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Abstract 
In repeated measures data, large or small values at the initial measurement tend to be followed 

by values that are closer to the mean at the follow-ups measurements. This tendency is called 

regression to the mean (RTM). The presence of the RTM effect is inevitable in repeated 

measures data because of less than perfect correlation (correlation coefficient < 1) between the 

repeated measurements. Despite the growing evidence of the presence of RTM effects in 

clinical and public health studies based on repeated measures data, very few studies have 

evaluated and considered them when interpreting observed changes over time. In intervention 

studies, an RTM effect is mixed with an intervention effect in observed changes. It is 

extremely important to separate the RTM effect from the observed change in order to isolate 

any intervention effect and thus to make valid inferences about the effect of the intervention. 

In studying changes in outcome variables in repeated measures studies, RTM effects should 

always be adjusted for the valid interpretation of the changes and unbiased assessment of the 

intervention effects. The choice of methods to control for the RTM effect should be based on 

the type (continuous, count) and shape (normal, non-normal distribution) of the outcome 

variables of interest. A new method of estimating RTM effects for non-normal data using 

simulation is proposed. The method is a combination of bootstrap sampling from the 

standardized outcome variable and matrix decomposition of the correlation matrix between the 

repeated measurements. The method is applied to adjust for the RTM effects in studying 

changes in mean drinks in a typical week in a study evaluating the impact of a brief alcohol 

intervention on youth. In the study, mean drinks followed a positively skewed distribution. 

The proposed method estimated the RTM effects considering the true distribution (positively 

skewed) of the outcome and in doing so, provided more accurate estimation of the intervention 
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effects compared to other methods considered in the thesis. The method ensured valid 

interpretation of the observed changes in the outcome by providing the most accurate 

estimation of the RTM effect and then removing it from the data. The proposed method could 

be applied to adjust for the RTM effect in non-normal repeated measures studies. 
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Chapter 1 
 
Introduction 
 
 
1.1 Background 

 

In repeated measures data, large or small values at the initial measurement tend to be followed 

by values that are closer to the mean at the measurements taken during the follow-up [1], [2]. 

This phenomenon is called regression to the mean (RTM) [3]. RTM occurs because individual 

values are observed with random variation (error) around a true mean. Consider a hypothetical 

example where observations of a person high density lipoprotein (HDL) in a year follow a 

normal distribution with mean 50 mg/dL and standard deviation 10 mg/dL. If we observe a 

much higher HDL value for that individual than his/ her typical value, e.g., 70 mg/dL, it is 

likely that on follow-up measurement the value would be closer to its mean (50 mg/dL) [3].  

 

Figure 1.1. A hypothetical example of the RTM effects in a person’s HDL measurements 

 

 

 

 

RTM occurs at group level as well. Suppose HDL in a population follows a normal 

distribution with mean 50 mg/dL and standard deviation 12 mg/dL. We select a group of 

individuals with high HDL values (> 70 mg/dL) from that population based on their initial 
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measurements. In that group, there would be more individuals with true HDL values below 70 

mg/dL than individuals with true HDL values above 70 mg/dL because of random variation in 

the data and because the mean HDL of the population is 50 mg/dL. On follow-up 

measurement, the mean HDL value of the group will decrease; subjects with high initial 

values as a result of random fluctuation tend to approach the population mean of 50 mg/dL 

[3]. RTM is common in repeated measures studies where repeated measurements are made on 

the same subjects over time, especially in intervention studies that include subjects that are at 

higher risk based on high or low value of a clinical characteristic. RTM presents a particular 

challenge for intervention studies since a change in value due to RTM can erroneously be 

attributed to the effect of an intervention. This chapter will provide a historical background of 

the RTM effect; discussions of the concept in epidemiological context; descriptions of 

different methods of controlling the effects at design and analyses stages; and examples of its 

applications in various fields. This chapter will conclude with the proposed objectives of the 

thesis. 

 

1.2 Literature Review 
 
1.2.1 Historical Background 
 

The concept of RTM was introduced over a century ago by Galton [4], [5]. In the 

experimentation with the growth of peas, it was observed that offspring from tall plants were 

shorter than either of the parent plants. Similarly, offspring of two shorter plants were taller 

than either of the parent plants. Galton referred to this phenomenon as “regression towards 

mediocrity”. This phenomenon had been observed in human’s stature as well with the 

tendency of children of taller parents to be shorter and vice versa [6]. 

 

Galton was the first to provide empirical documentation of RTM [4], [5], [6]. Later it 

was established as a statistical concept in repeated measures data based on theoretical 

deductions [7], [8]. Although RTM occurs frequently in repeated measures studies, the effects 

of RTM are not always described in published reports. RTM is widely misunderstood despite 
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its simplicity. RTM is often confused with regression which is widely used to explain the least 

square fitting of lines, curves and surfaces for prediction.  

 

1.2.2 RTM in Epidemiologic Context 
 

RTM is a form of selection bias that affects follow-up studies that involve repeated 

measurements of individuals over time [9]. In health care, interventions often target people 

that are at higher risk for adverse outcomes based on clinical measures, costs or utilization of 

health services. A group of such individuals is selected and invited to participate in an 

intervention intended to reduce their level of risk. After a period of time, follow-up 

assessments are done. Any change in the outcome before and after the intervention can be 

incorrectly attributed to the effect of an intervention. Specifically, initial elevated level of risk 

may have a reduction in the level of risk without the intervention due to RTM. In observed 

changes over time, the RTM effect need to be assessed. RTM is a major source of bias in 

evaluating effects of interventions and may have significant implications for patient care, 

health service delivery and policy development [10]. In epidemiologic textbooks, RTM is also 

referred to as ‘the regression paradox’, ‘the regression fallacy’, or ‘the regression trap’ [8]. 

Policy makers, researchers should be aware of RTM when evaluating the effects of 

interventions, and take necessary steps to adjust for it. The possibility of RTM should be 

considered when interpreting observed changes over time to obtain valid conclusions about the 

effectiveness of an intervention. 

 

1.2.3 Theoretical Framework 

 

Suppose that Y1 and Y2 are the first and second measurements of an outcome variable Y, 

respectively. Let the correlation coefficient between Y1 and Y2 be r. If we fit a simple linear 

regression with Y2 as the response and Y1 as the regressor variable, the slope of the regression 

line would be 
1

2

y

y

s

rs
 where and  are the standard deviations of Y1 and Y2, respectively. 

One standard deviation change in Y1 results in r standard deviations change in Y2. If Y1 and Y2 

are not exactly linearly related (r < 1), for a given value of Y1, the predicted value of Y2 is 

1ys
2ys

 3



fewer standard deviations away from its mean compared to that of Y1. Thus, the RTM effect 

almost always occur in repeated measures data [7]. In clinical practice, treatments often aim to 

reduce the level of risk factors such as weight, cholesterol and blood pressure. People with 

higher values of such measurements are then treated. On repeat measurements in repeated 

measures study, a mean reduction in the level of the risk factor will be observed. However, 

this reduction should not be interpreted as a treatment effect. This is because the RTM effect, 

if present, is mixed in with the treatment effect. If there is no treatment effect, the reduction is 

inevitable due to less than prefect correlation between the first and second measurements. 

RTM is a ubiquitous phenomenon in repeated measures data [3]. The RTM effect needs to be 

separated from the treatment effect for valid evaluation of the treatment or intervention effect. 

 

Typically, negative correlations between baseline values and observed changes at 

follow ups are considered as an indication of the presence of RTM effects in the data [11], 

[12]. This method of identifying the RTM effect may not be conclusive and may lead to 

erroneous conclusion. A spurious high negative correlation between baseline values and 

changes (follow-up values – baseline values) may be observed due to the common component: 

baseline values [13]. The common component between both values, which is called 

mathematical coupling between both values, induces a correlation [14].  If the RTM effect is 

present in the data, the variance of the variable of interest at follow-ups would shrink 

compared to the baseline variance [13]. As a result, in presence of the RTM effect, the 

correlation between observed changes (follow-up – baseline values) and the sum of follow-up 

and baseline values will be negative. Suppose, X and Y represent baseline and follow-up 

values, respectively. Then, the expected covariance of the association is E[(Y-X)*(Y+X)] = 

E[Y2] – E[X2]. In presence of the RTM effects, follow-up variance would be less than the 

baseline variance, which implies E[Y2] – E[X2] would be negative. Therefore, a plot of 

observed changes against the sum (or mean) of baseline and follow-up values or the 

correlation between both values can be used to detect the RTM effects.   

 

The RTM effect can be accounted for either at the design or analysis stage of a study 

[3]. Studies can be designed to minimize the RTM effect by selecting an appropriate control 

group, taking two or more baseline measurements. At the analysis stage, the RTM effect can 
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be estimated from the data through statistical modeling and removed from the observed 

change in repeated measures values. Each of theses strategies is discussed below, with a 

particular emphasis on their strengths and weaknesses under different scenarios. Strategies to 

minimize and to remove RTM effects at the study design and analyses stages are described in 

the following section with a discussion of their advantages and disadvantages. 

 

1.2.3.1 Strategies to Minimize RTM Effects at the Design Stage 

 

Use of Average of Multiple Measurements for Selecting Subjects 

 

Studies can be designed to have two or more measurements at screening stage. Subjects would 

be selected based on the average of these measurements [15] [16]. This approach is simple to 

apply and can minimize the RTM effect by reducing variability in repeated measurements 

over time. 

 

Two Baseline Measurements: First for Selection and Second for Comparison 

 

Another approach at the study design stage is to take two baseline measurements and use the 

first measurement to select the subjects and assess the intervention effects from the change 

from the second measurement [17]. This approach assumes that RTM occurs between the first 

and second baseline measurements. Suppose that Y1 and Y2 are the first and second baseline 

measurements before an intervention and Y3 is the first follow-up measurement after the 

intervention of an outcome variable Y. Let rij be the correlation coefficient between ith and jth 

measurements. Then, the regression coefficient for Y3 on Y2 having classified on Y1 is 

 
221

331
132 sr

sr
b   where  and  are the standard deviations (SDs) of Y2 and Y3, respectively.  A 

necessary condition for the removal of the RTM effect is , i.e., 

2s 3s

  1132 b 221331 srsr  . 

Therefore, with this approach, the RTM effect would be removed if the correlation between 

the first and second measurements is exactly the same as that of the first and third 

measurement under stable SDs ( 32 ss  ). 
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Use of a Control Group 

 

A parallel control group, if it is ethically feasible, can be used to eliminate the RTM effect at 

the study design stage [18], [19]. Outcomes in both control and intervention groups will be 

affected alike by RTM if subjects are randomly allocated to the groups. The mean change in 

an outcome in control group will give an estimate of the RTM effect and the placebo effect.  

The difference in mean changes in the outcome between the intervention and the control 

groups will remove the RTM effect and give an unbiased estimate of the intervention effect on 

the outcome. 

 

Use of a Second Measurement in a Screening and Treatment Program 

 

In a screening and treatment program for blood pressure (BP) reduction in a community, after 

initial BP measurements, participants with BP greater than a predefined age-specific cut-off 

value were asked to return for a re-screening within 4 weeks [20]. Suspected hypertensive 

patients were not referred for medical evaluation before the re-screening. The differences 

between the first and second BP measurements were taken. Since the “program” was only 

informing a person about his BP and asking for repeat measurement, the net "program" effect 

in the observed changes between the first and second BP measurements was assumed to be 

zero. The average of the observed changes was attributed to the RTM effect. 

 

Selection of subjects based on the average of two or more measurements is the 

simplest approach and can minimize the RTM effect by reducing intra-individual variance and 

measurement error. However, this method cannot guarantee the complete elimination of the 

effect. The method of using the first measurement for selection and the second measurement 

for assessing the intervention effect completely eliminates the RTM effect if correlations 

between the first and successive measurements are exactly the same which would be unlikely 

in practice. The estimation of the RTM effect from a screening and treatment program can be 

biased. The reduction in the second measurements on re-screening can occur due to other 

extraneous causes. The most effective way of removing the RTM effect is through the use of a 

parallel control group. If the balance between the intervention and the control group is 
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achieved from a randomized controlled trial, the comparison of changes between the groups 

eliminates the RTM effect.  

 

1.2.3.2 Strategies to Remove RTM Effects at the Analysis Stage  

 

Estimation and Adjustment of the RTM Effect for Normal Data 

 

In repeated measures data, the RTM effect can be estimated and then subtracted from the 

observed change. Suppose that Y be the variable of interest and K be the cut off point (high) 

for selection. Assuming  2,~ NY , the RTM effect is estimated as  

                                                             1c                                                               (1.1) 

where c is the ratio of the ordinate of standard normal distribution at z [=    /k ] and area 

under the standard normal curve > z and   is the correlation between repeated measurements 

in an individual [19]. Thus, the RTM effect increases if within subject variability ( ) 

increases or the cut-off point ( k ) for selection is more extreme. It decreases if the correlation 

between repeated measurements increases. There is no RTM effect if the correlation is 1.  

 

The parameters in equation (1.1) are usually unknown. External estimates of these 

parameters from related studies can be used [18] or they can be estimated from observed 

samples. One simple method used in the estimation of these parameters is the method of 

moments [19], [21] which involves equating sample moments with population moments and 

then solving those equations. Another widely used method is the maximum likelihood method 

[22], [23], [24] where the parameters are estimated in such a way that the likelihood of getting 

the observed data is maximum. When repeated measurements before and after the intervention 

are available, a model accounting within subject variability in addition to measurement errors 

can be used to estimate the RTM effect [25].  

 

For normal data, the RTM effect can be estimated through simulation [10], [26] by:  

1. simulating two sets of observation from the parent normal distribution, representing the 

first and second measurements; 
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2. selecting observations with the first measurement greater than a specified cut-off value 

determined mainly based on clinical considerations; and 

3. calculating the difference between the means of first and second measurements in this 

group. 

 

The RTM effect is equivalent to the difference between the two means: 

 

The RTM effect = Mean1
st

 measurement – Mean2
nd

 measurement. 

 

The RTM effect can be estimated under different scenario for normal data. It can be estimated 

when population mean and variance change over time [27]. It can be estimated based on a 

sequence of observations for different classical tests theory and for autocorrelation models 

[28].  

 

Under normality assumption, a regression based test was developed to compare the 

means before and after the intervention in the presence of the RTM effect [29]. A simple 

linear regression model with the second measurement as the response and the first 

measurement as the independent variable was fitted to the data. The least square estimate of 

the intercept is equivalent to the estimated intervention effect controlling for the RTM effect. 

This approach controls for selection by conditioning on the first measurement, that is, by 

modeling the expected value of the second measurement given the first measurement. The test 

of the null intercept is the test for the intervention effect after controlling for the RTM effect. 

The tendency of the follow-up measurements to be closer to the mean due to RTM was 

examined in multiple linear and logistic regression models [30]. The shrinkage due to this 

tendency was found to be a serious problem if the sample size was small and/ or the number of 

covariates was large. A two-stage approach of estimating the RTM effect for absolute and 

percent change was developed and its relationship with ANCOVA was shown [31]. 

 

Among the methods of estimating RTM effects for normal data, the method of 

moments is widely used given its simplicity. When certain parameter values are known or 

reliable estimates are available from external data, the method is computationally 
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straightforward. However, the method often produces inefficient estimators in case of small 

samples [32]. The maximum likelihood approach is more advantageous. The maximum 

likelihood estimators are more efficient compared to the method of moment estimators [32], 

[33]. The method is adaptable to different models (additive or multiplicative) and different 

types of sampling (truncated, selected, censored or complete). The major drawback however, 

is that the method requires intensive computation when analytical solutions are not available. 

When repeated and replicated measurements are available, the method accounting for within 

subject variability is more appropriate [32]. Simulation based approaches yield similar 

estimates as those obtained from the formula- and or model-based approaches. However, with 

non-normal data, all these methods described above produce biased estimates of the RTM 

effect. 

 

Estimation and Adjustment of the RTM Effect for Non-normal Data 

 

In repeated measures studies, we frequently observe data that are not normally distributed (i.e. 

skewed). For example, the serum cholesterol data from the UK Prospective Diabetes Study 

(UKPDS) [26]; the alcohol consumption data from the cohort study involving students of three 

tertiary educational institutions in New Zealand are all skewed to the right [34]. In such data, 

the nature of the RTM effect remains same, an extreme value observed on one occasion tends 

to be followed by a less extreme observation. However, there are certain differences in the 

regression. Suppose Y1 and Y2 are the first and second measurements, respectively, of a 

response variable Y which does not follow a normal distribution. The regression of Y2 on Y1 is 

not linear, homoskedastic unlike the normal case [35]. Slope of the regression is not always 

less than 1. In case of extreme non-normality, the regression shows oscillation. The expected 

value of latter observation conditional on previous observation, E[Y2| Y1 = y], regress to either 

mode [36] or mean [37]  or some other values [38] depending on the distribution of non-

normal data. Suppose  

 

2,1,  jUY jj  , 

where 
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1. Y1 and Y2 are jointly distributed with mean   and variance  and correlation 

;  

2

 10  

2. U is a subject's true value which is arbitrarily distributed with mean   and variance 

  and  2

3.  2)1(,0~  NIDj  which are independent of U. 

 

Then the RTM effect can be expressed as  

                                      )(ln
1

1| 2
121 yg

dy
yYYYE  ,                                  (1.2)                 

where g(y) is the probability density function of Y  and dy is the differential distance in y, that 

is, infinitesimal change in y [36]. In this case, RTM corresponds to shrinkage towards the 

mode of the distribution. For Y1> y, equation (1.2) can be expressed as  

                                
)(1

)(
1| 2

121 yG

yg
yYYYE


  ,                                      (1.3) 

where G(y) is the distribution function of Y. Kernel density estimation and the kernel 

estimation for hazard rate are used to estimate the RTM effect in equation (1.3) [39]. Both 

methods are precise in estimating the RTM effect. The methods are applicable if there are data 

for only two time points.  

 

In another example, suppose Y1 and Y2 be the number of visits to a doctor in a 

population in two time periods, respectively [37]. In that population, for an individual, chance 

of visiting the doctor at a time period depends on that individual’s proneness. Suppose, 

proneness, , in that population follows a gamma distribution with probability density 

function, 

    0,0,0,
1 1 


  


  ef . 

Then, Y1 and Y2 follow a bivariate negative binomial distribution of the following form 

       

 
 







!!

2
,Pr

21

21
2211

21

yy

yy
yYyY

yy

, 
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where y1 = 0,1,2,...; y2 = 0,1,2,...; and 0  and 0  are the parameters of the distribution. 

The RTM effect can be expressed as [37]: 

                                            
1

/
| 121 





 y

yYYYE .                                          (1.4)     

In equation (1.4), RTM corresponds to shrinkage towards the mean of the distribution. 

 

When the distribution of the underlying variable and the contaminating errors are not 

normal, unknown, under certain regularity conditions the RTM effect is estimated based on 

local sample means using asymptotic justifications [40]. 

 

For non-normal data, the parametric and non-parametric methods can be used to 

estimate the RTM effect. However, the relative efficiency of these methods is not known. 

 

1.2.4 Examples of Adjusting for the RTM Effects in Epidemiologic Studies 

 

In this section, examples of repeated measures studies are given where the presence of the 

RTM effect was examined and or an adjustment was made for it, if present. 

 

RTM in Health Care 

 

Substantial evidence of the presence of RTM effects exists in health care studies [10], [41], 

[42] [43], [44]. However, few studies have evaluated the extent of impact of RTM on study 

findings or considered it in interpreting the observed change. Results of few existing studies 

that considered RTM when evaluating intervention effects are discussed below.  

In routine clinical practice, patients with rheumatoid arthritis were selected for TNF-

alpha inhibitors on the basis of high disease activity scores (DAS). In 35 such patients, 

selected from three hospitals of London, changes in DAS were studied 9-21 months prior and 

1.5-6 months post treatment [45]. The magnitude of the RTM effect was determined in the 

changes in DAS. The RTM effect was adjusted by regressing the follow-up scores on the 

initial scores. The estimated intercept from the simple linear regression model was the change 
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in DAS after adjusting for the RTM effect. The study showed that improvements in DAS from 

the biological therapy would be overestimated if the RTM effect was not taken into account.  

 

In the Multiple Outcomes of Raloxifene Evaluation (MORE) trial, evidence of an 

RTM effect was found in changes in biochemical markers of bone turnover in women treated 

with Raloxifene [46]. The women who experienced extreme changes in biomarker levels after 

6 months of treatment had changes in the opposite direction on a subsequent measurement at 1 

year. Specifically, among women who had a decrease of 60% or more in the urinary CTX in 

the first 6 months, 61% had an increase in the next 6 months. Among women who had an 

increase in the urinary CTX in the first 6 months, 81% had a decrease in the next 6 months. 

Extreme values at either end were affected by RTM. The RTM effect in change in biomarker 

level was adjusted by replacing an individual observed baseline value by a ‘true’ baseline 

value. The true baseline value for an individual was obtained by taking a weighted average of 

the observed baseline value and the overall mean of the study population. The weights are the 

inverse of within individual variance and the overall population variance, respectively. After 

adjusting the RTM effect, evidence of the effectiveness of Raloxifene as a treatment for 

urinary CTX was inconclusive, warranting further evaluation. 

 

In the United States, the effect of shell-issue law on states’ murder rate was studied 

with or without adjusting for the RTM effect [47]. A Poisson regression was fitted to obtain 

slopes for relative murder rates for five years before and five years after the adoption of the 

law for each of the twenty five states. The RTM effect in murder rate slopes was adjusted by 

regressing (linear) the post slopes on the pre slopes. The estimated intercept was the adjusted 

change in the relative murder rate after the law was adopted. In the presence of the RTM effect 

in the data, the analyses without adjusting for the RTM effect showed a beneficial effect of the 

law on states’ murder rate, but the effect dissipated after adjustment for the RTM effect.  

 

Disease modifying therapies (DMT) are generally accepted as effective therapeutic 

treatments in reducing relapse rate in multiple sclerosis (MS) patients though some 

controversies of the treatments in reducing residual disabilities [48]. In a non-treated cohort of 

44 relapsing-remitting multiple sclerosis (RRMS) patients, the RTM effect was evaluated in 
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the relapse rate in order to correctly identify response to DMT [49] [50]. The patients with two 

or more relapses in the prior two years, and a baseline expanded disability status scale (EDSS) 

score less than or equal to 5.5 were recruited in Spain in 1994. The patients were monitored 

for 1 year using a standardized protocol (EDMUS) [51].   In the non-treated cohort, the mean 

number of relapses decreased from 1.7 to 1.0 in the first year. The absolute mean reduction of 

0.7 in the RRMS relapse rate was suspected due to RTM and considered as an estimate of the 

effect under the assumption of no placebo effect.  

 

In a cohort of male employers from a single industry in India, a five-year trend in 

blood pressure (BP) was studied using exploratory data analysis (EDA) and regression 

methods [52]. The decline in the prevalence of hypertension and mean systolic BP over 5 year 

period without any intervention was considered due to the possible RTM effect. 

 

Disease management is as an important aspect of clinical practice. The effectiveness of 

a disease management intervention in asthmatic population was studied in Colorado during 

2001 to 2003 [53]. Using a non-randomized control group to adjust for the RTM effect, the 

study showed that the intervention was effective in reducing healthcare costs. The use of a 

convenience control group in adjusting for the RTM effect was criticized to be biased [54]. A 

further investigation using a randomized controlled group was suggested to examine the 

effectiveness of the intervention.  

In a double-blind, randomized, controlled trial, the effects of Haloperidol, Trazodone 

and behavioural therapy on dementia was studied [55]. In the trial, 148 patients with 

Alzheimer disease were randomly allocated to the four study arms: Haloperidol (n=34), 

Trazodone (n=37), behavioural therapy (n=41) and placebo (n=36). The main outcome was 

Cohen-Mansfield Agitation Inventory (CMAI) score [56], [57]. The CMAI comprised of 36 

agitated behavior related questions each measured on a 7-point Likert scale ranged from 0 to 

6. The score was the sum of all 36 items’ score. Changes in the score from the baseline to the 

end of the study (week 17) in the four groups were studied and compared. No effect of 

treatment on the outcome was observed. The observed mean change of 6.0 in CMAI score in 

the placebo group was similar to the estimated RTM effect of 5.88. The RTM effect was 

computed by the estimated expected change in the outcome from the baseline to the end of the 
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study in an external validation sample (n=137) where no treatment was administered [58]. The 

changes observed in the four study groups were considered due to RTM.  

 

RTM in Substance Use Disorder Research 

 

The RTM effect is a persistent phenomenon in Substance Use Disorder (SUD) treatment 

research, however it has been largely ignored in previous studies [16] [59], [60]. The effect of 

a brief intervention on alcohol consumption was studied among 967 students from three New 

Zealand tertiary educational institutions [34]. The possible presence of the RTM effect in the 

alcohol consumption was explored graphically. Available methods of estimating and adjusting 

the RTM effect for normal data were not considered due to positive skewness in the alcohol 

intake data. The presence of RTM effects was found in the reduction of alcohol consumption. 

A negative association between baseline AUDIT scores and changes in AUDIT scores from 

baseline to six months was observed. Students who had lower baseline scores tended to have 

higher follow-up scores. Also, those who had higher baseline scores tended to have lower 

follow-up scores.  

 

In another repeated measures study in Finland, southern Sweden and Denmark, the 

effect of a change in alcohol policy on alcohol consumptions was studied [61]. In 2004, in 

these three Nordic countries, alcohol taxes were lowered by one third and travellers were 

allowed to import unlimited alcohol for own use. The data collected in 2003 to 2005, that is, 

before and after the policy change, were examined. A linear regression model of latter alcohol 

intake on the initial alcohol intake was used to account for the RTM effect. After accounting 

for the RTM effect, among heavy drinkers, there was no significant change in alcohol 

consumption after the policy change in all three countries. In southern Sweden, light drinkers 

raised their alcohol consumption.  

 

RTM in Exercise Outcomes 

 

RTM effects have been often ignored in studies of exercise and health outcomes [62], [63], 

[64], [65]. Generally, the effectiveness of an exercise program is evaluated by studying 
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changes in the initial condition of an individual such as blood pressure, ventricular 

dimensions, ST segmental depression, or serum cholesterol levels at follow-up measurements. 

Initial high or low values of a clinical characteristic tend to regress towards the mean without 

any intervention. Thus such studies are susceptible to the RTM effect. The common belief that 

the extent of aerobic training is inversely related to the initial fitness of the individual was 

shown to be wrong after accounting for the RTM effect [12].  

 

Despite growing evidence informing clinical and public health practices based on 

repeated measures data, very few studies evaluated the presence of RTM effects and/ or 

considered it in the interpretation of the observed change. In most of these studies, the 

apparent benefit of the interventions dissipated after the adjustment for the RTM effect. This 

underscores the importance of evaluating the presence of RTM as a source of bias in current 

research as many interventions may deceivingly appear successful in the presence of RTM. It 

also highlights the need for the development of new, sophisticated methods to adjust for the 

RTM effect in intervention studies in order to avoid making misleading conclusions about the 

effectiveness of an intervention. Better detection of the RTM effect and elimination of this 

bias from health intervention studies has significant implications, and will prevent unnecessary 

and costly changes to current clinical and public health practice to implement interventions 

that are in fact ineffective. 

 

1.2.5 Summary 

 

Although RTM is common in repeated measures data, it is often neglected in analyses and 

interpretation of results. It is a major source of bias in intervention studies. The RTM effect is 

often mixed in with any genuine intervention effect in observed changes. It is very important 

to separate the RTM effect from the observed change in order to isolate any genuine 

intervention effect, made valid evaluation of the intervention. Different methods have been 

developed to control for the RTM effect at the design and analysis stages. At the design stage, 

the best method to eliminate the RTM effect is the use of a parallel control group. At analysis 

stage, RTM effects are estimated and removed from the observed changes. Various methods 

of estimating RTM effects were developed for normal and non-normal data. For normal data, 
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maximum likelihood method; method of moments; method accounting within subject 

variability; simulation; and regression-based approach were proposed under different 

situations. All of these methods proposed for normal data have been shown to be biased in 

cases of departure from normality. For non-normal data, parametric and non-parametric 

methods (local sample means; kernel density estimation) have been used for estimating the 

RTM effect. However, the relative efficiency of these methods is not known and has not been 

systematically investigated. To the best of my knowledge, simulation has not been used for 

non-normal data in estimating the RTM effect. 

 

1.3 Objectives 

 

The objectives of this thesis are:  

1. Develop a simulation-based method of estimating the RTM effect for non-normal 

(skewed) data.  

2. Perform a comparative study of different methods of estimating and adjusting the RTM 

effect at design and analysis stages including the novel approach. 
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Chapter 2 
 
Methods 
 
 
2.1 Repeated Measures Data 

 

In a study, if the outcome data are collected on two or more occasions on each subject or unit 

in the study population, it is called repeated measures data. Consider a hypothetical example 

such as a blood pressure (BP) reduction program. BP may be measured on each individual 

enrolled in the study three times, one at baseline and repeated twice at 3 and 6 months 

following the intervention. Such data can be represented as 

 

;3,2,1;,,2,1,  jniYij   

 

where n is the total number of individuals enrolled in the study. In general, Yij is the jth BP 

measurement on the ith subject. Specifically, when observations are measured at different time 

points, it is called longitudinal data [1], [2]. The observations from an individual taken at 

different time points are generally correlated. Methods are developed to take into account such 

correlation in the statistical analyses of the data. There are mainly two approaches in the 

correlated data analyses: 1) population average/ marginal approach; 2) conditional approach. 

 

In the marginal approach, average pattern in the outcome in the study population 

(population average (PA) pattern) is considered. Observations from the same individual tend 

to behave similarly to the PA. This similar behaviour is addressed by within subject or unit 

correlation. Generalized Estimating Equation (GEE) is a popular marginal method used in 

correlated data analyses [66], [67]. 
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In the conditional approach, it is assumed that natural heterogeneity exists between 

subjects or units. Each subject (or unit) is assumed to have its own intercept and/or slope 

(random effects). Observations are independent conditional on the subject-specific intercepts 

and/or slopes. Random effects modeling are used in this approach [66]. In repeated measures 

studies with more than two waves of data, linear random effects modeling is widely acceptable 

as an appropriate method in studying association between baseline value of a continuous 

variable and subsequent changes [14]. In Section 2.2, random effects modeling will be 

discussed, in brief, as a method of analyzing repeated measures data.    

 

In repeated measures data, the RTM effect is a major source of bias. Chapter 1 

reviewed how common RTM effects are. Various methods of adjusting for the RTM effect in 

the design and analysis stages of a study were discussed. In the design stage, the effect can be 

accounted for by using an appropriate control group. There are mainly two approaches to 

control the effect of RTM at the analysis stage. The RTM effect is estimated in the analysis 

using formulas or simulations and then subtracted from the observed changes. It can also be 

adjusted for by testing coefficients from the regression models. In the simulation based 

approaches that have been proposed until now, the RTM effect was estimated only for 

normally distributed repeated measures data. A new method of estimating RTM effects for 

non-normally distributed repeated measures data using simulation is presented in section 2.3. 

As a practical illustration of this new approach, the method will be applied to a study 

examining the effectiveness of providing online personalized assessment-feedback on alcohol 

use to young adults. A description of the study and its data will be given in Section 2.4. 

Finally, in Section 2.5, an analytical plan comparing different methods of adjusting the RTM 

effect, including the proposed new method, will be presented for the PAF intervention study. 
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2.2 Random Effects Modeling for Repeated measures Data 

Analysis 

 

In random effects modeling, the relationship of an outcome variable Y with exposure or 

regressior variables (Xs; Zs) can be expressed as a generalized linear mixed model of the 

following form: 

 

Systematic Part 

 
qijqiiji

ijiipijpijijqiiiiij
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where i = 1, 2,…, n and j = 1, 2,…,ni. Here, 

 

 Yij: j
th observation on the ith subject; 

 Xlij: j
th observation on the lth fixed regressor (l=1, 2,…, p) for the ith subject; 

 Zmij: j
th observation on the mth random regressor (m=1, 2,…, q) for the ith subject; 

 βl: fixed effect of the Xl regressor; 

 bi0: random intercept for the ith subject; 

βim: random effect of the Zm random regressor for the ith subject and 

f: link function, e.g. identity; logit; log links are used for linear, logistic and log linear 

model, respectively.    

 

Random Part 
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In the model, Xs are fixed regressors whose possible values or levels are only of interest. 

Gender, age and education levels are examples of fixed regressors. Zs are random factors or 
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regressors whose levels are from a random sample from a population of levels. Individuals 

enrolled in a repeated measures study, and families or households from which subjects are 

chosen for a study are examples of random factors. The random effects model in (2.1) is 

characterized by its fixed (β’s) and random effects (b’s). The fixed effects are estimated 

whereas for random effects, their variances and covariances are estimated. For the estimation, 

either maximum likelihood or restricted maximum likelihood approach is used [2]. Wald or 

likelihood ratio tests are used to tests hypotheses regarding β’s. If the outcome, Y, is normally 

distributed, t-tests and F-tests can be used to tests β’s. To test hypotheses regarding the 

random effects (b’s) i.e., whether variances or covariances corresponding to random effects 

are zero, approximate likelihood ratio test or approximate Wald test or approximate mixture 

test can be used [2]. Random intercepts models are the simplest of random effects models.  An 

example of a random intercept model is given below: 

 

ijipijpijijij bXXXY   022110  ;     … (2.2) 

 

The error term,  2,0~  Normalij ; 

 

  2
00 ,|~| iijiij bYENormalbY ; 

 

 2
0 ,0~ Normalb i . 

 

Here, ij  and  are independent of each other and  ib0
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2.3 Estimation of the RTM Effect for Non-normal 

Repeated Measures Data Using Simulation 

 

To date, simulation was used to estimate the RTM effect for normally distributed repeated 

measures data. In this section, we propose a novel approach of estimating the RTM effect for 

non-normally distributed repeated measures data using simulation. 

 

 Suppose Y1=(y11,y12,…y1n)' and Y2=(y21,y22,…,y2n)' be the first and second set of 

observations of the outcome variable Y in a repeated measures study before implementing the 

intervention. Here, Y follows a skewed distribution with certain mean, variance, skewness and 

kurtosis. Also, let the correlation between Y1 and Y2 be r. We simulate bivariate skewed data 

that approximately distributed same as Y with the correlation r. The method is a combination 

of bootstrap sampling [69] from Y1 and matrix decomposition [70], [71] of the correlation 

matrix,  














1

1

r

r
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The steps are listed below: 

1. Compute
1

11

YS

YY
Z


 , where 1Y  and are mean and standard deviation of Y1, 

respectively. 

1YS

2. Simulate two independent bootstrap samples B1 and B2 of size N from Z. 

3. Compute eigenvectors and eigenvalues of R. Let U1=(u11, u12)' and U2=(u21, u22)' be 

the eigenvectors of R with corresponding eigenvalues λ1 and λ2, respectively. 

4. Obtain the bivariate skewed data using the following equation 
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5. Compute 111 1
ZSYY Y   and 212 1

ZSYY Y   which are the simulated bivariate 1st and 

2nd set of skewed data with the correlation r. Both are approximately distributed same 

as Y. 

 

Then, the RTM effect for the skewed data is estimated by selecting observations with the first 

measurement greater than a specified cut off value and calculating the difference between the 

means of first and second measurements in this group. This estimate is used in the adjustments 

of RTM effect in the final results from the multiple regression analysis. 

 

2.4 Online Personalized Assessment-Feedback (PAF) 

Alcohol Intervention Study  

 

A quasi-experimental study was carried out among a group of 251 graduating high school 

students in Alberta in 2007-2008. The students were recruited from seven high schools from a 

pool of 24 schools represented by eleven school boards. They were categorized into the 

intervention and the non-intervention arms of the study based on whether or not they accessed 

online personalized assessment-feedback (PAF), a brief intervention designed to reduce 

drinking among students. Students in the intervention group (n=109) accessed the PAF while 

students in the control group (n=142) did not. Each enrolled student was given a unique 

password to access the project website. They completed two baselines and three follow-up 

surveys by logging into the project website. Students completed the first baseline survey in 

June 2007 before graduation from high school. The second baseline survey was completed 

three months later in September 2007. The intervention was made available to the all 

participants in October 2007 by an email invitation. The intervention was a ‘Personalized 

Drinking Profile’ which consisted of 1) a normative feedback pie chart comparing the 

participant alcohol consumption with that of the reference population of same age and sex [72] 

and 2) a report on the participant’s alcohol problem. A sample report is given in Appendix 

A.1. It can also be viewed at the following website available to the general public: 

http://www.CheckYourDrinking.net. 
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Information on age, gender, mobility, country of origin, marital status, living 

arrangements, school performance, alcohol drinking and parental support and involvement 

was collected at the two baselines. Based on the response at the second baseline the students 

were classified as problem drinkers using the Alcohol Use Disorders Identification Test 

(AUDIT) score. An AUDIT score is a validated 10-item self-report measure of hazardous and 

harmful drinking [73], [74], [75]. An AUDIT score of 8 or above for male and 6 or above for 

female were used to define problem drinkers [76]. The main outcome of interest was the total 

number of drinks in a typical week or the mean number of drinks per day in a typical week 

[77]. The mean number of drinks per day was obtained by dividing the total number of drinks 

reported in a typical week by the number of days reported. 

 

2.5 Analytical Plan 

 

In the PAF intervention study, the primary hypothesis was as follows: Participants who, at 

baseline, met criteria for problem drinking and who subsequently accessed the intervention, 

would exhibit greater reductions in alcohol consumption compared to problem drinkers who 

did not access the intervention. 

 

Four groups were defined based on their baseline drinking problem (yes/no) and access 

to the intervention (accessed or not).  Within-subject changes in alcohol drinking was studied 

for these groups. Average monthly changes in mean drinks/ day were obtained and compared 

between these groups using a random intercepts model after controlling for marital; living 

status; and like school score. For each group, the adjusted average change was obtained as a 

linear combination of the effect estimates (regression coefficients) from the model and tested 

using Z-test. The RTM effect was not examined and adjusted in testing the hypothesis. This 

may lead to incorrect conclusions considering the possibility of presence of the RTM effect in 

observed changes in the repeated measures data. 

The main objective is to test the study hypothesis after adjusting for the RTM effects. 

The proposed new method of estimating and adjusting for the RTM effect for non-normal data 
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will be used in the analysis of PAF intervention study. This method is appropriate for 

analyzing the average monthly changes in mean drinks/ day which is skewed to the right. 

 

There are different methods of adjusting for the RTM effects in the design and analysis 

stages of a study. A comparison of such methods is absent in current studies. In this thesis, a 

comparison of different methods of adjusting for the RTM effects will be performed. In the 

PAF study, two baseline data were collected. The first baseline was administered prior to 

graduation from high school, and the second baseline assessment was administered three 

months following graduation. It was anticipated that the transition had an impact on the 

alcohol drinking of the students. Two baseline assessments allowed  us to examine two 

methods of adjusting the RTM effects at design stages. The study hypothesis will be tested 

applying the following five methods for adjustments of the RTM effects: 

 

1. Use of average of multiple measurements for selecting subjects; 

2. Taking two baseline measurements: first for selection and second for comparison; 

3. Estimating the RTM effect using the formula in (1.1) by maximum likelihood method 

assuming bivariate normal distribution; 

4. Estimating RTM effects for non-normal repeated measures data using the proposed 

novel simulation method and 

5. Using Poisson regression for the adjustment of the RTM effect. 

 

Methods 1, 2 and 3 were discussed in Chapter 1. Method 4 was described in Section 2.3. In the 

following section, Method 5 will be illustrated in the context of the study data.  

 

Let, 

Yij : Number of drinks in a typical week for the ith problem drinkers at jth time;  

             i = 1,2, …., ni and j=-4,-1, 1, 3, 6 month; 

Eij: Expected number of drinks in a typical week for ith problem drinkers at jth time  

       = Average of number drinks of all subjects in the population at jth time. 

 

The outcome, relative number of drinks (Rij), is defined as  
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Rij  = Number of drinks in a typical week / Expected number of drinks in a typical   

week 

      = Yij/ Eij . 

 

The Poisson regression model to account for the RTM effect is 

 

   Tiiijijk
K

Kijijij XZaEYE 210 ,,ˆlogloglog    , …(2.4) 

where 

 

Zijk = ijth observation of kth covariate; 

X = Design matrix = ; 
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β1i:  slope before the intervention for the ith subject; 

β2i:  slope after the intervention for the ith subject. 

 

One term Taylor expansion gives eβ ≈ 1+ β assuming all higher order terms 2;0
!

 r
r

r
. 

Thus, β1 is the change in relative number of drinks per month in 4 months before the 

intervention among the problem drinkers. Similarly, β2 is the change in relative number of 

drinks per month in 6 months after the intervention in problem drinkers. To asses the impact 

of intervention among problem drinkers accounting for the RTM effect, the following 

regression model will be fitted: 

 

  ii 12
ˆˆ .           … (2.5) 
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The estimated intercept  is the change in relative number of drinks after the intervention 

among problem drinkers controlling the RTM effect. The hypothesis regarding can be tested 

using t-tests.  

̂
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Chapter 3 
 
Results 
 
 
In this chapter, the proposed new method of estimating and adjusting RTM effects for non-

normal data will be applied to study changes in alcohol consumption in the PAF intervention 

study. Four other methods will also be applied: use of multiple measurement for selecting 

subjects; two baseline measurements: first for selection and second for comparison; estimation 

of the RTM effect using maximum likelihood method for normal data; and the use of Poisson 

regression for the adjustment of the RTM effect for count data. At first, the results obtained 

from the random intercepts model (2.2) without adjusting the RTM effects will be discussed 

briefly. Then, the results obtained from each proposed method of adjusting the RTM effect 

will be described and compared with the results obtained without adjusting the effects. The 

results of different methods of adjusting the RTM effect will be compared at the end. 

 

3.1 Results without Adjusting for the RTM Effects 

 

In PAF study, the intervention was made accessible to the students after one month of the 

second base line data collection. Of the 251 study participants, 109 (43.4%) accessed the 

intervention. The impact of the intervention was assessed by studying changes in the alcohol 

consumption compared to the second baseline data. At the second base line, 79 students were 

problem drinkers of which 44 (55.7%) accessed the intervention. Among 132 non-problem 

drinkers, 62 (47.0%) accessed the intervention.  In Figure 3.1, mean values of drinks/day were 

plotted for the intervention and the non-intervention students stratified by their baseline 

drinking status. Among participants who initially met criteria for problem drinking, those who 

accessed the intervention had higher intake of alcohol compared to those who did not seek the 

intervention (3.8 vs. 2.6 drinks/ day, p-value=0.09) at the second baseline with the difference 

not being statistically significant. A much steeper decrease in the alcohol intake over time was 
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observed in that group.  For the students without the drinking problem, the average drinks 

were 0.4 and 0.5 per day for the intervention and the non-intervention group at the second 

baseline and it remained similar during the follow-ups without much change.  

 
Figure 3.1.  Average drinks per day in a typical week for the study groups of interest 
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Within subjects’ changes in the alcohol consumption in the four study groups were studied 

using a random intercepts model of the following form: 

 

(Mean drink/ day)ij = β0 + b0i + β1 Interventioni + β2 Problem drinkingi + β3 

Timeij + β4 Interventioni×Problem drinkingi + β5 Interventioni×Timeij + β6 

Problem drinkingi×Timeij + β7 Interventioni×Problem drinkingi×Timeij + α1 

living arrangementi  + α2 school liking scorei + €ij, 

(3.1) 

 

where jth observation on ith student was represented by ij subscript and living arrangement and 

school liking score are the two confounders. For participants in each of these four a priori 

groups of interest, average adjusted monthly changes in mean drinks/ day was estimated as a 

linear combination of the effect estimates (coefficients) of the above model and tested using Z-

tests. Statistical significance was set at the p = 0.05 level, and confidence intervals were set at 

95%. The overall model was significant (Wald χ2 [df = 10, n1 = 208 students, n2=755 
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observations] = 124.9, p < 0.0001). A three-way interaction between baseline problem 

drinking status, exposure to the intervention and follow-up time in months was significant 

(p=0.034, Table 3.1). It indicated that within-subject changes in the mean drinks varied 

between the study groups from the second baseline to the end of  

 

Table 3.1. Random effects model predicting within-subjects changes in mean number of 

drinks per day in a typical week 

Variable Adjusted Coefficient (95% CI) p-value 
Main effects – Covariates   

Living arrangements   

   Both parents - - 

   Single parent -0.03 (-0.65, 0.59) 0.92 

   Others 0.66 (0.02, 1.31) 0.045 

Like school score -0.20 (-0.48, 0.08) 0.16 

Main effects - Predictors   

Problem drinking 2.01 (1.25, 2.78) < 0.001 

Intervention 0.02 (-0.63, 0.67) 0.96 

Time (month) 0.02 (-0.06, 0.09)  0.69 

Interactions   

Problem drinking X intervention 1.06 (0.01, 2.11) 0.047 

Problem drinking X Time -0.11 (-0.24, 0.02) 0.11 

Intervention X Time 0.07 (-0.04, 0.18) 0.19 

Problem drinking X Intervention 

X Time 

-0.19 (-0.37, -0.01) 

 

0.034 

Constant 0.88 (0.12, 1.65) 0.023 

Variance components Estimate (SE) 95% CI 

Between subjects variance 2.20 (0.26) (1.74, 2.78) 

Residual variance 1.67 (0.10) (1.48, 1.88) 

 

follow-up. Among the problem drinkers who accessed the intervention, the adjusted average 

monthly change (95% CI) in mean drink was -0.21 (-0.30, -0.12) (Table 3.2). The decrease 

was highly significant (p-value < 0.001). A non-significant decrease was observed in the 
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problem drinkers without the intervention [mean change (95% CI): -0.09 (-0.20, -0.02); 

p=0.096]. These average changes in mean drinks between the two groups did not vary 

(p=0.10) although initial average drinks was much higher among the students who accessed 

the intervention. In the student without any drinking problem, the mean drinks increased 

among those who accessed the intervention [mean change (95% CI): 0.09 (0.01, 0.16); 

p=0.025]. A non-significant average increase [mean change (95% CI): 0.02 (-0.06, 0.09); 

p=0.689] in mean drinks was also observed among students who did not access the 

intervention. 

            

Table 3.2.  Average adjusted monthly change in mean drinks/ day in a typical week  

from a random effects model of drinks/ day in a typical week 

Baseline 

drinking 

problem 

Accessed 

intervention 

Crude mean drinks/ 

day in a typical week 

at the second 

baseline 

Average adjusted 

monthly change (Δ) in 

mean drinks/day (95% 

CI) p-value 

No No 0.55 0.02 (-0.06, 0.09) 0.689 

 Yes 0.37 0.09 (0.01, 0.16) 0.025 

Yes No 2.55 -0.09 (-0.20, 0.02) 0.096 

 Yes 3.79 -0.21 (-0.30, -0.12) < 0.001 

 

3.2 Presence of the RTM Effects in the Data 

 

Decrease in alcohol consumptions among problem drinkers not exposed to the intervention 

and increases in the consumption of non-problem drinkers indicate possible presence of the 

RTM effects in the repeated measures data [78]. Each participant’s alcohol consumption was 

plotted to detect possible RTM effects by the study groups (Figure 3.2). There were instances 

where high alcohol intakes were immediately followed by decreased intakes on the repeat 

measurements on the follow-ups. Also, there were some outlying observations. Each student’s 

alcohol consumption was plotted after removing the outliers in Figure 3.3. The presence of the 

RTM effects became more notable in Figure 3.3.   
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Figure 3.2.  Average drinks per day in a typical week for each subject in the study groups of 

interest 
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The average adjusted monthly changes in mean drinks per day for the study groups with and 

without removing the outlying observations were presented in Table 3.3. In problem drinkers 

who accessed intervention, average adjusted mean drinks decreased from 0.21 to 0.17. Also, in 

non-problem drinkers who accessed the intervention, the average adjusted mean drinks 

decreased from 0.09 to 0.07. In the subsequent analyses, the outliers were removed from the 

data and the results obtained adjusting for the RTM effects were presented. 
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Figure 3.3.  Average drinks per day in a typical week for each subject in the study groups of 

interest without outliers 
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Table 3.3.  Average adjusted monthly change in mean drinks/ day in a typical week from a 

random effects model with and without removing the outliers 

Without removing outliers After removing outliers 
Baseline 

drinking 

problem 

Accessed 

intervention Δ (95% CI) p-value Δ (95% CI) p-value 

No No 0.02 (-0.06, 0.09) 0.689 0.02 (-0.05, 0.08) 0.63 

 Yes 0.09 (0.01, 0.16) 0.025 0.07 (0.004, 0.13) 0.038 

Yes No -0.09 (-0.20, 0.02) 0.096 -0.09 (-0.18, -0.001) 0.049 

 Yes -0.21 (-0.30, -0.12) <0.001 -0.17 (-0.24, -0.09) < 0.001 
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3.3 Results after adjusting for the RTM Effects 

3.3.1. Use of Average of Two Measurements for Selection of Subjects 

(Method 1)  

 

The average of the first and second baseline AUDIT scores was calculated for each student. 

This average was used to define problem drinkers. An average AUDIT scores of 8 or above 

for male and 6 or above for female were considered as problem drinkers [74]. In addition, the 

average of the first and second baselines’ mean drinks/ day was estimated for each student. 

Changes in mean drinks/ day during the follow-ups compared to the baselines’ average mean 

drinks/ day were studied using model (3.1). This approach minimized the RTM effects by 

reducing variability; measurement errors in the initial measurements by means of averages, 

but couldn’t remove the effects. In the problem drinkers without the intervention, the mean 

reduction slightly decreased to -0.08 [95% CI: (-0.16, 0.002)] from -0.09 [95% CI: (-0.18, -

0.001)] (Table 3.4) after adjusting for the RTM effects. Similarly, in the non-problem drinkers 

with the intervention, the average increase in the mean drinks reduced to 0.05 [95% CI: (-0.01, 

0.11)] from 0.07 [95% CI: (0.004, 0.13)] (Table 3.4).  

 

Table 3.4.  Average adjusted monthly change in mean drinks/ day in a typical week from a 

random effects model with and without controlling the RTM effects using Method 1 

Without controlling the RTM 

effects 

With controlling the RTM 

effects using  Method 1 Baseline 

drinking 

problem 

Accessed 

intervention Δ (95% CI) p-value Δ (95% CI) 

p-

value 

No No 0.02 (-0.05, 0.08) 0.633 0.03 (-0.03, 0.09) 0.34 

 Yes 0.07 (0.004, 0.13) 0.038 0.05 (-0.01, 0.11) 0.095 

Yes No -0.09 (-0.18, -0.001) 0.049 -0.08 (-0.16, 0.002) 0.056 

 Yes -0.17 (-0.24, -0.09) < 0.001 -0.11 (-0.18, -0.04) 0.004 

 
These marginally significant changes in the mean drinks: the decrease (p-value=0.056, Table 

3.4) among the problem drinkers without the intervention and the increase (p-value=0.095, 
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Table 3.4) among the non-problem drinkers with the intervention indicated the presence of the 

RTM effects even after using Method 1 to control for it. 

 
3.3.2. Two Baseline Measurements: First for selection and second for 

comparison (Method 2) 

 

In this approach, students were classified as problem and non-problem drinkers based on the 

first baseline AUDIT score. A male student with the first baseline AUDIT score greater or 

equal to 8 and a female student with the score greater or equal to 6 were considered as 

problem drinkers [74]. Then, the changes in the mean drinks/ day from the second baseline 

were observed during the follow-ups in the four study groups  

 

Table 3.5.  Average adjusted monthly change in mean drinks/ day in a typical week from a 

random effects model with and without controlling the RTM effects using Method 2 

Without controlling the RTM 

effects 

With controlling the RTM 

effects using  Method 2 Baseline 

drinking 

problem 

Accessed 

intervention Δ (95% CI) p-value Δ (95% CI) 

p-

value 

No No 0.02 (-0.05, 0.08) 0.633 0.03 (-0.04, 0.09) 0.42 

 Yes 0.07 (0.004, 0.13) 0.038 0.02 (-0.05, 0.08) 0.62 

Yes No -0.09 (-0.18, -0.001) 0.049 -0.09 (-0.18, -0.01) 0.029 

 Yes -0.17 (-0.24, -0.09) < 0.001 -0.10 (-0.18, -0.02) 0.012 

 

using model (3.1) (Table 3.5). Among the problem drinkers who did not access the 

intervention, an average decrease of -0.09 [95% CI: (-0.18, -0.01), p-value=0.029] in the mean 

drinks was observed after using Method 2 to control for the RTM effects (Table 3.6). The 

decrease remained same as compared to the decrease of -0.09 [95% CI: (-0.18, -0.001), p-

value=0.049] observed without adjusting for the effect. Similarly, the observed increase in 

mean drinks among the non-problem drinkers with or without access to the intervention after 

using Method 2, though statistically non-significant, indicated the presence of the RTM 

effects.  The method failed to remove the RTM effects from the data because the correlation 
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between the first and second measurement was different from the correlations between the 

first and each of the follow-ups measurement (Table 3.6). 

 

Table 3.6. Correlations between mean drinks in a typical week    

 Baseline 1 Baseline 2 FU 1 FU 2 FU 3 

Baseline 1 1 0.599 0.656 0.578 0.734 

Baseline 2  1 0.680 0.665 0.645 

FU 1   1 0.726 0.748 

FU 2    1 0.773 

FU 3     1 

 

3.3.3. Estimation of RTM Using Maximum Likelihood (Method 3) 

 

In the study participants, the average mean drinks/ day were 1.35 and 1.45 with standard 

deviations (SDs) 1.95 and 2.16 at the first and second baselines, respectively (Table 3.7). The 

second baseline data were collected after the graduation. The alcohol intake was increased 

among the students in the transitional phase after the graduation. The first baseline data 

represented typical alcohol consumption among the students.  The mean and SD of the first 

baseline data were considered for the estimation of the RTM effects. It was assumed that in 

the study participants, mean drinks/ day followed a normal distribution with mean    1.35 

and SD    of 1.95.  The correlation between mean drinks in repeated measurements ranged 

from 0.6 to 0.8 (Table 3.6). The correlation was assumed to be 0.7. The RTM effects was 

estimated using formula (1.1) for mean drinks greater than 2 (75th percentile, Table 3.7) and 

for the mean drinks equal to 0 (25th percentile, Table 3.7). The estimation procedures were 

described below. 
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Table 3.7. Average drinks/ day in a typical week 

Percentiles   

  

  

N 

  

Min. 

  

Max. 

  

Mean 

  

SD 25 50 75 

Coeff. of 

Skewness 

Baseline 1 245 0 12.00 1.35 1.95 0 0.71 2.00 2.61 

Baseline 2 208 0 10.00 1.42 2.16 0 0.57 2.00 2.26 

FU 1 203 0 13.71 1.45 2.14 0 0.57 2.00 2.43 

FU 2 195 0 10.00 1.39 1.96 0 0.57 2.00 2.19 

FU 3 182 0 10.57 1.32 2.01 0 0.54 1.57 2.42 

 

The estimation of the RTM effects for mean drinks/ day > 2 

 

Here, z = (k- μ)/ σ = (2.00-1.35)/ 1.95 = 0.33; 

c = ordinate of standard normal distribution at 0.33 / area under the standard normal 

curve > 0.33 

   = 0.38/ 0.37  = 1.03. 

 

Therefore, the estimated RTM effect = cσ(1 - ρ) = 1.03*1.95*(1-0.70) = 0.60. 

 

The estimation of the RTM effects for mean drinks/ day = 0 

 

Here, z = (μ-k)/ σ = (1.35-0)/ 1.95 = 0.69; 

c = ordinate of standard normal distribution at 0.69 / area under the standard normal 

curve > 0.69 

   = 0.31/ 0.25 = 1.24. 

 

Therefore, the estimated RTM effect = cσ(1 - ρ) = 1.24*1.95*(1-0.70) = 0.73. 

 

The intervention effect was assessed from the second baseline. For each student with 

mean drinks greater than 2 at the second baseline, the estimated RTM effect, 0.60, was 

subtracted from their mean drinks. Conversely, for each student with mean drinks equal to 0 at 

the second baseline, the estimated RTM effect, 0.73, was added to their mean drinks. The 
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students were classified as problem and non-problem drinkers based on their second baseline 

AUDIT score. A male student with the second baseline AUDIT score greater or equal to 8 and 

a female student with the score greater or equal to 6 were considered as problem drinkers [74]. 

In the updated data, changes in mean drinks during the follow-ups compared to the second 

baseline were studied using model (3.1). A significant reduction of -0.11 [95% CI: (-0.19, -

0.04), p-value=0.004] in mean drinks was observed among the problem drinkers who accessed 

the intervention (Table 3.8). The reduction was much less compared to the reduction of -0.17 

[95% CI: (-0.24, -0.09), p-value < 0.001] in that group without the adjustment of the RTM 

effects. Among the problem drinkers who did not access the intervention, the observed 

reduction in mean drinks was reduced to -0.04 [95% CI: (-0.13, 0.05), p-value=0.38] from -

0.09 [(95% CI: (-0.18, -0.001), p-value=0.049] after controlling for  

 

Table 3.8.  Average adjusted monthly change in mean drinks/ day in a typical week from a 

random effects model with and without controlling the RTM effects using Method 3 

Without controlling the RTM 

effects 

With controlling the RTM 

effects using  Method 3 Baseline 

Drinking 

Problem 

Accessed 

intervention Δ (95% CI) p-value Δ (95% CI) 

p-

value 

No No 0.02 (-0.05, 0.08) 0.633 -0.04 (-0.10, 0.02) 0.220 

 Yes 0.07 (0.004, 0.13) 0.038 -0.002 (-0.07, 0.06) 0.959 

Yes No -0.09 (-0.18, -0.001) 0.049 -0.04 (-0.13, 0.05) 0.375 

 Yes -0.17 (-0.24, -0.09) < 0.001 -0.11 (-0.19, -0.04) 0.004 

 
 

the RTM effects. In the non-problem drinkers, the changes in mean drinks in the opposite 

direction was observed after controlling the RTM effects. In this group who accessed the 

intervention, the observed significant increase of 0.07 [95% CI: (0.004, 0.13), p-value=0.038] 

in mean drinks was changed to a non-significant decrease of -0.002 [95% CI: (-0.07, 0.06), p-

value=0.959] after adjusting for the RTM effects. For the non-problem drinkers without the 

intervention, an increase of 0.02 [95% CI: (-0.05, 0.08), p-value=0.633] in mean drinks was 

changed to a decrease of -0.04 [95% CI: (-0.10, 0.02), p-value=0.959] in the consumption. 
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This method eliminated the RTM effects from the observed changes. However, the method 

based on the assumption of normality gave bias results because of non-normality in mean 

drinks. In the study population, mean drinks/ day followed a positively skewed distribution. In 

the next section, the adjustment for the RTM effects using the new simulation-based method 

for non-normal repeated measures data were discussed. 

 
 

3.3.4. Estimation of RTM Assuming Non-normal Distribution (Method 4) 

 

In the study population, mean drinks/ day in a typical week was positively skewed (Table 3.7). 

At the first baseline, the average mean drinks/ day was 1.35 with SD 1.95 and coefficient of 

skewness 2.61. The observed correlations in mean drinks/ day between the baselines and 

follow up measurements ranged from 0.6 to 0.8 (Table 3.6). A correlation of 0.7 between the 

repeated measurements was considered. Bivariate skewed data following the steps outlined in 

section 2.3 were simulated. The simulated  

  

Table 3.9. Descriptive statistics for observed first baseline and the simulated data 

Simulated data 

Statistic 

Mean drinks/ day at 

the first baseline 1st measurement 2nd measurement 

N 245 2450000 2450000 

Mean 1.35 1.35 1.35 

SD 1.95 1.94 1.95 

Skewness 2.61 2.00 2.21 

 

data were approximately distributed same as the original study population data (Table 3.9). 

The correlation between the first and second set of simulated data was 0.7. The RTM effect for 

mean drinks greater than 2 (75th percentile, Table 3.7) was estimated by selecting the 

simulated observations with the first measurement greater than 2 and then calculating the 

difference between the means of first and second measurements in this group. Similarly, the 

RTM effect for mean drinks equal to 0 was estimated. The estimation procedures were 

described below. 
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The estimation of the RTM effects for mean drinks/ day > 2 

 

The RTM effect = [Mean of 1st measurements | 1st measurement > 2] – [Mean of 2nd           

measurements | 1st measurement > 2]  

                            = 3.85 - 3.41 

                            = 0.44 

 

The estimation of the RTM effects for mean drinks/ day = 0 

 

The RTM effect = [Mean of 1st measurements | 1st measurement = 0] – [Mean of 2nd           

measurements | 1st measurement = 0]  

                            = 0.02 – 0.87 

                            = - 0.85 

 

For each student with mean drinks greater than 2 at the second baseline, the estimated RTM 

effect, 0.44, was subtracted from their mean drinks. Conversely, for each student with mean 

drinks equal to 0 at the second baseline, the estimated RTM effect, 0.85, was added to their 

mean drinks. The students were classified as problem and non-problem drinkers based on their 

second baseline AUDIT score [74]. Then, the changes in mean drinks in the four study groups 

during the follow-ups compared to the second baseline were studied using model (3.1). 

Among the problem drinkers who accessed the intervention, a significant reduction of -0.13 

[95% CI: (-0.21, -0.05), p-value=0.001] in mean drinks was observed (Table 3.10). As 

observed in method 3, here as well, the reductions in mean drinks were reduced for the both 

groups of the problem drinkers (with or without access to the intervention) after controlling for 

the RTM effects. Also, in the both groups of the non-problem drinkers, the increments in mean 

drinks during the follow-ups were changed to decrements after adjusting for the effects (Table 

3.10). This method estimated the RTM effects considering the actual distribution of the data, 

thus provided more accurate estimation of the effects. The method eliminated the RTM effects 

from the observed changes and provided a valid interpretation of the changes. 
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Table 3.10.  Average adjusted monthly change in mean drinks/day in a typical week from a 

random effects model with and without controlling the RTM effects using Method 4 

Without controlling the RTM 

effects 

With controlling the RTM 

effects using  Method 4 Baseline 

Drinking 

Problem 

Accessed 

intervention Δ (95% CI) p-value Δ (95% CI) 

p-

value 

No No 0.02 (-0.05, 0.08) 0.633 -0.05 (-0.11, 0.01) 0.13 

 Yes 0.07 (0.004, 0.13) 0.038 -0.01 (-0.08, 0.05) 0.68 

Yes No -0.09 (-0.18, -0.001) 0.049 -0.06 (-0.15, 0.04) 0.23 

 Yes -0.17 (-0.24, -0.09) < 0.001 -0.13 (-0.21, -0.05) 0.001 

 

3.3.5. Adjusting for RTM Using Poisson Regression (Method 5) 

 

In this section, Poisson regression model was used to adjust the RTM effects in the total 

number of drinks in a typical week. In Figure 3.4, average total number of drinks was 

presented for the problem drinkers with and without the intervention and for the overall study 

population. A general decreasing trend in number of drinks over the study period was 

observed whether the intervention was accessed or not. To remove the general trend, relative 

number of drinks was calculated. For each student, the relative number of drinks was defined 

as the ratio of the total number of drinks in a typical week divided by the expected number of 

drinks in that week. The expected number of drinks in a typical week at a time point was 

estimated by the average of number drinks of all subjects in the population at that time.   
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Figure 3.4. Number of drinks in a typical week among the problem drinkers with and without 

the intervention and in the overall population 
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In Figure 3.5, average relative number of drinks was plotted for the problem drinkers with and 

without the intervention. An increase in the average relative number of drinks was 

immediately followed by a sharp decrease in the average consumption even without the 

intervention (Figure 3.5). This indicated the presence of the RTM effects in the relative 

number of drinks for the problem drinkers.  
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Figure 3.5. Relative number of drinks in a typical week among the problem drinkers with and 

without the intervention 
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For each of the problem drinkers who accessed the intervention, the estimated slopes for 

relative number of drinks for four month before and six months after the intervention were 

obtained by fitting the Poisson regression model (2.4). The RTM effects in the slopes of 

relative number of drinks was adjusted through regressing the post intervention slopes on the 

pre intervention slopes. The test of the intercept from the simple linear regression model 

compared the before-after change in the relative number of drinks adjusting for the RTM 

effects. Similarly, the RTM effects in the relative number of drinks was controlled for the 

problem drinkers without the intervention. For the non-problem drinkers, the Poisson model 

(2.4) did not converge. The results obtained with forced finite iterations produced unreliable 

estimates; thus not reported here. Among the problem drinkers who accessed the intervention, 

6% per month increase in the relative number of drinks was observed during 4-month 

baselines period prior accessing the intervention (Table 3.11). After accessing the intervention, 

the relative number of drinks decreased by 6% per month in 6-months follow-up period (Table 
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3.11). Thus, 12% (p-value=0.017) reduction in the relative number of drinks in the follow-ups 

compared to the baseline was observed. After accounting for the RTM effects, the reduction 

reduced to 4% (p-value=0.034). Similarly, among the problem drinkers without the 

intervention, 10% (p-value=0.197) reduction in the relative number of drinks reduced to 4% 

(p-value=0.085) after adjusting for the RTM effects.   

  

Table 3.11. Average adjusted monthly change in the relative number of drinks in a typical 

week among the problem drinkers with and without controlling the RTM effects using Poisson 

regression (Method 5) 

Average change/ month 

(95% CI) in relative no. of 

drinks 

Ignoring the RTM 

effect 

Controlling for the 

RTM effect 

 

Before 

intervention 

After 

intervention 

∆After – ∆Before 

(95% CI) 

p-

valu

e 

∆After – ∆Before 

(95% CI) 

p-

value 

Problem 

drinkers, 

accessed 

intervention 

(n=44) 

0.06 

(-0.01, 0.12) 

-0.06 

(-0.10, -0.02) 

-0.12 

(-0.21,-0.02) 
0.02 

-0.04 

(-0.08,-0.003) 
0.03 

Problem 

drinkers, did 

not access 

intervention 

(n=35) 

0.04 

(-0.06, 0.14) 

-0.06 

(-0.13, 0.01) 

-0.10 

(-0.26,0.06) 
0.20 

-0.04 

(-0.09, 0.01) 
0.09 
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Chapter 4 
 
Discussion and Conclusions 
 
 
4.1 Discussion 

 

In repeated measures data, the RTM effect is always present due to less than perfect 

correlation (correlation coefficient < 1) between the repeated measurements. In studying 

changes in outcome variables over time, the RTM effect should be adjusted for the valid 

interpretation of the changes. It can be adjusted at the design or at the analysis stage of a 

repeated measures study. At the analysis stage, the effect can be estimated and removed from 

the observed changes or it can be adjusted using a regression model of the latter observations 

on the previous observations. A new method of estimating RTM effects for non-normal data 

using simulation (Method 4) was proposed. The method was applied to adjust for the RTM 

effects in studying changes in mean drinks in a typical week in PAF intervention study. The 

application of the new method in the study data was appropriate as the mean drinks followed a 

positively skewed distribution. After removing the estimated RTM effects from the data, a 

random intercepts model was used to study changes in the outcome. To adjust for the RTM 

effects in the outcome, three other methods were used: use of average of two measurements 

for selection of subject (Method 1); taking two baseline measurements: first for selection of 

subjects and second for baseline assessment (Method 2); and estimating the RTM effect using 

the maximum likelihood method assuming bivariate normal distribution (Method 3). The 

RTM effects in total number of drinks in a typical week was also studied. Poisson regression 

was used to adjust for the RTM effect in total number of drinks (Method 5). In this chapter, 

the strengths and weaknesses of each method in adjusting the RTM effects will be discussed. 

 

In the mean drinks in a typical week, the presence of the RTM effects was evident at 

individual as well as group levels. At individual levels, there were instances where a high 
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alcohol intake was immediately followed by a decreased intake on the next follow-up 

measurement. At group levels, among the problem drinkers who accessed the intervention, a 

sudden sharp increase in the average mean drinks at the second baseline was immediately 

followed by a steep decrease in the average intake at the first follow-up. In the problem 

drinkers who did not access the intervention, initial rises in the mean drinks were followed by 

a steady decrease in the consumption during the follow-ups. Among the non-problem drinkers 

who accessed the intervention, the initial low intakes were followed by the increased intakes.  

In the average adjusted (adjusted for living arrangements and school liking scores) monthly 

change in the alcohol consumption without controlling for the RTM effects, a significant 

decrease in the mean drinks in the problem drinkers without the intervention and a significant 

increase in the outcome in the non-problem drinkers with the intervention indicated the 

presence of the RTM effects in the data. The estimated average changes in the mean drinks for 

the four study groups were biased for not adjusting for the RTM effects.  

 

To adjust for the RTM effects at the design stage, Methods 1 and 2 were used. In 

Method 1, the use of the averages of the two baselines’ AUDIT scores to define problem and 

non-problem drinkers; the baselines’ averages of the outcome reduced the variability in the 

data. Despite reduction in variability, marginally significant changes in the mean drinks: a 

decrease in the problem drinkers without the intervention and an increase in the non-problem 

drinkers with the intervention showed that the RTM effects were still present in the data. 

Method 2 failed to eliminate the RTM effects from the data due to varying correlations 

between baselines and follow-ups measurements of the outcome. After applying Method 2, a 

significant average decrease in the mean drinks in the problem drinkers without the 

intervention and the average increase in mean drinks (statistically insignificant) among the 

non-problem drinkers with or without the intervention were observed. After using Method 3 to 

control for the RTM effects, a significant reduction in mean drinks was observed among the 

problem drinkers who accessed the intervention. The average reduction in the mean drinks 

among the problem drinkers without the intervention became insignificant. In the non-problem 

drinkers, the changes in mean drinks in the opposite direction was observed after controlling 

the RTM effects. In the both groups of non-problem drinkers, reductions in mean drinks, 

though statistically insignificant, were observed. The method eliminated the RTM effects from 
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the observed changes. The method based on the normality assumption gave bias estimates of 

the average changes in the study groups due to substantial non-normality (positive skewness) 

in the outcome, mean drinks. In the proposed simulation based approach, the RTM effects 

were estimated considering the true distribution (positively skewed) of the outcome, thus 

provided more accurate estimation of the effects. After applying the method, a significant 

reduction in the mean drinks was observed among the problem drinkers who accessed the 

intervention. In the rest of the study groups, insignificant reductions in the mean drinks were 

observed. The method eliminated the RTM effects from the observed changes in the outcome. 

The method ensured valid interpretation of the observed changes in the outcome by providing 

the most accurate estimation of the RTM effect and then removing it from the data. In Method 

5, Poisson regression model (2.4) was used to adjust for the RTM effects in total number of 

drinks in a typical week. A reduction in the relative number of drinks in the follow-ups 

compared to the baseline was observed among the problem drinkers with the intervention. 

Among the problem drinkers without the intervention, a non-significant reduction in the 

relative number of drinks in the follow-ups compared to the baseline was observed. The model 

did not converge for the both groups of non-problem drinkers. The forced finite iterations 

produced unreliable results for the groups. The non-convergence issue was a potential 

limitation for Method 5. 

 

The RTM effect is a persistent phenomenon in alcohol intervention studies, however it 

has been largely ignored in previous studies. In few recent studies, the presence of the RTM 

effects in alcohol consumption was addressed, but none of the studies used appropriate method 

to control for it. Despite non-normality in alcohol intake data, the RTM effect was estimated 

assuming normal distribution [16], [61] or its presence was detected using graphs without 

applying any method to adjust for it [34]. The proposed simulation based approach estimated 

the RTM effects considering the true distribution (positively skewed) of the alcohol intake 

thus provided more precise estimation and adjustment for the effect.  
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4.2 Conclusions 

 

In repeated measures data, large or small values at the initial measurement tend to be followed 

by values that are closer to the mean at the follow-ups measurements. This tendency is called 

regression to the mean (RTM). The presence of the RTM effect is inevitable in repeated 

measures data because of less than perfect correlation (correlation coefficient < 1) between the 

repeated measurements. It is established as a statistical concept based on theoretical 

deductions. Despite the growing evidence of the presence of RTM effects in clinical and 

public health studies based on repeated measures data, very few studies evaluated and 

considered the effects when interpreting the observed changes over time. An RTM effect is 

mixed with an intervention effect in observed changes over time. It is extremely important to 

separate the RTM effect from the observed change in order to isolate any intervention effect 

and to make valid evaluation of the intervention. In presence of the RTM effects, the 

estimation of the average changes in the study groups would be erroneous. It can lead to the 

wrong interpretation of the effectiveness of an intervention if not removed from the data. Any 

intervention may appear successful due to RTM. It may result in wasteful persuasion of an 

ineffective intervention. It may have significant implications for patient care, policy 

development. In studying changes in outcome variables in repeated measures studies, RTM 

effects should always be adjusted for the valid interpretation of the changes and unbiased 

assessment of the intervention effects. It can be adjusted at the design or at the analysis stage 

of a study. At the design stage, the best method to eliminate the RTM effect is the use of a 

parallel control group. The use of a control group may not always be feasible, ethical 

especially in the observational studies. The use of average of multiple measurements for 

selection of subjects into the study may reduce the effects of RTM by reducing the variability 

in the data. But this method cannot guarantee the removal of the effects from the data. The 

method of taking two baseline measurements: first for selection of subjects and second for 

baseline assessment completely eliminates the RTM effect if correlations between the first and 

successive measurements are exactly the same which is highly unlikely in practice. At the 

analysis stage, the effect can be estimated and then subtracted from the observed changes or it 

can be adjusted using a regression model of the latter observations on the previous 

observations. The choice of the methods to control for the RTM effect should be based on the 
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type (continuous, count) and shape (normal, non-normal distribution) of the outcome variables 

of interest. In case of normally distributed outcome variables, the estimation of the RTM effect 

using the maximum likelihood (ML) method assuming bivariate normal distribution is more 

appropriate for its efficiency, adaptability to different models (additive or multiplicative) and 

different types of sampling (truncated, selected, censored or complete). For non-normal data, 

simulation based or non-parametric methods (local sample means; kernel density estimation) 

can be used to estimate the RTM effect. A new method of estimating RTM effects for non-

normal data using simulation is proposed. The method is a combination of bootstrap sampling 

from the standardized outcome variable and matrix decomposition of the correlation matrix 

between the repeated measurements. The method was applied to adjust for the RTM effects in 

studying changes in mean drinks in a typical week in PAF intervention study. In the study, 

mean drinks followed a positively skewed distribution. The new method was more accurate in 

adjusting the RTM effects compared to other methods considered here. For count data, 

Poisson regression based approach can be used to adjust for the RTM effect. 
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Appendix A 

 
A.1 A sample report  

Consider a hypothetical example of a student, Adam Smith, who participated in the PAF 

Alcohol Intervention Study. When the intervention was made available to all students in 

October 2007 by an email invitation, he got the intervention. After completing the AUDIT 

items, he received the intervention as a personalized drinking profile. The profile consisted of 

a normative pie chart and a report of his drinking problem. The profile is given below. 

 

Final Report for  

Adam Smith 

 

The average number of drinks you reported consuming per week was 26. 

How do you compare to males your age from Canada?  

The highlighted slice of the pie chart below is where your drinking fits compares to other 

males in your age range from Canada. 

Average drinks per week for males aged 18 - 24 from Canada 

 

Within the last twelve (12) months: 
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 You reported drinking on approximately 100.00% of days in the last year. 

 You reported that you drank a total of 1,352 drinks in the last year. 

 

This also means that: 

 You spent approximately $4,056.00 in the last year, depending on where you drank (at 

home, in a bar, etc.). 

 You consumed (on average) 300 calories from alcohol on days that you drink. Based 

on the total amount of drinking you had enough alcohol to add roughly 38 pounds or 

17.27 kilograms to your weight in the last year. Note: One drink has about 100 calories 

and 3,500 calories roughly equals 1 extra pound of weight. 

 You also reported that within the past year, the greatest number of drinks you had on 

one occasion was 12 drinks. 

 

Your Drinking Patterns 

The following graph outlines how your weekly alcohol consumption rates compare to other 

males in your age range from Canada. 

Drinks per day for males aged 18 - 24 from Canada 
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	Disease modifying therapies (DMT) are generally accepted as effective therapeutic treatments in reducing relapse rate in multiple sclerosis (MS) patients though some controversies of the treatments in reducing residual disabilities [48]. In a non-treated cohort of 44 relapsing-remitting multiple sclerosis (RRMS) patients, the RTM effect was evaluated in the relapse rate in order to correctly identify response to DMT [49] [50]. The patients with two or more relapses in the prior two years, and a baseline expanded disability status scale (EDSS) score less than or equal to 5.5 were recruited in Spain in 1994. The patients were monitored for 1 year using a standardized protocol (EDMUS) [51].   In the non-treated cohort, the mean number of relapses decreased from 1.7 to 1.0 in the first year. The absolute mean reduction of 0.7 in the RRMS relapse rate was suspected due to RTM and considered as an estimate of the effect under the assumption of no placebo effect. 

