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Abstract
Background: We have previously described a method for dealing with missing data in a
prospective cardiac registry initiative. The method involves merging registry data to corresponding
ICD-9-CM administrative data to fill in missing data 'holes'. Here, we describe the process of
translating our data merging solution to ICD-10, and then validating its performance.

Methods: A multi-step translation process was undertaken to produce an ICD-10 algorithm, and
merging was then implemented to produce complete datasets for 1995–2001 based on the ICD-9-
CM coding algorithm, and for 2002–2005 based on the ICD-10 algorithm. We used cardiac registry
data for patients undergoing cardiac catheterization in fiscal years 1995–2005. The corresponding
administrative data records were coded in ICD-9-CM for 1995–2001 and in ICD-10 for
2002–2005. The resulting datasets were then evaluated for their ability to predict death at one
year.

Results: The prevalence of the individual clinical risk factors increased gradually across years.
There was, however, no evidence of either an abrupt drop or rise in prevalence of any of the risk
factors. The performance of the new data merging model was comparable to that of our previously
reported methodology: c-statistic = 0.788 (95% CI 0.775, 0.802) for the ICD-10 model versus c-
statistic = 0.784 (95% CI 0.780, 0.790) for the ICD-9-CM model. The two models also exhibited
similar goodness-of-fit.

Conclusion: The ICD-10 implementation of our data merging method performs as well as the
previously-validated ICD-9-CM method. Such methodological research is an essential prerequisite
for research with administrative data now that most health systems are transitioning to ICD-10.
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Background
We have previously developed and reported on a method
for dealing with missing data in a prospective cardiac reg-
istry database [1]. The method involves linking the pro-
spectively-derived cardiac registry data on a patient-by-
patient basis to corresponding administrative data, fol-
lowed by a process of mapping the specific clinical diag-
noses present in both the registry data and administrative
data to create a single 'final' record of baseline diagnoses
present in a given patient. Advantages of the methodology
that we developed and validated are that it is conceptually
simple (relative, perhaps, to more complex multiple
imputation procedures), it can be readily implemented in
many jurisdictions, it can be applied to non-random miss-
ing data situations such as ours, and it produces a 'com-
plete' dataset that can then be used in subsequent
statistical procedures for which data completeness is cru-
cial. Since its initial description in the literature, the
method has gone on to be widely used, both for research
conducted by our group working with data from the
Alberta Provincial Project for Outcome Assessment in
Coronary Heart Disease (APPROACH) registry [2-4], and
by other groups conducting similar research in other set-
tings [5,6].

Our previously-described method was derived using a
coding algorithm based on the 9th revision of the Interna-
tional Classification of Diseases, Clinical Modification
(ICD-9-CM) for mapping clinical diagnoses in adminis-
trative data [1]. The coding algorithm adopted elements
of the Deyo ICD-9-CM adaptation of the Charlson comor-
bidity index for administrative data. We now, however,
face a new methodological challenge as much of the
world has since introduced the 10th revision of the Inter-
national Classification of Diseases and Related Health
Problems (ICD-10).

The Tenth Revision (ICD-10) differs from the Ninth Revi-
sion (ICD-9 and ICD-9-CM) in several ways, although the
overall content is similar: First, ICD-10 has alpha-numeric
categories rather than numeric categories. Second, some
chapters have been rearranged, some titles have changed,
and conditions have been regrouped. Third, ICD-10 has
almost twice as many categories as ICD-9. Fourth, some
fairly minor changes have been made in the coding rules
for mortality [7]. ICD-10 classifies a broader collection of
diseases, injuries and causes of death, as well as external
causes of injury and poisoning. Unlike ICD-9, ICD-10
applies beyond acute hospital care, and includes a
broader collection of conditions and situations that are
not diseases, but rather risk factors to health, such as occu-
pational and environmental factors, lifestyle and psycho-
social circumstances. ICD-10 is also more adaptable than
previous versions, allowing more readily for the addition
of codes as new diseases are discovered [8]. As a result of

these enhancements, ICD-10 represents the broadest
scope of any previous ICD revision to date.

ICD-10 was adopted in our province, Alberta, Canada, on
April 1, 2002, and has been adopted by other Canadian
provinces in recent years. Many other parts of the world
such as Australia and much of continental Europe have
also been using ICD-10 for the past several years. Because
of this widespread ICD-10 uptake, there is now a pressing
need to 'translate' existing ICD-9 methodological tools to
corresponding tools for ICD-10. The process of translating
ICD-9-CM algorithms into ICD-10 is far from straight for-
ward, as many codes are not directly convertible from one
version to the other. Furthermore, it is insufficient to use
existing automated cross-walk algorithms, because many
existing ICD-9 coding sequences have more than one cor-
responding coding section in ICD-10. Recently, Quan et
al. published ICD-10 coding algorithms to define both
Charlson and Elixhauser comorbidities [9], and the meth-
odological process outlined in that work demonstrates the
complexity of the ICD-9 to ICD-10 translation process.

Here we describe the derivation and evaluation of an ICD-
10 coding algorithm for implementation of the ICD-9-
CM data merging solution first proposed by Norris et. al.
in our group [1]. Specifically, we present (1) the ICD-10
code selection process, (2) its implementation in the data
merging process, and (3) its validation. To validate the
methodology, we (a) compared the prevalences of specific
clinical risk factors when implemented in ICD-9-CM and
later in ICD-10, (b) modelled the 1-year mortality with
clinical risk factors as predictors and (c) assessed how well
the ICD-10 algorithm predicts mortality.

Methods
APPROACH Project
The Alberta Provincial Project for Outcome Assessment in
Coronary Heart Disease (APPROACH) is a province-wide
inception cohort of all adult Alberta residents undergoing
cardiac catheterization for ischemic heart disease [10].
APPROACH was initiated to study provincial outcomes of
care and facilitate quality assurance/quality improvement
for patients with coronary artery disease in Alberta. The
APPROACH database contains detailed clinical informa-
tion on adult patients with known or suspected coronary
artery disease (CAD) who undergo invasive cardiac proce-
dures. Patients in APPROACH are followed longitudinally
after cardiac catheterization, thus allowing for assessment
of subsequent procedure use (i.e. percutaneous coronary
intervention [PCI] or coronary artery bypass graft surgery
[CABG]), as well as outcomes such as mortality and qual-
ity of life. Data collection is ongoing, and as is typical in
prospective data registries, there are occasionally data
fields that are not completed in the data collection proc-
ess.
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Clinical variables
For the purposes of this data merging methodology
research, clinical data were obtained for 86,649 adults
(age ≥ 16 years) undergoing cardiac catheterization at one
of the three hospitals in Alberta performing this proce-
dure. Data elements recorded in the registry include
patients' age, sex and presence of the following risk fac-
tors: cerebrovascular disease, congestive heart failure,
chronic pulmonary disease, renal disease, type 1 diabetes,
type 2 diabetes, dialysis, hyperlipidemia, hypertension,
liver/gastrointestinal disease, malignancy, prior coronary
artery bypass graft surgery, prior angioplasty, prior lytic
therapy, prior myocardial infarction, and peripheral vas-
cular disease. Clinical indication for catheterization is also
collected at time of catheterization. It is these clinical var-
iables that are occasionally missing in the data records
produced for individual patients.

Administrative data source
We obtained corresponding administrative data for all
patients undergoing cardiac catheterization at the three
Alberta hospitals performing the procedure. Administra-
tive data records were selected for use when the admission
and discharge dates in the administrative data encompass
the date of cardiac catheterization recorded in
APPROACH. These data are coded according to the ICD-
9-CM for April 1 1995 – Mar 31 2002 (fiscal years 1995
through 2001), and coded according to the ICD-10 for
April 1 2002 – Mar 31 2006 (fiscal years 2002 through
2005). A fiscal year runs from April 1st of the calendar year
through March 31st, and the fiscal year is designated
according to the start years (i.e., fiscal year 2004 runs from
April 1st 2004 through March 31st 2005). Follow-up
started from time of catheterization and ran until Mar 31
2007, ensuring that all patients had at least 1 year of com-
plete follow-up. Hospitals are required to submit dis-
charge abstracts to the provincial Ministry of Health and
the Canadian Institute for Health Information for each
acute care hospital separation (discharge, transfer, or
death) and for major outpatient procedures. Data ele-
ments acquired from the administrative data source
included the patients' unique provincial personal health
care number, the hospital chart number, sex, birth date,
admission date, up to 16 diagnostic codes, and up to 10
procedure codes.

APPROACH Methods
Our team has previously described our data merging
methodology for dealing with missing data in
APPROACH1. We developed ICD-9-CM coding defini-
tions for each of the clinical variables identified in
APPROACH, based largely on the ICD-9-CM comorbidity
coding scheme derived by Deyo et. al. for defining the
Charlson comorbidity index in American administrative
data [11], and since then widely used by health services

researchers in Canada and elsewhere. For variables that
could not be matched to the Deyo coding algorithm in
our originally described method [1], we scanned the ICD-
9-CM for clinically appropriate codes to define specific
clinical variables – a process implemented by two
APPROACH team members (WAG & CMN), and through
consensus. SAS computer code queries each of the diagno-
sis and procedure code fields in ICD-9-CM administrative
data, thus defining presence or absence of each of the
comorbidities.

Derivation of the ICD-10 algorithm
Our first step in the translation process to develop an ICD-
10 conversion of our ICD-9-CM definitions was to deter-
mine which clinical comorbidities in APPROACH needed
de novo ICD-10 definitions, as opposed to coding defini-
tions that could be borrowed from published methodo-
logical research on ICD-10. Fortunately, important
published work has recently been completed by collabo-
rators in Australia, Canada and Switzerland who have
developed and validated a translation from ICD-9-CM to
ICD-10 of the Charlson comorbidity index (Deyo coding
algorithm) and the Elixhauser comorbidity coding
method [9]. This recently-published ICD-10 coding algo-
rithm developed through a rigorous multi-step process
permitted us to use the derived data definitions for defin-
ing presence or absence of some of the clinical diagnoses
in the ICD-10 administrative data used in our merging
process. For the other variables (see below) that are not
included in the above-mentioned ICD-10 adaptation of
the Charlson or Elixhauser methods, we proceeded with a
multi-step consensus process for code selection.

A committee of several team members determined the de
novo ICD-10 coding algorithm for the following clinical
variables: diabetes type 1, diabetes type 2, current smoker,
indication for catheterization, prior thrombolytic, prior
CABG and prior PCI. Procedure codes from the Canadian
Classification of Interventions (CCI) were used to define
the clinical variables that related to performance of a spe-
cific procedure, while ICD-10 was used to define the diag-
nosis codes. The coding consensus process involved a
total of eight individuals originating from both the
APPROACH team based in Alberta, and collaborators
working in a 'sister' initiative, the British Columbia Car-
diac Registries. All members received a package of
resource materials that included old ICD-9-CM codes pre-
viously used with detailed descriptions of all codes, the
ICD-10 manual and printouts of an ICD-10 compact disk
search for medical terms. The team then met face-to-face
and slowly worked through the manual as a group until
all the variables had been defined. Upon completion of
the face-to-face consensus process, a list of selected codes
was drafted and re-circulated to all participants for final
verification and approval.
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Implementation of ICD-10 merge
After using SAS code to query the administrative data, we
merged administrative and clinical databases by provin-
cial personal health numbers and hospital ID. If a comor-
bid condition was present in either database, our merged
(enhanced) data was considered to have that condition
present. This means that the clinical variables defined in
administrative data were used in two situations: 1) when
data were missing in APPROACH, in which case the
administrative data filled in a missing data 'hole', and 2)
to recode (i.e., enhance) clinical variables that were coded
as absent in APPROACH when they were coded as being
present in the administrative data [13] (a justifiable recod-
ing of variables given the uniformly high specificity of var-
iables coded as present in administrative data). The multi-
step data merging methodology is summarized in Box 1.

Analysis
After completing the conversion of our ICD-9-CM defini-
tions into code for use with ICD-10, we enhanced our
clinical data with administrative data. We then visually
compared the prevalence of the clinical risk factors for the
ICD-9-CM and ICD-10 methods on a plot of prevalence

by year. We also compared two logistic regression models
predicting mortality at one year based on the presence of
clinical diagnoses present at baseline: (1) A model pre-
dicting 1-year mortality based on the 1995–2001 merged
data, using ICD-9-CM coding, and (2) a model predicting
1-year mortality based on the 2002–2005 merged data
using ICD-10 coding. All clinical variables listed in Table
1, in addition to age and sex, were entered into the logistic
models with indication for catheterization also modelled
(categorized as: MI, unstable angina, stable angina, or
other indications [reference group]). To assess model per-
formance of the two data merging methods, we deter-
mined the C-statistic for each of the two models. The C-
statistic corresponds to the area under the receiver operat-
ing characteristic (ROC) curve and is a measure of model
discrimination. It has a maximum possible value of 1.0. A
value of 0.5 corresponds to a model that has no ability to
discriminate beyond chance. Ninety-five percent confi-
dence intervals were calculated for the c-statistic using
bootstrap. Lastly, we visually assessed the models' good-
ness-of-fit by plotting observed versus expected percent-
ages across analysis-defined deciles of risk. The risk groups
used in this latter graphical assessment of model perform-

Table 1: ICD-9-CM and ICD-10 coding scheme used to define variables in database

Variables ICD-9-CM code ICD-10 code

Cerebrovascular disease 430.x–438.x G45.x, G46.x, H34.0, I60.x–I69.x
Pulmonary (COPD) 490.x–496.x, 500.x–505.x, 506.4 I27.8, I27.9, J40.x–J47.x, J60.x–J67.x, J68.4, J70.1, J70.3
Congestive heart failure 428.x I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5–I42.9, I43.x, 

I50.x, P29.0
PVD 441.x, 443.9, 785.4, V43.4 I70.x–I71.x, I73.1–I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, 

K55.9, Z95.8, Z95.9
Liver/GI

Mild Liver Disease 571.2, 571.5, 571.6, 571.4 B18.x, K70.0–K70.3, K70.9, K71.3–K71.5, K71.7, K73.x, 
K74.x, K76.0, K76.2–K76.4, K76.8, K76.9, Z94.4

Peptic Ulcer Disease 531x–534.x K25–-K28.x
Moderate Severe Liver 
Disease

572.2, 572.3, 572.4, 572.8, 456.0–456.21 I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K72.1, K72.9, 
K76.5–K76.7

Renal disease 582.x, 583.x, 584.x, 585.x, 586.x, 588.x I12.0, I13.1, N03.2–N03.7, N05.2–N05.7, N18.x, N19.x, 
N25.0, Z49.0–Z49.2, Z94.0, Z99.2

Malignancy/Metastatic 
disease

140.x–172.x, 174.x–208.x C00.x–C26.x, C30.x–C34.x, C37.x–C41.x, C43.x, 
C45.x–C58.x, C60.x–C76.x, C77.x–C80.x, C81.x–C85.x, 

C88.x, C90.x–C97.x
Hypertension 401.x–405.x I10.x, I11.x–I13.x, I15.x
Hyperlipidemia 272.0, 272.1, 272.2, 272.3, 272.4 E78.0–E78.5
Dialysis V42.0, V45.1, V56.0, V56.1, V56.8, 39.27, 39.42, 

39.93–39.95, 54.98
Z49.x, Z99.2 Procedure codes: 1.KY.76, 1.OT.53, 1.PZ.21

Diabetes Type 1 250.0 – 250.9 with 5th digits 1 & 3 E10.x, E13.10, E13.12, E14.10, E14.12
Diabetes Type 2 250.0 – 250.9 with 5th digits 0 & 2 E11.x, E13.0, E14.0
Current Smoker 305.10, 305.11, 305.12 F17.x, T65.2, Z50.8, Z71.6, Z72.0, P04.2 Procedure codes*: 

5.AD.14.BK, 7.SP.10.VK
Prior MI 412.x I25.2
INDICATION

MI 410.x I21.x–I23.x
Unstable angina 411.1, 413.0, 411.89, 411.81 I20.0, I24.x
Stable angina 413.1, 413.9 I20.8, I20.9, I25.0, I25.1, I25.8, I25.9
Other None of the above codes for indication present None of the above codes for indication present

Prior CABG V45.81 Z95.1
Prior PCI V45.82 Z95.5

* Procedure codes can by found in ICD-10-CA/CCI (Canadian Classification of Health Interventions)
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ance were those that arose from the models described
above. All statistical analyses were performed using SAS
version 8.1 (Cary, NC).

Summary of Methodology
1. Determine frequencies of missing data in clinical regis-
try data;

2. Prepare clinical registry data with coding as 1 = present
and 0 = absent. If missing or unknown, code as 0;

3. Obtain corresponding administrative data records with
admission and discharge dates that encompass the proce-
dure date;

4. Prepare administrative data with coding of conditions
as 1 = present or 0 = absent based on coding algorithm;

5. Merge data from step 2 and step 4 by personal health
number and/or hospital chart number;

6. Define final variables as 1 if present in either data from
step 2 or step 4. Otherwise, code as 0;

7. Determine frequencies of final merged clinical variables
by fiscal year.

Results
Coding Algorithm
The new ICD-10 coding algorithm developed by consen-
sus is presented in Table 1, along with the original ICD-9-

CM algorithm that we previously reported [1]. The ICD-
10 coding algorithm provides several more codes than the
ICD-9-CM algorithm with changes perhaps most notable
in the coding approaches for stable and unstable angina.

Pattern of missing data
We present the pattern of missing data in the original
APPROACH dataset in Table 2. Overall there were 58.9%
of cases with at least one variable missing. The proportion
of missing data varies over the years, but the proportion of
cases with at least some missing data remains fairly con-
stant across years. For a two year period (2001 & 2002)
missing values for prior CABG and prior PCI were auto-
matically coded as "0" in the raw APPROACH data (as
opposed to being coded as unknown or missing). This
issue was recognized and adjusted such that rates of miss-
ing data for these two variables increased again in 2003.
This issue did not affect any of the other study variables.

Percentage of the clinical conditions
The data consisted of 86,649 patients who underwent car-
diac catheterization between April 1, 1995 and March 31,
2006. Table 3 provides the percentage of clinical condi-
tions derived from the ICD-9-CM coding method using
1995–2001 data and the ICD-10 coding method using
2002–2005 data. The percentage of the individual clinical
conditions tended to increase linearly for most conditions
(Figure 1). Importantly, however, there is no concerning
jump (or drop) in the percentages at the time of the
change from ICD-9-CM to ICD-10.

Table 2: Percentage (%) of cases with missing data for specific variables in the original APPROACH database

FISCAL YEAR

ICD-9-CM ICD-10

CLINICAL VARIABLES TOTAL 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

N 86,649 6,348 6,131 6,242 6,718 8,110 8,469 8,479 8,767 8,835 9,257 9,293
Dialysis (%) 11.5 4.7 2.8 2.5 3.6 4.9 2.1 24.1 11.0 20.7 21.5 18.2
Diabetes Type I (%) 6.5 4.7 2.8 2.5 3.6 2.9 0.9 14.4 8.8 7.8 10.0 9.2
Renal (Creatinine > 200 mmol/L) 
(%)

29.8 20.8 12.7 15.3 28.8 59.5 43.2 32.3 26.7 25.1 24.6 30.0

Malignancy/Metastatic Disease (%) 10.4 7.0 5.7 5.9 5.9 5.1 2.1 20.5 17.7 14.4 11.7 13.5
Prior CABG (%) 9.2 20.8 11.1 10.4 10.9 12.2 6.3 1.1 0.1 10.0 12.4 10.3
Liver/GI (%) 11.1 0.2 0.1 5.4 5.9 5.1 2.1 39.1 16.4 13.2 11.3 13.8
Prior PCI (%) 9.3 19.3 11.3 10.1 11.0 12.7 6.6 1.2 0.2 10.0 12.8 12.1
Cerebrovascular Disease (%) 10.8 4.7 2.8 2.5 3.6 4.9 2.1 11.9 11.3 21.3 23.7 20.1
PVD (%) 10.4 4.7 2.8 2.5 3.6 4.9 2.1 12.0 11.3 21.4 21.0 18.6
Pulmonary Disease (%) 9.3 7.0 5.7 5.9 5.9 5.1 2.1 17.6 14.2 11.7 11.0 12.5
Congestive heart failure (%) 14.1 20.6 17.3 8.3 10.7 16.0 10.2 12.5 10.8 17.2 17.5 14.4
Diabetes Type II (%) 6.7 4.7 2.8 2.5 3.6 2.9 0.9 14.7 8.9 7.6 10.3 10.1
Prior MI (%) 15.8 19.3 15.9 9.5 12.2 16.6 11.4 17.7 18.2 19.1 17.5 14.9
Hypertension (%) 11.2 14.9 12.4 7.8 10.8 15.1 10.9 11.5 10.0 8.7 12.2 9.3
Hyperlipidemia (%) 17.4 28.0 26.8 19.9 20.8 22.7 17.1 14.8 12.9 13.2 12.1 11.0
Proportion with one or more 
missing

58.9 48.2 45.8 39.5 49.5 72.3 58.3 74.1 60.0 64.8 60.2 61.3
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Model performance for predicting mortality
The C-statistics for the two models predicting mortality
based on the clinical variables were as follows: 0.788
(95% CI 0.775, 0.802) for the ICD-10 model versus c-sta-
tistic = 0.784 (95% CI 0.780, 0.790) for the ICD-9-CM
model. These parameters suggest comparable perform-
ance in predicting mortality for the two models (ICD-10
and ICD-9-CM). Norris et al. previously demonstrated
that the merged data performs better than the complete
set of clinical variables without use of the administrative
data merging methodology [1]. We find this to be true
again for this analysis: c = 0.745 for the complete set of
clinical variables without use of the administrative data
merging versus c = 0.780 for the complete merged data. A
subgroup analysis also showed that ICD10 performing
slightly better than ICD-9-CM for an analysis stratified by
clinical indication subgroup: For acute coronary syn-
drome (ACS) indication, ICD-10 c = 0.798 vs. ICD-9-CM
c = 0.792; For non-ACS indication: ICD-10 c = 0.757 vs.
ICD-9-CM c = 0.750.

The observed and expected percentages of death at one
year across decile-of-risk categories were plotted for each

of the two methods (Figure 2). The ICD-9-CM coding
method clearly predicts mortality and "spreads out" risk
estimates, as does the ICD-10 coding method. The ICD-9-
CM coding method estimates a spread of risk across decile
groupings ranging from 0.7% for the lowest risk decile to
18.7% for the highest risk decile; the ICD-10 coding
method produces a comparable spread of risks across
deciles ranging from 0.5% to 16.9%.

Discussion
In light of ICD-10 being introduced in 1992 by the World
Health Organization, and being adopted by numerous
countries internationally, researchers are now faced with
the methodological challenge of developing ICD-10 cod-
ing algorithms for applied health services and population
health research. ICD-10 is a new system with potential
enhancement of coded information. For that potential to
be fulfilled, however, there is a need for validated meth-
odological tools for ICD-10. This paper contributes to the
literature by demonstrating the process of taking a vali-
dated ICD-9-CM tool and adapting it (through a process
of code translation) to a validated ICD-10 tool. Similar to
the recent work of Quan et al. in this area [9], this type of

Table 3: Percentage (%) of clinical comorbidities of enhanced data from APPROACH

FISCAL YEAR

ICD-9-CM ICD-10

VARIABLE TOTAL 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

N 86,649 6,348 6,131 6,242 6,718 8,110 8,469 8,479 8,767 8,835 9,257 9,293
Mean Age (Std. Dev.) 62.6 

(12.0)
62.0 

(11.4)
62.6 

(11.5)
62.7 

(11.4)
62.7 

(11.7)
62.7 

(12.1)
62.6 

(12.1)
62.6 

(12.0)
62.6 

(12.3)
62.6 

(12.5)
62.5 

(12.4)
63.1 

(12.4)
Percent > 75 years 16.6 12.4 14.4 14.7 15.1 17.0 17.0 17.0 17.3 17.8 18.5 18.9
Percent Male 69.4 70.2 70.6 69.7 70.5 68.4 69.6 68.2 69.7 68.8 69.6 69.2
Comorbidities
Dialysis 1.6 0.8 1.3 1.5 1.7 1.4 1.7 1.9 1.8 1.7 1.8 1.4
Diabetes Type I 1.8 2.2 1.7 1.4 1.1 1.3 1.3 1.9 2.7 1.7 2.0 1.7
Renal (Creatinine > 200 mmol/L) 3.5 2.0 2.2 2.3 2.9 2.4 3.3 3.3 4.4 5.0 3.9 4.9
Malignancy 4.0 2.3 3.1 3.6 3.8 4.1 4.4 4.3 4.4 4.0 4.4 4.4
Prior CABG 5.4 7.8 7.5 7.3 8.8 7.1 5.2 4.8 4.0 3.5 3.2 3.2
Liver/GI 5.7 2.4 3.0 3.5 3.9 4.7 4.1 4.4 7.8 7.7 8.8 8.6
Prior PCI 6.5 12.0 9.8 9.3 9.1 7.2 6.3 4.9 4.8 4.3 4.1 4.3
Cerebrovascular Disease 6.7 4.9 5.1 6.3 7.2 7.3 7.2 7.2 7.1 6.9 6.8 7.0
PVD 7.8 6.1 6.3 7.7 8.4 8.6 8.3 7.9 9.1 7.1 7.4 7.8
COPD 13.6 8.0 7.3 9.7 11.1 12.9 12.7 15.1 15.2 17.7 17.2 17.0
Congestive heart failure 14.7 13.4 13.5 14.5 15.1 15.4 16.0 14.9 16.0 15.5 11.9 15.0
Diabetes Type II 19.8 15.4 15.4 18.3 18.2 18.3 19.4 20.3 21.5 22.4 21.3 23.1
Current Smoker 26.5 25.4 23.7 26.0 25.1 25.9 27.9 27.6 26.8 26.9 27.1 27.8
Prior MI 45.5 50.0 46.9 51.3 48.0 45.4 46.9 42.3 45.4 44.4 32.7 51.8
Hypertension 57.4 50.4 51.4 49.0 50.4 49.8 56.6 57.2 60.3 66.4 63.2 66.8
Hyperlipidemia 59.9 37.0 38.5 44.2 49.5 50.4 54.7 65.0 71.1 73.9 76.7 75.7
INDICATION FOR CATH
Stable Angina 31.4 29.4 30.9 29.7 31.0 29.1 27.6 28.2 34.0 34.1 33.7 35.3
Unstable Angina 25.6 31.7 29.1 27.5 26.2 26.4 27.8 26.2 24.2 24.5 27.5 14.3
MI 31.6 21.0 23.7 30.8 29.0 28.1 30.9 32.3 35.0 35.0 31.7 43.2
Other 11.5 17.9 16.4 12.1 13.7 16.4 13.7 13.4 6.8 6.5 7.1 7.2
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research is an essential prerequisite for effective health
research to proceed with administrative data.

With the substantial cost associated with producing clini-
cal registries such as APPROACH, and the commonly
associated challenge of missing clinical registry data, our
data merging method and translation to ICD-10 can be of
value to other researchers. As already mentioned, the
methodology that we have described (both ICD-9-CM
and ICD-10) is in use for applied research studies per-
formed using APPROACH data, and is also being applied
in other jurisdictions. A prerequisite for implementation
of this data merging solution is, of course, that researchers
need to gain access to available administrative data – a
process that is not always simple in the context of health
data privacy considerations and locally variable adminis-
trative data access procedures. Data access challenges
aside, however, our data merging method has numerous
advantages over other missing data solutions such as
'imputing to zero'(where a missing value is assumed to
mean that the condition is absent), complete case analy-
sis, or multiple imputation. Such alternate approaches
bring the disadvantages of, respectively, occasionally lack-
ing validity, losing cases, and introducing statistical com-
plexity. It is such consideration of advantages and
disadvantages that has led the APPROACH network to

now routinely use the data merging method described
here as its missing data solution of choice [12].

A limitation of our study is that our data merging algo-
rithm may need modification for use in other clinical data
registry initiatives if the baseline clinical variables col-
lected do not map directly to those that we define in our
coding algorithm. In instances where the coding algo-
rithm and method are modified, we caution that validity
assessments such as those presented here should be per-
formed. A second caveat is that ICD-10 coding quality
(relative to a gold standard assessment of presence/
absence of specific conditions) may vary across jurisdic-
tions, and that there may be a phenomenon of improved
validity of ICD-10 coding over time as coders become
more familiar with the new coding system. In relation to
this latter point, it would have been highly informative to
have a year of dually-coded data, with both ICD-9-CM
and ICD-10 codes assigned to individual cases; such a
data resource would have permitted a truer test of the
comparability of the ICD-9-CM vs. ICD-10 coding algo-
rithms. In this regard we emphasize that the logistic
regression analysis that we did is not in and of itself proof
of seamless transition and validation across algorithms.
However, the logistic regression findings, in combination
with the relatively smooth prevalence transitions pre-

Percentage (%) of comorbidities defined by ICD-9-CM and ICD-10 coding schemes by yearFigure 1
Percentage (%) of comorbidities defined by ICD-9-CM and ICD-10 coding schemes by year.
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sented in Table 3 suggest a reasonable performance. Inter-
pretation of prevalence trends is challenging and
somewhat difficult because of real clinical trends over
time and also because of challenges such as evolving clin-
ical definitions (e.g. the MI definition).

Despite these limitations, this paper presents the impor-
tant methodological development work that health
researchers need to undertake in coming years as a
number of validated ICD-9-CM methodological tools for
administrative data now need to be translated to ICD-10
so that productive and important health research can con-
tinue to be performed.

Conclusion
In this instance, we demonstrate the successful translation
of an ICD-9-CM coding algorithm to ICD-10 for dealing
with missing data in a clinical registry initiative. Our work
reveals a seamless transition to ICD-10 for our methodo-
logical tool, and provides a template for others to follow
as they undertake similar work.
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