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ABSTRACT

Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon ob-
scuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target
identification Doppler radar, mounted on a surveillance aircraft or unattended airborne vehicle, is used to detect
motion consistent with targets of interest. However, these targets try to obscure themselves (at least partially)
by, for example, traveling along the edge of a forest or around buildings. This has the effect of creating random
blockages in the Doppler radar image that move dynamically and somewhat randomly through this image.

Herein, we address tracking problems with target obscuration by building memory into the observations,
eschewing the usual corrupted, distorted partial measurement assumptions of filtering in favor of dynamic Markov
chain assumptions. In particular, we assume the observations are a Markov chain whose transition probabilities
depend upon the signal. The state of the observation Markov chain attempts to depict the current obscuration and
the Markov chain dynamics are used to handle the evolution of the partially obscured radar image. Modifications
of the classical filtering equations that allow observation memory (in the form of a Markov chain) are given. We
use particle filters to estimate the position of the moving targets. Moreover, positive proof-of-concept simulations
are included.

Keywords: Target Identification, Target Obscuration, Tracking Problem, Random Blockage, Classical Filter
Equation, Particle Filter

1. INTRODUCTION

We assume that there is a random number Nt of ground moving targets, where Nt ∈ {0, 1, 2, 3}, to be detected
and tracked. The area over which the targets (e.g., military tanks) move, is observed by Doppler radar mounted
on a spy plane or unmanned aerial vehicle. However, the detection and tracking problem are complicated by
the facts that the radar reading are subject to random interference and the targets try to obscure themselves by
moving along the edge of forests or around buildings. The landscape or horizon may obscure the observations
of the targets too. These obscurations create random blockages in the Doppler radar image. Spatial noise and
sensor truncation effects corrupt or distort the measurement of the radar image as well. The confined randomness
described herein is so large that we can not estimate the position of the moving target by a small number of
images. However, with enough knowledge of the characteristics of the ground moving targets, we can keep the
track of the state of the target based upon a sequence of radar images over a time interval. We do not preprocess
the images before we provide the observations to the particle filter algorithm.

Further author information: (Send correspondence to B.W.)
M.A.K: E-mail: mkouritz@math.ualberta.ca, Telephone: 1 780 492 0215
B.W: E-mail: bwu@math.ualberta.ca, Telephone: 1 780 492 4394

Signal Processing, Sensor Fusion, and Target Recognition XVII, edited by Ivan Kadar
Proc. of SPIE Vol. 6968, 69680S, (2008) · 0277-786X/08/$18 · doi: 10.1117/12.779837

Proc. of SPIE Vol. 6968  69680S-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



1.1 Blockages Description

To make the models considered here simple and simulations not too complicated, we consider the ground to be
flat.

In a typical battlefield, ground moving targets always try to avoid the surveillance from Doppler-radar-
equipped drones by moving along the edge of forests or around buildings. Different forests consist of various
trees, bushes or shrubs. In particular, each forest may have its own density of trees, bushes or shrubs which
might be very different from that of others. Therefore, when we consider forests as one source of blockages
for the ground moving targets, we should classify forests into different types. For each forest, the capability of
blocking electromagnetic signals varies with seasons as the density of foliage varies.The second source of blockage
for ground moving targets, buildings, have assorted shapes. We may also classify the buildings into different
types based on their shape characteristics. Dissimilar to forests, we assume that buildings may completely block
electromagnetic signals in all seasons.

In our proof-of-concept simulations, we give four types of forests by their shapes: Rectangle, L shape, T
shape, and Random shape. The last shape of forests is determined by a polygon with random number of
vertices and random locations. We simulate five types of buildings by their shapes: Rectangle, L shape, T
shape, and X shape, and U shape. The common geometric feature of those blockages including forest blockages
and building blockages is that they are polygons which are convex or concave. A very simple and extremely
efficient algorithm has been developed to draw an arbitrary polygon.

A drone is usually small, with no passengers in it. Consequently, a drone is designed to have more flexibility
in flying than a manned aerial vehicle does, and the drone does not fly as steadily as a manned airplane. Hence,
the jitters of the drone and other atmospherical factors, like turbulence, make it difficult for the Doppler radar
to recognize immediately the type of certain blockage when it begins to enter the horizon of the Doppler radar.
In other words, the radar image of the boundary of a blockage may look like being random, and we can not
tell the type of a blockage until we have consecutive images of the blockage when the drone is approaching the
blockage.

One may wonder why we did not model the blockages as part of the signal. The main reasons are computa-
tional. Including them into the signal necessarily increases its dimensionality significantly so much so that the
problem could not be solved using particle filters. Fortunately, we do not have to include them in the signal but
rather can put them in the observations. One of the main purposes of this paper is to show how to include them
in the observations.

1.2 Targets Description

The ground moving targets here are assumed to be military tanks. We assume that for a tank, the ratio of length
and width is approximately 2:1 with length 8 meters and width 4 meters. Characteristics of tanks are ignored
except its length, width, maximum county speed, acceleration.

We assume that the jth target has six state parameters: xj
t , yj

t , θj
t , θ̇j

t , ḟ j
t and χj

t (1 ≤ j ≤ 3) . Here
parameters xj

t and yj
t indicate its x- and y- coordinates, and θj

t denotes its orientation at time t. Parameter
θ̇j

t represents the rate of change of θj
t and ḟ j

t scalar velocity in the forward direction at time t. We have the
following relation, [

ẋj
t

ẏj
t

]
=

[
ḟ j

t cos θj
t

ḟ j
t sin θj

t

]
, (1)

where ẋj
t and ẏj

t indicate the rate of change of xj
t and yj

t . The sixth parameter χj
t denotes the current maneuver

type from the possible set of {moving forward, turning left, turning right, stopping}. Stopping is viewed as a
maneuver type because a moving target might stop as planned due to military tasks or unexpectedly due to
technical reasons like overheat. We allow the position of (xj

t , y
j
t ) to be in the set S = [0, 400]× [0, 1600], here one

unit means one meter. If a target leaves this domain through its stochastic evolution, it will be removed from
consideration, and the number of targets Nt will be decremented by one. For j = 1, 2, · · · , Nt, we let

Xj
t = (xj

t , y
j
t , θ

j
t , θ̇

j
t , ḟ

j
t , χj

t ) (2)
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denote the state of one of the target under consideration in its state space S0 = S ×R
2 × [0, 80]×{1, 2, 3, 4}. To

keep track of all targets under consideration without knowledge of which target is which, we let

Xt(·) =
Nt∑
j=1

δXj
t
(·) (3)

denote the signal measure on S0. This contains complete information about the state of the collection of targets
(X1

t , · · · , XNt
t ).

2. SIGNAL MODEL

2.1 Attraction-Repulsion Field
We introduce the following attraction-repulsion field to reflect the weak interaction among the moving targets.
The notion of attraction-repulsion has been used in.4 Our definition here shares some similarities with that in.4

Assume that s1 and s2 are two moving targets. Based on our previous description, both s1 and s2 are rectangles.
To define the attraction-repulsion between s1 and s2 precisely, we do not simply refer to s1 and s2 as two points,
or consider only the centers of s1 and s2 but rather consider the “two closest points” of s1 and s2, one point
from s1 and another from s2.

The “two closest points” are determined by simple geometric knowledge. Since s1 and s2 are both rectangles
which do not intersect with each other, that is to say, collision of one moving target with another is prohibited,
there always exists the positive shortest distance between s1 and s2. It can be proved that the shortest distance
can always be attained by choosing one vertex from s1 or s2 to another point from the boundary of s2 or s1.
The “two closest points” are so picked. Those two points might not be unique, we are interested in only the
pairs determined by computer algorithms.

Next, we define the attraction-repulsion between the “two closest points” of s1 and s2. We also use s1 and
s2 to represent their “two closest points” when they cause no confusion. Let

Π(s1, s2) =
√
|πx(s1) − πx(s2)|2 + |πy(s1) − πy(s2)|2, (4)

where πx and πy denote projection onto the x and y components. Then, we let

κ(s1, s2) =
{

0 s1 = s2
10000

(Π(s1,s2)+ε)2 − 30000
4(Π(s1,s2)−ε) s1 �= s2

, (5)

κx(s1, s2) = κ(s1, s2)
πx(s1) − πx(s2)

Π(s1, s2)
, (6)

κy(s1, s2) = κ(s1, s2)
πy(s1) − πy(s2)

Π(s1, s2)
. (7)

This field has the effect of drawing a target slightly toward another if it is distant and repelling it from any
other to which it becomes too close. We choose ε = 8 to be the closest distance that one target should come to
another.

This attraction-repulsion is enacted by the following variables:

φr,j
t =

√∫
|κ(z, Xj

t )|2Xt(dz), (8)

and
φθ,j

t = arctan(
∫

κy(z, Xj
t )Xt(dz),

∫
κx(z, Xj

t )Xt(dz)), (9)

which denotes the strength and orientation of the deflecting force. Here, arctan(·, ·) is a two-parameters arct-
angent function with range [0, 2π), and is different from the usual one-parameter arctangent function arctan(·)
with range (−π

2 , π
2 ). arctan(x, y) can determine the arc angle between the line segment from the origin to point

(x, y) and x-axis wherever (x, y) locates in the four quadrants and arctan(y/x) can not.
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2.2 Maneuver Type
The state space of the Markov chain χj

t is {1, 2, 3, 4}, denoting the four maneuver types moving forward, turning
left, turning right, stopping respectively. The rates of changing maneuvers are given as follows:

λ1→2
j,t (Xj

t , Xt) = λ1→3
j,t (Xj

t , Xt) = λ1→4
j,t (Xj

t , Xt) =
1
8

+ 100φr,j
t , (10)

λ2→1
j,t (Xj

t , Xt) = λ3→1
j,t (Xj

t , Xt) = λ4→1
j,t (Xj

t , Xt) =
1
8

+
1

200φr,j
t

, (11)

λ2→3
j,t (Xj

t , Xt) = λ2→4
j,t (Xj

t , Xt) =
1
5
, (12)

λ3→2
j,t (Xj

t , Xt) = λ3→4
j,t (Xj

t , Xt) =
1
6
, (13)

λ4→2
j,t (Xj

t , Xt) = λ4→3
j,t (Xj

t , Xt) =
1
7
. (14)

When a moving target is moving towards and becomes too close to another target, the repulsion is so strong
that the target has to change its maneuver type from moving forward to avoid collision.

Assume that {Bj,a, Bj,b, Bj,c, Bj,d}Nt

j=1 is a collection of independent standard 2-dimensional Brownian mo-
tions. The stochastic behavior of the moving targets are described by nonlinear systems which depend on the
maneuver type process {χj

t , 1 ≤ j ≤ Nt, t ≥ 0}. For each value of χj
t , the jth moving target is simulated

according to the following formulae:

1. Moving forward (χj
t = 1) In this case, the stochastic behavior of the moving target in a field is

described by nonlinear system of SDEs as follows:

d

[
ḟ j

t

θ̇j
t

]
=

[
α1(40 − ḟ j

t )β

α2(φ
θ,j
t − θ̇j

t )φ
r,j
t

]
dt +

⎡
⎣

√
(80 − ḟ j

t )ḟ j
t 0

0 1
10

√
(80 − ḟ j

t )ḟ j
t

⎤
⎦ dBj,a

t , (15)

where α1 > 0, α2 > 0, β > 1. In this maneuver type, scalar velocity of a moving target has the mean reversion
property. The long-time average mean scalar velocity is 40 kilometers per hour and the maximum scalar velocity
is 80 kilometers per hour. The attraction-repulsion force significantly affects the angular velocity of a moving
target when another is approaching it.

2. Turning left (χj
t = 2) In this case,

d

[
ḟ j

t

θ̇j
t

]
=

[
30 − ḟ j

t

γ − θ̇j
t

]
dt +

⎡
⎣

√
(60 − ḟ j

t )ḟ j
t 0

0 1
10

√
(60 − ḟ j

t )ḟ j
t

⎤
⎦ dBj,b

t , (16)

where γ > 0. Both the forward and angular velocity have the mean reversion property. The mean forward
velocity is 30 kilometers per hour and maximum forward velocity 60 kilometers per hour. The mean angular
velocity is γ per hour.

3. Turning right (χj
t = 3) In this case,

d

[
ḟ j

t

θ̇j
t

]
=

[
30 − ḟ j

t

−γ − θ̇j
t

]
dt +

⎡
⎣

√
(60 − ḟ j

t )ḟ j
t 0

0 1
10

√
(60 − ḟ j

t )ḟ j
t

⎤
⎦ dBj,c

t . (17)

Here the mean angular velocity is −γ per hour.

4. Stopping (χj
t = 4) In this case,

d

[
ḟ j

t

θ̇j
t

]
=

[ −α3ḟ
j
t − α4

−β3θ̇
j
t − β4

]
dt +

[
σ1ḟ

j
t 0

0 σ2θ̇
j
t

]
dBj,d

t , (18)

where α3, α4, β3, β4, σ1, and σ2 are nonnegative constants. In this maneuver type, a moving object almost
‘linearly’ reduces its forward and angular velocities.
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3. OBSERVATION MODEL AND ITS SERP FILTER

3.1 Drone and Doppler Radar

The observations of the ground moving targets are made from a Doppler radar mounted on a drone. For
simplicity of simulation, we assume that the drone flies with constant altitude over the ground when it is making
observations about a specific area with blockages and moving objects described before. We assume that the
drone flies with the following formulae:

[
xt

yt

]
=

[
R cos(α5t) + ut

R sin(α5t) + vt

]
, (19)

where R > 0, α5 > 0, u and v are Ornstein-Uhlenbeck processes so ut and vt are normal random variables with
mean 0 and standard deviations σ3 > 0 and σ4 > 0 respectively. By these equations, the drone flies a circle with
radius R and approximate speed R · α5 kilometers per hour.

The Doppler radar makes observations of the ground by producing radar images on a radar screen. In our
simulation, we neglect the mechanism of how the Doppler radar works and how the Doppler effect is used to
detect moving targets and so on. We focus on only the images generated on the radar screen, ignoring all other
scientific and technical details of the process of sending and receiving electromagnetic waves, transferring the
electromagnetic signals into radar images. In our observation model formulated below, we do take into account
the disturbances from the function of sensors and the whole procedures of producing the images.

3.2 Observation Model

We assume that the observations are made at a sequence of times {tk, k ≥ 0} with t0 = 0 and tk+1 − tk = 0.1
(k ≥ 0) time unit, say, second. Although the Doppler radar has very broad range of detection, we assume in this
proof-of-concept work that the radar concentrates only on an area of 200×200 square meters to send and receive
clearer electromagnetic waves and process them more efficient and faster. Since the drone flies with the equations
(19), the radar image of the observed area moves accordingly on the radar screen. We assume that a pixel on
radar screen represents a ground area of 0.8× 0.8 square meters, so each radar image is a two-dimensional raster
of 250× 250 pixels denoted by Dk at time tk. Let value Y

(i,j)
k represent the observation of the (i, j) pixel in the

two-dimensional radar raster at time tk. We define {Yk = (Y (i,j)
k )(i,j)∈Dk

} as follows:

Y
(i,j)
k = h

(i,j)
k (Xtk

) + V
(i,j)
k , (20)

where h
(i,j)
k (X) = c(i,j)1(i,j)∈AX

and V
(i,j)
k is a normal random variable with mean 0 and variance σ

(i,j)
k . The

set AX consists of all points representing the moving objects. We only need to define c(i,j) when (i, j) actually
represents a part on moving object surface. If this part hides underneath a blockage building, c(i,j) = 0, i.e.
the building blocks the part from being detected by Doppler radar. If the part hides among a blockage forest,
c(i,j) = 0.5, i.e. the forest blocks partial electromagnetic waves. If the part is not covered by any blockage,
c(i,j) = 1. We define the variances of normal random variables as follows. If a pixel (i, j) represents an area
of blockage building, σ

(i,j)
k = σb; an area of blockage forest, σ

(i,j)
k = σf ; an area of moving object, σ

(i,j)
k = σm.

Finally, if a pixel (i, j) represents an area of ground which is not occupied by blockages or moving objects,
σ

(i,j)
k = σg. Therefore, in V

(i,j)
k , we included the noises from sensors and observation procedures as well as the

obscuration from the ground’s allocation.

In (20), we actually defined the observations {Yk} assuming we knew where the blockages were. This would
require us to treat the blockages as part of the signal, making the resulting filtering problem too large for
computations. Instead, we follow the basic idea of6 and treat the observations as a Markov chain. The following
result is the key to evaluating the state-dependent transition probability for the chain.

Proposition 3.1. {Yk} is a Markov chain with transition probability

P (Yk+1 ∈ A|Yk = y, Xtk
= x) = E[E[E[IA(Yk+1)|Xtk+1 , B]|Xtk

= x, B]|Yk = y, Xtk
= x], (21)
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where B denotes the random configuration of blockages on the ground, x is a realization of all moving objects, y
is a realization of radar raster, and A is any Borel set of radar raster.

Proof. First, we have

P (Yk+1 ∈ A|Yk = y, Xtk
= x) =E[IA(Yk+1)|Yk = y, Xtk

= x]
=E[E[IA(Yk+1)|Yk = y, Xtk

= x, B]|Yk = y, Xtk
= x].

(22)

Secondly, by (20) and the independence between {V (i,j)
k+1 }(i,j)∈Dk+1 and {V (i,j)

k }(i,j)∈Dk
we have

E[IA(Yk+1)|Yk, Xtk
, B] =E[IA(Yk+1)|Xtk

, B]
=E[E[IA(Yk+1)|Xtk+1 , Xtk

, B]|Xtk
, B]

=E[E[IA(Yk+1)|Xtk+1 , B]|Xtk
, B],

(23)

where in the last equality, we used the Markov property of {Xtk
}. (21) follows by (22) and (23). �

In Proposition 3.1, we proved that {Yk} is a Markov chain related to the filtration {FXY

k ≡ σ(Xt0 , · · · , Xtk
;

Y0, · · · , Yk)}, given by the signal-observation pairs up to k. In formula (21), we have used the random displace-
ment of blockages to justify the Markov property of {Yk} related to {FXY

k } . It also provides to us a way of using
the particle method to solve the detecting and tracking filter problem. In the sequel, we will also be interested
in the information, {FY

k ≡ σ(Y0, · · · , Yk)}, generated by the observations up to time k.

3.3 SERP Filter
SERP filter has been used in multi-target tracking problems.4 The SERP filter for this model is constructed as
follows. Based on developments analogous to classical nonlinear filtering theory, to appear elsewhere, we only
need to approximate

µk(dx) ≡ Ē[1Xk∈dxηk|FY

k ]
Ē[ηk|FY

k ]
. (24)

Here Ē denotes the expectation with respect to a reference probability measure P̄ and

ηk =
k−1∏
j=0

P (Yj+1|Yj , Xj) (25)

is the weighting function. Here {Xk} is independent of {Yk}. Next, we introduce independent signal particles
{X

i
k, k = 1, 2, ...}∞i=1. Assuming that each particle has the same law as the signal, we define the weights

ηi
k =

k−1∏
j=0

P (Yj+1|Yj , X
i
j). (26)

Then, by deFinnetti’s theorem and the law of large numbers we have that

1
N

N∑
i=1

ηi
kδX

i
k
(dx) ⇒ µk(dx). (27)

Finally, we convert back to the original measure

P (Xk ∈ dx|FY

k ) =
µk(dx)
µk(1)

. (28)

Therefore, we have

E(Xk|FY

k ) =
∫

xµk(dx)
µk(1)

≈
1
N

∑N
i=1 ηi

kX
i
k

1
N

∑N
i=1 ηi

k

. (29)
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Figure 1. This picture illustrates one half of a typical ground configuration. In this picture, blockages with green color
are forests. The forest which looks weird is a random forest mentioned before; it is completely determined by its vertices.
The blockages with grey color are buildings. There are two moving objects which are small rectangles.

4. SIMULATION

4.1 Ground Initialization

As mentioned subsection 1.1, we have 4 types of forest blockages and 5 types of building blockages. Each blockage
is determined by all its vertices and has random number of copies. Each blockage is randomly configured on the
ground by randomly choosing its center and its orientation. An algorithm is established to exclude overlapping
of blockages. The moving targets are also randomly displayed on the ground, with their states being random as
well. One half of a typical ground configuration is illustrated by Figure 1.

4.2 Approximate State-Dependent Transition Probability

By Proposition 3.1, we have built observation memory into the Markov chain {Yk} through B. We approximate
the distribution of the random blockages B by randomly selecting B from a finite number N of configurations
{Bi}N

i=1, which contain the true displacement of blockages around which the ground targets move. Note that
once a configuration of blockages is selected, a ground map is also determined. One way of looking at our problem
is through random maps: The original problem has an uncoubtable number of random maps consisting of all
possible blockage configurations and we replace that with a finite number of statistically-appropriately-chosen
maps. We do not try to determine which map we have but rather include their traces in the observation Markov
chain. The cost of this approach is that all blockage information is lost after it leaves the observation area.
However, more importantly, the problem becomes computationally feasible.

There is another advantage to our random map approach: A spy plane can be equipped with ground maps
taken from satellites. However, due to jitter etc. one is never sure which map to use nor exactly how to orient
it. In this case, one can just make B a random selection of these maps and orientation for it.

To implement SERP filter on this target obscuration problem, we need an efficient way to compute the
state-dependent transition probability , which is given by formula (30). To avoid tremendous computation
problem, we assume that B has only N = 20 configurations for this proof-of-concept work, but we do not
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Figure 2. One quarter of a ground configuration is given on the right hand side of this picture. The left above corner
is the part of the ground observed by the Doppler radar and the left below part is the observation radar raster. In this
picture, the drone is largely flying from west to east and entering into the ground. The blue or black wedge represents an
area which is not a part of the ground and neglected by our simulation.

assume a particular distribution of B. So we need to do sampling to obtain the empirical distribution of B.
Although we have closed forms given by (15), (16), (17) and (18) of {Xtk

}, it is not a easy matter to com-
pute E[E[IA(Yk+1)|Xtk+1 , Bi]|Xtk

= x, Bi] for given Bi directly. Instead, we also sample on the conditional
distribution of Yk+1, given Xtk

= x and Bi. Thus, we have the following executable equation:

P (Yk+1 ∈ A|Yk = y, Xtk
= x) (30)

=
1

NM

N∑
i=1

M∑
j=1

P (Yk+1 ∈ A|Xtk+1 = zj , Bi)P (Xtk+1 = zj|Xtk
= x, Bi),

where M is the sample size to compute the empirical distribution of Yk+1, given Xtk
= x and Bi.

Herein, we use the established method to compute the mean squared error (MSE) of this filtering problem,
see.4 We also use the simplification method suggested in.2 Specifically, for each observation, we only do the
major calculation on the whole raster once and for each particle, we only refer to those raster pixels that are
within the targets of that particle. In particular, since the radar observes only a small part of the referred ground
and it takes time for the drone to pass through the ground, we only compute the weights for those particles which
enter into the observation of the radar, and let those particles which are out of the observation of radar screen
evolving only. In Figure 2, we illustrate one quarter of a ground configuration, the area observed by a Doppler
radar and its corresponding observation image. In the following table, we give the mean squared error with
respect to the number of targets in simulations and the simulation time. Mean squared error were computed at
the observation time sequence {tk, k ≥ 0} with t0 = 0 and tk+1 − tk = 0.1 second, but we only give the numbers
at every two seconds.
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Simulation Time (seconds) 2 4 6 8 10 12 14 16
1-Target Mean Squared Error 8.5 6.7 8.4 50.9 10.3 6.2 5.1 4.6
2-Target Mean Squared Error 19.3 16.7 75.9 43.6 22.7 87.2 13.6 7.8

5. CONCLUSION

The SERP filter shows its power again on detecting and tracking moving targets. The exception cases, as one
would imagine, are as follows. 1) During the process of the drone passes through the specific ground, the moving
targets fail to enter the observation of Doppler radar. 2) The targets move underneath the building blockages
which can completely block the electromagnetic waves away from them, or among the forests which greatly
distort the observation of radar. In the latter case, the SERP filter can sometimes detect targets too, but not
always. The radar’s ability accounts for more exception cases than the SERP filter.
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