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Abstract

Heuristic search has been shown to be an effective way to solve state-space prob-

lems. While many heuristic search techniques are guaranteed to find the best so-

lution, these are often not feasible given practical resource requirements. In such

cases, it is necessary to sacrifice solution optimality in exchange for a faster search.

When a system designer is building a suboptimal heuristic search system to

solve a set of given state-space problems, there are many decisions to be made

that can greatly impact system performance. These include the need to select an

appropriate algorithm from the many that have been proposed in the suboptimal

heuristic search literature, selecting values for the parameters in these algorithms,

and deciding on which search enhancements to employ.

The goal of this dissertation is to aid a system designer in this endeavour by

increasing our understanding of what choices need to be considered and how these

choices impact algorithm performance. In particular, we show that this large de-

sign space can be handled effectively through the use of an algorithm portfolio by

building the state-of-the-art multi-core planner, ArvandHerd. Next we isolate the

impact of inducing random exploration into greedy algorithms, and demonstrate

that this option can often add useful variation into search. We then identify what

choices are available to a system designer when there are given requirements on the

quality of solutions found — even non-traditional ones — by showing that many

existing algorithm frameworks can be modified accordingly to be guaranteed to sat-

isfy a large range of possible requirements. Finally, we will examine the technique

of “not re-expanding nodes” to better understand how the choice of whether or not

to use this technique can impact the quality of solutions found.
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Chapter 1

Introduction

One of the classical types of problems considered in the field of artificial intelli-

gence are planning tasks. The goal in such tasks is to automatically find a sequence

of actions to get from “point A” to “point B” in some given environment. For ex-

ample, consider the task of finding a route between two locations on a map, or that

of finding a sequence of cube twists that solves a given Rubik’s cube configura-

tion. In problems like these — which are said to be discrete, perfect information,

and deterministic problems — one popular approach is called heuristic search.

Heuristic search algorithms work by iteratively constructing sequences of actions

that are candidates to be solutions. The key component of this procedure is the use

of heuristics, which are functions that encode domain knowledge that are expected

to aid the problem-solving process.

Heuristic search techniques have been shown to be successful in a wide range

of domains including the aforementioned route pathfinding [27] and Rubik’s cube

problems [53], model-based diagnosis of faulty hardware and software systems

[103], DNA sequence alignment [110], sewer placement for subdivisions [3], and

robotics [58]. In such domains, it is often the case that there are multiple sequences

of actions that achieve the desired goal conditions from the given initial state of the

environment, and some of these solutions may be considered better than others. For

example, when finding a route between two locations on a map, we would typically

prefer shorter routes over longer ones. While many heuristic search algorithms can

be guaranteed to only return the “best” of these solutions, these optimal approaches

often require a very resource-intensive search. For example, finding the optimal so-
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lution to a given Rubik’s cube may take hours of computation [53]. When such time

requirements are not acceptable — for example, if a human is waiting to manually

implement the found solution — it is necessary to allow for the search to return

suboptimal solutions in exchange for a less resource-intensive search.

There have been many such suboptimal heuristic search algorithms that have

been developed in the literature, including WA∗ [71], A∗ε [69], WIDA∗ [52], and

EES [90]. These algorithms typically have a variety of parameters and other de-

sign decisions that must be set before the algorithm can be deployed. As such, the

resulting space of possible design decisions can be very large. For example, sup-

pose that we are designing a system to solve route pathfinding tasks in which it is

possible to move in at most one of the four cardinal directions in any state, and

assume we are only considering the four algorithms mentioned above as the basis

of the system. All four have a parameter called a weight that can be set as any real

number no smaller than 1, three of these algorithms (WA∗, A∗ε , and EES) have

an option to re-expand nodes or not, and there will be a total of 4! = 24 static

operator orderings. Even if we only consider 10 possible values for the weight

and 5 possible heuristics, this means that there are over 8, 000 possibilities for the

system, and this does not even account for the fact that A∗ε and EES can each be

configured to employ multiple heuristics.

As each of these decisions can greatly impact algorithm performance, construct-

ing a high performance system for a given domain requires the system designer to

deal effectively with this large space of choices. This involves identifying what

algorithm options can impact performance and which are even applicable given re-

quirements that must be satisfied regarding the quality of the solutions found (ie.

how close to optimal the solutions returned must be). Ideally, we would also like to

know as much about the impact that each design decision will have on the system

performance on the types of tasks being considered so that they each design deci-

sion can be set effectively. In the case that little is known about the problems to be

solved ahead of time, building a strong system also requires minimizing the chance

that the selected system is not well-suited for the given task.
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1.1 Contributions

The goal of this dissertation is to aid a system designer in dealing with this space

of design decisions when building a suboptimal heuristic search-based system. In

particular, we make the following contributions.

1.1.1 Multi-Core Planning with a Portfolio

An automated planner is a system that must solve tasks about which little may be

known prior to when problem-solving begins. Committing to a single algorithm

and a corresponding set of design decisions can therefore be risky since different

problems are best solved with different approaches. To deal with this issue, one

can use multiple approaches simultaneously in an algorithm portfolio to combine

of strengths of each. In Chapter 3, we will demonstrate that this approach can be

used to build a state-of-the-art multi-core planner. The resulting multi-core plan-

ner, ArvandHerd, won the multi-core track of the last two International Planning

Competitions in 2011 and 2014. It was built specifically to address some of the

challenges inherent with using an algorithm portfolio in a shared memory system,

and we will show that its strong performance is the result of the fact that it combines

different techniques that are each best for different types of planning tasks.

Chapter 3 is based on two existing publications. The first was the description of

ArvandHerd that was submitted along with the planner to the 2011 competition

[97]. The second publication detailed the subsequent analysis of this planner that

was performed after the competition results were released. This latter work was

published at the European Conference on Artificial Intelligence in 2012 [96].

1.1.2 Random Exploration and Random Baselines

The heuristics used to guide search algorithms rarely provide perfect guidance and

often identify states in the environment as being closer to goal states than they ac-

tually are. In algorithms like Greedy Best-First Search (GBFS), such heuristic error

can lead the algorithm astray and thereby cause poor performance. In Chapter 4, we

will demonstrate that by having GBFS occasionally ignore the advice of the heuris-
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tic, this algorithm’s performance often increases since its sensitivity to heuristic

error is decreased. While existing algorithms have often employed such random

exploration, they have typically done so in a combination with other techniques.

In contrast, we introduce a simple technique called ε-greedy node selection that

clearly isolates the impact of adding random exploration to a search, and demon-

strates it to be positive in either a simple or a state-of-the-art planner. As such, this

investigation will clearly identify random exploration as an option that designers of

GBFS-based systems should consider.

A second technique for adding random exploration into a search, heuristic

perturbation, is also introduced. Heuristic perturbation will be shown to lead to

large improvements in performance in some domains and large decreases in others.

While this “risky” behaviour may be undesirable, we will show that this riskiness

can be exploited by pairing algorithms that use this technique with algorithms that

use ε-greedy node selection in a portfolio.

We also re-examine existing techniques for enhancing the performance of GBFS.

These techniques push the algorithm to occasionally go against the advice of the

heuristic, though the decision to do so is based on some automatically derived prob-

lem structure instead of randomness. Given the success of random exploration, we

argue that these techniques should be compared against appropriate random base-

lines to ensure that the structure they exploit is inducing variation that goes beyond

what can be accomplished simply using randomness. The resulting study provides

further confirmation of the value of the preferred operator and multi-heuristic best-

first search enhancements [38, 74], and thereby provides further reason for system

designers to use these techniques.

The work in Chapter 4 is based on two publications. The first was a techni-

cal report that introduced ε-greedy node selection and heuristic perturbation [98].

The second paper, which was published at the 2014 International Conference on

Automated Planning and Scheduling [101], connected the idea of ε-greedy node

selection to that of understanding random exploration and of suggesting the need to

re-evaluate the existing planning enhancements.
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1.1.3 Algorithms for Different Solution Quality Guarantees

If there are restrictions on how far from optimal the solutions returned can be, then

a first step when building a heuristic search-based system is to identify the set of

search algorithms that are guaranteed to satisfy that given solution quality require-

ment. While several existing algorithms were known to return solutions that cost

no more than a given factor larger than the optimal solutions, it was previously not

clear what algorithms were applicable for other types of quality guarantees such

as the requirement that the solutions found are no more than an additive constant

larger than optimal.

In Chapter 5, we will show that several existing algorithm frameworks will sat-

isfy such alternative types of bounds, provided that they are modified appropriately.

These frameworks include anytime algorithms [33, 58], best-first search algo-

rithms [35, 71] , iterative deepening algorithms [50], and focal list based algo-

rithms [69, 90]. In doing so, we generalize what these existing algorithm frame-

works can be used to do and thereby identify what set of algorithm options are avail-

able to a system designer who must satisfy some given, perhaps non-traditional,

solution quality requirements. We then test these results by using them to con-

struct algorithms that satisfy additive requirements and which display the desired

behaviour in practice: as the solution quality requirements are loosened, the algo-

rithms typically increase their performance.

This chapter was published at the 2013 International Conference on Automated

Planning and Scheduling [95]. That work was preceded by a two-page abstract that

appeared at the 2012 Symposium on Combinatorial Search [94].

1.1.4 Not Re-Expanding Nodes and Solution Quality

Best-first search algorithms are a class of algorithms that are commonly used in the

construction of a suboptimal heuristic search-based system. During the execution

of these algorithms, it is common to find multiple action sequences to the same

non-goal state. By default, if a lower cost action sequence is found that achieves

a state through which other action sequences have already been explored, these al-
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gorithms always reconsider (or re-expand) action sequences that pass through that

state. Doing so is often necessary to satisfy given solution quality guarantees. How-

ever, doing so can often greatly increase the time necessary to find a solution. To

avoid the overhead of re-expansions, some best-first search algorithms have often

been configured so that they simply do not re-explore the action sequences that go

through a state once that state has been explored for a first time. While doing so

often speeds up the search, it often results in lower quality solutions being found.

Understanding the impact that this technique has on solution quality is therefore

necessary for a system designer who is deciding whether or not to configure their

search to re-expand nodes.

In Chapter 6, we formally analyze the impact that not re-expanding nodes has

on solution quality by showing that the worst-case quality can be bound in terms of

a property of the heuristic called the heuristic’s inconsistency. This bound will then

be used to give worst-case guarantees for certain different types of heuristics. First,

we will show that if the heuristic is admissible (ie. that it never over-estimates the

cost to get to the nearest goal from any state) then the cost of solutions found can

be at most quadratic in the optimal solution cost. Then we will consider the case

in which the heuristic is the result of weighting an admissible heuristic, as it is in

WA∗ , and offer bounds for when the weighted heuristic has inconsistency along it.

Finally, we will identify the types of weighting in which the same bound is satisfied

when weighting a consistent heuristic regardless of whether nodes are or are not

re-expanded. This investigation will therefore not only increase our understanding

of the impact of this design choice on performance, but will also identify when this

technique can be used while still satisfying desired solution quality requirements.

The work in this chapter first appeared at the 2014 AAAI Conference on Artifi-

cial Intelligence [99].

1.2 Chapter Summary

In this chapter, we have described the problem facing a system designer who is

building a heuristic search-based system: they must effectively deal with a large
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space of possible design decisions. We then outlined four contributions made to

help a system designer in this endeavour that aim at better identifying the options

available, improve our understanding of how some of these options will impact per-

formance, and handle the situation in which problem-solving must begin when little

is known about the task to be solved. Each of these will be considered in a separate

chapter below. Before doing so, we will first introduce many of the concepts and

the notation to be used in the remainder of the thesis in the next chapter.
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Chapter 2

Background

In this chapter, we provide a formal definition of a planning task and provide the

notation that will be needed for reasoning about state-spaces and the algorithms

that search for solutions in them. Once this notation is established, we will then de-

fine an algorithm framework called open and closed list based algorithms. This

framework will generalize many existing algorithms like A∗, WA∗, and A∗ε by al-

lowing for the use of different policies for selecting nodes for expansion and for

when to re-expand a node. Many of the properties that are known to hold for the

aforementioned existing algorithms will then be shown to also hold for this gen-

eralization. We will then introduce automated planning and several other domains

that will be used in our empirical evaluations, and describe related work on the use

of automatic configuration tools for dealing with large spaces of design decisions.

Many of the formal proofs shown in this section represent generalizations of

existing proofs. As many of these are quite technical when these generalizations

are allowed — particularly when the path found to a node is not stored explicitly,

but is instead stored implicitly using parent pointers as is typically done in practice

— they have been moved to Appendix A.

2.1 Terminology and Notation

In this section, we define the planning task and introduce notation that will be used

throughout this document. We begin by introducing the idea of a state-space with

an example. This will then allow us to formalize the idea of a planning task.
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Figure 2.1: Example 15 puzzle states and transitions.

2.1.1 State-Space Examples

So as to more easily introduce the notion of a planning task and the notation to be

used in this thesis, we begin with several examples of the types of problems we will

be dealing with. The first is the 15 puzzle, which is a common children’s toy that

is also a standard test domain for heuristic search algorithms. This puzzle consists

of a grid with 4 rows and 4 columns. At any time, 15 of the grid locations contain a

tile, each of which is labelled with a unique natural number from 1 to 15. The other

location is empty, and this blank space is what allows for the puzzle to transition

from one configuration into another. These transitions are the result of applying an

action or operator to a puzzle configuration. In this domain, the actions correspond

to sliding a single tile which is adjacent to a blank space into the blank space. Once

a tile is moved into the empty location, that tile’s previous location becomes empty.

For example, Figure 2.1 shows a particular configuration of the 15 puzzle (the grid

at the top), the actions applicable in this state (the labelled arrows), and the states

that result from applying each of these actions (the three grids on the bottom of

the figure). As the blank space is in the leftmost column, there is no tile to the

left of the blank space. Therefore, the actions that are applicable to the puzzle in

this configuration are to move the tile labelled 4 down into the empty location (the

action labelled “Down”), move the tile labelled 5 left into the empty location (the

action labelled “Left”), and move the tile labelled 8 into the empty location (the

action labelled “Up”).

9



In the language used when describing planning tasks, this description defines

the 15-puzzle state-space. More generally, each configuration of the world (ie.

each legal combination of locations for the tile and the blank space) corresponds to

a state. A state-space then consists of the collection of all states in the environment,

and a set of transitions between these states. In the 15 puzzle example, these tran-

sitions correspond to the four possible actions (“Up”, “Down”, “Left”, and “Right”)

which define which states can be reached from a given state. As in all domains we

consider in this thesis, actions will be assumed to be deterministic. This means

that when applying an applicable action in a given state, there is only one possible

outcome and that outcome is known prior to applying that action.

Given a state-space, the tasks we are considering are characterized by a given

initial state and a given set of goal states. Intuitively, the start state corresponds

to where you are starting at in the environment, and the goal states corresponds to

where you want to get to. The objective is then to find a sequence of actions which,

when applied to the start state, transform that initial state into one of the goal states.

Such a sequence of actions is called a solution. For example, the standard goal

state for the 15 puzzle problem is labelled “Goal” in Figure 2.1. Given this single

goal state, if the top state in Figure 2.1 was the given initial state, then one possible

solution would be the action sequence consisting only of the “Down” action.

In the 15 puzzle, it is easy to check if any of the four possible operators is

applicable in a given state based on the location of the blank space. For example,

the action “Up” is applicable unless the blank space is in the bottom-most row.

Similar rules can be used to test the applicability of the other actions. This means

the definition of the operators alone allows us to generate all the states which are

exactly one action away from a given state.

In contrast, consider the problem of pathfinding from a given location in a map

to a goal location. The typical way to approach this problem is to discretize the

map and treat each location (ie. map address) as a separate state. Transitions in

this state-space correspond to traversing along a road between adjacent locations.

Determining which actions are applicable in a given state will therefore vary greatly

from state-to-state. For example, it may not be possible to move northward in all
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states and roads may not even correspond to the cardinal directions. This means

that it is difficult (or at least inefficient) to encode these state transitions as operators

whose applicability can be tested. In such cases, it will instead be more convenient

to maintain a list of all possible transitions for each given state.

The type of representation just considered for pathfinding is called an explicit

state-space representation due to the explicitly maintained a list of possible transi-

tions. This representation also makes it clear that such planning tasks can be viewed

as pathfinding in a graph. To see this, notice that we can construct a graph-search

problem such that solving that problem would solve the initial pathfinding task. The

graph being considered would have one unique node or vertex for each state in the

state-space (ie. map location), and the set of edges would be given by the set of

possible transitions. The problem is then to find a path in this graph from the initial

node to the node corresponding to a goal state.

The same is also true of the 15 puzzle, even though the transitions are encoded

using a set of rules. The representation used for the 15 puzzle is called an implicit

state-space representation, but there is also a graph underlying such state-spaces.

This graph would again have one unique node for each state in the state-space. The

edge set could then be constructed by iterating over all the vertices, using the action

rules to find the transitions that are applicable to each state, and then adding the

corresponding edges to the graph.

While for many tasks actually building this graph may not be possible under

realistic time or memory constraints, this construction does demonstrate the equiv-

alence between looking for a solution to a state-space problem and pathfinding in a

graph. This way of viewing the problem will be convenient to work with and so it

will be the main one we use in the remainder of this thesis. We now formalize the

terminology we will be using regarding pathfinding in a graph in the next section.

2.1.2 Planning as Pathfinding in a Graph

In this section, we will define some preliminary notation regarding graph edges,

nodes, and heuristic functions. Included in this section will be the formal definition

of a planning task.
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Graph Definitions

As described above, we will consider planning tasks by their equivalent represen-

tation as pathfinding in a graph G(V,E) where V is the set of nodes in G and E is

the set of edges in G. Since each node corresponds to exactly one state in the state-

space, we will often use the terms “node” and “state” interchangeably and often

refer to G as being the state-space of a given problem.1

(p, c) will be be used to denote the edge from p to c in G, and edges will be

assumed to be directed unless stated otherwise. Where (p, c) ∈ E, the node c will

be said to be a successor or child of p, and p will be said to be a predecessor or

parent of c. A domain will said to be undirected if ∀n1, n2 ∈ V , (n1, n2) ∈ E if

and only if (n2, n1) ∈ E. In undirected graphs, we will say that if (n1, n2) ∈ E,

then n1 and n2 are adjacent or neighbours in G.

All edges will have an associated real-valued transition cost, enabling this rep-

resentation to have actions with different costs. For example, in the pathfinding

example given above, edge costs will allow for the definition of streets which are

not all of the same length. The cost of an edge (p, c) ∈ E will be denoted by

κ(p, c) ∈ R, where κ(p, c) =∞ if (p, c) /∈ E, and κ(p, c) is finite otherwise. In this

thesis, we will also assume that for any edge (p, c), κ(p, c) ≥ 0.

For convenience, we will let succ denote the set of successors of a given node.

Formally, this means that succ is defined as follows:

succ(n) = {n′ | (n, n′) ∈ E} .

In this thesis, we will always assume that |succ(n)| is always finite.

This notation will now allow us to formally describe paths in the graph and to

introduce notation for describing such paths. We do so in the next section.

Paths in a Graph

A path in a given state-space will be defined as a sequence of nodes P = [n0, n1..., nk]

such that for any 0 ≤ i < k, ni+1 ∈ succ(ni). For convenience, we will use n ∈ P
1While the terms “state” and “node” are used interchangeably in this thesis, the term “node” has

been used to mean various different things by different authors. We discuss some of the alternatives
in Section B.1 of Appendix B.
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to denote that n is one of the nodes along path P . Where P = [n0, n1..., nk], if

j > i then nj will be said to be an descendent of ni on P and ni will be said to be a

ancestor of nj on P . Alternatively, if j > i then we will say that nj is deeper than

ni on P and ni is shallower than nj on P . If P = [n0, ..., nk], then nk will be said

to be the deepest node on P .

Like edges, paths will also have an associated path cost, denoted byC(P ). This

cost will be determined by a path cost function, which is based on the costs of the

edges along the path. Where P = [n0, ..., nk], the path cost function used in this

thesis is as follows:

C(P ) =
∑

0≤j<k

κ(nj, nj+1) .

In this thesis, we will always assume that the “best” of two paths to the same node

will be the path with the lowest cost.

Given a path P = [n0, ..., nj, ..., nk], we will say that the path P ′ = [n0, ..., nj]

is a prefix of P and that P is an extension of P ′. We will also say that P ′ can be

extended into P with path [nj, ..., nk].

The Planning Task and Simplifying Assumptions

With this terminology established, we can now formally define a planning task.

Definition 2.1.1. A planning task Γ is defined by the tuple Γ = 〈G(V,E), ninit , VGoal〉

where G is a graph, ninit ∈ V , and VGoal ⊆ V . The task is to find a path

P = [n0, ..., nk] such that n0 = ninit and nk ∈ VGoal .

In this thesis, we refer to ninit as the initial node, VGoal as the set of goal nodes,

and the path P from ninit to some node in VGoal as a solution path.

Notice that we defined planning tasks in terms of a graph instead of a multi-

graph. As such, for any two nodes ni, nj ∈ V there is at most one edge (ni, nj) ∈

E. If there is a state s in an implicit representation of a given state-space such that

two different actions both result in a state s′ when applied to s, then we will only

include the action with the lowest cost in the corresponding graph representation.

This simplification is possible since if there is a solution to the state-space problem
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that includes a transition from s to s′, we might as well use the lower cost edge

since doing so will result in a better solution.

Solution Quality Guarantees

Even with the assumptions given, there are still several common planning task vari-

ants that differ in the requirements placed on the quality of any solutions returned.

The first of these variants is the Optimal Planning Task, in which the task is only

considered solved if the solution returned is an optimal solution path. A solution

path is said to be optimal if there is no other solution path that has a lower cost, and

we will use C∗ to refer to the optimal solution cost to a given planning task.

This solution quality requirement is relaxed in the second variant, the Bounded

Planning Task, in which the cost of any solution returned must satisfy some bound

given a priori of any search. The most common of these types of bounds is the

linear suboptimality bound. This bound requires that that any solution returned

have a cost of no more than a factor w larger than the optimal solution cost for

some predefined value for w of at least 1. As such, any solution returned must have

a cost of no more than w · C∗, and this must be guaranteed even if the value of C∗

is unknown.2

While requiring that any solution found has a cost of no more than w · C∗ is

the most common type of bound, there are other ways to specify solution quality

requirements. For example, one alternative is to require that any solution found has

a cost that is no greater thanC∗+γ where γ is a predefined constant such that γ ≥ 0.

Such alternative bounding paradigms have seen very little previous consideration in

the search literature, though we identify how existing algorithms can be modified

to satisfy such requirements in Chapter 5.

Unlike the optimal planning task and the bounded planning task, the final plan-

ning task variant we consider does not place any additional constraints beyond those

already given in Definition 2.1.1. This planning task variant, which is called a Sat-

isficing Planning Task, allows for any solution found to be considered acceptable

2A solution that satisfies a linear suboptimality bound has traditionally been said to be ε-
admissible where ε = w − 1. However, we will not use this term in this thesis to avoid confusion
since we will use ε later in a different context.

14



regardless of how suboptimal it is. While a lower cost solution is preferred over a

higher cost solution, the main objective of this variant is to simply find any solution.

2.1.3 Path Sets and Node Costs

To reason about how planning algorithms explore a given state-space, it is necessary

to introduce some notation for different kinds of paths and for various properties of

a node. We do so in this section.

Π will be used to refer to the set of all paths that are possible in a given graphG.

Any P = [n0, ..., nk] is in Π as long as ni+1 ∈ succ(ni) for any 0 ≤ i < k, and there

are no restrictions on what n0 or nk may be. If we instead want to refer to the set of

paths that begin at the initial node, we will use Πinit . This means that for P ∈ Πinit ,

n0 = ninit where P = [n0, ..., nk]. A path P = [n0, ..., nk] ∈ Πinit will often be

referred to as candidate path since P could be a solution path (if nk ∈ VGoal), or

it may be possible to extend P into a solution but this will not be known without

further exploration of the state-space. Note that for the sake of simplicity, we will

also assume that for any P ∈ Πinit where P = [n0, ..., nk], ni /∈ VGoal for any

0 ≤ i < k. Finally, we will use ΠGoal to denote the set of solution paths to a

given task. This means that for any P ∈ ΠGoal , n0 = ninit and nk ∈ VGoal where

P = [n0, ..., nk]. For any P ∈ ΠGoal , we will assume that the only goal node on P

is the deepest node on P .

This notation will now also allow us to formalize the notion of the “optimal

solution cost” as follows:

C∗ = min
P∈ΠGoal

C(P ) .

We will also use Π∗Goal to denote the set of all optimal solution paths. This set is

defined as follows:

Π∗Goal = {P | P ∈ ΠGoal ∧ C(P ) = C∗} .

Notice that Π∗Goal ⊆ ΠGoal ⊆ Πinit ⊆ Π.
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Reachability and Node Costs

We now consider notation for various properties of a given node n such as how far

n is from the initial node, how far n is from the nearest goal node, and the distance

between two nodes n and n′. Such quantities will be denoted as follows:

• g∗(n) will denote the cost of the lowest-cost path from ninit to n. A path

P ∈ Πinit which has a cost of g∗(n) will be called an optimal path to n.

• g∗(n, n′) will denote the cost of the lowest-cost path from n to n′. A path

P ∈ Π from n to n′ which has a cost of g∗(n, n′) will be called an optimal

path from ni to nj .

• h∗(n) will denote the cost of the lowest cost path to any of the nodes in VGoal .

A path P ∈ Π from n to ng ∈ VGoal which has a cost of h∗(n) will be called

an optimal solution path from n.

If there exists a path from a node n to any of the nodes in VGoal , then h∗(n) will

be finite. In that case, the goal nodes will be said to be reachable from n. If no

such path exists, then the goal nodes are not reachable from n and h∗(n) = ∞.

Similarly, g∗(n) will only be finite if n is reachable from ninit , and g∗(n, n′) will

only be finite if there exists a path from n to n′.

Notice that according to these definitions, g∗(n) = g∗(ninit , n) for any n and

that h∗(ninit) = g∗(n) + h∗(n) = g∗(ng) = g∗(ninit , ng) = C∗ where ng ∈ VGoal

and P = [ninit , ..., n, ..., ng] is an optimal solution path.

2.1.4 Heuristic Functions

The planning community has developed several different approaches for solving

planning tasks including SAT-solver based planners [78] and plan-space planners

[29]. Our focus in this thesis on the use of heuristic search algorithms for plan-

ning. These algorithms explore the state-space in search of solution paths with the

use of a heuristic function, defined as H : V → R.3 The purpose of this function

3Many authors use h to refer to a heuristic instead of H . We will explain this difference below
when describing admissible heuristics.
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is to offer a relative ordering of nodes in terms of how close they are to the nearest

goal nodes. This means that if H(n) < H(n′), the heuristic function is suggesting

that n is closer to the goal than n′. Heuristic search algorithms can then use such

information to give preference towards exploring the region of the state-space led

to by n prior to the region led to by n′.

Ideally, the heuristic function would perfectly order nodes in terms of how close

they are to the nearest goal node. This would be the case, for example, if H = h∗.

In such a situation the heuristic would exactly identify which successor of a given

node n was closer to a goal, and it would be trivial to find optimal solutions through

a greedy exploration of the state-space. As h∗ would therefore provide excellent

guidance, and it also offers exact information regarding the cost to the nearest goal

node from every node, it is often referred to as the perfect heuristic.

Such perfect guidance is rarely available, and instead, most heuristics are built

in an effort to approximate h∗ as accurately as possible. For example, when looking

for routes from a given starting location to a given goal location in a road map, it is

common to use the straight-line distance between the current location and the goal

location. This heuristic implicitly encodes directional knowledge that favours nodes

that involve moving in the direction of the goal as opposed to those that move away

from it. Other heuristic functions do not attempt to approximate h∗, and are instead

intended to offer information on the relative utility of how close a node is to a goal.

For example, consider the heuristic H = 1000 · h∗. Clearly H is not providing

an accurate estimate of h∗, but H(n) < H(n′) is still an excellent indicator that

n is closer to a goal than n′. This is also true of distance-to-go heuristics which

estimate the number of nodes along the path to the nearest goal as opposed to the

more typical cost-to-go heuristics which approximate h∗, the cost of the path to the

nearest goal node [90].4

In the remainder of this thesis, a given heuristic will not be assumed to be esti-

mating h∗ unless otherwise stated. However, in all cases we will make the following

assumptions:

• All nodes will have a non-negative heuristic value. Formally, this means that
4In unit-cost tasks, these two style of heuristics are the same.
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∀n ∈ V,H(n) ≥ 0.

• If a goal node is reachable from a node n, the heuristic will not suggest oth-

erwise. Formally, this means that for all n, if h∗(n) 6=∞ then H(n) 6=∞.

We will now define several heuristic properties which we will refer to throughout

this dissertation.

Heuristic Admissibility

The following definition formalizes an important property of many heuristics in

terms of their relationship with the perfect heuristic:

Definition 2.1.2. A heuristic H is said to be admissible if for any n ∈ V

H(n) ≤ h∗(n) .

This means that a heuristic is admissible if it never over-estimates the optimal

cost of the path from any node to the nearest goal node. Notice that if the heuristic

in use is admissible then the heuristic value of any goal node will be 0.

If a heuristic H does not satisfy this property (ie. ∃n,H(n) > h∗(n)) then H

is said to be inadmissible. Unless otherwise stated, we do not assume that H is

either admissible or inadmissible in the remainder of this thesis, which is why we

use the symbolH to refer to a heuristic instead of the symbol h. We will reserve the

symbol of h to only refer to an admissible heuristic, which is how it is often used in

the literature.

Heuristic Consistency

Let us now consider the property of heuristic consistency:

Definition 2.1.3. A heuristic H is said to be consistent if for any p, c ∈ V such that

c ∈ succ(p) the following is true:

H(p) ≤ H(c) + κ(p, c) .
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This property of consistency ensures that the heuristic value does not decrease

by “too much” (ie. by more than the edge cost) from any parent node to any of

its children. Since the above definition is defined only over adjacent nodes, this

property is sometimes referred to as local consistency. A heuristic is said to be

globally consistent or monotonic if for any ni, nj ∈ V it is true that

H(ni) ≤ H(nj) + g∗(ni, nj) .

As shown by Pearl [68], these two forms of consistency turn out to be equivalent.

Due to the equivalency of these properties, we will simply use the term “consis-

tency” to refer to either the local or global form of this property, each of which will

be used when it is most convenient.

Notice that the global form of consistency can be used to show that any con-

sistent heuristic is also admissible. This is because global consistency implies

that for any n ∈ V , if ng ∈ VGoal is one of the nearest goal nodes for n (ie.

g∗(n, ng) = h∗(n)) then the following is true:

H(n) ≤ H(ng) + g∗(n, ng) .

Since H(ng) = 0 because ng ∈ VGoal and g∗(n, ng) = h∗(n), this statement is

equivalent to H(n) ≤ h∗(ng). Therefore, any consistent heuristic is necessarily

admissible. Note, however that the converse of this statement is not true.

2.2 Open and Closed List-Based (OCL) Algorithms

We now consider some of the algorithms which use heuristics for solving planning

tasks. In the search literature, there have been many developed heuristic search al-

gorithms including A∗ [35], IDA∗ [50], WA∗ [71], A∗ε [69], and others. Some of

these algorithms — including A∗, WA∗, and A∗ε — have many similarities. These

similarities include that they all run by iteratively building up candidate paths, and

that they use data structures called the open and closed lists for doing so. We will

refer to this class of algorithms as Open and Closed List-Based (OCL) Algo-

rithms and define an abstract generalization of this class for which we can prove

properties that hold true over all such algorithms. As it will be easier to understand
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this generalization by starting with a concrete example and then showing what parts

are generalized, we begin with a description of the A∗ algorithm.

2.2.1 A∗ as an Example of an OCL Algorithm

The A∗ algorithm — which is shown in Algorithm 1 — explores the state-space by

iteratively building up candidate paths that start from ninit until a complete solution

path is found. We begin this section with a high-level description of how this algo-

rithm progresses through the state-space and the various structures used for doing

so. We will then consider its execution in more detail below.

On each iteration, the algorithm selects the “most promising” candidate path

P of those currently known (a notion we will formalize below), and expands the

deepest node on P . This means that where P = [n0, ..., nk], a list Lnk is constructed

consisting of all the successors of nk. The nodes in Lnk are said to have been

generated by the expansion of nk. For each successor c ∈ Lnk , the result of the

expansion of nk is that the algorithm has found a new candidate path to c given by

Pc = [n0, ..., nk, c]. Pc is then added to the list of candidate paths being considered

if it is either the first or lowest-cost path found to c. This process then continues

until a candidate path Pg is found for which the deepest node on Pg is a goal node.

At any time during the execution of the algorithm, the nodes in the candidate

paths currently under consideration are stored using two sets, the open and closed

lists, denoted as OPEN and CLOSED, respectively. The open list contains the

deepest node of every candidate path currently under consideration and the closed

list contains all nodes that have previously been expanded. Many of the nodes in the

closed list will be the ancestor along some candidate path of some node (or many

nodes) in the open list. At any time during the execution of A∗, the union of these

lists represents the complete set of all nodes that have been generated thus far.

To maintain the actual candidate paths currently under consideration, for each

node n in the open list, A∗ could maintain the list of ancestors to n along the can-

didate path that was found to n. However, these paths may be very long and so

maintaining such lists would require a lot of memory. As such, these candidate

paths are instead maintained implicitly using parent pointers. For each node in
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A∗ (Initial node ninit ):
1: CLOSED← {}
2: OPEN← {ninit}
3: parent(ninit) = NONE
4: g(ninit) = 0
5: loop
6: if OPEN = {} then . OPEN is empty
7: return [] . No solution path exists
8: n← argminn′∈OPEN g(n′) + h(n′)
9: if n ∈ VGoal then . Testing if n is a goal node

10: return ReconstructPath(n)

11: Ln = {c | c ∈ succ(n)} . Generate the children of n
12: for all c ∈ Ln do
13: if H(c) =∞ then . Goal not reachable from c
14: continue . Skip to next child
15: if c ∈ OPEN then
16: if g(c) > g(n) + κ(n, c) then . Found better path to c ∈ OPEN
17: parent(c)← n
18: g(c) = g(n) + κ(n, c)

19: else if c ∈ CLOSED then
20: if g(c) > g(n) + κ(n, c) then . Found better path to c ∈ CLOSED
21: parent(c)← n
22: g(c) = g(n) + κ(n, c)
23: CLOSED← CLOSED− c . Remove c from CLOSED
24: OPEN← OPEN ∪ {c} . Add c to OPEN

25: else
26: parent(c)← n
27: g(c) = g(n) + κ(n, c)
28: OPEN← OPEN ∪ {c} . Add c to OPEN

29: OPEN← OPEN− n . Remove n from OPEN
30: CLOSED← CLOSED ∪ {n} . Add n to CLOSED

Algorithm 1: The A∗ algorithm
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ReconstructPath(node n):
1: return ReconstructPathRecursive(n, [])

ReconstructPathRecursive(node n, path [n0, ..., nk]):
1: if n = NONE then
2: return [n0, ..., nk]

3: return ReconstructPathRecursive(parent(n), [n, n0, ..., nk])

Algorithm 2: Extracting a solution path from the parent pointers.

either the open or closed list, the parent pointer of a node n, denoted as parent(n),

is a single pointer to the parent node of n along some candidate path. For example,

if P = [n0, .., nk] is a candidate path currently under consideration, then the parent

pointers for nodes n0, ..., nk maintained by A∗ will be parent(nj) = nj−1 for each

1 ≤ j ≤ k and parent(n0) = NONE since n0 = ninit and therefore has no par-

ent. For any node n which has been previously generated, the candidate path being

stored to n can be reconstructed by following the parent pointers from n back to the

initial node. This process is shown in Algorithm 2.

Since A∗ only maintains a single parent pointer for any node n, the nodes in the

open and closed lists could be joined using only the parent pointers to form a tree

with ninit as the root. This means that only a single candidate path is maintained to

n at any time, even if there are many possible ways to get to n (this will be stated

formally in Section 2.2.4). Only one such path is needed since even if a number

of paths have been found to n at any time, only the lowest-cost path of these must

be maintained. Therefore, when multiple paths are found to the same node, it is

necessary for there to be a way to compare the costs of these paths to determine

which one to keep. This is the reason that A∗ maintains what is called the g-cost of

all nodes that have been generated. This value, denoted as g(n), is an estimate of

the cost of the candidate path to n that is currently under consideration. While g(n)

will often be equal to the cost of the candidate path currently being stored to n, this

is not true in all cases. However, the g-cost of n can be guaranteed to be an upper

bound on this candidate path to n as will be described in Section 2.2.4.

22



A Detailed Description of A∗

Having described the various components of the A∗ algorithm, we now consider

how it executes in more detail. The algorithm begins by initializing the g-cost of

ninit to 0 and the parent pointer of ninit to NONE . ninit is then placed on the open

list, and the main loop — each iteration of which corresponds to a single node

expansion — then begins.

As described above, a single node is selected from the open list for expansion

on each iteration of the algorithm. As shown in line 8 of Algorithm 1, the node

selected is the node from the open list with the minimum value of g(n)+h(n), with

ties being broken using any tie-breaking scheme.5 In the case of A∗, we assume

that h is an admissible heuristic function. Since g(n) is an approximation of the

cost of the path found to n and h(n) is an estimate of the cost of the path from n

to the nearest goal node, g(n) + h(n) is an estimate of the cost of a solution path

through n. The algorithm is therefore ordering candidate paths according to which

are estimated to lead to the lowest cost solution.

Once a node n has been selected for expansion, the algorithm then checks if n

is a goal node (line 9). If n ∈ VGoal , the solution path from ninit to n is extracted

using the ReconstructPath function given in Algorithm 2. If n /∈ VGoal , then

it is expanded with Ln being the generated list of successors (line 11).

Each child c of n is then considered in turn. First, the heuristic is used to check

if a goal node is reachable from c (line 13). If not, then the algorithm no longer

needs to consider candidate paths through c since none of them can be extended

into solution paths, and c can be safely discarded. If the heuristic does not identify

c as a node from which all goal nodes are unreachable, then it will be handled as

needed depending on whether c was already in the open or closed lists prior to the

expansion of n, or if it is through the expansion of n that c has been generated for

the first time.

In the case that c is already in the open list (line 15), the algorithm checks if the

g-cost of c (ie. the upper-bound of cost of the candidate path previously found to c)

5In practice, there are several standard tie-breaking schemes that are used with A∗ and other
OCL algorithms. We will detail some of these below.
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is larger than g(n) + κ(n, c) (which corresponds to an upper-bound on the cost of

the newly found path to c through n). If it is larger, then the parent pointer of c is

changed to n, and the g-cost of c is updated to be that for the path to c through n

(lines 17 and 18), since the new path is expected to be of a lower cost. If the g-cost

of c is no larger than g(n) +κ(n, c), then no updates are needed and the new path is

disregarded. This is because the new path does not improve the estimate of the best

path from ninit to c.

In the case that c is in the closed list prior to the expansion of n (line 19), the

g-cost and parent pointers of c are again only updated if the new path found to c

has a lower expected cost than the maintained path (lines 21 and 22). However, as

opposed to the case where c was already in the open list, if c is in the closed list

it is then moved back into the open to make it available to be expanded (lines 23

and 24). By allowing c to be re-expanded, the g-cost of the improved path can be

propagated to the ancestors of c that are on the open list.

The final case for c is that it has been generated for the first time by the expan-

sion of n (line 25). In this case, the g-cost of c is set to g(n) + κ(n, c), the parent

pointer of c is set to n, and c is added to the open list thereby making it available

for expansion.

The iteration is completed by removing the expanded node n from the open list

(line 29) and adding it to the closed list (line 30). In doing so, n is removed from

being considered for expansion on the next iteration, since it has just been explored.

Notice that moving n from the open list to the closed list combined with the checks

in lines 15 and 19 ensures that a node can never be on both the open and closed list

at the same time.

The next iteration then begins with the selection of a new node for expansion.

This process then continues until either a goal node is found, or the open list is found

to be empty. If either of these conditions becomes true, the algorithm terminates. If

the algorithm terminates because the open list is found to be empty, then it can be

guaranteed that there is no solution. This will be shown in Section 2.2.4.
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OCL(Initial node ninit ):
1: CLOSED← {}
2: OPEN← {ninit}
3: parent(ninit) = NONE
4: g(ninit) = 0
5: loop
6: if OPEN = {} then . OPEN is empty
7: return [] . No solution path exists
8: n← SelectNode(OPEN)
9: if n ∈ VGoal then . Testing if n is a goal node

10: return ReconstructPath(n)

11: Ln = {c | c ∈ succ(n)} . Generate the children of n
12: for all c ∈ Ln do
13: if H(c) =∞ then . Goal not reachable from c
14: continue . Skip to next child
15: if c ∈ OPEN then
16: if g(c) > g(n) + κ(n, c) then . Found better path to c ∈ OPEN
17: parent(c)← n
18: g(c) = g(n) + κ(n, c)

19: else if c ∈ CLOSED then
20: if g(c) > g(n) + κ(n, c) and ShouldUpdateNode(n, c) then
21: parent(c)← n
22: g(c) = g(n) + κ(n, c)
23: if ShouldReopenNode(n, c) then
24: CLOSED← CLOSED− c
25: OPEN← OPEN ∪ {c}
26: else
27: parent(c)← n
28: g(c) = g(n) + κ(n, c)
29: OPEN← OPEN ∪ {c} . Add c to OPEN

30: OPEN← OPEN− n . Remove n from OPEN
31: CLOSED← CLOSED ∪ {n} . Add n to CLOSED

Algorithm 3: The open and closed list-based algorithm framework. The differences
with the A∗ code given in Algorithm 1 are underlined and shown in red.
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2.2.2 OCL Algorithms as a Generalization of A∗

Having described A∗, let us now define an abstract generalization of this algorithm

that will allow us to reason about a large class of algorithms simultaneously. We re-

fer to this class of algorithms as Open and Closed List-Based (OCL) Algorithms,

pseudocode for which is shown in Algorithm 3.

This code involves two generalizations of the A∗ code given in Algorithm 1,

with the corresponding changes being shown underlined and in red. The first is that

the policy for selecting nodes from the open list is no longer specified. This can

be seen by comparing line 8 of Algorithm 1, with line 8 of Algorithm 3. The OCL

code replaces the use of the function g(n)+h(n) for selecting a node from the open

list as done by A∗ with a call to an undefined function called SelectNode. By

leaving this function unspecified, the OCL definition allows each OCL algorithm to

define this function differently. In the case of A∗, this function is defined as follows:

SelectNode(OPEN):
1: return argminn∈OPEN g(n) + h(n)

Algorithm 4: The A∗ SelectNode function

The abstract OCL definition also allows for some flexibility into the way al-

gorithms handle the situation in which a path with a lower g-cost is found to a

node c that is already on the closed list. Whereas A∗ always updates g(c) and

parent(c), and always moves c back to the open list in this situation, these two

actions are optional in the OCL definition. This flexibility is allowed through the

use of two boolean functions. The first, ShouldUpdateNode, determines if the

parent pointer and g-cost updates should be made, and it allows this decision to be

made on a per-node basis. If these updates are performed then a second function,

ShouldReopenNode, determines if the node should then be moved back onto

the open list. This decision can also be made on a per-node basis.

In the case of A∗, both of these functions will always return True. Any OCL

algorithm which uses this same approach will be said to use a full re-expansion

policy. Notice that this policy may result in the same node being expanded more

than once. Another possible policy is to ensure that no node is ever re-expanded.
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We will refer to such OCL algorithms as ones that do not perform re-expansions.

This can be ensured by never moving nodes back from the closed list to the open

list, either by having ShouldUpdateNode always return False or by having

ShouldReopenNode always return False.

This means there are two aproaches to ensuring that an OCL algorithm does not

perform re-expansions. In the first, ShouldUpdateNode is set to always return

True and ShouldReopenNode is set to always return False. This technique will

still update the parent pointer and g-cost of nodes that are in the closed list, but the

lack of re-expansions prevents any g-cost improvements from being propagated to

any ancestor nodes which are in the open list. In contrast, if ShouldUpdateNode

is set to always return False, nodes can never be expanded more than once, but such

updates will not be made. In terms of runtime, these two approaches will be iden-

tical (aside from the minor overhead in performing these updates). However, these

two approaches may differ in terms of solution quality. If an OCL algorithm sets

ShouldUpdateNode to always returns True and ShouldReopenNode to al-

ways returns False, then it may allow for the candidate paths to nodes in the open

list to be improved without propagating the g-cost improvement forward using re-

expansions. The result is that if a goal node ng is expanded when the g-cost and par-

ent pointer updates are made, then the path reconstructed by ReconstructPath

may have a lower cost than g(ng).

As a short-hand, we will use rOCL to refer to an OCL algorithm which uses

the full re-expansion policy. For example, A∗ is an instance of an rOCL algorithm.

Similarly, we will use nrOCL to refer to an OCL algorithm which never moves

nodes back to the open list from the closed list, regardless of whether it updates the

g-cost and parent pointers of a node or not. An OCL algorithm which does perform

these updates is said to always perform parent pointer updates. Note, that this

notation means we will use “OCL” as a short-hand for an OCL algorithm for which

nothing is assumed about the re-expansion policy (ie. it may re-expand nodes all

the time, never, or it may use some other policy).
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(b) An A∗ search after 3 node expansions.
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(c) g-cost inaccuracy after 4 node expansions.

Figure 2.2: An example of g-cost inaccuracy.

2.2.3 The g-cost Function

Before considering some properties of these algorithms, it is first necessary to con-

sider the g-cost function in more detail. The g-cost of a node n has typically been

referred to in the search literature as being equal to the cost of the path held im-

plicitly using the open and closed lists, and the parent pointers. While this would

be true if the path to a node n were being maintained explicitly instead of when

using parent pointers, and it is true in certain situations such as when using using a

consistent heuristic with A∗, this will not necessarily hold in general.

Figure 2.2 offers an example which demonstrates this behaviour. First, consider

Figure 2.2a which shows the graph being used to demonstrate how g-cost inaccu-

racy may emerge during the execution of an OCL algorithm. As in all graphs in this

thesis, nodes are represented as circles and edges are represented by arrows. The

numbers besides the arrows correspond to the edge costs and the numbers inside

the nodes correspond to the heuristic values. The node labelled “ninit” is the initial

node, and the node labelled “ng” is a goal node.

Figure 2.2b shows how an A∗ search would have explored the graph after 3 node
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expansions, with the initial node being expanded first followed by n1 and then n3.

The nodes that have been generated thus far have their g-cost at this time labelled,

the bold nodes are currently those on the open list, and the green dashed arrows

correspond to the parent pointers. Figure 2.2c then shows what happens after one

more node expansion. In this case, the node marked n2 is selected for expansion

and a lower g-cost path is found to n3. As a result, both the parent pointer and

g-cost of n3 are updated.

Now notice how the candidate path maintained to n4 changes due to the 4-th

node expansion from the path with a cost of 4 which passes through n1, to the path

of cost 3 that passes through n2 and n3. This change occurs without any updates

being made to the g-cost and parent pointer of n4. The result is that after 4 node

expansions, g(n4) is inaccurately set as 4 even though the path implicitly stored to

n4 only has a cost of 3. This inaccuracy arises because the improvement made to

the path found to n4 is not immediately propagated to n4. However, it is important

to notice that while the g-cost of a node n does not necessarily exactly correspond

to the cost of the path from ninit to n being maintained by the parent pointers, it

still does correspond to the cost of some candidate path from ninit to n. In the case

of Figure 2.2c, the value of g(n4) corresponds to the path to n4 that passes through

n1 instead of the path through n2 currently being maintained by the parent pointers.

This property will be important when showing that any OCL algorithm terminates

given a finite graph.

Figure 2.2 also demonstrates another important property of the g-cost func-

tion: the value of g(n) can decrease over time. This can happen if a path with a

lower g-cost is found to n while it is in the open list (line 18 of Algorithm 3) or if

ShouldUpdateNode returns true and it is in the closed list (line 22). To track

what the g-cost of a node is at a particular time, we introduce the following notation.

We will use gt(n) to refer to the g-cost of n after t node expansions (or equivalently,

after t iterations of an OCL algorithm). For example, consider node n2 in Figures

2.2b and 2.2c. Recall that Figure 2.2b shows the state of the search after 3 node

expansions and so g3(n2) = 3, while Figure 2.2c shows the state of the search after

4 expansions and so g4(n2) = 2. We will similarly use parent t(n), OPENt, and
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CLOSEDt to refer to the value of the parent pointer of n after t expansions, the set

of nodes in the open list after t expansions, and the set of nodes in the closed list

after t expansions, respectively. Note that we will use g(n), parent(n), OPEN, and

CLOSED instead of gt(n), parent t(n), OPENt, and CLOSEDt when the number

of nodes that have been expanded is clear from the context.

g-cost Error

For the theoretical analysis presented later in the thesis, it will be convenient to refer

to how much the g-cost of a node n deviates from the cost of the optimal path from

ninit to n at different points during the algorithm’s execution. We will refer to this

deviation, denoted by gδt (n), as the g-cost error of n after t node expansions and

define it as follows:

Definition 2.2.1. The g-cost error of a node n after t node expansions is given by

gδt (n) = gt(n)− g∗(n) .

Notice that the g-cost of a node n can only change during a particular iteration

if n is newly generated, or if n is already in the open or closed list and the newly

found path to n has a lower g-cost than g(n). This means that if a node n is in the

open or closed list after t node expansions, and no better path is found to it by the

t+ 1-st expansion, then gt+1(n) = gt(n) and gδt+1(n) = gδt (n).

Simple Properties of the g-cost and g-cost Error Function

Having described g(n) in detail, we now turn to showing simple properties of this

function. We begin by considering how the g-cost of a node changes over time.

Since the g-cost of a node n can only be updated to a lower value according to lines

18 and 22 of Algorithm 3, the value of g(n) can only decrease during the execution

of an OCL algorithm. This notion is formalized in the following observation:

Observation 2.2.2. If a node n is first generated by an OCL algorithm by the t-

th node expansion, then for any t′ and t′′ where t ≤ t′ ≤ t′′, it will be true that

gt′(n) ≥ gt′′(n) and gδt′(n) ≥ gδt′′(n).
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Notice that the statement holds for the g-cost error of n since gδt (n) = gt(n) −

g∗(n), g∗(n) is a constant that does not change with t, and gt(n) can never increase.

The next property considers how the g-cost error is propagated from a parent

nk−1 to a child node nk where nk−1 is along an optimal path to nk, and nk−1 is

expanded before nk. In this case, the g-cost error of nk can be no larger than the

g-cost error of nk−1 when it is first expanded for the remainder of the search. This

is formalized by the following lemma:

Lemma 2.2.3. Let P = [n0, ..., nk−1, nk] be an optimal path from n0 = ninit to nk

for k > 0. If nk−1 is expanded for the first time by the t-th node expansion of an

OCL algorithm and nk is not one of the first t nodes expanded, then the following

is true for any t′ ≥ t

gδt′(nk) ≤ gδt (nk−1) .

The proof of this and the next lemma can be found in Section A.1.2 of Appendix

A. If the OCL algorithm is always performing parent pointer updates, then the

lemma can be strengthened so that the order in which nk and nk−1 are expanded

does not matter, and so that it does not only apply to the first time nk−1 is expanded.

Lemma 2.2.4. Let P = [n0, ..., nk−1, nk] be an optimal path from n0 = ninit to nk

for k > 0. If nk−1 is expanded by the t-th node expansion of an OCL algorithm that

always performs parent pointer updating, then the following is true for any t′ ≥ t

gδt′(nk) ≤ gδt (nk−1) .

These properties will now allow us to consider how the g-cost of a node n is

related to the path from ninit to n that is stored implicitly using the parent pointers.

The following theorem states that at any time for which n is in the open or closed

list then this path is guaranteed to exist, it will be unique, it will have no cycles on

it, and g(n) will be an upper bound on its cost.

Theorem 2.2.5. Suppose that there have been t node expansions of an OCL algo-

rithm. If n is a node such that n ∈ OPENt ∪CLOSEDt, then there exists a unique

path P = [n0, ..., nk] from ninit = n0 to n = nk such that the following are true:
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1. ∀0 ≤ i ≤ k, ni ∈ OPENt ∪ CLOSEDt .

2. ∀1 ≤ i ≤ k, parent t(ni) = ni−1 .

3. ∀0 ≤ i < j ≤ k, ni 6= nj .

4. gt(n) ≥ C(P ) .

The proof of this statement can be found in Section A.1.3 of Appendix A. Note

that by stating that P is unique, we mean that there is no other path to n being

maintained implicitly by the parent pointers.

2.2.4 Formal Properties of OCL Algorithms

In this section, we now turn to formally describing properties that are common

to large sets of OCL algorithms. We begin by considering how OCL algorithms

explore the state-space. This will be followed by an examination of how the open

and closed lists can be used to find lower bounds for C∗ during the search. Finally,

we will identify cases in which OCL algorithms are guaranteed to find solutions.

The Exploration of Candidate Paths by OCL Algorithms

We begin by considering formal properties regarding how OCL algorithms progress

along candidate paths when using different re-expansion policies. The first such

theorem states that at any time during the algorithm’s execution, an rOCL algorithm

will either have already explored all the nodes along a given candidate path P , or it

will continue to make progress along P . In addition, the statement guarantees that

there will be some nodes along this path such that the g-cost of these nodes will

be equal to the cost of the optimal path to these nodes. This is formalized in the

following theorem:

Theorem 2.2.6. Let P ∈ Πinit be a candidate path for a given planning task Γ

such that P = [n0, ..., nk], P is an optimal path from ninit to n where n = nk, and

∀ni ∈ P , H(ni) 6=∞. Then after t iterations of a rOCL algorithm on Γ, one of the

following will be true:

1. ∀n ∈ P , n ∈ CLOSEDt and gt(n) = g∗(n) .
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or

2. ∃ni ∈ P such that ni ∈ OPENt, gt(ni) = g∗(ni), and ∀nj ∈ P where

0 ≤ j < i, nj ∈ CLOSEDt and gt(nj) = g∗(nj) .

The proof of this theorem can be found in Section A.1.4 of Appendix A. It is

similar to a lemma given by Hart, Nilsson, and Raphael [35] that was specific to the

A∗ algorithm and how it progresses along optimal solution paths. Theorem 2.2.6

identifies that it can be generalized to apply to a path from ninit to any n even if

n /∈ VGoal , and that this statement holds for any rOCL algorithm.

If the OCL algorithm in use does not employ the full re-expansion policy, then

we can still guarantee that at any time during execution, the algorithm will either

have already explored all the nodes along a given candidate path, or it will continue

to make progress along that path. However, without the full re-expansion policy the

optimality of the g-cost of some nodes along this path can no longer be guaranteed.

This is formalized as follows:

Theorem 2.2.7. Let P ∈ Πinit be a candidate path for a given planning task Γ such

that P = [n0, ..., nk] and ∀ni ∈ P , H(ni) 6= ∞. Then after t iterations of an OCL

algorithm on Γ, one of the following will be true:

1. ∀n ∈ P , n ∈ CLOSEDt .

or

2. ∃ni ∈ P such that ni ∈ OPENt, and ∀nj ∈ P where 0 ≤ j < i, nj ∈

CLOSEDt .

As the proof of this statement is almost identical to that given for Theorem 2.2.6,

it is also in the Section A.1.4 of Appendix A.

Theorems 2.2.6 and 2.2.7 can also be simplified considerably when they are ap-

plied to solution paths. In the case of an arbitrary OCL algorithm in which nothing

is assumed about the re-expansion policy, this simplification is as follows:

Corollary 2.2.8. Let P ∈ ΠGoal be a solution path to a given planning task Γ such

that P = [n0, ..., nk]. Then after t iterations of an OCL algorithm on Γ prior to the

expansion of a goal node, there will exist a node n such that the following are true:
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1. n ∈ OPENt .

2. Either n = ninit or n = ni for 1 ≤ i ≤ k and ∀nj ∈ P where 0 ≤ j < i,

nj ∈ CLOSEDt .

This simplification follows immediately from Theorem 2.2.7 since all nodes on

a given solution path cannot be on the closed list prior to the first goal node having

been expanded. Theorem 2.2.6 can similarly be simplified when using rOCL and

only considering an optimal solution path. This is simplification is given as follows:

Corollary 2.2.9. Let P ∈ Π∗Goal be an optimal solution path to a given planning

task Γ such that P = [n0, ..., nk]. Then after t iterations of an rOCL algorithm

on Γ prior to the expansion of a goal node, there will exist a node n such that the

following are true:

1. n ∈ OPENt and g(n) = g∗(n) .

2. Either n = ninit or n = ni for 1 ≤ i ≤ k and ∀nj ∈ P where 0 ≤ j < i,

nj ∈ CLOSEDt and g(nj) = g∗(nj) .

Finding Lower Bounds for C∗

Another important property of OCL algorithms is that at any time during the search,

the nodes that have been seen can be used to generate a lower bound on the optimal

solution cost. In the following theorem, we consider how this can be done in the

case of an OCL algorithm that uses the full re-expansion policy:

Theorem 2.2.10. Let h be an admissible heuristic and suppose that there have been

t iterations of an OCL algorithm that uses the full re-expansion policy, such that the

search has yet to expand a goal node. Then the following is true:

C∗ ≥ min
n∈OPENt

gt(n) + h(n) .

Proof. Suppose there have been t node expansions of an rOCL algorithm such that

the search has yet to expand a goal node. Let P be an optimal solution path to the
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given task. By Theorem 2.2.6, there is a node n′ from P on the open list such that

gt(n
′) = g∗(n′). This allows for the following derivation:

gt(n
′) + h(n′) ≤ g∗(n′) + h∗(n′) (2.1)

gt(n
′) + h(n′) ≤ C∗ (2.2)

min
n∈OPENt

gt(n) + h(n) ≤ C∗ (2.3)

Line 2.1 holds since h is admissible and gt(n) = g∗(n). Line 2.2 holds since n′

is on the optimal solution path P . The final line then holds since the minimum of

gt(n) + h(n) over all nodes on the open list must be no larger than gt(n′) + h(n′)

since n′ is in the open list.

This statement was shown to apply for A∗ε by Pearl and Kim [69] and for WA∗

by Zhou and Hansen [33]. Both of these works presented essentially the same proof

which has been replicated above so as to apply for any rOCL algorithm.

A lower bound can also be generated for an OCL algorithm that does not use

a full re-expansion policy, but does always perform parent pointer updates. In this

case, both the open list and a subset of the closed list needs to be consulted in

order to find an appropriate lower bound. This subset, called the unopened list and

denoted as UNOPENED, will consist of any node n in the closed list whose g-cost

was lowered without that node being moved back into the open list. As defined by

the following theorem, by taking the minimum of g + h over all nodes on both the

open and unopened list, we again have a guaranteed lower bound:

Theorem 2.2.11. Let h be an admissible heuristic and suppose that there have been

t iterations of an OCL algorithm that always performs parent pointer updates, such

that the search has yet to expand a goal node. Then the following is true:

C∗ ≥ min
n∈OPENt∪UNOPENEDt

gt(n) + h(n) .

Similar statements have been observed by Zhou and Hansen [110], as well as by

Likhachev, Gordon, and Thrun [57, 58, 59]. These works have identified that this

statement is true in the context of anytime algorithms that perform a sequence of

WA∗ searches that delay the re-expansion of nodes to which lower g-cost paths are
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found during a particular iteration until the next iteration.6 Theorem 2.2.10 gener-

alizes this statement so that it applies for any OCL algorithm that always performs

parent pointer updates. The full proof of this theorem is given in Section A.1.5 of

Appendix A. The basic idea behind this proof involves the construction of an rOCL

algorithm that always selects the same node expansion as the given OCL algorithm

but whose open list at any time is given by the union of the open and unopened list

of the given OCL algorithm. This will then allow us to use Theorem 2.2.10 to get

the desired bound.

Termination and Correctness of OCL Algorithms on Finite Graphs

In this section, we will show that given a finite state-space that has at least one

solution path, any OCL algorithm will be guaranteed to terminate having found a

solution. We begin by showing that given a state-space in which at least one solution

exists, an OCL algorithm will only terminate having found a solution.

Theorem 2.2.12. Let Γ be a planning task in which there is at least one solution

path. Then any OCL algorithm that terminates when run on Γ will be guaranteed

to return a solution path.

Proof. The proof will be by contradiction. Assume that a given OCL algorithm

terminates without having found a solution on a task Γ for which there exists at least

one solution path P . OCL algorithms can only terminate having found a solution or

if the open list ever becomes empty. By our assumption, this means that the OCL

algorithm terminated when the open list was found to be empty. Suppose that this

happens after t node expansions. Since no goal node was found during the first t

expansions, Corollary 2.2.8 guarantees that there is some node n ∈ P which is in

the open list at that point in this search. This contradicts the fact that the open list

is empty, and so the algorithm can only terminate once it expands a goal node.

Let us now show that any OCL algorithm is guaranteed to terminate if the given

state-space is finite.

6Likhachev, Gordon, and Thrun refer to the unopened list as INCONS instead of UNOPENED.
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Theorem 2.2.13. Any OCL problem will be guaranteed to terminate on a given

planning task Γ = 〈G(V,E), ninit , VGoal〉 if V is finite.

Proof. If every node n ∈ V is expanded at most a finite number of times, then the

total number of node expansions must be finite if V is finite. Therefore, it suffices

to show that for any n, it is expanded a finite number of times.

Let n be a node in V . Recall that the g-cost of a node refers to the cost of some

path from ninit to n, even though that path may not be the one currently maintained

by the parent pointers.7 Now notice that each time n is re-expanded, it is given a

lower g-cost, and that there are only a finite number of paths from ninit to n since

V is finite and all nodes have a finite number of successors. This means that if there

areK distinct paths to n, then g(n) can be lowered at mostK times. As such, n can

only be re-expanded K or a finite number of times. Since n is an arbitrary node,

any node in n can be expanded at most a finite number of times, there can be at

most a finite number of expansions before the algorithm terminates.

Together, these theorems show that given a problem with a finite state-space

and for which a solution exists, any OCL algorithm will be guaranteed to terminate

having found a solution. This was first shown for A∗ by Hart, Nilsson, and Raphael

[35]. Pearl and Kim [69] recognized this proof also applied to A∗ε . We have repro-

duced this proof above so that it also applies to any OCL algorithm, regardless of

the re-expansion policy being used.

2.2.5 Best-First Search

Having described properties which hold for large sets of OCL algorithms, we now

identify several OCL algorithms that have previously been described in the search

literature. The set of such algorithms are called Best-First Search (BFS) algo-

rithms, which includes A∗, WA∗, and greedy best-first search. Algorithms in this

class iteratively select the “most promising” node for expansion, where an evalua-

tion function Φ defines how promising a node is. This means that the SelectNode

function used by best-first search algorithms is as shown in Figure 5.

7This is formalized by Lemma A.1.4 and proved in Section A.1.1 of Appendix A.
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SelectNode(OPEN):
1: return argminn∈OPEN Φ(n)

Algorithm 5: The BFSΦ SelectNode function

The evaluation function Φ may use any information available for estimating how

promising a node n is, including information regarding the path found to that node.

In general, the only requirement is that Φ(n) returns a real number. For example, the

A∗ evaluation function is Φ(n) = g(n) + h(n) where h is an admissible heuristic

[35]. This means that this algorithm is employing both the g-cost and heuristic

functions for determining the value of a node.

Notice that for evaluation functions like the one used by A∗, the value of Φ(n)

can change over time. In the case of the A∗ function, this change will occur because

g can change over time. When needed, we will use Φt(n) to refer to the value of

Φ(n) after t expansions.

So as to be clear about the evaluation function in use, we will use rBFSΦ to

denote a best-first search that is guided by evaluation function Φ and uses the full

re-expansion policy. nrBFSΦ will be used to denote that the algorithm will never re-

expand nodes. To the best of our knowledge, all existing best-first search algorithms

use one of these two policies.8

We now define the evaluation function and re-expansion policy of several im-

portant best-first search algorithms below.

The A∗ Algorithm

As described above, A∗ is a best-first search algorithm that uses the full re-expansion

policy and the following evaluation function:

f(n) = g(n) + h(n) ,

where h is admissible.9 This means that A∗ is equivalent to rBFSf .
8rBFSΦ is similar to another generic best-first search definition given by Dechter and Pearl called

BF∗ [12]. While BF∗ uses a slightly different re-expansion policy, most of Dechter and Pearl’s
results involve assumptions that make BF∗ equivalent to rBFSΦ. This is described in more detail in
Section B.2 of Appendix B.

9Some authors use the term A∗ for rBFSF where F (n) = g(n) + H(n), regardless of whether
H is admissible or not. We reserve this term for the case in which the heuristic is admissible to more
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Hart, Nilsson, and Raphael [35] showed that any solution found by A∗ is guar-

anteed to be optimal. This will be shown in Section 5.4.

When there are multiple nodes in the open list that tie as having the best value

for g+h, the typical policy used to break such ties is to select the node with the low-

est heuristic value (or equivalently with the highest g-cost) for expansion. If there

are still ties even when this second criteria is used, then ties are broken arbitrarily.

Djikstra’s Search

Consider the special case of the A∗ algorithm in which the heuristic value of all

nodes is 0. The evaluation of any node will therefore be given by g(n) + h(n) =

g(n). The resulting algorithm, which is equivalent to rBFSg, will iteratively select

the node with the lowest g-cost. The result is an algorithm that is equivalent to

Djikstra’s algorithm [13].

Weighted A∗

Weighted A∗ (WA∗) is a variant of A∗ proposed by Pohl [71]. This algorithm uses

the following evaluation function:

fw(n) = g(n) + w · h(n) ,

where h is admissible and w ≥ 1 is an algorithm parameter. The intuition behind

this algorithm is that it emphasizes the importance of the heuristic in the evaluation

function. This emphasis typically results in a faster search, though at the cost of

decreased solution quality.

The standard version of this algorithm uses the full re-expansion policy and so

WA∗ is equivalent to rBFSfw . Pohl [71] showed that when using this algorithm with

an admissible heuristic and the full re-expansion policy, any solution found by WA∗

will be guaranteed to be no larger than w ·C∗. As we will show in Section 5.4.1, this

linear loss in guaranteed solution quality is a consequence of the way the heuristic

is weighted in the evaluation function. In that section, we will also show that other

types of weighting can be used to induce other types of solution quality guarantees.

clearly distinguish this algorithm from the other BFS algorithms considered later.
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WA∗ is commonly modified so that it does not re-expand nodes. When needed,

we will therefore refer to nrWA∗ to indicate that this algorithm is being used such

that it does not re-expand nodes, and rWA∗ to indicate that it uses the full re-

expansion policy. It has also been shown that if the heuristic being weighted by

an nrWA∗ algorithm is consistent, then this algorithm can also be guaranteed to re-

turn solutions that are no more costly than w ·C∗ [58]. This result will be shown in

Section 6.5, in which we will also consider the solution quality of similar algorithms

which weight a consistent heuristic in non-linear ways.

WA∗ is typically configured to use the same tie-breaking policy as A∗ if there

are multiple nodes in the open list that tie as having the best value for g+w ·h. This

means that ties are broken in favour of the node with the lowest h-cost, and further

ties are broken arbitrarily.

Greedy Best-First Search

Greedy Best-First Search (GBFS) (or pure heuristic search) is an instance of

best-first search that only uses heuristic information in its evaluation function. This

means that GBFS uses the following evaluation function:

Φ(n) = H(n) ,

whereH is some heuristic function. GBFS is typically set to never re-expand nodes,

which means that GBFS is equivalent to nrBFSH .

This algorithm takes the idea of emphasizing the role of the heuristic in the

evaluation function, as is done in WA∗, as far as it can. The result is that it is

typically the fastest of the best-first search algorithms described thus far, but it is

not possible to bound the quality of solutions that will be found by GBFS.

When there are multiple nodes in the open list that all have the same lowest

heuristic value of all those in the open list, the typically way to break such ties is

to select the node with the lowest g-cost for expansion. This is in keeping with the

understanding of GBFS as being like WA∗ as the weight approaches infinity. To

see this, suppose that we are running WA∗ with a weight that is much larger than

the length of any path in Πinit . In that case, w · h would dominate the evaluation
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function and so the search would essentially be performing a GBFS on heuristic

h. However, as g is still part of the evaluation function, the evaluation of a node

with a lower g-cost will be less than a node with an equal h-cost but a lower g-cost.

Therefore, the search would be equivalent to a GBFS that breaks ties in favour of

the node with a lower g-cost.

2.2.6 Focal List Based Search

The other main category of existing OCL algorithms are focal-list based algo-

rithms. This class of algorithms allows for the use of distance-to-go or other in-

admissible heuristic information, while still guaranteeing bounded solution quality.

These bounds are guaranteed by restricting the use of such inadmissible information

to only be used to select nodes for expansion from a particular subset of the open

list defined specifically so to ensure the required solution quality is met. We will

introduce this class of algorithms through the example of the first such focal-list

based algorithm: A∗ε .

A∗ε (or A∗w)

A∗ε was first described by Pearl and Kim [69]. As we will be using ε later in this

thesis in a different context, we will refer to this algorithm as A∗w. This algorithm

also selects nodes from the open list according to an evaluation function, but it only

uses this evaluation function on a subset of those nodes, called the focal list. This

subset is defined as follows:

FOCAL =

{
n|gt(n) + h(n) ≤ w · min

n′∈OPEN
gt(n

′) + h(n′)

}
,

where w is an algorithm parameter for A∗w and h is an admissible heuristic.

Having defined the subset of the open list which it is restricted to selecting nodes

from, A∗w then greedily selects nodes from this subset using a secondary heuristic

that may be inadmissible [69]. In the case of a graph with non-uniform edge costs,

Pearl and Kim suggest the use of a distance-to-go heuristic Hd, which estimates the

number of actions in the path to the nearest goal node and often provides a better

measure of how much search effort will be needed to find a goal from a given node
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[69, 90]. When taking this approach, the SelectNode function would look as

shown in Figure 6.

SelectNode(OPEN):
1: FOCAL = {n|gt(n) + h(n) ≤ w ·minn′∈OPEN gt(n

′) + h(n′)}
2: return argminn∈FOCALHd(n)

Algorithm 6: The A∗w SelectNode function

Notice that by this definition, A∗w is using the same policy as a GBFS which

uses the heuristic Hd. However, unlike GBFS which can consider all nodes on the

open list, A∗w is restricted to only use this policy to select amongst those nodes

on the focal list. As a result, A∗w will perform more and more like GBFS as w

increases, since increasing w will increase what proportion of the open list is also

in the focal list.

Properties of Focal List Based Algorithms

In their paper introducing the algorithm, Pearl and Kim showed that when using A∗w
with the full re-expansion policy and an admissible heuristic h for the construction

of the focal list, any solution found will have a cost of at most w ·C∗ [69]. However,

it is not the policy for selecting nodes from the focal list which ensures this bound,

but the way the focal list is constructed. This was identified by Ebendt and Drech-

sler [15], and also by Farreny [17] who showed that this bound holds regardless of

the policy used to select nodes from the focal list, assuming the use of the full re-

expansion policy and that an admissible heuristic h is being used when constructing

the focal list. For example, this bound also holds for the EES algorithm developed

by Thayer and Ruml [90] which uses a different policy for selecting nodes from the

focal list. We will describe this policy in more detail later in this thesis.

In Section 5.5, we will prove the A∗w bound given above. This bound will also

be shown to hold as a result of the way the focal list is constructed, regardless of

what policy is then used to select from amongst the nodes on the focal list. We will

also show that other ways to construct the focal list will admit other sorts of bounds.

In particular, we will consider the use of functions of the form β : R → R where
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∀x ≥ 0, β(x) ≥ x for building focal lists as follows:

FOCAL =

{
n|gt(n) + h(n) ≤ β

(
min

n′∈OPEN
gt(n

′) + h(n′)

)}
For example, in the case of A∗w and related algorithms, the function β is defined

as β(x) = w · x. We will then use FOCALβ to denote the set of focal list based

algorithms that use the function β to define its focal list. When we then wish to

specify the re-expansion policy in use, we will use rFOCALβ and nrFOCALβ .

Several authors have noted that rWA∗ is a special case of rFOCALβw , where

βw(x) = w · x, that uses the WA∗ evaluation function to select a node from the

focal list [15, 17]. This is because the node with the minimum value of g + w · h

is always guaranteed to be on the focal list when βw is being used to define this

list. However, Ebendt and Drechsler also showed that while any solution found by

nrWA∗ is guaranteed to be no larger than w ·C∗ provided that the heuristic in use is

consistent, this is not the case for nrFOCALβw algorithms in general [15]. Instead, a

nrFOCALβw algorithm that builds its focal list like A∗w using a consistent heuristic

can only be guaranteed to return solutions that cost no more than wbD/2c ·C∗ where

D is the number of edges along the optimal solution path.

2.2.7 Other Heuristic Search-Based Algorithms

In the remainder of this thesis, we will also refer to several other algorithms that use

heuristics to explore a state-space in an effort to solve a given planning problem,

aside from those in the class of OCL algorithms. These include random-walk based

search [65, 66] and iterative deepening search [50]. As these algorithms will not be

referred to as often as the set of OCL algorithms, they will be introduced as needed.

While there are also other paradigms for heuristic search-based algorithms —

including bi-directional search [72] and real-time search [51] — a consideration of

how the work in this dissertation applies to those frameworks is left as future work.

2.3 Automated Planning

In the remainder of this thesis, we will often test a heuristic search algorithm as

part of an automated planner. An automated planner is a system that solves prob-
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lems that are given to the system specified using a general problem task description

language. For heuristic search-based automated planners, this means that such sys-

tems must be able to generate a heuristic on their own, based solely on the problem

description. In this section, we will briefly describe how problems are represented,

give an example of a heuristic used by automated planners, and describe several

enhancements commonly used by such systems.

2.3.1 Automated Planning Representations

The most well-known planning problem description language is STRIPS [23].

This language offers an implicit representation for planning tasks. In a STRIPS

representation of a problem, a state is defined by the set of propositions or facts

that are true in that state. For example, a typical STRIPS representation of the 15

puzzle would define the set of facts as the set of all pairs of tiles and tile locations.

Where F is the set of all possible facts for a given domain, a particular state swould

be defined as the subset Fs ⊆ F of those facts which are true in s. By the closed

world assumption, this also means that for any fact f ∈ F such that f /∈ Fs, f

does not hold in s. For example, if a particular 15 puzzle state s has the tile labelled

1 in the upper left corner, then Fs would include the proposition which corresponds

to this fact, and s would not include the propositions corresponding to there being

any other tile in that position.

A STRIPS problem is defined by a given set of facts F , a subset Finit ⊆ F

which defines the initial state, a set of propositions FGoal ⊆ F that define which

states are goal states, and a set of actions A that define the legal state transitions,

each of which will have an associated cost. A state s is said to be a goal state if

FGoal ⊆ Fs where Fs is the set of facts that are true in s. An action a ∈ A is defined

by three components: the preconditions, the add list, and the delete list. The

preconditions, pre(a) ⊆ F , are the propositions that must be true in a given state in

order for a to be applicable. The add list, add(a) ⊆ F , are the set of propositions

that will be true after a is applied to a state s in which a is applicable that were not

true prior to applying a. The delete list, del(a) ⊆ F , are the set of propositions that

will not be true after a is applied to a state in which a is applicable, but which were
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true prior to the application of a.

Other important languages for describing planning problems include the Plan-

ning Domain Definition Language (PDDL) [62] and SAS+ [2]. PDDL, which

is an extension to STRIPS that uses a restricted first-order language for defining

problems, has become the standard language used by modern planners. In SAS+,

a state-space is defined by a set of variables each of which has a finite, but not

necessarily binary domain, and a state is defined by an instantiation of these vari-

ables. This language is notable since several modern planners such as LAMA [76]

and Fast Downward [38] first translate the given PDDL representation into an

SAS+ representation before building their heuristics. A full description of these lan-

guages is beyond the scope of this thesis, in which the above description of STRIPS

will be enough to understand the techniques typically used by automated planners.

2.3.2 Automated Planning Test Suites

The planning problem definition languages just defined can all be used to encode

a very large and diverse set of state-spaces. For example, PDDL has been used

to model the operation of multi-engine printers [14] and greenhouse logistic man-

agement [42]. The automated planning benchmarks that we will use for empirical

evaluations will be given by the problems from the International Planning Com-

petition (IPC). In this competition, teams submit automated planning systems that

are tested on an unknown set of PDDL problems. For each competition, this test set

is typically made up of multiple problems from different domains. The test set that

we use consists of all of the problems from the last three planning competitions:

IPC 2006 [28], IPC 2008 [39], and IPC 2011 [9].

Evaluating Planners

Depending on the context, we will be testing heuristic search algorithms in an au-

tomated planner in either a satisficing or a bounded context. In either case, our

empirical evaluations will focus on how many of the problems in a given test set

are solved by the planner given a specific time limit and under the given solution

quality requirement. This value is referred to as the planner’s coverage on the test
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set. For example, if a planner solves 700 of the 790 problems in a given test set, the

coverage of that planner is 700.

We will typically use the standard time limit of 1800 seconds per problem that

is used in the International Planning Competition. As all the planners used first

require a translation from PDDL to SAS+, the time needed for this translation was

not included in the time limit. The empirical evaluations were also run on a variety

of machines due to the high computational needs of running such experiments, and

so the memory limit was varied depending on the machine in use. Despite the fact

that different machines were used, direct comparisons will only be made between

planners that were tested on the same hardware.

In some cases, we will be evaluating planners that use Las Vegas algorithms.

Such algorithms have a variable runtime due to there being non-deterministic as-

pects of the algorithm, but they are guaranteed to return a valid solution path if they

ever do terminate. When evaluating a Las Vegas planner (ie. a planner that uses a

Las Vegas algorithm), our evaluation metric will be the planner’s expected cover-

age. To define this value, notice that a Las Vegas planner p will have a probability

P (Γ, p, t) of solving planning task Γ in time limit t. Given a set of planning tasks

{Γ0, ...,Γn}, the expected coverage when p is limited to time t on each problem is

therefore P (Γ0, a, 1800 s) + ...+ P (Γn, a, 1800 s).

Due to the stochastic nature of a Las Vegas algorithm, the expected coverage of

a Las Vegas planner will vary when tested on a given problem set for multiple runs

per problem. While this means that there is a probabilistic distribution of possible

coverage values, we will not include confidence intervals or perform other statisti-

cal tests when comparing multiple planners. This approach is consistent with the

existing planning literature, in which typically only average coverage results are re-

ported due to the fact that it is still an open question regarding how meaningful such

measures are when experimenting on the types of problem sets we consider below.

One of the reasons for why this question is not settled is the fact that the problems

in these test suites are often of varying difficulty, with many of the problems being

exponentially more difficult than others. As such, even small coverage improve-

ments can represent a substantial improvement in planner performance. Therefore,
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the use of standard and known benchmark problems and average performance as a

performance metric is usually considered to be sufficient when trying to determine

the relative quality of planning systems.

2.3.3 The FF Heuristic

In heuristic search based automated planners, the heuristics used are automatically

generated based on the problem description. Many of these heuristics are based

on the idea of using the cost of the solution to a simplified version of the given

problem to approximate the cost of reaching the goal in the unsimplified version

of the problem. The most popular type of simplification is delete relaxation [44].

When using this technique to simplify a given planning problem, all the actions are

modified so that their delete lists are emptied. This means that in the simplified

version of the task, any proposition which is true in a given state s will necessarily

be true in any descendent, since propositions can never be removed by applying a

sequence of actions to s.

If the optimal solution from a given state to the nearest goal could be com-

puted for the relaxed version of a problem, then the resulting solution cost could

be used as an admissible heuristic to the original problem. Unfortunately, calculat-

ing the optimal solution for a problem that is simplified using delete relaxation has

been shown to be NP-Complete [6]. As such, many existing automated planning

heuristics find an approximation of the cost of the optimal solution for the relaxed

problem that can be computed in polynomial time. This is the approach taken by

the FF heuristic as developed by Hoffmann and Nebel [44]. In the case of this

heuristic, the plan found to the relaxed problem is not guaranteed to even be admis-

sible for the original problem, but it has been shown to be a very powerful heuristic

for guiding satisficing search algorithms. For complete details on how this heuristic

is computed, see the work of Hoffmann and Nebel [44].

Once the plan has been found to the relaxed version of the planner, it can be

used in multiple ways to get a heuristic. The cost-to-go version of this heuristic is

given by the sum of the actions of along this plan. This heuristic will be referred

to as FFc. Alternatively, the cost of the actions can be ignored, in which case the
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heuristic value corresponds to number of actions in the relaxed plan. The resulting

distance-to-go heuristic will be referred to as FFd.

2.3.4 Deferred Heuristic Evaluation

The heuristics used by automated planning systems are typically quite expensive

to compute. As such, it is often the case that an automated planning system is

prevented from examining much of the state-space as it will spend the majority of

its time performing heuristic calculations. Dealing with this issue is the motivation

behind deferred heuristic evaluation which can often allow the search to examine

a larger portion of the state-space in the same amount of time [38]. When using this

technique, the heuristic value used for a node n is given by the heuristic value of the

parent of n. For example, recall that the GBFS algorithm is equivalent to nrBFSH

whereH is some heuristic function. If this same GBFS algorithm is modified to use

deferred heuristic evaluation, then it will be equivalent to nrBFSH′ where H ′ is a

heuristic function where H ′(n) returns any finite number in the case that n = ninit

and H ′(n) = H(parent(n)) otherwise.

When this technique has been tested experimentally, it has been shown to typ-

ically decrease the time needed to find a solution [74]. To see why, it is necessary

to consider how OCL algorithms are typically implemented. In a standard OCL al-

gorithm, the heuristic value of a node n is computed when n is first generated. The

value of H(n) is then stored for the remainder of search. The result is that it will

often be necessary to perform |succ(n)| heuristic computations each time a node n

is expanded.

In the case of deferred heuristic evaluation, the heuristic value of a node n only

needs to be computed once it is expanded. This is because until n is expanded,

the algorithm only needs to lookup the value stored for the H(parent(n)) when

evaluating n. As such, the expansion of n only requires a single heuristic evaluation.

The result is that the heuristic value of many of the nodes on the open list will not

have been computed, and the decrease in the number of node expansions will allow

the planner to more quickly see a larger portion of the state-space.
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2.3.5 Multi-Heuristic Best-First Search

Another common technique that modern automated planning systems employ is to

use multiple heuristics in a process called multi-heuristic best-first search. This

technique was introduced as part of the Fast Downward planning system [38].

Given heuristics H0, ..., Hk−1, a system which uses multi-heuristic best-first search

will simply alternate between using each of these k heuristics when selecting the

next node for expansion. For example, when this technique is added to GBFS all k

heuristics would be consulted when checking if the goal is reachable from a given

node n, and the SelectNode function would be defined as shown in Figure 7.

Note that in the code shown, i is a global variable initialized to 0.

SelectNode(OPEN):
1: n← argminn′∈OPEN Hi(n

′)
2: i← (i+ 1) mod k
3: return n

Algorithm 7: The SelectNode function used by a GBFS enhanced with multi-
heuristic best-first search.

The purpose of multi-heuristic best-first search is to allow a planner to simulta-

neously use the guidance offered by different heuristics. This is necessary due to

the fact that different heuristics tend to offer guidance that will greatly vary in qual-

ity not only across different domains, but even within different parts of the same

state-space. When this technique has been evaluated empirically, it has been shown

that by using different heuristic functions that effectively complement one another,

multi-heuristic best-first search can improve performance considerably [80].

In practice, a multi-heuristic best-first search using k heuristics is implemented

using k copies of the open list, each as a priority queue sorted according to a dif-

ferent heuristic. The code then alternates between these lists when selecting a node

for expansion.

2.3.6 Preferred Operators

The final planning enhancement that we will consider is that of preferred oper-

ators. A preferred operator of node n is an action a that is applicable in n, such
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that we expect that a will be potentially useful when applied to n. A planner that

uses preferred operators will then bias the search so that on every iteration it is

more likely to select a node that was achieved using a preferred operator, called a

preferred successor, for expansion.

Preferred operators are typically identified as a byproduct of heuristic compu-

tation. For example, the standard approach when using the FF heuristic function is

to select the preferred operators as those that correspond to helpful actions [44].

As described above, the FF heuristic computes a possibly suboptimal plan to a re-

laxed version of the given problem. While the cost of this relaxed plan is used for

the heuristic value of n, the actions in the relaxed plan that are applicable in n are

identified as the helpful actions. The intuition behind this designation is that if the

relaxed planning task is a reasonable approximation of the original planning task,

then we would expect that the relaxed plan would be similar to one that would solve

the original task. The actions in the plan for the relaxed planning task which are also

applicable to n would therefore be identified as offering potentially useful guidance

beyond what is given by the cost of this plan. As such, we will consider these nodes

as preferred successors and seek to bias the search so as to expand these nodes for

expansion more often than those that do not correspond to helpful actions.

The standard way to do so is to alternate between using the search’s node se-

lection policy to pick a node from the entire open list for expansion and using

the search’s node selection policy to pick only from amongst those nodes that

correspond to preferred successors. For example, where OPENpref ⊆ OPEN

is the subset of the open list that has been identified as preferred successors, the

SelectNode function used by a GBFS enhanced with preferred operators is shown

in Algorithm 8, where count is a global variable initialized as 0.

Like multi-heuristic best-first search, preferred operators are typically imple-

mented into a search using two priority queues, both of which are sorted according

to the same heuristic. The first queue will contain a copy of all nodes in OPEN,

while the second contains only those in OPENpref . As when using multiple heuris-

tics, the code will then alternate between selecting nodes from each of these queues.

When using both multi-heuristic best-first search with k heuristics and preferred
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SelectNode(OPEN):
1: n = NONE
2: if i = 0 or OPENpref = {} then
3: n← argminn′∈OPEN H(n′)
4: else
5: n← argminn′∈OPENpref

H(n′)

6: i← i+ 1 mod 2
7: return n

Algorithm 8: The SelectNode function used by a GBFS enhanced with preferred
operators.

operators simultaneously, OPENpref will be set to contain all nodes that were iden-

tified as a preferred successor by at least one of the heuristics. The algorithm will

then maintain 2 ·k priority queues which the algorithm will alternate between when

selecting a node for expansion. k of these queues will each contain a copy of all

nodes in OPEN and each will be sorted by a different heuristic. The remaining

k queues will contain a copy of only those nodes in OPENpref , and each will be

sorted according to a different heuristic. Notice that this means that for each of the

k heuristics there will be two queues sorted by that heuristic, and that each pre-

ferred operator queue does not only contain the preferred successors identified by

the heuristic being used to sort that queue. Instead, all preferred operator queues

will contain the exact same set of nodes.

The LAMA planner further biases the search towards expanding preferred suc-

cessors in a technique called preferred operator boosting [76]. For this technique,

each of the queues are given a priority value, and whenever a node is to be selected

for expansion, a node is retrieved from the list with the highest priority. The prior-

ity of each of these lists is initialized to zero. Whenever a node is selected from a

particular list, the priority is decremented by 1. However, if a node n is found such

that H(n) is less than the heuristic value of any previously generated node, then the

priority of each of the preferred operator queues is increased by some bonus value

(typically set as 1000). Note that this bonus is given to OPENpref even if this list

was not the one which returned the node with the best heuristic value.

The result of this boosting is that preferred successors are selected for expansion
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even more often than they are when using the standard alternating approach. In

practice, boosting has been shown as an effective technique for improving planner

coverage [74].

2.4 15 Puzzle Heuristics and Variants

Aside from automated planning, we will also use several additional domains for

empirically evaluating algorithms. One of these is the aformentioned 15 puzzle. In

this section, we describe some of the heuristics used when solving this problem,

some of which will also be used when experimenting with other domains (which

will be introduced as needed). We also describe several variants of the 15 puzzle

that will be used in this thesis.

2.4.1 The Manhattan Distance Heuristic

A simple heuristic that is often used when solving 15 puzzle tasks is the Manhattan

distance heuristic. This heuristic estimates the cost of getting to the goal node in

terms of how far each of the tiles is from being in its goal location. For example,

consider the tile labelled 2 whose goal location is in the first row and the third

column. If this tile is in the third row and the first column of a node n, then that

tile needs to move up two rows and right two rows to get into its goal location. The

2 tile is therefore a distance of 2 + 2 = 4 steps away from its goal location, since

this tile has to be moved at least 4 times to get into its goal location. The heuristic

value of n according to the Manhattan distance heuristic is then given by the sum

over all tiles of such distances. The result is an admissible heuristic since no action

ever moves more than a single tile.

2.4.2 Pattern Database Heuristics

Pattern databases are another popular approach to building heuristics for 15 puzzle

and other domains [11]. This heuristic requires that the state-space be abstracted,

such that the abstract state-space is much smaller than the original space. Having

built the abstract state-space, the exact cost from any abstract state to the nearest
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abstract goal state is computed and stored in a lookup table. When the heuristic

value of a node n is needed, the abstract version na of n is first constructed, and

then the cost to get from na to the nearest goal in the abstract space is found in the

lookup table. This cost is then used as the heuristic value of n in the original space.

The abstraction used by pattern databases involves treating certain elements of

the domain as indistinguishable. For example, in the 15 puzzle, the abstraction may

treat the tiles labelled 1, 2, 3, 4, and 5 as all the same tile. The abstract state for any

given state n will correspond to the same state, just with all of the tiles from 1 to 5

having the same label. The resulting state-space will have 16!/5! states unlike the

original state-space which has 16! states.

The resulting heuristic can be guaranteed to be admissible provided that for any

state n, all actions applicable in n will also be applicable in the abstract version of

n. In certain cases, the values returned by multiple different pattern databases for a

given state can also be added together while still maintaining admissibility. While

we will use such pattern databases, we omit a full description of additive pattern

databases which can be found in the work of Felner, Korf, and Hanan [19].

2.4.3 The 24 Puzzle

The 24 puzzle is a larger variant of this state-space in which the grid has 5 rows and

5 columns instead of 4 rows and 4 columns as they are in the 15 puzzle. In the 24

puzzle, the tiles are labelled with the integers from 1 to 24. Like the 15 puzzle, all

transitions will have a cost of 1 and the goal node of the 24 puzzle has the blank in

the upper left corner and the tile labels proceed, starting from 1, in ascending order

from left-to-right and top-to-bottom.

2.4.4 The Inverse Cost 15 Puzzle

Another variant on the 15 puzzle is the inverse cost 15 puzzle. The state-space of

this puzzle is identical to that of the standard 15 puzzle with the exception that the

edge costs are no longer all the same. In the inverse cost 15 puzzle, the edge cost

is determined by the label on the tile being moved into the blank space. If the tile

being moved during a transition has the label `, then the cost of that transition is
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1/`. For example, when moving the tile labelled 5, the cost will be 1/5 = 0.2.

The admissible heuristic used in this domain will be the weighted Manhat-

tan distance heuristic. This heuristic is computed in almost the same way as the

standard Manhattan distance. The only difference is that when summing over the

distances that each tile is from the goal, each distance is weighted by the cost of

moving the corresponding tile. For example, recall that if the tile labelled 2 is in

the third row and the first column, then the tile is 4 locations from being in its goal

location. In the summation, this tile will be weighted by 1/2 since the minimum

cost to get this tile to its goal location is 4 · 1/2 = 2.

2.5 Dealing With Large Design Spaces Using Auto-
matic Configuration Tools

To handle the large design space available to a system designer, a popular approach

is to use an automatic configuration tool. For example, ParamILS is one such tool

that, given a set of training tasks, runs a local search in the space of parameters

to find a configuration that is expected to exhibit high performance on tasks drawn

from a similar distribution as the training set [46]. This system has been success-

fully applied to a build high performance systems for a wide variety of computa-

tionally hard tasks including PDDL planning [18, 81, 102].

While systems like ParamILS can effectively find configurations even in a large

design space, it is still up to the system designer to first enumerate the set of deci-

sions that are to be tuned. This is one of the reasons that investigations such as that

given in Chapter 5 are still necessary. In that chapter, we will consider the impact

that random exploration can have on a search, and demonstrate that this technique

can often positively impact the performance of GBFS. Therefore, if a system de-

signer is employing a tool like ParamILS to develop a GBFS-base planner, our re-

sults suggest that it is important to include random exploration techniques in the set

of decisions to be tuned, as doing so may be able to improve planner performance.

Automatic configuration tools also cannot guarantee that a given solution qual-

ity requirement will be satisfied unless it is restricted to only consider the portion of
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the design space that will do so. Therefore, investigations such as those in Chapters

5 and 6 which help to identify the algorithm options that will satisfy a given solution

quality requirement are needed before a tool like ParamILS can be deployed.

For these reasons, we consider the development of automatic configuration tools

as orthogonal to the work described in this dissertation.

2.6 Chapter Summary

In this chapter, we have defined the planning task and introduced much of the no-

tation that will be used in the remainder of this thesis. As described above, we will

reason about state-spaces as graphs in which we are trying to find a path from a

given initial node to one of a set of goal nodes. The notation used for referring to

such graphs was then introduced in Section 2.1.

In Section 2.2, the OCL algorithm framework was introduced as a generaliza-

tion that includes many existing algorithms. This framework not only allows addi-

tional flexibility in how nodes are selected for expansion but also when nodes are

made available for re-expansion. Many properties of existing algorithms were then

formally shown to still hold even when these generalizations are allowed.

In Section 2.3, we introduced the field of automated planning. In particular, we

briefly describe the languages used for encoding planning problems, the test suites

that will be used, and several enhancements that are commonly used in existing

automated planning systems. This was then followed by a description of the 15

puzzle and a variant of this puzzle, the heuristics used in these puzzles, and some

related work into the use of automatic configuration tools for dealing with large

design spaces.
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Chapter 3

Exploiting Variation to Build a
State-of-the-Art Multi-Core Planner

Existing automated planning systems have their own strengths and weaknesses in

terms of the types of state-spaces they are best suited for. This is not only true

across different planners, but even within the space of design choices for a partic-

ular planner. In this chapter, we will show that the resulting variation in planner

performance can be managed effectively through the use of an algorithm portfolio.

We do so from the perspective of building a multi-core planner. The result will be

ArvandHerd which won the multi-core sequential satisficing track of the 2011

and 2014 International Planning Competitions.

3.1 Introduction

In recent years, processor speeds have been increasing at a reduced rate, while the

proliferation and availability of multi-core technology has substantially increased.

This development suggests that to best utilize modern hardware when constructing

satisficing planning systems, it is necessary to consider parallel approaches.

Past work on building multi-core planning systems, such as PBNF [5] and

HDA* [49], has generally focused on parallelizing a single heuristic search al-

gorithm. While these approaches have successfully improved run-time, satisficing

planners that use these or similar techniques on shared memory machines should not

be expected to solve many more problems than their single-core counterparts. This

is because the parallelization of a planner will most likely have the same strengths
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and weaknesses as the original single-core planner. For example, suppose we had

a “perfect” parallelization of LAMA-2011 [77], the winner of the single-core se-

quential satisficing track of IPC 2011. Such a parallelization would run exactly k

times faster than the single-core version when run on k cores. Given a time limit T ,

the performance of such a k-core system can be simulated by running LAMA-2011

for k ·T time and counting any problem solved within this time limit as having been

solved by the k-core parallelization in time T . This simulation indicates that even

with such a speedup, coverage only increases slightly. For example, when given

a 6 GB memory limit and a 30 minute time limit, even the 8-core version of this

perfect parallelization of LAMA-2011 would solve only 6 more problems than the

721 solved by the standard single-core version when tested on all 790 problems

from the 2006, 2008, and 2011 IPC competitions.

One of the issues with parallelizing a memory-heavy planner like LAMA-2011

in a shared-memory environment is that it is often the available memory that limits

coverage. In these cases, any speedup will merely cause memory to be exhausted

more quickly. This behaviour is seen in the simulated LAMA-2011 parallelization,

as the 8-core simulation ran out of memory on 52 problems. This means that re-

gardless of how many more cores are used, at most 738 of the 790 problems can be

solved using LAMA-2011 without an increase in memory.

An alternative to parallelizing a single algorithm is to run members of an al-

gorithm portfolio in parallel. This involves tackling each problem using a set of

strategies that differ in either their configuration (ie. different parameter values or

other settings) or in the underlying algorithm, and running these strategies simulta-

neously on different cores. This technique is inspired by two considerations. First,

planners are expected to solve problems from a diverse set of domains, and no sin-

gle existing algorithm dominates all others on all domains. Second, this approach

offers a simple alternative to the difficult process of parallelizing a single-core al-

gorithm and it mostly avoids overhead from communication and synchronization.
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3.1.1 Contributions

In this chapter, we will show that two existing planners, Arvand and LAMA, exhibit

variance across parameterizations and other design choices. We will then demon-

strate that each of these planners can be enhanced through the use of multiple con-

figurations and restarts. While these techniques have previously been successfully

applied in the boolean satisfiability community as a way to deal with a large design

space, we demonstrate that they are similarly successful in planning.

Even after using multiple configurations of each of these planners, these plan-

ners will still have substantial differences in the domains in which they are most

effective. We will therefore describe how these planners have been combined ef-

fectively in a parallel portfolio called ArvandHerd. ArvandHerd represents

the first system to successfully combine disparate planning approaches to create a

state-of-the-art parallel planner for shared memory machines. It won the multi-core

sequential satisficing track of IPC 2011 [9] and it was designed specifically to avoid

the inherent limitations of parallelizing a single memory-heavy planning algorithm

that were described above.1 The effectiveness of this planner and the challenges in

building a portfolio-based multi-core planner will be discussed below. In particular,

we will show that ArvandHerd can solve more benchmark problems than several

state-of-the-art planners, even if they could be effectively parallelized.

The work in this chapter is mainly based on a conference publication that ap-

peared at the 2012 European Conference on Artificial Intelligence [96]. All of

the described experiments were performed after the competition was completed

in an effort to understand how the design choices made in the development of

ArvandHerd contributed to its success. That paper was also preceded by a techni-

cal report that was part of the submission of ArvandHerd to the 2011 competition

[97]. That paper simply presented the ArvandHerd architecture without results,

including the design decisions aimed to improve solution quality. As most of the

decisions made regarding solution quality were based on the work of others, they

were not empirically evaluated and will not be explained further here.

1An updated version of this planner also won the multi-core track of the 2014 competition,
though the impact of the updates made still needs to be evaluated.
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The ArvandHerd planner was built in collaboration with Hootan Nakhost and

Martin Müller, who developed the Arvand planner. I was the lead researcher de-

veloping ArvandHerd and my contributions included adding the ability to run

multiple configurations of each planner, parallelizing the system, and empirically

evaluating ArvandHerd after the competition. Selecting the members of the port-

folio was done collaboratively with Hootan Nakhost.

3.2 Background and Related Work

In this section, we will consider some background regarding planning with a portfo-

lio and multi-core planning, as well as related work in building planners for multi-

core systems.

3.2.1 Algorithm Portfolios

There is substantial literature demonstrating that the performance of the solvers

used for tackling many computationally hard tasks can vary greatly across different

tasks [31, 32, 45]. This has also been shown to be true for automated planning

systems [24, 30, 79]. To deal with this variability, Huberman, Lukose and Hogg

proposed the use of an algorithm portfolio [45]. An algorithm portfolio A is given

by a set of planners {p0, ..., pk} that will be used together on the same problem so as

to benefit from the strengths of each of the planners inA, which are called portfolio

members.

Building a portfolio-based automated planner requires the selection of the plan-

ners to be included in the portfolio, and the selection of a policy to then use those

planners collectively. We consider several approaches for each of these tasks below.

Using a Given Portfolio

There are several popular ways to deploy a given portfolio. The first is an approach

called dovetailing which involves interleaving the independent execution of the

planners by switching between them in an alternating fashion [32, 45, 100]. Given

a set of planners {p0, ..., pk} and some distribution over those algorithms given by
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α0, ..., αn where 0 ≤ αi ≤ 1 and α0 + ... + αk = 1, dovetailing consists of a

number of rounds. Each round works as follows: each portfolio member will, in

order, advance its execution for some amount of time. This amount of time is set

such that the ratio of the time spent on pj to the time spent on the entire round is

αj . If some planner finds a goal during the time it is given to advance its search, the

solution found is returned and dovetailing will stop. If a round completes without

having found a solution, a new round then begins.

Another simple approach is to use restarts [31]. For this technique, the planners

in A must be ordered and a restarting policy is needed. This policy is given by a

sequence of runtimes t0, .., tk. If p′0 is the first planner in the ordering of A, the

portfolio is then run beginning with planner p′0 for time t0. If a solution is found in

the given time limit, it is returned and the process terminates. If a solution is not

found, then where p′1 is the second planner in the order, p′1 is run for time t1. This

process then continues until a solution is found or all planners have been run for

their allotted time.

ArvandHerd will use both restarts and dovetailing-like approaches, but its

main way of combining planners is in a multi-core setting. This approach involves

assigning different portfolio members to different processors, each of which will

run their portfolio member independently.

Selecting Portfolio Members

Prior to the 2011 International Planning Competition at which ArvandHerd com-

peted, most portfolio-based planners selected some number of the top-ranking ex-

isting planners as the members of the portfolio [7, 24, 30, 79]. Some of these sys-

tems use the entire portfolio by restarting or dovetailing, while others would only

use a subset of the portfolio which was selected on a per-task basis. For example,

Roberts and Howe [79] learn a decision tree based on how the portfolio members

perform on a set of training planning problems. When the planner is given a new

task to solve, the decision tree then selects a subset of the portfolio and a restarting

policy to use. A similar approach was taken by Gerevini, Saetti, and Vallati in their

planner, PbP [30], and by Cenamor, de la Rosa, and Fernández [7].
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Other approaches for selecting portfolio members start with a large set of plan-

ners and then use an offline phase to select the portfolio members. This is the

approach used by Fast Downward Stone Soup (which we will refer to below

as Stone Soup), a portfolio-based planner that competed in the single-core track

of the 2011 International Competition [43]. This planner simultaneously develops

a restarting strategy and selects the portfolio during an offline training phase. Given

a large set of planners which have all been run on a test set, the portfolio is con-

structed by a hill-climbing search in the space of possible portfolios, starting with

the empty portfolio. The process then iteratively adds a planner to the portfolio and

a time limit for the added planner, where the added planner is selected such that

it maximizes the coverage of the portfolio on the training set. The hill-climbing

search then continues until the total time allocated to planners in the portfolio ex-

ceeds some given time limit.

In 2012, Seipp et al. [81] built a system for finding configurations of a highly

configurable planner that could then be used as the members of a portfolio. To

do so, they use the ParamILS automatic parameter tuner [46] to learn an effective

configuration of the planner for each of a set of training domains. The planner they

considered was Fast Downward, in which the space of design choices allows

for the use of different heuristic functions, different planning enhancements, and

different best-first search variants. The configurations found as part of this tuning

process are then used as the members of the portfolio.

Like many of the portfolio-based planners built before the 2011 competition, the

ArvandHerd portfolio was selected manually. The ArvandHerd portfolio in-

cludes both multiple planners and multiple configurations of these planners. It was

designed specifically to avoid certain challenges unique to the use of portfolios for

multi-core planning that we will detail below. As such, it includes a random-walk

based planner and multiple operator orderings of a best-first search-based planner,

unlike the other planners described above. Its performance could also be improved

by the more sophisticated configuration selection techniques described above, but

doing so is left as future work.
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3.2.2 Expected Coverage of a Portfolio

Some of the planners we will use in the ArvandHerd portfolio will be Las Ve-

gas planners. Recall that given a time limit t, a Las Vegas planner p will have a

probability P (Γ, p, t) of solving planning task Γ. Now let A = {p0, .., pm} denote

a portfolio of Las Vegas planners, and let AT denote the set of tuples (pj, tj) where

pj ∈ A and tj is a maximum amount of time that planner pj will be run for when

using either a restarting strategy, assigning different planners to different cores, or

dovetailing. As the algorithms will be run independently, the probability that AT

will solve a task Γ is therefore given by

P (Γ, AT ) = 1− (1− P (Γ, p0, t0)) · ... · (1− P (Γ, pm, tm)) .

The expected number of problems solved when restarting with a set of planner-time

limit tuples on a set of tasks {p0, ..., pn} is then given by P (p0, AT )+...+P (pn, AT ).

This provides an alternative technique for estimating the expected coverage of

a portfolio aside from directly testing that portfolio. This alternative approach is

desirable because it makes it less time consuming to evaluate a large set of portfo-

lios. For example, if we are considering all portfolios of size three from a set of ten

planners, there will be 120 possible portfolios that need to be tested. If there are 100

tasks in the test set, this means that we will need 12, 000 runs to even test each port-

folio once on each task. If the included planners are Las Vegas planners, we will

also need to run each planner on each problem multiple times. If we choose to run

each portfolio 5 times per problem, this will require 60, 000 runs. In contrast, the

data needed for the above estimation technique will only require 10·100·5 = 5, 000

runs, and then we can use the above estimation technique to calculate the expected

coverage of each of the portfolios. This will mean that we will use empirical results

as an estimate of P (p, aj, tj).

3.2.3 Multi-Core Planning

Work in the area of parallel planning has typically focused on the parallelization

of heuristic search algorithms. This includes PBNF, a recent parallelization of A∗

which exhibits substantial runtime improvement [5]. However, as described earlier
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in the case of LAMA-2011, if a standard A∗ algorithm is unable to solve a given

problem due to memory limitations, PBNF will merely run out of memory more

quickly. As such, this algorithm cannot be expected to substantially improve plan-

ner coverage except in cases where the failure to solve the problem is a result of

time limitations.

HDA∗ is another recent parallelization of A∗ that was designed explicitly for use

on distributed memory systems [49]. By considering distributed memory architec-

tures, this algorithm may have more memory at its disposal than when restricted to

a single shared-memory machine. This additional memory may improve coverage

in cases where memory is the bottleneck. Our focus in building ArvandHerd was

in constructing a parallel planner for a shared memory architecture, in which case

HDA∗ cannot be expected to substantially improve coverage for the same reason

as PBNF. Using the portfolio technique in a distributed memory planner is left as

future work.

There is nothing precluding the use of parallel algorithms in a portfolio. If

a parallelized algorithm is included, it can be allotted several cores on which to

run while the remaining cores will run the rest of the portfolio. Alternatively, the

parallelized algorithm can be run until it hits some resource limit, at which point the

remainder of the portfolio will be run. This approach would benefit from both the

speedups seen with the parallelized algorithm and the coverage improvements seen

with a portfolio. As such, research into parallelizing individual search algorithms

remains as an important field of study.

3.3 Using Multiple Configurations in LAMA

In this section, we will examine the LAMA planner and demonstrate that the perfor-

mance of this planner can change depending on how it tie-breaks between nodes

with an equal heuristic value and how it is parameterized. We will then show that

this variability can be exploited by using multiple configurations through restarts.
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3.3.1 The LAMA Planner

LAMA is a best-first search-based planner that won the sequential satisficing track

of the 2008 International Planning Competition [39]. An updated version of this

planner then won the sequential satisficing track of the 2011 International Planning

Competition [77]. In this section, we describe the 2008 version of this planner,

which will be called LAMA-2008 for short. As our focus is on coverage, we will

not describe the components of this planner that are aimed at improving solution

quality once a first solution is found.

Both the 2008 and 2011 versions of LAMA use a number of different planning

techniques including multiple heuristics, preferred operators, and deferred heuristic

evaluation. The first heuristic used by this planner is the FF heuristic described in

Section 2.3.3. In LAMA-2008, the version of this heuristic used considers both the

cost-to-go version, FFc, and the distance-to-go version, FFd. This is done by using

the heuristic FF+ which is defined as the sum of FFc and FFd. The second heuristic

used is the landmark-count heuristic, denoted as LM. An action landmark a is a

set of actions {a0, ..., ak−1}, at least one of which must be used during any solution

path. The landmark a is said to be achieved along a path of actions P if some ai

appears along P . For the LM heuristic, a set of action landmarks is generated and

then the heuristic value of any node n is given by the number of unachieved land-

marks along the path to n. For a full description of how this inadmissible heuristic

is computed and how it can be used to identify additional preferred operators, see

the work of Richter and Westphal [76].

Before the first solution is found, LAMA-2008 uses these two heuristics, LM

and FF+, in a multi-heuristic best-first search version of GBFS that is also enhanced

with boosted preferred operators. LAMA-2008 does allow for the search to use the

WA∗ evaluation function for sorting the various copies of the open lists. However,

LAMA-2008 only uses the other weights to try and improve solution quality once a

first solution has been found using a process called Restarting Weighted A∗ [75].

As such, only the single GBFS configuration will have an impact on the coverage

of this planner in its standard form.
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3.3.2 Using Multiple Configurations in LAMA-2008

In this section, we will show that the performance of LAMA can vary depending on

the order in which nodes are added to the open list, and that by mixing different

configurations of this planner it is possible to improve its performance.

Consider how different operator orderings can impact the performance of a

planner like LAMA. The operator ordering being used by an OCL algorithm is the

sequence in which operators are tested for their applicability to a given state n.

This sequence, which is typically static, determines the order in which the nodes in

the list of successors of n will appear in when n is expanded, which in turn deter-

mines the order in which these successors are added to the open list. This sequence

matters because it can determine which node is selected for expansion when there

are multiple nodes in the open list that all have the lowest h-cost. This is because

the open list of a best-first search algorithm (or the different queues in the case

of multi-heuristic best-first search or when using preferred operators) are typically

maintained using a heap, or using a set of buckets with each corresponding to the

nodes in the open list with a particular heuristic value. In either implementation of

a priority queue, the order in which nodes are added to the open list can determine

how ties are broken and therefore in what order nodes are selected for expansion.

A given static operator ordering can therefore introduce a bias into the way that

ties are broken by a best-first search planner. To see this, suppose that actions a0,

..., ak are always tested on a given state in that order. In any state in which a0 and

ak are both applicable, a0 will necessarily be added to the open list first. As such, if

there are ties in the successors that arise as a result of applying a0 and ak, the node

corresponding to action a0 will more likely be ahead of the node corresponding

to ak (or vice versa depending on the implementation of the data structure) in the

priority queue.

If there are not many ties, then the impact of this bias will be minimal. How-

ever, notice that deferred heuristic evaluation, which is used by LAMA, can increase

the number of ties. This is because any two children c1 and c2 with the same par-

ent p will have the same heuristic value and the same g-cost if they are achieved

with equal cost actions. A unit cost domain represents an extreme case of this phe-
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nomenon; all children of the same state will be assigned the same value for g + H

since the heuristic value of all children will be the same and equal to that of their

parent. The ties that therefore result from this technique will then mean that a dif-

ferent operator ordering can substantially change the search.

This behaviour can be demonstrated by experimenting with random operator

ordering in LAMA-2008. This technique involves randomly shuffling the list of

successors before those new nodes are added to any open list. For this experiment,

LAMA-2008 was configured to use random operator ordering in GBFS with the

FFd and LM heuristics and preferred operators. We used FFd instead of FF+ as this

heuristic was shown to lead to better coverage in experiments performed after the

2008 competition [76]. This system was tested on all 510 problems from the 2006

and 2008 competitions for 5 runs per problem with a 1800 second time limit and

a 2 GB memory limit. These experiments were run on a cluster of machines each

with two AMD Opteron 250 2.4 GHz processors, each with 1 MB of L2 cache.

While the average number of problems solved is 431.8, if the best random seed

had been selected on a problem-by-problem basis, 448 problems would have been

solved. If the worst seed had been selected on a problem-by-problem basis, only

415 problems would have been solved.

Restarting in LAMA-2008

However, this variance can be exploited by using multiple runs of LAMA-2008 with

random operator ordering on the same problem. In particular, we considered the

use of multiple runs of this planner through the use of restarts. For the sake of

simplicity, we will assume that each configuration is run for the same amount of

time. This means that if there were k configurations used, then each is being used

for 1800/k seconds and so there are k − 1 restarts.

The expected coverage when restarting in this way was then calculated using

the technique described in Section 3.2.2. Table 3.1 shows this data for different

types of search and different numbers of restarts. In these experiments, LAMA uses

FFd and LM when running GBFS, and FFc and LM when using WA* (ie. w = 7

represents a weight 7 search).
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Search Number of Restarts
Type 0 1 2 4 8 16

GBFS 431.8 437.0 438.5 440.3 437.3 427.8
w = 10 406.2 409.9 411.9 414.1 409.5 399.8
w = 7 403.6 408.2 409.1 409.0 405.4 397.7
w = 5 399.4 404.6 403.5 403.3 398.8 388.7
w = 1 207.2 209.1 209.8 207.3 205.4 194.9

Table 3.1: Expected coverage of LAMA-2008 when using restarts.

Table 3.1 shows that a small number of restarts can help improve the expected

number of problems solved, though too many restarts can degrade performance.

The estimation technique also indicates that if LAMA-2008 is set to restart not

just with a new random seed but also with a different configuration, the additional

diversity would help to further improve coverage. For example, when restarting 4

times such that each of GBFS, w = 10, w = 7, w = 5, and w = 1 are run for a

maximum of six minutes, the expected coverage is 448.4. It is therefore not only

important to mix multiple orderings, but also configurations.

These results extend some previous work in which we showed that assigning

different WA∗ instance, each using a random operator ordering and a different ran-

dom seed, to different processors of a multi-core system yielded an effective multi-

core solver for certain combinatorial puzzles [100]. These ideas were central to the

building of the ArvandHerd planner. However, that study only considered stan-

dard WA∗ without any planning enhancements, and only did so with low weights.

In this section, we have shown that the LAMA-2008 is also sensitive to the opera-

tor ordering and parameters used despite the fact that this planner is already using

multiple heuristics as a way to induce diversity into the search. We have there-

fore shown that these ideas are still relevant to fully enhanced modern-day planners

which can also be improved by mixing configurations and adding further diversity

with random operator ordering.
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3.4 Using Multiple Configurations in Arvand

In this section, we will show that mixing configurations and restarting can also be

used to improve the performance of Arvand, a planner which explores the state-

space in a much different way than the best-first search based LAMA.

3.4.1 The Arvand Planner

Arvand is a sequential satisficing planner that uses heuristically-evaluated ran-

dom walks as the basis for its search [65, 66]. Starting from a node n, a ran-

dom walk is a path starting from n that follows randomly selected state transi-

tions through the state-space. Random walks are constructed iteratively starting

with the path [n]. On every iteration, the random walk will extend the current path

[n0, ..., nk] to path [n0, ..., nk, nk+1] where nk+1 is a randomly selected node from

succ(nk). This process then continues until either the deepest node on the path has

no successors, or the number of nodes in the path has reached some given limit.

Arvand uses random walks to explore the state-space through a series of search

episodes. In the simplest version of Arvand, each search episode begins with r

random walks, each starting from ninit and containing at most m+ 1 nodes. m is a

parameter called the walk length. For each of these r random walks, the heuristic

value of the final state reached is computed using some heuristic function. Once

all r walks have been performed, the search jumps to the end of the walk whose

final node, n, has the lowest heuristic value. In all experiments below, the heuristic

function used is the FFd heuristic. Arvand then runs a new set of r random walks,

only this time the walks originate from n. This is followed by another jump to the

end of the most promising walk (according to the heuristic) from this set of new

walks that started at n. This process repeats until either a goal state is found, or

some number of consecutive jumps are made without any improvement being seen

in the heuristic values of the nodes encountered. In the latter case, the current search

episode is terminated, and the planner restarts with a new episode that begins with

random walks originating from ninit .

During a search episode, the planner builds up a path consisting of the subpaths
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found between each jump of the algorithm. This path will be called the trajectory

of the search episode, and these trajectories can also be used to inform the search

performed in future search episodes through the used of a walk pool [64]. A walk

pool stores the most effective trajectories (ie. those which found nodes with the

lowest heuristic value) of all those seen thus far. When using this structure, new

episodes will start from a state randomly selected from a trajectory that itself was

randomly selected from the walk pool, instead of from ninit . This technique has

been shown to improve Arvand’s coverage [64]. Note, the walk pool technique has

been disabled in the experiments in Sections 3.4.2 and 3.4.4 when experimenting

with different ways to use multiple configurations. This was done to evaluate these

techniques in isolation of the communication between configurations that a walk

pool allows. However, the walk pool technique is employed when considering the

more complete systems evaluated in Sections 3.5.1 and 3.5.3.

3.4.2 Arvand Configurations

There are a number of parameters in Arvand that can greatly affect its perfor-

mance on a domain-by-domain basis. Perhaps the most important of these relates

to the biasing of the random action selection. Arvand allows for random succes-

sor selection to be biased in several ways. The first is to bias this selection to avoid

nodes that correspond to actions that have previously led to dead-ends. This biasing

policy is referred to as Monte-Carlo Deadlock Avoidance (MDA). A second tech-

nique biases the successor selection to increase the chance of selecting a successor

that corresponds to the application of an action which has previously been identified

as a helpful action by the heuristic. This technique is referred to as Monte-Carlo

with Helpful Actions (MHA). These different biasing strategies have been shown

to each be useful for different domains [65].

There are also a set of parameters that are related to the walk length that can also

greatly affect performance. In Arvand, this length is increased whenever a search

episode terminates to allow the next search episode to get deeper into the state-

space. The initial walk length, the frequency with which walks are lengthened, and

the factor by which they are lengthened (called the extending rate) are all parameters
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Config Bias Type
Initial Walk Extending Average

Length Rate Coverage

1 MDA 1 1.5 400.8
2 MDA 1 2.0 414.2
3 MDA 10 1.5 397.8
4 MHA 1 1.5 338.8
5 MHA 1 2.0 348.0
6 MHA 10 1.5 386.0

Table 3.2: Performance of different Arvand configurations.

affecting this process.

The average performance of six different configurations over 5 runs on each of

480 problems is shown in Table 3.2. The problem set consists of all problems in

the 2006 and 2008 planning competitions, except for sokoban from IPC 2008.

This domain was omitted in the interest of evaluation time since previous testing

has indicated that Arvand performs poorly in this domain regardless of how it is

configured.

These experiments were performed on a cluster of machines each with two 2.19

GHz AMD Opteron 248 processors with 1 MB of L2 cache. Configurations are

given a maximum of 1800 seconds and 2 GB per run. Configurations 1 and 4 cor-

respond to the default configurations that use one of MDA or MHA. The remaining

four configurations are constructed by modifying these default configurations by

either its initial walk length or its extending rate, but not both simultaneously.

While the MDA configurations outperform the MHA configurations, this is not

true in all domains [65]. This is clear in Table 3.3, which shows the performance

of configurations 1 (MDA) and 4 (MHA) from Table 3.2 on four different domains.

This suggests that a combination of configurations is needed. Note that the naming

convention used in this thesis for PDDL domains will be to refer to a domain by

the concatenation of the year in which those tasks were used in the competition and

the domain name. For example, “2008 woodworking” refers to the woodworking

problems used in the 2008 competition. As needed, we will also write the number

of tasks in the given domain in parentheses besides the domain name.
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Config 1 Config 2
Domain Coverage Coverage

2006 pathways (30) 16.2 30.0
2006 tpp (30) 26.2 15.0
2008 transport (30) 15.4 23.2
2008 woodworking (30) 30.0 16.4

Table 3.3: Performance of different Arvand configurations on selected domains.
The number of tasks in each domain are shown in parentheses.

3.4.3 Combining Different Arvand Configurations

A simple way to combine k configurations in a single-core version of Arvand is

to use restarts to run each for 1800/k seconds. Given the 6 configurations tested in

Table 3.2, there are
(

6
k

)
possible portfolios for any portfolio size k such that 1 ≤

k ≤ 6. For each such portfolio for all k, we calculated the expected performance

using the technique described in Section 3.2.2 by using the experiments performed

for Table 3.2 to estimate the probability that any particular configuration will solve

a given problem. When k = 2, the best configuration set of all
(

6
2

)
= 15 possible

portfolios is expected to solve 436.3 problems, an increase of 22.1 problems over

the average number solved by the single best configuration alone.2 All but 2 of

these 15 portfolios improved over the single best configuration in its own set when

used alone. For k = 4 and k = 6, the expected coverage of the best sets are

434.4 and 431.4, respectively. These diminishing returns are to be expected since

an increase in k decreases the amount of time any individual configuration will run.

However, notice that using all 6 of the configurations is still outperforming the use

of any single configuration when used alone. The same is also true of even the worst

performing of the portfolios containing 4 different configurations.

In practice, instead of starting with a new configuration every 1800/k seconds,

we alternate amongst the configurations in a round-robin fashion. For each of

k = 2, k = 4, and k = 6, we tested this approach with the configuration set of

size k with the best expected performance when allocating time equally between

2Recall that the test set contains a total of 490 problems.
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configurations. The coverage of alternation is slightly better, as it averages 435.4,

439.8, and 439.6 for k values of 2, 4, and 6, respectively, over 5 runs per problems.

This occurs because when alternating between configurations, the different config-

urations are not necessarily used for an equal amount of time. In particular, those

configurations which make more heuristic progress will necessarily be used for a

higher proportion of the runtime. For example, if two configurations, c1 and c2, are

used on a single task Γ, and c1 is less effective on Γ than c2, then search episodes

using c1 will stop making progress and restart more quickly than those using c2.

The available runtime will therefore skew more towards the longer, more effective

c2 configurations, than to the shorter, quickly-restarting c1 configurations.

3.4.4 Configuration Selection as a Bandit Problem

We also tested the use of an online configuration selection system for use in Arvand.

Given a set of configurations C, the system selects a configuration for the next

search episode from C based on the performance of the configurations during pre-

vious episodes. This system views configuration selection as an instance of the

multi-armed bandit problem in which C is the set of bandits (ie. slot machines) and

the search episodes correspond to arm pulls. This paradigm requires the definition

of a payoff function that assigns a reward to any search episode. The function used

was defined such that the reward given to a search episode e performed with con-

figuration c is given as follows: where n is the state on the trajectory of e with the

lowest heuristic value of all nodes in the trajectory, the reward given to e is

max(0, 1−H(n)/H(ninit)) .

Using this reformulation of configuration selection, configurations can be se-

lected online using any multi-armed bandit algorithm. Arvand uses UCB [1],

which begins by performing a single search episode with every configuration. Af-

ter this stage, the configuration selected for the next episode is given by

arg max
c∈C

Q(c) + λ ·
√

lnT (c)/T .

where Q(c) is the average reward seen thus far for configuration c, T (c) is the

number of search episodes performed with configuration c so far, T is the total

72



number of search episodes, and λ is a parameter called the UCB constant value.

This algorithm was used as it has been shown to have strong theoretical guarantees

on its ability to balance between focusing on effective selections and exploring the

alternatives [1]. However, any multi-armed bandit algorithm could have been used.

To quickly seed the UCB configuration selection system with search episodes

from which to learn, the frequency with which episodes restarted was initially set

high and then gradually decreased. This was done by adjusting over time the maxi-

mum number of random walks performed before the search episode jumps, denoted

r, and the number of jumps that can be performed without seeing heuristic progress

before the search episode ends, denoted u. For these experiments, each configura-

tion had its own value for r, all of which were initialized as 100 and doubled, up

to a maximum of 2, 000, every time that configuration was used. Similarly, each

configuration maintained its own value for u, all of which were initialized to 1 and

incremented by 1, up to a maximum of 7, each time that configuration was used.

The resulting system was then tested on several of the possible sets of the con-

figurations shown in Table 3.2. In general, the UCB system did not significantly

change the coverage of Arvand when compared to the use of round-robin config-

uration selection, but it did improve run-time. For example, four different values

of the UCB constant value were tested on the configuration set of size 2 with the

best expected performance when allocating equal time to each configuration. Re-

call that round-robin selection solved 435.4 problems when applied to this same

set. Of the UCB constant values tested (0.1, 0.5, 1.0, and 5.0), the most problems

solved when using the UCB selector was 439.4 and the least was 437.2. However,

the combination of the UCB configuration selection system and the higher rate of

restarts did increase the speed of the system. For example, when we only consider

the 399 problems solved on all five runs per problem by either the UCB system or

round-robin, we see that even the UCB constant resulting in the longest run-time

results in a 2.75 times speedup, while the value with the shortest run-time sees a

3.90 times speedup.
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3.5 Multi-Core Planning with a Portfolio

As has just been shown, the performance of each of LAMA-2008 and Arvand can

be improved by using a portfolio containing multiple configurations of the respec-

tive planner. In this section, we will show that by combining the improved version

of these planners in a portfolio, we can construct a state-of-the-art multi-core plan-

ner called ArvandHerd.

We begin by considering a parallelization of Arvand as an alternative to par-

allelizing a best-first search algorithm. This parallelization will later be used in

constructing ArvandHerd.

3.5.1 Parallelizing Arvand

While using multiple configurations and restarts have been shown above to improve

the performance of Arvand on a single-core machine, using a portfolio of configu-

rations can also be used for constructing an effective parallel version of this planner.

The parallelization considered uses each core to run an independent search episode.

The only communication between cores is through the use of a shared walk pool

and a shared UCB configuration selector. When a core has completed a search

episode, it submits the corresponding trajectory to the shared walk pool, and it gets

a trajectory in return. The core also submits the reward for its current configuration

to the shared UCB configuration selection system and in return is given a configu-

ration to use in its next search episode. This means that every core of the system

has access to use any of the given configurations. The correctness of the walk pool

and UCB configuration selection system are maintained by limiting access to each

to only one thread at a time. As the search episodes dominate execution time, there

is little synchronization or contention overhead caused by sharing these resources.

In the multi-core setting, the UCB configuration selection system was also mod-

ified to take into account that a new configuration may be requested while some

threads are currently running search episodes. This may cause an issue if all con-

figurations have all been used a similar number of times, have a similar average

reward, and several processors request a configuration at around the same time. In
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Number of Cores
1 2 3 4 8

Coverage 660.4 668.0 671.4 677.8 679.6
Speedup Factor 1.0 1.9 2.5 3.0 3.4

Table 3.4: The performance of parallel Arvand.

such a situation, the first processor to get its request in will be given a configura-

tion based on the UCB formula. If another processor then requests a configuration

before the first processor completes its search episode, it will be given the same

configuration since none of the parameters on which the configuration selection is

made will have changed.

In the situation just described, we would prefer that the configurations are se-

lected more evenly from amongst the set of available configurations due to the simi-

larity in rewards and number of times each has been tested. To rectify this situation,

once a configuration is returned, its average reward and count is immediately up-

dated as if the yet-to-complete search episode returned a reward of 0. It is only

when the search episode completes that this pessimistic reward is undone and the

real award is used. This approach, which is inspired by the virtual loss idea of-

ten used by UCT parallelizations [8], will encourage more exploration amongst the

configurations.

Parallel Arvand was tested with different numbers of cores on the 790 prob-

lems from IPCs 2006, 2008, and 2011. These experiments were performed on a

cluster of machines, each with two 4-core 2.8 GHz Intel Xeon E546s processors

with 6 MB of L2 cache. The configuration set used is identical to the set used in

IPC 2011. It includes configurations 1, 4, and 6 from Table 3.2 and another MDA

configuration with an extending rate of 1.5 and an initial walk length of 3. This

configuration set was selected manually prior to IPC 2011 based on familiarity with

Arvand, and also before the expected coverage analysis described above had been

performed. We use this set in our experiments below so as to evaluate how parallel

Arvand contributed to ArvandHerd’s success.

Table 3.4 shows the average number of problems solved over five runs per prob-
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lem when using different numbers of cores, and how much faster the multi-core

versions were in comparison to the single-core version on the 639 problems that

were solved on all five runs regardless of the number of cores used. The table

shows that the additional processors not only lead to increased coverage, but also

improved runtime. However, while 8-core Arvand solved 19.2 more problems on

average than the 1-core version, domain-by-domain analysis indicates that domains

in which the single-core version exhibits poor performance are often also difficult

for the multi-core versions. For example, 1-core Arvand only solves 4.4 of the 30

sokoban problems from IPC 2008 and none of the barman problems from IPC

2011. The 8-core version does improve in sokoban to an average of 6.8 problems

solved, but is still unable to solve a single barman problem. As all Arvand con-

figurations we have tested have performed poorly on these domains, this suggests

that there is a limit in the coverage that can be achieved by adding more configu-

rations to the system or through parallelizing Arvand. However, LAMA-2008 can

solve 26 sokoban problems and 15 barman problems. This motivates the use of

both LAMA-2008 and Arvand in a portfolio.

3.5.2 The ArvandHerd Portfolio

At the time when ArvandHerd was developed, LAMA-2008 was the winner of

the sequential satisficing track of the most recent International Planning Competi-

tion in 2008. It was therefore a natural selection as the starting point when con-

structing a portfolio-based planner. While we have shown above that the perfor-

mance of this planner can be improved by using multiple configurations and restarts,

simply assigning different configurations to different processors of a shared mem-

ory machine requires that the available memory must be partitioned between the

configurations. In the case of a planner like LAMA-2008 for which memory is

essential, the coverage decrease seen by each individual configuration due to the

limit on memory can harm the collective coverage of the portfolio. To see this, we

simulated the performance of a portfolio containing subsets of size k of the GBFS,

w = 10, w = 7, w = 5, and w = 1 configurations of LAMA-2008 tested in Section

3.3.2 on a k-core machine on which each used configuration is given 2/k GB of
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memory. Regardless of the value of k considered, none of the portfolios matched

the expected coverage of 448.4 seen when restarting over all 5 configurations on a

single-core machine and giving each configuration a maximum of 6 minutes to run.

For example, when simulating the performance of using all 5 configurations on a

5-core machine with each being given 400 MB of memory, the expected coverage is

only 442.1 problems. Avoiding this behaviour — which will impact any portfolio to

be used in parallel that contains multiple memory-heavy algorithms — is therefore

integral for properly selecting a portfolio and was an important consideration when

building ArvandHerd.

The ArvandHerd portfolio does include several configurations of LAMA-2008,

but these configurations are employed using restarts. As such, these LAMA-2008

configurations are never used simultaneously so as to avoid the memory issues just

discussed. Alongside LAMA-2008, the portfolio includes several configurations

of Arvand, for several reasons. First, this approach is very different from WA∗

and it is able to solve some problems that the systematic search of WA∗ is un-

able to handle. Secondly, domains in which it exhibits poor behaviour are often

more successfully tackled by approaches based on WA∗. Finally, Arvand has low

memory requirements, and so when it is run alongside LAMA in a shared-memory

system, the majority of the memory can be assigned to LAMA, thereby avoiding the

memory-partitioning issue described above.

ArvandHerd Architecture

Let us now consider the architecture of the ArvandHerd planner and how this

planner uses the configurations in its portfolio. As both Arvand and LAMA-2008

are built on top of Fast Downward [38], ArvandHerd is run from a single

binary. Like Fast Downward, this means that the execution of ArvandHerd

consists of three phases. The first is the translation step in which the PDDL problem

description is translated to SAS+. The second is the knowledge compilation step

which builds the data structures that are needed for the landmark-count heuristic.

The third is the search step during which the planner tries to solve the problem using

search algorithms, multiple heuristics, and other planning enhancements. Note that

77



translation and knowledge compilation are pre-processing phases, and no attempt

was made to parallelize them. While doing so would speed up the ArvandHerd

system, we consider this an orthogonal problem to that of parallelizing the actual

planning component and leave it as future work. As described previously, these

steps are the same for all planners considered in this thesis, and so the time needed

for these steps was not counted against the per problem time limit.

When the search phase of ArvandHerd begins, separate threads are spawned

and each is assigned to run different members of the portfolio. In the competition

setting in which four cores were made available, three threads were assigned to

run the parallelization of Arvand described in Section 3.5.1 and the remaining

one ran LAMA-2008. In the more general k-core machine setting, k − 1 threads

will be running the parallelization of Arvand while the remaining thread will run

LAMA-2008. The threads running Arvand use the same configuration as was

detailed in Section 3.5.1. The LAMA-2008 configurations that were used will be

described in the next section.

LAMA-2008 Configurations Used in ArvandHerd

LAMA-2008 as used in ArvandHerd actually uses three heuristics: FFd, FFc,

and LM. This was because the experimental analysis performed by Richter and

Westphal [76] suggested that FFc was offering important guidance in certain do-

mains that the other two heuristics were not offering. Our own experimentation

performed prior to IPC 2011 confirmed this. For example, when using all three

heuristics LAMA-2008 solved 464 of the 550 problems taken from the 2008 and

2011 competitions, as opposed to only 449 when FFc was omitted. This is because

even these very related heuristics also each have their own strengths and weak-

nesses. For example, in the 2011 barman domain, LAMA-2008 with FFd and LM

solves 17 of the 20 problems, while LAMA-2008 with FFc and LM solves 7, and

LAMA-2008 with all three heuristics solves 16. The 2011 woodworking domain

provides another example of this type of behaviour as LAMA-2008 with FFd and

LM solves 8 of the 20 problems, LAMA-2008 with FFc and LM solves 15, and

LAMA with all three heuristics solves 17.

78



In the version of LAMA-2008 used in ArvandHerd at the time of IPC 2011,

the FF implementation used at the time did not allow for both FFd and FFc to be

computed using only a single solution to the relaxed version of the problem. In-

stead, the planner computed two plans to the relaxation of the problem, each based

on a different implementation of FF. One of these plans was then used to compute

FFd and the other was used to compute FFc. In subsequent analysis, we discovered

that doing so increases coverage but at a significant cost to run-time. For this analy-

sis, we modified our implementation of LAMA-2008 so that it could compute both

FFd and FFc from the same plan. Over the test set given by all problems from the

competitions in 2006, 2008, and 2011, the configuration that computed two plans

solved 668 of 790 problems compared to the configuration which only used a sin-

gle plan which solves 661. However, if we examine the total runtime by each of

these approaches on the 644 problems that both configurations solved, we see that

the version of LAMA-2008 that computed two relaxed plans is a factor of 1.36

times slower than the other configuration. Due to this time difference, the version

of LAMA-2008 used in ArvandHerd in the evaluation in Section 3.5.3 will only

require one plan to be computed for the relaxed version of the problem.

LAMA-2008 was also set to use random operator ordering at all times, and

use multiple types of search using restarting. On the first iteration, the planner

uses GBFS, which is followed by a set of WA* searches that use the following

weights in the order given: 10, 5, 2, and 1. These configurations were not given an

equal time however, as instead of restarting on a time limit, LAMA-2008 was set

to restart on a memory limit of 4 GB. This limit was enforced through the use of

an internal memory estimator. The closed list was also saved in between restarts

so as to avoid recomputing the heuristic values of states seen in previous iterations.

Subsequent experiments suggest that this was not necessarily the best approach.

When restarting with a 2 GB memory limit and using the 5 configurations described

in Section 3.3.2, an average of 440.2 problems were solved — which is lower than

the 448.4 expected when restarting on a time limit. This gap is at least partially due

to inaccuracies in our memory estimator which could only provide rough estimates.

However, this approach was maintained in the experimentation detailed below.
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Since the planner is set to restart on a memory limit instead of a time limit, it is

necessary to have a policy in place for the case in which all configurations run out

of memory and there is still time remaining. If this happens then the given cycle of

searches — starting again with GBFS — is repeated indefinitely until the time limit

is reached or a solution is found.

Note that the configuration set and the policy used after this set has been tried

once both differ slightly from the version of ArvandHerd that competed in IPC

2011. In the competition version, the final weight 1 iteration was followed by 2

more weight 1 iterations and a weight 0 search. If the weight 0 search failed with-

out having found a solution, the thread running LAMA would then join the others

in running parallel Arvand. For the version of ArvandHerd tested below, the

extra low-weight iterations were dropped as they were initially included for plan

improvement and our focus in this chapter is on coverage. The switch to Arvand

was also dropped since while this is a reasonable approach if the portfolio can be

run from a single binary (as it can in ArvandHerd), this is may be much more dif-

ficult to do if other planners are added to the portfolio. In the interest of evaluating

the general portfolio technique, LAMA-2008 will instead cycle back to perform

GBFS and the weighted searches in the order given above.

3.5.3 ArvandHerd on IPC Benchmarks

ArvandHerd was run 5 times on each of the 790 problems in the 2006, 2008,

and 2011 planning competitions on the same cluster described in Section 3.5.1. In

this section, the performance of this planner is compared with the parallelization

of Arvand and the simulated parallelizations of LAMA-2008, LAMA-2011, and

Stone Soup that assume a perfectly linear speedup.

Let us first briefly describe LAMA-2011 and Stone Soup. LAMA-2011 is

an update to the original LAMA-2008 that was submitted to the 2011 International

Planning Competition [77]. It is built into the modern Fast Downward frame-

work. LAMA-2011 uses the distance-to-go FFd heuristic instead of FF+, since an

experimental evaluation conducted by Richter and Westphal after IPC 2008 sug-

gested doing so was beneficial for planner coverage [76]. The newer version of the

80



planner also includes improved memory management and faster heuristic computa-

tion, which is largely the reason for the improved performance.

Stone Soup is a portfolio planner that is also built into the modern Fast

Downward framework. The way the portfolio and restarting strategy is constructed

has previously been described in Section 3.2.3. The space of planners considered

for the portfolio is given by best-first search variants that differ in the heuristics

used, the use of GBFS or WA∗ with different weights, and the planning enhance-

ments employed. Like with the other single-core planners, the k-core simulation

was performed by running this planner for k · 1800 seconds and counting any prob-

lem solved with that limit as being solved in 1800 seconds with k cores. We did

not rerun the portfolio selection phase so that the planner could account for the

additional time allowed, but instead extended the restarting times so that the pro-

portion of time spent running any planner remained the same regardless of the value

of k. This means that the simulated parallel performance of this planner is based

on the assumption that all portfolio members could be parallelized with a perfectly

linear speedup, and each of the resulting parallel planners would be run using the

restarting policy given by the initial portfolio construction.

The performance of these systems and ArvandHerd can be seen in Table 3.5.

The table clearly demonstrates that the coverage of ArvandHerd is significantly

greater than the coverage of either a perfectly linear parallelization of LAMA-2008

or the parallelization of Arvand described in Section 3.5.1. Note that the version of

LAMA-2008 tested in this experiment is the original version of this planner, and so

it uses the FF+ heuristic instead of FFc or FFd. While the coverage of LAMA-2008

and Arvand both lag significantly behind the coverage of LAMA-2011, the com-

bination of these planners as used in ArvandHerd surpasses the simulated perfor-

mance of even a perfectly linear parallelization of the two state-of-the-art single-

core planners considered: LAMA-2011 and Stone Soup.

Unlike ArvandHerd, Stone Soup’s portfolio does not consider a design

space beyond best-first search variants. In contrast, ArvandHerd includes the

random-walk based Arvand planner as a substantially different planning approach

whose added diversity is very important to the planner’s success as can be seen
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Number of Cores
Planner 1 2 4 8

LAMA-2008 Simulation 639.0 641.0 643.0 NA
LAMA-2011 Simulation 721.0 724.0 726.0 727.0
Stone Soup Simulation 720.0 724.0 726.0 727.0

Parallel Arvand 660.4 668.0 677.8 679.6
ArvandHerd NA 737.2 743.2 741.8

ArvandHerd +LAMA-2011 NA 750.4 754.2 755.2

Table 3.5: Performance of parallel planners.

when comparing the performance of ArvandHerd to that of LAMA-2008. This

can also be seen when we consider the results on a domain-by-domain basis which

is shown in Table 3.6. The table shows the performance of three planners on all

domains tested. The first is a version of LAMA-2008 that uses the FFd and FFc

(ie. the version of LAMA-2008 used inside ArvandHerd aside from the use

of random operator ordering and restarts). The second is a single-core version of

Arvand. The final planner is the 2-core version of ArvandHerd. Note that the

table has been partitioned into three sections. The first shows the 2006 domains, the

second shows the 2008 domains, and the third shows the 2011 domains.

As the table demonstrates that the portfolio is increasing coverage in the ex-

pected way: with Arvand and LAMA cancelling out each others’ weaknesses. For

example, recall that Arvand is unable to solve a single problem in barman (IPC

2011). With LAMA-2008 in the portfolio, the 2-core version of ArvandHerd

solves an average of 15.4 out of 20 problems (similar to the 16 problems that LAMA

handles when on its own). In contrast, LAMA-2008 solves 19 of 30 problems in

storage (IPC 2006), while ArvandHerd solves an average of 29.4 (similar to

the 30 that Arvand solves when on its own).

3.5.4 Using LAMA-2011 in ArvandHerd

LAMA-2008was included in the portfolio instead of LAMA-2011 because Arvand

had already been built into the LAMA-2008 code-base prior to the competition.

The row labelled “ArvandHerd +LAMA-2011” in Table 3.5 shows that perfor-
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Domain Name Planner
(# of Problems) LAMA-2008 Arvand 2-Core ArvandHerd

2006 openstacks (30) 30.0 25.8 30.0
2006 pathways (30) 28.0 30.0 30.0
2006 rovers (40) 40.0 40.0 40.0
2006 storage (30) 19.0 29.4 29.6
2006 tankage (50) 38.0 43.8 45.2
2006 tpp (30) 30.0 30.0 30.0
2006 trucks (30) 12.0 19.2 16.6

2006 Totals (240) 197.0 218.2 221.4

2008 cybersecurity (30) 30 30 30
2008 elevators (30) 30 30 30
2008 openstacks (30) 30 30 30
2008 parcprinter (30) 23 30 30
2008 pegsol (30) 30 29.8 29.8
2008 scanalyzer (30) 30 28.6 30
2008 sokoban (30) 24 4.4 25.8
2008 transport (30) 30 30 30
2008 woodworking (30) 30 30 30

2008 Totals (270) 257.0 242.8 265.6

2011 barman 16 0 15.4
2011 elevators 13 20 20
2011 floortile 2 1.6 5.2
2011 nomystery 11 19 18.2
2011 openstacks 20 20 20
2011 parcprinter 5 20 20
2011 parking 17 6.8 19
2011 pegsol 20 19.8 20
2011 scanalyzer 20 17.6 20
2011 sokoban 14 1.8 15.6
2011 tidybot 13 18.4 18.4
2011 transport 19 14.4 20
2011 visitall 20 20 19.8
2011 woodworking 17 20 18.6

2011 Totals (280) 207.0 199.4 250.2

All Totals (790) 661.0 660.4 737.2

Table 3.6: The coverage by LAMA-2008 using the FFc and FFd heuristics,
Arvand, and 2-core ArvandHerd.

83



mance would further improve if LAMA-2011 had been used instead. For simulat-

ing the k-core performance of this new portfolio, parallel Arvand was run with

k − 1 cores on all problems that LAMA-2011 could not solve when given a 4

GB memory limit. The table shows the sum of the number of problems solved by

LAMA-2011 and the average number of problems solved by k − 1-cores running

parallel Arvand. That the new portfolio successfully solves even more problems

than it did before reflects the importance of Arvand in the portfolio. Arvand

is not simply covering the weaknesses in LAMA-2008 that have been addressed

with the release of LAMA-2011. As such, ArvandHerd is also capably handling

problems that this state-of-the-art planner cannot.

3.6 Chapter Summary

In this chapter, we have demonstrated that two existing planners, LAMA-2008 and

Arvand, each have their own strengths and weaknesses in terms of the domains

they are best suited for, and that these strengths and weaknesses depend somewhat

on how design choices are made. We have also shown that the use of multiple

configurations and restarts can improve the coverage of each of the two planners

used in the portfolio, namely LAMA-2008 and Arvand, even when used on only

a single core. While these techniques have previously been used in the SAT-solving

community, we have shown that their success extends into automated planning.

We then considered how these ideas would apply when building a parallel plan-

ner. This included demonstrating that parallelizing a single planning algorithm is

not necessarily the best way to use a multi-core shared memory machine if the

goal is to maximize coverage. While the parallelized algorithm may be faster, it

will have similar limitations as the original single-core algorithm in terms of both

resource usage and the domains it handles well. Instead of parallelizing a single

algorithm, we used an algorithm portfolio approach to parallel planning in the de-

velopment of ArvandHerd, which won the multi-core sequential satisficing track

at IPC 2011. The combination of the planners used in ArvandHerd is then shown

to outperform even the simulated performance of perfectly linear parallelizations
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of several state-of-the-art single-core planners. It is also shown that the cover-

age can be further improved by replacing LAMA-2008 with LAMA-2011in the

ArvandHerd portfolio. More generally, we have demonstrated through the con-

struction of ArvandHerd that the use of a portfolio is a powerful approach for

building general parallel planners due to its ability to combine the strengths of dif-

ferent planners.
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Chapter 4

Adding Random Exploration to
GBFS

In this chapter, we introduce two simple ways of introducing random exploration

into a GBFS-based planner to make GBFS less sensitive to errors in the heuristic.

In doing so, we identify the use of random exploration as a useful design decision

that can be employed when building a GBFS-based system. We then argue that

these results suggest that GBFS enhancements that are based on additional problem

structure need to be compared against random-based baselines to ensure that the

variation these enhancements introduce into the way the state-space is examined

is not merely equivalent to random exploration. This study further confirmed the

value of the preferred operator and multi-heuristic best-first search techniques.

4.1 Introduction

Greedy Best-First Search (GBFS) is a popular algorithm that is used in many heuris-

tic search-based satisficing planners including LAMA [76] and Fast Downward

[38]. While it has no provable bounds on solution quality that can be guaranteed a

priori of any search, GBFS is typically much faster than optimal algorithms such

as A∗, as well as other OCL algorithms like WA∗ that do have guarantees on the

suboptimality of any solution found. Bounded algorithms often have to expand

nodes that the heuristic identifies as less promising in order to ensure the bound is

satisfied, while GBFS simply searches greedily according to the heuristic.

However, the greediness of GBFS can also cause the algorithm to exhibit poor

86



T0

T0

T0

T1

T1

T1

Tg

Tg

Tg

1

1

1

1

1

1

1

1

1

1

2

0

0

2

1

1

2

0

Figure 4.1: Infinite plateau with 3 types of nodes.

performance if the heuristic and the tie-breaking policy are not effectively guiding

the search. As an example of such behaviour, let us recursively define the following

simple, but infinite tree. In this graph, there are three types of nodes, denoted as T0,

T1, and Tg. Every type T0 node has b successors for some constant b > 0. b− 1 of

these successors are T0 nodes and the remaining successor is a type T1 node. Type

T1 nodes have only a single successor: a goal, or type Tg, node. The heuristic value

of type T0 nodes are 1, while the heuristic value of the type T1 nodes are 2. For

example, Figure 4.1 shows an example of such a graph in the case that b = 2, where

type T0 nodes are shown as the dashed blue circles and type T1 nodes are shown as

dotted green circles.

In this type of graph, the type T0 nodes form an infinitely large heuristic plateau.

This means that these nodes form a contiguous section of the state-space on which

all nodes have the same heuristic value. In the case of the graph shown in Figure

4.1, this plateau sits within a heuristic local minimum since any path from a node

on this plateau must pass through a node with a higher heuristic value before a node

with a lower heuristic value can be found. Heuristic local minima pose a problem

for GBFS, since once the algorithm expands a single node in such a region of the
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search space, it must expand all the nodes before it can escape the local minimum.

If a given planning task has one of the infinite graphs defined above as a subgraph,

this means that once a type T0 node is expanded, GBFS will be stuck in that region

forever. As such, GBFS will never find a solution path once it first expands a type

T1 node, despite the fact that in this case, all nodes in this region are at most a path

of length two away from a goal node.

Any region of the search space which the heuristic incorrectly identifies as being

more promising than the nodes along solution paths will similarly be problematic

for GBFS which will have to exhaustively explore such areas before the algorithm

can return to the nodes with higher heuristic values. In such cases, the heuristic will

often not properly rank nodes according to the relative ease with which a solution

can be found from them. This behaviour can be seen in Figure 4.2, which shows the

performance of GBFS on each of 1000 randomly generated 15 puzzle states. For

each state, the figure shows the heuristic value and the average number of nodes

expanded over 100 runs per task when using random operator ordering, never al-

lowing for re-expansions, and tie-breaking in favour of nodes with a lower g-cost.

As the figure shows, nodes with the same heuristic value can differ greatly in how

difficult it is to find a solution from them. Moreover, it is often substantially easier

to find a solution from a node with a higher heuristic value than a node with a lower

heuristic value.

To improve the performance of GBFS-based planners on such problems, the

standard algorithm is often enhanced with techniques such as preferred operators

or multi-heuristic best-first search. These enhancements use automatically identi-

fied problem structure to provide an alternative source of guidance. The goal of

using such enhancements is to improve the way that the state-space is examined

by making the search more informed. As the variation introduced into the search

by these enhancements is based on knowledge, we refer to such enhancements as

being knowledge-based.

Variation can also be introduced into GBFS by using random exploration. For

example, we can change the way that nodes are iteratively selected for expansion by

making the algorithm occasionally select a random node from the open list instead
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Figure 4.2: The average number of node expansions for 1000 randomly generated
15 puzzle states.

of the node suggested by the heuristic. This technique is easy to implement, has

a low execution overhead, and does not require additional knowledge about the

problem. The variation added by such a technique is not based on problem structure,

and is therefore knowledge-free.

While several existing techniques have employed knowledge-free random ex-

ploration in some fashion, it has always been in combination with other approaches.

As such, it has not previously been clear what the contribution of random explo-

ration was to planner performance, and whether system designers should opt to use

this technique when building a GBFS-based planner. Clearly identifying the impact

of introducing random exploration into GBFS was therefore one of the goals of this

line of research.
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4.1.1 Contributions

In this chapter, we will introduce a simple technique for isolating the impact of

adding random exploration to GBFS. The technique is called ε-greedy node selec-

tion. While several previous researchers have also introduced non-determinism to

GBFS, this technique will more clearly isolate the impact of adding random explo-

ration to GBFS, show that it is beneficial, and thereby demonstrate that it is a useful

option to consider when building a GBFS-based planner. We will also introduce a

second simple technique for encouraging exploration with randomness which will

also improve the performance of this algorithm. This technique, called heuristic

perturbation, will be shown to be much riskier than ε-greedy node selection, as it

will result in substantial performance improvements in some domains and substan-

tial decreases in others. Due to this variance, it will be shown to be quite useful

when used alongside ε-greedy node selection in a portfolio.

Given the positive impact of adding random exploration to GBFS, we will argue

that this result suggests a need to revisit the existing knowledge-based enhance-

ments to determine if the knowledge they use is offering important guidance, or

if the main impact of this knowledge is to add variation that can be replicated us-

ing simpler knowledge-free approaches. We therefore evaluate the impact of the

knowledge used in the knowledge-based enhancements by comparing these en-

hancements to equivalent systems in which the knowledge has been replaced by

randomness. This investigation confirms that preferred operators are offering much

more to the search than simply adding random variation, and that the knowledge

employed when using secondary heuristics is crucial in some domains while not

offering enough variation in others.

This chapter is based on two publications. The first is a technical report that

introduced ε-greedy node selection and heuristic perturbation [98]. This was then

followed by a paper at the 2014 International Conference on Automated Planning

and Scheduling which detailed ε-greedy node selection and a study of the impact of

the knowledge used by existing GBFS enhancements [101]. Fan Xie was also in-

volved in this latter publication as he first proposed and performed the experiments

detailed below that test the value of the helpful actions when used as preferred oper-
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ators in a GBFS guided by the FF heuristic. I later re-ran these experiments so that

they were run on an equivalent system as was used in the remainder of the paper,

and connected that study with the idea of using random baselines to evaluate the

impact of the knowledge used by GBFS enhancements.

4.2 Related Work

We begin this section by describing several deterministic algorithms introduced to

better deal with errors in the heuristic function in use. We will then describe several

algorithms which also encourage exploration using non-determinism.

4.2.1 Dealing with Early Mistakes

An early mistake in the heuristic function is an error in the heuristic value of a node

near the initial node that causes the algorithm to commit to first exploring a region

of the state-space from which a goal node cannot be easily found. The approach

taken by Felner, Kraus, and Korf for better dealing with early mistakes is called

KBFS [20]. This algorithm framework is almost identical to rBFS, except on every

iteration it expands k nodes instead of just one, where k is an algorithm parameter

such that k > 1.1 The k nodes selected for expansion are those in the open list

with the lowest heuristic value.2 Once this set of nodes is selected, the goal test

is performed on the nodes it contains. If a goal is found among this set of nodes,

the algorithm returns the solution extracted from the parent pointers just like in any

OCL algorithm. If not, all the children of the k nodes are generated, and this list

is treated just as the children of the single node selected for expansion in an OCL

algorithm are. This means that they are considered individually for being added to

the open list and any necessary g-cost and parent pointer updates are performed. By

having the algorithm expand nodes that are not always at the top of the open list,

this algorithm will often push the search to explore areas of the search against the

advice of the heuristic function.
1Though it was not initially described as such, KBFS can defined as an OCL algorithm. We

describe it as it was initially introduced for the sake of simplicity.
2KBFS was initially defined so as to use any evaluation function Φ instead of only considering

the heuristic function. We ignore the more general case for the sake of brevity.
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Harvey and Ginsberg introduced limited discrepancy backtracking as a tech-

nique for better handling early mistakes in graphs that are binary trees [36]. For

defining this technique, we will need the following convention: we will assume that

the left child of a node in such a tree is the child with the lower heuristic value

than the right child (or which is considered more promising according to some tie-

breaking policy). In such binary trees, the standard approach is to use a depth-first

search that, when considering which child of a node to explore first, always goes to

the left child. This means that the algorithm maintains a single candidate solution

path, and on every iteration it adds the leftmost child of the deepest node on the

candidate path for constructing the candidate path used in the next iteration. When

backtracking, the deepest node on the candidate path is iteratively removed until

a node is found for which the candidate paths along its right child have not been

examined. The search then adds this right child to the remaining candidate path and

performs a depth-first search from that node.

The result of such backtracking is that the search first explores alternatives near

the leaves of the tree being searched before it can backtrack and consider alterna-

tives near the initial state. In contrast, limited discrepancy backtracking causes the

search to first explore alternatives near the initial node. It does so by incremen-

tally increasing the number of discrepancies along the current candidate path. A

discrepancy occurs whenever the candidate path follows the right child of a node

along the path instead of the left child. On the first iteration, the algorithm does not

allow for any discrepancies, and so it will follow the path consisting only of the left

child nodes. If a goal node is found, the algorithm returns the path found to it. Oth-

erwise, the algorithm restarts from the initial node and performs a depth-first search

that allows for a single discrepancy along the candidate path. This discrepancy is

also used as soon as possible, and so the first candidate path considered consists

of first taking the right child of the initial node, and then proceeding to only fol-

low the edges that correspond to the left children. The backtracking performed will

then make the search examine every candidate path that contains at most one right

edge. If all such paths are tried without a solution path being found, the search then

restarts, and the number of allowed discrepancies is then increased to two. This
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process then continues until a solution is found. Limited discrepancy backtracking

was later generalized to apply to arbitrary graphs instead of just binary trees by

Furcy and Koenig in an algorithm called BULB [25].

While both KBFS and limited discrepancy backtracking add variation to the

search, this variation is still heavily influenced by the heuristic function. In KBFS,

the node selected for expansion on every iteration will still correspond to those with

a low heuristic value unless k is very large, in which case the algorithm will resem-

ble breadth-first search. The depth-first nature of a limited discrepancy search, even

in the case of BULB, also means that the search may still have to examine a large

number of nodes before it ever looks at a node near the initial node that can only

be found with even a small number of discrepancies. This is because these tech-

niques still heavily favour those nodes that can be achieved greedily according to

the heuristic. This differs from the techniques introduced below which will intro-

duce exploration without heuristic bias.

4.2.2 Encouraging Exploration with Stochasticity

Several systems have been introduced which add non-determinism into search al-

gorithms so as to introduce useful variation to the search. One such algorithm is

diverse best-first search (DBFS) [47]. The execution of this algorithm consists of

two phases that alternate. In the first, a node n is randomly selected from the open

list according to a distribution which favours nodes with a low g-cost and a low

heuristic value. In the second, a local GBFS search is initiated from n (ie. as if n

is the initial node) with a node expansion limit. Once that limit is hit, the open and

closed lists used by the local GBFS are merged with the open and closed lists of

the main search, and algorithm returns back to the first phase. This process repeats

until a solution is found.

Xie, Müller, and Holte have also shown that adding a local search to a GBFS

as is done in DBFS can substantially improve planner performance, particularly in

domains with large plateaus [105]. This is shown to be true regardless of if the

local search is GBFS — as in DBFS — or if the local exploration is performed

using Arvand-like random walks, as is the case in the Roamer planner [60].
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Though ε-greedy node selection may not increase performance as much as these

other approaches in all cases, we will see that it still increases coverage substan-

tially. In any case, the main purpose of ε-greedy node selection is not to compete

with these other approaches, but to isolate the impact of adding random explo-

ration to GBFS and to clearly demonstrate its positive impact. In contrast, these

other approaches often use a multitude of techniques like local search and random

walks, and so it is not entirely clear as to the specific contribution of random ex-

ploration. This is also true of several other systems including Lamar and Randward

[67], which use a stochastic version of the FF heuristic that is constructed by adding

randomness into the way in which the heuristic is computed.

Recent work by Xie et al. [106] biases the random exploration through the

introduction of a type-system. A type-system is a partitioning of the nodes in

the state-space into groups that each contain nodes that are expected to be similar

according to some system. The added random exploration is then biased to explore

different types evenly. While ε-greedy node selection with a particular parameter

setting is a special case of type-based exploration, ε-greedy node selection more

clearly captures the impact of random exploration than does the introduction of a

type-based biasing.

The ε-greedy approach described below has also been previously used in the

context of generating a diverse set of plans [10], though not with GBFS. In that

work, once a first solution was found using a standard search algorithm, this tech-

nique was used to introduce variation to an enhanced hill-climbing search to en-

courage the search to find solution paths that differed from those already found. In

contrast, we will use this technique to demonstrate the positive impact of adding

random exploration to GBFS to find a first solution, instead of in encouraging the

search to find a differing set of plans.

4.3 ε-Greedy Node Selection

In this section, we describe ε-greedy node selection. This simple modification to

the standard GBFS algorithm will clearly demonstrate the value in adding knowledge-
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free random exploration to GBFS. This will be shown through experiments with this

technique on PDDL planning problems.

Let us begin by recalling that GBFS is an nrOCL algorithm that uses the policy

shown in Algorithm 9 for selecting nodes from the open list, where H is a heuristic

function. By this definition, the algorithm always selects greedily according to the

SelectNode(OPEN):
1: return argminn∈OPEN H(n)

Algorithm 9: The GBFS SelectNode function.

heuristic function. This means that it always exploits the guidance it is given in the

form of the heuristic and never goes against this guidance.

In contrast, ε-greedy node selection modifies this node selection policy to allow

for random exploration to be explicitly added to the algorithm. This technique is

inspired by the ε-greedy policies often used for multi-armed bandit problems [85].

When using ε-greedy node selection, the search uses the policy shown in Algorithm

10, where ε is an algorithm parameter that must be in the range [0, 1].

SelectNode(OPEN):
1: With probability (1− ε), return argminn∈OPEN H(n)
2: return a node randomly selected from OPEN

Algorithm 10: The SelectNode function used when employing ε-greedy node
selection.

By this definition, ε-greedy node selection uses the same rule as GBFS to select

a node for expansion with probability (1 − ε). However, with probability ε this

technique selects a node uniformly at random from amongst all nodes in the open

list. This means that the value of ε determines how often this node selection policy

chooses greedily according to the heuristic (or how often it exploits the heuristic

information), and how often the algorithm explores randomly. Notice that if ε = 0

then search will be identical to a standard GBFS, while if ε = 1 the search will be

using a purely random node selection policy.

By introducing random node selection into its search, ε-greedy node selection

will cause the algorithm to push the search into directions of the state-space it might

95



not otherwise consider. For example, this technique can be shown to have a finite

expected runtime on the graph given in Figure 4.1, as is done in Section A.2 of

Appendix A. Since this technique only changes GBFS by causing it to occasionally

ignore the heuristic by selecting nodes from the open list uniformly at random, we

can use this technique to isolate and evaluate the impact of adding knowledge-free

random exploration to a GBFS-based planner. We do so in the next section.

4.3.1 Adding ε-Greedy Node Selection to Simple Planners

We begin by evaluating the impact of this technique when it is added to a simple

planner that only uses a single heuristic. In this evaluation, we will only consider

coverage. However, it should be noted that this technique could always be used

as the first iteration in an iterative plan improvement system, such as the restarting

WA∗ search used in LAMA [75] or in a more modern approach that also uses a

planner post-processor like Diverse Any-time Search [107]. We expect that when

doing so, the quality of solutions found would be similar.

The experimental setup for both this section and the rest of this chapter is as

follows. All experiments are performed using the Fast Downward planning system.

The test set is composed of the 790 problems from IPCs 2006, 2008, and 2011,

and these tasks are treated as being unit-cost since our focus is on coverage. The

experiments were performed on a cluster of 8-core machines, each with two 4-

core 2.8 GHz Intel Xeon E546s processors and 6 MB of L2 cache.3 Planners were

run with a 4 GB per-problem memory limit, and a 1800 second per-problem time

limit. All tested planners were set to break ties in their heuristic values in a first-in

first-out manner and they never perform re-expansions. For stochastic planners, the

coverage shown is the average coverage seen over 10 runs on each problem.

The first planner tested runs GBFS enhanced with deferred heuristic evaluation

and the FF heuristic used as the single heuristic function providing guidance. Ran-

dom operator ordering was also used in these experiments so as to avoid the bias

3The same machine was used in the experiments with ArvandHerd in Chapter 3. However,
these numbers are not directly comparable. This is because in the experiments below, 7 processes
were run at a time, while only 1 process was run at any time in the ArvandHerd evaluation (even
when considering single-core planners) so as to fairly compare single-core and multi-core planners.
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Domain Name ε
(# of Problems) 0 0.05 0.1 0.2 0.3 0.5 0.75 0.99

2006 openstacks (30) 30.0 30.0 29.9 29.8 29.9 30.0 29.4 29.3
2006 pathways (30) 9.2 12.3 11.2 11.3 11.4 10.1 10.0 5.7
2006 rovers (40) 22.3 25.5 25.4 25.9 25.8 26.1 24.2 18.1
2006 storage (30) 20.1 20.7 20.9 20.8 20.8 21.0 20.8 18.6
2006 tankage (50) 21.4 26.0 25.7 26.5 26.6 26.6 26.9 21.6
2006 tpp (30) 21.4 21.8 21.8 21.1 20.1 17.6 16.1 13.1
2006 trucks (30) 16.1 18.2 18.2 18.1 17.6 17.8 16.9 15.2

2006 Totals (240) 140.5 154.5 153.1 153.5 152.2 149.2 144.3 121.6

2008 cybersecurity (30) 25.3 29.4 29.9 29.4 30.0 29.5 30.0 29.8
2008 elevators (30) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 29.0
2008 openstacks (30) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
2008 parcprinter (30) 25.7 26.4 26.8 27.2 26.8 26.4 26.5 25.7
2008 pegsol (30) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 29.9
2008 scanalyzer (30) 27.6 29.6 29.1 28.7 28.8 27.9 27.5 22.1
2008 sokoban (30) 29.0 29.0 29.0 29.0 29.0 29.0 29.0 28.0
2008 transport (30) 17.2 17.8 17.9 17.5 17.8 16.8 15.8 13.7
2008 woodworking (30) 15.4 22.8 23.9 26.3 27.3 27.7 24.4 16.1

2008 Totals (270) 230.2 245.0 246.6 248.1 249.7 247.3 243.2 224.3

2011 barman 11.4 16.8 17.8 18.2 18.3 17.5 14.0 0.0
2011 elevators 13.3 14.4 14.7 14.7 14.9 13.7 11.9 8.6
2011 floortile 4.2 6.5 6.4 6.3 6.4 6.5 6.2 5.1
2011 nomystery 8.4 8.2 9.1 8.6 8.5 9.3 9.1 7.7
2011 openstacks 18.5 18.7 18.5 17.9 17.5 16.5 14.4 10.0
2011 parcprinter 11.6 12.6 13.7 14.1 13.6 13.8 13.0 12.3
2011 parking 14.4 14.0 12.5 12.6 11.5 10.0 6.4 0.3
2011 pegsol 20.0 20.0 20.0 20.0 20.0 20.0 20.0 19.9
2011 scanalyzer 17.8 19.2 18.7 18.4 18.6 18.1 17.3 12.1
2011 sokoban 19.0 19.0 19.0 19.0 19.0 19.0 19.0 18.1
2011 tidybot 11.2 11.9 13.0 13.8 14.4 14.6 13.7 6.8
2011 transport 0.0 0.4 0.2 0.1 0.0 0.0 0.0 0.0
2011 visitall 3.8 7.2 7.0 6.9 6.6 5.8 4.6 1.8
2011 woodworking 2.6 9.5 11.1 12.9 13.5 13.2 9.2 2.0

2011 Totals (280) 156.2 178.4 181.7 183.5 182.8 178.0 158.8 104.7

All Totals (790) 526.9 577.9 581.4 585.1 584.7 574.5 546.3 450.6

Table 4.1: The average coverage when using ε-greedy node selection with the
FF heuristic. Entries in bold and blue (italics and red) denote that ε-greedy node
selection with the corresponding value for ε solved an average of at least one more
(fewer) problem than standard GBFS on that domain.
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ε
Planner 0 0.05 0.1 0.2 0.3 0.5 0.75 0.99

GBFSFF 533.2 591.4 599.1 602.3 596.8 584.8 555.6 456.4
GBFSdFF 526.9 577.9 581.4 585.1 584.7 574.5 546.3 450.6
GBFSdCEA 491.9 543.0 541.3 540.2 536.0 532.5 493.1 384.4
GBFSdCG 482.9 521.4 525.0 529.9 524.0 509.1 479.3 372.7
LAMA-2011 676.0 704.8 706.5 705.9 705.1 697.8 684.4 537.4

Table 4.2: The average coverage of various planners that use random operator
ordering when ε-greedy is added to them. dH implies that the heuristic H was used
with deferred heuristic evaluation.

introduced when using a single operator ordering. The average coverage of the stan-

dard GBFS algorithm (ie. ε = 0) and GBFS enhanced with ε-greedy node selection

on all domains tested is shown in Table 4.1. Entries in bold and blue denote that

ε-greedy node selection with the corresponding value for ε solved an average of at

least one more problem than standard GBFS on that domain. Entries in italics and

red denote that ε-greedy node selection with the corresponding value for ε solved

an average of at least one fewer problem than standard GBFS on that domain.

The table shows that by adding random exploration to a GBFS search we can

substantially improve the coverage on the given test set. This is true for a wide

range of values of ε and in many domains. In some of these domains the magnitude

of this increase is also quite high. For example, for all values of ε tested where

ε ≤ 0.5, ε-greedy was able to solve no less than an average of 29.4 of 30 2008

cybersecurity problems, 22.8 of 30 2008 woodworking problems, and 16.8 of the

20 2011 barman problems, while standard GBFS solved an average of 25.3, 15.4,

and 11.4 of these problems, respectively. In the few domains in which ε-greedy

node selection decreased the coverage, the effect was minimal unless ε was high.

For example, for all values of 0.05 ≤ ε ≤ 0.2, the coverage decreased by more than

one problem in a single domain — 2011 parking domain — and for any value of

ε in that range, the average coverage never decreased in that domain by more than

1.8 problems.

To ensure this behaviour is not specific to the use of the FF heuristic with de-

ferred heuristic evaluation, ε-greedy node selection was also tested with standard
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heuristic evaluation and two other heuristics. The two heuristics used are the con-

text enhanced additive heuristic (CEA) [41] and the casual graph (CG) heuristic

[38]. The results of this study — along with the totals when using the FF heuristic

and deferred heuristic evaluation – are shown in the first four rows of Table 4.2. The

table indicates that when using these other configurations, we see similar behaviour

to that seen with the FF heuristic and standard heuristic evaluation. Note that in the

table, dH implies that the heuristic H was used with deferred heuristic evaluation.

These results indicate that while these popular automated planning heuristics

offer effective guidance for standard GBFS in many cases, there is significant value

in adding variation through knowledge-free random exploration.

4.3.2 Adding ε-Greedy Node Selection to LAMA-2011

Even in a fully enhanced planner like LAMA-2011, adding random exploration can

still be beneficial. This was tested by adding ε-greedy node selection to this planner

so that each of the planner’s four queues used this technique on its own. This means

that on every iteration, LAMA-2011 uses its standard policy for selecting which

queue to take a node from (based on boosting), and then the node in that queue

with the lowest heuristic value is selected with probability (1 − ε), while a node is

selected uniformly at random from amongst those in that queue with probability ε.

For example, if the next node expanded is to be selected from one of the preferred

operator queues, the search will expand the most promising preferred successor

with probability 1− ε, and a random preferred successor with probability ε.

When experimenting with a version of LAMA-2011 that uses random opera-

tor ordering, the variation added through ε-greedy node selection again helps to

improve coverage. This is shown in the last row of Table 4.2. Once again, the cov-

erage improvements also hold over a wide range of values for ε, and it is only with

a very high ε value that this technique hurts performance.

Experiments with LAMA-2011 have also indicated that this planner can have

a highly variable performance depending on the operator ordering used, much like

the variability seen with different operator orderings in LAMA-2008 as shown in

Section 3.3.2. As such, we experimented with different operator orderings to en-
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Operator Ordering
ε Standard ROO Pref First Pref First ROO

0.0 680.0 676.0 713.0 677.7
0.05 706.4 704.8 723.0 706.7
0.1 704.4 706.5 720.8 706.0
0.2 703.8 705.9 720.3 703.9
0.3 702.9 705.1 716.4 704.2

Table 4.3: The average coverage of LAMA-2011 when ε-greedy node selection is
added to it.

sure that ε-greedy node selection was not only overcoming harmful bias introduced

through the use of a bad operator ordering. These experiments are shown in Table

4.3. The first row, which shows the performance without ε-greedy node selection,

clearly demonstrates this variability in the standard version of LAMA-2011. The

operator orderings tested are the standard ordering as given by the Fast Downward

successor generator (Standard), random operator ordering (ROO), preferred oper-

ators first (Pref First), and random operator ordering with preferred operators first

(Pref First ROO). Preferred operators first means that the preferred operators are put

at the front of the generated successor list before these nodes are added to the open

list. “Pref First ROO” refers to the random shuffling of the operators such that in

the resulting list of children, the nodes corresponding to the preferred operators are

at the front of the list, though not necessarily in the order they were generated by

the successor generator. In the version submitted to IPC 2011, LAMA-2011 uses

the “Pref First” operator ordering.

The table shows that in all cases, this technique is able to improve upon the

average performance of the standard version of LAMA-2011 regardless of the op-

erator ordering in use. In particular, it shows that even if a good operator ordering

is used, this technique will not undo the positive impact of the ordering and can still

yield further performance gains.
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4.4 Heuristic Perturbation

In this section, we will introduce a second simple technique for introducing random

exploration into GBFS. This technique, which is called heuristic perturbation,

will show that different ways of introducing random exploration can induce very

different behaviour. We will then exploit the fact that this technique leads to differ-

ent behaviour by pairing it with ε-greedy node selection in a portfolio.

Unlike ε-greedy node selection which changes the node selection policy used

by GBFS, heuristic perturbation changes the heuristic function. A GBFS which

uses this technique will avoid overly trusting the heuristic by adding noise to it.

In particular, if H is the given heuristic function and a is a non-negative integer

parameter, the heuristic function being used to guide the search is given by the

following:

HHP(n) = H(n) + r(n) ,

where r(n) is a random integer from the range [0, a] that is assigned to n when

n is first generated. This means that r(n) is set once, and never changes for the

remainder of the search. The resulting search is then an instance of nrBFSHHP . For

the sake of convenience when considering heuristic perturbation, we will use the

following terms: H(n) as the non-noisy heuristic value of n, r(n) will be called

the noise value of n, and the value of the parameter a will be called the noise level

of this technique. Notice that if the noise level is set to 0, the resulting heuristic

is equivalent to the non-noisy heuristic, and so the search will be identical to a

standard GBFS that uses H to guide the search.

Heuristic perturbation changes the order in which nodes are considered for ex-

pansion by changing how promising nodes appear to be. For example, suppose that

a node n has a low non-noisy heuristic value. If n is assigned a high noise value, it

will appear to be much less promising than it would have otherwise. In such cases, a

node with a higher heuristic value which was assigned a low noise value may appear

to be more promising and will be expanded first. However, the search induced when

using heuristic perturbation is still biased towards nodes with low heuristic values.

To see this, suppose that the noise level in use is 4, and that at some time during
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the search the lowest non-noisy heuristic value of any of the nodes in the open list

is 10. This means that the next node selected must have a non-noisy heuristic value

of 14 or lower. Since the expected noise value for any node is 2, and the variance is

the same for all nodes, the nodes with the highest probability of being selected are

also still those with a non-noisy value of 10.

However, notice that since the noise value of a node is set when it is first gen-

erated, heuristic perturbation may greatly delay the expansion of nodes that the

heuristic function correctly identifies as being near a goal node. For example, sup-

pose that the heuristic function in use is accurate in a given domain. By adding

noise to the heuristic, the search may be pushed in the wrong direction if the nodes

along a solution path are randomly assigned a high noise value. The search may

then be forced to exhaustively search large portions of the state-space until the al-

gorithm gets back on track. As such, there is risk to employing this technique as the

randomness may block the search from progressing in the right direction. However,

if the heuristic function has many inaccuracies, the exploration induced by heuris-

tic perturbation will cause it to explore areas of the state-space it would not have

considered otherwise, which can be beneficial.

In contrast to heuristic perturbation, ε-greedy node selection will not signifi-

cantly delay expanding nodes in the open list with the lowest heuristic values. While

the exploratory node expansions made by this algorithm can push it into different

areas of the state-space, the fact that ε-greedy node selection still selects greedily

according to the heuristic with probability (1 − ε) means that those nodes with a

low heuristic value will be expanded upon the next greedy node selection, unless

the random exploration happens upon other nodes with a lower heuristic value. ε-

greedy node selection can therefore be seen as being of lower risk than heuristic

perturbation. This difference will be seen experimentally in the next section, as

unlike ε-greedy node selection which generally leads to modest gains in many do-

mains without much degradation of performance in others, the high-risk approach

of heuristic perturbation will lead to large gains in some domains and large drops

in others.
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4.4.1 Adding Heuristic Perturbation to a Simple Planner

Experiments were run with heuristic perturbation on the same test set and under the

same conditions as ε-greedy node selection. In all experiments below, this technique

was employed using deferred heuristic evaluation. When these techniques are used

together, the heuristic function being used is given by the following:

HHP(n) = H(parent(n)) + r(n) .

The average coverage on a per domain basis for different noise levels is shown

in Table 4.4. The column labelled as using a noise level of 0 is equivalent to using

GBFS without heuristic perturbation. The last row of the table shows that for noise

levels of 16, 64, and 256, a GBFS enhanced using heuristic perturbation is able

to solve more problems than the number solved without heuristic perturbation. In

contrast, GBFS with heuristic perturbation at a noise level of 1 has worse coverage

overall when compared to not using any noise, while noise levels of 2 and 4 have

similar coverage to that seen without any noise.

Unlike ε-greedy node selection, which shows smaller improvements on many

domains without large drops in performance unless ε is high, heuristic perturbation

often leads to substantial changes in coverage in several domains. For example,

when using this technique with a noise level of 256, the algorithm solves 18.0 of

the 20 2011 barman problems, 18.2 of the 20 2011 visitall problems, and all 20 of

the 20 2011 woodworking problems. In contrast, a standard GBFS that does not use

heuristic perturbation only solves an average of 11.4, 3.8, and 2.6 of these problems,

respectively. In other domains, such as 2011 parcprinter, 2011 parking, and 2006

openstacks, the opposite behaviour emerges. For example, heuristic perturbation at

a noise level of 256 solves an average of 10.5 of the 30 2006 openstacks problems,

0.6 of the 20 2011 parcprinter problems, and 0.2 of the 20 parking problems, while

a standard GBFS without heuristic perturbation solves 30, 11.6, and 14.4 in these

domains, respectively.
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Domain Name Noise Level
(# of Problems) 0 1 2 4 16 64 256

2006 openstacks (30) 30.0 7.4 7.6 7.3 7.9 9.0 10.5
2006 pathways (30) 9.2 9.1 9.7 7.4 4.7 4.8 5.1
2006 rovers (40) 22.3 22.9 23.2 23.8 24.3 29.0 32.2
2006 storage (30) 20.1 19.3 20.4 21.8 22.2 23.8 21.6
2006 tankage (50) 21.4 22.3 22.4 22.4 26.0 33.9 38.1
2006 tpp (30) 21.4 22.0 23.3 24.6 30.0 30.0 30.0
2006 trucks (30) 16.1 15.1 15.4 15.5 16.5 19.0 18.8

2006 Totals (240) 140.5 118.1 122.0 122.8 131.6 149.5 156.3

2008 cybersecurity (30) 25.3 26.8 26.8 28.7 29.1 29.4 17.9
2008 elevators (30) 30.0 30.0 30.0 30.0 30.0 30.0 30.0
2008 openstacks (30) 30.0 30.0 30.0 30.0 30.0 30.0 30.0
2008 parcprinter (30) 25.7 24.9 24.4 21.8 20.9 18.4 14.5
2008 pegsol (30) 30.0 30.0 30.0 30.0 30.0 29.7 29.1
2008 scanalyzer (30) 27.6 27.7 27.4 28.1 29.6 27.3 24.1
2008 sokoban (30) 29.0 29.0 29.0 29.0 28.4 28.4 27.1
2008 transport (30) 17.2 17.6 17.9 16.9 19.4 21.1 24.3
2008 woodworking (30) 15.4 15.7 16.0 16.5 21.9 30.0 30.0

2008 Totals (270) 230.2 231.7 231.5 231.0 239.3 244.3 227

2011 barman (20) 11.4 15.7 18.9 19.7 19.9 20.0 18.0
2011 elevators (20) 13.3 13.9 15.2 15.1 17.2 20.0 20.0
2011 floortile (20) 4.2 4.4 4.4 4.7 4.6 5.0 6.6
2011 nomystery (20) 8.4 6.2 5.8 5.7 5.5 5.6 4.9
2011 openstacks (20) 18.5 20.0 20.0 20.0 20.0 19.9 19.7
2011 parcprinter (20) 11.6 10.9 11.1 9.7 7.4 4.1 0.6
2011 parking (20) 14.4 16.9 16.9 16.5 7.2 2.4 0.2
2011 pegsol (20) 20.0 20.0 20.0 20.0 20.0 19.9 19.4
2011 scanalyzer (20) 17.8 17.9 17.7 17.8 19.4 17.6 14.4
2011 sokoban (20) 19.0 19.0 19.0 19.0 18.7 18.4 16.9
2011 tidybot (20) 11.2 13.1 14.2 13.8 16.6 16.4 11.8
2011 transport (20) 0.0 0.0 0.0 0.1 0.6 2.6 4.7
2011 visitall (20) 3.8 4.6 5.4 6.3 8.7 12.5 18.2
2011 woodworking (20) 2.6 2.2 2.5 2.9 6.8 19.0 20.0

2011 Totals 156.2 164.8 171.1 171.3 172.6 183.4 175.4

All Domains Totals (790) 526.9 514.6 524.6 525.1 543.5 577.2 558.7

Table 4.4: The average coverage when using heuristic perturbation with the FF
heuristic. Entries in bold and blue (italics and red) denote that heuristic perturbation
at the corresponding noise level solved an average of at least one more (fewer)
problem than standard GBFS on that domain.
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Operator Ordering
Noise Level Standard ROO Pref First Pref First ROO

0 680.0 676.0 713.0 677.7
1 681.9 681.2 701.6 680.0
2 678.4 678.4 701.8 676.6
4 673.6 673.7 692.4 675.4
16 676.2 676.0 684.1 676.0

Table 4.5: Adding heuristic perturbation to the first iteration of LAMA-2011.

4.4.2 Adding Heuristic Perturbation to LAMA-2011

We now consider the performance of the heuristic perturbation when added to a

state-of-the-art planner like LAMA-2011. In this experiment, each of this planner’s

four queues is set to use this technique independently. This means that the noise

value of a node may be different in the different queues.

The performance of this technique when it is added to LAMA-2011 is shown in

Table 4.5 for different operator orderings. This technique was also tested when us-

ing random operator ordering with a noise level of 64 and 256. The average number

of problems solved with these noise levels were 665.7 and 632.6 respectively.

As the table shows, heuristic perturbation does not improve the coverage of

LAMA-2011 on the entire test set. This is because the gains made in some domains

are cancelled out by the losses in others. For example, when using random operator

ordering and a noise level of 256, the planner solves an average of 20 out of the 20

2011 woodworking problems but only 1 of the 20 2011 parking domain, while a

standard GBFS without heuristic perturbation solves an average of 12.8 and 14.4 of

the problems in these domains, respectively.

4.4.3 Combining ε-Greedy Node Selection and Heuristic Pertur-
bation in a Portfolio

When considering Tables 4.1 and 4.4, it is clear that there are both similarities and

differences in the domains in which ε-greedy node selection and heuristic pertur-

bation improve planner coverage. For example, both lead to improvements in the

2006 tankage, 2011 barman, 2008 woodworking, and 2011 woodworking domains,
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though heuristic perturbation typically yields larger coverage gains. In contrast,

ε-greedy node selection leads to modest improvements in the 2011 floortile, 2011

nomystery, and 2011 parcprinter domains, while heuristic perturbation does not

help in these tasks. Furthermore, heuristic perturbation improves planner coverage

in the 2006 tpp and 2008 transport domains while ε-greedy node selection does not.
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The variance in the strengths of these techniques suggests that they can be com-

bined effectively in a portfolio, and Table 4.6 shows that this is indeed the case.

Every entry in this table shows the expected coverage of a different portfolio, cal-

culated using the data summarized in Tables 4.1 and 4.4.4 The planners used in each

portfolio are given by the planners listed in the corresponding row and column. For

example, the entry in the row labelled “GBFS” and the column labelled “Noise

Level 16” shows that a portfolio containing one instance of standard GBFS and one

instance of GBFS with heuristic perturbation at a noise level of 16 is expected to

solve an average of 588.9 of the 790 problems in our test set. Where the configu-

rations differ between the row and column planner, the portfolio contains exactly

two planners, each of which is run for 900 seconds. The rows marked NL= a refer

to GBFS using heuristic perturbation at a noise level of a, while ε = j refers to

ε-greedy node selection with ε = j. The “Alone” column shows the performance

of the corresponding technique when it is used alone for 1800 seconds and not in a

portfolio. The “Alone” column data is taken directly from the “All Domains Totals”

rows in Tables 4.1 and 4.4.

The entry in bold highlights the best of the portfolios containing the planner in

the corresponding row. For example, in the row labelled “GBFS”, the bold entry

lies in the noise level of 64 column because the portfolio containing both standard

GBFS and GBFS at a noise level of 64 had the highest expected coverage of all

portfolios containing a standard GBFS instance.

When the column and row refer to the same planner, we show the performance

of a portfolio which contains multiple instances of the same technique which only

differ in their random seed. For these entries — which lie along the diagonal of the

table – we considered every portfolio containing anywhere from 2 to 10 instances

such that all instances are given an equal amount of time, with the best coverage

seen by any of these portfolio sizes being shown. The number of planner instances

used in the best such portfolio is shown in parentheses.

Notice that none of the portfolios containing only multiple instances of the same

4Recall that the technique used for calculating the expected coverage of a portfolio was described
in Section 3.2.2.
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planning technique appear in bold, as in all tested cases it is better to mix-and-match

techniques. In particular, the best portfolios appear to be constructed by combining

a low-risk technique (such as standard GBFS, GBFS at a low noise level, or ε-

greedy node selection), with a high-risk technique (such as GBFS with a high noise

level). For example, the best portfolios containing standard GBFS or GBFS at

the low noise level of 4, are achieved when these are each combined with GBFS

instances with noise levels of 64 and 256, respectively. Similarly, the high noise

level GBFS instances pair best with ε-greedy instances, while the ε-greedy instances

are best paired with GBFS instances at a high noise level. In particular, the best

expected coverage is achieved by the portfolio that contains one instance of GBFS

at a noise level of 256 and an instance of GBFS using ε-greedy node selection with

ε = 0.2. This portfolio solves 22.5% more problems than standard GBFS.

In contrast, combining only multiple low-risk approaches or only high-risk ap-

proaches is much less effective. This can be seen when two different ε-greedy ap-

proaches are used in a portfolio, or when combining ε-greedy with standard GBFS.

Similarly, using a portfolio that only contains GBFS instances with high noise levels

also leads to only minor coverage improvements.

The table also shows that in almost all cases, using multiple instances of the

same technique in a portfolio outperforms using a single instance alone. This is

consistent with the results seen with LAMA-2008 in the previous chapter. The only

outlier is GBFS, which does not improve when using a portfolio. The reason for this

is mostly due to several 2011 domains that were introduced into the competition

to be problematic for delete relaxation-based heuristics like FF. For example, in

the 2011 barman domain, the FF heuristic has very large plateaus that the search

is forced into before GBFS begins to make progress towards a goal state. These

plateaus are searched regardless of the operator ordering. Due to their size, the

runtime of GBFS even in the cases that it solves these problems is often larger than

900 seconds. The result is that by only allotting each instance 900 seconds in a

portfolio, the coverage will decrease.

We also considered using portfolios that contain two instances of LAMA-2011,

one using ε-greedy node selection and one using heuristic perturbation. In this
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planner, there are fewer domains in which random exploration leads to performance

improvements, and in those domains in which random exploration increases the

coverage, these two approaches often lead to similar performance. As such, the

coverage does not improve much over using ε-greedy node selection alone. For

example, when using random operator ordering, LAMA-2011 enhanced with ε-

greedy node selection has an expected coverage of 706.5 problems when ε = 0.1,

while the portfolio containing one instance of LAMA-2011 with ε = 0.1 and one

instance with a noise level of 16 has an expected coverage of 711.2.

4.5 Comparing Knowledge-Based to Knowledge-Free
Enhancements

We have shown above that adding random exploration to GBFS introduces valu-

able variation into the search that can improve performance. Given that even ran-

dom variation is valuable, this raises the question of whether the structure exploited

by existing planning enhancements is actually adding important guidance or if it

is merely causing the search to ignore the heuristic from time-to-time. To answer

this question, we will isolate the impact of the structure being used in a given en-

hancement by replacing the resulting knowledge with randomness. This study will

provide further confirmation of the importance of preferred operators and multi-

heuristic best-first search.

4.5.1 Evaluating the Variation Added by Preferred Operators

Recall that the knowledge being exploited by the preferred operator enhancement

is given by the helpful actions suggested by the heuristic, and that the variation

introduced by using these operators is the result of biasing the search so as to expand

preferred successors more often. This is done by alternatively selecting the node

with the lowest heuristic from two queues: one containing all of the nodes in the

open list and one containing only those nodes in the open list that were achieved

with a helpful action. Yet the search would most likely vary if the second queue

was populated by any proper subset of the open list. Therefore, we can evaluate the
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Heuristic No Prefs Prefs Random Prefs Avoid Prefs

FF 526.9 606.8 554.1 531.6
CEA 491.9 583.6 534.6 486.8

Table 4.7: Comparing the use of preferred operators to the prioritization of ran-
domly selected operators.

effectiveness of the helpful action knowledge by populating the preferred operator

queue with randomly selected nodes instead of those suggested by the heuristic.

In this experiment, we ensured that the number of random successors of a given

node that are identified as preferred operators is equal to the actual number of help-

ful actions suggested by the heuristic. We use random operator ordering to avoid

the inherent bias introduced through the use of a static operator ordering with first-

in first-out tie-breaking, and we did not use boosting for the sake of simplicity. The

results are shown in Table 4.7, in which the results are shown for two different

heuristics: the FF heuristic, and the CEA heuristic [41]. The columns in the ta-

ble are labelled as follows. “No Prefs” refers to the use of a GBFS that does not

use preferred operators. “Prefs” refers to the use of the actual helpful actions sug-

gested by the heuristic as the preferred operators. “Random Prefs” refers to the use

of randomly selected nodes as the preferred successors. The final column, “Avoid

Prefs,” populates the preferred operator queue with randomly selected nodes as the

preferred successors, but those selected are restricted from including those identi-

fied as a preferred successor by the heuristic. Intuitively, a search using the “Avoid

Prefs” approach is prioritizing nodes against the advice of the preferred operators.

As shown in the table, with either heuristic tested, the use of helpful actions as

the preferred operators outperforms both the use of no preferred operators and the

baselines which give preference to randomly selected operators. This suggests that

the helpful action information is offering important guidance that goes beyond what

random variation adds. However, the results in the “Random Prefs” column indicate

that useful variance is introduced into the search even if the preferred operators are

set randomly when using these heuristics. It is only when the preferred operators

are set so as to bias the search against the advice of the helpful actions provided by

111



the heuristic functions — advice which is clearly informative — that the use of the

second queue is not helpful.

4.5.2 Evaluating the Variation Added by Multi-Heuristic Best-
First Search

Let us now consider the variation added by multi-heuristic best-first search. Recall

that when using this heuristic, the search alternates between using each of the given

heuristics when selecting a node from the open list. The extra knowledge used

in the case of this enhancement is that given by the second heuristic. As with

preferred operators, we will evaluate the importance of the knowledge being used

by replacing that knowledge with randomness. In the case of multi-heuristic best-

first search, this means that we will still use a second heuristic, but it will be a purely

random heuristic. For the experiments below, this was done by defining the second

heuristic so that the heuristic value of a node was given by a random integer in the

range from 0 to 100.

The coverage of the planner using this random heuristic is shown in Table 4.8 in

the row labelled “FF & Random” both when using boosted preferred operators and

when not using preferred operators. The table shows that the variation added by

the random heuristic leads to substantially better coverage than the single-heuristic

baseline planner. We include the results over different operator orderings since this

attribute did affect the relative ordering of the planners tested. In particular, when

using random operator ordering, the use of a random heuristic led to slightly better

coverage than the use of the knowledge-based LM heuristic, though the opposite is

true with the other orderings. The use of the random heuristic as a secondary heuris-

tic also outperforms a multi-heuristic best-first search that uses the CEA heuristic as

a second heuristic, regardless of the operator ordering and whether or not preferred

operators are used.

Despite the similarity in the total coverage results, domain-by-domain analy-

sis showed that using the knowledge-based heuristic is resulting in variation that

is quite different than random exploration. For example, consider the results when

using standard operator ordering and no preferred operators. Just as with ε-greedy
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No Prefs Boosted Prefs
Heuristics ROO Standard ROO Pref First

FF 526.9 528.0 657.5 675.0
CEA 491.9 491.0 617.3 626.0
FF & Random 586.0 584.6 686.8 698.0
CEA & Random 542.6 537.5 650.9 661.3
FF & CEA 540.8 545.0 646.5 666.0
FF & LM 587.4 604.0 676.0 713.0

Table 4.8: Knowledge-based and knowledge-free multi-heuristic BFS.

node selection, the random exploration added when using the random heuristic in-

creased coverage in the 2008 cybersecurity and 2008 woodworking domains, from

20 out of 30 and 15 out of 30 respectively when using a single heuristic, to av-

erages of 30.0 and 25.4 when using the random heuristic. In contrast, the use of

the knowledge-based LM heuristic as a secondary heuristic actually hurts cover-

age in these domains, as the resulting planner solves only 12 and 19 problems,

respectively. However, the LM heuristic does add important guidance in the 2008

transport, 2011 parking, and the 2011 visitall domains. In these domains, the sin-

gle heuristic planner solved 34 of the 70 total problems, while adding the random

heuristic improved coverage to 45.7 which was still not as much as the 67 solved

when using the LM heuristic. Similar results are seen with the CEA heuristic.

The table also shows that the use of a random heuristic was also an effective

way to increase coverage when used alongside the CEA heuristic. For example,

when using random operator ordering and boosted preferred operators, CEA solved

an average of 617.3 problems, while the addition of a random heuristic increased

coverage to an average of 650.9. The use of the random heuristic even compares

well to a multi-heuristic best-first search that uses both the CEA and FF heuristics

when using random operator ordering and boosted preferred operators, as such a

system solves an average of 646.5 problems.
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4.6 Chapter Summary

In this chapter, we have studied the impact of adding random exploration to GBFS.

While several existing techniques have included a random component, they have

typically used it in a combination with other approaches. As such, it has never been

clear what the impact of random exploration alone was having on performance.

To better measure the impact of random exploration, we have introduced ε-greedy

node selection. This technique was shown to improve the performance of both

simple planners and a state-of-the art planner in LAMA-2011. As such, our study

confirms that adding random exploration is an option that system designers should

consider when building a GBFS-based planner.

We also introduced a second technique, called heuristic perturbation, for in-

troducing random exploration. This technique was shown to be of higher risk than

ε-greedy node selection, as it would greatly improve the performance in some prob-

lems while it would hurt in others. We then showed that this higher variance can be

exploited by combining this technique with ε-greedy node selection in a portfolio.

Given that GBFS can be improved by random exploration and existing planning

enhancements, we argued that this suggests that the impact of the knowledge being

used by such enhancements needs to be isolated to ensure it is not merely adding

exploration which can be achieved in simpler ways. To do so, we propose that

such enhancements should be compared to random baselines that are equivalent to

the original enhancement, just with the knowledge replaced by randomness. We

performed such a comparison between appropriate randomized baselines and two

existing enhancements. Our results indicate that the knowledge used by preferred

operators is essential to the success of this technique, while the use of a secondary

heuristic in a multi-heuristic best-first search is offering important guidance in cer-

tain domains while not varying the search effectively in others.
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Chapter 5

Heuristic Search Algorithms with
Alternative Solution Quality
Requirements

One of the choices a system designer is faced with when developing a heuristic

search based system is that of deciding what quality of solutions is needed. Once

a solution quality requirement is decided upon, it is then necessary to find an algo-

rithm that is guaranteed to satisfy it. In this chapter, we identify what sets of algo-

rithm options are available for a given solution quality requirement, even if these

requirements are not of the commonly used form of linear suboptimality bounds. In

particular, we will show how four existing frameworks of algorithms can be mod-

ified to apply to other bounds than those they were initially intended for. We then

demonstrate that the generalizations of each of these frameworks effectively trade-

off suboptimality for runtime in the types of domains they are best suited for, even

when they are used to satisfy additive bounds.

5.1 Introduction

As described previously, it is often not feasible due to practical runtime and mem-

ory constraints to require that the solutions found be optimal. In such situations,

it is necessary to allow for suboptimal solutions in exchange for a less resource-

intensive search. However, it may not be desirable to accept any solution, as there

may be requirements on just how suboptimal a solution may get before it is con-

115



sidered unacceptably suboptimal. As an example of such a requirement, consider

the common linear suboptimality bound. When given this bound, a solution is only

considered acceptable if the cost C satisfies the inequality C ≤ w · C∗ for some

given parameter w ≥ 1, where w is set before any problem solving begins.1

Notice that requiring an algorithm to satisfy this bound for some particularw in-

volves setting a maximum of w on the solution suboptimality, where suboptimality

is measured by C/C∗. Since the development of rWA∗ [71] as the first algorithm

guaranteed to satisfy a linear bound, this suboptimality measure has been by far

the most commonly used measure. For example, ever since 2008, the International

Planning Competition satisficing track scoring function has been based on the idea

that the relative suboptimality of two plans is given by their ratio [9, 39]. The pop-

ularity of this suboptimality measure can also be seen in the fact that the majority

of algorithms with suboptimality guarantees that have been developed since rWA∗

have been designed to satisfy linear suboptimality bounds. Such algorithms include

Optimistic Search [88], EES [90], and rA∗w [69]. However, there also exists other

ways to measure suboptimality and other types of suboptimality bounds. For ex-

ample, one alternative to C/C∗ is to measure suboptimality by C − C∗. A bound

corresponding to this measure would require that the costC of any solution returned

must satisfy the inequality C ≤ C∗ + γ for some γ ≥ 0.

In this chapter, we consider such alternative suboptimality measures and bounds

to evaluate the generality of existing methods and to give more choice into how

suboptimality guarantees can be specified. If a system designer wishes to have

guarantees (or to use suboptimality measures) that do not correspond to a linear

suboptimality bound, it was not previously clear as to what algorithms or design

choices were available to them. This was the case despite the fact that researchers

in other fields, such as those who investigate and develop approximation algorithms

[104], routinely consider alternative types of solution quality requirements.

Moreover, even though almost all previous on bounded heuristic search algo-

rithms has concentrated on linear suboptimality bounds, such bounds are not nec-

1Recall that we are using the term “linear suboptimality bound” to refer to what is more com-
monly referred to as ε-admissibility and rA∗

w to refer to rA∗
ε to avoid confusion with the ε in

ε-greedy node selection.
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essarily suitable in all cases. To see this, we present two such examples. In the

first, consider a problem in which plan cost refers to the amount of money needed

to execute the plan. The value (or utility) of money is known to be a non-linear

function (ie. $10 is more valuable to someone with no money than it is to a billion-

aire). In particular, assume that for some individual the utility of a plan with cost C

is given by K− log2(2 +C) for some constant K > 0 and the desired guarantee on

suboptimality is that the utility of any plan found will be no more than 10% worse

than is optimally possible. While any solution found by a rWA∗ instance parame-

terized with w = 1.1 is guaranteed to be at most 10% more costly than the optimal

solution, clearly this does not actually correspond with the desired requirement on

utility. Moreover, it is unclear how to parameterize rWA∗ correctly to satisfy the

given requirement without prior knowledge of C∗.

In the second example we consider, let us look again at the scoring function

used in the International Planning Competition. The score given to a planner p on

a task Γ is 0 if p is unable to solve Γ in the time allotted, and C∗/C where C is the

cost of the solution found by p. If the cost of the optimal solution for Γ is unknown,

then the score is given by Cbest/C where Cbest is the cost of the best solution known

for Γ. The score given to a planner p over a task set is then given by the sum of the

scores that planner p was awarded on each individual problem in the task set.

Another way to interpret this scoring function is as 1/Mw(C,C∗) whereMw(x, y)

is a measure of the relative suboptimality of solutions with cost x and y given by

Mw(x, y) = x/y. This interpretation also indicates how other scoring functions

can be constructed that correspond to any other suboptimality measure M . To do

so, simply use the scoring function 1/M(C,C∗) and ensure that M is defined such

that the optimal solution has a measure of 1. For example, this is possible for sub-

optimality measures such as M(x, y) = 1 + x − y and M(x, y) = logy x, which

correspond to using an absolute measure of suboptimality and a logarithmic mea-

sure of suboptimality, respectively.

Each of these measures represent a different perspective on what it means for

a solution to be suboptimal, and how a planner should be penalized for not finding

a solution relative to finding a suboptimal one. To see this, consider running three
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Task
Planner Γ0 Γ1 Γ2 Γ3

p0 100 100 None None
p1 200 200 100 None
p2 300 300 300 100

Table 5.1: Example of planner performance on a test set. Each entry corresponds
to the cost of the solution found, with “None” indicating that the respective planner
was unable to solve the task.

planners p0, p1, and p2 on a task set containing Γ0, Γ1, Γ2, and Γ3, such that the cost

of the solutions are found by the planners is given in Table 5.1. If all the tasks have

an optimal solution cost of 100, then by the standard IPC scoring function, p2 will

get a score of 100/300 = 1/3 on tasks Γ0, Γ1, and Γ2, and 100/100 = 1 on task Γ3.

The total score of planner p2 will therefore be 2. By similar calculations, it can also

be shown that p0 and p1 would get a score of 2 on this test set.

The fact that these three planners have achieved an equal score means that the

current scoring function views these planners as having performed equally well on

this test set. Whether or not the reader believes this to be true — or alternatively, as

to which planner should be considered “the best” — is a matter of personal prefer-

ence and reflective of a different notion of how suboptimality should be measured

or how the inability to find a solution should be penalized. Suboptimality measures

other than Mw(x, y) = x/y can often allow for such preferences to be better repre-

sented. For example, when using the suboptimality measure ofM(x, y) = 1+x−y,

planner p1 would be awarded a score of 1/(1 + 200− 100) ≈ 0.01 on tasks Γ0 and

Γ1, and 1 on task Γ2 for a total score of 1.02. A similar calculation would show

that planners p0 and p2 would be awarded a total score of 2 and 1.01, respectively.

When using the measureM(x, y) = logy x, planner p1 would be awarded a score of

1/ log100 200 ≈ 0.87 on tasks Γ0 and Γ1, and 1 on task Γ2 for a total score of 2.74.

A similar calculation would show that planners p0 and p2 would be awarded a total

score of 2 and 3.4, respectively. The suboptimality measure M(x, y) = 1 + x − y

would therefore correspond to a preference for planners that usually find high qual-

ity solutions at the expense of coverage, while M(x, y) = logy x would correspond
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to the opposite.

This is not to say that there is anything wrong with the current IPC scoring

function. The purpose of the above example is merely to point out that the scor-

ing function is based in a particular way of measuring suboptimality that may not

capture everyone’s preferences. In this way, it motivates the need to allow for other

types of suboptimality bounds based on other ways of measuring suboptimality.

Allowing more choice in the type of bounds that can be defined then raises the

following question: what algorithms or algorithm enhancements can be used such

that they are guaranteed to satisfy a given suboptimality bound? In this chapter

we show that four different classes of existing algorithms can be modified in this

end. These classes are anytime algorithms, best-first search algorithms, iterative

deepening algorithms, and focal list based algorithms. As each of these algorithm

paradigms is best-suited for different types of problems, by extending them all to

be able to handle arbitrary bounding constraints, we are allowing a system designer

to not only specify a desired form of bounding, but to also select the best search

framework for their particular domain.

5.1.1 Contributions

The main contributions of this chapter are as follows. First, we introduce a func-

tional notion of a suboptimality bound to allow for the definition of alternative

bounding paradigms. We then develop a theoretical framework which identifies

how existing algorithms can be modified to satisfy alternative bounds. The existing

algorithm classes that we consider include anytime algorithms and iterative deep-

ening. We will also consider best-first search and focal list based algorithms that

use the full re-expansion policy (ie. rBFS and rFOCAL). In doing so, we increase

our understanding of what the existing algorithm frameworks can be used to do,

and we more clearly identify what choices are available to a system designer when

selecting an algorithm that must satisfy a given bound. Finally, we demonstrate that

the theoretical framework leads to practical algorithms that can effectively trade-

off guaranteed solution quality for improved runtime when considered for additive

bounds.
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An early version of this work in this chapter was first published as a two-page

abstract [94], with a complete version appearing later [95]. Shahab Jabbari Arfaee,

Jordan Thayer, and Roni Stern were also involved in this work. I was the lead on

this project as I initially developed the theoretical foundations of this work, though

the other authors helped to shape the notation used. I also implemented and ran

the experiments on planning domains. Designing the remaining experiments was a

collaborative process, though the other authors were responsible for implementing

and running them.

5.2 Background and Related Work

In this section, we will define a functional way to describe a solution quality bound,

and then describe related work on the use of non-linear suboptimality bounds.

5.2.1 Bounding Functions

Recall that the linear suboptimality bound requires that the cost C of any solution

returned must satisfy the inequality C ≤ w · C∗ for a given w ≥ 1. We generalize

this idea by allowing for an acceptable level of suboptimality to be defined using

a function, B : R → R. This bounding function is used to define the set of

acceptable solutions as those with cost C for which C ≤ B(C∗). This yields the

following definition:

Definition 5.2.1. For a given bounding function B, an algorithm will be said to

satisfy B on a given task Γ, if any solution for Γ returned by that algorithm will

have a cost C for which C ≤ B(C∗).

As an example of how this definition applies, notice that the linear suboptimality

bound corresponds to the bounding function Bw(x) = w · x. This is true since an

algorithm will satisfy Bw if and only if any solution it finds satisfies the inequality

C ≤ Bw(C∗) which is equivalent to C ≤ w ·C∗. Similarly, an algorithm is optimal

if and only if it satisfies the bounding function Bopt(x) = x.

Let us now consider some other possible bounding functions. We begin with

sub-linear bounding functions. The first is the additive bounding function given
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by Bγ(x) = x + γ for some γ ≥ 0. Unlike the linear suboptimality bound, this

function does not allow for the difference between C and C∗ to increase as C∗

increases, as solutions found must satisfy the inequality C ≤ C∗ + γ for a constant

γ. There are also other sub-linear bounds that allow the difference between C and

C∗ to increase, but at a slower rate than the linear suboptimality bound. Examples

of such bounding functions include Bloga(x) = x + loga(x) where a > 1, and

B√(x) = x +
√
x. These bounding functions correspond to the requirements that

C ≤ C∗ + loga(C
∗) and C ≤ C∗ +

√
C∗, respectively.

Alternatively, we can allow the difference between C and C∗ to grow faster

than the linear suboptimality bound. Examples of such bounding functions include

Bp(x) = xp for p ≥ 1 and Ba(x) = ax for a > 1. These bounding functions

correspond to the requirements that C ≤ (C∗)p and C ≤ aC
∗ , respectively.

Notice that for all x ≥ 0, Bγ(x) ≥ x, B√(x) ≥ x, and Bw(x) ≥ x. The remain-

ing functions can also be adjusted appropriately — for example, by defining Bloga

as Bloga(x) = x+ loga(max(x, a)) — such that the other bounding functions intro-

duced above are defined such that ∀x ≥ 0, B(x) ≥ x. When this criteria does not

hold, there may be cases in which the bounding function requires better than opti-

mal solution quality. For example, this may be the case when using the bound-cost

search paradigm introduced by Stern, Puzis, and Felner [83]. This paradigm corre-

sponds to the use of bounding function BK(x) ≤ K for some constant K ≥ 0. The

intuition behind this form of bound is thatK is a budget that cannot be exceeded. To

allow for such bounds requires that the definition of a bounding function be modi-

fied so that an algorithm satisfyingB is not only guaranteed to only return solutions

that have a cost of C where C ≤ B(C) when such a solution exists, but that the al-

gorithm can provably show this is not possible when such a solution does not exist.

However, we will not consider this case in this chapter for the sake of simplicity.

As such, we will focus on bounding functions for which ∀x ≥ 0, B(x) ≥ x.

It should also be noted that for any bounding function B for which ∀x ≥

0, B(x) ≥ x, B will be trivially satisfied by any optimal algorithm. However, se-

lecting an optimal algorithm for satisfying B where B 6= Bopt defeats the purpose

of defining an acceptable level of suboptimality, which was to avoid the resource-
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intensive search typically required for finding optimal solutions. The goal is there-

fore not only to find algorithms that satisfy B, but to find algorithms which satisfy

B and can be expected to be faster than algorithms satisfying tighter bounds. The

approach we take is similar to that of rWA∗: by allowing the algorithm to become

greedier. We do so in several well-known heuristic search frameworks later in this

chapter.

5.2.2 Alternative Bounding in the Literature

Dechter and Pearl [12] previously provided bounds on the cost of a solution found

when using a best-first search guided by an arbitrary evaluation function. Further

generalizations were considered by Farreny [17] who increased the types of path

cost and evaluation functions that could be used. These bounds are given in terms

of the highest evaluation of any node on an optimal path. This means that the

objective of the work of Dechter and Pearl, as well as by Farreny, was the inverse

of ours. Whereas they seek to improve our understanding of how a given evaluation

function will affect the quality of solutions found, our goal is to better understand

what algorithms are applicable for a given bounding paradigm.

Some of the algorithms proposed below for satisfying a given bounding function

will be based on the idea of building the focal list in different ways than is done by

rA∗w. Farreny also considers different ways of constructing focal lists than rA∗w [17]

and offers bounds on the solutions found by such algorithms. However, just as with

best-first search, Farreny’s bounds are given in terms of the value of g+h for nodes

on the focal list at the time a solution node is expanded. As such, that component

of Farreny’s work can also be seen as having a different objective as ours, just as it

was in the case of best-first search.

An alternative form of focal list construction has also previously been used to

construct algorithms for bounded-cost search problems by Thayer et al. [92]. As

mentioned above, this paradigm corresponds to the use of the bounding function

BK(x) = K for some constant K [83]. Below we will generalize the focal list

construction technique used by Thayer et al. and show that it can be used to satisfy

many other bounding functions. However, note that unlike in the case of focal list
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based search, the techniques we propose for best-first search and iterative deepening

algorithms will not be immediately applicable forBK . This is because the bounding

functionBK associated with bounded-cost search does not satisfy the condition that

∀x ≥ 0, B(x) ≥ x.

The best-first search algorithms proposed for satisfying a given bounding func-

tion will often use non-traditional evaluation functions. BUGSY is another best-first

search algorithm which also uses an evaluation function different from that used by

A∗, WA∗, and GBFS [4]. When using this algorithm, the objective is to find the so-

lution with the best utility, where the utility of a solution is a linear combination of

the solution cost and the time needed to find that solution. This differs from the ob-

jective of the algorithms considered in this chapter of finding solutions that satisfy

a given solution quality requirement. Using the theory in this chapter to identify

requirements being satisfied by BUGSY, or introducing runtime requirements into

the algorithms constructed in this chapter both remain as future work.

When evaluating our framework below, we will use the additive bounding func-

tion as an example of an alternative bounding paradigm. Additive bounding has

previously been considered by Harris [34] who showed that any solutions found by

rBFSg+H will cost no more than C∗ + γ if the heuristic H is such that for any node

n, H(n) ≤ h∗(n) + γ. This condition will be generalized below. More recently, it

was shown that a particular termination criterion induced an additive bound when

using bi-directional search [73]. We consider generalizing bi-directional search to

satisfy other bounding functions as future work.

5.3 Bounding with Anytime Algorithms

In this section, we will demonstrate that we can use anytime algorithms, regard-

less of the suboptimality paradigm they were initially developed for, to satisfy any

monotonically non-decreasing bounding function. We then argue that this approach

is problematic and that we instead need algorithms tailored specifically for the given

bounding function.

Anytime algorithms are designed for the situation in which a good solution
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is needed by some unknown deadline. The approach these algorithms take is to

quickly find an initial solution, and then to continue to search for better solutions

until the deadline is reached. As a result, these algorithms typically find a sequence

of improving solutions, the last of which is returned when the deadline is reached.

As an example of such an algorithm, consider Anytime Weighted A∗ (AWA∗)

[33], which runs rWA∗ to find a first solution, and then continues to search the space

as rWA∗ would. This means that when the goal node is selected for expansion, the

solution path is stored, and the search moves on to the selection of the next node

for expansion according to the WA∗ evaluation function. At any time after the first

solution is found, the search also discards any node n for which g(n)+h(n) ≥ C inc

where h is admissible and C inc is the cost of the incumbent solution (ie. the best

solution found thus far). Discarding such nodes is possible since if g(n) + h(n) ≥

C inc , then no path through n can improve on the incumbent path unless the path

to n is first improved, and so expanding n with its current path will not further the

efforts to find a better solution. This is also why the children of the goal node ng

which has been expanded will not be added to the open list, since for any child c

of ng, the cost of the new path to c will have a g-cost of g(ng) + κ(ng, c), which

must be at least C. This process will continue, with the algorithm storing each new

best solution path it finds, and then moving on to select nodes from the open list as

rWA∗ would. At any time, the algorithm can be interrupted at which point it will

simply return the best solution it has found thus far.

To use an anytime algorithm to satisfy a monotonically non-decreasing bound-

ing function B, we will require that during the execution of the algorithm, there is

a lower bound L on the optimal cost that is available. Instead of using a time limit

as a deadline, this lower bound will be used. To see how, let C inc be the cost of the

incumbent solution. Since B is monotonically non-decreasing, this means that if

C inc ≤ B(L) then C inc ≤ B(C∗). Therefore, if we run the anytime algorithm and

terminate once C inc ≤ B(L), we are guaranteed that the last incumbent solution

will satisfy the bounding function.

As an example of this approach, let us again consider AWA∗. In this case, one
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lower bound that can be used after t expansions is as follows:

L = min(C inc, min
n∈OPENt

gt(n) + h(n)) ,

where h is an admissible heuristic function and C inc = ∞ if no solution has been

found. This is because at any time during the search, if the incumbent solution is

not optimal, then for some optimal solution path P = [n0, ..., nk], there will be a

node ni ∈ P in the open list such that g(ni) = g∗(ni) [33].2 This lower bound holds

because g(ni) + h(ni) ≤ g∗(ni) + h∗(ni) ≤ C∗ since h is admissible, and so the

minimum of g + h over all nodes in the open list must be less than g(ni) + h(ni).

After each node expansion, we can therefore use the value of this lower bound

to check if C inc ≤ B(L) is true, in which case we can terminate. Note that the

special case of this statement of C inc ≤ L (or equivalently B = Bopt ) is also a

termination condition in the original definition of AWA∗ since there is no need to

continue searching once the optimal solution has provably been found.

This technique was first considered by Thayer and Ruml [88] who ran AWA∗

to satisfy the linear suboptimality bound C ≤ Bw(C∗) where Bw(x) = w · x. To

do so, they parameterize AWA∗ so that it can be expected to find an initial solu-

tion quickly, even if the cost of that solution does not satisfy C inc ≤ Bw(C∗). The

algorithm, which they refer to as Bounded AWA∗, then continues its search until

the incumbent solution does satisfy this condition. Above, we have extended this

technique to satisfy any monotonically non-decreasing B, even when the initial al-

gorithm was designed for some other bounding functionB′. This means that we can

use AWA∗— or any anytime algorithm initially designed to satisfy linear subopti-

mality bounds — to handle other bounding functions provided that the algorithm

maintains a lower-bound for C∗.

Notice that if we are satisfying the additive bounding function Bγ(x) = x + γ

and the value of C∗ is known, then we can ensure that the first solution found by

AWA∗ will satisfy the bound by setting the weight as 1 + γ/C∗. However, this

approach cannot be used without prior knowledge about C∗. If the value of C∗ is

2This holds by the same arguments as given for Corollary 2.2.9 and Theorem 2.2.10 since AWA∗

is essentially an rOCL with a slightly different termination condition. The same is also true of related
algorithms like Optimistic Search [88].

125



not known, then it is not clear as to how the weight parameter should be set. This is

problematic since this parameter can have a large impact on performance. If AWA∗

is set to be too greedy, it may find a first solution quickly, but then take too long to

improve its incumbent solution to the point of satisfying the bounding function. If

AWA∗ is not set to be greedy enough, it may take too long to find an initial solution.

Such behaviour will be shown experimentally below. This suggests the need for

algorithms specifically targeted towards the given bounding function. Constructing

such algorithms is therefore the goal of the coming sections.

5.4 Bounding with rBFS Algorithms

In this section, we will show that if a best-first search algorithm that uses the full re-

expansion policy employs an appropriate evaluation function, then that algorithm

can be guaranteed to satisfy a given bounding function B.

Recall that rBFSΦ iteratively selects the most promising node from the open

list according to the evaluation function Φ. In the case of rWA∗, Φ = fw where

fw(n) = g(n) + w · h(n), w ≥ 1, and h is admissible. In using this evaluation

function, rWA∗ is guaranteed to find solutions that cost at most w · C∗. In practice,

rWA∗ often solves problems faster than A∗ as a result of fw which emphasizes the

relative importance of h relative to g, and therefore allows rWA∗ to search more

greedily on h than does A∗.

Also notice that fw(n) = g(n)+Bw(h(n)) whereBw is the linear suboptimality

bounding function Bw(x) = w · x. This suggests the use of the evaluation function

ΦB(n) = g(n) + B(h(n)) for satisfying a given bounding function B since it sim-

ilarly puts additional emphasis on h. Below, we will show that this approach will

suffice for a large family of bounding functions. To do so, consider the following

theorem which provides sufficient conditions on Φ for satisfying a given bounding

function B.

Theorem 5.4.1. Given a bounding functionB, rBFSΦ will satisfyB if the following

conditions hold:

1. ∃ an optimal solution path Popt ∈ Π∗Goal such that ∀n ∈ Popt and ∀t ≥ 0,
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Φt(n) ≤ B(gt(n) + h∗(n)) .

2. ∀ng ∈ VGoal and ∀t ≥ 0, gt(ng) ≤ Φt(ng) .

Proof. Assume that a goal node ng is the t-th node expanded by rBFSΦ. Let Popt be

an optimal solution path for which condition 1 holds. In addition, assume condition

2 also holds. Now consider the state of the search immediately after the t − 1-st

expansion. Recall that Corollary 2.2.9 in Section 2.2.4 stated that at any time prior

to an rOCL algorithm expanding a goal node there will be a node n on the open list

from any optimal path such that gt(n) = g∗(n). Since rBFSΦ is an rOCL algorithm,

this means that after t − 1 expansions, there will be some node nopt ∈ Popt such

that gt(nopt) = g∗(nopt). Since ng is the t-th node selected for expansion, this

implies that Φt(nopt) ≥ Φt(ng) by the definition of rBFS. By our assumptions, this

means that B(gt(nopt) + h∗(nopt)) ≥ Φ(ng). As gt(nopt) = g∗(nopt) and g∗(nopt) +

h∗(nopt) = C∗ since nopt is on Popt, this also means that B(C∗) ≥ Φ(ng). When

this is combined with the fact that gt(ng) ≤ Φt(ng) by assumption 2, it yields

B(C∗) ≥ gt(ng).

Now recall that when ng is selected for expansion, the path to ng implicitly

maintained with the parent will be extracted and returned. As shown by Theorem

2.2.5 in Section 2.2.4, the cost of this path will be at most gt(ng). Therefore, the

solution returned will have a cost of at most B(C∗) and so rBFSΦ satisfies B.

We can now use this theorem to develop evaluation functions for rBFS such that

the resulting algorithm will satisfy B. This is done in the following sections.

5.4.1 WA∗-Style Heuristic Weighting

To concretely demonstrate the implications of Theorem 5.4.1, consider how it ap-

plies to Bw and the WA∗ evaluation function fw = g + w · h when h is admissible.

For Bw, the first condition on Φ simplifies to Φt(n) ≤ Bw(gt(n) + h∗(n)). For any
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node n on an optimal path, fw then satisfies this condition since

fw(n) =g(n) +Bw(h(n)) (5.1)

≤Bw(g(n) + h(n)) (5.2)

≤Bw(g(n) + h∗(n)) (5.3)

where line 5.2 holds becausew·(g(n)+h(n)) ≥ g(n)+w·h(n). Since we also have

that g(ng) = fw(ng) for any goal ng by the fact that h(n) = 0 for any n ∈ VGoal ,

rWA∗ (ie. wBFSfw) satisfies Bw by Theorem 5.4.1. The following corollary then

extends this result to a large class of bounding functions:

Corollary 5.4.2. Given bounding function B, if Φ(n) = g(n) + B(h(n)) where h

is admissible, then rBFSΦ will satisfy B if the following holds for B:

∀x ≥ 0, y ≥ 0, B(x+ y) ≥ B(x) + y .

This corollary holds because Φt(ng) = gt(ng) for any goal node ng, and because

the exact same derivation as was performed for fw applies for Φ. This means that

for any bounding function B such that for all x, y, B(x + y) ≥ B(x) + y, we

immediately have an algorithm, specifically rBFSΦ, for satisfying it. This condition

can be viewed as requiring that the maximum difference between C and C∗ (ie.

C−C∗) allowed byB cannot be smaller for problems with a large optimal cost than

for those with a small optimal cost. Alternatively, notice that if B is differentiable,

this means that B′(x) ≥ 1 for all x ≥ 0.

Notice that the A∗ evaluation function g+h is an instance of this form of evalua-

tion function for the bounding function Bopt(x) = x. As the conditions of corollary

5.4.2 hold for Bopt, this corollary can therefore be used to prove that any solution

returned by A∗ will be optimal.

5.4.2 Other Types of Evaluation Functions for rBFS

Since B(x) ≥ x for all x, the evaluation function Φ(n) = g(n) + B(h(n)) will

intuitively increase the emphasis on h(n) in a similar fashion as the WA∗ evaluation

function. One exception is the case of the additive bounding function Bγ(x) =
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x+ γ (and the resulting evaluation function denoted as ΦBγ ), for which nodes will

be ordered in the open list in the same way as in A∗. To see this, consider any

two nodes n1 and n2 that are in the open list after t node expansions such that

Φ
Bγ
t (n1) ≥ Φ

Bγ
t (n2). This inequality allows for the following derivation:

Φ
Bγ
t (n1) ≥ Φ

Bγ
t (n2) (5.4)

gt(n1) + h(n1) + γ ≥ gt(n2) + h(n2) + γ (5.5)

gt(n1) + h(n1) ≥ gt(n2) + h(n2) (5.6)

This last line shows that the A∗ evaluation function g + h would also order these

two nodes in the exact same way. Since this will be true for any pair of nodes in the

open list, this means that the search performed using the evaluation function ΦBγ

will be identical to A∗.

This is not ideal behaviour since the whole motivation behind allowing for sub-

optimality is so that the result is a less resource-intensive search than A∗. As such,

for this bounding function, we need to consider other types of evaluation functions.

One such type is defined by the following corollary:

Corollary 5.4.3. Given bounding function B, if Φ(n) = g(n) + D(n) where h is

admissible and 0 ≤ D(n) ≤ B(h(n)) for all n, then rBFSΦ will satisfy B if the

following holds for B:

∀x ≥ 0, y ≥ 0, B(x+ y) ≥ B(x) + y .

This corollary, which follows from an almost identical derivation as Corollary

5.4.2, introduces a new function D which must be bound by B. For example,

consider the following possible D function:

Dγ(n) =

{
0 if n is a goal
h(n) + γ otherwise

When Dγ is used in a rBFS search in the evaluation function Φ(n) = g(n) +

Dγ(n), the search is guaranteed to satisfy Bγ by Corollary 5.4.3. This search will

be identical to A∗, at least until the first time a goal node is expanded, for the

same reason that the search is the same as A∗ when using the evaluation function
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Φ(n) = g(n) + h(n) + γ. As such, this function will also have minimal impact

on the search. However, in Section 5.7.1 we will consider other D functions which

will allows us to successfully trade-off speed for solution quality.

5.4.3 Inadmissibility Limiting

While Corollary 5.4.2 offers Φ(n) = g(n) + B(h(n)) as a general way to use an

admissible heuristic to construct an evaluation function to satisfy B, an alternative

is to use an inadmissible heuristic with a bounded amount of inadmissibility. This

is possible due to the following corollary:

Corollary 5.4.4. Given bounding function B, if Φ(n) = g(n) + H(n) where 0 ≤

H(n) ≤ B(h∗(n)) for all n, then rBFSΦ will satisfy B if the following holds for B:

∀x ≥ 0, y ≥ 0, B(x+ y) ≥ B(x) + y .

This corollary, which follows from an almost identical proof as was given for

Corollary 5.4.2, generalizes a theorem by Harris [34] which was specific to the

additive bounding function.

Unfortunately, for many modern-day inadmissible heuristics such as the FF

heuristic, there are no known bounds on heuristic inadmissibility. However, we

can still employ an inadmissible heuristic Hin in conjunction with an admissible

heuristic h, by forcing a limit on the difference between the two. This means

that we will use the following evaluation function Φ(n) = g(n) + H(n) where

H(n) = min(B(h(n)), Hin(n)). The heuristic H(n) will satisfy the inequality

H(n) ≤ B(h∗(n)) since the fact that h is admissible and B is monotonically in-

creasing implies that B(h(n)) ≤ B(h∗(n)). As such, the evaluation function given

by g +H satisfies the conditions of Corollary 5.4.4.

We refer to this approach as inadmissible limiting since it employs a per-

haps arbitrarily inadmissible heuristic Hin by limiting how much of the potential

inadmissibility of Hin can be used in the evaluation function. When the inad-

missible heuristic Hin and the admissible heuristic h disagree by too much (ie.

Hin(n) > B(h(n))) we cannot simply use Hin(n) and still be guaranteed to satisfy
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the bound. As such, we use the value of B(h(n)) since this penalizes the node

appropriately (by increasing its evaluation) while still satisfying Bγ .

Notice, that Theorem 5.4.1 also says that the following evaluation could be used

when both an inadmissible Hin and an admissible h is available:

Φ(n) = min(B(g(n) + h(n)), g(n) +Hin(n))

This approach is similar to an existing technique called clamped adaptive [91],

but generalized so that it applies to arbitrary evaluation functions. Since we will

evaluate the theory developed in the construction of algorithms with additive bounds

and because Bγ(g(n) +h(n)) = g(n) +Bγ(h(n)) = g(n) +h(n) +γ in the case of

the additive bounding function Bγ , we will not further consider techniques of this

form in this thesis.

5.5 Bounding with rFOCAL Algorithms

Let us now consider how focal list based algorithms can be used to satisfy an ar-

bitrary bounding function B. These algorithms were described in Section 2.2.6, in

which we introduced the term rFOCALβ where β : R → R and ∀x ≥ 0, β(x) ≥ x

to refer to a focal list based algorithm that uses the full re-expansion policy and

defines its focal list was defined as follows:

FOCAL =

{
n|gt(n) + h(n) ≤ β

(
min

n′∈OPEN
gt(n

′) + h(n′)

)}
,

where h is an admissible heuristic. An rFOCALβ algorithm then uses some sec-

ondary policy for iteratively selecting nodes from this subset of the open list.

To understand how β influences the search, let us first look closer at the way the

original focal list based algorithm, A∗w, defines its focal list. This is done as follows:

FOCAL =

{
n|gt(n) + h(n) ≤ w · min

n′∈OPEN
gt(n

′) + h(n′)

}
,

where h is an admissible heuristic. Recall that by this definition, the focal list

contains all nodes with a value for g + h (ie. the A∗ evaluation function f ) that is

no more than a factor of w greater than the node in the open list with the lowest
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value of of g + h. From this list, any policy for iteratively selecting nodes from the

focal list for expansion can be used while still satisfying the requirement that any

solution found is no larger than w · C∗ [15].

Now consider how the size of the focal list changes with different values of w.

When w = 1, the focal list will only contain those nodes that have the minimum

value of g + h of all nodes in the open list. As such, the policy being used to select

nodes from the focal list can be seen as simply determining how ties are broken

between nodes with an equal value of g + h. The resulting search will therefore be

identical to an A∗ search that uses that policy to break ties.

For larger values of w the focal list will contain a larger set of nodes with a

variety of values of g + h, and thus will be allowed to explore them more greedily

according to the focal list selection policy. For example, when w → ∞, the focal

list will consist of all nodes in the open list. In such a situation, if the policy being

used selects from the focal list greedily according to some secondary heuristic H2,

as A∗w does, then the search will be equivalent to a GBFS using H2.

A similar behaviour occurs in rFOCALβ for a particular monotonically non-

decreasing bounding function β. Where fmin is the minimum value of gt +h of any

node on the open list after t expansions, the larger the difference between B(fmin)

and fmin, the larger the proportion of the open list that can be expected to be con-

tained in the focal list.

Moreover, notice that A∗w is an instance of rFOCALBw where Bw is the bound-

ing function Bw(x) = w · x. The following theorem shows that for any monotoni-

cally non-decreasing bounding function B, any rFOCALB algorithm will similarly

satisfy B. This is shown by the following theorem:

Theorem 5.5.1. Given any monotonically non-decreasing bounding function B,

rFOCALB will satisfy B.

Proof. Assume that rFOCALB has expanded a goal node ng with the t-th node

expansion, and consider the search immediately prior to the expansion of ng. Let

Popt be an optimal solution path to the given task Γ. Now consider the state of

the open list immediately after the t − 1-st expansion. Since rFOCAL is a rOCL
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algorithm, we can appeal to Corollary 2.2.9 in Section 2.2.4 — as we did in the

proof of the sufficient conditions on the evaluation function used by rBFS (Theorem

5.4.1) above — to guarantee that after t−1 node expansions of rFOCALB there will

be some node nopt ∈ Popt such that nopt is in the open list and gt−1(nopt) = g∗(nopt).

Now let us consider the t-th iteration, for which goal node ng is selected for ex-

pansion. By the definition of rFOCAL algorithms, this requires that ng ∈ FOCALt−1.

Let n be the node in the open list after t − 1 expansions such that n has the lowest

value of g + h of all nodes in the open list. Since ng is in the focal list, this means

that the first line of the following is true, which allows for the following derivation:

gt−1(ng) + h(ng) ≤ B(gt−1(n) + h(n)) (5.7)

gt−1(ng) ≤ B(gt−1(n) + h(n)) (5.8)

gt−1(ng) ≤ B(gt−1(nopt) + h(nopt)) (5.9)

gt−1(ng) ≤ B(g∗(nopt) + h∗(nopt)) (5.10)

gt−1(ng) ≤ B(C∗) (5.11)

Line 5.8 holds since ng is a goal node and so h(ng) = 0. Line 5.9 holds since n has

the minimum value of g + h of all nodes on the focal list, and B is monotonically

non-decreasing. Line 5.10 then holds since gt−1(nopt) = g∗(nopt) as shown above,

h is admissible and B is monotonically non-decreasing. The last line holds since

nopt ∈ Popt, Popt is an optimal solution path, and by the definition of C∗.

As in the proof of Theorem 5.4.1, the path that is returned will have a cost of

at most gt(ng) by Theorem 2.2.5 in Section 2.2.4. Therefore, the solution returned

will have a cost of at most B(C∗).

Again, notice that this proof holds regardless of the policy used to select nodes

from the focal list for expansion. This will allow us to construct versions of both

A∗w and more modern focal list based algorithms like EES [90] to satisfy any mono-

tonically non-decreasing bounding function. We will do so in the additive setting

below.
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5.5.1 WA∗-like Weighting as a Focal List Based Algorithm

Ebendt and Drechsler [15] demonstrated that rWA∗ is an instance of rFOCALBw

where Bw(x) = w · x in which the policy used to select nodes from the focal list

chooses the node from the focal list with the lowest value of g+w ·h. In this section,

this result is generalized so that it applies a larger class of bounding functions. This

is done by the following theorem:

Theorem 5.5.2. Any rBFSΦ algorithm is a rFOCALB algorithm for bounding func-

tion B, provided that for any node in the open list after t node expansions, the

following condition holds for Φ:

gt(n) + h(n) ≤ Φt(n) ≤ B(gt(n) + h(n)) ,

where h is the admissible heuristic being used to construct the focal list.

Proof. Let abfs be a given rBFSΦ algorithm such that the above condition holds

on Φ. Since a rFOCALB algorithm always selects a node from its focal list for

expansion, to show this theorem holds we need to the show that the node selected for

expansion on any iteration will always be in the focal list if one were constructed.

In this end, suppose there have been t node expansions and let n be the t+1-st node

selected for expansion. Let nmin be the node in the open list with the lowest value

of g + h. We can now perform the following derivation:

gt(n) + h(n) ≤ Φ(n) (5.12)

≤ Φ(nmin) (5.13)

≤ B(gt(nmin) + h(nmin)) (5.14)

The first line holds by our assumption on Φ, the middle line holds since n was

selected for expansion instead nmin, and the final line holds by our assumption on

Φ. Since nmin is the node in the open list with the lowest value of g + h, the last

line of this derivation also shows that n is necessarily in the focal list. Therefore,

the statement is true.

This proof is based on the proof given by Ebendt and Drechsler for the specific

case of WA∗. Notice that if for all x, y, B(x + y) ≥ B(x) + y, then the evaluation
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function Φ(n) = g(n)+B(h(n)) satisfies the conditions of the theorem. Therefore,

an rBFSg+B(h) algorithm is an instance of a rFOCALB where for all x, y,B(x+y) ≥

B(x) + y.

5.6 Bounding with Iterative Deepening Algorithms

While the best-first and focal list based search algorithms detailed above will gen-

erally successfully exchange solution quality for speed improvements, they often

suffer in practice due to the high memory overhead required for maintaining the

open and closed lists. To combat this issue, Korf developed depth-first iterative

deepening search [50]. In this section, we will define this algorithm framework and

then show how it too can be used to satisfy a large family of bounding functions.

5.6.1 The Depth-First Iterative Deepening Framework

Like best-first search algorithms, depth-first iterative deepening algorithms require

the use of an evaluation function Φ. As such, we will use DFIDΦ to denote an in-

stance of depth-first iterative deepening search that uses Φ as its evaluation function.

This framework is shown in Algorithm 11.

The execution of DFIDΦ consists of a series of threshold-limited depth-first

searches, where the threshold is set at the beginning of each depth-first search iter-

ation. For convenience, we will refer to the threshold used on iteration i as Ti. The

definition of this algorithm means that during iteration i, the algorithm will visit

every path [n0, ..., nk] where n0 = ninit and Φ(nj) ≤ Ti for all 0 ≤ j ≤ k, and

every path [n0, ..., nk−1, nk] where n0 = ninit , Φ(nk) > Ti, and Φ(nj) ≤ Ti for

0 ≤ j < k. This latter set of paths corresponds to those that induce the algorithm

to backtrack. The minimum of Φ(nk) over these paths in this set is then used as

Ti+1 if no solution is found during iteration i. This means that Ti+1 is given by the

minimum Φ-cost of all nodes that were generated but not expanded during iteration

i. Notice that the initial threshold, denoted by T0 since this iteration will be referred

to as iteration 0, is set as Φ(ninit).

As alluded to earlier, the main advantage that DFIDΦ has over rBFSΦ is its low
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DFIDΦ(Initial node ninit ):
1: T ← Φ(ni)
2: loop
3: T, P ← RecursiveDFIDΦ([ninit ], T )
4: if P 6= [] then . Test if solution path was returned
5: return P

RecursiveDFIDΦ(Path [n0, ..., nk], threshold T ):
1: if Φ(nk) > T then
2: return Φ(nk), []

3: if nk ∈ VGoal then
4: return T , [n0, ..., nk]

5: Tnext ←∞
6: Lk = {c | c ∈ succ(nk)} . Generate the children of n
7: for all c ∈ Lk do
8: if H(c) =∞ then . Goal not reachable from c
9: continue . Skip to next child

10: Trecurse , P ← RecursiveDFIDΦ([n0, ..., nk, c], T )
11: if P 6= [] then . Test if solution path was returned
12: return T, P
13: Tnext ← min(Tnext, Trecurse)

14: return Tnext, []

Algorithm 11: Pseudocode for the Depth-First Iterative Deepening Algorithm.

memory overhead. This is because BFSΦ does not maintain open and closed lists

and only needs to maintain the current path being considered, along with some

bookkeeping to keep track of which children of any node along this path have pre-

viously been explored. However, one of the purposes of the open and closed lists

of rBFSΦ is to detect when a node is visiting with a longer path than it reached

with previously. Since the standard version of DFIDΦ does not maintain anything

like these structures, it will often expand the same node many times even within the

same iteration, with each expansion corresponding to a different path to that node.

This increase in re-expansions represents the sacrifice that this algorithm makes in

exchange for a low-memory overhead.
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5.6.2 Existing DFID Algorithms: IDA∗ and WIDA∗

Just as with BFSΦ, there are several known variants of DFIDΦ that only differ in the

evaluation function they use. We detail two of these algorithms here.

IDA∗

The first iterative deepening algorithm we consider is the IDA∗ algorithm defined

by Korf [50]. Where P = [n0, ..., nk] is the path found from ninit = n0 to nk, the

evaluation function used by this algorithm is

Φ(nk) = g(nk) + h(nk) ,

where h is an admissible function and g(nk) the cost of path P . This means that

IDA∗ is using the same evaluation function as A∗. As a result, IDA∗ can be shown

to have the same solution quality guarantee as A∗: any solution found by IDA∗ is

guaranteed to be optimal [50].

WIDA∗

While IDA∗ uses the same evaluation function as A∗, WIDA∗ uses the same evalu-

ation function as WA∗ [52]. Specifically, where P = [n0, ..., nk] is the path found

from ninit = n0 to nk, the evaluation function used by WIDA∗ is

Φ(nk) = g(nk) + w · h(nk)

where h is admissible and w ≥ 1 is an algorithm parameter.

Just as IDA∗ had the same solution quality guarantee as A∗, so too does WIDA∗

have the same solution quality guarantee as WA∗. In particular, any solution found

is guaranteed to be no more costly than w ·C∗. While this has been known for quite

some time, the only proofs to appear in the literature that we are aware of are those

given in my Master’s thesis [93], a proof given by Hatem, Stern, and Ruml [37],

and the proof given below that first appeared in the paper that is the basis of this

chapter [95].
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5.6.3 Using DFID to Satisfy a Given Bounding Function

As with best-first search above, we now identify a set of sufficient conditions on

Φ that will guarantee that DFIDΦ will satisfy a given bounding function B. In

particular, we will prove a theorem that is analogous to Theorem 5.4.1 for best-first

search. The proof of that theorem started with a demonstration that if a goal node

ng is expanded, there will be a node nopt on some optimal solution path Popt that is

in the open list such that Φ(nopt) ≥ Φ(ng). The following lemma offers a similar

statement that guarantees that if ng is expanded during a DFIDΦ search, there must

be a node nopt on Popt such that Φ(nopt) ≥ Φ(ng).

Lemma 5.6.1. Let P ∈ ΠGoal be a solution path P = [n0, ..., nk] where n0 = ninit

and nk ∈ VGoal . If a DFIDΦ expands nk when it reaches nk along P , then for

any optimal solution path Popt ∈ Π∗Goal , there is some node nopt ∈ Popt such that

Φ(ni) ≤ Φ(nopt) for all i where 0 ≤ i ≤ k.

Proof. Let Popt be any optimal solution path to the given task. Assume that a goal

node nk is expanded on iteration j when it reaches nk along P . Since every node

on P must have been expanded to find the path to nk along P , this means that

Φ(ni) ≤ Tj for any i where 0 ≤ i ≤ k.

We must now consider two cases regarding j. In the first, j = 0, in which case

Tj = T0 = Φ(ninit). Since ninit ∈ Popt and Φ(ni) ≤ Tj for any i where 0 ≤ i ≤ k,

the statement is clearly true.

Now suppose that j > 0. In this case, we will show by contradiction that there

exists a node nopt on Popt such that Φ(nopt) ≥ Tj . Since we have shown above that

Φ(ni) ≤ Tj for any i where 0 ≤ i ≤ k, the statement will then immediately follow.

We begin by assuming that for any n ∈ Popt, Φ(n) < Tj . Now notice that

there must be at least one node n ∈ Popt such that Φ(n) > Tj−1, as otherwise

all nodes on Popt, including the goal node, would have been found during iteration

j − 1. If that was the case, then the algorithm would have terminated during that

iteration. Assume that nopt is the shallowest such node. Since Φ(nopt) < Tj by our

assumption, this means that Tj−1 < Φ(nopt) < Tj . Since nopt is the shallowest on

Popt for which Φ(nopt) > Tj−1, this means that all nodes shallower than nopt on P
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must have a Φ-cost of no more than Tj−1. This means that the parent of nopt on

Popt must have been expanded during iteration j − 1 and so nopt must have been

generated during iteration j − 1. Notice that nopt must have a parent on Popt as

otherwise nopt = n0 = ninit , and all thresholds must be as least as large as Φ(ninit)

since Ti < Ti+1 and T0 = Φ(ninit).

Now recall that Tj is selected as the minimum of Φ(n) of any node n that was

generated but not expanded during iteration j − 1. Since nopt is one of these nodes,

Tj ≤ Φ(nopt) which contradicts the fact that Φ(nopt) < Tj . Therefore, there must

be a node n on Popt such that Φ(n) ≥ Tj and so the statement is true when j > 0.

Having handled all cases, the lemma has been shown to be true.

This lemma will now allow us to show that the same sufficient conditions on the

evaluation function Φ that guaranteed that rBFSΦ would satisfy a given bounding

function B will also be sufficient for DFIDΦ.

Theorem 5.6.2. Given a bounding functionB, DFIDΦ will satisfyB if the following

conditions hold:

1. ∃ an optimal solution path Popt ∈ Π∗Goal such that ∀n ∈ Popt, Φ(n) ≤

B(g(n) + h∗(n)) .

2. ∀ng ∈ VGoal , g(ng) ≤ Φ(ng) .

Proof. Suppose that DFIDΦ expands node nk ∈ VGoal on iteration j along the path

P = [n0, ..., nk] where n0 = ninit . Let Popt be an optimal solution path that satisfies

condition 1 of the theorem. By Lemma 5.6.1, there will be a node nopt ∈ Popt such

that Φ(nk) ≤ Φ(n).

The remainder of the proof then follows exactly as did the proof of sufficient

conditions for Φ in the case of rBFS (Theorem 5.4.1) did once Φ(nk) ≤ Φ(nopt) was

guaranteed for some node nopt ∈ Popt By assumption 1, this means that Φ(nk) ≤

B(g(nopt) + h∗(nopt)) and so Φ(nk) ≤ B(g∗(nopt) + h∗(nopt)) since the path from

ninit to nopt along Popt is necessarily optimal. This means that Φ(nk) ≤ B(C∗)

since Popt is an optimal solution path, and so g(nk) ≤ B(C∗) by condition 2. Since

g(nk) is the cost of P which is returned, the statement then holds.
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Since Theorems 5.4.1 and 5.6.2 show that the same sufficient conditions hold

on Φ for either rBFSΦ or DFIDΦ, corollaries 5.4.2 and 5.4.3 can easily be extended

to also apply to DFIDΦ. Similarly, the techniques like inadmissibility limiting that

were shown to be used with rBFS can also be used with DFID. This means that

in practice, when we want to satisfy a bounding function B, we simply need to

find an evaluation function Φ that satisfies the properties in these theorems and

then decide based on domain properties (such as state-space size, or the number of

transpositions) on whether to use rBFSΦ or DFIDΦ.

5.7 Experimenting with Additive Bounds

In this section, we consider the additive bounding function Bγ(x) = x + γ as a

test case for demonstrating that the above theory can be used to construct effec-

tive algorithms for satisfying bounding paradigms aside from linear suboptimality

bounds. Note that if the optimal solution cost to a given problem is known before

search begins, it is possible to use WA∗ — or some other algorithm that was ini-

tially developed to satisfy linear suboptimality bounds — to satisfy a given additive

bound γ. If the optimal solution cost is not known, then it will not be obvious as

to how to parameterize these algorithms to guarantee that they satisfy Bγ . As such,

we will only experiment with the use of such algorithms for satisfying a given addi-

tive bound γ when deployed as part of an anytime system like AWA∗, as described

above in Section 5.3. However, this issue of finding a proper parameter value will

also be shown to impact anytime algorithms like AWA∗ when used for additive

bounding as the effectiveness of these algorithms, relative to the use of an additive

rBFS algorithm, will depend on how they are parameterized.

5.7.1 Evaluation Functions for Additive Bounds

As described in Section 5.4.2, the evaluation function g + B(h) will be ineffective

when used for satisfying Bγ(x) = x+ γ since the resulting search will be identical

to A∗. As an alternative, we can use inadmissible limiting if both an inadmissible

heuristic Hinad and an admissible heuristic h is available. In the case of additive
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bounding, this corresponds to the use of the following evaluation function:

IL(n) = g(n) + min(h(n) + γ,Hinad(n)) .

We can also construct evaluation functions that only use an admissible heuristic

function h. To do so, we consider evaluation functions of the type Φ(n) = g(n) +

D(n) where 0 ≤ D(n) ≤ h(n) + γ, which were shown to satisfy Bγ by Corollary

5.4.3. The guiding principle which we will use for constructing evaluation functions

of this type will be to follow the example of the WA∗ evaluation function and further

emphasize the role of the heuristic. This is the idea behind our next evaluation

function, which penalizes nodes with a high heuristic value by adding a term that is

linear in the heuristic. The key difference between the new function and the WA∗

function is that in order to satisfy Bγ , this penalty must be guaranteed to be no

greater than γ. To this end, consider the following function:

Φ′(n) = g(n) + h(n) +
h(n)

hmax
· γ ,

where hmax is a constant such that for all n, h(n) ≤ hmax. This condition on hmax

guarantees that the corresponding D-function, given by D(n) = h(n) + h(n) ·

γ/hmax satisfies the required relation that 0 ≤ D(n) ≤ h(n) + γ for all n.

Also notice that this evaluation function is equivalent to WA∗ evaluation func-

tion g + w · h where w = 1 + γ/hmax. This means that if hmax is a loose upper

bound and we were using best-first search, then our algorithm would be equivalent

to a WA∗ search that is not using as high of a weight as it could. Using a tight upper

bound on h for hmax is therefore crucial for achieving good performance.

Unfortunately, a tight upper bound on the heuristic value of any state may not be

immediately available without extensive domain knowledge. Moreover, such an up-

per bound may not even be relevant for a given starting state, as it may over-estimate

the heuristic values that will actually be seen during search. For example, suppose

that only a small number of nodes in the state-space actually have a heuristic value

corresponding to hmax. If these nodes are not encountered during the search, then

the search can safely be made greedier by using a lower value for hmax.
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This motivates the use of the following evaluation function:

Φγ(n) = g(n) + h(n) +
min(h(n), h(ninit))

h(ninit)
· γ

Intuitively, this function uses h(ninit) as a more instance relevant upper bound and

penalizes nodes according to how much heuristic progress has been made, where

progress is measured by h(n)/h(ninit).

Notice that if h(ninit) is the largest heuristic value seen during the search, then

the ‘min’ can be removed from the Φγ evaluation function, which simplifies to

Φγ(n) = g(n) + h(n) +
h(n)

h(ninit)
· γ

In this case, Φγ is now equivalent to the WA∗ evaluation function in which w =

1 + γ/h(ninit). In general, the ‘min’ cannot be omitted as it is necessary for the

additive bound, making it the crucial difference between Φγ and the WA∗ evaluation

function. However, omitting the ‘min’ gives us insight into what to expect from Φγ

and the Φ′ function defined above. Specifically, since Φγ corresponds to the WA∗

evaluation function when w = (1 + γ/h(ninit)) and Φ′ corresponds to the WA∗

evaluation function when w = (1 + γ/hmax), we expect that when comparing the

two, rBFSΦγ will be greedier (and therefore usually faster), since h(ninit) ≤ hmax.

We performed a simple experiment to verify this behaviour using the 15 puzzle

domain. The test set considered was given by the 100 puzzles given by Korf in the

original IDA∗ paper [50]. The heuristic used was the 7-8 additive pattern database

heuristic, which consists of two additive pattern database heuristics [19]. For this

test, we ran rBFS using both of the Φγ and Φ′ evaluation function for different

additive bounds. The bounds tested correspond to the different possible values of γ

in the set 2, 4, 8, ..., and 256. The value of hmax used in Φ′ was given by scanning

each database to find the largest value therein, and taking the sum of these two

values. The performance of rBFSΦγ and rBFSΦ′ can be found in the first section

of Table 5.2, which shows the average number of node expansions needed (in tens

of nodes) to find a solution. As the table shows, both evaluation functions exhibit

the desired trade-off of suboptimality for time as it expands fewer nodes as the

suboptimality bound is loosened. However, rBFSΦγ was found to result in a lower
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Additive Bound / γ
Algorithm 0 2 4 8 16 32 64 128 256

rBFSΦγ 3,732 2,460 1,175 403 117 66 44 33 30
rBFSΦ′ 3,732 2,565 1,527 815 245 104 51 45 34

AWA∗, w = 1.5 3,013 2,850 2,180 606 117 99 99 99 99
AWA∗, w = 2.0 4,614 4,553 4,222 2,330 343 53 53 53 53
AWA∗, w = 2.5 5,248 5,215 4,979 3,185 678 49 40 40 40

OS, w = 1.5 3,179 2,784 2,072 717 107 99 99 99 99
OS, w = 2.0 3,483 3,279 2,739 2,350 386 53 53 53 53
OS, w = 2.5 3,557 3,358 3,068 2,214 919 52 40 40 40

Table 5.2: The average number of expanded nodes (in tens of nodes) by different
additively bound algorithms in the 15 puzzle.

number of average nodes expanded than rBFSΦ′ in all values for γ considered larger

than 0. Note that γ = 0 corresponds to an A∗ search when using either of these

algorithms. As such, in all further experiments we will use Φγ instead of Φ′.

5.7.2 Using Anytime Algorithms for Additive Bounding

In this section, we will experiment with using anytime algorithms to satisfy a given

additive bound, and show that there are issues with doing so. We considered two

different anytime algorithms. The first is the AWA∗ algorithm which has been de-

scribed previously. The second is optimistic search [88]. Like AWA∗, this algo-

rithm also uses rWA∗ to find an initial solution. Optimistic search then continues to

iteratively expand nodes in the open list according to a policy that more proactively

tries to prove that the incumbent solution already satisfies the given bound.

Where w is the weight used by this algorithm, the policy used to select nodes

from the open list after the first solution is found is defined as follows. First, the

algorithm identifies the node nw on the open list with the lowest value fw-cost

where fw is the WA∗ evaluation function fw = g + w · h. If fw(nw) is less than

the cost of the incumbent solution, then nw is the next node selected for expansion.

When nodes are expanded according to this criteria, the algorithm can be viewed

as looking for better solutions. If fw(nw) is not less than the cost of the incumbent
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solution, then the algorithm expands the node n on the open list with the lowest

value of g+h. Notice that n is the node corresponding to the lower bound. If every

child c of n has a heuristic value larger h(n)−κ(n, c), then this can cause the lower

bound to increase. Therefore, when nodes are expanded according to this criteria,

the algorithm can be viewed as looking to increase the lower bound to more quickly

show that the incumbent solution already satisfies the bound.

Both AWA∗ and optimistic search (denoted by “OS”) were tested on the set

of 100 15 puzzle problems given by Korf using the aforementioned 7-8 additive

pattern database heuristic. The performance of these algorithms is shown in Table

5.2. Both AWA∗ and optimistic search were tested with several different weights

since it is not obvious how to parameterize it for a specific γ. For every bound, the

algorithm that expanded the fewest nodes is marked in bold.

Like rBFSFγ , both of these anytime algorithms also improve their runtime as

the bound is loosened. However, while rBFSFγ is the best or nearly the best al-

gorithm for all values of γ, the general trend when using the anytime approaches

with a particular weight is that they work well over some range of γ values, but no

single weight gets strong performance everywhere. As described previously, this

is because the weight determines the initial greediness of these algorithms. If the

weight is too low for a given task and a given bound, then the search will take too

long to find the initial solution when the search could have been greedier. If the

weight is too high, the search may be too greedy and the result can be that the first

solution may be too far from optimal and it may take too long to improve upon that

solution to find one satisfying the required bound.

The best-first search approach also has a second advantage over the anytime

approaches: there is less per-node overhead when using best-first search. This is

because the anytime approaches require two copies of the open list to be maintained.

The first copy is sorted by the WA∗ evaluation function and is used to extract the

node from the open list according to that measure as needed. The second copy is

sorted by g + h and is used to quickly calculate the value of the lower bound, or

to extract the node with the lowest value of g + h as needed by optimistic search.

The extra overhead needed to maintain these lists properly often results in a slower
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runtime than best-first search. For example, while bounded AWA∗ with a weight of

2.5 required 35% fewer node expansions than rBFSFγ , it actually took 20% more

runtime. Similar behaviour was also seen in the few other instances of an anytime

search outperforming rBFSFγ in terms of average number of nodes expanded.

These experiments demonstrate that using an arbitrary anytime algorithm in-

stead of an algorithm specific for a given bound can therefore see reduced perfor-

mance due to two issues: it is unclear as to how to initially select a weight for

a particular bound, and the computational expense of maintaining two open lists.

As weight selection will be even more difficult in an automated planner (since less

is known about the domains), we restrict our experiments with such tasks to the

additive rBFS algorithms.

Best-First Search for Additive Bounding on PDDL Planning Tasks

We will now show that additive BFS algorithms can also be effective solving PDDL

planning tasks. For these experiments, we used the Fast Downward framework

[38] in which we implemented Φγ and inadmissibility limiting. For inadmissi-

ble limiting, the inadmissible heuristic used was the FF heuristic. The admissible

heuristic used is the LM-Cut heuristic which is a strong admissible heuristic based

on landmarks [40]. On each problem, planning approaches were given a 1800 sec-

onds time limit and 4 GB memory limit when running on a machine with two 2.19

GHz AMD Opteron 248 processors. For the test suite, we used the 280 problems

from the optimal track of IPC 2011 with action costs ignored. This means that all

tasks are treated as unit cost tasks. This is because non-unit cost tasks are best han-

dled by focal list based approaches [90], and so we wished to test these algorithms

on the types of problems they are generally best suited for.

We begin by considering the coverage of rBFSΦγ on these planning domains,

which is shown in the first row of Table 5.3. As in the 15 puzzle, the table shows

that this algorithm exhibits the desired behaviour: as suboptimality is allowed to

increase, so too does the coverage. This is consistent with the behaviour of WA∗,

which also benefits from the additional greediness allowed with a looser bound.

The second row of Table 5.3 then shows the performance when the inadmissi-
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Additive Suboptimality Bound / γ
0 1 2 5 10 25 50 100 500 1000

rBFSΦγ 132 145 148 163 175 191 204 216 218 218
rBFSIL NA 142 146 157 172 199 199 199 199 199

P-rBFSIL NA 142 146 159 175 213 214 214 214 214

Table 5.3: The coverage of additive BFS algorithms in planning domains.

bility of the FF heuristic is limited using LM-Cut (IL is being used to refer to the

inadmissibility limiting evaluation funcion). Again we see that as the amount of

suboptimality is increased, so too does the coverage. However, the coverage gen-

erally lags behind that of BFSFγ . Our hypothesis was that this was caused by the

overhead of calculating two heuristic values for each node since heuristic computa-

tion is expensive in automated planners. To combat this effect, we used a technique

inspired by pathmax [63] to decrease the number of LM-cut heuristic computations

that need to be performed. For this technique, notice that for any node n, h∗(c) ≥

h∗(n)−κ(n, c) where c is a child of n.Therefore, for any admissible h and inadmis-

sible Hin , if Hin(c) ≤ ha(n)− κ(n, n) + γ, we can infer that Hin(c) ≤ h∗(n′) + γ

without calculating h(n′) by Corollary 5.4.3. We can similarly avoid calculating

h(c′) for any successor c′ of n for which Hin(c′) ≤ h(c′)− C(Pn,c′) where Pn,c′ is

the path found from n to c′.

For the implementation of this technique, the inadmissible FF heuristic value

of a node c generated by the expansion of a node n is always calculated first. If

h(n)−κ(n, c)+γ is no smaller than the FF heuristic value of c, then the admissible

heuristic value of c is not calculated, but is assumed to be h(n)−κ(n, c). This value

can then be used to determine if the LM-Cut heuristic value of any child of c must

be calculated to determine if it limits the FF heuristic value of that node. Notice

that this technique can also easily be extended to apply to any bounding function.

The coverage seen when this technique is added to rBFSIL is shown in the third

row of Table 5.3 (denoted as P-rBFSIL). The pathmax-based technique clearly

offers significant gains, and now inadmissibility limiting is equal or better than

rBFSFγ for 10 ≤ γ < 100. For low values of γ, P-BFSIL suffers because the inad-
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missible heuristic is limited too often. To illustrate this effect, consider what hap-

pens when the inadmissible heuristic is always limited. This means that min(hn(c)+

γ,Hin(n)) = ha(n)+γ for all n. When this happens, the inadmissible limiting eval-

uation function degenerates to g(n)+ha(n)+γ, which, as discussed in Section 5.4.2

will result in a search that is identical to A∗. As γ gets smaller, the frequency with

which Hin is limited increases and so we approach the case in which it is always

limited.

When γ gets large enough, the inadmissible heuristic will never be limited and

the inadmissible limiting evaluation function degenerates to g(n)+Hin(n). We can

see this happening in Table 5.3, as P-rBFSIL stops increasing in coverage at γ = 50.

We confirmed this as the cause by using the FF heuristic without limiting, in which

case BFS solves 218 problems. This small discrepancy in coverage is caused by the

overhead of using LM-Cut.

Though P-BFSIL has a lower coverage than BFSΦγ for low and high values of

γ, it still sits on the Pareto-optimal front when comparing these two algorithms,

and it does show that we can use inadmissible heuristics in BFS and still have

guaranteed bounds. We will see similar results below when evaluating additive

depth-first iterative deepening algorithms.

5.7.3 Additive Bounding with Depth-First Iterative Deepening

Depth-first iterative deepening search is typically used on large combinatorial state-

spaces in which the memory requirements of best-first search can limit its effective-

ness. In this section, we will test the evaluation functions used previously in rBFS

algorithms with depth-first iterative deepening and show that these functions also

lead to effective algorithms for additive bounds when using this framework.

The first domain we tested DFID on was the 15 blocks world problem. In this

domain, there are 15 wooden blocks on top of a table, each labelled with a different

integer value from 1 to 15. These blocks can be stacked up, with only one block im-

mediately above another, and actions correspond to picking up a block and putting

it down either on top of another block or onto the table. Each task consists of some

given starting configuration of the blocks with the goal in the tasks we consider be-
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ing a single stack in which the blocks appear in ascending order of their label from

bottom to top.

For the admissible heuristic value of a state, we will use a count of the number

of blocks out of place. For the inadmissible heuristic, we will use the bootstrap

learning heuristic [48]. This heuristic is built iteratively in an offline process.

Given an initial heuristic H0 and a set of planning tasks, the learning process first

runs DFIDg+H0 on each problem in the task set with a given time limit. In the case

of the blocks world domain, this initial heuristic is given by the number of out of

place blocks. The result will be a set of solved problems, and a solution cost for

each of these problems. Using a set of simple but manually selected features, an

artificial neural network is then trained for estimating the cost-to-go from any state

to the nearest goal. In the case of the blocks world domain, the features are given by

the values returned by several small pattern databases, the number of out of place

blocks, and the number of stacks of blocks.

The neural network can then be used as a new heuristic, H1. The next step is to

run DFIDg+H1 on the tasks that were not solved using H0. This in turn will produce

a new set of solved instances and corresponding solution costs that can be used to

train another neural network to produce heuristic H2. This process then continues

until some time limit is hit or the number of new problems solved during an iteration

is very low. The final heuristic produced is then the heuristic that is used to solve

new problems. Note, the system also provides a way to generate additional training

instances if the given task sets turn out to be too difficult for the initial heuristic.

For a full description on how this heuristic is constructed, see the work of Jabbari

Arfaee, Zilles, and Holte [48].

The results for the blocks world experiment are shown in Figure 5.1. The gen-

eral trend for DFIDΦγ and DFIDIL is that they both improve their runtime as the

bound increases, though DFIDIL stops improving when the inadmissible heuristic

is no longer ever limited. This happens at γ = 9 in this domain due to the relatively

high accuracy of the admissible heuristic. Because DFIDΦγ can continually become

greedier on h, it is able to surpass the performance of DFIDIL for γ ≥ 20.

We also tested these two DFID approaches in the 24 puzzle domain. In this
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Figure 5.1: Additive DFID in the 15 blocks world domain.

domain, the admissible heuristic is given by the 6-6-6-6 additive pattern database

heuristic, which consists of 4 additive patter databases [19]. The bootstrap learn-

ing heuristic was also used as the inadmissible heuristic when experimenting with

inadmissible limiting. In this case, the initial heuristic is given by the Manhattan

distance heuristic and the feature set is given by the Manhattan distance heuristic, 5

small pattern database heuristics, the number of out of place tiles, and the position

of the blank.

The results in this domain are similar to those seen in the 15 blocks world

domain, as both DFIDIL and DFIDΦγ improve their performance as the bound is

loosened. As in the 15 blocks world domain, DFIDIL again shows better perfor-

mance for an intermediate range of values for γ before it reaches a γ at which it

stops improving, while DFIDΦγ continues to improve its performance as the bound

is loosened. For example, at γ = 18 and γ = 20, DFIDIL requires 2.5 and 3.2

times fewer node generations on average, respectively. However, the performance

of DFIDIL stops improving at γ = 30, and by γ = 50 DFIDIL is 1.96 times slower

than DFIDΦγ . This means that just as with BFS, the theory developed above led to

the successful construction of additive iterative deepening algorithms.
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5.7.4 Additive Bounding with Focal List Based Algorithms

Focal list based algorithms have been shown to be an effective way to approach

state-spaces with a wide range in the edge costs. This is because such algorithms

make it easy to employ both cost-to-go and distance-to-go heuristics while still

satisfying desired bounds. In this section, we will demonstrate that the above theory

can also be used to construct focal list based algorithms that are also effective for

satisfying additive bounds in domains with non-uniform edge costs.

We considered two focal list based algorithms. The first is A∗w. In the additive

case, this algorithm will build its focal list as follows:

FOCAL =

{
n|gt(n) + h(n) ≤

[
min

n′∈OPEN
gt(n

′) + h(n′)

]
+ γ

}
(5.15)

where h is the admissible cost-to-go heuristic. This algorithm will then select from

the focal list greedily according to a distance-to-go heuristic.

We also considered a newer focal list based algorithm, Explicit Estimation

Search (EES) [90]. This algorithm was initially developed to satisfy linear sub-

optimality bounds. It uses not only the admissible cost-to-go heuristic h and the

distance-to-go heuristic Hd, but also a potentially inadmissible cost-to-go heuristic

Hin that estimates h∗. In the case of a linear suboptimality bound determined by

weight w, the focal list used by EES is defined in the same way as A∗w, but the way

it selects nodes from the focal list will differ. For this node selection policy, the

algorithm first identifies the node nin which is defined as follows:

nin = argmin
n∈OPEN

gt(n) +Hin(n) .

Intuitively, this is the node in the open list which the inadmissible cost-to-go heuris-

tic identifies as leading to the lowest cost solution. Having defined nin , the algo-

rithm then defines an alternative focal list according to Hin instead of h. This

secondary focal list is defined as follows:

FOCALin = {n|gt(n) +Hin(n) ≤ w · [gt(nin) +Hin(nin)]} .

The intuition behind FOCALin is that this list will contain the set of nodes whose

expected cost to get to the goal is no more than a factor of w larger than that of the
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node with the best expected cost. This focal list differs from the standard one in that

it is built using the potentially inadmissible heuristic which may be more accurate

than the admissible one. However, since Hin might be inadmissible, this focal list

does not only include those nodes through which any solution cost is guaranteed

to be no more than a factor of w larger than optimal. From this secondary list, the

algorithm then identifies the node with the lowest distance-to-go heuristic, defined

formally as follows:

nd = argmin
n∈FOCALin

Hd(n)

The policy EES uses for iteratively selecting nodes for expansion is then given

by the following:

1. If nd is the in the focal list (the actual focal list FOCAL, not FOCALin) then

it is the next node selected for expansion.

2. If nd is not in the focal list, then nin is selected for expansion provided that it

is in the actual focal list.

3. If neither nd nor nin are in the actual focal list, then the algorithm selects the

node from the open list with the lowest value of g + h .

The intuition behind the first case is that nd is expected to be the node from which

it will be easiest to find a solution that will satisfy the given bound. However,

the algorithm can only pursue the solution through nd if nd is in the actual focal

list, as otherwise the bound will no longer be guaranteed. Otherwise, it uses the

second case: nin is selected for expansion provided that it is in the actual focal

list. This node is selected since nin is expected to lead to the lowest cost solution

according to the inadmissible — but often more accurate — heuristic and expanding

it may also increase the size of the secondary focal list. However, once again the

algorithm can only pursue the solution through nin if nd is in the actual focal list, as

otherwise the bound will no longer be guaranteed. In the final case which occurs,

when the algorithm is not allow to pursue the solutions through either nd nor nin

while still guaranteeing the bound will be satisfied, the algorithm selects the node

from the open list with the lowest value of g + h. This node will necessarily be
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in the actual focal list by the definition of FOCAL. When following this final

node selection criteria, the hope is that the focal list size will be increased thereby

allowing for the algorithm to pursue the solution paths through nd or nin on later

iterations. Notice that regardless of which of these criteria is used to select a node

for expansion during any iteration, the algorithm is always restricted to only select

nodes from the focal list for expansion. As such, EES is guaranteed to satisfy the

linear suboptimality bound by Theorem 5.5.2.

To modify this algorithm so that it applies for an additive bound, two changes

have been made. Both of these were inspired by the BEES algorithm, a previous

modification of EES for satisfying the BK(x) = K bounding function for some

constant K ≥ 0 [92]. The first change that was made is that the actual focal list has

been modified so that it is defined for additive bounds (see equation 5.15 above). In

addition, the alternative focal list based on Hin is defined as follows:

FOCALin = {n|gt(n) +Hin(n) ≤ [gt(nin) +Hin(nin)] + γ}

While only the first change is needed to guarantee that a given additive bound is

satisfied, the second change was made to remain in the spirit of initial definition of

the alternative focal list in the case of linear suboptimality bounds: to identify the

nodes that are expected to lead to solutions that satisfy the bound according to the

inadmissible heuristic.

A∗w and EES were both tested on the inverse cost 15 puzzle. In both algorithms,

the admissible heuristic was given by the weighted Manhattan distance. In A∗w, the

distance-to-go heuristic is given by the standard Manhattan distance which ignores

action costs. For EES, the distance-to-go heuristic and the inadmissible heuristic

are given by a technique called one-step correction [87]. This technique is based

on the observation that h∗(n) = h∗(nc) + κ(n, nc) where n is the parent of nc

along an optimal path. If the heuristic value of nc does not decrease by κ(n, nc)

according to some heuristic function H , then this indicates there is a one-step error

in H . One-step correction inflates the heuristic value of a node n by assuming that

the frequency of such errors as seen in the path found to n will be the same as

that from n to the goal. The distance-to-go and inadmissible heuristic used by EES
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Figure 5.2: Additive focal list based algorithms in the inverse cost 15 puzzle do-
main.

are then given by applying one-step correction to the standard Manhattan distance

heuristic and the weighted Manhattan distance heuristic, respectively.

Figure 5.2 shows the performance of these two algorithms, along with rBFSΦγ

on this domain. FOCALBγ -EES is used to denote EES for additive bounds since it

is a FOCALBγ that uses the EES policy to select nodes from the focal list. Simi-

larly, FOCALBγ -A∗w is used to denote the additively bound focal list algorithm that

selects greedily according to the distance-to-go heuristic, since such an algorithm

uses the A∗w node selection policy.

Notice that with the introduction of action costs, rBFSΦγ is not exchanging guar-

anteed suboptimality for speed and it is much weaker than the focal list based al-

gorithms. In addition, we see that FOCALBγ -EES outperforms FOCALBγ -A∗w for

low values of γ, while FOCALBγ -A∗w shows a slight advantage for large values

of γ. These results, including the poor performance of rBFS in this domain, are

consistent with those seen when using the versions of these algorithms initially

constructed for linear suboptimality bounds in this domain. This demonstrates that

these algorithms, which were initially developed for a different bounding paradigm,
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have retained their relative strengths and weaknesses when modified to satisfy a dif-

ferent bounding function.

5.8 Chapter Summary

In this chapter, we have considered the problem of identifying what algorithm

choices are available for a system designer who requires some kind of solution

quality guarantees. To do so, we have introduced a functional notion of a solution

quality requirement that allows a system designer more flexibility in how they de-

fine bounds. We then showed that existing anytime algorithms, best-first search al-

gorithms, focal list based algorithms, and depth-first iterative deepening algorithms

can all be modified to apply to many possible kinds of bounds.

The additive bounding function was then used to test whether the modifica-

tions suggested by the theory could be used to construct effective algorithms for a

different form of bounding than these algorithms were initially developed for. In

particular, the different search techniques were each tested on the types of problems

they are known to be well-suited for in the case of linear suboptimality bounds, in

which they were shown to still effectively sacrifice solution quality for improved

runtime when used with additive bounds.
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Chapter 6

Worst-Case Solution Quality
Analysis When Not Re-Expanding
Nodes in Best-First Search

When deploying a best-first search based algorithm, a system designer must decide

on whether to use rBFS, nrBFS, or some other re-expansion policy. This decision

can greatly impact algorithm performance in terms of both runtime and the quality

of solutions found. The goal of this chapter is to better equip the system designer

in making this decision. We do so by formally proving a bound on just how bad

solution quality can get when using policies aside from the full re-expansion policy.

This bound will be given in terms of a measure of the inconsistency of the heuristic.

We then consider consequences of these bounds when using evaluation functions of

the form g+B(h), whereB is a bounding function and h is an admissible heuristic.

6.1 Introduction

In the previous chapter we showed that the A∗ algorithm, which is an rBFS algo-

rithm that uses the evaluation function g + h where h is admissible, will only find

solutions that are optimal. This was first shown by Hart, Nilsson, and Raphael [35].

In that work, it was also shown that if h is consistent, then once a node n is ex-

panded, it can be guaranteed that g(n) = g∗(n). As such, once a node is expanded,

it will never be moved back into the open list or re-expanded. This means that for a

consistent heuristic h, rBFSg+h is equivalent to nrBFSg+h.
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Nodes Expanded by Percentage Nodes Expanded by
Weight rWA∗Relative to A∗ of Re-expansions nrWA∗Relative to A∗

1.0 1.0 0% 1.0
1.1 0.94 5% 0.95
1.2 0.89 10% 0.89
1.5 0.86 16% 0.74
2 1.52 65% 0.56
3 2.25 83% 0.40
5 3.17 90% 0.33
10 3.28 91% 0.30

Table 6.1: The impact of re-expanding nodes on WA∗.

If the heuristic in use is admissible but inconsistent, then it can no longer be

guaranteed that when a node n is expanded, the g-cost of n will be optimal. An

example of this behaviour is given by Martelli who identified a family of graphs,

which will be described in more detail below, for which A∗ will perform Θ(2|V |)

expansions [61]. As such, the number of re-expansions performed on these graphs

can dominate runtime and thereby greatly decrease algorithm performance.

This behaviour is not isolated to the use of an admissible but inconsistent heuris-

tic with A∗, as re-expansions can also greatly harm the performance of a rBFS that

uses an inadmissible heuristic. For example, this can happen when using rWA∗,

which can be thought of as being a rBFSg+H instance that uses an inadmissible

heuristic given by H = w ·h where h is admissible. To demonstrate this behaviour,

we tested this algorithm on a set of pathfinding problems given by Sturtevant [84].

The set consists of 10 512×512 grids in which 40% of the grid locations have been

marked as obstacles. The objective is to find a path from a given initial location

to an given goal location, where motion can be made in the 8 possible directions

of north, northeast, east, southeast, south, southwest, west, or northwest, provided

that there is no obstacle in the way. The heuristic used is called the octile heuristic.

Like the Manhattan distance described for the sliding tile puzzle, this consistent

heuristic counts up how many locations away from the goal the current location is,

with an adjustment for the ability to move in 8 directions instead of 4.

Given these 10 maps, we used the total of 35, 360 pairs of start and goal po-
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sitions from the benchmark set [84]. The average optimal solution cost of these

problems is 733.87, and A∗ performs an average of 36, 003 expansions per prob-

lem. Table 6.1 shows the average performance of rWA∗ on these problems for a

variety of weights. The first column shows the weight, the second column shows

the total number of expansions relative to A∗, and the third column shows what per-

centage of the total expansions were re-expansions. The table shows that the higher

weights actually expand more nodes than A∗, largely because of re-expansions.

For example, 91% of the expansions made by the weight 10 rWA∗ search are re-

expansions, which is why it is slower than A∗ despite expanding only 30% as many

unique nodes.

When re-expansions dominate runtime as they do in the examples just given,

many system designers opt to never allow for re-expansions as opposed to using the

full re-expansion policy. This approach has been particularly popular in the case

of WA∗ as it has been applied successfully in domains such as robot path planning

[58] and binary decision diagram minimization [15]. This approach would similarly

improve the runtime in the example domains considered above. For example, the

final column of Table 6.1 shows the total number of node expansions made by

nrWA∗ relative to A∗. As shown, all weights greater than one lead to a faster search

than A∗, which was not the case when the full re-expansion policy is used. Similar

improvements would be seen if the search used on Martelli’s graphs was set to not

re-expand nodes. In that case, only Θ(|V |) expansions would be performed instead

of the Θ(2|V |) performed when using the full re-expansion policy.

Yet there is still much that is not fully understood about the impact that not re-

expanding nodes has on a search. For example, when this technique has been tested

empirically it was shown to improve algorithm runtime in some problems while

harming it in others, and it also typically decreases the quality of the solutions

found [15, 88]. This is true not even just across domains, but across different tasks

within the same domain [82]. However, there are still no theoretical results that

identify the properties of a state-space that determine whether or not re-expanding

nodes is beneficial. Most of the empirical studies on this topic have focused on

the use of this technique when using a consistent heuristic in nrWA∗ or in focal list
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based algorithms. The use of a consistent heuristic in nrWA∗ and focal list based

algorithms are also the only cases in which there are known bounds on the quality of

the solutions found when not re-expanding nodes. As such, if a system designer is

building a search system, it is not always clear when they should use a re-expansion

policy aside from the full re-expansion policy.

6.1.1 Contributions

The goal of this chapter is to begin to address this gap in our understanding of

re-expansion policies other than the full re-expansion policy. Our specific focus

will be on formally analyzing how not re-expanding nodes can impact the solution

quality. In particular, we will show that the worst-case loss in quality that can result

from any re-expansion policy can be bound based on the amount of inconsistency

along optimal solution paths. This will be proven for a large class of best-first

search algorithms and will apply regardless of whether the heuristic is admissible

or inadmissible. The bound will then be used to show that for admissible heuristics,

the worst-case when using an A∗ which does not re-expand nodes is to find solutions

that are quadratic in the optimal solution cost. We will then identify a family of

worst-case graphs and corresponding heuristics for which the given bound is exact

when using nrBFS. Finally, we will consider the known bound on solution quality

that is specific to the use of a consistent heuristic with WA∗, extend this bound

so that it applies to other types of heuristic weighting, and provide bounds when

weighting inconsistent heuristics.

Note that this chapter is based on work that was published at the 2014 AAAI

conference [99].

6.2 Background and Related Work

In this section, we will define a metric for measuring the inconsistency of a path

and then describe several related studies on the impact of inconsistent heuristics

and different re-expansion policies.
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(2) (2) (0) (0) (3) (1)
n0 n2 n3 n5 n6n4n1

11 9 2 018 9142 1 2 4 19

Figure 6.1: Example path with INCH values shown below the edge costs in paren-
theses.

6.2.1 Heuristic Inconsistency

Consider Figure 6.1 which shows a path of nodes n0, ..., n6 with an associated

heuristic value for each (ignore the values in parentheses for now). Recall that in

order for a heuristic H to be consistent, it must be true that for any edge (p, c) ∈ E,

H(p) ≤ H(c) +κ(p, c). This property is clearly not true along this path. For exam-

ple, consider the edge from n1 to n2 and that H(n1) = 14 > H(n2) + κ(n1, n2) =

11 + 1 = 12. This heuristic is therefore inconsistent along this path.

Notice that the consistency property does hold on some edges, such as (n3, n4),

it just does not hold on all of them. Intuitively, this means that the heuristic can

be thought of as being consistent on some edges, and inconsistent on others. To

compare the relative amount of inconsistency of the heuristic on different edges,

we define a metric called the inconsistency of a heuristic H on an edge from p

to c. This metric, which will be denoted by INCH(p, c), is formally defined as

follows:

INCH(p, c) = max(H(p)−H(c)− κ(p, c), 0) .

Intuitively, this metric measures how far away the heuristic H is from being consis-

tent on the edge from p to c. This is why the max is included to prevent the value

of INCH from becoming negative. If H(p) − H(c) − κ(p, c) is negative, then the

distance is consistent on this edge. The “distance” of H from being consistent on

such an edge is therefore 0, regardless of how negative H(p) − H(c) − κ(p, c) is.

Furthermore, notice that INCH(p, c) > 0 if and only if H is inconsistent on edge

(p, c), and 0 otherwise. As such, the standard definition of consistency is equivalent

to requiring that INCH(p, c) = 0 for any (p, c) ∈ E.

We will also be able to use this metric to measure the inconsistency of a heuris-

tic H along a path P as the sum of the inconsistency of H on each of the edges
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along P . Where this value is denoted as INCH(P ) and P = [n0, ..., nk], this value

is formally given by the following:

INCH(P ) =
k−1∑
i=0

INCH(ni, ni+1) .

If P is the empty path [] consisting of 0 nodes, or a path [n] consisting of a single

node, then we will define INCH(P ) such that INCH(P ) = 0.

As an example of how these metrics are calculated, let us reconsider the path

[n0, ..., n6] given in Figure 6.1. The numbers given in parentheses below each edge

correspond to the value of the inconsistency of the heuristic on the correspond-

ing edge. For example, where H is the heuristic in use, H is inconsistent on

edge (n4, n5), which is why INCH(n4, n5) = 9 − 2 − 4 = 3, while the value of

INCH(n2, n3) and INCH(n3, n4) are both 0 since H is consistent on these edges.

As described above, the inconsistency of H along the path in Figure 6.1 is then

given by the sum of the numbers in the parentheses. In this case, the result is

2 + 2 + 0 + 0 + 3 + 1 = 8. The path in Figure 6.1 also demonstrates the importance

of using the max function in the definition of INCH to prevent this metric from

returning negative values. If INCH(p, c) were calculated as H(p)−H(c)− κ(p, c)

without taking the maximum with 0, the sum of the inconsistency of H on each

edge along this path would be −1, and this value does not capture that there is

inconsistency along this path.

It is for this reason that INCH is used instead of an existing metric for measuring

heuristic inconsistency called the inconsistency rate of an edge (IRE ) [22, 109].

The IRE of an edge, which is calculated as |H(p)−H(c)|, was initially intended for

graphs with only unit-cost, undirected edges. The directed version of IRE would

be H(p) − H(c), though this is still only suitable for unit-cost edges. To see this,

notice that the IRE of edges (n2, n3) and (n5, n6) in Figure 6.1 are both 2, even

though H is consistent on (n2, n3) and inconsistent on (n5, n6). Since the value of

IRE can be negative in the directed case, we also cannot use the sum of the IRE

values along a path P as a measure of the inconsistency along P for the same reason

that INCH is forced to be non-negative. As such, INCH was found to be a more

convenient metric than IRE for the analysis performed in this chapter.
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6.2.2 The Impact of Heuristic Inconsistency

There have been several studies looking at the impact of heuristic inconsistency on

search performance, but they have focused on admissible but inconsistent heuris-

tics when used in A∗. This began with the work of Martelli [61] mentioned above.

Martelli also offered a technique which decreased the worst-case runtime from be-

ing O(2|V |) when using standard A∗ to being O(|V |2) while still maintaining opti-

mality. A different technique with the same runtime guarantees was then proposed

by Mero [63].

Felner et al. [21] then offered a way to improve Mero’s technique in undirected

graphs. They also looked at the worst-case exponential behaviour identified by

Martelli and showed that this could only happen in graphs in which the edge costs

are exponential in |V |.

6.2.3 Studies on nrOCL Algorithms

There are two main previous results that offer upper bounds on the impact that not

re-expanding nodes has on solution quality. The first is that any solution found

by nrWA∗ is guaranteed to have a cost of no more than w · C∗ provided that the

heuristic being weighted is consistent [58]. Ebendt and Drechsler then offered an

upper bound on the cost of any solution returned by any nrFOCAL algorithm which

builds its focal list using the linear suboptimality bounding function Bw(x) = w ·x,

provided that the heuristic used for the construction of the focal list is consistent.

This upper bound is given by wbD/2c · C∗, where the optimal solution has D edges

in it [15]. However, there are currently no results for either of these algorithms in

the case of inconsistent heuristics.

Several authors have noted that not re-expanding nodes can help on some prob-

lems while it can hurt in others. For example, Hansen and Zhou [33] noticed that

nrWA∗ often expanded more unique nodes than rWA∗, particularly in domains in

which the solution paths are relatively sparse. Thayer [86] similar identified that the

impact of this technique varied from domain to domain and suggested that it will

most likely be useful in domains with many transpositions.
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More recently, Sepetnitsky, Felner, and Stern [82] have shown that even in the

same search problem, the choice of whether re-expansions will improve or harm

performance in a WA∗ search on a particular task can depend on the value of the

weight. Their experiments show that in the 15 puzzle and in pathfinding, a signifi-

cant proportion of the test set is solved faster when re-expanding nodes than when

not for low weights, though not re-expanding is better for higher weights. They also

demonstrate that in certain problems, nrWA∗ actually finds better quality solutions

than rWA∗, though this is not typical.

Sepetnitsky, Felner, and Stern also demonstrated that there is potential for re-

expansion policies aside from the full and never re-expansion policies to further

improve the runtime of WA∗ [82]. In this chapter, we will prove that such policies

will also be guaranteed to satisfy the linear suboptimality bound provided that the

heuristic being weighted is consistent.

Not re-expanding nodes is also a common technique used by anytime heuristic

search algorithms. The first such anytime algorithm to use this technique was ARA∗

[58]. This algorithm iteratively runs a set of nrWA∗ searches that perform parent

pointer updates to find a set of iteratively improving solutions. During each nrWA∗

search, the algorithm stores the nodes in the closed list to which a a lower g-cost

path is found — which we defined as the unopened list earlier — in a separate list.

Once a solution is found, a new nrWA∗ search is performed, though in this case the

open list that the search starts with is not given by the set {ninit}, but with the open

list that remained at the end of the previous nrWA∗ run merged with the unopened

list. The weight used for the next iteration is also lowered. ARA∗ therefore consists

of a sequence of nrWA∗ searches with decreasing weights, each of which delays

the re-opening of nodes and merges the open list and unopened list of a previous

iteration to be used as the starting open list of a new iteration. This process then

continues either until the time limit is reached or a weight 1 search is completed.

Thayer and Ruml [89] also showed that this “repairing” paradigm could be used to

turn other bounded suboptimal search algorithms into effective anytime algorithms.
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6.3 Worst-Case Solution Quality Analysis

In this section, we will show that the quality of the solutions found by not only

nrBFSg+H , but any BFSg+H algorithm, can be bound based on the inconsistency of

H along optimal solution paths. This will hold regardless of the re-expansion policy

used by the algorithm. Notice that this means we are only considering evaluation

functions of the form g+H . This restriction still allows for the framework to include

A∗ (which corresponds to the use of an admissible H), WA∗ (which corresponds to

H = w · h where h is admissible), and the use of many other evaluation functions.

However, this framework does not include GBFS since that algorithm does not

include g in its evaluation function.

In addition to this restriction, we will also assume that the heuristic value of any

goal node is 0. Formally, this means the following:

∀n ∈ VGoal , H(n) = 0 .

6.3.1 Bounding with Nodes on an Optimal Solution Path

In order to prove the bound given below, let us first consider the situation in which

the t + 1-st node expanded by a BFSg+H instance is a goal node ng ∈ VGoal . This

means that no goal node had been expanded in the first t expansions. Now recall

that if there is an optimal solution path Popt to a given problem, then at any time

prior to the expansion of a goal node there will be a node from Popt in the open list.

This was guaranteed by Corollary 2.2.8 in Section 2.2.4. In particular, let n be the

node from Popt that is guaranteed to be in the open list after t expansions by this

corollary, and consider the following derivation of the evaluation of n:

gt(n) +H(n) = g∗(n) + gδt (n) +H(n)

= g∗(n) + gδt (n) + h∗(n)− h∗(n) +H(n)

= C∗ + gδt (n) + (H(n)− h∗(n)) . (6.1)

This shows that the evaluation of n differs from C∗ by exactly the sum of the g-cost

error and (H(n)− h∗(n)) which, if positive, is how inadmissible H is on n. Since
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ng was selected for the t+ 1-st node expansion instead of n, this means that

gt(ng) +H(ng) ≤ gt(n) +H(n) ,

by the definition of BFS. Where C is the cost of the solution found by BFS, this

inequality can be simplified to C ≤ gt(n) + H(n) since ng ∈ VGoal implies that

H(ng) = 0 and the fact that C ≤ gt(ng). This latter fact holds by Theorem 2.2.5

from Section 2.2.4 which guarantees that the path implicitly maintained using the

parent pointers has a cost of no more than gt(ng). Substituting C ≤ gt(n) + H(n)

into equation 6.1 allows for the following observation:

Observation 6.3.1. If the t + 1-st node expanded by BFSg+H is a goal node ng,

then there is a node n from some optimal path Popt, where n ∈ OPENt and the cost

of the solution found to ng will be no more than

C∗ + gδt (n) +H(n)− h∗(n) .

Below we will show that gδt (n) + H(n) − h∗(n) is bound by the inconsistency

of H along the optimal path that n is on. This proof will have two components. In

the first, we will show in Section 6.3.2 that for any node ni which is on an optimal

solution path Popt = [n0, ..., nk], the inadmissibility ofH on ni (ie. H(ni)−h∗(ni))

is bound by the inconsistency of H along the portion of Popt from ni to nk. We will

then show in Section 6.3.3 that at any time prior to the expansion of a goal node

there is at least one node ni from Popt which is in the open list such that the g-cost

error of ni is no larger than the inconsistency of H along the portion of Popt from

n1 to ni. These will then be used to derive the main theorem given in Section 6.3.4.

6.3.2 Bounding Inadmissibility with Inconsistency

In this section, we will show that the inadmissibility of the heuristic value of a node

n can be bound by the inconsistency along the optimal path from n to the nearest

goal node. We begin by showing the following more general statement:

Lemma 6.3.2. If [n0, n1, ..., nk] is an optimal path from n0 to nk such that H(ni) 6=

∞ for all 0 ≤ i ≤ k, then the following is true:

H(n0)−H(nk)− g∗(n0, nk) ≤
k−1∑
i=0

INCH(ni, ni+1) ,
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which holds with equality if H(ni)−H(ni+1)− κ(ni, ni+1) ≥ 0 for all 0 ≤ i < k.

Proof. Let [n0, n1, ..., nk] be an optimal path from n0 to nk such that H(ni) 6= ∞

for all 0 ≤ i ≤ k. Now notice that if H(ni)−H(ni+1)− κ(ni, ni+1) > 0 then the

following is true:

INCH(ni, ni+1) = H(ni)−H(ni+1)− κ(ni, ni+1) .

This follows directly from the definition of INCH , which is given by the maximum

of the right side of this equation and 0. If H(ni)−H(ni+1)−κ(ni, ni+1) ≤ 0, then

INCH(ni, ni+1) = 0. Together, these two facts mean that we can guarantee that

the following is true:

INCH(ni, ni+1) ≥ H(ni)−H(ni+1)− κ(ni, ni+1) .

This in turn implies the following:

k−1∑
i=0

H(ni)−H(ni+1)− κ(ni, ni+1) ≤
k−1∑
i=0

INCH(ni, ni+1) . (6.2)

Notice that this will hold with equality if H(ni) − H(ni+1) − κ(ni, ni+1) ≥ 0 for

all 0 ≤ i < k.

Now we will show that the left side of Equation 6.2 is equal toH(n0)−H(nk)−

g∗(n0, nk). In particular, we will show show the following is true for any j ≤ k by

induction:

H(n0)−H(nj)− g∗(n0, nj) =

j−1∑
i=0

H(ni)−H(ni+1)− κ(ni, ni+1) .

This clearly holds true in the base case when j = 1 by the following:

H(n0)−H(nk)− g∗(n0, n1) = H(n0)−H(n1)− κ(n0, n1)

=
0∑
i=0

H(ni)−H(ni+1)− κ(ni, ni+1) .

This derivation holds because κ(n0, n1) = g∗(n0, n1) since P is an optimal path

from n0 to n1. Now suppose the statement is true for 1 ≤ j < k − 1, and consider
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the following derivation:

j∑
i=0

H(ni)−H(ni+1)− κ(ni, ni+1)

=

[
j−1∑
i=0

H(ni)−H(ni+1)− κ(ni, ni+1)

]
+H(nj)−H(nj+1)− κ(nj, nj+1) (6.3)

= [H(n0)−H(nj)− g∗(n0, nj)]

+H(nj)−H(nj+1)− κ(nj, nj+1) (6.4)

= H(n0)−H(nj+1)− [g∗(n0, nj) + κ(nj, nj+1)] (6.5)

= H(n0)−H(nj+1)− g∗(n0, nj+1) . (6.6)

Line 6.3 follows by an expansion of the summation term. Line 6.4 is true by the in-

duction hypothesis. Line 6.5 then follows by cancelling out the H(nj) and−H(nj)

terms. The final line then follows since g∗(n0, nj) + κ(nj, nj+1) = g∗(n0, nj+1)

since [n0, ..., nj+1] is an optimal path from n0 to nj+1. Therefore, the statement

holds by induction.

The theorem then holds by substituting this result into Equation 6.2.

Since we have assumed that H(n) 6= ∞ for any n from which a goal node is

reachable, this lemma immediately leads to the following bound on the inadmissi-

bility of the heuristic value of such nodes:

Theorem 6.3.3. If P = n0, n1, ..., nk is a path from n0 to some nk ∈ VGoal such

that h∗(n0) = g∗(n0, nk), then the following holds:

H(n0)− h∗(n0) ≤
k−1∑
i=0

INCH(ni, ni+1) .

This follows from Lemma 6.3.2 since g∗(n0, nk) = h∗(n0) and by the fact that

nk ∈ VGoal implies that H(nk) = 0.

6.3.3 Bounding g-cost Error with Inconsistency

In this section, we will show that whenever a node n is selected for expansion

during the execution of a BFSg+H algorithm, the g-cost error of n can be bound
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by the inconsistency along the optimal path from ninit to n, regardless of the re-

expansion policy in use. This will then be used to show that at any time prior to the

expansion of a goal node, there will be a node n from an optimal solution path Popt

that is in OPENt whose g-cost error is bound by the inconsistency along Popt.

We begin with the following lemma which shows how bounds of the type we

will consider can be propagated from parent to child along an optimal path, if the

child is first expanded after the parent. Notice that the bound on the g-cost error of

a node nk is given in terms of the sum of the inconsistency along an optimal path

to nk, not including the inconsistency of the heuristic on the first edge on this path.

This will be true of all bounds on g-cost error considered in this section for reasons

we will describe later.

Lemma 6.3.4. Let P = [n0, ..., nk] be an optimal path from ninit = n0 to nk such

that H(ni) 6= ∞ for all 0 ≤ i ≤ k. If nk−1 is expanded for the first time by the

t-th node expansion by a BFSg+H algorithm and nk is not one of the first t nodes

selected for expansion, then the following holds:

gδt (nk−1) ≤
k−2∑
i=1

INCH(ni, ni+1) =⇒ gδt (nk) ≤
k−1∑
i=1

INCH(ni, ni+1) .

Proof. Assume the conditions described above on P , that nk−1 is expanded for the

first time by the t-th node expansion of a BFSg+H algorithm, that nk is not one of

the first t nodes selected for expansion, and that gδt (nk−1) is bound as specified by

the theorem statement. Recall that because nk−1 is expanded before nk, we can

guarantee that gδt (nk) ≤ gδt (nk−1). This was formalized by Lemma 2.2.3 in Section

2.2.3. Along with the assumptions, this allows for the following derivation:

gδt (nk) ≤ gδt (nk−1) (6.7)

≤
k−2∑
i=1

INCH(ni, ni+1) (6.8)

≤

[
k−2∑
i=1

INCH(ni, ni+1)

]
+ INCH(nk−1, nk) (6.9)

≤
k−1∑
i=1

INCH(ni, ni+1) . (6.10)
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Line 6.8 follows by our assumption on gδt (nk−1). Line 6.9 then follows since

INCH(nk−1, nk) ≥ 0. The final line then follows by folding INCH(nk−1, nk) into

the summation. Therefore, the statement is true.

We now turn to the main theorem in this section, which states that whenever

a node nk is selected for expansion during the execution of BFSg+H , the g-cost

error of nk can be bound by the inconsistency of H along the optimal path P to nk,

excluding the inconsistency on the first edge of P .

Theorem 6.3.5. Let nk be the t-th node expanded by a BFSg+H algorithm. If there

exists an optimal path P = [n0, n1, ..., nk] from ninit = n0 to nk where H(ni) 6=∞

for all 0 ≤ i ≤ k, then the following holds:

gδt (nk) ≤
k−1∑
i=1

INCH(ni, ni+1) .

Proof. The proof is by induction on the number of node expansions, denoted by t.

In the base case of t = 1, the node selected for expansion is ninit . Since g0(ninit) =

g∗(ninit), this means that when it is selected for expansion, the g-cost error of ninit

is also 0. Therefore, the statement is true in this base case.

Assume the statement is true for all of the first t ≥ 1 nodes selected for expan-

sion. Let nk be the t+ 1-st node to be expanded. If there does not exist an optimal

path P = [n0, ..., nk] from ninit to nl such that H(ni) 6= ∞ for all 0 ≤ i ≤ k, then

the statement is vacuously true. Now suppose that there does exist such a path. If

nk was also the t′-th node expanded for some t′ ≤ t, then the following is true by

the induction hypothesis:

gδt′(nk) ≤
k−1∑
i=1

INCH(ni, ni+1) .

Since the g-cost error of nk cannot increase as BFSg+H makes further expansions

(where this notion was formalized by Observation 2.2.2 in Section 2.2.3), this

means that the following holds:

gδt (nk) ≤
k−1∑
i=1

INCH(ni, ni+1) .
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Therefore, the statement holds if nk was previously expanded.

Now suppose that nk is expanded for the first time by the t+1-st node expansion.

There are now two cases to consider: either nk−1 has been previously expanded or

it was not. Let us first assume that nk−1 was previously selected as the t′-th node

expanded for some t′ ≤ t. Since P can only be an optimal path to nk if [n0, ..., nk−1]

is an optimal path to nk−1, the induction hypothesis guarantees the following:

gδt′(nk−1) ≤
k−2∑
i=1

INCH(ni, ni+1) .

We can therefore use Lemma 6.3.4 to get the following bound:

gδt′(nk) ≤
k−1∑
i=1

INCH(ni, ni+1) .

The desired bound on gδt (nk) then follows immediately since the g-cost error of nk

cannot increase with further node expansions.

Notice that if k = 1 and nk = n1 is expanded for the first time, nk−1 = n0 must

have been previously expanded. This is because n0 = ninit is always necessarily

the first node expanded. Therefore, the situation in which nk = n1 is expanded for

the first time is an instance of the case just handled. The g-cost error of n1 will

therefore necessarily be 0 since the g-cost error of ninit is 0. This “omission” of

INCH(n0, n1) from the g-cost error of n1 will then be propagated to any n which

is deeper along P (either by the case above or that below), which is why the incon-

sistency along the first edge of P is not incorporated into the theorem statement.

In addition, notice that the same argument used to prove this last case can also

be used to guarantee that for any node nj from P that is in OPENt where nj−1 has

been previously expanded, this bound will also apply to nj . This will be used in

proving the next case.

In the second case to be considered, nk−1 has not been previously expanded.

However, recall that we are guaranteed that there will be a node nj from P such

that nj ∈ OPENt and nj′ ∈ CLOSEDt for any 0 ≤ j′ < j. This is true since

BFS is an OCL algorithm, not all nodes from P are in the closed list (since nk is in

the open list), and by Theorem 2.2.7 in Section 2.2.4. By using the argument just
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applied for when nk−1 was previously expanded, we can therefore guarantee the

following:

gδt (nj) ≤
j−1∑
i=1

INCH(ni, ni+1) . (6.11)

Since nj−1 has previously been expanded and nk−1 has not, this means that

nj 6= nk. Moreover, nj must be shallower on P than nk is since all nodes on P

that are shallower than nj are in the closed list and nk is in the open list. As the

algorithm selected nk instead of nj as the t+ 1-st node to be expanded, the first line

of the following is true which then allows for the following derivation:

gt(nk) +H(nk) ≤ gt(nj) +H(nj) (6.12)

gδt (nk) ≤ gδt (nj) +H(nj)−H(nk) + g∗(nj)− g∗(nk) (6.13)

gδt (nk) ≤ gδt (nj) + [H(nj)−H(nk)− g∗(nj, nk)] (6.14)

gδt (nk) ≤ gδt (nj) +

[
k−1∑
i=j

INCH(ni, ni+1)

]
(6.15)

gδt (nk) ≤

[
j−1∑
i=1

INCH(ni, ni+1)

]
+

[
k−1∑
i=j

INCH(ni, ni+1)

]
(6.16)

gδt (nk) ≤
k−1∑
i=1

INCH(ni, ni+1) . (6.17)

Line 6.13 is achieved by expanding gt(n) to g∗(n) + gδt (n), and rearranging the

terms. Line 6.14 then holds since nj is along an optimal path to nk and so g∗(nk) =

g∗(nj) + g∗(nj, nk). By using the upper bound on H(nj) − H(nk) − g∗(nj, nk)

given by Lemma 6.3.2 results in line 6.15. Line 6.16 then holds by substituting in

the bound on gδt (nj) given above in equation 6.11. The final line then follows by

combining the summations. Therefore, the statement holds in the case that nk−1

has not been previously expanded.

Having handled all cases for nk, the theorem holds by induction.

While this theorem can be used to immediately offer a bound on the solution

quality found by BFSg+H in domains in which there is only a single goal node, we

will need the following corollary in the case that there are multiple goal nodes.

170



Corollary 6.3.6. Let Popt ∈ Π∗Goal be an optimal solution path to a given planning

task Γ where Popt = [n0, ..., nk]. If no goal node has been expanded during the first

t iterations of a BFSg+H on Γ, then there will exist a node ni ∈ Popt such that all of

the following conditions hold:

1. ni ∈ OPENt .

2. ∀j where 0 ≤ j < i, nj ∈ CLOSEDt .

3. gδt (nk) ≤
k−1∑
i=1

INCH(ni, ni+1) .

Proof. After t expansions, Corollary 2.2.8 in Section 2.2.4 guaranteed the existence

of some ni from Popt such that ni ∈ OPENt, and for any j where 0 ≤ j < i,

nj ∈ CLOSEDt. Therefore, the first two conditions hold.

If i = 0 (ie. ni = ninit ), the third condition clearly also holds for ni. If ni 6= 0

but ni was previously expanded, then the third condition immediately follows for

ni by Theorem 6.3.5. If ni 6= 0 and ni was not previously expanded, notice that

ni−1 must have been previously expanded since it is in the closed list. As such,

the g-cost error of ni−1 can be bound by the inconsistency of H along [n1, ..., ni−1]

by Theorem 6.3.5. This is possible since P is an optimal solution path, and so

H(nj) 6= ∞ for any nj ∈ P . The third condition then follows for ni using this

result and Lemma 6.3.4.

6.3.4 Bounding Solution Quality with Inconsistency

In this section, we will use Theorems 6.3.3 and 6.3.5 to show that the inconsistency

of H along any optimal solution path (not including the inconsistency of H on the

first edge) can be used to bound the quality of any solution found. This is formalized

by the following theorem:

Theorem 6.3.7. If Popt ∈ Π∗Goal is an optimal solution path to a given planning

task Γ such that Popt = [n0, ..., nk], then the following will be an upper bound on

the cost of any solution returned by BFSg+H on Γ:

C∗ +
k−1∑
j=1

INCH(nj, nj+1) .
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Proof. If k = 0, the search will obviously find the optimal solution with the first

expansion. Clearly the statement is satisfied in that case.

If k > 0, assume that a goal node ng is first expanded by the the t + 1-st

expansion for some t ≥ 0. Let C be the cost of the solution found. By Corollary

6.3.6, there will be a node nj from Popt which is in the open list after t expansions

and which satisfies the following condition:

gδt (nj) ≤
j−1∑
i=1

INCH(ni, ni+1) . (6.18)

Recall that Observation 6.3.1 identified that any solution found by BFSg+H will

have a cost no greater than C∗+gδt (nj)+H(nj)−h∗(nj). This means the following

is true:

C ≤ C∗ + gδt (nj) +H(nj)− h∗(nj) (6.19)

C ≤ C∗ + gδt (nj) + [H(nj)−H(nk)− g∗(nj, nk)] (6.20)

≤ C∗ +

[
j−1∑
i=1

INCH(ni, ni+1)

]
+

[
k−1∑
i=j

INCH(ni, ni+1)

]
(6.21)

≤ C∗ +
k−1∑
i=1

INCH(ni, ni+1) . (6.22)

Line 6.20 is achieved since H(nk) = 0 as nk ∈ VGoal and h∗(nj) = g∗(nj, nk) by

the fact that Popt is an optimal path to nk. Line 6.21 then follows by bounding gδt (nj)

using Equation 6.18, and by bounding H(nj) − H(nk) − g∗(nj, nk) by Theorem

6.3.3. The final line is then achieved by combining the two summations. The

statement therefore holds.

This theorem shows a formal relationship between the inconsistency of the

heuristic and solution quality. We now consider this bound in the special case that

H is admissible.

6.3.5 Worst-Case Bound when Using Admissible Heuristics

In this section, we will show that when the heuristic H being used is admissible,

then the cost of the solutions returned by BFSg+H will be at most quadratic in
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the optimal solution path, regardless of the re-expansion policy being used. To

show this result, we first consider the following which holds when there is a known

maximum on the heuristic value of any node along an optimal solution path:

Lemma 6.3.8. Let Popt ∈ Π∗Goal be an optimal solution path to a given planning

task Γ that consists ofD edges. IfHmax ≥ 0 is a constant such that for any n ∈ Popt,

H(n) ≤ Hmax, then the following will be an upper bound on the cost of any solution

returned by BFSg+H on Γ:

D ·max(Hmax, C
∗) .

Proof. Let Popt be an optimal solution path such that Popt = [n0, ..., nk] where

ninit = n0 and nk ∈ VGoal . Assume that Hmax is defined as given above, let C be

the cost of the solution found, and consider any two consecutive nodes ni and ni+1

on Popt. Since H(ni) ≤ Hmax, H(ni+1) ≥ 0, and κ(ni, ni+1) ≥ 0, this means that

the following is true:

H(ni)−H(ni+1)− κ(ni, ni+1) ≤ Hmax .

Now recall that INCH(ni, ni+1) is given by the maximum of the left side of this

inequality and 0. Since Hmax ≥ 0, the following is true:

INCH(nj, nj+1) ≤ Hmax

As this holds for any consecutive pair of nodes on Popt, this allows for the following

derivation which begins with the bound on C guaranteed by Theorem 6.3.7:

C ≤ C∗ +
k−1∑
j=1

INCH(nj, nj+1) (6.23)

≤ C∗ +
k−1∑
j=1

Hmax (6.24)

≤ C∗ + (k − 1) ·Hmax (6.25)

≤ C∗ + (k − 1) ·max(Hmax, C
∗) (6.26)

≤ k ·max(Hmax, C
∗) . (6.27)

Therefore, the lemma holds since k is the number of edges on Popt (ie. D = k).
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If all edges in the state-space have a cost of at least θ where θ is a constant

that is larger than 0, then there can be at most C∗/θ edges along the optimal path.

Therefore, D ≤ C∗/θ in which case we can apply Lemma 6.3.8 to immediately

yield the following corollary:

Corollary 6.3.9. Let Γ be a task such that for any (p, c) ∈ E, κ(p, c) ≥ θ for

some constant θ > 0. If Hmax ≥ 0 is a constant such that for any n ∈ Popt,

H(n) ≤ Hmax, then the following will be an upper bound on the cost of any solution

returned by BFSg+H on Γ:

(C∗/θ) ·max(Hmax, C
∗) .

If H is admissible, then C∗ ≥ H(n) for any n ∈ Popt. In that case, we can set

Hmax as C∗ and Corollary 6.3.9 implies the following:

Corollary 6.3.10. Let Γ be a task such that for any (p, c) ∈ E, κ(p, c) ≥ θ for some

constant θ > 0. If H is an admissible heuristic function, then the following will be

an upper bound on the cost of any solution returned by BFSg+H on Γ:

[C∗]2/θ .

As such, the worst-case solution quality for BFSg+H when H is admissible is

quadratic in C∗ if there is some positive minimum edge cost.

When using an admissible heuristic, this result identifies that there is a trade-

off of worst-case solution quality for worst-case runtime when deciding what re-

expansion policy to use with BFSg+H . When using the full re-expansion policy and

an admissible heuristic H , Martelli [61] and Mero [63] offered best-first variants

that can guarantee that any solutions found by rBFSg+H will require O(|V |2) node

expansions if V , while still ensuring that the solutions found are optimal. In con-

trast, if the search is set to never perform node re-expansions and all edges have a

cost that is larger than some positive constant θ, then a solution will be found in no

more than |V | iterations, but the cost of the solution found may be quadratic in C∗.

In the next section, we will show that there exists graphs of any size in which the

solutions found by nrBFSg+H exactly match the inconsistency of the heuristic along
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an optimal solution path. This means that there are graphs in which the solutions

found by nrBFS have a cost that is equal to the upper bound given in Theorem 6.3.7.

In contrast, while it is possible to construct graphs in which the solutions found

are Θ([C∗]2) (as we do in the next section), nrBFSg+H will always outperform the

bounds given in Lemma 6.3.8, and Corollaries 6.3.9 and 6.3.10 for any graph where

the optimal solution has more than two edges. To see why, notice that a key part

of the proof of Lemma 6.3.8 — from which the remaining bounds are built — was

the bounding of INC h(ni, ni+1) by Hmax. However, it is not possible for all edges

along an optimal solution path Popt to have an inconsistency of Hmax. To see why,

notice that if INCH(ni, ni+1) = Hmax then it must be the case that H(ni) = Hmax,

H(ni+1) = 0, and κ(ni, ni+1) = 0. Yet the fact that H(ni+1) = 0 implies that

INCH(ni+1, ni+2) cannot equal anything except 0. This means that there is a gap

between the bound on the inconsistency of an edge and the actual inconsistency. As

a result, BFSg+H will necessarily outperform the bound given in Lemma 6.3.8, and

Corollaries 6.3.9 and 6.3.10.

6.4 Worst-Case Bound Accuracy

In this section, we describe a process for constructing graphs that demonstrate the

tightness of the bound in Theorem 6.3.7 in the case of nrBFSg+H . We will then

show that this worst-case behaviour is not always happening in practice and use the

worst-case graphs to better understand why.

6.4.1 Worst-Case Graphs

We begin by identifying a set of worst-case graphs on which nrBFSg+H will find

solutions that are arbitrarily close to the inconsistency of H along the optimal path,

excluding the inconsistency on the first edge. In particular, a graph GP can be

constructed for any given path P with any possible heuristic values for the nodes

on P (admissible or inadmissible), such that P is the optimal solution path in GP

and this worst-case behaviour is observed when using nrBFSg+H . For example,

Figure 6.2 shows such a graph that has been built around the path P = [n0, ..., n6]
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Figure 6.2: Example worst-case graph for nrBFSg+H . The order in which nodes are
selected for expansion is shown italicized and in green.

given previously in Figure 6.1. The order in which these nodes are expanded is

shown italicized and in green.

This graph is given by the original path with the addition of two types of edges,

both shown in red. The first type of edge, shown in solid red, offers suboptimal

routes for the search to take around the portions of the optimal path on which there

is heuristic inconsistency. However, the cost of these edges is not so expensive

that the resulting path found to a node n does not prevent it from being expanded

before ancestors of n on the optimal solution path that have a lower g-cost error. For

example, notice the red edge from n3 to n6 which bypasses the edges (n4, n5) and

(n5, n6) on which the heuristic is inconsistent. The cost of this red edge is given by

the sum of g∗(n3, n6) and the inconsistency of the heuristic on path [n4, n5, n6]. The

costs of these edges include a constant α ≥ 0 whose purpose is to ensure that the

worst-case solution is found regardless of how ties are broken between nodes with

equal values for g + H . If ties are broken in favour of the node with higher g-cost

as is typical for such algorithms, then α can be set to 0.1 For other tie breaking

policies, α can be set as a positive value arbitrarily close to 0.

The second type of edge that has been added is shown as a dashed red arrow

from n0 to n6. This edge offers an alternative path to the goal node that has no nodes

in common with the optimal solution path except for n0 and n6. It is only needed

when using parent pointer updating, the solution returned by nrBFS that makes such

1This tie-breaking policy is equivalent to favouring the node with the lower H-cost.
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updates will outperform the bound if this alternative path is not included.

The resulting graph is one in which nrBFSg+H will find a solution whose cost

is equal to the sum of the optimal solution cost and the inconsistency of H along

P from n1 to n6, or arbitrarily close to that value if the tie-breaking policy does

not favour nodes with a higher g-cost. In particular, the solution found when using

nrBFSg+H on the graph in Figure 6.2 will cost 25 − 2ε, while C∗ is 19 and the

inconsistency of P from n1 to nk is 6.

The worst-case graph also demonstrates how solution suboptimality occurs as

a result of heuristic inconsistency. Heuristic inconsistency causes nodes that are

shallower on the optimal solution path to have a relatively higher heuristic value

than those deeper on the path. The result is that the shallower node with a higher

value “blocks” the algorithm from progressing along the optimal solution path. For

example, this is what happens with node n1 in Figure 6.2 as the heuristic value of

n1 relative to that of n2 pushes the search to first pursue the suboptimal path around

it. The result is that n2 is expanded prior to n1.

While the better path to n2 will later be found, the g-cost improvement will not

be propagated to the ancestors of n2 when re-expansions are not performed. The

result is that the value of g + H for any ancestor na of n2 will be inflated by the

g-cost error of n2. As such, suboptimal paths to the goal node — such as the one

given by the red dashed edge — will look more promising relative to the paths

through nodes on the optimal solution path.

The example in Figure 6.2 also demonstrates why the value ofH(ni)−H(ni+1)−

κ(ni, ni+1) for edges on which H is consistent do not factor into the bound. To see

this, consider the edge from n2 to n3. If the cost of this edge was 10 instead of

9 and the cost of dotted red edge was increased by 1, then nrBFSg+H would find

a solution of cost 26 − 2ε. This solution is still a cost of 6 − 2ε larger than C∗,

just like the solution found by nrBFSg+H when κ(n2, n3) = 9. This would also

be true for any κ(n2, n3) ≥ 2 provided that the dotted red edge was adjusted ac-

cordingly. Intuitively, this shows that nrBFSg+H cannot “make up” on g-cost error

that has been accrued along optimal paths using an edge from ni to ni+1 for which

H(ni)−H(ni+1)− κ(ni, ni+1) is a negative number.
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Below we will describe in more detail how such graphs can be constructed

around an arbitrary given path.

Constructing Worst-Case Graphs

To construct such graphs around any given path P = [n0, ..., nk] it is necessary

to identify the inconsistent portions of P that do not include (n0, n1). This means

that we will be looking for every maximally long subpath [ni, ..., nj] of P where

1 ≤ i < j ≤ k on which all edges are inconsistent. Formally, this means that

[ni, ..., nj] satisfies the all of the following conditions:

1. ∀i′ where i ≤ i′ < j, INCH(ni′ , ni′+1) > 0.

2. Either i = 1 or INCH(ni−1, ni) = 0.

3. Either j = k or INCH(nj, nj+1) = 0.

For example, consider the subpath [n4, n5, n6] in Figure 6.2. This is a maximally

long inconsistent subpath since INCH(n4, n5) = 3 and INCH(n5, n6) = 1 (satis-

fying condition 1), INCH(n3, n4) = 0 (satisfying condition 2), and n6 is the last

node on the path (satisfying condition 3).

For each such maximally long inconsistent subpath [ni, ..., nj], an edge is added

from ni−1 to nj with a cost given as follows:

g∗(ni−1, nj)− ε+

j−1∑
i′=i

INCH(n′i, ni′+1) .

As an example, let us again consider [n4, n5, n6] in Figure 6.2. The edge added to

go around this subpath will go from n3 (which is the parent of n4) to n6, and the

cost of this edge will be g∗(n3, n6) − ε + 4. Since g∗(n3, n6) = 7, the cost of this

edge is 11−ε. This edge starts at n3 and not n4 so that the high heuristic value of n4

relative to its descendents will block the search from progressing along the optimal

solution path and push it to take the route around [n4, n5, n6]. The other maximally

long inconsistent subpath of [n1, n2] is handled similarly, though notice that this

subpath does not include n0 since the inconsistency of (n0, n1) cannot impact the

quality of solutions found.
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Figure 6.3: Example worst-case graph when H is admissible. The order in which
nodes are selected for expansion is shown italicized and in green.

When using parent pointer updating, an additional edge is needed from n0 to nk

whose cost is equal to the sum of C∗ and the inconsistency of H along Popt from

n1 to nk, less d · ε where d is the number of maximally long inconsistent subpaths

of Popt. For example, d = 2 in Figure 6.2.

6.4.2 Worst-Case Graphs for Admissible Heuristics

The graph construction procedure described above can also be used to generate

graphs that have an admissible heuristic on which nrBFSg+H will find solutions

that are quadratic in C∗ as suggested by Corollary 6.3.10. To do so, start with

any path [n0, ..., nk] that is to be the optimal solution path in the completed graph,

where all edges on this path have a cost of at least θ for some constant θ > 0. For

each node ni, we will assign the heuristic values as follows. If i = 0 or i is odd,

set H(ni) as the cost from ni to nk along P . Otherwise, set H(ni) to 0. To this

path add the edges as defined by the construction above. For example, given path

P = [n0, ..., n6] such that all the edges on P have a cost of 1, the result of this

process is the graph with an optimal solution cost of 6 shown in Figure 6.3. In this

graph, nrBFS will find the path of cost 12− 2ε.

Now let us demonstrate that when using this assignment of heuristic values,

nrBFSg+H will find solutions that are quadratic in C∗ when the edges are added ac-

cording to the construction given above. To do so, consider the path P = [n0, ..., nk]

such that the edge costs between these nodes are all 1. When using the heuristic
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value assignment described above, this means thatH(ni) = k−i if i is 0 or odd, and

H(ni) = 0 if i is a positive even number. As a result, INCH(ni, ni+1) = k − i− 1

if i > 1 if i is odd and INCH(ni, ni+1) = 0 if i is even and i > 0. If k is odd, then

the inconsistency along P is given by the following sum:

k−1∑
j=1

INCH(nj, nj+1) = (k − 2) + 0 + (k − 4) + 0 + ...+ 1 + 0 (6.28)

=

(k−1)/2∑
j=1

2 · j − 1 (6.29)

= −(k − 1)/2 + 2 ·
(k−1)/2∑
j=1

j (6.30)

= −(k − 1)/2 + 2[(k − 1)/2][(k − 1)/2 + 1]/2 (6.31)

= (k − 1)2/4 (6.32)

By Theorem 6.3.7, any solution found by nrBFSg+H on a graph in which P is

an optimal solution path will therefore cost no more than C∗ + (C∗ − 1)2/4 =

(C∗ + 1)2/4 since C∗ = k.2 By the graph construction described above, we can

actually construct graphs of any size in which the solutions found by nrBFSg+H

will be arbitrarily close to this value. Therefore, the quadratic behaviour suggested

by Theorem 6.3.10 is possible.

If H(n0) is changed from being equal to h∗(n0) to being equal to h∗(n0) − α

(or h∗(n0) − µ for any µ ≥ α), then even if nrBFSg+H is enhanced by pathmax

[63], this worst-case solution will still be found on such graphs. When using this

technique, the heuristic value given to a node c generated by the expansion of p is

given by the following:

max(H(c), H(p)− κ(p, c)) .

This means that the heuristic value for c will beH(c) unlessH(c) < H(p)−κ(p, c)

or H(p)−H(c)− κ(p, c) > 0. This can only be true if INCH(p, c) > 0.

When the modification to H(n0) described above is made, then all of the added

red edges will have an inconsistency of 0. As such, pathmax will not increase the

2If k is even, a similar procedure can be used to derive a bound of C∗ · (C∗ + 2)/4.
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heuristic value of nodes generated along a red edge and so these nodes will still be

expanded before their ancestors with less g-cost error. The result is that the same

solutions are found whether pathmax is used or not.

6.4.3 The Worst-Case Bound in Example Domains

While the graphs just constructed demonstrate that the worst-case suggested by the

bounds is possible, even nrBFSg+H will not always find solutions of such quality.

For example, consider any graph in which there is only a single solution path. In

such a graph, any solution found will necessarily be optimal regardless of how much

inconsistency there is along the optimal path.

Even in graphs with multiple solution paths, the bound will still often be out-

performed. For example, let us reconsider the worst-case graphs given above. In

these graphs, g-cost error is accrued by using the added (ie. red) edges to bypass

inconsistent subpaths on the optimal solution. If the cost of these edges is not as

high as defined in the construction, the endpoints of the edges are changed, or if

these edges do not appear at all, nrBFSg+H will find higher quality solutions.

As a result, nrBFSg+H can often outperform the bound in problems that are

not crafted specifically for inducing worst-case behaviour. For example, consider

the case in which a weight 10 WA∗ is used on the pathfinding problems described

above. In this domain, nrWA∗ finds solutions that are an average of 18% more

costly than optimal, which is worse than the 12% solution suboptimality seen when

nodes are re-expanded. However, this is substantially better than the upper bound of

475% suboptimality that is guaranteed by Theorem 6.3.7, where this value has been

found by calculating the inconsistency of the heuristic over the optimal solution

paths found by A∗.

The bound is more accurate when the domain in question is given by Martelli’s

family of graphs. For any M ≥ 3, this family includes a graph with M + 1

vertices on which A∗ will require Θ(2M) node expansions to find a solution. If

re-expansions are not performed, then the solutions found can be shown to be no

larger than 1.5 times larger than the optimal solution.3 In these graphs, the upper

3All results regarding the solution quality found by nrBFS when applied to Martelli’s graphs are
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bound given by Theorem 6.3.7 is C + |V | − 2 where C is the cost of the solution

actually found. Since both C∗ and C are O(Θ|V |), this deviation from the bound is

insignificant.

6.5 Weighting with Bounding Functions

Recall that rWA∗ uses the evaluation function g + w · h for some admissible h. In

Chapter 5, it was shown that the WA∗ evaluation function is of the form g + B(h)

where B is a bounding function and that for a large class of bounding functions,

rBFSg+B(h) is guaranteed to satisfy B. In this section, we will use the theory devel-

oped above to find bounds for a BFS that uses an evaluation function of the form

g + B(h), regardless of the re-expansion policy being used. We will begin with a

bound for BFSg+B(h) in the case that the heuristic h is admissible but inconsistent.

This will be followed by an extension of a well-known result that any solution found

by nrWA∗ will cost no more than w ·C∗ if the heuristic h being weighted is consis-

tent. In particular, we will demonstrate that BFSg+B(h) will satisfy B provided that

the rate of growth of B never slow downs.

Notice the heuristic H given by H = B(h) will not necessarily satisfy the

assumption made earlier that H(n) = 0 for any goal node n. However, H = B(h)

will satisfy a weaker assumption that H(n) = b0 for any goal node n where b0 is

some non-negative constant (ie. b0 = B(0)). The stronger assumption that all goal

nodes have a heuristic value of 0 was used instead of this weaker assumption so

as to maintain the clarity of the theorem statements. However, the bounds derived

above can also be shown to be true even if only this weaker condition is assumed,

and so these bounds will be used in the analysis below. For an overview of why

these bounds apply even if only this weaker condition is assumed, see Section B.3

of Appendix B.

shown in Section A.3 of Appendix A.
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6.5.1 Weighting An Inconsistent but Admissible Heuristic

Let us first consider a BFSg+B(h) search in which h is admissible, but perhaps incon-

sistent. This algorithm can be viewed as an instance of BFSg+H where H = B(h),

which will allow us to use the theory developed above to find bounds for BFSg+B(h).

Now let Popt = [n0, ..., nk] be an optimal solution path to a given task. Since h is

admissible, this means that h(ni) ≤ h∗(ni) ≤ C∗ for any node ni ∈ Popt. If B

is monotonically non-decreasing, this also means that B(h(ni)) ≤ B(C∗) for any

ni ∈ Popt. This allows us to immediately use Lemma 6.3.8 and Corollary 6.3.9 to

show the following:

Theorem 6.5.1. Let Γ be a task such that for any (p, c) ∈ E, κ(p, c) ≥ θ for some

constant θ where θ > 0. If h is an admissible heuristic and B is a monotonically

non-decreasing function such that for any x ≥ 0, B(x ≥ x), then the following will

be an upper bound on the cost of any solution returned by BFSg+B(h) on Γ:

C∗ ·B(C∗)/θ .

For example, this result guarantees that any result found by nrWA∗ will have a

cost of no more than w ·(C∗)2/θ even if the heuristic being weighted is inconsistent.

6.5.2 Bounding B-Consistent Heuristics

While the previous bound applies regardless of how inconsistent the admissible

heuristic h is, we will now show that for many bounding functions we can also

guarantee that BFSg+B(h) will satisfy B if h is consistent, regardless of the re-

expansion policy in use. To demonstrate this fact, we will first require the following

definition:

Definition 6.5.2. Let B be a bounding functions such that for all x ≥ 0, B(x) ≥ x

and B is monotonically non-decreasing. Given nodes p and c where c ∈ succ(p), a

heuristic H is said to be B-consistent on edge (p, c) if the following is true:

H(p)−H(c) ≤ B(h∗(p))−B(h∗(c)) .

183



Like the standard definition of heuristic consistency, this property describes lim-

itations on how much the heuristic can decrease from parent to child. Notice that if

B is the optimal bounding function B(x) = x and c is along the lowest-cost path

from p to a goal node, then this condition simplifies as follows:

H(p)−H(c) ≤ B(h∗(p))−B(h∗(c))

≤ h∗(p)− h∗(c)

≤ κ(p, c) .

which is the standard definition of consistency.

In the following theorem, we show that if a heuristic is B-consistent for every

edge along some optimal path, then BFSg+H will satisfy B, regardless of the re-

expansion policy being used.

Theorem 6.5.3. LetB be a bounding function such that ∀x ≥ 0, y ≥ 0, B(x+y) ≥

B(x) + y, and let Popt = [n0, ..., nk] be an optimal solution path to a task Γ. If the

heuristic functionH isB-consistent on every edge (ni, ni+1) where 1 ≤ i < k, then

BFSg+H will satisfy B.

Proof. Let B and Popt be defined as described above, and let H be a heuristic that

is B-consistent on every edge (ni, ni+1) where 1 ≤ i < k. This proof will work

as follows: first we will show that under these conditions, the inconsistency of H

along Popt will be at mostB(C∗)−C∗, and then we will use Theorem 6.3.7 to show

that any solution found will cost no more than B(C∗).

The bound on the inconsistency of H along Popt will be shown by induction. In

particular, we will show that the inconsistency of H along [n0, ..., nj] is bounded by

B(h∗(n0))−B(h∗(nj))− g∗(n0, nj) for any j where 0 ≤ j ≤ k.

Let us begin with the base case of j = 1. When j = 1, the path consists solely

of the edge (n0, n1) so the sum of the inconsistency along this path is given by

INCH(n0, n1). There are now two cases to consider. In the first, INCH(n0, n1) =

0. To show that B(h∗(n0))− B(h∗(n1))− g∗(n0, n1) ≥ INCH(n0, n1) notice that

B(h∗(n0)) > B(h∗(n1)) + g∗(n0, n1) by the assumption made about B and the fact

that h∗(n0) = h∗(n1) + g∗(n0, n1) since n1 is along the optimal solution path Popt
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from n0 to the nearest goal node. As INCH(n0, n1) = 0 in this case, this shows that

B(h∗(n0)) − B(h∗(n1)) − g∗(n0, n1) is at least as large as INCH(n0, n1). Thus,

this case is handled.

In the second case, INCH(n0, n1) > 0 and so INCH(n0, n1) = H(n0) −

H(n1)− κ(n0, n1). We can now perform the following derivation:

INCH(n0, n1) = H(n0)−H(n1)− κ(n0, n1)

≤ B(h∗(n0))−B(h∗(n1))− g∗(n0, n1) .

This last line holds since H is B-consistent on this edge and by the fact that

g∗(n0, n1) = κ(n0, n1) since n0 and n1 are on Popt. Therefore, the base case holds.

Now assume that the statement is true for the path [n0, ..., nj] and consider

[n0, ..., nj, nj+1]. Once again, there are two cases. In the first, INCH(nj, nj+1) = 0.

The inconsistency along [n0, ..., nj, nj+1] will therefore be the same as the inconsis-

tency along [n0, ..., nj], and so B(h∗(n0))−B(h∗(nj))− g∗(n0, nj) will bound the

inconsistency along [n0, ..., nj, nj+1] by the induction hypothesis. This case will

then be handled by the fact that B(h∗(n0)) − B(h∗(nj+1)) − g∗(n0, nj+1) is no

smaller than B(h∗(n0))−B(h∗(nj))− g∗(n0, nj) due to the following:

B(h∗(nj)) + g∗(n0, nj) = B(κ(nj, nj+1) + h∗(nj+1)) + g∗(n0, nj) (6.33)

≥ B(h∗(nj+1)) + κ(nj, nj+1) + g∗(n0, nj) (6.34)

≥ B(h∗(nj+1)) + g∗(n0, nj+1) . (6.35)

Line 6.33 holds since h∗(nj) = κ(nj, nj+1) + h∗(nj+1) by the fact that nj+1 is

the child of nj along an optimal path to the nearest goal node from nj . Line 6.34

follows by the assumption made on B. The final line holds due to the fact that

g∗(n0, nj+1) = κ(nj, nj+1) + g∗(n0, nj) since an optimal path from n0 to nj+1

passes through nj . Therefore, the statement holds if INCH(nj, nj+1) = 0.

Now suppose that INCH(nj, nj+1) > 0. In this case, we can perform the fol-
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lowing derivation:

j∑
i=0

INCH(ni, ni+1)

= INCH(nj, ni+j) +

j−1∑
i=0

INCH(ni, ni+1) (6.36)

= H(nj)−H(nj+1)− κ(nj, nj+1) +

j−1∑
i=0

INCH(ni, ni+1) (6.37)

≤ B(h∗(nj))−B(h∗(nj+1))− κ(nj, nj+1) +

j−1∑
i=0

INCH(ni, ni+1) (6.38)

≤ B(h∗(nj))−B(h∗(nj+1))− κ(nj, nj+1)

+B(h∗(n0))−B(h∗(nj))− g∗(n0, nj) (6.39)

≤ B(h∗(n0))−B(h∗(nj+1))− g∗(n0, nj+1) . (6.40)

The first line follows by expanding the summation. Line 6.37 then holds since

INCH(nj, ni+j) > 0, while line 6.38 follows by the assumption that H is B-

consistent on every edge along Popt. Line 6.39 holds by the induction hypothesis.

The final line then follows since κ(nj, nj+1) + g∗(n0, nj) is equal to g∗(n0, nj+1).

Having handled all cases, we have shown that the inconsistency ofH along [n0, ..., nj]

will be at most B(h∗(n0))−B(h∗(nj))− g∗(n0, nj).

Notice how this statement applies when j = k. Since h∗(n0) = g∗(n0, nk) =

C∗, this means that the inconsistency along Popt is no more thanB(C∗)−B(h∗(nk))−

C∗. As B(h∗(nk)) = B(0) ≥ 0, this means that the value of this inconsistency is at

most B(C∗)− C∗.

Now this is the inconsistency along the entire length of Popt, which is an upper

bound on the portion from n1 to nk since INCH(n0, n1) ≥ 0. Therefore, B(C∗)−

C∗ is an upper bound on the inconsistency along the relevant portion of the path

needed to apply Theorem 6.3.7. That theorem states that the solution found by

BFSg+H will therefore be no larger than B(C∗) − C∗ + C∗ = B(C∗), and so the

theorem is proven.

Having shown that BFSg+H will satisfyB ifH isB-consistent, we now identify

a set of bounding functions for which B(h) is B-consistent if h is consistent.
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6.5.3 Bounding Functions with a Non-Decreasing Rate of Growth

Recall that the evaluation function used by nrWA∗ is of the form g + H where

H = w · h for some admissible heuristic h. If h is also consistent, then notice the

following is true where c ∈ succ(p):

H(p)−H(c)− κ(ni, ni+1) = w · h(p)− w · h(c)− κ(p, c) (6.41)

= w · (h(p)− h(c))− κ(p, c) (6.42)

≤ w · κ(p, c)− κ(p, c) (6.43)

≤ (w − 1) · κ(ni, ni+1) , (6.44)

where the third line of this derivation holds since h(ni) ≥ h(ni+1)− κ(ni, ni+1).

Now suppose that c is along a path from p to the nearest goal node. In that case,

h∗(p) − h∗(c) = κ(p, c). This also means that w · h∗(p) − w · h∗(c) = w · κ(p, c).

This can alternatively be written as Bw(h∗(p)) − Bw(h∗(c)) = w · κ(p, c) for the

linear suboptimality bounding function Bw(x) = w · x. When this is substituted in

to the inequality in line 6.44, we see that if c is along a path from p to the nearest

goal node then the following is true:

H(p)−H(c) ≤ Bw(h∗(p))−Bw(h∗(c)) .

This of course means that the heuristic H = w · h is Bw-consistent along any edges

on an optimal solution path provided that h is consistent on this edges. We can now

use Theorem 6.5.3 to show that any solution found by BFSg+w·h will cost no more

than Bw(C∗) = w · C∗ if h is consistent As such, this proves the known bound on

the solutions found by nrWA∗ when the heuristic being weighted is consistent.

The linear suboptimality bounding function is not the only bounding function

for which BFSg+B(h) will find solutions of at most B(C∗) regardless of the re-

expansion policy in use. In particular, we can use Theorem 6.5.3 to show that this

will be true of any bounding function whose rate of growth is non-decreasing. This

is formalized by the following theorem:

Theorem 6.5.4. BFSg+B(h) will satisfy B if all of the following conditions hold:

1. h is consistent.
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2. ∀x ≥ 0, y ≥ 0, B(x+ y) ≥ B(x) + y .

3. ∀x ≥ 0, y ≥ 0, z ≥ 0, x ≥ y ⇒ B(x+ z)−B(y + z) ≥ B(x)−B(y) .

Proof. Let Popt = [n0, ..., nk] be an optimal solution path, h be a consistent heuris-

tic, and assumeB satisfies the conditions given above. We will now show thatB(h)

is B-consistent on every edge on Popt. To do so, consider any pair of consecutive

nodes ni and ni+1 on Popt where 0 ≤ i < k.

There are two cases to be handled. In the first, h(ni) < h(ni+1). In that case,

B(h(ni)) − B(h(ni+1)) < 0 since B is monotonically non-decreasing. However,

as h∗(ni) ≥ h∗(ni+1), this similarly means that B(h∗(ni)) − B(h∗(ni+1)) > 0.

Therefore, B(h(ni)) − B(h(ni+1)) ≤ B(h∗(ni)) − B(h∗(ni+1)) and so B(h) is

B-consistent on edge (ni, ni+1).

In the second case, h(ni) ≥ h(ni+1) and so B(h(ni)) − B(h(ni+1)) ≥ 0. This

allows for the following derivation:

B(h(ni))−B(h(ni+1)) ≤ B(h(ni) + h∗(ni+1)− h(ni+1))

−B(h(ni+1) + h∗(ni+1)− h(ni+1)) (6.45)

≤ B(h(ni+1) + κ(ni, ni+1) + h∗(ni+1)− h(ni+1))

−B(h∗(ni+1)) (6.46)

≤ B(h∗(ni))−B(h∗(ni+1)) . (6.47)

Since h is consistent, h∗(c)−h(c) ≥ 0 and so line 6.45 holds by the assumption that

property 3 holds forB. Line 6.46 then holds since h is consistent which implies that

h(ni) ≤ h(ni+1) + κ(ni, ni+1). The final line then holds by the fact that κ(ni, c) +

h∗(ni+1) = h∗(ni) since ni+1 is the child of ni along Popt.

Having handled both cases, the heuristicB(h) isB-consistent on all edges along

Popt. Therefore, BFSg+B(h) satisfies B by Theorem 6.5.3.

Let us now look at the third condition on B specified by this theorem. If B

is twice differentiable and for all x ≥ 0, B′′(x) ≥ 0, then condition 3 will neces-

sarily hold. This means that BFSg+B(h) will satisfy B if the rate of growth of this

function is never decreasing, regardless of the re-expansion policy in use. As such,
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the theorem identifies that for bounding functions such as the linear suboptimality

bounding function Bw(x) = w · x and other fast growing bounding functions like

Bp(x) = max(x, xp) for p ≥ 1 and Ba(x) = max(x, ax) for a > 1, a BFSg+B(h)

can be set to never re-expand nodes and it will still satisfy the bound provided that

h is consistent. Thus, the theorem extends the well-known bound which was known

for nrWA∗ to apply to both other bounding functions and any re-expansion policy.

6.5.4 Bounding Functions with a Decreasing Rate of Growth

While Theorem 6.5.4 can be used to show that nrBFSg+B(h) will satisfy B if B

never slows the rate at which it grows, it cannot be applied in the case of bounding

functions that do slow the rate at which they grow. This is not simply a matter of the

argument not applying to such graphs, as we can construct graphs for a given slow-

growing bounding function for which B is not satisfied. For example, consider the

following bounding function:

Blog2
(x) =

{
x+ log2 x, if x ≥ 1

x, if x < 1 .

Figure 6.4 shows an example in which nrBFSg+Blog2
(h) will find a solution that is

worse thanBlog2
(C∗) regardless of the tie-breaking policy in use and whether or not

parent pointer updates are performed. In the figure, the nodes on the optimal path

[n0, n1, n2, n3, n4] are labelled where n + 0 = ninit and the goal node is n4 = ng.

The cost of this path is 14. The value of the consistent heuristic h is shown inside

the circle representing a node and the expansion order is shown italicized and in

green. The evaluation of each node according to g + Blog2
(h) at both the time the

node is first generated when it is expanded (since it will be the same in all cases) is

shown in the figure, and is denoted by Φ.

The path found by nrBFSg+Blog2
(h) is the rightmost path from top to bottom

which has a cost of 18. This is more suboptimal than is allowed by the bounding

function which requires that any solution returned have a cost of no more than

Blog2
(C∗) ≈ 17.8.

The issue that nrBFSg+H has with such bounding functions with a slowing rate

of growth is that the amount of inconsistency introduced on edges between nodes
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Figure 6.4: nrBFSg+Blog2
(h) does not satisfy the bound in the given graph. The

expansion order is shown italicized and in green and the value of Φ(n) = g +
Blog2

(h(n)) is shown for each node at the time it is first generated/expanded.

that have a low heuristic value is larger than the inconsistency introduced on edges

between nodes with a higher heuristic value. To see this, consider the edge (n1, n2)

in Figure 6.4 and notice that the following is true on this edge:

h(n1)− h(n2) = h∗(n1)− h∗(n2) = κ(n1, n2) = 4 .

Now consider the difference in the H values of these nodes where H = Blog2
(h):

H(n1)−H(n2) ≈ 7.3− 1 = 6.3 .

In contrast, notice that h∗(n1) = 13, h∗(n2) = 9, and so the following is also true:

Blog2
(h∗(n1))−Blog2

(h∗(n2)) ≈ 16.7− 12.2 = 4.5 .

The inconsistency along this edge introduced by the bounding function in the case

that h = h∗ would therefore be less than the amount introduced as is. Moreover,

H(n1) − H(n2) > B(h∗(n1)) − B(h∗(n2)) and so the heuristic H = Blog2
(h) is

not Blog2
-consistent on this edge.

While nrBFSg+B(h) will not satisfy B in general if B is a bounding function

with a decreasing rate of growth, there are cases in which we can show that it will.
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One of these is if there is an optimal solution path along which the heuristic values

are monotonically non-decreasing. This is formalized by the following theorem:

Theorem 6.5.5. BFSg+B(h) will satisfy B if all of the following conditions hold:

1. h is consistent.

2. ∀x ≥ 0, y ≥ 0, B(x+ y) ≥ B(x) + y .

3. There exists an optimal solution path [n0, ..., nk] such that h(ni) ≥ h(ni+1)

for all 0 ≤ i < k .

The proof of this theorem can be found in Section A.4 of Appendix A. Notice

that in the case ofBlog2
, the theorem guarantees that if h is consistent and monotoni-

cally non-decreasing along an optimal solution path, then nrBFSg+Blog2
(h) is guaran-

teed to find a solution that satisfies Blog2
. As such, the reason why nrBFSg+Blog2

(h)

does not satisfy the bound in Figure 6.4 is not solely due to the edge (n1, n2) on

which the Blog2
(h) is not Blog2

-consistent. The problem nrBFSg+Blog2
(h) faces in

this graph is that there are edges like (n1, n2) which are highly inconsistent and

there are edges like (n2, n3) on which the heuristic increases, thus allowing there to

be further inconsistency further on down the optimal path when the heuristic later

decreases. For example, in the case of Figure 6.4, the increase in the heuristic along

edge (n2, n3) allows for another highly inconsistent edge in (n3, n4).

Note that Theorem 6.5.5 identifies one set of heuristic conditions in which

nrBFSg+B(h) can be used safely to satisfy B even for bounding functions with a

decreasing rate of growth. Identifying others remains a topic for future work.

6.6 Chapter Summary

This chapter presents a formal analysis of the impact that not re-expanding nodes

can have on the quality of solutions returned by a best-first search. In doing so, we

have increased our understanding of how this technique can affect the performance

of a search algorithm. In particular, the inconsistency of a heuristic along an optimal

solution path is shown to bound the suboptimality of the solutions found when not

191



performing re-expansions, regardless of the re-expansion policy being used. This

bound was shown to be tight in the case of nrBFS through the introduction of a

family of worst-case graphs on which this algorithm finds solutions with a cost that

is equal to the upper bound. The bound was then used to show that the impact of not

re-expanding nodes in A∗ would be at worst a quadratic decrease in the quality of

solutions found. Finally, we considered evaluation functions of the form g + B(h)

where B is a bounding function and h is an admissible heuristic. In doing so,

we identified a set of bounding functions for which nrBFS could be guaranteed to

satisfyB provided that the heuristic being weighted was consistent. The bound was

also used to derive worst-case bounds in the case that the heuristic being weighted

was not consistent.
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Chapter 7

Conclusion

The problem we have considered in this dissertation is that facing a system designer

constructing a suboptimal heuristic search-based system: there is a large space of

design choices to be made and it is often not obvious how to make these choices

effectively. The goal in this thesis has been to better identify the space of options

available to such a system designer, improve our understanding of how certain de-

sign decision impact search, and consider how to handle a large design space when

problem-solving must begin immediately without knowing much about the problem

at hand. In this chapter, we summarize the contributions made in this dissertation

and then describe several directions for future research.

7.1 Contributions

In this section, we briefly describe the contributions made in this dissertation.

7.1.1 Multi-Core Planning with a Portfolio

In Chapter 3, it was demonstrated that we can deal effectively with a large space

of design options in the case that little is known ahead of time about the problems

to be solved through the use of an algorithm portfolio. We do so in building the

shared memory, multi-core ArvandHerd planner. This planner was built specifi-

cally to avoid the memory issues that can arise when trying to use a portfolio on a

shared memory machine. ArvandHerd was the winner of the multi-core track of

both the 2011 and 2014 International Planning Competitions. The study in Chap-
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ter 3 identifies several of the design decisions that can introduce variance into the

performance of the different components of the ArvandHerd portfolio, Arvand

and LAMA-2008, and demonstrates that the strength of ArvandHerd is due to

it being able to mix and match the strengths of multiple techniques. As part of

this investigation, we also developed an effective parallel version of the random

walk-based Arvand planner.

7.1.2 Random Exploration and Random Baselines

In Chapter 4 we considered the use of random exploration when added to a GBFS

search. In particular, we introduced ε-greedy node selection as a simple technique

for isolating the impact that adding random exploration has on the performance

of a planner. This technique demonstrates that adding variation into GBFS us-

ing random exploration can greatly improve the performance of the algorithm, as

it improves the coverage of both basic planners and a state-of-the-art planner in

LAMA-2011. This investigation thereby identifies random exploration as an op-

tion for system designers to consider using when building a GBFS-based planner.

We also introduced heuristic perturbation as a second simple technique for

adding random exploration into a search. This approach is riskier than ε-greedy

node selection, as it may force the search to disregard nodes with low heuristic val-

ues for a long time. However, this riskiness means that the technique pairs well

with ε-greedy node selection when they are used together in a portfolio.

Finally, we argued that given the positive impact seen when adding random ex-

ploration, it is necessary to evaluate GBFS enhancements that are based on problem

structure against random baselines to ensure that the improvements seen with these

techniques is not merely the result of the enhancements varying the search in a way

that is equivalent to random variation. In particular, we suggest testing such en-

hancements against equivalent techniques that replace the influence of the problem

structure with randomness. By doing so, we are more clearly isolating and identify-

ing the impact of that structure. The resulting study provided further confirmation

of the value of two existing techniques: preferred operators and multi-heuristic

best-first search.
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7.1.3 Satisfying Alternative Solution Quality Requirements

In Chapter 5, we introduced the concept of a bounding function to allow for a

system designer to have greater choice in the definition of solution quality require-

ments. We then analyzed existing algorithm frameworks and showed that if they

are modified appropriately, then they can be used to satisfy a large class of possible

bounding paradigms aside from the commonly used linear suboptimality bound.

The algorithm frameworks considered are anytime algorithms, best-first search al-

gorithms, iterative deepening algorithms, and focal list based algorithms. In doing

so, we have not only given system designers the opportunity to define solution qual-

ity requirements as they wish, but more clearly identify the set of algorithm options

that are available to them for a given requirement. Based on other properties of the

domain, the best suited algorithm can then be used.

To demonstrate that the modifications do lead to effective algorithms for bound-

ing functions aside from the linear suboptimal bound, these algorithms were each

tested in the types of problems they are best suited for when using a additive bound.

In all cases, the new versions of these algorithms were shown to effectively trade-off

solution quality for improved run-time.

7.1.4 Analyzing the Impact of Not Re-Expanding Nodes on So-
lution Quality

In Chapter 6, we formally analyze the impact that not using the full re-expansion

policy in a best-first search has on the quality of solutions. In doing so, we increase

our understanding of the never re-expand technique often used with best-first search

and thereby better equip a system designer in their decision of whether or not to

configure their system to re-expand nodes or not.

Our particular contributions are as follows. First, we show that the worst-case

solution quality when using any re-expansion policy in a BFS search is bound by a

measure of the inconsistency of the heuristic along the optimal solution path. This

bound is then shown to be tight through the description of a process for constructing

worst-case graphs in which the solutions found are arbitrarily close to those given

by the bound. We then consider the case in which the heuristic used by the algorithm
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involves weighting an admissible heuristic using some bounding function B. In

this analysis, we show that any solution found when not using the full re-expansion

policy will have a cost of at most C∗ · B(C∗). This means that if the heuristic is

admissible, any solution found will be at most quadratic in the optimal solution cost,

while nrWA∗ will find solutions that cost at most w ·(C∗)2. Finally, we identify a set

of bounding functions for which weighting a consistent heuristic is still guaranteed

to satisfy the given solution quality requirements.

7.2 Future Directions For Research

Dealing with large spaces of design choices will continue to be an important chal-

lenge when building high performance heuristic search-based systems. As such,

it continues to be important to improve our understanding of the space of design

choices available, how these decisions impact performance, and how to best com-

bine the strengths of different design decisions. In this section, we describe direc-

tions for future research that build upon the contributions in this thesis.

7.2.1 Improving Portfolio Construction

As mentioned in Chapter 3, the ArvandHerd portfolio was initially selected man-

ually prior to the 2011 International Planning Competition. Since that competi-

tion, other researchers have introduced effective techniques for automatically gen-

erating effective sets of parameters for a configurable system like Arvand and

LAMA-2008 that can then be used in a portfolio [81]. Using such an approach

would be expected to further improve the performance of a system like ArvandHerd.

Further analysis is still needed into what domains are still not handled well

by ArvandHerd. Such an investigation would be expected to help identify what

other planning approaches should be included alongside best-first search and ran-

dom walk-based search going forward. The inclusion of ε-greedy node selection

and heuristic perturbation should also be considered.
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7.2.2 Sharing Candidate Paths in ArvandHerd

While we have shown that ArvandHerd can effectively combine the strengths of

different planning approaches across different problems, it is often the case that dif-

ferent techniques are each better suited for different parts of the same state-space.

To better handle such problems, ideally the different approaches could share infor-

mation about progress made. In ArvandHerd, the information shared could take

the form of the candidate paths found. Arvand generates candidate paths through

its search episodes and stores the best of these paths in a walk pool. Every node

in LAMA’s open list represents a candidate path which can be easily extracted. By

adding candidate paths from LAMA’s open list into Arvand’s walk pool, and by

adding nodes from the Arvand search episodes into LAMA’s open list, these two

techniques may be able to share the progress each has made. The result will be that

random walk-based search may be used in regions of the state-space that are only

reached by LAMA, and vice versa. Doing so may improve the performance of the

planner if each of these approaches is best used in different regions of the space.

7.2.3 Characterizing the Impact of Random Exploration

While ε-greedy node selection has been shown to improve the performance of

GBFS in some domains, a better understanding is needed into what form of heuris-

tic error this approach is best able to help with. A similar investigation is needed

into better understanding the heuristic perturbation. A related question is whether it

is possible to automatically analyze a given domain and to use the collected infor-

mation to inform us on whether exploration is needed, and if so, how much should

be included (ie. what should be the value for ε or the noise level).

7.2.4 Adding Random Exploration to Other Algorithms

Further study is needed to determine if random exploration can also help improve

the performance of other algorithms, both when solution quality guarantees must

be satisfied and when any solution will suffice. For example, recall that A∗w greed-

ily exploits the heuristic from amongst those nodes in the focal list. Preliminary
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results suggest that modifying this approach to use ε-greedy node selection from

amongst those nodes in the open list can also improve search. Similarly, beam

search algorithms may also benefit from not always selecting the nodes with the

lowest heuristic values for expansion.

7.2.5 Satisfying Alternative Bounding Functions in Other Algo-
rithm Frameworks

In Chapter 5, we showed how existing algorithm frameworks could be modified to

satisfy a given bounding function. However, there are still several algorithm frame-

works which currently can only be used to satisfy linear suboptimality bounds. For

example, the theory provided does not immediately apply to bi-directional search,

though Rice and Tsotras [73] have demonstrated that bi-directional search could be

made to satisfy the additive bounding function by changing its termination crite-

ria. Generalizing this criteria so as to allow for other types of bounds represents

an important step in better understanding what algorithms are available to be used

when satisfying a given bounding function. The same is also true of the existing

parallelizations of rOCL algorithms that are known to either be optimal or to satisfy

linear suboptimality bounds [5, 49].

7.2.6 Estimating Execution Time of Suboptimal Algorithms

In recent years, there has been extensive work on estimating the runtime of optimal

algorithms, particularly IDA∗ [54, 56, 108]. These techniques have not been used

much for predicting the performance of suboptimal algorithms. There are some lim-

itations to doing so, since it is unclear how well these techniques will work when

the heuristics in use are inconsistent. However, if this line of research could be ef-

fectively applied towards predicting the performance of suboptimal algorithms at a

fixed solution quality requirement, such prediction techniques may allow for auto-

matic methods for effectively making design decisions between different evaluation

functions, heuristics, or algorithm frameworks.
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7.2.7 Preventing Re-Expansions in Other Algorithms

To satisfy a given bounding function B, focal list based algorithms are required to

use the full re-expansion policy. The only known bound when not doing so is that

the solution found by nrA∗w is exponential in w if the heuristic being weighted is

consistent [15]. It is currently not known how to bound the search if the focal list is

built using other bounding functions, or if the heuristic is not consistent.

Another possible direction for research is into developing other re-expansion

policies to be used with focal list based algorithms that will allow them to again

satisfy a desired bounding function. Our current hypothesis is that the g-cost error

of nodes in the open list can also be bound by the inconsistency along the optimal

paths to them if the search re-expands a node whenever the paths found to it would

not have been found in that order by nrBFS. This may allow the results in Chapter

6 to be extended to this other framework. It is expected that a similar approach may

also be used to develop policies for when to re-expand a node during an iterative

deepening search that uses a transposition table, while still guaranteeing some given

solution quality requirements.

Determining whether the analysis in Chapter 6 also extends to this and other

parallel OCL algorithms also remains as future work. It will also be necessary to

better understand the relationship between our analysis and recent work by Phillips,

Likhachev, and Koenig [70] who demonstrate how to use a never re-expand policy

in a parellel version of WA∗ search while still guaranteeing that the linear subopti-

mality bound is satisfied.

7.2.8 The Impact of Not Re-Expanding on Runtime

While we have introduced worst-case analysis of the impact of not re-expanding

nodes on the quality of solutions found on the algorithm, there is currently no theo-

retical analysis of the impact that it will have on the runtime. In our experience with

WA∗, not re-expanding nodes tends to harm performance for low weight values that

are larger than 1, but improve performance for higher weight values. However, this

behaviour has not been formally characterized. The analysis in Chapter 6 may aid
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in such research since it identifies what is the maximum value that the evaluation

function reach for all nodes that will be expanded.

7.2.9 Domain Specific Bounding

Most of the bounds given in Chapters 5 and 6 make no assumptions about the state-

space or the heuristic. As such, the worst-case bounds derived often greatly under-

estimates the quality of solutions actually found in practice. Identifying properties

of the state-space for which these bounds can be tightened could therefore have sub-

stantial practical consequences by allowing for the use of more greedy algorithms.

Another open question is in regards to finding lower-bounds of the optimal so-

lution cost after a suboptimal solution has been found. Currently, the only way to

do this is to consider all of the nodes in the open list and unopened lists at the end

of the search. Whether state-space or heuristic properties can be used to improve

these estimates is unknown.

7.3 Summary

In this dissertation, we have considered several aspects of the problem facing some-

one developing a heuristic search-based system: there is a large set of algorithm op-

tions and design choices that need to be set before the system can be deployed and

each of these can greatly impact performance. Our contributions have been in more

clearly identifying the options available, improving our understanding of the impact

of some of these options, and in demonstrating the effectiveness of using an algo-

rithm portfolio to deal with a large space of design choices when problem-solving

must begin without knowing much about the task to solve.

In terms of identifying the set of options available, we demonstrated that the

use of random exploration in a GBFS-based system can effectively improve the

performance of such systems. We have therefore clearly identified this option as

one that designers developing such systems should consider.

A second contribution made towards better identifying the set of options avail-

able concerns the case in which all solutions found must satisfy some given quality
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requirements. In particular, we have shown that four existing algorithm frameworks

can be made to satisfy even non-traditional forms of requirements. In doing so, we

allow the system designer the choice to select the most suitable of these frameworks

for the tasks at hand while still satisfying desired bounds.

We then focused on the best-first search framework and considered the impact

that not re-expanding nodes can have on solution quality. In particular, we showed

that the suboptimality of any solution found when not re-expanding nodes can be

bound in terms of a measure of the inconsistency of the heuristic along the optimal

solution paths. This investigation furthers our understanding of how this decision

decision can impact performance. As part of this work, we also identified when a

bounding function B could be used to weight a consistent heuristic such that B will

still be satisfied even when not re-expanding nodes.

Finally, we demonstrated that an algorithm portfolio could be used effectively

in the situation which occurs in automated planning in which little is known about

a given task before problem-solving begins. In particular, we described how an

effective portfolio-based planner could be constructed for use on a shared-memory

architecture. The resulting planner, ArvandHerd, not only won two consecutive

planning competitions, but was also shown to outperform several state-of-the-art

planners even in the case that they could be effectively parallelized.

201



Bibliography
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[15] Rüdiger Ebendt and Rolf Drechsler. Weighted A∗ Search - Unifying View
and Application. Artificial Intelligence, 173(14):1310–1342, 2009.
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Appendix A

Additional Formal Results

In this appendix, we include proofs of the theorems which are either largely based

on the work of others, or for simple statements that require a technical proof.

A.1 Algorithm Properties From Chapter 2

In this section, we include the proofs for the basic algorithm properties that were

described in Chapter 2.

A.1.1 Simple Observations about OCL Algorithms

In this section we define some simple properties of OCL algorithms that will be

useful in the following analysis. These properties include statements that nodes

will remain in the open or closed list for the remainder of the search after they have

been generated, the node selected for expansion can never decrease its own g-cost,

only the initial node can have a parent pointer set to NONE , and that the g-cost of

any node n corresponds to the cost of some path from ninit to n.

The first observation simply states that once a node is generated for the first

time, then at any time during the remainder of the search it will be in exactly one of

the open or closed list.

Observation A.1.1. If n ∈ OPENt ∪ CLOSEDt after t ≥ 0 iterations of an OCL

algorithm, then for any t′ ≥ t, one of the following will be true:

1. n ∈ OPENt′ and n /∈ CLOSEDt′ .
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or

2. n /∈ OPENt′ and n ∈ CLOSEDt′ .

This observation holds since once a node is put on the open list, it can only ever

be moved back and forth between the open and closed lists. Moreover, it can only

be added to the closed list if it is removed from the open list, and a node on the

closed list can only be added to the open list if it is removed from the closed list.

The next observation states that identifies exactly the set of nodes whose g-cost

can change due to a given expansion.

Observation A.1.2. Let n be the t-the node selected by an OCL algorithm, and let

n′ be a node such that n′ ∈ OPENt−1 ∪ CLOSEDt−1. Then gt−1(n′) 6= gt(n
′) if

and only if n 6= n′, n′ ∈ succ(n), and gt(n′) = gt(n) + κ(n, n′).

The next observation states that at any time during the execution of an OCL

algorithm, ninit will have a parent pointer set to NONE , and it will be the only

node on either the open or closed list such that its initial node is set to NONE .

Observation A.1.3. Suppose there have been t node expansions of an OCL al-

gorithm. Then parent t(ninit) = NONE and for any n ∈ OPENt ∪ CLOSEDt,

parent(n) = NONE if and only if n = ninit .

This observation holds since the parent pointer of a node n can only be set to

a node that generated n and since it is not possible to find a path to ninit that has a

lower cost than the initial g-cost of 0 assigned to that node.

The next lemma states that the g-cost of a node n corresponds to some path

from ninit to n consisting of nodes that are on either the open or closed list.

Lemma A.1.4. Suppose there have been t node expansions of an OCL algorithm

and let n be a node such that n ∈ OPENt ∪ CLOSEDt. Then there exists a path

P ∈ Πinit where P = [n0, ..., nk] such that the following are true:

1. n0 = ninit and nk = n .

2. gt(n) = C(P ) .
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3. ∀0 ≤ i ≤ k, ni ∈ OPENt ∪ CLOSEDt .

4. ∀0 ≤ i < j ≤ k, ni 6= nj .

5. ∀ni ∈ P , ∃t′ ≤ t such that gt′(ni) = C([n0, ..., ni]) .

Proof. This proof is by induction on the number of node expansions. In the base

case, there have been 0 node expansions, only ninit is in either the open or closed

list, and let P = [ninit ]. Since g0(ninit) = 0 = C(P ), n0 = ninit , and P clearly

satisfies conditions 3, 4, and 5, the statement holds in the base case.

Now suppose the statement holds after t ≥ 0 expansions. Let n′ be the t +

1-st node selected for expansion and let n be an arbitrary node in OPENt+1 ∪

CLOSEDt+1. We now have to handle a number of cases.

In the first case, n ∈ OPENt∪CLOSEDt and gt+1(n) = gt(n). This means that

the t + 1-st expansion did not change the g-cost of n. Let P be the path from ninit

to n guaranteed to exist by the induction hypothesis such that P satisfies conditions

1 through 5 after t expansions. Since all gt+1(n) = gt(n), all nodes along P must

remain in the open or closed list through the t+1-st expansion by Observation A.1.1,

this path clearly still satisfies conditions 1 through 5 after the t + 1-st expansion.

Therefore, the statement holds in this case.

Now suppose that n ∈ OPENt ∪ CLOSEDt and gt+1(n) < gt(n). This re-

quires that the g-cost of n was updated because the expansion of n′ resulted in the

generation of a lower g-cost path to n. As such, gt+1(n) = gt+1(n′) + κ(n′, n).

Let P ′ = [n0, ..., nk] be the path to n′ that is guaranteed to exist after t expansions

such that n0 = ninit , nk = n′, gt(n′) = C(P ′), and the remaining conditions are

also satisfied. By the previous case, these conditions will also apply for P ′ after the

t+ 1-st expansion.

We now let P = [n0, ..., nk, n] and will show that P satisfies conditions 1

through 5. Clearly P satisfies condition 1. P also satisfies condition 2 since

C(P ) = C(P ′) + κ(n′, n) = gt+1(n). P also satisfies condition 3 since the nodes

on P ′ will be in the open or closed list before and after the expansion of n′ by Ob-

servation A.1.1 and so will n. Condition 5 holds for ni ∈ P since it held prior to

the t+ 1-st expansion, and it holds for n by condition 2 which was just shown.
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Let us now consider condition 4. Since condition 4 held for P before the t+1-st

expansion, ni 6= nj for any 0 ≤ i < j ≤ k. Therefore, in order for condition 4 to not

hold for P after the t + 1-st expansion requires that n = ni for some 0 ≤ i ≤ k. If

this is true, then gt(ni) = gt(n) = C([n0, ..., ni]) by the induction hypothesis, which

implies that gt(n) ≤ C(P ) sinceC(P ) = C([n0, ..., ni])+C([ni, ..., nk)]. However,

gt+1(n) = C(P ) +κ(n′, n) since the g-cost of n was updated by the expansion of t.

Since κ(n′, n) ≥ 0 this means that gt+1(n) ≥ C(P ) which, when combined with the

previously shown fact that gt(n) ≤ C(P ), contradicts the fact that gt+1(n) < gt(n).

Therefore n 6= ni and condition 4 holds in this case. Having handled all conditions,

the statement is true if n ∈ OPENt ∪ CLOSEDt and gt+1(n) < gt(n).

The final case is if n is generated for the first time by the t + 1-st expansion.

As with the proof in the previous case, we will select P as [n0, ..., nk, n] where

P ′ = [n0, ..., nk] is the path to n′ guaranteed to exist and satisfy conditions 1 through

4 after t expansions by the induction hypothesis. The proof of conditions 1 through

4 are exactly the same as for n ∈ OPENt ∪ CLOSEDt and gt+1(n) ≤ gt(n).

Condition 5 then holds since ni 6= nj for any 0 ≤ i < j ≤ k by the induction

hypothesis, and n 6= ni since this is the first time n was generated. Therefore, the

statement is true in all cases.

A.1.2 The g-cost of Parent and Children Nodes

Lemma 2.2.3 states if a node nk is not expanded prior to its parent nk−1 along some

optimal path from ninit to nk, then the g-cost error of nk will be bound by the g-cost

error of nk−1 at the time it is first expanded. The proof is as follows:

Lemma 2.2.3. Let P = [n0, ..., nk−1, nk] be an optimal path from n0 = ninit to nk

for k > 0. If nk−1 is expanded for the first time by the t-th node expansion of an

OCL algorithm and nk is not one of the first t nodes expanded, then the following

is true for any t′ ≥ t

gδt′(nk) ≤ gδt (nk−1) .

Proof. Suppose nk−1 is the t-th node expanded. If nk is not one of the first t nodes

expanded, then it is either generated for the first time by this expansion, or it was
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already on the open list. If nk has been generated for the first time by the expansion

of nk−1, then its g-cost is set as gt(nk−1) + κ(nk−1, nk). If nk was already on the

open list, then its g-cost will be updated to gt(nk−1)+κ(nk−1, nk) if its g-cost is any

larger than that. As such, the g-cost of nk will be at most gt(nk−1) + κ(nk−1, nk)

regardless of whether nk is generated for the first time by the t-th expansion or if it

was previously on the open list. This allows us to perform the following derivation:

gt(nk) ≤ gt(nk−1) + κ(nk−1, nk) (A.1)

gδt (nk) + g∗(nk) ≤ gδt (nk−1) + g∗(nk−1) + κ(nk−1, nk) (A.2)

gδt (nk) + g∗(nk) ≤ gδt (nk−1) + g∗(nk) (A.3)

gδt (nk) ≤ gδt (nk−1) (A.4)

Line A.2 holds by the definition of g-cost error, line A.3 holds by the fact that

g∗(nk) = g∗(nk−1) + κ(nk−1, nk) since nk−1 is along an optimal path to nk, and

the final line holds by subtracting g∗(nk) from both sides. The full statement then

follows by the fact that the g-cost of a node is non-decreasing over time, where this

statement was formally stated by Observation 2.2.2.

We now consider the case in which the OCL algorithm is always performing

parent pointer updates:

Lemma 2.2.4. Let P = [n0, ..., nk−1, nk] be an optimal path from n0 = ninit to nk

for k > 0. If nk−1 is expanded by the t-th node expansion of an OCL algorithm that

always performs parent pointer updating, then the following is true for any t′ ≥ t

gδt′(nk) ≤ gδt (nk−1) .

Proof. If nk−1 is the t-th node expanded by an OCL algorithm that always performs

parent pointer updating, then either gt(nk) will be updated to gt(nk−1)+κ(nk−1, nk)

(because it is generated for the first time, updated in the open list, or moved back

from the closed list), or it will already have a g-cost that is no larger than this value.

In either case, gt(nk) ≤ gt(nk−1) + κ(nk−1, nk) and the same derivation can be

performed as in Lemma 2.2.3. The result then follows for the same reasons.
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A.1.3 The g-cost as an Upper Bound on Path Cost

In this section, we will show that for any node n on the open or closed list of an

OCL algorithm, there exists a unique path from ninit to n that follows the parent

pointers and that g(n) is an upper bound on the cost of this path. So as to show this

theorem, we begin with the following lemma:

Lemma A.1.5. Let P = [n0, ..., nk] be a path in Π such that after t iterations of an

OCL algorithm the following are true:

• ∀0 ≤ i ≤ k, ni ∈ OPEN ∪ CLOSED .

• ∀1 ≤ i ≤ k, parent t(ni) = ni−1 .

Then ∀0 < i < j ≤ k, ni 6= nj and the following holds:

gt(nk) ≥ gt(n0) + C(P ) .

Proof. The proof is by induction on the number of node expansions. In the base

case, there have been no expansions, the closed list is empty, and the open list

contains only ninit . In this case, the only path consisting of nodes on either the

open or closed list is [ninit ]. Since C([ninit ]) = 0 and g0(ninit) = 0, this means that

g0(ninit) ≥ g0(ninit) + C(P ) and the statement is true in this case.

Now suppose the statement is true after t ≥ 0 node expansions. Let n be the

t + 1-st node expanded, and let P = [n0, ..., nk] be some path in Π such that after

t + 1 node expansions it is true that for all 0 ≤ i ≤ k, ni is on either the open or

closed list and parent t(ni) = ni−1. We now consider two cases for P .

In the first case, assume that for any node ni ∈ P , the g-cost and parent pointer

of ni were not updated by the t+ 1-st node expansion, nor was ni generated for the

first time by the t+1-st node expansion. If this is true, then all the nodes on P were

on either in the open and closed list and that P existed as is prior to t + 1-st node

expansion. As such, the statement holds true for P after the expansion of n since it

held true prior to the expansion of n by the induction hypothesis.

Notice that the previous case applies in the situation of any path P = [n0, ..., nk]

for which n = nk and P satisfies the conditions of the lemma. This is because the
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expansion of n cannot update the g-cost or parent pointers of any such path to n.

To see this, suppose that n made such updates for some ni on P where i < k. Let

ni be the deepest such node on P , which means that the g-cost and parent pointer

of any node along [ni, ..., nk] was not changed by the expansion of n = nk,. As

such, [ni, ..., nk] must have satisfied the conditions of the lemma after t expansions,

and so gt(ni) ≤ gt(nk) since gt(nk) ≥ C([ni, ..., nk] + gt(ni) by the induction

hypothesis. However, gt(ni) ≤ gt(nk) contradicts the fact that the g-cost and parent

pointers of ni were updated by the expansion of n = nk, since doing so requires

that gt(ni) > gt(nk) + κ(nk, ni). Therefore, the g-cost and parent pointers of ni

cannot have been updated by the expansion of n, and so any path on which n is the

deepest node will be covered by the first, already handled, case.

In the second case that we consider, there is some node ni ∈ P which was either

generated for the first time by the t+1-st expansion, or whose parent pointer and g-

cost was updated as a result of this expansion. Since the parent pointer of ni will in

both cases be set to n, this means that n = ni−1. Notice that this means that at most

one node from P can have been generated or updated by the t + 1-st expansion, as

otherwise, the expansion of n = ni will update a node nj ∈ P where j < i and

this was just shown to not be possible. This also means that ni cannot be one of

the nodes in [n0, ..., ni−1] and so all the nodes on [n0, ..., ni−1, ni] are necessarily

unique by the induction hypothesis.

Now let us show first that gt(nk) ≥ gt(n0) + C(P ). Since the g-cost of ni

is being updated by the expansion of n = ni−1, gt+1(ni−1) = gt(ni−1) and so

gt+1(ni) = gt+1(ni−1) + κ(ni−1, ni) by the definition of an OCL algorithm . This

allows for the following derivation:

gt+1(ni) = gt+1(ni−1) + κ(ni−1, ni) (A.5)

≥ gt+1(n0) + C([n0, ..., ni−1]) + κ(ni−1, ni) (A.6)

≥ gt+1(n0) + C([n0, ..., ni]) (A.7)

Line A.6 is true since gt+1(ni−1) ≥ gt+1(n0) + C([n0, ..., ni−1]) follows from the

case just proven because all nodes on [n0, ..., ni−1] will have the same g-cost and

parent pointers before and after the expansion of ni−1. The final line then holds by

216



the definition of the cost function.

Notice that this last argument proves that gt(nk) ≥ gt(n0) +C(P ) is true in the

case that i = k. Let us now consider the case in which i < k, and notice that this

means that ni cannot have been generated for the first time by the t+1-st expansion.

This is because if i < k then there is some ni+1 whose parent pointer is ni, and this

is not possible if ni has just been generated and therefore has not previously been

expanded. As a result, [ni, ..., nk] existed as is prior to the t+1-st expansion, with ni

being the only node on this path that had its g-cost and parent pointer updated. This

means that gt(nk) ≥ gt(ni) + C([ni, ..., nk]) by the induction hypothesis. Since

gt+1(ni) < gt(ni) (because the g-cost of ni is updated by the expansion of ni−1)

and gt+1(nk) = gt(nk) (as ni is the only node from P that had its g-cost and parent

pointers updated), this means that gt+1(nk) ≥ gt+1(ni)+C([ni, ..., nk]). This allows

for the following derivation:

gt+1(nk) ≥ gt+1(ni) + C([ni, ..., nk]) (A.8)

≥ gt+1(n0) + C([n0, ..., ni]) + C([ni, ..., nk]) (A.9)

≥ gt+1(n0) + C([n0, ..., nk]) (A.10)

Line A.9 follows from line A.7 above, and the last line holds by the definition of C.

Therefore gt+1(nk) ≥ gt+1(n0) + C(P ) holds in the case that i < k.

Now let us show that in this case, ∀0 < i < j ≤ k, ni 6= nj . By the inductive

hypothesis, all nodes on [n0, ..., ni−1, ni] are unique, as are all nodes on [ni, ..., nk],

since the nodes on these paths did not change by the expansion of ni−1. Therefore,

it can only be false if there are nodes nj and nj′ such that 0 ≤ j < i − 1 < j′ ≤ k

and nj = nj′ . The path between these nodes is P ′ = [nj, ..., ni−1, ni, ..., n
′
j]. As

just shown, gt+1(nj) ≥ gt+1(nj′) + C(P ′), which is only possible if C(P ′) = 0

since nj = nj′ . This requires that all the nodes along P ′ have an equal g-cost of 0

after t+ 1 expansions. In particular, it means that gt+1(ni) = gt+1(nj′).

Since the parent pointers along [ni, ..., nj′ ] were unchanged by the t+1-st expan-

sion, this means that gt(nj′) ≥ gt(ni) +C([ni, ..., nj′ ]) by the inductive hypothesis.

This implies that gt(nj′) ≥ gt(ni) since C([ni, ..., nj′ ]) = 0 as just shown. How-

ever, the g-cost of nj′ was not changed by the t + 1-st expansion (since ni was
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the only node on P whose g-cost was changed), and so gt+1(nj′) = gt(nj′). This

means that gt+1(nj′) ≥ gt(ni) since gt(nj′) ≥ gt(ni), which in turn implies that

gt+1(ni) ≥ gt(ni) since gt+1(ni) = gt+1(nj′) as shown above. This is a contradic-

tion of the fact that the g-cost of ni was updated by the t + 1-st expansion, and so

gt+1(ni) < gt(ni). Therefore nj 6= nj′ and the statement holds.

Having handled all cases, the statement is true.

For the next step in the proof of the existence and uniqueness of the path from

ninit to n that is maintained implicitly using parent pointers, recall that a function,

ReconstructPath, was introduced which returned such a path. We will now

use Lemma A.1.5 to show that ReconstructPath is correct and will terminate.

We will then show that this function that we want, and then show that this path

satisfies the desired properties.

As detailed in Algorithm 2, ReconstructPath uses a recursive function

with the name of ReconstructPathRecursive that takes as its parameters a

node and a path. The initial call starts with an empty path and the node n. On a

given call to this recursive function, it checks if n = NONE . This is the base case

for the function. If it is, it returns the given path [n0, ..., nk]. If not, it recursively

calls the function with parent(n) as the node and [n, n0, ..., nk] as the path.

Before proceeding with the proof regarding the existence and uniqueness of a

path from ninit to n, and that g(n) is an upper bound on this path, we will first prove

the following useful lemma about the ReconstructPathRecursive function.

Lemma A.1.6. Suppose that ReconstructPathRecursive is called after t

expansions of an OCL algorithm with P = [n0, ..., nk] as its path parameter where

P 6= [] and n as its node parameter such that the following conditions are true:

1. ∀0 ≤ i ≤ k, ni ∈ OPENt ∪ CLOSEDt .

2. ∀1 ≤ i ≤ k, parent t(ni) = ni−1 .

3. ∀0 ≤ i < j ≤ k, ni 6= nj .

4. Either n = NONE , or n ∈ OPENt ∪ CLOSEDt and n = parent t(n0) .
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Then ReconstructPathRecursive will either immediately return P or make

a recursive call on a path P ′ and a node n′ such that conditions 1 through 5 are

also true of P ′ and n′.

Proof. Notice that if n = NONE , P will be immediately returned by the defini-

tion of ReconstructPathRecursive. Therefore the statement holds if n =

NONE . For the remainder of the proof, we will therefore assume that n 6= NONE .

This means that a recursive call will necessarily be made with node n′ = parent(n)

and path P ′ = [n, n0, ..., nk].

Let us first show that n′ satisfies condition 4. Since n′ = parent(n) and n is

the first node on P ′, we are only left with showing that n′ = NONE or n′ is on

either the open or closed list. If n′ 6= NONE , n′ can only have been set as the

parent pointer of n if n was generated by the expansion of n′. This means that n′

was previously on the open list and so it to must have been previously generated.

Since a node is on the open or closed list for the remainder of the search once it is

generated for the first time, this implies that n′ is on the open or closed list after t

expansions. Therefore, condition 4 is satisfied.

Let us now show that conditions 1 through 3 all hold for P ′. First, recall that

we assumed that all nodes on P are in the open or closed list by the assumption of

condition 1. Since n is also in the open or closed list by the condition 4, all nodes

in P ′ are in the open or closed list. Therefore P ′ satisfies condition 1. This same

approach can be taken for showing condition 2 for P ′ since P ′ is just P with the

additional edge of (n, n0) added and n = parent(n0) by condition 4. Therefore P ′

satisfies condition 2. Finally, notice that P ′ = [n, n0, ..., nk] satisfies the conditions

of Lemma A.1.5, and so we are guaranteed that none of the nodes on this path are

the same. As such, P ′ satisfies condition 3. Therefore, the statement is true.

Let us now show that ReconstructPath is guaranteed to terminate with a

path P = [n0, ..., nk] from ninit = n0 to the given node n = nk with the path that

we want. This is done by the following lemma:

Lemma A.1.7. If ReconstructPath is called after t node expansions of an

OCL algorithm, given a node n that is in the open or closed list, then the function
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will terminate and return the path P = [n0, ..., nk] which satisfies the following

conditions:

1. ∀0 ≤ i ≤ k, ni is in either the open or closed list after t expansions.

2. ∀1 ≤ i ≤ k, parent t(ni) = ni−1 .

3. ∀0 ≤ i < j ≤ k, ni 6= nj .

4. n0 = ninit and nk = n .

Proof. Given a node n that is on the open or closed list of an OCL algorithm after

t expansions, ReconstructPath will call ReconstructPathRecursive

with [] as the path parameter and n as the node parameter. Since n is on the open

or closed list, n 6= NONE and so a recursive call will be made with parent(n)

for the node and P = [n] as the path. Since P satisfies conditions 1 through 3 of

Lemma A.1.6, and parent(n) satisfies condition 4, this means that this subsequent

call will either immediately return [n] or it will make a further recursive call on a

path and node that satisfy these properties. Clearly, this will be inductively true of

any recursion call that is farther down in the recursion stack.

Let us first show that if it terminates, it will terminate with the correct path.

First, notice that ReconstructPathRecursive will only terminate if some

recursive call immediately returns the given path P , in which case P will be re-

turned, unchanged, by each of the shallower recursive calls until it is returned by

ReconstructPath. Now notice that a recursive call can only immediately re-

turn if the node given as a parameter is equal to NONE . As described above, it can

be shown inductively that P will satisfy conditions 1 through 3 of Lemma A.1.6,

and so it also satisfies conditions 1 to 3 of the statement we are currently proving

since these are the same three conditions. Furthermore, nk = n since n was the

first node put on P and all other nodes that were added to P were placed shallower

than all those nodes previously added to P . It must also be the case that n0 = ninit

since parent(n0) = NONE , and the only node that has its parent pointer set as n0

is necessarily ninit . Therefore, if the algorithm ever terminates, it will return a path

that satisfies all of conditions 1 through 4.
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Now, let us show that this process is guaranteed to terminate. To do so, notice

that since ninit is the only node with its parent pointer set as NONE , the algorithm

will terminate if and only if the second to last recursive call has ninit as its node

parameter. We can therefore show that it will terminate if it can make at most a

finite number of recursive calls before it makes one with ninit as its node parameter.

For this purpose, recall that ReconstructPath was called after t node ex-

pansions. Since t is finite and the number of successors of any node is finite, then

the number of unique nodes that have thus far been generated must also be finite.

As such, the number of nodes in either the open or closed list is also finite. Now

notice that each time a recursive call is made, a new node is put on the path that was

not previously there. This is guaranteed by condition 3 of Lemma A.1.6. Therefore,

it is not possible that an infinite number of recursive calls can be made without one

being called with ninit as its parameter. Therefore, the algorithm terminates.

With the correctness and termination of ReconstructPath having just been

shown, we can now show the existence and uniqueness of a path from ninit to any

n on either the open or closed list such that the parent pointers of all of the nodes

along this path follow the path itself. Note that saying that the path P = [n0, ..., nk]

from ninit = n0 to n = nk is unique, we mean that if P ′ = [n′0, ..., n
′
j] is a path from

ninit = n′0 to n = n′j such that for all 0 ≤ i ≤ k, ni is in either the open or closed

list and for all 0 < i ≤ j, parent(n′i) = n′i−1, then k = j and for all 0 ≤ i ≤ k,

ni = n′i. This is proved in the following:

Theorem 2.2.5. Suppose that there have been t node expansions of an OCL algo-

rithm. If n is a node such that n ∈ OPENt ∪CLOSEDt, then there exists a unique

path P = [n0, ..., nk] from ninit = n0 to n = nk such that the following are true:

1. ∀0 ≤ i ≤ k, ni ∈ OPENt ∪ CLOSEDt .

2. ∀1 ≤ i ≤ k, parent t(ni) = ni−1 .

3. ∀0 ≤ i < j ≤ k, ni 6= nj .

4. gt(n) ≥ C(P ) .
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Proof. Let P = [n0, ..., nk] be the path returned by ReconstructPath. By

Lemma A.1.7, n0 = ninit , nk = n and conditions 1 through 3 are satisfied. We now

show that condition 4 holds before then showing uniqueness.

So as to show that P satisfies condition 4, notice that P satisfies the needed

conditions for Lemma A.1.5. As such, gt(n) ≥ gt(n0) + C(P ). Since n0 = ninit

and g(ninit) = 0, this means that gt(n) ≥ C(P ).

The proof that P is unique will be by contradiction. In this end, suppose there is

another such path [n′0, ..., n
′
j] from ninit = n′0 to n = n′j . Consider traversing these

paths from the back (n = nk = n′j) to front (ninit = n0 = n′0) one node at a time and

in parallel, and comparing the nodes encountered on each path. For example, we

will compare nk to n′j , then nk−1 to n′j−1, and so on. Suppose ni and n′i′ are the first

nodes that disagree. Since nk = n′j , this means that i < k and i′ < j. This means

that ni+1 = n′i′+1, which requires in turn means that parent(ni+1) = parent(n′i′+1).

Of course, parent(ni+1) = ni and parent(n′i′+1) = n′i′ , and so ni = ni′′, but

this contradicts these nodes as the first that disagree. Therefore, the path found

by ReconstructPath is the unique path from ninit to n of those consisting of

nodes in only the open list or closed list such that the parent pointers of the nodes

point along the path.

A.1.4 OCL Algorithms Progressing Along Candidate Paths

In this section, we will show that OCL algorithms continue to make progress along

candidate paths, and when using a full expansion policy they will make this progress

while maintaining the optimal g-cost when considering only optimal paths. We

begin by considering the case in which we assume that the algorithm is using a full

re-expansion policy:

Theorem 2.2.6. Let P ∈ Πinit be a candidate path for a given planning task Γ

such that P = [n0, ..., nk], P is an optimal path from ninit to n where n = nk, and

∀ni ∈ P , H(ni) 6=∞. Then after t iterations of a rOCL algorithm on Γ, one of the

following will be true:

1. ∀n ∈ P , n ∈ CLOSEDt and gt(n) = g∗(n) .
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or

2. ∃ni ∈ P such that ni ∈ OPENt, gt(ni) = g∗(ni), and ∀nj ∈ P where

0 ≤ j < i, nj ∈ CLOSEDt and gt(nj) = g∗(nj) .

Proof. Suppose there have been t node expansions of an OCL algorithm on task

Γ. Let P ∈ Πinit such that P = [n0, ..., sk] and for any ni ∈ P , H(ni) 6= ∞. If

ninit = n0 is in the open list, then condition two clearly holds since there are no

nodes that are shallower than n0 on P . Since ninit = n0 must always be in either

the open or closed list, we now consider the case in which it is in the closed list.

Let ni be the deepest node from P such that ni is in the closed list, gt(ni) = g∗(ni),

and these conditions also hold for any ancestor of ni along P . Such a node is

guaranteed to exist since ninit satisfies these conditions. If ni = nk, then condition

1 holds and the statement is true. Otherwise i < k, and notice that gδt (n) = 0

since gt(ni) = g∗(ni). Since the OCL algorithm being used is the full re-expansion

policy, the g-cost error of ni−1 must be no larger than the g-cost error of ni by

Lemma 2.2.4. Therefore, gt(ni+1) = g∗(ni+1) and ni+1 must be on the open list, as

if it is on the closed list it would contradict the selection of ni. As all the ancestors

of ni+1 along P are in the closed list and have a g-cost error of 0, condition 2 holds,

and so the statement is true.

The following then represents a weaker statement that holds if nothing is as-

sumed by the re-expansion policy being used:

Theorem 2.2.7. Let P ∈ Πinit be a candidate path for a given planning task Γ such

that P = [n0, ..., nk] and ∀ni ∈ P , H(ni) 6= ∞. Then after t iterations of an OCL

algorithm on Γ, one of the following will be true:

1. ∀n ∈ P , n ∈ CLOSEDt .

or

2. ∃ni ∈ P such that ni ∈ OPENt, and ∀nj ∈ P where 0 ≤ j < i, nj ∈

CLOSEDt .
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Proof. This proof is almost identical to the proof to Theorem 2.2.6. We again start

by supposing that there have been t node expansions of an OCL algorithm on task

Γ. Let P ∈ Πinit such that P = [n0, ..., sk] and for any ni ∈ P , H(ni) 6= ∞. If

ninit = n0 is in the open list, then condition two clearly holds. Let us now assume

that ninit = n0 is in the closed list. Let ni be the deepest node on P which is

in the closed list. Such a node must exist since n0 is in the closed list. Since ni

is the deepest such node, the result is that ∀j ≤ i, nj is in the closed list. This

means that if ni = nk then all the nodes on P are in the closed list and condition 1

holds. If i < k, then ni must have been expanded, ni+1 must have been previously

generated, and since H(ni+1) 6= ∞, ni+1 must be in either the closed or open list.

By the selection of ni, ni+1 cannot be in the closed list and so it must be in the open

list. As all the ancestors of ni+1 along P are in the closed list, condition 2 holds,

and the statement holds true.

A.1.5 A Lower Bound on C∗

In this section, we show how the nodes that have been explored by an OCL algo-

rithm can be used to generate a lower bound on C∗ when parent pointers are always

updated. The theorem is given as follows where UNOPENED contains the set of

nodes on the closed list whose g-cost is updated, but which are not moved back to

the open list.

Theorem 2.2.11. Let h be an admissible heuristic and suppose that there have been

t iterations of an OCL algorithm that always performs parent pointer updates, such

that the search has yet to expand a goal node. Then the following is true:

C∗ ≥ min
n∈OPENt∪UNOPENEDt

gt(n) + h(n) .

Proof. Let O denote the OCL algorithm in use on the given planning task. This

proof works as follows. We will define a new rOCL algorithmO′ which will always

select the same node for expansion asO, but for which the nodes thatO would have

in the unopened list, O′ will put back in its open list. The result will be that at any

time, the open list of O′ will be given by the union of the open and unopened list
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of O. This will then allow us to use Theorem 2.2.10 to get the bound given by the

statement.

Let us define O′ in more detail. O′ will have two types of nodes in its open list:

marked nodes and unmarked nodes. All nodes are set as unmarked when they are

generated for the first time. A node n will only be marked if it is in the closed list,

its g-cost and parent pointer is updated, and the ShouldOpenNode function of

O returns False. In this case, O′ will move n back to the open list, but n will be

marked.

A marked node n can become unmarked if a lower g-cost path is found to it,

and the ShouldOpenNode function of O returns True. This case corresponds to

a node being moved back from the closed list to the open list during the execution

of O.

The policy used byO′ to select nodes from the open list is the same asO, except

O′ only uses this policy to select from the unmarked nodes. This means that if the

set of unmarked nodes is the exact same set as the open list in O (with g-cost values

and parent pointers also being the same), then both O and O′ will select the same

node for expansions.

By definition, it is clear that on the t-th iteration of O′, the unmarked nodes

of O′ will correspond exactly to the open list of O, the marked nodes of O′ will

correspond exactly to the nodes on the unopened list of O, and the closed list of O′

will correspond exactly to the remainder of the closed list of O when the unopened

nodes are removed. By Theorem 2.2.10, the minimum of g(n) + h(n) over every

node n on the open list of O′ will be a lower bound on C∗. Since the open list of

O′ is given by the union of the open and unopened lists of O, this means that the

minimum of g(n) + h(n) over every node n in the open and unopened lists of O is

also a lower bound on C∗. Therefore, the statement is proven.

A.2 ε-Greedy Node Selection on Problem Graph

In this section, we will show that for any ε > 0, a GBFS enhanced with ε-greedy

node selection will have a finite expected runtime for any ε where 0 < ε < 1 on the
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graphs defined in Section 4.1 on which GBFS will never find a solution. This will

hold regardless of the branching factor of the graphs.

Let us begin by recalling the definition of these types of graphs as trees with

three types of nodes. These types are denoted as T0, T1, and Tg. Every type T0 node

has b successors for some constant b > 0. b − 1 of these successors are T0 nodes

and the remaining successor is a type T1 node. Type T1 nodes have only a single

successor: a type T2 node. The heuristic value of type T0, T1, and Tg nodes will be

denoted as H0, H1, and Hg, respectively, where Hg < H0 < H1.

Since the type T0 nodes form an infinite plateau, GBFS will never expand any

node outside of this plateau once a first node from this plateau is expanded. In

contrast, we will show that when using ε-greedy node selection, a type Tg node

will be expanded with a finite expected runtime. For this proof, we will first show

that a type Tg node will be generated (or equivalently, that a type T1 node will be

expanded) with a finite expected runtime. Then, we will show that once a type Tg

node is generated, it will expanded with a finite expected runtime. Together, these

will prove the desired statement.

We begin by showing that a type T1 node will be expanded with a finite expected

runtime. In particular, where P1(t = i) is the probability that a type T1 node is

expanded for the first time by the i-th node expansion, this means that we must

show that the following converges:

∞∑
i=2

i · P1(t = i) (A.11)

Notice that this summation starts at 2 since the first node expanded, the initial node,

is necessarily a type T0 node, and so a type T1 can be expanded at earliest as the

second node.

We now turn to calculating P1(t = k). For this purpose, we will let K0(t) and

K1(t) be the number of type T0 and T1 nodes, respectively, in the open list after t

expansions, both of which we will need to calculate. Notice that if all of the first

t node expansions are type T0 nodes, then there will be t type T1 nodes in OPENt

and so K1(t) = t. This is because every expansion will add a single type T1 node

into the open list.
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Now consider K0(t). If t = 1, then there will be b − 1 nodes of type T0 in

the open list, and so K0(1) = b − 1. If t = 2, then there will be 2 · (b − 1) − 1

node on the open list, since the search started with one type T0 node in the open

list, 2 · (b− 1) were added into the open list by the expansions, and 2 type T0 nodes

were expanded and therefore removed from the open list. This means that and so

K0(2) = 2 · (b − 1) − 1. This argument can be extended to show that after t > 1

such expansions, the number of T0 nodes in the open list will be as follows:

K0(t) = t · (b− 1)− (t− 1) .

P1(t = k) will then be given by the product of the probability that the first t− 1

expansions were all type T0 nodes and the probability that the t-th node expansion is

a type T1 node. For calculating this latter quantity, notice that since K0(t− 1) ≥ 0,

a type T0 node will be selected for expansion if a greedy node selection is made.

If an exploratory action is made, the probability that a type T1 node is selected for

expansion is given by K0(t − 1)/[K0(t − 1) + K1(t − 1)]. As such, for k ≥ 1,

P1(t = k) is given as follows:

P1(t = k) = ε · K0(k − 1)

K0(k − 1) +K1(k − 1)
·
k−2∏
i=1

[
1− ε · K0(i)

K0(i) +K1(i)

]
(A.12)

= ε · k − 1

(k − 1) · (b− 1) + 1
·
k−2∏
i=1

[
1− ε · i

i · (b− 1) + 1

]
(A.13)

This can now be substituted into equation A.11 to show that the first type T1

node will be expanded with an expected runtime as follows:

∞∑
k=2

[
k · ε · k − 1

(k − 1) · (b− 1) + 1
·
k−2∏
i=1

[
1− ε · i

i · (b− 1) + 1

]]
(A.14)

To show that this converges, we will use the ratio test which states that if aj is the

j-th term of an infinite series, the series converges if aj+1/aj → z in the limit as

j → ∞ where 0 ≤ z < 1. After cancelling out the shared portions of the products

in aj and aj+1, this means we must show that the following is a constant less than

1.

lim
j→∞

ε · (j + 1) · j/[j · (b− 1) + 1]

ε · j · (j − 1)/[(j − 1) · (b− 1) + 1]
·
[
1− ε · j − 1

(j − 1) · (b− 1) + 1

]
(A.15)
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The left component of this product approaches (b − 1)/(b − 1) = 1 in the limit,

while the right component approaches 1−ε/(b−1). Therefore, the whole expression

approaches 1− ε/(b− 1) and so this limit converges for any ε > 0. This proves that

a type T1 node will be expanded with a finite expected runtime, which equivalently

means that a type Tg node will be expanded with a finite expected runtime.

Now let us show that after the first node expansion, a type Tg node will be

expanded with a finite expected runtime. Where Pg(t = k) is the probability that a

node of type Tg is expanded for the first time k expansions after a node of type Tg

was first generated, the expected runtime is given by the following:
∞∑
i=1

i · Pg(t = i) (A.16)

In this case, it is difficult to calculate Pg(t = k) exactly as their are many possible

combinations for the way nodes are expanded. However, it is well-known that if an

infinite series of the form a1 + a2 + ... converges then so too will a′1 + a′2 + ... if

aj ≥ a′j for all j. Therefore, we will show this sequence converges by identifying a

P ′g(t = i) where Pg(t = i) ≤ P ′g(t = i) such that the following converges:

∞∑
i=1

i · P ′g(t = i) (A.17)

This essentially means that we need to find a function that provides an upper bound

on the probability of the algorithm expanding a node of type Tg after the first such

node is generated. For this upper bound notice that because nodes of type Tg have

the lowest heuristic value of any node, once such a node is in the open list it will

be expanded the first time the algorithm expands nodes according to the heuristic.

This means that the probability that a node of type Tg will not be expanded on any

iteration will be at most ε. Therefore, the probability that a node of type Tg is not

expanded in the first t iterations after a node of type Tg is generated for the first time

is at most εt.

Now recall that the probability that a node of type Tg is expanded for the first

time on the t-th expansion after a node of type Tg is first generated is given by

probability that no node of type Tg was expanded for the first t− 1 expansions after

a node of type Tg is first expanded, multiplied by the probability that it is expanded
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Figure A.1: The 6 node graph in Martelli’s graph family.

by the t-th expansion Since the probability that a node of type Tg is expanded on

any particular iteration can be at most 1, this means that we can set P ′g(t = i) =

εi−1 · 1 = εi−1 as our upper bound on Pg(t = i).

With this upper bound, we can again use the ratio test to show that equation A.17

converges. In this case, the ratio of consecutive elements converges to ε. Therefore,

the expected runtime of equation A.17 converges if ε < 1, and so too does equation

A.16 since A.17 is an upper bound on this equation. Therefore, once a node of type

Tg is generated for the first time, it will be expanded in a finite expected amount

of time if ε < 1. When this is combined with the above, it means that a node of

type Tg will be expanded with an expected runtime if ε satisfies the condition that

0 < ε < 1.

A.3 nrBFS Performance on Martelli’s Graphs

In this section, we will formally demonstrate that nrBFS will find solutions no more

than 1.5 times larger than the optimal solution cost in Martelli’s family of graphs.

We begin with a description of this family.

A.3.1 Formally Defining Martelli’s Graphs

For any M ≥ 3, there is a member of this family, denoted GM , which has M + 1

nodes denoted as n0, ...., nM . For example, the 6-node member of this family, G5 is
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shown in Figure A.1. n0 is the initial node in GM and nM is the goal node. For any

i, j where 0 ≤ i < j < M there is an edge from ni to nj . The last edge is given by

(nM−1, nM). The cost of these edges are as follows:1

• κ(nM−1, nM) = 2M−1 +M − 2 .

• Where 0 ≤ i < j < M , κ(ni, nj) = 2M−i−2 − i− 2M−j−1 + j .

By this definition, the cost of edge (ni, ni+1) is 1 for any i < M − 1. As such, the

optimal solution path is given by [n0, n1, ..., nM−1, nM ]. As all these edges have a

cost of 1 except for (nM−1, nM), the cost of this optimal path is (M −1)+(2M−1 +

M − 2) = 2M−1 + 2M − 3.

The admissible heuristic function h used in GM is defined as follows:

• h(nM−1) = h(nM) = 0 .

• For 1 ≤ i < M − 1, h(ni) = 2M−i−1 + 2(M − i)− 3 .

A.3.2 Using nrBFS on Martelli’s graph

As shown by Martelli [61], this definition of the heuristic function will mean that

the second node expanded by A∗ — after only the initial node n0 — is nM−1. This

will also be true of nrBFS since no transposition will have been found by this point.

Since the only way to get to the goal node nM is through nM−1, this means that the

solution found by a nrBFSg+h that does not perform parent pointer updates will be

[n0, nM−1, nM ].2 The cost of this suboptimal path is calculated as follows:

C([n0, nM−1, nM ]) = κ(n0, nM−1) + κ(nM−1, nM)

= (2M−2 − 0− 2M−(M−1)−1 +M − 1) + (2M−1 +M − 2)

= 2M−2 − 1 +M − 1 + 2M−1 +M − 2

= 2M−1 + 2M−2 + 2M − 4

1This definition differs from the standard definition given by Martelli [61] in which n0 is the goal
node and nM would be the initial node. This change was made to be consistent with the notation
used in the remainder of this thesis.

2If parent pointer updates are used, the optimal solution path will be returned even when using
nrBFSg +H . However, if an edge is added from n0 to nM which has the same cost as the path
[n0, nM−1, nM ], then a suboptimal solution will be found with a cost of the path [n0, nM−1, nM ]
regardless of whether parent pointer updating is performed or not.
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Notice that C − C∗ = 2M−2 − 1. As 2M−2 − 1 is less than 50% larger than C∗ for

M ≥ 3, this means that any solution found is no larger than 1.5 times optimal. In

fact, the following shows that C/C∗ → 1.5 as M →∞:

lim
M→∞

C/C∗ = lim
M→∞

2M−1 + 2M−2 + 2M − 4

2M−1 + 2M − 3
(A.18)

= lim
M→∞

2M−1

2M−1
· 1 + 1/2 + 2M/2M−1 − 42M−1

1 + 2M/2M−1 − 3/2M−1
(A.19)

= 1.5 (A.20)

Now let us consider the inconsistency along the optimal solution path. For this

calculation, first notice that since h(nM−1) = h(nM) = 0, INC h(nM−1, nM) = 0.

This means that when calculating the inconsistency needed for the portion of the

optimal solution path that matters for the bounds we only need to consider the

inconsistency on [n1, ..., nM−1] since we can ignore the inconsistency of the first

edge (n0, n1) and INC h(nM−1, nM) = 0. Now notice that the following holds for

any i where 1 < i < M − 2:

h(ni)− h(ni+1)− κ(ni, ni+1) =
[
2M−i−1 + 2(M − i)− 3

]
−
[
2M−i−2 + 2(M − i− 1)− 3

]
− 1

= 2M−i−1 − 2M−i−2 + 1

> 0

Therefore, INC h(ni, ni+1) > 0 for any i where 1 < i < M − 2. By Lemma 6.3.2,

this implies the first line of the following derivation which then continues based on

the definitions above:
M−2∑
i=1

INC h(ni, ni+1) = h(n1)− h(nM−1)− g∗(n1, nM−1)

=
[
2M−1−1 + 2(M − 1)− 3

]
− 0− (M − 2)

= 2M−2 +M − 3

Therefore, the bound says that any solution found will be no more costly than C∗

than 2M−2 +M − 3. Since the actual amount of additive suboptimality is 2M−2− 1

as shown above, the deviation between the bound and the actual cost of the solution

found is M − 3. As C∗ is O(2M), this deviation is insignificant.
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A.4 Bounding the Performance of BFSg+B(h) when h
is Non-Decreasing

In this section, we will show that where h is a consistent heuristic and B is a given

bounding function, BFSg+B(h) will satisfy B provided that there exists an optimal

solution path along which the h-cost of the nodes is monotonically non-decreasing.

This is formalized by the following theorem:

Theorem 6.5.5. BFSg+B(h) will satisfy B if the following conditions hold:

1. h is consistent.

2. ∀x ≥ 0, y ≥ 0, B(x+ y) ≥ B(x) + y .

3. There exists an optimal solution path [n0, ..., nk] such that h(ni) ≥ h(ni+1)

for all 0 ≤ i < k .

Proof. Let h be a consistent heuristic, B be a bounding function that satisfies

condition 2 above, and Popt = [n0, ..., nk] be an optimal solution path such that

h(ni) ≥ h(ni+1) for all 0 ≤ i < k. We will now show that the inconsistency along

Popt will be at most B(C∗)−C∗. This will allow us to Theorem 6.3.7 to prove that

any solution returned by BFSg+B(h) will have a cost of at most B(C∗).

To show this bound, we will first show that for any j where 0 ≤ j < k, the

following is true:

INCB(h)([nj..., nk]) ≤ B(h(nj))− h(nj)−B(0) .

In the base case, j = k − 1. When this holds, the path consists solely of the

edge (nk−1, nk). As such, the sum of the inconsistency along this path is given by

INCH(nk−1, nk). There are now two cases to consider: INCB(h)(nk−1, nk) = 0

and INCB(h)(nk−1, nk) > 0.

Let us begin with the case that INCB(h)(nk−1, nk) = 0. To prove that

INCB(h)(nk−1, nk) is no larger than B(h(nk−1)) − h(nk−1) − B(0) in this case

merely requires that we show that B(h(nk−1))− h(nk−1)− B(0) ≥ 0. Notice that

this follows immediately by the assumption that B satisfies condition 2, and so the

statement holds in this case.
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Now suppose that INCB(h)(nk−1, nk) > 0. This implies the first line of the

following, which allows for the derivation that proceeds it:

INCB(h)(nk−1, nk) = B(h(nk−1))−B(h(nk))− κ(nk−1) (A.21)

= B(h∗(nk−1))−B(0)− κ(nk−1, nk) (A.22)

≤ B(h∗(nk−1))−B(0)− h(nk−1) (A.23)

Line A.22 holds by the fact that h(nk) = 0 since h is admissible and nk is a goal

node. The final line then holds since h(nk−1) ≤ h(nk) + κ(nk−1, nk) by the fact

that h is consistent and h(nk) = 0. Therefore, the statement is true in the base case.

Now suppose that the statement is true for [nj, ..., nk] for some j > 0 and

consider INCB(h)([nj−1, nj, ..., nk]). One again, we need to handle the cases in

which INCB(h)(nj−1, nj) = 0 and when INCB(h)(nj−1, nj) > 0. Let us first as-

sume that INCB(h)(nj−1, nj) = 0, in which case the inconsistency of B(h) along

[nj−1, nj, ..., nk] is equal to the inconsistency of B(h) along [nj, ..., nk]. By the in-

duction hypothesis, this inconsistency is bound by B(h(nj)) − h(nj) − B(0). To

show the statement is true when INCB(h)(nj−1, nj) = 0, we can therefore show

that B(h(nj−1))− h(nj−1)−B(0) is at least as large as B(h(nj))− h(nj)−B(0).

In this end, notice that h(nj−1) ≥ h(nj) by the assumption that condition 3 holds

for Popt. This means that for some µ ≥ 0, h(nj−1) = h(nj) + µ. This allows for

the following derivation:

B(h(nj−1))− h(nj−1)−B(0) = B(h(nj) + µ)− h(nj)− µ−B(0) (A.24)

≥ B(h(nj)) + µ− h(nj)− µ−B(0) (A.25)

≥ B(h(nj))− h(nj)−B(0) (A.26)

The first line is achieved by substitution. The second line then follows by the as-

sumption of condition 2 on B. By cancelling out the µ terms we are left with the

final line and so the statement is true when INCB(h)(nj−1, nj) = 0.

Now assume that INCB(h)(nj−1, nj) > 0. In this case, we can perform the
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following derivation:

INCB(h)([nj−1, nj,...., nk])

= INCB(h)(nj−1, nj) + INCB(h)([nj, ...., nk]) (A.27)

= B(h(nj−1))−B(h(nj))− κ(nj−1, nj)

+ INCB(h)([nj, ...., nk]) (A.28)

≤ B(h(nj−1))−B(h(nj))− κ(nj−1, nj)

+B(h(nj))− h(nj)−B(0) (A.29)

≤ B(h(nj−1))− h(nj+1)−B(0) (A.30)

Line A.27 is a result of expanding the summation. The fact that INCB(h)(nj−1, nj)

is positive then implies line A.28. Line A.29 then holds by the bound given in

the induction hypothesis. The last line follows by cancelling out the B(h(nj))

terms and the fact that h is consistent implies that h(nj+1) ≤ h(nj) + κ(nj−1, nj).

Therefore, the statement holds in the case that INCB(h)(nj−1, nj) > 0.

Having handled all cases, this means that for any j where 0 ≤ j < k, the

following is true:

INCB(h)([nj..., nk]) ≤ B(h(nj))− h(nj)−B(0) .

In the case that j = 0, this means that the inconsistency of H along Popt is no larger

than B(h(n0))− h(n0)− B(0). Now recall that h(n0) ≤ h∗(n0) ≤ C∗ since n0 =

ninit . This means that for some µ ≥ 0, C∗ = h(n0) + µ. Using the same argument

as was used for proving the base case above, this means that B(C∗) − C∗ − B(0)

is an upper bound on the inconsistency of H along Popt, as is B(C∗) − C∗ since

B(0) ≥ 0. As this is also necessarily an upper bound on the inconsistency of H

along the portion of Popt from n1 to nk, this means that any solutions returned by

BFSg+H will have a cost of no more than B(C∗)−C∗ +C∗ = B(C∗) by Theorem

6.3.7.
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Appendix B

Historical Notes and Additional
Information

In this chapter, we will provide further detail in cases where our definitions or nota-

tion differ from those existing in the literature, and provide any additional technical

details regarding results in the main body of the thesis as needed.

B.1 Nodes, States, and Vertices

Despite the fact that heuristic search research has been conducted since at least the

1960s, the term “node” continues to be used to mean different things by different

authors. In this thesis, the term is used to refer to the vertices of a graph represen-

tation of a state-space. “Node” and “state” will also often be used interchangeably

due to the strong correspondence between these objects. This is also the approach

taken in several textbooks including those by Pearl [68], and the textbook from

Edelkamp and Schrödl [16].

However, the term “node” has also been used in reference to other objects. For

example, Lelis [55] uses the term “node” to refer to the vertices in the search tree

generated from a state-space problem. The search tree is similar to the graph repre-

sentation of a state-space problem, except that if there are multiple paths from the

initial state to the some state s, each of these paths will end in a unique “node” in

the search tree. This means that there may be multiple vertices in the search tree

that correspond to the same state.

A similar approach is taken by Thayer [86], who defines a “node” as referring
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to the collection of a state and a unique path to a state. This was also the approach

taken in my Master’s thesis [93], in which “node” refers to the collection of a state

and a parent pointer, since the use of parent pointers is typically the way that the

path to a state is stored in practice.

Given the multitude of “node” definitions, we use it to refer to a vertex in a

graph representation of a state-space, as this definition was found to be the most

convenient for our purposes.

B.2 Alternative Best-First Search Definitions

Dechter and Pearl provided the first ever generalized version of best-first search

which they referred to as BF∗ [12]. That definition, which was referred to as BF∗,

also uses any given evaluation function Φ, but differs from rBFSΦ in the way the

algorithm decides if re-expansions are to be made. In particular, BF∗ does not

explicitly keep track of the g-cost of a node, only the node’s evaluation according

to Φ. This means that BF∗ will move a node back from the closed list to the open

list only in the case that the new path results in a lower evaluation of Φ than that

being stored. This is often because the new path has a lower g-cost, provided that

Φ uses g as part of its evaluation, but the general definition of BF∗ does not require

it to be for that reason.

However, for many of Dechter and Pearl’s main results, two key assumptions are

made that make the re-expansion policy of BF∗ equivalent to the policy of rBFSΦ by

which a node is moved back from the closed list to the open list if the new path has a

lower g-cost than the existing one. The first of these assumptions is that Φ is strictly

increasing over solution paths. This means that if P1 and P2 are solution paths such

thatC(P1) < C(P2), then the evaluation of P1 by Φ must be less than the evaluation

of P2 (where C(P1) = C(P2) implies equality of evaluation as well). The second

assumption is that the evaluation function is order preserving. For this definition,

let P1 = [n0, ..., nk] and P2 = [n′0, ..., n
′
j] both be paths from n0 = n′0 = ninit to

some node n = nk = n′j , and continue extending these paths along some common

sequence of nodes [n′′0, ..., n
′′
i ] such that n = nk = n′j = n′′0. The resulting paths
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would be P ′1 = [n0, ..., nk, n
′′
1, .., n

′′
i ] and P ′2 = [n′0, ..., n

′
j, n
′′
1, .., n

′′
i ]. For Φ to be

order preserving it must satisfy the following: if the evaluation of P1 is no larger

than the evaluation of P2, then the evaluation of P ′1 must also be no larger than the

evaluation of P2.

To see how these assumptions make BF∗ and rBFSΦ equivalent along solution

paths, consider P ′1 and P ′2 as defined above and assume these are solution paths such

that C(P ′1) < C(P ′2). This necessarily requires that the evaluation of P ′1 is less than

the evaluation of P ′2, which in turn requires that the evaluation of P1 is less than

P2 by the fact that Φ is order preserving. As such, if BF∗ finds path P1 to n after

finding path P2, the Φ-cost and parent pointer of n will be updated. Of course, this

is because C(P1) < C(P2) and so if the path along P2 is found to n before the path

along P1 during BF∗, then the Φ-cost of n will be updated. The same will be true

in the corresponding rBFSΦ search since the g-cost along P2 will be larger than the

g-cost along P1. The result is that the two algorithms are equivalent under these

two assumptions when using the same evaluation function.

B.3 Assuming the Heuristic Value of Goals is 0

In Chapter 6, it was assumed that the heuristic value of any goal node is 0. This

assumption is not used except in the proof of Lemma 6.3.3. Where [n0, ..., nk] is

the optimal path from n0 to the nearest goal node and H is a heuristic function,

this lemma states that the inadmissibility of the heuristic value of n0 is bound by

the inconsistency of H along an optimal path from n to the nearest goal node.

If the assumption that all goals have a heuristic value of 0 is removed, then the

inadmissibility of H(n) will be increased by H(nk).

The bound given by Theorem 6.3.7 will similarly increase by H(nk) if this

assumption is removed. When assuming that all goal nodes have a heuristic cost of

0, this theorem states that if Popt = [n0, ..., nk] is an optimal solution path then the

cost of any solution returned by BFSg+H will have the following as an upper bound:

C∗ +
k−1∑
j=1

INCH(nj, nj+1) . (B.1)
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If we removed the assumption that the heuristic value of goal nodes is 0, than this

upper bound would instead be the following:

C∗ +H(nk) +
k−1∑
j=1

INCH(nj, nj+1) .

However, this increase in the bound only happens if heuristic values of the goal

nodes can be assigned arbitrary values. Given some natural restrictions on what the

heuristic function H can return for goal nodes, the bound returns to that given in

expression B.1 even if these restrictions are weaker than the requirement that the

heuristic value of all goal nodes is 0. One such restriction is that all goal nodes have

a heuristic value of at leastH(nk) where nk is the goal node on the optimal solution

path Popt from the theorem statement.

To see why the bound given in expression B.1 would still be satisfied under this

weaker restriction on H , consider the proof of Theorem 6.3.7. At the time that a

goal node n is selected for expansion, the proof identifies that there is a node ni

from Popt that is in the open list. Since n is selected instead of ni, this means the

following is true:

g(n) +H(n) ≤ g(ni) +H(ni)

g(n) ≤ g(ni) +H(ni)−H(n)

≤ g(ni) +H(ni)−H(nk)

where this last line holds because n is a goal node that is on an optimal path and

so H(nk) ≤ H(n). This −H(nk) term would then cancel out the added H(nk)

term that would appear when H(ni) is substituted out for the sum of h∗(ni) and

the inadmissibility of H(ni). The rest of the proof would remain as is and so the

same bound holds even if the assumption that the heuristic value of goal nodes is 0

is replaced by the assumption that those goal nodes that lie on an optimal path have

the lowest heuristic values of any goal nodes.
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B.3.1 Weighting An Admissible Heuristic with a Bounding Func-
tion

In Section 6.5 of Chapter 6, we provide upper bounds on the cost of any solution

found by BFSg+HB where HB = B(h), h is an admissible heuristic, and B is a

bounding function. These bounds are also derived using by Theorem 6.3.7.

While the admissibility of h ensures that h(n) = 0 for any goal node n, no

assumptions were made that would require B(0) to be equal to 0. However, due to

the fact that the goal nodes along optimal solution paths will have the lowest HB-

cost of any goal nodes (sinceHB(n) = B(0) for all goal nodes), the argument above

demonstrates why the proofs of the bounds in Section 6.5 can employ Theorem

6.3.7.
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