ERA

Download the full-sized PDF of Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genesDownload the full-sized PDF

Analytics

Share

Permanent link (DOI): https://doi.org/10.7939/R3GX44X37

Download

Export to: EndNote  |  Zotero  |  Mendeley

Communities

This file is in the following communities:

Biological Sciences, Department of

Collections

This file is in the following collections:

Journal Articles (Biological Sciences)

Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes Open Access

Descriptions

Author or creator
Jiang, Y.
Deyholos, M.K.
Additional contributors
Subject/Keyword
differential expression
signal-transduction
abscisic acid
length CDNA microarray
expression profiles
carbohydrate metabolism
genome-wide analysis
swiss army knife
oxidative stress
salt stress
Type of item
Journal Article (Published)
Language
English
Place
Time
Description
Background: Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results: We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or downregulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like); signalling molecules (e.g. PERK kinases, MLO-like receptors), carbohydrate active enzymes (e.g. XTH18), transcription factors (e.g. members of ZIM, WRKY, NAC), and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1). We verified the NaClinducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion: Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent transcriptional responses to stress, will facilitate mapping of regulatory networks and extend our ability to improve salt tolerance in plants.
Date created
2006
DOI
doi:10.7939/R3GX44X37
License information
Rights
© 2006 Jiang and Deyholos; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation for previous publication
Jiang, Y., & Deyholos, M. K. (2006). Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 6(1), 25. BioMed Central. DOI: 10.1186/1471-2229-6-25
Source
Link to related item

File Details

Date Uploaded
Date Modified
2014-04-29T15:11:35.133+00:00
Audit Status
Audits have not yet been run on this file.
Characterization
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 1155982
Last modified: 2015:10:12 14:51:44-06:00
Filename: BMC_Plant_Biology_6_2006_25.pdf
Original checksum: e107a46645552ad3ec0e5290cdb1c747
Well formed: true
Valid: false
Status message: Invalid destination object offset=1111990
Status message: Invalid destination object offset=1111990
Status message: Invalid destination object offset=1111990
Status message: Invalid destination object offset=1111990
Status message: Invalid destination object offset=1111990
File title: Abstract
File title: 1471-2229-6-25.fm
File author: BMCproductionmachine
Page count: 20
Activity of users you follow
User Activity Date