc for color images or nP = rc for grayscale images. Here a color patch refers to the

r× c receptive field over all three channels. Normalization is performed using mean centering and

regularized variance normalization:

p(j) ← p(j) − µ(p(j))√
σ(p(j))2 + γ,

1 ≤ j ≤ mp, (3.1)

where µ(p(j)), σ(p(j)) is the mean and standard deviation respectively of patch p(j). We set γ = 10

as was done by Coates and Ng [2011a]. This parameter is scale-dependent and assumes each pixel

intensity remains between 0 and 255.

3.2.2 Zero Components Analysis (ZCA) Whitening

Whitening is an operation that is used to decrease intensity correlation between neighboring pixels.

More specifically, after whitening, patches have zero mean,
∑mP

i=1 p
(i) = 0, and identity covariance,
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Algorithm 1 ZCA Whitening
Require: : mP × nP matrix of row-wise patches, regularization parameter ε
Ensure: : nP × 1 mean vector M , nP × nP whitening matrix W
M ← µ(P )
P ← P − µ(P )
C ← Cov(P )
V DV T ← eig(C)

W ← V (∆(δ(D) + ε))−
1
2V T

1
mP

∑mP
i=1 p

(i)(p(i))T = I . We use ZCA whitening, as was done by Coates and Ng [2011a], whose

details are summarized in Algorithm 1.

Let P ∈ RmP×nP be a mP × nP matrix where patches are assembled row-wise. We first compute

a vector M of column (feature) means that are then subtracted column-wise from M . This is

followed by computation of the covariance matrix C of P for which an eigendecomposition P =

V DV T is calculated. The whitening matrix W is computed by scaling the eigenvalues λi by
1√
λi+ε

, i ∈ {1 . . . nP}. The choice of ε has the effect of low-pass filtering the data if set sufficiently

high. We use ε = 0.1 for all experiments. The outputs M and W are used as part of the mapping

parameters θ in order to apply whitening to unseen images.

3.2.3 Dictionary Construction

After performing whitening, the patches are now ready to be used for constructing a dictionary.

We follow Coates and Ng [2011a] and use orthogonal matching persuit (OMP). OMP aims to find

a solution to the following optimization problem (also referred to as spherical k-means):

minimize
D,p̂(i)

mP∑
i=1

||Dp̂(i) − p(i)||22,

subject to ||D(j)||22 = 1, ∀j,

||p̂(i)||0 ≤ q,∀i,

(3.2)

where D ∈ RnP×k and D(j) is the j-th column of D. Optimization is done using alternation over

the dictionary D and codes p̂. For all of our experiments we set q = 1, which reduces to a form

of gain-shape vector quantization [Coates and Ng, 2011a]. In particular, given a dictionary D, an

index k is chosen as
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(a) MNIST (b) STL-10

Figure 3.1: A random subset of bases learned using OMP on various datasets. On MNIST, bases
correspond to various strokes and curves of digits while on the other datasets bases contain various
edges and opponent colors.

k = argmax
j
|D(j)T p(i)|, (3.3)

for which the k-th index of p̂(i) is set as p̂(i)
k = D(k)T p(i) with all other indicies set to zero in order

to satisfy the constraint ‖p̂(i)‖0 ≤ 1 for all i. Given the one-hot codes [p̂(1), . . . , p̂mp ], the dictionary

is easily updated and renormalized as to satisfy ‖D(j)‖2
2 = 1 for all j. Figure 3.1 shows example

bases learned using OMP.

Recently, Coates and Ng [2011a] showed that using randomly chosen patches as a dictionary

can be surprisingly effective. Thus, we also consider constructing a dictionary by simply choos-

ing a random subset of {p(1), . . . , p(m)} to be the columns of D, followed by normalization with

‖D(j)‖2
2 = 1. Zhang et al. [2011] showed that under a convex relaxation of sparse coding, global

solutions can be obtained simply from normalizing over examples. This observation might help

explain why such bases often perform well in practice.

3.2.4 Convolutional Feature Extraction

Let T denote an input image of size nV × nH with nC channels and let Tj denote the j-th channel,

1 ≤ j ≤ nC , of T . For grayscale images, nC = 1 and for color images nC = 3. Each patch in T is

pre-processed by contrast normalization, mean subtraction and whitening. Let D(l)
j ∈ Rr×c denote
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(a) MNIST (b) STL-10

Figure 3.2: Random patch bases chosen from MNIST and CIFAR-10.

the l-th basis, 1 ≤ l ≤ k, for channel j of D. We will define the feature encoding for basis l to be

given by:

fl = max
{

tanh
( nC∑
j=1

Tj ∗D(l)
j

)
− α, 0

}
, (3.4)

where * denotes convolution and α is a parameter to be set by the user. This type of surrogate

encoding given by the rectification unit max(x, 0) is motivated by Coates and Ng [2011a] and has

been used in several algorithms including convolutional networks, restricted Boltzmann machines

[Nair and Hinton, 2010] and deep sparse rectifier networks [Glorot et al., 2011]. The use of the

tanh activation deviates from the pipeline of Coates and Ng [2011a] but we include it due to its

successful use when evaluating multi-stage architectures for recognition [Jarrett et al., 2009].

The feature encoding fl is of dimension (nV − r + 1) × (nH − c + 1). Let f denote the

concatenation of the feature encodings fl across bases l such that f has dimension (nV − r+ 1)×

(nH − c + 1) × k. Before pooling, we apply one additional form of local contrast normalization

given by f̂ (i) ← (f (i)−µ(f (i)))/max{µ(σ), σ(i)}where µ and σ are means and standard deviations

across patches, noting that mP = (nV − r + 1)(nH − c+ 1). This type of normalization has been

shown to be critical to performance by Jarrett et al. [2009] and Bo et al. [2011b]. The feature maps

f̂l are then used as inputs for pooling.
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3.2.5 Pooling

Spatial pooling is performed by aggregating features over each encoding f̂l. This is done in the

form of a 2 layer pyramid. The first layer sums over non-overlapping 4 × 4 spatial regions of f̂l

while the second layer sums over quadrants. After pooling over the first layer, the resuling output

will be of dimension (nV −r+1)
4

× (nH−c+1)
4

× k, zero padding if necessary for divisibility. This

region is then broken into quadrants and features are summed over each one. This results in a final

feature vector of dimension 4 × 4 × k. Prior to using these features for dimensionality reduction

or classification, they are standardized to have zero mean and unit variance with the means and

standard deviations preserved for application to unseen data.

3.3 Dimensionality Reduction

Let X = {x(1), . . . , x(m)}, x(i) ∈ RdR , i = 1 . . .m denote column vectors of standardized feature

representations from the training data and let l(i) denote the associated label of x(i) given as a one-

hot binary vector. For linear dimensionality reduction, our goal is to learn a mapping γ : RdR →

RdL given by γ(x(i)) = Wx(i) for some W ∈ RdL×dR . We define the latent embedding space to be

the dL dimensional space for which the datapoints γ(X) live, using the notation γ(X) to indicate

the embedding of all datapoints in X . From this point forward, we simply refer to this as the latent

space.

3.3.1 Intrinsic Dimensionality and the Crowding Problem

It is commonly assumed under the manifold learning hypothesis [Cayton, 2005] that the data X ,

although represented as a dR dimensional vector, actually lies on a manifold of a much smaller, un-

known dimension dI . We shall refer to dI as the intrinsic dimensionality of X . Several algorithms

exist for estimating the intrinsic dimensionality of data based on maximum likelihood estimates

of the volume of a sphere centered around a datapoint [Levina and Bickel, 2004]. Furthermore,

many algorithms have been proposed to learn this manifold itself, as described in Chapter 2. Al-

ternatively, other algorithms aim to learn the local charts of a manifold such as the contractive

autoencoder [Rifai et al., 2011a] and manifold tangent classifier [Rifai et al., 2011b].

When attempting to map X to some dimension dR, the quality of the embedding depends

highly on the relationship between dR and dI . If dR ≥ dI , namely the latent space dimensionality
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is greater or equal to the intrinsic dimensionality, then the underlying manifold can be preserved.

On the other hand, if dR < dI , then the mapping cannot naturally preserve the manifold. If

we consider a d-dimensional sphere with radius r centered around a datapoint, then the volume

of the sphere scales with rd. Thus if we desire an embedding in a space less than its intrinsic

dimensionality, (e.g. for data visualization), large pairwise distances between points in the original

space have to be modeled as being further apart in the latent space. This leads to an issue known

as the crowding problem described by Van der Maaten and Hinton [2008] and van der Maaten

[2009]. Having larger pairwise distances in the latent space leads to small attractive forces between

dissimilar points. The combination of these attractive forces effectively push all datapoints together

and remove the clusters that were present between data in the original space. Modelling the latent

similarities of data using a Gaussian distribution as was done with Stochastic Neighbor Embedding

(SNE) [Hinton and Roweis, 2002] demonstrates the crowding problem. Note that if dR ≥ dI , then

the crowding problem does not exist.

The first attempt at removing the crowding problem was proposed with UNI-SNE [Cook et al.,

2007], a variation of SNE, which involved introducing a repulsive force to counteract the attractive

force between dissimilar points. Van der Maaten and Hinton [2008] pointed out that, although

the approach was successful it resulted in a more difficult optimization problem then SNE. An

alternative approach to removing the crowding problem was to utilize a heavy tailed distribution

when modeling latent similarities between data. This was first used with t-SNE [Van der Maaten

and Hinton, 2008] and later with parametric t-SNE [van der Maaten, 2009], dt-NCA and dt-MCML

[Min et al., 2010] using a Student’s t-distribution. t-SNE used two dimensional embeddings when

a Student’s t-distribution with one degree of freedom and later generalized with parametric t-SNE

and to using d − 1 degrees of freedom for a d dimensional embedding. Alternately, one can

attempt to learn the appropriate degrees of freedom through computing gradients with respect to

the objective and updating the degrees of freedom after each iteration of the optimization [van der

Maaten, 2009]. Note that when dR ≥ dI it is sensible to use a Gaussian for modeling latent

space similarities since a Gaussian may be seen as a Student’s t-distribution with infinite degrees

of freedom.

In this chapter we consider embedding images into a 50 dimensional space, using variations

of two existing Mahalanois metric learners: correlative matrix mapping [Strickert et al., 2010]

and maximally collapsing metric learning [Globerson and Roweis, 2006]. Following parametric
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t-SNE, dt-CMM and dt-MCML, we model latent space similarities using a Student’s t-distribution

where the appropriate degrees of freedom are learned from the data.

3.3.2 Correlative Matrix Mapping

Correlative matrix mapping (CMM) earns a Mahalanobis type metric such that latent distances are

in maximum correlation with label distances. LetDL be a anm×mmatrix whose i, jth entry is the

Euclidean distance between labels l(i) and l(j) of some given training data. Consider a Mahalanobis

type distance of the form:

dij = ‖γ(x(i);W )− γ(x(j);W )‖2, γ(x(i);W ) = Wx(i), (3.5)

between x(i) and x(j) for some n × d matrix W , where n is the number of features of x(i). CMM

aims to learn W such that the pairwise label distances DL and pairwise latent space distances D

are in maximum correlation:

C = max
W

r(DL, D)− β‖W‖2
2, (3.6)

where r denotes Pearson’s correlation. The learned metric is equivalent to Euclidean distance with

the transformed data γ(x(i);W ) = Wx(i). The gradient may be expressed as:

∂C

∂W
=
∂r(DL, D)

∂D

∂D

∂W
, (3.7)

We now show how to modify CMM in order to model the latent space distributions with a Student’s

t-distribution. Let γ(x(i);W ) = Wx(i) as before with dij = ‖γ(x(i);W )− γ(x(j);W )‖2. Consider

a joint distribution Q with entries qij representing the probability that x(i) would have x(j) as a

neighbor under a Student’s t-distribution with α degrees of freedom:

qij =
(1 + d2

ij/α)
−α+1

2∑
k 6=l(1 + d2

kl/α)
−α+1

2

, qij = 0, (3.8)

Let DL denote a joint distribution of the label similarities, where (DL)ij is the cosine similarity

between l(i) and l(j), normalized such that
∑

ij(DL)ij = 1. Our objective is now expressed as:

C = max
W

r(DL, Q)− β‖W‖2
2, (3.9)
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where Q is the joint distribution as defined. The degrees of freedom is initialized to α = d− 1 and

computing ∂C
∂α

at each update. The gradient of C with respect to W is given by:

∂C

∂W
=
∑
i

∂C

∂γ(x(i);W )

∂γ(x(i);W )

∂W
, (3.10)

where the latter partial derivative is computed using standard backpropagation. We will denote the

modified version of CMM by t-CMM.

3.3.3 Maximally Collapsing Metric Learning

The goal of MCML is to consider two distributions, one proportional to the label similarity of the

training data and the other to the distances in the embedding space. The MCML objective is then

to minimize the KL divergence between these two distributions. This may be seen as attempting

to collapse all datapoints of the same class together, while mapping those of different classes to

be ”infinitely” far apart. More specifically, consider the following conditional distribution with

respect to datapoints x(i) and x(j):

qj|i =
exp(dij)∑
k 6=i exp(dik)

, i 6= j, (3.11)

where dij = (x(i) − x(j))TW (x(i) − x(j)) and W is positive semidefinite (PSD). Also consider the

following conditional distribution over the label space:

pj|i ∝

{
1 if y(i) = y(j),
0 if y(i) 6= y(j),

the MCML objective is to minimize the KL divergence between the densities P and Q:

C = min
W

∑
i

KL(Pi‖Qi) =
∑
i

∑
j 6=i

pj|i log
pj|i
qj|i

subject to the constraint that W is PSD. The optimization is done by randomly initializing

a positive semidefinite matrix W0 and performing gradient projection, where the projection is

performed by computing an eigendecomposition of W and setting any negative eigenvalues to

zero. The above formulation is convex in W and led to a dual and kernel formulation [Globerson

and Roweis, 2006].
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The modifications applied to MCML are straightforward, with some small changes. We replace

the PSD matrix W with an unconstrained matrix and use the same distributions Q as was done for

CMM. When a student’s t-distribution is used, the objective is re-normalized as

C = min
W

KL(P‖Q) =
∑
i

∑
j 6=i

pij log
pij
qij

+ β‖W‖2
F , (3.12)

We found that the use of regularization always improved performance in our experiments. We

also note that our non-regularized MCML formulations can be seen as a special case of Min et al.

[2010] when only a single layer with a linear activation is used for the embedding.

3.3.4 Optimization

For datasets that are sufficiently small, it is feasible to compute the objective and gradient on

the full dataset and update using a standard optimization method such as L-BFGS. In the case

of larger datasets, the pairwise objective makes it infeasible due to the requirement of computing

pairwise distances amongst all datapoints. To account for this, we follow Salakhutdinov and Hinton

[2007a] (among others) and use minibatch training. In particular, the training data is randomly

partitioned into small batches of a few thousands datapoints. An iteration of the optimization is

performed on each minibatches and an epoch consists of one pass of updates through each of

the minibatches. Due to the non-convexity of the objective, we explored different optimization

strategies for minibatch training. We found that L-BFGS with a sufficient amount of iterations

per minibatch (we use 10 in our experiments) while maintaining early stopping on the number of

epochs performed well in practice.

3.4 Motivation: Spectral Embeddings

Our combined procedure of feature learning with linear dimensionality reduction can be described

as follows. We defined a mapping φ : Rn → RdR parametrized by a learned dictionary D through

a one layer convolutional feature extraction and pooling. The mapping φ is nonlinear due to the

rectifier activation function. Next we introduced a mapping γ : RdR → RdL given by γ(X) = WX

for some learned matrix W . Thus, the composition of these operations, namely (γ ◦φ)(X), can be

seen as a nonlinear embedding of an input image to a specified low dimensional space.
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This type of representation learning is clearly reminiscent of kernel learning with the exception

that the linear separable space mapped through φ is explicit as opposed to an implicit, perhaps

infinite dimensional representation. Furthermore, our two step procedure for performing nonlinear

dimensional reduction is also reminiscent of spectral methods for embeddings, such as kernel PCA

and Semidefinite embedding. To see this, let K ∈ Rm×m be a centered kernel matrix and let D(K)

denote the associated distance matrix. Consider the following objective:

min
K̄=K̄T ,K�0

L(D(K̄);D(K)) +R(K̄), (3.13)

where L is a convex loss in its first argument and R a regularizer. Yu et al. [2012] showed that

almost all non-parametric methods for dimensionality reduction can be expressed as a two step

procedure: regularized loss minimization followed by eigenvalue truncation. Under this setup, let

φ(K) = argmin
K̄=K̄T ,K�0

L(D(K̄);D(K)) +R(K̄)

γ(K̄) = Q:,1:dLV1:dL,1:dLQ
T
:,1:dL

, K̄ = QV QT
(3.14)

where K̄ = QV QT is an eigendecomposition of K̄ and V1:dL,1:dL indicates the top dL rows and

columns of the matrix V sorted by eigenvalues. Observe that just as in our case, the mapping φ

learns an appropriate representation for which an embedding is obtained through a linear operation.

Put another way, the work in constructing a useful embedding comes in choosing an appropriate

loss and kernel and is the differentiating factor between most spectral methods. Below we indicate

how Kernel PCA and Semidefinite Embedding fall into this framework as described by Yu et al.

[2012]:

• Kernel PCA: For kernel PCA, set L(D̂;D) = ‖H(D − D̂)H‖ and R(K̂) = [[rank(K̂) ≤

dL]] where the notation [[x]] is 0 if the predicate x is true and infinity otherwise.

• Semidefinite Embedding: For semidefinite embedding, otherwise known as MVU [Wein-

berger and Saul, 2004], we use L(D̂;D) =
∑

i,j[[N(D)ij = 1 and D̂ij 6= Dij]] where

N(Dij) is 1 if datapoints x(i) and x(j) are neighbors and 0 otherwise. The regularizer used is

R(K̂) = −tr(K̂).

The decomposition of nonlinear dimensionality reduction into a nonlinear representation com-

ponent and linear embedding component gives great flexibility for representation learning. For
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Figure 3.3: Sample training images from the CIFAR-10 dataset. Object classes correspond to
columns.

example, when self-taught learning is utilized the learned dictionary D can be constructed on an

entirely different database than the target dataset.

3.5 Experiments

We evaluate the performance of our proposed framework on two commonly used datasets in

the deep learning / feature learning community: CIFAR-10 1 [Krizhevsky, 2010] and MNIST 2.

MNIST is a collection of 70000 28 × 28 grayscale images of the digits 0-9. The dataset has a pre-

determined partition of 60000 digits for training and 10000 for testing. CIFAR-10 is a collection

of 60000 32 × 32 color images with 10 classes. CIFAR-10 has a predetermined partition of 50000

images for training and 10000 images for testing.

For all experiments, we first apply unsupervised feature learning using the proposed architec-

ture in Section 3.2, followed by learning a linear embedding using either t-CMM or t-MCML. On

MNIST, we use two types of bases: learned using OMP (P) and random patches (RP) which are

constructed from randomly selecting training patches and performing entrywise L2-normalization.

On CIFAR-10 we use three types of bases: learned using OMP (P), random patches (RP) and

1http://www.cs.toronto.edu/˜kriz/cifar.html
2http://yann.lecun.com/exdb/mnist/
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bases learned using both CIFAR-10 and 100000 unlabeled images from STL-10 (D). As an ex-

ample, on CIFAR-10 we use both the unlabeled training set as well as the CIFAR-10 training set

to learn a dictionary. We also consider semi-supervised experiments where 1%, 5% and 10% of

labeled data is used. In this setting, only these percentages of data are used to learn the dictionary,

while all the training data is used for unsupervised feature learning.

The procedure for experimentation is as follows. On all datasets, we learn a dictionary of

size k = 4000 using 180000 patches for MNIST, 300000 patches for CIFAR-10. On all datasets,

we use a receptive field size of 9 × 9. For learning the embeddings, we partition the training

set into training and validation and apply either t-CMM or t-MCML until the objective value on

the validation set does not improve for 10 epochs. Once this is completed, a value of k from

{1, 3, 5, 10, 15, 20, 25} is chosen that maximizes the classification accuracy on the validation set.

The training and validation sets are then combined and the embedding algorithm is retrained for

the chosen number of iterations. Classification accuracies are then reported using k-NN with the

chosen k from the validation set. In all of our experiments, we fix the regularization parameter to

β = 0.01 and soft-activation parameter α = 0.25, which was used by Coates and Ng [2011a]

In some of our experiments we observed underfitting on the validation set, in the sense that al-

though the objective value is no longer improving, the k-NN classification performance continued

to improve. In this setting, we simply removed the early stopping criteria and ran the embedding

algorithm for a total of 50 epochs. The best k is then chosen and the algorithm is retrained using

the full training set for 50 epochs.

3.5.1 CIFAR-10

Experimental results for CIFAR-10 are shown in table 3.1. Notably, using additional bases learned

from STL-10 along with the CIFAR-10 training data results in an improvement of results from

just using the CIFAR-10 training data alone for unsupervised learning. Our best result of 80.1%

accuracy, shown in table 3.2, is competitive with existing methods. This reinforces the principle of

self-taught learning, that using unlabeled data even from a different distribution of the training data

can lead to representations that can improve classification performance. We note that other results

on CIFAR-10 exist based on the use of convolutional networks with backpropagation, namely

[Krizhevsky, 2010, Cireşan et al., 2011, 2012]. The later is the current state-of-the-art, obtained

through adding additional image transformations to the training data.
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Table 3.1: k-NN classification accuracy of the learned 50 dimensional features on the CIFAR-10
dataset using various dictionaries and label percentages.

Method (% of labels) P RP D
t-CMM (1%) 49.18% 47.27% 49.75%
t-MCML 50.25% 48.40% 50.46%
t-CMM (5%) 61.84% 60.95% 62.17%
t-MCML 64.01% 63.14% 64.31%
t-CMM (10%) 67.01% 66.39% 68.09%
t-MCML 68.72% 67.66% 69.68%
t-CMM (100%) 79.44% 78.21% 79.78%
t-MCML 78.69% 78.69% 80.12%

Table 3.2: A selection of the best results obtained on CIFAR-10 using non-backprop pipelines,
sorted by number of features used.

Method Accuracy Features
OMP, k = 6000 [Coates and Ng, 2011a] 81.5% 48000
Receptive field learning [Jia et al., 2012] 83.1% 24000
Receptive field learning, 3 modules [Coates and Ng, 2011b] 82.0% 22400
k-means triangle, k = 4000[Coates et al., 2011] 79.6% 16000
Hierarchical kernel descriptors [Bo et al., 2011a] 80.0% 6000
1 module + SVM 80.0% 16000
1 module + t-MCML + k-NN 80.1% 50

Figure 3.4 visualizes the CIFAR-10 test data obtained using t-SNE on the 50 dimensional

representations learned from MCML. A random subset of 2500 test data points were selected for

training t-SNE. Interestingly, the result leads to two clusters: one containing man-made objects

and the other containing living creatures.

3.5.2 MNIST

Table 3.4 describes our results obtained on MNIST. For additional comparison of our semi-supervised

results, Lee et al. [2009a] obtain a result of 1.91% error with a convolutional deep belief network

and Weston et al. [2008] a result of 1.83% using 5% of labelled data, where our best result of

1.05% significantly outperforms these methods.

32



Figure 3.4: t-SNE embedding of the learned 50 dimensional features on a random subset of 2500
CIFAR-10 test datapoints. All the training data was used for learning both the dictionary and
embedding (best seen in color)

Figure 3.5: t-SNE embedding of the learned 50 dimensional features on a random subset of 2500
MNIST test datapoints, when only 1% of labeled training data was used to learn the t-CMM em-
bedding. All the training data was used for unsupervised learning of the dictionary (best seen in
color)
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Table 3.4: A selection of the best results obtained on MNIST when no distortions are added to the
training set.

Method Error
Large conv. net, unsup features [Ranzato et al., 2007] 0.62%
Large conv. net, unsup pretraining [Ranzato et al., 2006] 0.60%
Unsupervised sparse features + SVM [Labusch et al., 2008] 0.59%
k-NN with non-linear deformation [Keysers et al., 2007] 0.54%
Large conv. net, unsup pretraining [Jarrett et al., 2009] 0.53%
k-NN with non-linear deformation [Keysers et al., 2007] 0.52%
Invariant scattering conv. net [Bruna and Mallat, 2012] 0.43%
1 module + t-CMM + k-NN 0.46%
1 module + t-MCML + k-NN 0.44%
1 module + SVM 0.40%

Table 3.3: k-NN classification errors of the learned 50 di-
mensional features on the MNIST dataset using various
dictionaries and label percentages.

Method (% of labels) P RP
t-CMM (1%) 2.51 2.98
t-MCML 2.60 2.74
t-CMM (5%) 1.05 1.23
t-MCML 1.06 1.06
t-CMM (10%) 0.79 0.87
t-MCML 0.93 0.80
t-CMM (100%) 0.46 0.52
t-MCML 0.44 0.51

Table 3.4 compares our results

with the best methods obtained on

MNIST without the use of added dis-

tortions to the training set. To the

best knowledge of the author, our er-

ror is the best reported, although er-

ror under 0.3% may be obtained with

deep convolutional networks and im-

age transformations [Cireşan et al.,

2012]. 3

Finally, as with CIFAR-10 we vi-

sualize a two dimensional embedding obtained from t-SNE on the 50 dimensional features from

2500 randomly selected test datapoints. Unlike CIFAR-10, we only use 1% of the training data for

learning with MCML, while all the training data is used for unsupervised learning. Even with just

1% of labeled data, our features are able to naturally separate the digits. (Figure 3.5).

3Based on results posted on http://yann.lecun.com/exdb/mnist/
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3.6 Conclusions

We have shown that simple linear embeddings applied on top of convolutional representations

allow for classification performance that is competitive with a linear SVM and thousands more

features. An important question for consideration is whether a Student’s t-distribution is actu-

ally required for modeling latent space similarities. In other words, how critical is the crowd-

ing problem when the input features are linearly separable? We briefly performed experiments

in the semi-supervised settings for all datasets when a Gaussian is used in the latent space. On

MNIST, classification performance was comparable to that of the Student-t representations, while

on CIFAR-10 classification performance was substantially worse. This shows that the intrinsic di-

mensionality of MNIST is lower than that of the 50-dimensional embedding space, in which case

the crowding problem does not apply and infinite degrees of freedom can be used. Alternately, the

intrinsic dimensionality of a color image would be much higher than that of a grayscale digit in

which case 50 dimensions may be too low to successfully model the underlying latent manifold of

the data. In this case, the crowding problem does apply and a heavy tailed distribution is required.

Thus it is sensible to use a Student t-distribution whose degrees of freedom can be learned. For

data with relatively low intrinsic dimension, the initial degrees of freedom is sufficient while on

data with higher intrinsic dimension the degrees of freedom can be adjusted from the data.

An interesting avenue for future research could be to try to quantify the gap in classification

accuracy between a linear SVM in the input space and that of a k-NN classifier in the embedding

space with respect to the learned degrees of freedom from the Student’s t-distribution. If the

degrees of freedom remains high, then supposedly the data’s intrinsic dimension is low and the gap

will be small. Alternately if the degrees of freedom decreases, then the intrinsic dimensionality is

high and the gap will be larger. Moreover, the learned degrees of freedom could be used to estimate

the intrinsic dimensionality of the data’s manifold.

Our experimental results in this chapter have been limited to tiny images. In the next chapter

we introduce an architecture to learn feature representations from full sized color images. We

perform identical embedding experiments on these representations and observe similar behavior in

classification performance.
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Chapter 4

Deep Matching Persuit Networks

4.1 Introduction

The feature extraction pipeline of Coates and Ng [2011a] with thousands of bases was shown to

work surprisingly well on classification tasks for tiny images such as CIFAR-10. Furthermore,

k-means feature learning was efficient and unlike sparse coding, the soft encoders of Coates et al.

[2011] and Coates and Ng [2011a] do not require solving an optimization for each input image.

It is natural to then ask whether or not this pipeline is easily extended not only into a deeper

architecture but also scalable to more realistic sized images. As of current, two approaches based

on learning receptive fields in higher layers were used to extend this pipeline beyond a single layer

of feature learning.

Coates and Ng [2011b] showed that on tiny images, this pipeline could be extended beyond a

single layer by incorporating a receptive field learning procedure. In early layers of a convolutional

network, inputs have large spatial regions and few channels. For each new layer of feature learning,

the number of bases in the previous layer becomes the number of channels in the next. Thus, with

more than a couple of layers, the feature maps then have small spatial regions but a large number

of channels. In this setting, a spatial receptive field is likely to take up most, if not all of the

feature map. While engineering the receptive fields in lower layers is sufficient, in higher layers

this is no longer useful. It is more sensible to instead consider receptive fields that encompass

non-spatial features. Coates and Ng [2011b] randomly selected seeds from feature maps in upper

layers and computed distances between features based on their squared correlations. Based on

these distances, each feature is mapped to a receptive field indicated by its nearest seed. Separate

dictionaries were then constructed based on each receptive field. With this additional procedure,
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Coates and Ng [2011b] was able to improve on a single layer on CIFAR-10 and 32× 32 resolution

STL-10 images. The second approach to receptive field learning considered was to use supervision

to select which spatial regions to pool over. Jia et al. [2012] used grafting [Perkins et al., 2003] to

select pooling regions to maximize classification accuracy. This approach led to a state-of-the-art

result on CIFAR-10. This approach was also tested on the Caltech 101 dataset but used Dense

SIFT for low level feature extraction.

The difficulty in performing extensive experimental evaluation on tiny images is that the results

have no guarantee on generalizing to standard size images. Although receptive field learning was

needed to construct a deep network on tiny images, it could simply be the case that multiple layers

of feature extraction are not needed with such small images. In this chapter we introduce a new

feature learning algorithm called the deep matching pursuit network. In particular, we scale the

pipeline of Coates and Ng [2011a] to handle standard size images and show how multiple modules

can be stacked, where a module is defined as a single pass of patch extraction, dictionary training,

convolutional feature extraction and pooling. Interestingly, in all of our experiments, going beyond

a single module always improves performance which is not the case in the experiments of Coates

and Ng [2011b] on tiny images. Furthermore, we repeat the same batch of experiments that were

performed in the previous chapter but on standard size images. Moreover, even on full-size im-

ages linear embeddings of multiple module representations are sufficient in constructing a highly

discriminative low dimensional embedding. This shows that the deep matching pursuit network is

able to learn a highly nonlinear mapping from pixel space that can be successfully fed into linear

classifiers and embedding algorithms. Furthermore, no backpropagation is needed to fine-tune the

model.

The rest of the chapter proceeds as follows. We introduce the deep matching pursuit algorithm

by describing the operations performed in each module, which are largely similar to the pipeline

in Chapter 3. We then show how multiple modules can be stacked to train a deep network. This is

proceeded by experimental evaluation and finally conclusions.

4.2 Representation Extraction

We recall the definitions presented in Section 3.2. We assume we are given a list of training images

I = {i(1), . . . , i(m)} each of dimension nV ×nH . Furthermore, in this chapter we assume all images
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are color, so that the dimensionality of an image is n = 3nV nH . Let nP = rc be the dimension of

a receptive field of size r × c and P ∈ RmP×nP a matrix of mP randomly extracted patches from

I . Our goal is to learn a mapping φ : Rn → RdR where dR is the output dimensionality of the

constructed feature representation. The mapping is parametrized by six matrices: mean matrices

M1 and M2, whitening matrices W1 and W2 and dictionaries D1 and D2 from the first and second

modules. The procedure for feature learning is similar to the single module networks of Chapter

3:

1. Randomly extract mP patches of size r × c across all images. Pre-process each patch indi-

vidually for brightness and contrast normalization.

2. Construct feature mean matrix M across all patches. Apply ZCA-whitening to the patches

to obtain a whitening transform W .

3. Use K-SVD to learn a sparse dictionary D from whitened patches.

4. Convolutionally extract features and a receptive field size of r× c. Encode the outputs using

a soft-activation function

5. Spatially pool the features using a 2 layer pyramid.

6. Repeat steps 1-3 using a second module of training using the pooled inputs from step 5.

Let θ = {M1,W1, D1,M2,W2, D2} be the constructed extraction parameters. Given an image,

the mapping φ consists of the following operations:

1. Extract, encode and pool features in the first module using the mean matrix M1, whitening

matrix W1 and dictionary D1.

2. Perform the same operations over a second module using M2, W2 and D2. Concatenate the

features extracted from both the first and second modules.

4.2.1 K-SVD Dictionary Learning

For dictionary learning, we follow Bo et al. [2011b, 2012a] and utilize the K-SVD algorithm

[Rubinstein et al., 2008] 1. K-SVD takes as input patches P and returns a dictionary D and sparse
1We use the implementation provided by http://www.cs.technion.ac.il/˜ronrubin/software.

html
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Figure 4.1: All 512 6× 6 whitened bases learned from the Mirflickr dataset.
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codes P̂ by constructing a solution to the following optimization problem:

minimize
D,P̂

‖P −DŜ‖2
F , subject to ||p̂(i)||0 ≤ q ∀i, (4.1)

where p̂(i) is the i-th column of P . Optimization is done in alternation: first fixing D and approx-

imately solving for sparse codes P̂ , followed by fixing P̂ and obtaining an updated dictionary D.

When D is fixed, we may break the objective into mP subproblems of the form ‖p(i) − Dp̂(i)‖2

subject to ||p̂(i)||0 ≤ q ∀iwhich can be approximately solved using batch orthogonal matching pur-

suit. For the case of q = 1, this reduces to the same problem as described in equation 3.2. Given

the sparse codes P̂ an updated dictionary is obtained by first re-writing the objective in terms of a

residual R(l), l = 1 . . . k:

‖P −DP̂‖2
F = ‖S −

∑
j 6=l

d(j)p̂(j)T − d(l)p̂(l)T ‖2
F = ‖R(l) − d(l)ŝ(l)T ‖2

F , (4.2)

A solution for the l-th column of D, namely D(l) is obtained through an SVD of R(l). The K-SVD

algorithm may be seen as a generalization of k-means clustering. In particular, if q = 1 and P is

forced to be binary, K-SVD reduces to k-means [Bo et al., 2011b].

4.2.2 Convolutional Feature Extraction

Let I be an input image and let T be a partition of tiles with each tile Tt having size nt × nt and

stride length s between neighboring tiles. The patches in each Tt are pre-processed by contrast

normalization, mean subtraction and whitening. Let Ttl denote the l-th channel for tile t and let

D
(l)
j ∈ Rr×c denote the j basis with channel l. The feature encoding ftl for tile t and basis l is

given by:

ftl = max
{

tanh
( nC∑
j=1

Ttj ∗D(l)
j

)
, 0
}
, (4.3)

where * denotes a valid convolution and nC is the number of channels. Note the similarity of

this activation with that of the feature extraction done in Chapter 3. In particular, each tile Tt

can be thought of what we denoted as an input image T . Thus, we are simply performing the

same operation as before on each individual tile, although in this setting we set the soft-activation

hyperparameter to α = 0. After computing each ftl, these feature maps are spatially concatenated

into non-overlapping regions preserving the spatial locations of the tiles in the original image.

40



Figure 4.2: Left: D is convolved with each tile (large green square) with receptive field (small blue
square) over a given stride. The outputs are re-assembled in non-overlapping regions preserving
spatial structure. Right: 2× 2 and 1× 1 regions are summed (pooled) along each cross section.

See figure 4.2 for an illustration. Let ft denote the concatenation of the feature encodings across

bases. As was done before we perform an additional step of local contrast normalization given

by f̂t ← (ft − µ(ft))/max{µ(σt), σ
(i)
t } where µ and σ are means and standard deviations across

patches. Note that this is identical to the normalization done in Chapter 3 but here applied to each

tile encoding separately.

4.2.3 Pooling

Let f̂ denote the re-assembled encodings spatially organized by each encoded tile f̂t. Pooling is

performed using a 2-layer pyramid but in this case we deviate from the pyramid in Chapter 2 due

to the multi-resolution and sizes of the images. In particular, the first layer of the pyramid consists

of summing across each basis cross section f̂l over blocks of size 2 × 2 (quadrant pooling) while

the top layer consists of summing all elements of f̂l. The bottom layer results in a feature vector

of size 2× 2× k while the top layer is a vector of size 1× 1× k. These are concatenated to form a

final feature vector of size 4k + k = 5k. Before being applied for classification or dimensionality

reduction, the features are normalized to have zero mean and unit variance.

4.2.4 Training Multiple Modules

Recall that we defined a module as a single pass of patch extraction, whitening, dictionary learning,

feature extraction and pooling. Up until now we described the procedure for performing each of

the above in a single module. We can take the same operations and use them to train a second

module using the outputs from the first. More specifically, each basis cross section f̂l is partitioned
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into 256 blocks each of size 16× 16 and pooling is performed over these blocks. When applied to

each cross section, this results in an output of size 16×16×k. It is this output that we feed as input

into a second module. For visualization, of second module training, refer to figure 4.2 but replace

the image with the 16 × 16 × k output features. We chose this output size as a trade off between

aggregating too much information (using a smaller output size) and not aggregating enough that

would severely reduce the speed in training the second module.

More generally, multiple modules can be stacked in this fashion beyond using just two. We

hypothesize that after two modules, receptive field learning is necessary in order to obtain further

improvements.

4.3 Experiments

To test the effectiveness of our proposed feature learning algorithm, we apply the same set of

experiments as was performed in Chapter 3 but on more realistic, standard size image datasets:

STL-10 [Coates et al., 2011] 2, UIUC-Sports [Li and Fei-Fei, 2007] 3and MIT Indoor Scenes

[Quattoni and Torralba, 2009] 4. For all experiments, we use k1 = 512 first module bases, k2 = 1024

second module bases, receptive field sizes of 6×6 and 2×2 and tile sizes (nt) of 16×16 and 6×6.

The first module stride length is chosen based on the length of the longest side of the image: 4 if

the side is less than 128 pixels, 6 if less than 196 pixels and 8 otherwise. The second module stride

length is fixed at 2. All these architecture parameters were hand-chosen on a development dataset

not used for experiments. We report results using a linear L2-SVM for 1st module features as well

as the concatenation of 1st and 2nd module features. Furthermore, we report k-NN classification

accuracy of 50 dimensional embeddings of 1st and 2nd module concatenated features using t-CMM

and t-MCML. Finally, for qualitative evaluation of our low dimensional features, t-SNE is used to

visualize two dimensional embeddings on the test set learned from the 50 dimensional features, as

was also done in Chapter 3.

Model selection is performed as follows. For SVMs, hyperparameters are chosen by 5-fold

cross validation of the training set. For all embedding algorithms, optimization is done in batch

mode, as opposed to mini-batch training in Chapter 3 since the training folds are sufficiently small.

2http://www.stanford.edu/˜acoates/stl10/
3http://vision.stanford.edu/lijiali/event_dataset/
4http://web.mit.edu/torralba/www/indoor.html
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During training t-CMM and t-MCML are optimized using L-BFGS for at most 100 epochs. 5-fold

cross validation is used to select the regularization parameter β. We observed that the variance of

the k-NN performance on the validation folds for various k was small enough to justify simply

fixing k throughout all experiments, which we set to k = 10.

Self-taught learning is employed throughout our experiments. For the UIUC-Sports and MIT-

Indoor Scenes datasets, feature learning is performed on the Mirflickr dataset [Huiskes and Lew,

2008] 5. Mirflickr is a collection of 25000 images from Flickr that were voted to have high inter-

estingness rating from users. Figure 4.3 illustrates a small sample of the dataset. Images contain

a variety of objects, people, lighting conditions and poses. Thus, we hypothesize that Mirflickr

offers a sufficient database to learn a general model for images. For feature learning, we ran-

domly sampled 10000 images from Mirflickr. We used 500000 randomly sampled patches from

these images to learn the first module bases and 250000 patches to learn the second module bases.

The learned dictionaries and whitening matrices are then used for extracting features from UIUC-

Sports and MIT Indoor Scene datasets. The STL-10 dataset comes with its own unlabeled dataset

for self-taught learning which we describe in detail below.

4.3.1 STL-10

The STL-10 dataset is a collection of 10000 training images, 8000 testing images and 100000

unlabeled images, all of size 96×96. The training images are partitioned into 10 folds of size 1000

and contain 10 classes of objects. The procedure for evaluation on STL-10 is to apply self-taught

learning on the unlabeled images, apply these feature maps to the training and testing images and

finally report the average classification accuracy across all 10 folds. The images from the unlabeled

dataset may or may not come from the same distribution (labeled classes) as those from training

and testing.

Figure 4.1 shows a selection of the best results on STL-10. Learning second module features,

in combination with the first module features, results in a statistically significant improvement over

module alone (p < 0.05). This gives further evidence of the importance of training deeper architec-

tures. Furthermore, k-NN performance in the 50 dimensional embedding space outperforms but is

within the error bars of an SVM on first and second module features. Our approach outperforms all

existing methods except for the recently proposed hierarchical matching pursuit algorithm (HMP)

5http://press.liacs.nl/mirflickr/
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Figure 4.3: Sample images from the Mirflickr dataset, which is used for self-taught learning. Each
image from Mirflickr was deemed to have a high interest rating.

[Bo et al., 2012a] which has much similarities to our proposed method. We note that unlike our

training, HMP trains separate dictionaries on each channel and performs cross validation to select

the architecture parameters. We hypothesize that further improvements can be made by performing

the same procedures in our experiments, which Bo et al. [2012a] claim work better than training a

single dictionary alone.

4.3.2 UIUC-Sports

UIUC-Sports is a collection of variable size images depicting activities from 8 sports: rowing,

badminton, polo, bocce, snowboarding, croquet, sailing and rock climbing. Given an image, the

goal is to accurately classify which sport is being played in the image. For feature extraction, we

resized the images such that the longest side is at most 300 pixels with preserved aspect ratio.

Evaluation is performed using a standard protocol from the paper of Li and Fei-Fei [2007]: 70

images per class are randomly sampled for training and 60 images per class for testing. This is

repeated 10 times with the mean classification accuracy being reported.

Figure 4.2 describes the results of our algorithms in comparison to the state-of-the-art. As in
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Table 4.1: A selection of the best results obtained on STL-10.

Method Accuracy
k-means triangle, d = 4000 [Coates et al., 2011] 51.5%
Sparse filtering [Ngiam et al., 2011] 53.5%
OMP, d = 1600 [Coates and Ng, 2011a] 54.9%
OMP, SC encoder, d = 1600 [Coates and Ng, 2011a] 59.0%
Receptive field learning, 3 modules [Coates and Ng, 2011b] 60.1%
Video unsup features [Zou et al., 2011] 61.0%
Hierarchical matching pursuit, 2 modules [Bo et al., 2012a] 64.5%
1st module + SVM 56.4% (1.06%)
1st + 2nd module + SVM 62.1% (0.63%)
1st + 2nd module + t-CMM + k-NN 62.7% (0.81%)
1st + 2nd module + t-MCML + k-NN 62.7% (0.78%)

Table 4.2: A selection of the best results obtained on UIUC-Sports.

Method Accuracy
SIFT + GGM [Li and Fei-Fei, 2007] 73.4%
Object bank [Li et al., 2010] 76.3%
SIFT + sparse coding [Bo et al., 2011b] 82.7%
MMLDA + SIFT + Gist [Wang and Mori, 2011] 83.1 %
Hierarchical matching pursuit, 2 modules [Bo et al., 2011b] 85.7%
1st module + SVM 78.3% (1.46%)
1st + 2nd module + SVM 83.8% (1.20%)
1st + 2nd module + t-MCML + k-NN 84.5% (1.13%)
1st + 2nd module + t-CMM + k-NN 84.6% (1.32%)

the case of STL-10, we achieve a statistically significant improvement in performance by train-

ing with 2 modules (p < 0.05). The learned features outperform more sophisticated algorithms,

such as the the generative model of Li and Fei-Fei [2007] and descriptor combination with LDA

model of Wang and Mori [2011]. Again, we outperform all existing approaches except for HMP.

Figure 4.4 depicts a two dimensional visualization of test datapoints from one of the ten random

train/test sample selections. Using the learned 50 dimensional embeddings, t-SNE is able to learn

a discriminative embedding of the event classes.
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Figure 4.4: t-SNE embedding of the learned 50 dimensional features on one of the 10 UIUC test
folds.

4.3.3 MIT-Indoor

Finally, we perform evaluation on the MIT Indoor scenes dataset. MIT Scenes is a collection of

15620 images of indoor scenes from 67 classes such as bakery, bedroom, church, bar and class-

room. The 67 classes can also been seen in 5 superclasses: store, home, public spaces, leisure and

working spaces. As with UIUC-sports, the images are resized so that the longest side is no larger

than 300 pixels with preserved aspect ratio. For evaluation, we use the pre-defined train/test split

given by Quattoni and Torralba [2009], which contains 80 training images from each of the 67

classes and 20 test images from each class.

Figure 4.3 shows a table of the best results obtained on this dataset. Our best performance of

42.6% accuracy outperforms all existing methods except for the deformable parts based models

combined with Gist color descriptors as well as the recently proposed hierarchical matching pur-

suit. We note again that our features were learned on the Mirflickr dataset and had no knowledge

of the indoor scene classification task that they were to be used for. Compare this to the deformable

parts based model, which would require indoor scenes for training. We hypothesize that further

improvements can be made by adding the MIT-scenes training images to the dictionary learning
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Figure 4.5: The five superclasses of MIT-Indoors used for visualization.

Table 4.3: A selection of the best results obtained on MIT-Indoor

Method Accuracy
HoG [Pandey and Lazebnik, 2011] 22.8%
MM-scene [Zhu et al., 2010] 28.0%
Gist-color [Pandey and Lazebnik, 2011] 29.7%
Spatial pyramid [Pandey and Lazebnik, 2011] 34.4%
Object bank [Li et al., 2010] 37.6%
DMP + Gist-color + Spatial pyramid [Pandey and Lazebnik, 2011] 43.1%
Hierarchical matching pursuit, 2 modules [Bo et al., 2012a] 47.0%
1st module + SVM 35.4%
1st + 2nd module + t-CMM + k-NN 39.3%
1st + 2nd module + t-MCML + k-NN 42.2%
1st + 2nd module + SVM 42.6%

procedure. Figure 4.6 shows the t-SNE embedding of learned 50 dimensional features using five

supercategories: store, home, public spaces, leisure and workplace. Each of the 67 categories is

placed into one of the supercategories according to Figure 4.5. Observe that classes from some

categories may fall into others. For example, gamerooms are classified as leisure but may also be

part of a home.

4.4 Conclusion

In this chapter we introduced a new representation learning algorithm called the deep matching

pursuit network, as a multi-module extension to the networks of Coates and Ng [2011a] to larger

images. We showed that even on larger images one may obtain highly discriminative, low dimen-

sional representations using linear embeddings. Furthermore, self-taught learning may be success-

fully applied even in settings where the classification problem is geared towards a specific kind
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Figure 4.6: t-SNE embedding of the learned 50 dimensional features on the MIT-Scenes test set.

of scene, such as indoor rooms. Finally, we showed that on larger images, deeper networks can

be trained without the use of receptive field learning, a result which did not hold on tiny images

[Coates and Ng, 2011b].

Our immediate attention for future work is to adapt the same principles used by the hierarchical

matching pursuit network to our own. This includes training separate dictionaries for each channel

and utilizing multilayer pooling. We also intend to adapt the receptive field learning of Coates and

Ng [2011b] in attempts to train a third module. Initial attempts were unsuccessful for the reasons

of small spatial dimensions and large number of channels in the second module feature maps.

On datasets like MIT-indoors where the superlabels are not strict, it becomes difficult to learn

an appropriate visualization in a two dimensional metric space. This is hampered by the triangle

inequality. For example, a buffet and a gameroom are both classified as leisure, while the game-

room could be part of a house. If it was part of a house, it would also be similar to a garage. Yet,

the buffet and the garage do not have anything in common. Thus, if an embedding tries to map

a buffet close to a gameroom, and a gameroom close to a garage, then by the triangle inequality

the buffet will be placed near the garage. This type of scenario was well described in the con-

text of word embeddings [van der Maaten and Hinton, 2011]. In order to deal with this difficulty,
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van der Maaten and Hinton [2011] proposed a multiple maps version of t-SNE. Multiple maps t-

SNE was designed for constructing multiple embeddings of data for cases where the data may not

naturally lie in a metric space. Future work would involve constructing multiple map variations of

MIT-indoor objects amongst other datasets of similar nature.
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Chapter 5

Applications to Auto-Annotation and
Retrieval

5.1 Introduction

Image auto-annotation is a multi-label classification task that involves assigning a set of tags from

a vocabulary V to an image. Figure 5.1 illustrates this task. Image auto-annotation is challenging

for several reasons. First, tag vocabularies are often large and can contain hundreds to thousands

of tags. Second, tags may describe both local and global properties of an image. For example, a

tag might indicate whether there exists a building (local) or whether the image is outdoors (global).

Finally, annotations are often noisy which can include having misspelled tags or multiple tags of

the same meaning. Furthermore, tags that are assigned to an image by hand may not be inclusive

of all relevant tags from the vocabulary.

Due to this difficulty, it has been common for many of the best performing algorithms [Makadia

et al., 2008, Nakayama., 2011, Guillaumin et al., 2009, Tsai et al., 2011, Weston et al., 2010] to fix

an often large number of hand-crafted features to describe image characteristics and instead focus

on the tagging algorithm itself. Zhang et al. [2010] performed an analysis of feature importance

for annotation and observed that the choice of discriptors was dataset dependent. The authors also

observed that many features led to redundancy such as the use of HSV and LAB color transforms.

Image auto-annotation has received little attention from the deep learning community. Yet,

it is one area of vision that could significantly benefit from having a feature learning algorithm

and removing the need for computing over a dozen hand-crafted features and the need for feature

selection. In the chapter we attack this problem using the deep matching pursuit network developed

in the previous chapter. For performing annotation, we use the TagProp algorithm [Guillaumin

50



Figure 5.1: Sample annotation results on IAPRTC-12 (top) and ESP-Game (bottom) using TagProp
when each image is represented by a 256-bit code. The left column of tags is the gold standard and
the right column are the predicted tags. Predicted tags that are italic are those that are also gold
standard.

et al., 2009] that has enjoyed state-of-the-art performance on multiple benchmarks. Specifically,

we perform the same set of experiments as was done by Makadia et al. [2008], only replacing

the hand-crafted features with our learned representations. We evaluate the performance of the

learned features in combination with TagProp on three datasets: Natural Scenes, IAPRTC-12 and

ESP-Game. On all datasets we either outperform or compete with existing methods across standard

evaluation metrics when over a dozen hand-crafted representations are used for training.

Recently, much emphasis on annotation research has gone towards algorithms that can scale

to web size databases containing millions of images. Such algorithms include the visual synsets

of Tsai et al. [2011] and the use of joint word-images embeddings of Weston et al. [2010]. Along

with using the learned representations from the DMP for annotation, we also consider performing

annotation when each image is represented as 256-bit code. Torralba et al. [2008] performed an

extensive analysis of image retrieval and reported that linear search with Hamming distance on

binary representations could still be computed efficiently even on databases of millions of images.

Up until now we have focused mostly on learning supervised, low dimensional embeddings of

images. Now we consider learning a sparse unsupervised binary representation. Specifically, we

utilize an autoencoder with a single hidden layer to learn binary codes from the high dimensional

representations of the DMP. We evaluate the performance of TagProp for annotation when our

binary codes are used as input. Since TagProp operates on pairwise distances, an efficient low-

level implementation of Hamming distance computation would allow our approach to scale to
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Figure 5.2: Coding layer activation probabilities.

massive datasets. To our surprise, we observe only a small reduction in annotation performance

indicating that the binary codes effectively capture high level image semantics. Finally, we perform

qualitative analysis of our binary codes for image retrieval in an unsupervised setting. We note that

our approach is the first to learn binary codes from full size images without the use of image

descriptors. Learning codes from descriptors such as GIST [Oliva, 2005] introduces too strong of

a bottleneck too early in the pipeline. In our approach the bottleneck comes after learning multiple

modules of representations.

The rest of the chapter proceeds as follows. We first describe in detail the autoencoder used

to learn binary codes from the output of the deep matching pursuit network. Next, we review the

TagProp algorithm as was introduced by Guillaumin et al. [2009]. This is followed by experimental

evaluation and conclusion.

5.2 Learning Binary Representations

Let f ∈ Rdm denote the standardized output for an image I of a one or two module architecture

of the previous chapter. A binary representation for I is constructed by using f to be input to an

autoencoder with a single hidden layer. More specifically, the code b is given by b = round(σ(f))

where σ(f (i)) = (1 + exp(Wf (i) + β))−1, W ∈ Rdb×dm , β ∈ Rdb and db is the number of bits.

Using a linear output layer, our objective is to minimize the mean squared error of the inputs and
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their reconstructions given by 1
m

∑
i

[
(W̃σ(f (i)) + β̃) − f (i)

]2, where W̃ ∈ Rdm×db , β ∈ Rdm

are the second layer weights and biases respectively. The objective is minimized using standard

backpropagation.

Ideally, we would perfer the hidden layer activation probabilities to be as close to zero or one

as possible. As is, the optimization does not take into consideration the rounding operation, so

there is no guarantee that the hidden layer probabilities would follow such a distribution. We

follow Salakhutdinov and Hinton [2009] and use “deterministic additive Gaussian noise” in the

hidden layer during a forward pass. Salakhutdinov and Hinton [2009] used this operation when

training a deep autoencoder in order to obtain binary codes for semantic hashing. We observed

that zero mean and unit variance was sufficient to force the activations to be near zero or one. To

make the noise “deterministic”, we randomly sample from a standard Gaussian before training and

use the same noise at each iteration during backpropagation. This is necessary in order for the

optimization to perform smoothly. Figure 5.2 displays sample hidden layer activation probabilities

after training.

5.3 The TagProp (Tag Propagation) Algorithm

Let I denote a list of images and V a vocabulary of tags. Our goal at test time, given a new image

i′, is to assign a subset of tags v ∈ V for which v is most descriptive of image i′. For performing

this annotation, we make use of the Tag Propagation (TagProp) algorithm [Guillaumin et al., 2009].

TagProp is a discriminative metric learner that takes as input a set of pairwise distances between

training points. Let yiw ∈ {−1, 1}, i ∈ I, w ∈ V , denote whether tag w is present in image i.

Define the probability that tag w is present in image i by

σ(αwxiw + βw), xiw =
∑
j

πijyjw, (5.1)

where σ(z) = (1 + exp(−z))−1 is the sigmoid function, (αw, βw) are logistic word parameters and

πij = f(dh) are distance based weights for images i and j and some function f . More specifically,

πij is given by

πij =
exp(−dh(i, j))∑
j′ exp(−dh(i, j′))

, dh(i, j) = hdij, (5.2)
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where h ≥ 0 is a scalar parameter on the distance dij between images i and j, with h ≥ 0 to

enforce that πij ≥ 0. Let θ = (αw∀w ∈ V, βw∀w ∈ V, h) denote the model parameters which

we would like to optimize for. Optimization is done as to maximize a quasi-likelihood on the data

given by

L =
∑
i,w

ciw log p(yiw), (5.3)

where ciw = 1
n+

if yiw = 1 and 1
n−

otherwise with n+ indicating the total number of annotations

for word w and n− indicating the number of times w was not used for annotation. These are used

as a means of weighting words based on their occurrence as to give more weight to rarer tags.

Optimization is done using a projected gradient while enforcing the positivity constraint on h.

We denote the distance dij as the base distance between images i and j. As described so far,

we assume only a single base distance is given between images. This is easily extended to handle

multiple distances by replacing the scalar h with a parameter vector and setting dh(i, j) to be a

weighted combination of base distances. Indeed, it was these multiple distances combined with

the logistic word models that led to the best performance when several image descriptors were used

by Guillaumin et al. [2009]. In our case, we use the Euclidean distance as our base. When images

are represented as binary codes, we utilize the Hamming distance as our base. Distances are only

considered between the k nearest neighbors, where k is chosen using e.g. cross validation.

5.4 Experiments

Experimentation is performed on 3 annotation datasets: Natural scenes [Zhou and Zhang, 2007]
1, IAPRTC-12 [Grubinger et al., 2006] 2 and ESP-Game [Von Ahn and Dabbish, 2004] 3. The

deep matching pursuit network is trained using k1 = 512 first layer bases, k2 = 1024 second layer

bases, receptive field sizes of 6 × 6 and 2 × 2 and tile sizes of 16 × 16 and 6 × 6. All images

are resized such that the maximum length is no more than 300 with preserved aspect ratio. Self-

taught learning is employed for all experiments. As was done in evaluation of the DMP in Chapter

4, the Mirflickr dataset is used for dictionary learning. For autoencoder training, optimization is

1http://lamda.nju.edu.cn/data_MIMLimage.ashx
2http://imageclef.org/photodata
3http://hunch.net/˜learning/ESP-ImageSet.tar.gz
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performed on minibatches of size no larger than 1000 for 10 epochs using Polak-Ribiere conjugate

gradients with three linesearches per update.

5.4.1 Natural Scenes

The natural scenes dataset is a collection of 2000 images depicting one or more of the following

scenes: desert, forest, sunset, ocean and mountain. We follow standard protocol and perform eval-

uation by averaging the results of 10-fold cross validation. Evaluation is done using five common

metrics for multi-label classification:

• Hamming Loss: Computes the difference between true labels and predicted labels using the

XOR operation: HL(x(i)) = p(i)⊗y(i)
Nc

, where x(i) is a datapoint, p(i) the predicted full label

for x(i), y(i) the target full label and Nc the total number of labels.

• One Error: Evaluates whether the most probable label prediction is part of the gold stan-

dard: OE = 1
Nx

∑
i 1(l1(x(i)) /∈ y(i)), where Nx is the number of test set images, l1 is the

first ranked label and 1() is the indicator function.

• Coverage: Evaluates how far away the predicted labels are from ’covering’ the true labels:

C = 1
Nx

∑
i maxl∈y(l) rank(l, x(i)) − 1, where rank(l, x(i)) denotes the position of label l in

the ranked list for image x(i).

• Ranking Loss: The fraction of labeled pairs between true and irrelevant labels that are in re-

verse order: RL = 1
Nx

∑
i

F (x(i))

|y(i)|| ¯y(i)|
, whereF (x(i)) = |{(l, l′) : rank(l, x(i)) > rank(l′, x(i)), l ∈

y(i), l′ ∈ ¯y(i)}| is the number of reverse ordered pairs of labels from the ranked list of x(i).

• Average Precision: AP = 1
Nx

∑
i

1
y(i)

∑
l∈y(i)

G(x(i))

rank(l,x(i))
where G(x(i)) = |{l′ ∈ y(i) :

rank(l′, x(i)) ≤ rank(l, x(i))}| is the number of gold standard labels ranked above label l.

The number of nearest neighbors k for training TagProp is chosen through 5-fold cross vali-

dation on each of the training folds in order to minimize Hamming loss. A tag is assigned to an

image if the probability of a tag given the image exceeds 0.95. Table 6.1 describes the results of

our approach to the state-of-the-art on this dataset. The most successful method to date is based

on image to class distance learning. The combination of feature learning and annotation with Tag-

Prop outperforms all existing approaches on this dataset. We attribute the successful performance
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Table 5.1: A selection of the best results obtained on the Natural Scenes dataset. Arrows indicate
direction of improved performance.

Method HL ↓ OE ↓ C ↓ RL ↓ AP ↑
ML-KNN [Zhang and Zhou, 2007] 0.169 0.300 0.939 0.168 0.803
ML-I2C [Z. Wang and Chia., 2010] 0.159 0.311 0.883 0.156 0.804
InsDif [Zhang and Zhou., 2007] 0.152 0.259 0.834 0.140 0.830
ML-LI2C [Z. Wang and Chia., 2010] 0.129 0.190 0.624 0.091 0.881
1st Module 0.113 0.170 0.580 0.080 0.895
1st Module, 256-bit 0.113 0.169 0.585 0.082 0.894
1st + 2nd Module 0.100 0.140 0.554 0.074 0.910
1st + 2nd Module, 256-bit 0.106 0.155 0.558 0.075 0.903

of the binary codes to the fact that they were constructed such that Hamming distance would be

appropriate. As was the case for evaluation of DMP in Chapter 4, using a second module leads to

improved performance.

5.4.2 IAPRTC-12 and ESP-Game

IAPRTC-12 is a collection of 20000 images with a vocabulary size of |V | = 291 and an average of

5.7 tags per image. ESP-Game is a collection of 60000 images with |V | = 268 and an average of

4.7 tags per class. Following [Guillaumin et al., 2009] we apply experiments to a subset of 20000

images. Performance is evaluated using four measures: Precision (P), Recall (R), F-measure (F)

and the number of recalled tags (N+). Precision, recall and F-measure are micro-averaged. The

number of recalled tags indicated the number of tags that occured in training that were recalled

at least once on the test set. Following standard procedure, we assign the 5 most probable tags to

each image. 5-fold cross validation is used for selecting k for TagProp that maximizes F-measure.

Figures 5.3, 5.4 and 5.5 displays the results of our approach. On both datasets, our results

perform comparably to CCD, although is not able to match the recall and N+ values obtained us-

ing TagProp and 15 hand crafted features. More importantly, our representations outperform GS,

indicating that representation learning for annotation is a considerable alternative as opposed to

feature selection of several engineered features. Of interest are also the results obtained when an

image is represented with a 256-bit code. While on IAPRTC-12 using binary codes lead to a reduc-

tion in performance, on ESP-Game 256-bit codes perform equivalently with our 2 module, high

dimensional representations, while obtaining a larger N+ value. Recall that our representations
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Figure 5.3: Precision and recall values on IAPR TC-12. Methods compared against are MBRM
[Feng et al., 2004], LASSO [Makadia et al., 2008], JEC [Makadia et al., 2008], GS [Zhang et al.,
2010], CCD [Nakayama., 2011] and TagProp [Guillaumin et al., 2009]. 1m, 1m256 refer to our
method with one module and one-module 256-bit codes. Similarly for 2m, 2m256 with 2 modules.

Figure 5.4: Precision and recall values on ESP-Game. Methods compared against are MBRM
[Feng et al., 2004], LASSO [Makadia et al., 2008], JEC [Makadia et al., 2008], GS [Zhang et al.,
2010], CCD [Nakayama., 2011] and TagProp [Guillaumin et al., 2009]. 1m, 1m256 refer to our
method with one module and one-module 256-bit codes. Similarly for 2m, 2m256 with 2 modules.
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Figure 5.5: The number of recalled tags on IAPR TC-12 and ESP-Game. Methods compared
against are MBRM [Feng et al., 2004], LASSO [Makadia et al., 2008], JEC [Makadia et al., 2008],
GS [Zhang et al., 2010], CCD [Nakayama., 2011] and TagProp [Guillaumin et al., 2009]. 1m,
1m256 refer to our method with one module and one-module 256-bit codes. Similarly for 2m,
2m256 with 2 modules.

were learned through self-taught learning on Mirflickr, indicating that the algorithm has learned a

general enough filter bank for a variety of vocabulary words and images.

5.4.3 Retrieval

Finally, we consider using our learned binary codes for unsupervised retrieval on the IAPRTC-12

and ESP-Game datasets. Figure 5.6 shows sample retrieval results when a query image from the

test set is used to retrieve its 4 nearest neighbors from the training set. Qualitatively, we observe

that our codes perform well at encoding high level semantic concepts, those that could not be

captured through pixel distance.

5.5 Conclusion

In this chapter we showed that features learned using the deep matching pursuit network can be

successfully employed on image auto-annotation tasks. In particular, we showed that learned fea-

tures when used with TagProp can compete with or outperform existing approaches including those
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Figure 5.6: Sample (unsupervised) retrieval results when each image is represented using a 256-bit
code. The query image is from the test set and used to retrieve the 4 nearest training images based
on their Hamming distances.

that use over a dozen hand-crafted features. An important direction for future work would involve

scaling our annotation and retrieval system to a more realistic, large-scale setting with millions of

images. Moreover, semantic hashing may be employed to perform retrieval in time independent of

the size of the database. Such a result would be the first large-scale system for retrieval that did not

make use of any hand-crafted representations. In the following chapter, we discuss generalizing the

deep matching pursuit networks of Chapter 4 to other modalities such as RGB-D or audio. Future

research could involve performing the same set of annotation and retrieval experiments on RGB-D

and audio data with applications to robotics, music auto-tagging and music retrieval. It would also

be of interest to determine whether further increasing dictionary sizes can lead to a further increase

in performance.
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Chapter 6

Applications to Multimodal Medical Image
Segmentation

6.1 Introduction

The choice of image representation plays a crucial role in the success of medical image segmenta-

tion algorithms. Most existing methods utilize hand-crafted features incorporated into an energy-

based segmentation method or into a machine learning classifier. Commonly, energy-based meth-

ods utilize engineered features such as Gabor filters for texture-based segmentation [Paragios and

Deriche, 2002], while machine learning approaches use many more simple features like Haar or

steerable filters leaving the classification method to disambiguate the ones that are significant for

the segmentation task. Popular examples of machine learning methods are ones based on decision

trees [Zheng et al., 2008], random forests [Criminisi et al., 2013] as well as SVMs and conditional

random fields [Lee et al., 2005]. Some methods use very specialized filters designed for a partic-

ular task, such as extracting linear structures based on eigenvalues of the image Hessian matrix

[Frangi et al., 1998].

In this chapter we introduce the multi-scale deep matching persuit network that utilizes fea-

tures learned from multiple scales and depths. The key features that make our method fast and thus

suitable for medical data are detailed below and can be summarized as: (1) patch-based, (2) stage-

based system and a (3) fast dictionary learning method. Table 6.1 summarizes and distinguishes

four types of feature learning architectures for medical images. Convolutional sparse coding al-

gorithms, such as those used by Rigamonti and Lepetit [2012] and Rigamonti et al. [2011], differ

from standard sparse coding methods as convolution is incorporated into the optimization pro-

cedure. The third architecture describes convolutional networks, used by Ciresan et al. [2012] for
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Table 6.1: A comparison of different feature learning architectures that have been applied to med-
ical image segmentation: Y is yes, N is no and S is sometimes. Multi-scale and multi-depth
methods can often improve performance while patch-based and stagewise learning improve speed.
Here sparse coding refers to any method that aims to learn a filter bank with a sparsity constraint.

Method Patch-based Multi-scale Multi-depth Stagewise
Sparse coding Y N N Y
Convolutional sparse coding N N N Y
Convolutional networks N S Y N
Proposed approach Y Y Y Y

electron microscopy image segmentation, which are learned jointly with supervision. While convo-

lutional networks are often very effective, jointly training the whole model can be time consuming.

Furthermore, convolutional networks require many labeled examples in order to avoid overfitting.

The last architectures illustrates our proposed framework. Features are learned one stage at at

time using patch-based learning at multiple scales. Since the model does not require joint learn-

ing, features can be learned efficiently and quickly. Our framework is largely influenced by the

successful applications of patched-based filter learning of Coates and Ng [2011c] for object recog-

nition, which utilizes k-means and gain-shape vector quantization combined with convolutional

extraction. The emphasis of this work being the importance of the feature encoding as opposed to

the filter learning algorithm itself. Due to this, we suggest that more expensive convolutional filter

learning is unnecessary, so long as a proper encoding is performed after learning.

To test the performance of our proposed framework, we applied our method to two very dif-

ferent medical datasets of the MICCAI grand challenges: vessel segmentation of the lung (VES-

SEL12) and multimodal brain tumor segmentation. Our method achieves competitive performance

on both tasks, compared to the existing leaderboard approaches for these challenges. Furthermore,

our system is able to learn features in under ten minutes on both challenges.

6.2 Method

We assume we are givenm volumes with smodalities {{V (j)
i }sj=1}mi=1 with each V (j)

i ∈ RnV ×nH×n

where nV × nH is the spatial dimension of a slice and n is the number of slices. For simplicity,

we assume each volume V (j)
i has dimensionality nV × nH × n although this need not be the case.

As a specific example, brain tumor segmentation tasks can use s = 4 modalites consisting of
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Figure 6.1: Visualization of our feature learning approach. Each volume slice is scaled using a
Gaussian pyramid. Patches are extracted at each scale to learn a dictionary D using OMP. Convo-
lution is performed over all scales with the dictionary filters, resulting in Γk feature maps. After
training the first layer, the feature maps can then be used as input to a second layer.

FLAIR, T1, T2 and post-Gadolinium T1. The general outline of our feature learning framework is

as follows:

• Extract multimodal patches at multiple scales using a Gaussian pyramid.

• Learn a filter bank using orthogonal matching pursuit.

• Convolutionally extract feature maps using the learned filters as kernels.

• Repeat the above steps, using the computed features maps as input to the next layer. The

number of feature maps (next layer modalities) corresponds to the number of filters.

Each of the following subsection describes one of the above operations in detail.

6.2.1 Pre-processing and dictionary learning

Given a volume V , a Gaussian pyramid with Γ scales is applied to each modality of each slice. Let

{p(1), . . . , p(mP )} denote a set of mP patches randomly extracted from the scaled volumes. Each

patch p(l) is of spatial dimension r×c×swhere r×c is the receptive field size and s is the number of

modalities. These patches are then flattened into column vectors. Per patch contrast normalization

and patch-wise mean subtraction is performed. For dictionary learning we use orthogonal matching

62



pursuit (OMP) as was done in Chapter 3 to obtain a solution to the following optimization problem:

minimize
D,x(i)

mP∑
i=1

||Dx(i) − p(i)||22,

subject to ||D(l)||22 = 1,∀l,

||x(i)||0 ≤ q,∀i,

(6.1)

where D ∈ RnP×k and D(l) is the l-th column of D.

6.2.2 Convolutional feature extraction

Let T γj denote a volume slice of modality j and scale γ. Each r×c×s patch in T γj is pre-processed

by contrast normalization and mean subtraction. LetD(l)
j ∈ Rr×c denote the l-th basis for modality

j of D. We will define the feature encoding for basis l to be given by:

fγl =
s∑
j=1

T γj ∗D
(l)
j , (6.2)

where * denotes convolution. The resulting feature maps {fγl }kl=1 are of the same spatial dimen-

sions as T γj . The feature maps are finally upsampled to the original nV × nH spatial dimension.

Figure 6.1 illustrates our approach.

6.2.3 Stacking multiple layers

Our described setup for feature learning has involved scaling, dictionary learning and convolutional

extraction. Just as the volumes slices were inputs to a first layer with s modalities, the upsampled

output feature maps {{fγl }Γ
γ=1}kl=1 may be seen as inputs to a second layer but with Γk modalities.

All the same described operations are applied a second time resulting in additional second layer

output feature maps. These groups of feature maps can be concatenated together resulting in a total

number of Γ1k1 + Γ2k2 feature maps, where Γ1, k1 are the number of first layer scales and filters

while Γ2, k2 are the number of second layer scales and filters. Thus each pixel in a volume slice

can be represented as a Γ1k1 + Γ2k2 dimensional feature vector.
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Figure 6.2: Visualizing the importance of scale and depth for vessel segmentation.

6.3 Experiments

We perform experimental evaluation using data from two MICCAI grand challenges: vessel seg-

mentation of the lung 1 and multimodal brain tumor segmentation 2.

6.3.1 Vessel segmentation

The vessel segmentation challenge consists of 20 volumes of CT scans to segment with 3 additional

volumes that include 882 labeled pixels based on the agreement of at least 3 experts. Each slice

is of size 512 × 512 with each volume containing a few hundred slices. We performed feature

learning with 2 depths, 6 scales, a receptive field size of 5 × 5, 32 first layer filters and 64 second

layer filters. The final feature vector is thus of size 6 × (32 + 64) = 576. In order to perform

segmentation, we extracted features for the existing labeled pixels and trained a L2-regularized

logistic regression classifier, using 10-fold cross validation in order to tune the L2 hyperparameter.

Each pixel of a new slice is then classified, resulting in a probability of whether or not the pixel is

a vessel. For our submission to the challenge, the probabilities are scaled and rounded to unsigned

8-bit integers as requested.

Figure 6.2 illustrates the importance of adding depth and segmentation. The first image is the

CT scan to segment vessels. The second image shows segmentation when neither depth or scale

is added while the third image shows segmentation with added depth and scale. Without scale,

larger vessels are less likely to be segmented while without depth, segmentation is much more

scattered and less contiguous. For visualization purposes, a pixel is labeled as being a vessel if the

probability of a vessel given the pixel features is greater than 0.5.

1http://vessel12.grand-challenge.org/
2http://www2.imm.dtu.dk/projects/BRATS2012/
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Table 6.2: The top 5 results from the VESSEL12 challenge leaderboard. Anon feat learning refers
to our results.

Team Method type score
Anon feat learning feature learning + classification 0.986
LKEBChina Krissian-inspired vesselness 0.984
FME LungVessels Frangi vesselness + region growing 0.984
LKEBChina Krissian-inspired vesselness with bi-Gaussian kernel 0.981
FME LungVessels Frangi vesselness + region growing (raw) 0.981

Figure 6.3: Sample vessel segmentation results on two held-out patients.

Table 6.2 shows the top 5 performing methods on the VESSEL12 challenge. Our proposed

method tops all existing approaches. The top performing methods in the competition are largely

based on the use of Frangi [Frangi et al., 1998] and Krissian vesselness [Krissian et al., 2000] all

of which derive structural properties from the eigenvalues of the Hessian.

6.3.2 Brain tumor segmentation

Our second evaluation is performed on the BRATS2012 multimodal brain tumor segmentation

challenge. Due to BRATS2012 site maintenance, test volume labels were unavailable. Instead we

perform evaluation using leave-one-out cross validation on the training set. Two types of volumes

are evaluated: high-grade and low-grade. Each volume voxel is labeled as being one of three

classes: tumor, edema and other. We utilized our approach with one scale and two depths, with

16 bases in each depth for a total of 32 features. A 2-hidden layer network with dropout [Hinton

et al., 2012] is used to make predictions. Within each training fold, 10-fold cross validation is used

to select the dropout parameters.

Table 6.3 shows our results in comparison to the top 2 methods in the competition. We note
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Table 6.3: Comparison against the top two performers in the BRATS2012 competition. HG and
LG stand for high-grade and low-grade, respectively.

Team region mean dice coeff. region mean dice coeff.
Anon feat learning HG edema 0.485 LG edema 0.250
Bauer et al. HG edema 0.536 LG edema 0.179
Zikic et al. HG edema 0.598 LG edema 0.324
Anon feat learning HG tumor 0.470 LG tumor 0.406
Bauer et al. HG tumor 0.512 LG tumor 0.332
Zikic et al. HG tumor 0.476 LG tumor 0.339
Anon feat learning HG GTV 0.720 LG GTV 0.494

again that our comparison is not on the same held-out data. None-the-less, our results are compet-

itive with the top performing methods.

6.4 Conclusion

In this paper we proposed a domain independent approach to segmenting medical images. Our

approaches involves learning feature representation from both multiple scales and depth that are

compatible with existing classification and energy-based segmentation methods. We obtain the best

performing result on the VESSEL12 challenge and obtain competitive results on the BRATS2012

multimodal brain tumor segmentation challenge. For future work we intend to further evaluate

our approach on additional challenge problems. We also intend to study various transfer learning

scenarios between domains and modalities.
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Figure 6.4: Sample brain tumor segmentation result from a held-out test patient. The top row is the
results of our approach with the bottom row corresponding to an expert segmentation. The region
outlined in yellow is the tumor and the edema is outlined in red.
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Figure 6.5: Sample brain tumor segmentation result from a held-out test patient. The top row is the
results of our approach with the bottom row corresponding to an expert segmentation. The region
outlined in yellow is the tumor and the edema is outlined in red.
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Figure 6.6: Sample brain tumor segmentation result from a held-out test patient. The top row is the
results of our approach with the bottom row corresponding to an expert segmentation. The region
outlined in yellow is the tumor and the edema is outlined in red.
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Figure 6.7: Sample brain tumor segmentation result from a held-out test patient. The top row is the
results of our approach with the bottom row corresponding to an expert segmentation. The region
outlined in yellow is the tumor and the edema is outlined in red.

68



Flair T1 T1C T2

A
ut

om
at

ic
M

an
ua

l

Figure 6.8: Sample brain tumor segmentation result from a held-out test patient. The top row is the
results of our approach with the bottom row corresponding to an expert segmentation. The region
outlined in yellow is the tumor and the edema is outlined in red.
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Figure 6.9: Sample brain tumor segmentation result from a held-out test patient. The top row is the
results of our approach with the bottom row corresponding to an expert segmentation. The region
outlined in yellow is the tumor and the edema is outlined in red.
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Chapter 7

Conclusion

In this dissertation we proposed algorithms for learning two kinds of feature representations from

images: semi-supervised dense low dimensional embeddings and unsupervised sparse binary codes.

We then proposed a multi-scale variation of the DMP network for segmenting medical images.

These features were learned by combining a proposed two-module network with either a linear

Mahalanobis metric learner or an autoencoder, learned directly from the pixel level without the use

of hand-crafted features.

7.1 Future Work

One key area of future work is adapting the DMP architecture to alternative modalities not covered

in this thesis. Since these representations are essentially learned from scratch, it is sensible that

the same architectures and pre-processing mechanisms can be used on other modalities. Here we

briefly describe how the deep matching persuit network can be modified to handle three additional

modalities: RGB-D images and audio.

7.1.1 RGB-D Images

RGB-D cameras and images consist of RGB channels as well as an additional fourth channel,

containing depth information. Figure 7.1 illustrates sample images as well as their depth maps 1.

Research using RGB-D imaging has gained immense popularity with the release of the Microsoft

Kinect and is having impacts on pose recognition [Shotton et al., 2011], object recognition [Bo

et al., 2012a], modelling indoor environments [Henry et al., 2010] and grounded attribute learning

1Images obtained from http://www.cs.washington.edu/rgbd-dataset/
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Figure 7.1: A sample image, its depth map and a smoothed depth map. Black pixels in the second
images denote unknown depth.

[Matuszek et al., 2012], among others. A natural question to consider is whether or not feature

learning algorithms designed for RGB images can be easily adapted for additional depth informa-

tion. Lai et al. [2011] introduced a new RGB-D dataset consisting of various households objects

placed on a rotating platform. The dataset also contains annotated videos of an RGB-D camera

containing the featured objects.

For performing feature learning on RGB-D images, Blum et al. [2012] introduced the convolu-

tional k-means descriptor and performed a set of experiments illustrating that feature learning with

depth information can lead to improved performances in recognition, simply treating the depth

map as an additional fourth channel. Alternatively, Bo et al. [2012a] adapted their hierarchical

matching pursuit networks to RGB-D images by training four separate dictionaries: grayscale,

RGB, depth and surface normals. The features extracted from all dictionaries were concatenated

and used for classification.

7.1.2 Audio and Spectrograms

One of the biggest successes of deep learning algorithms have come from audio and speech. Mo-

hamed et al. [2009] utilized deep belief networks for phone recognition and later constructed the

DNN-HMM [Seide et al., 2011] and convex training modules [Deng and Yu, 2011]. Lee et al.

[2009b] utilized feature learning from spectrograms using a convolutional deep belief network

while Hamel and Eck [2010] applied deep belief networks to music genre classification. Figure

7.2 demonstrates bases learned using sparse coding from spectrograms that roughly correspond to

phonemes 2. To apply the deep matching pursuit network to audio, a spectrogram is computed

across overlapping windows, often of a few milliseconds, using a discrete Fourier transform. The

2Image obtained from https://www.ipam.ucla.edu/publications/gss2012/gss2012_10595.
pdf
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Figure 7.2: Sample bases learned using sparse coding on spectrograms.

result is a one dimensional representation across time where channels correspond to frequencies.

Thus, the DMP remains identical to that presented with the exception that the two dimensional

spatial convolutions are replaced with one dimensional convolutions across time. Pooling is per-

formed across time for feature aggregation and constructing inputs for training a second module.

One technical detail that remains is in choosing the appropriate regularizer for whitening. Re-

call that whitening regularization on images had the effect of a low-pass filter 3. Using a visualiza-

tion of the eigenspectrum produced from the eigenvalues of the convariance matrix, a regularization

may be chosen as to remove as much of the ’long tail’ as possible.

7.1.3 Final Thoughts

There are several avenues of future work from which to proceed. The first is to consider developing

experiments for large scale tasks such as web-scale annotation. For such methods to be feasible, it

would be beneficial to develop implementations of the deep matching pursuit framework to make

use of GPUs in order to speed up computation. The biggest bottleneck in computation comes

from the number of convolutions that are required in computing feature maps. Such operations

can benefit from a substantial speedup on GPUs, allowing us to apply our methods to millions of

images in a short time. In particular, given learned basis for one and two module architectures

as well as a trained autoencoder to learn binary codes, each image can be processed in an online

fashion for which their binary representations can be stored. Only saving the binary features easily

3A detailed procedure for selecting an appropriate regularization is described at http://ufldl.stanford.
edu/wiki/index.php/Data_Preprocessing
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allows us to learn representations from massive datasets. Such representations can then be used

for annotation and retrieval tasks at a web-scale. Since our architecture may also be used on audio,

the same tasks can also be performed for doing music retrieval and annotation.

In terms of medical applications, future work would also involve adapting the multiscale DMP

network to handle longitudinal data. For example, if one is given MRI scans of the brain over

different times, the growth of a tumor can be more appropriately modeled and perhaps used to try

to predict its behavior at future times. The DMP network can also be extended to extract features in

3D instead of 2D, either to model a 3D spatial region or to combine 2D features over different time

steps. Such operations are easily generalizable in the DMP framework, as we make no particular

assumptions on the dimensionality of the patches.

Finally, we hope to apply the DMP framework to additional recognition tasks or tasks based

on weak supervision. One such example could be to perform fine-grained image segmentation

using labels from a bounding box. Alternatively, we could integrate our methods with structure

segmenters for performing tasks such as extracting writing and text from images. Of great interest

would also be to develop a framework that would not only use bottom-up information for inference

but also top-down information.
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D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classifi-
cation. Arxiv preprint arXiv:1202.2745, 2012.

Dan Ciresan, Alessandro Giusti, Juergen Schmidhuber, et al. Deep neural networks segment neu-
ronal membranes in electron microscopy images. In Advances in Neural Information Processing
Systems 25, pages 2852–2860, 2012.
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