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Abstract

The effectiveness of heuristics search is influnced by the accuracy of the heuristic values.
State space abstractions have been proved to be effective for generating admissible heuris-
tics. In this paper, A general definition for abstractions is given. As a demonstration we
apply additive abstractions to the domain of the 17 pancake puzzle. Experimental results
show that using heurisitcs defined by additive abstractions combined with state-of-the-art
techniques, the number of nodes generated for the 17 pancake puzzle is reduced by over
2000-fold, compared to the best result to date. Comparative results are also given to show
a new approach to enhance additive heuristic values by checking for infeasibility.

1. Introduction

In this paper, we present a formal definition for space abstractions based on graph homo-
morphisms. This definition provides a generic methodology for generating admissible and
consistent heuristics on a wide variety of problems in combinarial search and optimization.
It is sufficiently general to cover many previous definitions of abstractions that generate ad-
missible heuristics, including patterns (Culberson & Schaeffer, 1994, 1998; Felner, Korf, &
Hanan, 2004), domain abstractions (Hernádvölgyi & Holte, 2000) and variable projections
(Edelkamp, 2001).

Our definition also covers some properties that are not covered by previous definitions.
One property is that to be additive, previous definitions need to partition state variables
into disjoint groups, while by our definition, additive abstractions can be independent of
state variables. Hence our definition is more general than many previous definitions. In
addition, we also define infeasibility in additive abstractions and introduce a new approach
to enhance additive heuristic values by checking for infeasibility.

As a demonstration we apply additive abstractions to the domain of the 17 pancake
puzzle. Our experimental results show that using heurisitcs defined by additive abstractions
combined with state-of-the-art techniques, the number of nodes generated for the 17 pancake
puzzle is reduced by over 2000-fold, compared to the best result to date.

The remainder of the paper is organized as follows. An overview of previous methods to
define and use abstractions is given in Section 1. Section 2 presents formal general definitions
for abstractions. Section 3 shows how to apply additive abstractions to the domain of the
pancake puzzle. Section 4 explores a new method to enhance additive heuristic values by
checking for infeasibility.
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1.1 Heuristic Search

Heuristic search algorithms such as IDA* (Korf, 1985) visit states guided by the cost function
f(n) = g(n) + h(n), where g(n) is the actual distance from the initial state to the current
state n. To guarantee finding optimal paths to the goal, h(n) should be an admissible
heurisitc function estimating the cost from n to a goal state. Therefore the effectiveness of
heuristic search is influenced by the accuracy of the heuristic values.

1.2 Heuristics defined by abstractions

State space abstractions are effective to generate admissible heuristics. Figure 1 presents
the method to define an abstract space for the 3 × 3 sliding tile puzzle. Considering only
the blank tile’s position, we create an abstract space consisting of nine abstract states.
We assume that the abstract goal is the abstract state with the blank tile on the top-left
position. For each abstract state, we count the minimum total moves starting from this
abstract state to the abstract goal. For example, in Figure 1, it takes at least 2 moves for
abstract state e to reach the abstract goal.

Figure 1: The abstract space of the 3 × 3 puzzle

We may look up the heuristic values from different abstractions and take the maximum
value over all such lookups. Take a state of the 3 × 3 sliding tile puzzle for instance. We
compute the heuristic value for state A as shown in the top-left part of Figure 2. First we
define two abstractions. Then we count the minimum total moves from one abstract state
to the corresponding abstract goal. The first abstraction is defined by only considering the
positions of blank tile, tiles 1, 3, 5 and 7. The second abstraction is defined by considering
the postitions of blank tile as well as tiles 2,4,6 and 8. As shown in Figure 2, we use arrows
to depict the moves of the blank. Abstract states A1 and A2 are corresponding abstract
states for state A in two abstract spaces. Likewise, abstract goals g1 and g2 are two abstract
goals in these two abstract spaces. We compute that the minimum number of total moves

2



Figure 2: Get the maximum heuristic value for state A. It takes at least 16 moves from
abstract state A1 to abstract goal g1 and it takes at least 12 moves from abstract
state A2 to abstract goal g2. So the maximum heuristic value h=max(16,12)=16.

from A1 to g1 is 16 and that from A2 to g2 is 12. Therefore, the heuristic value of state A
is 16, the maximum of these two heuristic values.

1.3 Additive Abstractions

Instead of taking the maximum of different heuristic values, Edelkamp (2001) instroduced
additivity. He presented the definition of disjoint pattern databases and claimed that dis-
joint pattern databases add estimates according to different abstractions such that the
accumulated estimates still provide a lower bound heuristic. Edelkamp also studied the
effect of pattern databases in the context of deterministic planning. Korf and Felner (2002)
went into more detail about the additive heuristics and explored its applications in the
domains of combinatorial puzzles. They partition the problems into disjoint sub-problems,
so that the costs of solving each sub-problem can be added together without overestimat-
ing the cost of solving the original problem. Korf and Felner (2002), Felner et al. (2004)
successfully applied this technique to different domains, such as the Sliding Tile Puzzle,
Towers of Hanoi Problem (4-peg Towers), Vertex Cover and so on.

To understand the concepts introduced so far, let us still consider state A of 3×3 sliding
puzzle as shown in Figure 3. Suppose that to create two additive abstractions for the 3× 3
sliding tile puzzle, we partition the tiles into two disjoint groups. Group I includes distin-
guished tiles 1,3,5,7 and group II includes distinguished tiles 2,4,6,8. Then only considering
the blank tile and the distinguished tiles in each group, we solve each subproblem. If a move
involves distinguished tiles, we call it a distinguished move. Otherwise, we call the move
a don’t-care move. Instead of counting all moves from an abstract space to the abstract
goal, we only count the distinguished moves to compute additive heuristics. To solve the
subproblem shown in the left part of Figure 3, we need at least 5 moves of distinguished
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Figure 3: Get the additive heuristic value for state A. It takes at least 9 distinguished moves
from abstract state A1 to abstract goal g1 and it takes at least 5 moves from
abstract state A2 to abstract goal g2. So the additive heuristic value h=9+5=14.

tiles(tiles in group I ). Likewise, we need at least 9 moves of distinguished tiles(tiles in group
II ) to solve subproblem in the right part of Figure 3.

Since we only count the minimum number of moves of the distinguished tiles in each
disjoint goup, we may add the values to get an additive admissible heuristic.

One limitation of additive heuristics defined in (Korf & Felner, 2002; Felner et al., 2004)
is that they need to divide state variables into disjoint groups and the heuristic value is
computed by counting the minimum number of moves of the tiles in each group that are
required to get those tiles to their goal positions. Therefore, this technique cannot be
applied to other domains in which the operators can move more than one tile at each time.

Take the pancake puzzle for example. In the N -pancake puzzle, a state is a permutation
of N tokens(0, 1, ..., N − 1). A state has N − 1 successors, with the kth successor formed
by reversing the order of the first k + 1 positions of the permutation (1 ≤ k ≤ N). For
example, in the four pancake puzzle shown in Figure 4, a state s has three successors,
which are formed by reversing the order of the first two tiles, first three tiles and all four
tiles, respectively. As each operator moves at least two tiles, we cannot achieve additive
abstractions by previous definitions.

Figure 4: In the four pancake puzzle, each state has three successors
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2. General Definitions

In this section, we give definitions and lemmas, and we discuss their meanings. The proofs
are given in Appendix A

2.1 State Space

A state space is a weighted directed graph S = 〈T,Π, C〉 where T is a (usually finite) set of
states, Π ⊆ T × T is a set of directed edges (ordered pairs of states) and C : Π −→ N =
{0, 1, 2, 3, . . . } is the edge cost function.1 In typical practice, S is implicitly defined by some
combinatorial search problem. For example, T may be defined by the set of all possible
assignments to a set of state variables, and Π and C will depend on the operations on the
variable sets.

We define a path from t to g, where t, g ∈ T , by ~p = ~p(t, g) = 〈π1, . . . , πn〉, πj ∈ Π
where πj = (tj , tj+1), 1 ≤ j ≤ (n− 1) and t1 = t, tn+1 = g. Note the use of superscripts to
distinguished states and edges within a state space. We say the length of ~p is the number
of edges n and define the cost C(~p) =

∑n
j=1

C(πj).

An instance of a path problem is a triple 〈S, t, g〉, where t, g ∈ T with the objective of
finding the minimum cost OPT(t, g) = min{C(~p) | ~p = ~p(t, g)}, or in some cases finding
~p = ~p(t, g) such that C(~p) = OPT(t, g).

Note that this paper is restricted to path problems, wherein the start and goal states are
explicitly stated, and we only need to optimize the path between them. We expect that the
results may be extended to more general combinatorial search problems where the goal g is
not explicitly given, but instead must be recognized by satisfying some implicit conditions.

2.2 Abstractions

An Abstraction System is a triple 〈S,A,Ψ〉 where S = 〈T,Π, C〉 is a state space, A =
{Ai, 1 ≤ i ≤ k} is a set of abstract spaces defined below, and Ψ = {ψ1, . . . , ψk} is a set of
graph homomorphisms2 extended to include edge cost ψi : S −→ Ai.

An abstract space is a weighted directed graph defined by a four-tuple Ai = 〈Ti,Πi, Ci, Ri〉.
Ti, the set of abstract states, is usually equal to ψi(T ), but it can be a superset. Likewise,
Πi, the set of abstract edges, is usually equal to ψi(Π) = {(ψi(t

1), ψi(t
2)) | (t1, t2) ∈ Π}

but it can be a superset. We will frequently use a shorthand notation tji = ψi(t
j) for the

abstract state in Ti corresponding to tj ∈ T , and πj
i = ψi(π

j) for the abstract edge in Πi

corresponding to πj ∈ Π.

An abstract space has two costs associated with each πi ∈ Πi, the primary cost Ci :
Πi −→ N and a residual cost Ri : Πi −→ N . To guarantee admissibility, we require the
following condition to hold for all 1 ≤ i ≤ k

∀π ∈ Π, C(π) ≥ Ci(πi) +Ri(πi) (1)

1. Real-valued edge costs are permissible provided conditions are imposed to ensure that the set of paths
connecting any given pair of states has a well-defined minimum cost.

2. A graph homomorphism f from a graph G = (V, E) to a graph G′ = (V ′, E′), written f : G → G′ is
a mapping f : V → V ′ from the vertex set of G to the vertex set of G′ such that (f(u), f(v)) ∈ E′

whenever (u, v) ∈ E
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As shown in Figure 2 and Figure 3, there are two types of edges in the abstract space,
representing distinguished moves and don’t-care moves. Here we generalized the edge costs
according to these two types of moves. Note that previous abstraction definitions often
ignored the cost of the don’t-care moves. The reason for considering the cost of don’t-care
moves will become apparent when we talk about eliminating infeasible costs in Section 4.

Likewise, each abstract path ~pi = 〈π1
i , . . . , π

n
i 〉 in Ai has a primary and residual cost:

Ci(~pi) =
∑n

j=1
Ci(π

j
i ), and Ri(~pi) =

∑n
j=1

Ri(π
j
i ).

Because Πi ⊇ ψi(Π) the following is ensured.

Lemma 2.1 For any path ~p = ~p(t, g) in S, there is a corresponding abstract path ψi(~p)
from ti to gi in Ai. Also, C(~p) ≥ Ci(ψi(~p)) +Ri(ψi(~p)).

For example, let us consider state A shown in Figure 2. Any solution path for state A
in the original space is also a solution path for pattern A1 and pattern A2 in the abstract
spaces. By holding the condition (1) for all edges, the cost of the solution path in the
original space is larger than or equal to the sum of the primary cost and the residual cost
of the abstract solution path in the abstract space.

Define the optimal abstract cost from abstract state ti to abstract state gi by OPTi(ti, gi) =
min{Ci(~pi)+Ri(~pi) | ~pi is an abstract path in Ai from ti to gi}. Note that in this definition,
~pi is not required to be the image, ψi(~p), of a path, ~p = ~p(t, g), in S. Given a goal state g,
the heuristic of state t derived from abstract space Ai is hi(t) = OPTi(ti, gi). The follow-
ing two lemmas state that each individual abstraction generates admissible and consistent
heuristics, respectively.

Lemma 2.2 ∀t, g ∈ T,OPT(t, g) ≥ OPTi(ti, gi).

Lemma 2.3 ∀t1, t2 ∈ T,OPTi(t
1
i , gi) ≤ OPT(t1, t2) + OPTi(t

2
i , gi).

Proof:

By the definition of OPTi(ti, gi), OPTi(t
1
i , gi) ≤ OPTi(t

1
i , t

2
i ) + OPTi(t

2
i , gi).

By lemma 2.2, OPT(t1, t2) ≥ OPTi(t
1
i , t

2
i ).

Hence, OPTi(t
1
i , gi) ≤ OPTi(t1, t2) + OPTi(t

2
i , gi).

2.2.1 Relations with Prevous definitions of abstractions

The use of abstractions to guide search is a well-known concept in Artificial Intelligence.
In fact, the earliest attempts to solve problems faster by relaxing the original problem
definition were used to solve planning problems. Prieditis (1993) extended and unified
these early definitions of abstractions that generate admissible heuristics. Our definition is
similiar to the work of Prieditis (1993). And it is sufficiently general to cover many previous
defintions of abstractions that generate admissible heuristics, including patterns (Culberson
& Schaeffer, 1994, 1998; Felner et al., 2004), domain abstractions (Hernádvölgyi & Holte,
2000) and variable projections (Edelkamp, 2001). In the following, we present previous
work on abstractions. In addition, we take simple examples to explain how our definitions
cover domain abstraction and variable pojection.

Culberson and Schaeffer (1994, 1998) introduced a pattern as the partial specification
of a state and claimed that the cost of the pattern induced by the state is a lower bound
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on the cost of the state. A pattern database is a heuristic function in the form of a lookup
table which stores the cost of optimal solutions for instances of subproblems. Using the
corner and fringe databases of the 15 sliding tile puzzle, they demonstrated a 1038-fold
improvement in the number of nodes generated and reduced the running time by a factor
of twelve, compared to the manhattan distance heuristic. Pattern databases were also the
key breakthrough that enabled Korf (1997) to solve Rubik’s Cube optimally.

PDBs are large and time-consuming to build, therefore they are best suited to situations
where many problem instances are to be solved. There are circumstances in which the cost
of building an entire PDB cannot reasonably be amortized over a large number of problem
instances. In this case, it is better to minimize the time and space overhead of using
a PDB by computing only those entries of the PDB that are actually needed to solve a
given problem instance. The idea of on-demand calculation of PDB entries by hierarchical
heuristic search was introduce by Holte, Perez, Zimmer, and MacDonald (1996).

Hernádvölgyi and Holte (2000) first defined domain abstraction which extends the notion
of pattern in the pattern database work (Culberson & Schaeffer, 1994, 1998). The key
property of domain abstraction is that they are homomorphisms and therefore the distance
between two states in the original space is always greater than or equal to the distance
between the corresponding abstract states. Take the four pancake puzzle for example.
The abstraction is defined as shown in Figure 5. While the original state space of the
four pancake puzzle has twenty-four states, the abstract state space has only six abstract
states: (0,0,2,2), (0,2,0,2), (0,2,2,0), (2,0,0,2), (2,0,2,0), (2,2,0,0), Likewise, our definitions

Domain= 0 1 2 3
Abstract= 0 0 2 2

Figure 5: Domain Abstraction for the four pancake puzzle

of abstractions are also defined as graph homomorphisms. So our definitions cover the
domain abstraction.

The abstraction defined by Edelkamp (2001) is achieved by projecting the state repre-
sentation (Variable Projection). Edelkamp applied previous progress of heuristic search in
finding optimal solutions to planning problems by devising an automatic abstraction sheme
to create admissible domain-independent memory-based heuristics. Variable Projection is
done by ignoring the value of some variable in the state representation and removing all
references to the variable in the operators.

Edelkamp applied this method to planning problems, since planning states are inter-
preted as conjuncts of atoms whose values are either true or false. For the sake of simplicity,
let’s take the 4 Arrow Puzzle(Korf, 1980) for example. Assume that in the state space of
the 4 Arrow Puzzle, each state represents the directions of 4 arrows and each arrow has
two directions, up and down. In the state description, 0 represents up and 1 represents
down. For example, the goal state (↑, ↑, ↑, ↑) is represented by (0, 0, 0, 0) and the start state
(↓, ↓, ↑, ↓) is represented by (1, 1, 0, 1). We define four operators as follows.

operator A: (v1, v2, v3, v4) → (v1, v2, v3, v4)
operator B: (v1, v2, v3, v4) → (v1, v2, v3, v4)
operator C: (v1, v2, v3, v4) → (v1, v2, v3, v4)
operator D: (v1, v2, v3, v4) → (v1, v2, v3, v4)
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In the original state space (shown in Figure 6), Operator A flips Arrow 2, Operator B
flips Arrow 1 and Arrow 2, Operator C flips Arrow 2 and Arrow 3, and Operator D flips
Arrow 3 and Arrow 4.

Figure 6: The original space of the 4 Arrow Puzzle

In our example, variable projection is done by ignoring Arrow 2 and removing all ref-
erences to Arrow 2. Therefore, our abstract goal is (0,0,0) and the start state is (1,0,1).
Abstract operators are defined as follows.

abstract operator A’: (v1, v3, v4) → (v1, v3, v4)

abstract operator B’: (v1, v3, v4) → (v1, v3, v4)

abstract operator C’: (v1, v3, v4) → (v1, v3, v4)

abstract operator D’: (v1, v3, v4) → (v1, v3, v4)

Figure 7: The abstract space achieved by variable projection
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This means that in the abstract space (shown in Figure 7), Operator A’ does not flip
any arrow. Operator B’ flips Arrow 1, Operator C’ flips Arrow 3, and Operator D’ flips
Arrow 3 and Arrow 4.

Note that as shown in Figure 6 and Figure 7, the abstraction is a graph homomorphism
from the original state space to the abstract space. Therefore, it is covered by our definitions
for abstractions.

2.3 Additive Abstractions

We say that Ψ is additive if ∀π ∈ Π, C(π) ≥
∑k

i=1
Ci(πi).

Define C∗

i (ti, gi) = min{Ci(~pi) | ~pi is an abstract path from ti to gi}, the minimum
primary cost of an abstract path from ti to gi. Given a goal state g, the heuristic of state t
defined by k additive abstractions is h(t) =

∑k
i=1

C∗

i (ti, gi).
To understand the definition of C∗

i (ti, gi), let us consider state A shown in Figure 3. To
solve the subproblem shown in the left part of Figure 3, we need at least 9 distinguished
moves. Likewise, we need at least 5 distinguished moves to solve subproblem in the right
part of Figure 3. Therefore C∗

1 = 9, C∗

2 = 5, and h(A) = 9 + 5 = 14.

Lemma 2.4 If Ψ is additive, then OPT(t, g) ≥
∑k

i=1
C∗

i (ti, gi).

Proof: Assume that OPT(t, g) = C(~p), where ~p = ~p(t, g) = 〈π1, . . . , πn〉. Therefore,
OPT(t, g) =

∑n
j=1

C(πj). Since Ψ is additive, it follows that
∑n

j=1
C(πj) ≥

∑n
j=1

∑k
i=1

Ci(π
j
i ) =

∑k
i=1

∑n
j=1

Ci(π
j
i ) ≥

∑k
i=1

C∗

i (ti, gi)

Lemma 2.4 proves that the additive heuristic is admissible. And the following lemma
indicates that the additive heuristic is consistent.

Lemma 2.5 ∀t1, t2 ∈ T,
∑k

i=1
C∗

i (t1i , gi) ≤ OPT(t1, t2) +
∑k

i=1
C∗

i (t1i , gi).

Proof: By the definition of C∗

i (ti, gi), ∀t
1, t2 ∈ T,C∗

i (t1i , gi) ≤ C∗

i (t1i , t
2
i ) + C∗

i (t2i , gi).

It follows that
∑k

i=1
C∗

i (t1i , gi) ≤
∑k

i=1
C∗

i (t1i , t
2
i ) +

∑k
i=1

C∗

i (t2i , gi).

Since Ψ is additive, by Lemma 2.4, OPT(t1, t2) ≥
∑k

i=1
C∗

i (t1i , t
2
i ).

Thus, ∀t1, t2 ∈ T ,
∑k

i=1
C∗

i (t1i , gi) ≤ OPT(t1, t2) +
∑k

i=1
C∗

i (t2i , gi).

2.3.1 Relations with previous definitions of additivity

Most previous methods for additivity (Edelkamp, 2001; Korf & Felner, 2002; Felner et al.,
2004) are to partition the state variables into disjoint groups to create additive abstractions.
We can generalize these methods by our definition as follows.

Suppose some variable subset X ′ can be identified such that each edge changes at most
one variable in X ′. Then given a set of abstractions ψi, we partition X ′ into Pi. In the ith

abstract state space, if an edge corresponds to a change of a variable in Pi, the primary cost
of this edge is C, where C is the minimum cost of its preimages in the original state space;
otherwise, the primary cost of this edge is zero. The way to see this method application on
the 15 sliding tile puzzle is to give all variables not in the partition Pi the domain {∗}. This
means that the state space only considers the values of the identified variables. Once we
partition the state variables into disjoint groups, for each abstract edge πi in Πi, we define
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the primary cost and the residual cost as follows.

Ci(πi) =







min{C(π) : ψi(π) = πi}, If πi correponds to a change
of a variable in Pi

0, Otherwise

Since state variables are partitioned into disjoint groups, ∀π ∈ Π, C(π) ≥
∑k

i=1
Ci(πi).

Hence additive abstractions are defined.

As we have mentioned in Section 1.3, one limitation of additive heuristics defined in
(Korf & Felner, 2002; Felner et al., 2004) is that this technique cannot be applied to other
domains in which the operators can move more than one state variable at each time. While
by our definition, we can define additive abstraction more freely for more domains, such as
the domain of the pancake puzzle. In the next section, we will investigate the application
to the pancake puzzle in detail.

3. Applications

According to our definition, the key point to apply additive abstractions lies in what form in
the definition of the primary cost Ci. Based on this rule, we can define additive abstractions
by several methods for different domains. As a demonstration, here we show how to apply
additive abstractions to the domains of the TopSpin puzzle and the pancake puzzle. For
the sake of simplicity, we assume that the cost of each edge in the original state space is
one. In the following sections, we assume that a state t in T is represented by a vector of
state variables X0, ..., Xn−1. For example, in the pancake puzzle, there is a variable for each
physical tile with a value that indicates the position occupied by that tile. Given ψi and a
state t = (t(0), ..., t(n−1)) where t(j) is the value assigned to the variable Xj , t(j) ∈ Dj(0 ≤
j ≤ n− 1) and Dj is the domain for varialbe Xj, an abstract state ti=(ti(0), ..., ti(n− 1)),
where ti(j) ∈ ψi(Dj) and 0 ≤ j ≤ n− 1.

3.1 Cost Splitting

The generalized cost splitting method can be applied to any puzzle of this type, even if
the operations are not of uniform size, for example the pancake puzzle. For an operation
involving k state variables, each state variable changed is charged 1/k of the operation cost.
Given a partition of state variables, in a given abstraction each distinguished state variable
is charged 1/k of the operation cost when involved in an operation on k state variables. To
avoid floating point errors, if the set of operation sizes is {k1, ..., km}, then we compute L
=lcm{k1, ..., km}. Each operation then costs L and the cost of changing one state variable
by an operation changing the values of ki state variables is L/ki. ... ?

3.2 Fixed Reference

The key idea of this method is as follows. For each abstract edge πi in Πi, we define fixed
reference to some value in the domain. Then in the abstract space, we only count the cost
of the edge that assigns the fixed value to an identified state variable, although each edge
may correspond the change of many state variables. So we define the primary cost as follows.

10



Ci(πi) =







1, if the fixed value is assigned
to an identified state variable.

0, Otherwise.

And we require that the set of identified state variables are disjoint in all abstract state
space. This condition guarantees that ∀π ∈ Π, C(π) ≥

∑k
i=1

Ci(πi).

3.2.1 Experimental Results on the Pancake puzzle

We have tried on the pancake puzzle to create additive PDBs by all ideas mentioned in
preceding sections. Our theory proves that they are admissible additive heuristics, but
unfortunately for the pancake puzzle domain most of them turn out to be poor heuristics,
which are weaker than taking the maximum (using the same abstractions). We believe all
these ideas are worth trying for other domains. But to our knowledge, the method of Fixed
Reference is the most effective so far for the pancake puzzle.

In this section, using heuristics based on additive abstractions defined by Fixed Refer-
ence, we present the experimental results on the 17 pancake. We then create additive PDBs
by the following steps.
1. Partition the state variables into k disjoint groups P1, ..., Pk . In each abstract space, give
all variables not in the partition Pi the domain {∗}. This means that the state space only
considers the values of the identified variables.
2. For each edge πi in Πi, we define the primary cost and the residual cost

Ci(πi) = Ci(t
1
i , t

2
i ) =







1, If in t2i , the value 0 is assigned
to a distinguished state variable.

0, Otherwise

Ri(πi) = 1 − Ci(πi).
In the pancake puzzle, the value 0 represents the first position. We use the value 0 to define
C and R because the first position has two special properties. First, any state variable
can be assigned to be 0. Second, the value 0 is assigned to different state variables after
applying any operator.

By the above definitions of C and R, for all 1 ≤ i ≤ k, ∀π ∈ Π, C(π) ≥ Ci(πi) +Ri(πi)
and C(π) ≥

∑k
i=1

Ci(πi). Therefore, our theory proves that they are admissible additive
heuristics.

Although our theory is not specific to PDBs, in our experiments we will use PDBs as an
efficient way to implement the calculation of abstract distances. We compare our implemen-
tation of additive pattern databases for the 17 pancake puzzle. Note that the best results
were reported in (Felner, Zahavi, Holte, & Schaeffer, 2006), where the average number of
nodes generated over 30 instances of the 17 pancake puzzle is 223,305,375. Combined with
the techniques of dual lookups3 and dual search4, our results are over 2000-fold improvement
over the best results reported in (Felner et al., 2006).

3. Dual lookups means that for any given state s, the heuristic of s, H(s) = max(H(s),H(sd)), where sd is
the dual state of s.

4. Dual search means that the search algorithm might decide to jump to the regular side or to the dual
side, depending on the larger heuristic values of s and sd. In (Felner et al., 2006), they call this the jump

if larger(JIL) policy.
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We apply a compact mapping for each pattern database. For example, a pattern of 4
tiles of the 17 pancake puzzle needs an array of size 17 × 16 × 15 × 14. As described in
(Felner et al., 2004), this compact mapping doesn’t waste space, but computing the indices
is more complex and therefore consumes more time.

Our search algorithms are IDA∗ or DIDA∗ written in C. To propagate inconsistent
heuristic values during search, our search algorithm also applies the bidirectional path
max(BPMX) method, which is introduced in the paper (Felner, Zahavi, Schaeffer, & Holte,
2005).

Table 1 shows comparative results over 1000 random instances of the 17-pancake prob-
lems, whose average solution length is 15.77. The Algorithms column indicates the heuris-
tic search algorithm. The PDB column shows the pattern databases used to generate
heuristics. The H column is the average heuristic value of 1000 initial instances. The
Nodes column shows the average number of nodes generated to find an optimal solution.
The Sec column gives the average amount of CPU time that was needed to solve a problem
on a machine with AMD Athlon(tm) 64 Processor 3700+ with 2.4G clock rate and 1G
memory. The Memory column indicates the size of each set of Pattern Databases.

Algorithms PDB H Nodes Sec Memory

DIDA∗ Single7 10.858 124,198,462 37.713 98,017,920

ADD4-4-4-5 12.533 14,610,039 4.302 913,920
IDA∗ ADD5-6-6 13.393 1,064,108 0.342 18,564,000

ADD3-7-7 13.423 1,061,383 0.383 196,039,920

Table 1: 17 pancake puzzle results

The first data row is the result based on a PDB on the seven rightmost tiles. This is
the best result using previous state-of-the-art techniques.

The last three rows are results by standard IDA∗ using heuristics from three sets of
additive PDBs whose partitionings are shown in Figure 8, respectively.

4-4-4-5 partitioning 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5-6-6 partitioning 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3-7-7 partitioning 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8: Different partitionings for the 17 pancake puzzle

It is clear that using our additive PDBs results in very significant reduction in nodes
generated over using a single large pattern database. Note that additive PDB with 4-4-4-
5 partitioning uses only one percent memory but reduces the number of nodes generated
a factor of 10 over a single pattern database with state-of-the-art techniques. The most
important thing is that since there are only 913, 920 entries in the databases, the time to
compute ADD4-4-4-5 PDBs is much smaller compared to other PDBs. (Holte, Grajkowski,
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& Tanner, 2005) mentioned that the disadvantages of using pattern databases is the cost
of building and storing entire pattern databases. For ADD 4-4-4-5, these disadvantages
disappear, to some extent, compared to other PDBs.

Algorithms PDB H Nodes Sec Memory

IDA∗ ADD4-4-4-5 12.784 521,713 0.279 913,920
with dual lookups ADD5-6-6 13.594 60,002 0.037 18,564,000

ADD3-7-7 13.628 52,237 0.036 196,039,920

DIDA∗ ADD4-4-4-5 12.784 368,925 0.195 913,920
(dual lookups) ADD5-6-6 13.594 44,618 0.028 18,564,000
(dual search) ADD3-7-7 13.628 37,155 0.026 196,039,920

Table 2: Use DIDA* with additive PDBs to solve 1000 random instances of 17 pancake
puzzle

In the following experiments as shown in Table 2 , we apply DIDA∗. During the search
of DIDA∗, we either combine additive PDB with dual lookups, or combine additive PDB
with dual lookups and dual search.

The first three rows are results using heuristics with dual lookups from three sets of
additive PDBs whose partitionings are shown in Figure 8, respectively.

The last three rows are results using dual lookups and dual search using heurisitcs from
additive PDBs of 4-4-4-5 partitioning, 5-6-6 partitioning and 3-7-7 partitioning, respectively.

Combining our additive PDBs with state-of-the-art techniques results in a more signif-
icant reductions in nodes generated. As shown in Table 2, IDA* with dual lookups from
PDBs of ADD 5-6-6 uses only 1/5 size of memory, but it reduces the number of nodes
generated by over 2000-fold, compared to the result of single large PDB shown in the first
row of Table 1. Likewise, DIDA∗ with ADD 5-6-6 gives an over 1000-fold improvement
over DIDA∗ with single large PDB(shown in the first row of Table 1), while the PDB size
of ADD 5-6-6 is only one-fifth of that of the single PDB.

The Largest part of our simplest additive is 5, while the previous method used MAX of
one 7 set according to preliminary tests (Felner et al., 2006). Furthermore, our 5 set is a
subset of their 7, so this is the best of the five’s and the other parts (which are actually 4’s)
are unlikely to improve on it much. But our 5 will clearly carry much less info than their
7. Thus, MAX over our partition will under perform the single 7, and so will certainly far
under perform our additive.

Note that the memory reqirements increase as the partitions use larger patterns, but
the improvement of the running time is not increased accordingly. For example, ADD 3-
7-7 uses ten times size of memory to store the PDBs, but the running time is almost the
same, compared to the results of ADD5-6-6. This is because there is little room left for
an improvement over ADD5-6-6. Meanwhile, since we are using compact mapping funtion
during the search, it takes more time to compute for larger PDB like ADD3-7-7.
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4. Infeasible Additive Values

In this section, we describe a new approach to improve the quality of the heuristic values
defined by additive abstractions. Basically, we improve the quality of additive heuristic
values by identifying and increasing infeasible values.

What is an infeasible value? For a state t, the heuristic value h is infeasible if it can
be proved that the cost of the solution for t cannot be h. Take the well-kown Sliding Tile
Puzzle for an example, assuming that the manhattan heuristic value for state t is MD(t).
If MD(t) is even, then any odd number is an infeasible value.

In the following sections, we use an example to illustrate what is an infeasible heuristic
value defined by additive abstractions. Then we give the formal definition of the infeasible
additive values. Finally we show the comparative results with/without checking for the
infeasible values on the 15 sliding tile puzzle.

4.1 Simple Example

To detect infeasible additive values, we use C ∗ and R∗. As defined in Section 2.3, C∗ is the
minimum primary cost of an abstract path. Here we refer to R∗ as the minimum residual
cost among the abstract paths, each of which has primary cost of C ∗. The formal definition
of R∗will be given in Section 4.2.

Let us consider the example state A introduced earlier in Figure 3. We can compute
values of C∗ and R∗ for two subproblems.

To solve the subproblem shown in the left part of Figure 3, we need at least 9 moves
of the distinguished tiles(tiles in groug I) and at least 9 moves of non-distinguished tiles
(tiles in group II). Likewise, to solve the subproblem shown in the right part of Figure
3, we need at least 5 moves of the distinguished tiles(tiles in groug II) and at least 7
moves of non-distinguished tiles (tiles in group I). Therefore, by definitions of C ∗ and R∗,
(C∗

1 , R
∗

1) = (9, 9), (C∗

2 , R
∗

2) = (5, 7).

Hence the additive heuristic value of state A is the sum of C ∗

1 and C∗

2 , assuming that
there is a solution path involving 9 moves of tiles in group I and 5 moves of tiles in group
II. However, from the values of C∗

1 and R∗

1, we note that if a path involves only 9 moves of
tiles in group I, we need at least 9 moves of tiles in group II. Then there is not a solution
path involving 9 moves of tiles in group I and only 5 moves of tiles in group II. Therefore,
the additive heuristic value ΣC∗ = C∗

1 +C∗

2 = 9 + 5 = 14 is an infeasible additive heuristic
value.

4.2 Detecting Infeasible Additive Values

Let ~Pi(ti, gi) = { abstract paths ~pi from ti to gi | Ci(~pi) = C∗

i (ti, gi)} be the set of ab-
stract paths from ti to gi whose primary cost is minimal. Define the conditional optimal
residual cost to be the minimum residual cost among the paths in ~Pi(ti, gi): R

∗

i (ti, gi) =

min{Ri(~pi) | ~pi ∈ ~Pi(ti, gi)}.

Note that the value of (C∗

i (ti, gi) + R∗

i (ti, gi)) may or may not be equal to the optimal
abstract cost OPTi(ti, gi). In Figure 2 and Figure 3 for example, OPT1(A1, g1) = 16 and
C∗

1 (A1, g1) +R∗

1(A1, g1) = 18, while C∗

2 (A2, g2) +R∗

2(A2, g2) = OPT2(A2, g2) = 12.
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Lemma 4.1 Given an additive Ψ, and a path ~p = ~p(t, g) with C(~p) =
∑k

i=1
C∗

i (ti, gi),
then, for all 1 ≤ h ≤ k, Ch(ψh(~p)) = C∗

h(th, gh).

Proof: Suppose for a contradiction that there exists some i1, such that Ci1(ψi1(~p)) >
C∗

i1
(ti1 , gi1). Then because C(~p) =

∑k
i=1

C∗

i (ti, gi), there must exist some i2, such that
Ci2(ψi2(~p)) < C∗

i2
(ti2 , gi2), which contradicts the definition of C∗

i . Therefore, such an i1
does not exist and for all 1 ≤ h ≤ k, Ch(ψh(~p)) = C∗

h(th, gh).

Lemma 4.2 Given an additive Ψ, and a path ~p = ~p(t, g) with C(~p) =
∑k

i=1
C∗

i (ti, gi),
then, for all 1 ≤ h ≤ k, Rh(ψh(~p)) ≥ R∗

h(th, gh).

Proof: By the definition of ~Pi(ti, gi), for all 1 ≤ h ≤ k, ψh(~p) ∈ ~Pi(ti, gi). Because R∗

h(th, gh)

is the smallest residual cost of paths in ~Pi(ti, gi), it follows that Rh(ψh(~p)) ≥ R∗

h(th, gh).

Lemma 4.3 Given an additive Ψ, and a path ~p = ~p(t, g) with C(~p) =
∑k

i=1
C∗

i (ti, gi),

then, for all 1 ≤ h ≤ k,
∑k

i=1
C∗

i (ti, gi) ≥ C∗

h(th, gh) +R∗

h(th, gh).

Proof: By Lemma 2.1, for all 1 ≤ h ≤ k, C(~p) ≥ Ch(ψh(~p)) + Rh(ψh(~p)). By Lemma
4.1, Ch(ψh(~p)) = C∗

h(th, gh), and by Lemma 4.2, Rh(ψh(~p)) ≥ R∗

h(th, gh). Therefore C(~p) ≥

C∗

h(th, gh)+R∗

h(th, gh), and the lemma follows from the premise that C(~p) =
∑k

i=1
C∗

i (ti, gi).

We say that a value x is infeasible for state t and goal g if there is no path ~p = ~p(t, g)
with C(~p) = x.

Lemma 4.4 Given an additive Ψ, if for some h, 1 ≤ h ≤ k, we have
∑k

i=1
C∗

i (ti, gi) <

C∗

h(th, gh) +R∗

h(th, gh) then
∑k

i=1
C∗

i (ti, gi) is infeasible.

Proof: This is the contrapositive of Lemma 4.3.

Lemma 4.5 If
∑k

i=1
C∗

i (ti, gi) is feasible. Then
∑k

i=1
C∗

i (ti, gi) ≥ maxk
i=1(OPTi(ti, gi))

Proof: Since
∑k

i=1
C∗

i (ti, gi) is feasible, by the contrapositive of Lemma 4.4, ∀h, 1 ≤ h ≤

k,
∑k

i=1
C∗

i (ti, gi) ≥ C∗

h(th, gh) +R∗

h(th, gh).

By the definition of OPTi(ti, gi) ∀h, 1 ≤ h ≤ k,C∗

h(th, gh) +R∗

h(th, gh) ≥ OPTh(th, gh).

Therefore, ∀h, 1 ≤ h ≤ k,
∑k

i=1
C∗

i (ti, gi) ≥ OPTh(th, gh) ⇒
∑k

i=1
C∗

i (ti, gi) ≥ maxk
i=1

(OPTi(ti, gi))

Lemma 4.5 indicates that if the heuristic value h defined by additive abstractions is
feasible, h is as good as the maximum over standard heuristic values defined by the same
abstractions. However, the reverse implication does not hold in general, and determining
which abstractions will produce additives that are better than max over standards is still a
big research issue.
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4.3 Experimental Results

Different additive abstractions generate different number of infeasible heuristic values. For
the pancake puzzle, almost all heuristics are feasible based on the additive abstractions
defined by the method of Fixed Reference mentioned in Section 3.2. While for the 15
sliding tile puzzle, approximately one-third heuristics are infeasible based on the additive
abstractions defined by Korf and Felner (2002), Felner et al. (2004). So we choose the fifteen
sliding tile puzzle to show that the quality of the heuristics can be enhanced by checking for
infeasibility. We use Dijkstra’s algorithm to build the pattern databases and our heuristic
search algorithm is IDA∗.

Table 3 shows comparative results over 1000 random instances of the 15-sliding tile
problems, whose average solution length is 52.522. The H column is the average heuristic
value of 1000 initial instances. The Nodes shows the avarage number of nodes generated
to find an optimal solution. The Sec column gives the average amount of CPU time that
was needed to solve a problem on a machine with AMD Athlon(tm) 64 Processor 3700+
with 2.4G clock rate and 1G memory. The Memory column indicates the size of each set
of Pattern Databases. We applied sparse mapping for databases.

According to the parity of the solution length for the sliding tile puzzle, in our experi-
ments, we add 2 to each infeasible additive heuristic value.

Figure 9: Different disjoint databases for the Fifteen Puzzle

H Nodes Sec

Static5-5-5 41.56 3,186,654 0.642
Check:5-5-5 42.10 1,453,358 0.312

Static:5-5-5a 40.34 8,165,432 1.640
Check:5-5-5a 41.11 3,091,364 0.670

Table 3: The fifteen sliding puzzle results

The ”Static5-5-5” data row gives results for the normal additive PDBs with 5-5-5 parti-
tioning shown in the left part of Figure 9. The second row is for additive PDBs with 5-5-5
partitioning enhanced by checking for infeasibility.

The last two rows report results using 5-5-5a partitioning(shown in right part of Figure
9) of the tiles without/with checking for infeasible additive heuritics.

Note that the average running time of IDA* using the heuristics enhanced by checking
for infeasible additive values is over 2 times faster than the running time required on average
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without checking for infeasibility on the same machine. However, there is a space penalty
for this improvement, as we need more memory for storing more information to check for
infeasibility. Therefore, we conclude that if sufficient memory is available and additive
heuristic values are frequently infeasible, checking for infeasibility may be an effective way
to improve the quality of the additive heuristic value.

5. Conclusions and future work

We have presented more general definitions for the additive abstractions. The key difference
between our definition and previous ones is that by our definition, the additive abstractions
can be defined more freely and more independently. We have applied the additive ab-
stractions to the domain of the pancake puzzle, where the previous definitions of additive
abstractions could not be applied.

The heuristics may be improved by checking for infeasibility. To our knowledge, this is
the first time for considering non-distinguished moves (R moves).

Future work can continue in the following directions. First, how to identify effective
additive abstractions for other domains should be analyzed. Second, since the pancake
puzzle bears some resemblance to some real-world problems, such as genome rearrangement
problem descirbed in (Erdem & Tillier, 2005), we want our research to expand to these
real-world problems.

Appendix A. lemma and proof

Lemma A.1 For any path ~p = ~p(t, g) in S, there is a corresponding abstract path ψi(~p)
from ti to gi in Ai. Also, C(~p) ≥ Ci(ψi(~p)) +Ri(ψi(~p)).

Proof: By definition, ~p(t, g) is a sequence of edges 〈π1, . . . , πn〉, πj ∈ Π where πj =
(tj , tj+1), 1 ≤ j ≤ n and t1 = t, tn+1 = g. Because Πi ⊇ ψi(Π), each of the correspond-
ing abstract edges exist (πj

i ∈ Πi). Because π1
i = (ti, t

2
i ) and πn

i = (tni , gi), the sequence,
ψi(~p) = 〈π1

i , . . . , π
n
i 〉 is a path from ti to gi.

By definition, C(~p) =
∑n

j=1
C(πj). For each πj , condition 1 ensures that C(πj) ≥

Ci(π
j
i )+Ri(π

j
i ), and therefore C(~p) ≥

∑n
j=1

(Ci(π
j
i )+Ri(π

j
i )) =

∑n
j=1

Ci(π
j
i )+

∑n
j=1

Ri(π
j
i ) =

Ci(ψi(~p)) +Ri(ψi(~p)).

Lemma A.2 ∀t, g ∈ T,min{Ci(ψi(~p)) +Ri(ψi(~p)) | ~p = ~p(t, g)} ≥ OPTi(ti, gi).

Proof: {Ci(ψi(~p))+Ri(ψi(~p)) | ~p = ~p(t, g)} ⊆ {Ci(~pi)+Ri(~pi) | ~pi is an abstract path in Ai

from ti to gi}. Therefore, min{Ci(ψi(~p))+Ri(ψi(~p)) | ~p = ~p(t, g)} ≥ min{Ci(~pi)+Ri(~pi) | ~pi

is an abstract path in Ai from ti to gi} = OPTi(ti, gi).

Lemma A.3 ∀t, g ∈ T,OPT(t, g) ≥ OPTi(ti, gi).

Proof: By Lemma A.1, C(~p) ≥ Ci(ψi(~p)) + Ri(ψi(~p)), and therefore min{C(~p) | ~p =
~p(t, g)} ≥ min{Ci(ψi(~p)) + Ri(ψi(~p)) | ~p = ~p(t, g)}. The left hand side of this inequality
is OPT(t, g), by definition, and the right hand side was shown in Lemma ?? to be greater
than or equal to OPTi(ti, gi). Therefore, OPT(t, g) ≥ OPTi(ti, gi).
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