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INTRODUCTION

In the boreal mixedwood forest of Alberta, forest practices are an important disturbance

structuring the forest landscape. The degree to which the landscape pattern of a managed forest

can or should resemble that of the natural forest remains unclear. To address this issue, forest

managers need the ability to predict the consequences of changing landscape patterns on wildlife

distributions over large areas. One approach that our group is taking to help fill this need is to

develop large-scale, coarse resolution habitat models based on existing forest inventory data and

empirical studies of wildlife habitat associations, especially of forest birds. In Alberta, two sources

of forest inventory data are available for this purpose (Gillis and Leckie 1993): the completed

Alberta Phase 3 Inventory (1970–1986) and the ongoing digital Alberta Vegetation Inventory

(AVI, 1988–). Both inventories are spatially organized at the township scale. Both consist partly

of stand attribute tables which may be used to calculate summary landscape statistics at the

township level (e.g., measures of patch sizes and proportional amounts of different patch types).

AVI data contains, in addition, higher resolution spatial data, in the form of georeferenced digital

forest cover maps (scale 1:15000) that can be used to compute more complex measures of

landscape structure (e.g., measures of edge, shape, interpatch distance, patch arrangement, and

amount of forest interior habitat). For the purpose of this study we refer to measures of landscape

structure obtained from stand attribute tables as tabular  landscape metrics and those computed

from digital forest cover maps as spatial landscape metrics. We use townships as our sample

landscapes.

Both tabular landscape measures (e.g., habitat area and patch size; Rosenberg and Raphael

1986, Lehmkuhl et al. 1991, McGarigal and McComb 1995) and spatial landscape measures (e.g.,

edge proximity, core area, and interpatch distance; Johns 1993, Vernier 1995, Schmiegelow et al.

1997) have been shown to influence bird community structure in western North American forests.

Moreover tabular and spatial factors may jointly determine the suitability of a patch or a

landscape. For example, habitat use by the Northern Spotted Owl (Strix occidentalis) is

correlated with patch vegetation type, patch isolation, and patch size variability (Lehmkuhl and

Raphael 1993). Therefore, both kinds of structural data must be available as predictor variables

for habitat models. However, there are two problems which limit the direct use of high resolution

spatial data: (1) the incomplete coverage of AVI or similar data in the boreal mixedwood forest
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and (2) the cost, in terms of model development and execution, of incorporating spatially explicit

information (i.e., stand topology) into the structure of habitat models. It would be of interest to

determine if it is possible to use tabular data to estimate quantitative spatial measures of landscape

structure which can only be computed efficiently from digital forest cover maps.

The goal of the present study was to determine if landscape patterns, as measured by

spatial landscape metrics, can be modelled statistically from highly aggregated stand attribute data

alone, without an explicit representation of the underlying stand topology. Ultimately, our goal is

to use such statistical relationships in subsequent cross-scale habitat modelling. Our specific

objectives are:

1. To identify representative and interpretable subsets of tabular and spatial metrics from the

large set of readily computable candidate landscape metrics (data reduction).

2. To explore the nature and strength of the statistical relationships that exist between these

subsets of tabular and spatial landscape metrics (statistical modelling).

METHODS

Study Area

Our study area comprises about 800,000 ha of the boreal mixedwood ecological region of

Alberta (Rowe 1972; Figure 1), which is transitional between colder, conifer-dominated forests to

the north and warmer, drier aspen parklands to the south (now largely farmland). The regional

ecology is described in detail by Moss (1932), Dix and Swan (1971), Kabzems et al. (1986), and

Strong (1992). The most abundant tree species are trembling aspen (Populus tremuloides),

balsam poplar (P. balsamifera), black spruce (Picea mariana), jack pine (Pinus banskiana), and

white spruce (Picea glauca). Wetland areas are abundant in the mixedwood, and cover about

50% of the shaded region of the mixedwood in Figure 1, but only 10% of our actual study

landscapes. The region has generally low relief, with limited variation in landforms and

topography. Historically, stand-replacing fires and insect outbreaks have been the dominant

disturbances shaping the forest landscape.

Figure 1. Study area location in northern Alberta (top left) with forest management area (FMA)
 locations inset (bottom right)
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Landscape Data

At the time of the study, digital AVI maps (GIS coverages in ARC/INFO format), were

available for four forest management units, L1, L2, S4 and S8 (Figure 1). From these, we selected

only complete map sheets (i.e., no missing data due to partial inventories) where the landscape

matrix was mostly forested. One complete map was rejected, because it consisted of > 93% lake.

The final working set was 84 maps, with a mean size of 9497 ha, ranging from 9397 to 9575 ha.

Using the AVI stand-attribute data, we developed a habitat classification system based on the

dominant canopy tree species (or genus in the case of Populus), estimated stand age, non-forest
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habitat types, and management history (Table 1). The areal extent of each habitat class per map

varied greatly between classes, being highest for young deciduous and black spruce forests and

lowest for anthropogenic habitat (e.g., clearcuts; Table 1).

Table 1. Descriptions and summary statistics of derived habitat classes, based on AVI stand
attributes. “Leading” species refers to the most abundant species

identified in a polygon’s forest cover attribute.

Class Description N1 Mean Std. Dev. Min Max
WATER Water (lake, ice, river) 83 414 423 2 1758
NONFOR Non-forest and wetland 84 990 650 206 3379
Y_DECID > 70% deciduous and <= 90

years
84 1884 1183 67 5566

O_DECID > 70% deciduous and > 90 years 84 516 584 2 3406
W_SPRUCE > 70% white spruce 84 476 393 2 1833
B_SPRUCE Leading black spruce 84 3443 1445 914 7221
PINE Leading pine 81 661 844 6 3940
MIXED Mixed deciduous/white spruce 84 876 526 95 2154
ANTHRO Anthropogenic (e.g., clearcuts) 79 283 460 1 2024
1The number of landscape maps in which the habitat type was present.

We used ArcView to grid each map to a resolution of 1 ha using the derived habitat class

attribute, and then used FRAGSTATS (McGarigal and Marks 1995) to compute a suite of spatial

landscape metrics from these classified raster maps. FRAGSTATS metrics are computed at one of

three levels: the patch-level (individual patches), the class-level (the structure of all patches in one

class), and the landscape-level (the structure of the habitat mosaic). Our current focus is on class-

level metrics, which measure the aggregate or mean properties of all patches of a particular class

within a landscape. We further restricted our analysis to 4 of the 9 habitat classes: Y_DECID,

O_DECID, W_SPRUCE, and MIXED. These 4 classes comprise most of the commercially

valuable portion of the mixedwood forest, and have attracted the most research effort directed at

quantifying avian habitat associations. They are thus of particular interest for future cross-scale

habitat modelling. For each of the four focal classes in each of the 84 maps, we computed 29

class-level spatial metrics (all the class-level metrics that FRAGSTATS supports), including a

variety of edge, patch-shape and core-area metrics, nearest-neighbor metrics, and contagion and

interspersion metrics (Table 2). Algorithms for each metric are listed in Appendix C of the

FRAGSTATS report (McGarigal and Marks 1995). Several metrics, such as CWED (contrast-
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weighted edge density), require a given edge contrast matrix — a matrix of user-defined weights,

ranging between 0 and 1, measuring the contrast between different habitat types. We chose

weights based on an informal assessment of structural and floristic differences between the

different habitat types (Table 3). These metrics constituted our initial set of candidate dependent

spatial variables. For our candidate independent variables, we computed 8 tabular landscape

metrics for each of the habitat classes, directly from AVI stand attribute tables exported from

ArcView (Figure 2).

Variable Reduction

Because many of both the tabular and spatial metrics are strongly correlated, we

performed a variable reduction procedure before proceeding to the statistical modelling phase

(Figure 2). We first examined all pairwise correlations among the two sets of metrics to identify

highly correlated pairs (r > 0.9). When pairs of metrics were redundant (100% correlated), we

subjectively eliminated one of them. Likewise, we arbitrarily retained standard deviations rather

than coefficients of variation to characterize the variability of some the metrics. Following Ritters

et al. (1995), one metric was generally selected to represent each group of highly correlated

metrics. Selection criteria included the degree of normality, our subjective estimate of

interpretability, and the need to have the same reduced set of metrics for each of the four habitat

classes. The latter criteria explains why, in a few cases, we retained more than one highly

correlated metric for a given habitat class. This procedure reduced the number of tabular metrics

to 3 and spatial metrics to 12 (Table 2). Table 4 lists summary statistics, by class, for the 15

selected variables, which are defined in Appendix 1. Among the selected metrics, we log

transformed MPS, PSSD, MSI, TCA, MCA2, MNN, and MPI prior to subsequent statistical

analyses, to reduce the positive skew in their distributions.



6

Table 2. Initial set of tabular and spatial metrics computed1.

Metric group & acronym Metrics selected (units)
Tabular Metrics
Area metrics
Not selected: CA, %LAND, LPI
Patch density, size and variability
metrics
NP Number of patches (#)
MPS Mean patch size (ha)
PSSD Patch size standard deviation (ha)
Not selected: PD, PSCV
Spatial Metrics
Edge metrics
CWED Contrast-weighted edge density (m/ha)
AWMECI Area-weighted mean edge contrast index (%)
Not selected: TE, ED, TECI, MECI
Shape metrics
MSI Mean shape index
DLFD Double log fractal dimension
AWMPFD Area-weighted mean patch fractal dimension
Not selected: LSI, AWMSI, MPFD
Core area metrics
TCA Total core area (ha)
MCA2 Mean area per disjunct core (ha)
CASD2 Disjunct core area standard deviation (ha)
Not selected: C%LAND, NCA, CAD, MCA1
CASD1, CACV1, CACV2, TCAI, MCAI
Nearest-neighbor metrics
MNN Mean nearest-neighbor distance (m)
NNSD Nearest-neighbor standard deviation (m)
MPI Mean proximity index
Not selected: NNCV
Contagion and interspersion
metrics
IJI Interspersion and juxtaposition index (%)

1Those which were eliminated from the first phase of variable reduction are indicated as “Not selected”.
For fuller definitions of the selected spatial metrics, see Appendix 1. The unselected tabular metrics were
CA (class area), %LAND (percentage of landscape), LPI (largest patch index), PD (patch density), PSCV
(patch size coefficient of variation), TE (total edge), ED (edge density), TECI (total edge contrast index),
MECI (mean edge contrast index), LSI (landscape shape index), AWMSI (area-weighted mean shape
index), MPFD (mean patch fractal dimension), C%LAND (core area percentage of landscape), NCA
(number of core areas), CAD (core area density), MCA1 (mean core area per patch), CASD1 (patch core
area standard deviation), CACV1 (patch core area coefficient of variation), CACV2 (disjunct core area
coefficient of variation), TCAI (total core area index), MCAI (mean core area index), and NNCV (nearest
neighbor coefficient of variation). See McGarigal and Marks (1995) for fuller descriptions of unselected
metrics.
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Table 3. Edge contrast matrix, used in the computation of several edge contrast metrics (e.g., CWED).

WATER NONFOR Y_DECID O_DECID W_SPRUCE B_SPRUCE PINE MIXED ANTHRO
WATER 0.00
NONFOR 0.75 0.00
Y_DECID 1.00 0.75 0.00
O_DECID 1.00 0.75 0.50 0.00
W_SPRUCE 1.00 0.75 0.75 0.50 0.00
B_SPRUCE 1.00 0.25 0.25 0.75 0.50 0.00
PINE 1.00 0.75 0.50 0.50 0.50 0.25 0.00
MIXED 1.00 0.75 0.75 0.25 0.25 0.75 0.50 0.00
ANTHRO 0.75 0.50 0.50 0.75 0.75 0.50 0.50 0.75 0.00



8

Create Habitat 
Classification 

Select 
Complete AVI 

Maps 

Canonical 
Variates for 

MIXED 

Canonical 
Variates for 

W_SPRUCE 

Canonical 
Variates for 
O_DECID 

Canonical 
Variates for 
Y_DECID 

Select Final 
Spatial Metrics 

Compute 
Spatial Metrics 

Select Final 
Tabular Metrics 

Compute 
Tabular Metrics 

Canonical Correlation 
Analysis 

Principal Components 
Analysis 

Variable Reduction 
Correlation Matrix 

Grid AVI Maps on 
Habitat Field 

Variable Reduction 
Correlation Matrix 

Export AVI Tables 

PERL SCRIPT FRAGSTATS 

Log Transform Where 
Necessary 

Log Transform Where 
Necessary 

Figure 2. Flowchart of the sequence of procedures used to develop statistical relationships
between tabular and spatial landscape metrics. See text for details of procedures.
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Table 4. Summary statistics for initial set of selected metrics.

Variable Obs Mean Std. Dev. Min Max
Y_DECID CA 84 1882.53 1184.14 72.20 5537.76

MPS 84 7.82 3.52 2.67 19.69
PSSD 84 16.04 10.18 4.00 57.78
CWED 84 13.73 6.46 1 27.03

AWMECI 84 53.02 5.36 42.31 66.86
MSI 84 1.48 0.12 1.17 1.82

DLFD 84 1.53 0.05 1.41 1.7
AWMPFD 84 1.17 0.04 1.07 1.26

TCA 84 599.54 628.83 2 2956
MCA2 84 11.52 10.19 1 59.12
CASD2 84 54.29 63.13 0.47 306.28
MNN 84 189.16 79.08 113.43 579.41
NNSD 84 190.72 137.43 40.71 694.77
MPI 84 218.78 428.51 3.56 2470.17
IJI 84 77.9 8.43 51.65 93.35

O_DECID CA 84 515.86 584.26 1.76 3401.53
MPS 84 7.74 3.93 0.98 20.35
PSSD 84 11.32 9.92 0.00 58.66
CWED 84 4.05 3.91 0.05 24.44

AWMECI 84 51.78 6.19 40.52 69.76
MSI 84 1.44 0.15 1.03 1.93

DLFD 83 1.49 0.12 1.17 2.17
AWMPFD 84 1.11 0.04 1.01 1.22

TCA 84 129.07 212.3 0 1253
MCA2 84 5.71 5.53 0 25.7
CASD2 84 13.66 20.07 0 85.32
MNN 83 479.21 508.51 117.36 3764.31
NNSD 83 524.62 460.03 0 3085.63
MPI 84 30.3 57.19 0 452.33
IJI 84 73.74 11.36 27.04 90.03

W_SPRUCE CA 84 473.71 389.44 6.09 1815.32
MPS 84 4.38 2.06 1.21 12.23
PSSD 84 5.74 4.58 0.00 23.44
CWED 84 5.54 3.76 0.04 16.11

AWMECI 84 54.76 5.82 41.52 69.17
MSI 84 1.32 0.11 1.1 1.76

DLFD 83 1.52 0.09 0.96 1.77
AWMPFD 84 1.09 0.03 1.04 1.17

TCA 84 50.73 73.48 0 339
MCA2 84 2.91 2.46 0 11.5
CASD2 84 5.12 7.06 0 37.49
MNN 83 333.24 298.08 151.6 2624.88
NNSD 83 345.27 242.95 0 1363.79
MPI 84 12.91 18.14 0 108.04
IJI 84 75.24 8.14 43.29 93.76
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Table 4. continued

Variable Obs Mean Std. Dev. Min Max
MIXED CA 84 876.39 528.14 92.27 2182.98

MPS 84 5.62 2.86 1.85 17.81
PSSD 84 7.74 5.34 1.68 33.16
CWED 84 9.74 4.21 1.63 20.26

AWMECI 84 59.86 6.77 42.97 72.94
MSI 84 1.37 0.11 1.14 1.62

DLFD 84 1.5 0.04 1.37 1.59
AWMPFD 84 1.11 0.03 1.05 1.2

TCA 84 148.25 163.83 1 719
MCA2 84 4.94 3.7 1 25.31
CASD2 84 11.34 14.71 0 105.43
MNN 84 226.52 65.59 134.32 443.58
NNSD 84 216.23 96.94 73.7 454.19
MPI 84 23.18 27.73 1.1 161.08
IJI 84 75.85 7.89 49.44 89.38

To further reduce the number of spatial metrics, we performed a principal components

analysis (PCA) on each of the four focal habitat classes using the statistical software STATA

(StataCorp 1997). PCA produces a linearly independent set of derived variables (components)

which are linear combinations of the initial (in this case 12) variables. Often, a small number of

components will capture most of the variance in the original sample. We used the varimax

rotation criteria to aid the interpretation of component loadings (the individual coefficients). From

each class, we retained all principal components with an eigenvalue greater than 1 — such

components may be interpreted as explaining more variance than any single original variable.

From each of these, we selected variables with high loadings (approx. > 0.80) for further analysis.

Statistical Modelling

We performed a Canonical Correlation Analysis (CCA; Johnson and Wichern, 1992) using

STATA (StataCorp 1997) to model the relationship between the tabular and spatial landscape

metrics. CCA is a generalization of multiple regression in which multiple dependent variables are

simultaneously related to multiple independent variables. A canonical correlation is a pair of linear

combinations of the dependent and independent variables (initial variables, or terms), referred to

as canonical variables. CCA proceeds iteratively, choosing the first pair of canonical variables by

maximizing their correlation: this value is the canonical correlation. Subsequent pairs of
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canonical variables are then chosen subject to the additional condition that they are independent of

all previously selected canonical variables. The number of canonical correlations is thus the

minimum of the number of dependent and the number of independent initial variables, assuming

that these are all linearly independent. The previous dimension reduction methods helps to ensure

this independence.

For each habitat class, we performed the following steps. The three tabular metrics

surviving the variable reduction step were selected as the set of independent variables. From each

principal component retained during the PCA step, we chose the component variables with high

loadings as the set of dependent variables for the class. We then performed a CCA on these sets

of variables, unless only one spatial metric loaded highly on a given principal component, in which

case we performed a multiple regression analysis. The overall modelling strategy, from data

assembly to statistical modelling is illustrated in Figure 2.

To assess the resultant multivariate models, we considered the magnitude of the canonical

correlation coefficients (i.e., the strength of the overall relationship between the dependent and

independent canonical variables), its significance level, and the redundancy indices for each

variate. The redundancy index measures the amount of variance in the dependent canonical variate

that is explained by the independent canonical variate for each canonical correlation. It is the

average of each dependent variables' squared correlation with its corresponding independent

canonical variate. It is related to the coefficient of determination (R2) in a multiple regression

analysis and thus provides an index of the predictive ability of the model. The relative importance

of each term in each set is indicated by its canonical weight (its coefficients in the canonical

variable), its canonical loading (the correlation between the term and its canonical variate), and its

canonical cross-loading (its correlation with the opposite canonical variate). When multiple

regression was performed, we used the multiple R2 to measure the strength of the relationship and

the standardized regression coefficients to assess the relative importance of each variable.

RESULTS

Principal Components Analysis

For each of the four focal habitat classes, principal components analysis identified 3

uncorrelated linear combinations of the 12 dependent spatial metrics, which accounted for 73.5 to

81.1% of the total sample variation (Table 5). In each case, the first principal component,
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accounting for 50.0 to 66.8% of the variation, was positively related to measures of patch shape,

core area, and patch isolation (AWMPFD, logTCA, logMCA2, CASD2, and logMPI). For the

white spruce habitat class, the first principal component was also strongly associated with patch

edge (CWED) and patch shape (logMSI). The second principal component, accounting for 12.0–

15.5% of the variation, did not consistently measure the same dimensions of landscape structure

across habitat classes. For young deciduous and mixedwood habitat, this component was

positively related to interpatch distance (logMNN and NNSD), while for old deciduous and white

spruce habitat, this component was positively related to patch shape (DLFD). The third principal

component, accounting for 8.3–11.6% of the variation, also had inconsistent component loadings

across habitat classes. This component had strong positive associations with interspersion and

juxtaposition (IJI) for class Y_DECID, with interpatch distance (logMNN and NNSD) for class

O_DECID , and with patch shape (DLFD) for class MIXED. It had a strong negative association

with patch edge (AWMECI), for class W_SPRUCE. Generally, the second and third principal

components describe additional aspects of patch shape, and mean distances between similar

patches.

The variables selected for CCA or multiple regression from the principal components are

indicated in bold type in Table 5. All variables except for AWMPFD for class Y_DECID had

component loadings > 0.79. AWMPFD was retained to allow us to compare results for each

habitat class using the same set of metrics. For the same reason CWED was excluded from the

W_SPRUCE CCAs.
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Table 5. Results of principal components analyses with varimax rotation for 4 habitat classes. Only components whose eigenvalue > 1
are shown. Component loadings in bold typeface were retained for canonical correlation and multiple regression analyses.

Patch type PC1 PC2 PC3 Commun.1 Patch type PC1 PC2 PC3 Commun.1

Y_DECID W_SPRUCE
Eigenvalue 6.80 1.86 1.08 Eigenvalue 6.19 1.83 1.22
Cum. variance 56.70% 72.18% 81.17% Cum. variance 51.55% 66.83% 76.96%
Comp. Loadings Comp. Loadings
logMCA2 0.955 –0.035 0.144 0.934 logMCA2 0.955 0.014 0.091 0.921
CASD2 0.893 –0.154 0.012 0.821 CASD2 0.915 0.100 0.177 0.879
logTCA 0.837 –0.364 0.300 0.923 logTCA 0.886 0.334 0.123 0.912
logMPI 0.795 –0.517 0.208 0.942 logMPI 0.844 –0.276 0.038 0.791
AWMPFD 0.684 –0.615 0.146 0.868 AWMPFD 0.824 0.387 –0.125 0.845
logMSI 0.614 –0.244 0.408 0.603 logMSI 0.795 0.021 0.000 0.632
CWED 0.487 –0.740 0.327 0.892 CWED 0.788 –0.277 0.265 0.768
DLFD –0.387 –0.692 –0.366 0.762 DLFD –0.644 –0.198 0.205 0.496
logMNN –0.320 0.850 –0.169 0.854 logMNN –0.591 –0.733 0.102 0.897
NNSD –0.313 0.808 –0.141 0.771 NNSD –0.245 0.049 –0.830 0.751
AWMECI 0.298 0.014 0.738 0.634 AWMECI –0.106 0.856 0.111 0.757
IJI 0.083 –0.299 0.801 0.737 IJI –0.068 0.457 0.611 0.587
O_DECID MIXED
Eigenvalue 6.00 1.43 1.39 Eigenvalue 6.85 1.59 1.00
Cum. variance 49.97% 61.92% 73.53% Cum. variance 57.11% 70.39% 78.69%
Comp. Loadings Comp. Loadings
logMCA2 0.927 –0.157 –0.060 0.887 logMCA2 0.882 –0.355 0.162 0.931
CASD2 0.917 –0.055 –0.282 0.924 CASD2 0.877 –0.166 –0.261 0.865
logTCA 0.872 0.143 –0.331 0.890 logTCA 0.875 –0.028 –0.028 0.767
logMPI 0.866 0.358 –0.138 0.897 logMPI 0.846 –0.463 –0.037 0.932
AWMPFD 0.831 –0.045 –0.139 0.712 AWMPFD 0.796 –0.504 –0.223 0.938
logMSI 0.682 0.521 –0.013 0.736 logMSI 0.748 –0.355 0.083 0.692
CWED 0.637 0.174 –0.542 0.730 CWED 0.442 –0.751 0.206 0.802
DLFD –0.452 0.407 0.006 0.370 DLFD –0.352 0.508 0.272 0.455
logMNN –0.342 –0.139 0.842 0.846 logMNN –0.310 0.900 –0.038 0.908
NNSD 0.341 0.159 –0.198 0.181 NNSD –0.221 0.885 –0.073 0.838
AWMECI –0.074 0.105 0.907 0.838 AWMECI 0.217 –0.587 –0.045 0.394
IJI 0.030 0.901 –0.019 0.813 IJI –0.071 –0.105 0.951 0.920

1Communality refers to the amount of variance an original variable shares with all other variables included in the analysis.
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Canonical Correlation Analysis

Table 6 shows the results of the CCA on the selected spatial and tabular landscape

variables, for each of the four habitat classes. The first canonical correlations were very high in all

cases, ranging from 0.934 for old deciduous forest to 0.967 for mixedwood forest. In each case,

the canonical correlations were statistically significant at the .01 level. Redundancy analysis shows

that tabular landscape variables explained between 73.6% (young deciduous forest) and 77.0%

(mixedwood forest) of the variation in the spatial landscape variables. Based on canonical weights

and loadings, CA was the most important tabular variable for each habitat class. Among the

spatial variables, canonical loadings were high (> 0.76) for all dependent variables. No variable

was consistently more important than the other variables. The high loadings for the dependent

variables are a consequence of the principal components analysis. Table 6 also includes the cross-

loadings for the canonical functions. For the four habitat types, all dependent variables had high

correlations with their corresponding dependent canonical variate, ranging from 0.786 to 0.939.

By squaring these terms, the results show that 62% to 88% of the variance in the independent

variables was explained by the dependent variates. These values are similar to multiple R2 values

that would be obtained by performing a multiple regression analysis on individual dependent

metrics.

In the set of second principal components, only classes Y_DECID and MIXED had more

than one highly loaded component (logMNN and NNSD in both cases). These variables were also

selected from the third principal component for class O_DECID. CCA showed that tabular

landscape variables explained < 32% of the variation in these two spatial metrics (results not

shown). This is not surprising considering the relatively small amount of sample variation

accounted for by the second and third principal components, as measured by eigenvalues and

cumulative variance explained (Table 5). Multiple regression analysis was performed on the single

highly-loaded variables selected from the remaining principal components. Again, relationships

were not nearly as strong as for the first set of canonical functions; tabular landscape metrics

explained between 5–24% of the variation in these spatial landscape metrics (results not shown).

Only spatial factors with high loadings in the first principal components are good candidates for

statistical modelling using the given tabular data.
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Table 6. Results of canonical correlation analysis, for the first principal component of each habitat
class (see Table 5), showing the relationship between dependent

(spatial) and independent (tabular) landscape metrics.

Canonical
Weights

Canonical
Loadings

Canonical
Cross-Loadings

Y_DECID Dependent (spatial) variables
AWMPFD –0.262 0.877 0.883
logTCA 0.951 0.928 0.858
logMCA2 –0.561 0.793 0.786
CASD2 0.365 0.764 0.829
logMPI 0.527 0.960 0.927
Independent (tabular) variables
CA 0.737 0.986 0.925
logMPS 0.165 0.624 0.611
logPSSD –0.011 0.720 0.713
Redundancy index 0.736
Canonical correlation coefficient 0.966

O_DECID Dependent (spatial) variables
AWMPFD 0.121 0.906 0.896
logTCA 0.588 0.877 0.879
logMCA2 –0.202 0.856 0.817
CASD2 0.744 0.908 0.822
logMPI 0.250 0.944 0.936
Independent (tabular) variables
CA 1.118 0.972 0.937
logMPS 0.220 0.671 0.616
logPSSD 0.189 0.780 0.737
Redundancy index 0.759
Canonical correlation coefficient 0.934

W_SPRUCE Dependent (spatial) variables
AWMPFD 0.157 0.880 0.894
logTCA 1.058 0.844 0.872
logMCA2 –0.487 0.834 0.809
CASD2 1.471 0.935 0.827
logMPI 0.171 0.917 0.934
Independent (tabular) variables
CA 1.663 0.981 0.934
logMPS 0.163 0.635 0.587
logPSSD 0.339 0.761 0.706
Redundancy index 0.754
Canonical correlation coefficient 0.957
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Table 6. Continued

Canonical
Weights

Canonical
Loadings

Canonical
Cross-Loadings

MIXED Dependent (spatial) variables
AWMPFD 0.144 0.937 0.902
logTCA 0.628 0.932 0.892
logMCA2 –0.075 0.879 0.845
CASD2 0.438 0.829 0.807
logMPI 0.614 0.978 0.939
Independent (tabular) variables
CA 1.097 0.948 0.925
logMPS 0.022 0.694 0.661
logPSSD 0.616 0.838 0.783
Redundancy index 0.770
Canonical correlation coefficient 0.967

DISCUSSION

Canonical correlation analyses identified strong relationships between landscape metrics

measured from stand attribute tables (tabular metrics) and those measured from mapped forest

cover polygons (spatial metrics) for four habitat types commonly found in boreal mixedwood

forests: young deciduous, old deciduous, white spruce, and mixedwood types. Using the three

tabular metrics of total habitat area, and the mean and standard deviation of habitat patch size, we

were able to explain more than 73% of the joint variation in spatial metrics of patch shape

(AWMPFD), forest interior habitat (logTCA, logMCA2, and CASD2), and patch isolation

(logMPI) for each of the four patch types, at a spatial scale of 100 km2 and a resolution 1 ha. The

tabular metrics also explained between 61.8% and 88.2% of the variation in the individual spatial

metrics as measured by the canonical cross-loadings. The results were highly consistent across

habitat classes, in terms of predictor variables and strengths of association.

Our choices of tabular landscape metrics and spatial scale were based on those that could

be calculated from stand attribute tables that are widely available throughout the boreal

mixedwood. In fact, similar data are available throughout the boreal forest of Canada at scales

ranging from 1:10,000 to 1:20,000 (Gillis and Leckie 1993). Only the habitat classification system

would need to be modified to repeat our analyses in different regions. Our selection of spatial

landscape metrics followed a procedure similar to that of Riitters et al. (1995), in that we

generally selected only a single representative metric from each highly correlated group and then
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performed a principal components analysis on the selected metrics. Our final set of metrics

differed from that obtained by Riitters et al. (1995), in part because our candidate set was quite

different; we used FRAGSTATS to calculate all of our spatial metrics whereas Riitters et al.

(1995) wrote custom software to calculate their landscape metrics. This underscores the need for

a comprehensive evaluation of the many landscape metrics used in ecological studies (Rogers

1995). The current profusion makes it difficult to compare landscape patterns between geographic

areas and to generalize from reported relationships between landscape structure and wildlife

distributions.

The strong canonical correlations obtained in this analysis have important implications for

future habitat modelling in the boreal mixedwood forest. We have demonstrated that stand

attribute tables may be used to characterize not only patch sizes and proportional amounts of

habitat types, but also several aspects of their spatial structure and distribution within the

landscape (i.e., patch shape, core area, and patch isolation). Thus, it is possible to incorporate

both tabular and spatial aspects of forested landscapes within large-scale simulation models,

without explicit high-resolution representations of the underlying landscape. This will greatly

simplify some of the technical aspects of model development and data acquisition, and greatly

speed model execution time. Our results also show that spatial factors can be incorporated into

models developed for areas where digital maps are unavailable. Linking such landscape-level

pattern models to empirically derived patch-level habitat models would then allow us to evaluate

the consequences of dynamic landscape processes and management actions over large areas and

long time horizons.

Whether such an approach proves fruitful will depend partly on the degree to which

landscape structure measured at these coarse scales actually affects forest wildlife (the effective

resolution of digital forest inventories is 1–2 ha) and on whether the structural features measured

by our present choice of metrics are the important ones. Evidence that landscape structure affects

avian populations comes primarily from research conducted in eastern agricultural regions, where

landscape changes have been driven by urbanization and agricultural expansion (Freemark and

Merriam 1986, Hunter 1990). The applicability of these findings to fire-dominated western boreal

forests is uncertain, given that young forest patches created by wildfires and harvesting may not

be the impermeable barriers that agricultural or urban areas represent. The strongest available
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evidence for landscape level effects on western forest birds is provided by McGarigal and

McComb (1995). They found that the abundance of many species were positively correlated with

total habitat area and measures of fragmentation in some Oregon forest types. Several other

studies in western forests, though not specifically designed at the landscape level, have also found

that measures of patch size, core area, and patch isolation have a significant effects (e.g.,

Rosenberg and Raphael 1986, Vernier 1995, Schmiegelow et al. 1997). Schmiegelow et al.

(1997) found a significant correlation between patch isolation and bird community composition in

the boreal mixedwood forest. Core area, using a 150 m buffer width, was found to be the most

important landscape-level predictor of abundance of three songbird species in the montane forests

of British Columbia (Vernier 1995). The influence of patch shape may be less direct and related to

its interaction with patch size to determine the amount of core area available to forest interior

species. None of these studies had replicated samples at the scale of our township level analysis,

however. Clearly, more studies designed at the landscape level will be needed to determine the

degree to which landscape structure influences wildlife species distribution and abundance.

Our findings and conclusions should be viewed with caution due to several limitations of

this study. Our results apply to landscapes that have not yet been greatly modified by clearcut

logging (generally less than 5% of a given township). They will need to be refined as a greater

proportion of the boreal mixedwood landscape is modified by forest management activities. This

is because systematic logging may change the underlying relationships between the tabular and

spatial metrics on which our study implicitly relies. At present, we can suggest nothing about the

mechanisms responsible for the relations. The sensitivity of our canonical correlations to

differences in grid resolution, habitat classification, and spatial extent of the landscape units

should also be explored. Our results will be refined concurrently with the development of cross-

scale habitat models, as it becomes more clear which spatial metrics have explanatory power with

respect to observed species distributions: the present study is just the first step in an iterative

process of model development. However, we are encouraged by our results so far, which show

that it is possible to model landscape structure metrics that are at least analogous to those few

that have been shown to be important in the literature.
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APPENDIX

Definitions of landscape metrics used in PCA and CCA, after McGarigal and Marks (1995).

Acronym Metric name (units) Description
Tabular landscape metrics
CA Class area (ha) Total area of landscape within a corresponding patch class.
MPS Mean patch size (ha) Average size of patch.
PPSD Patch size standard

variation (ha)
Absolute measure of patch size variability.

Spatial landscape metrics
CWED Contrast-weighted edge

density (m/ha)
Density of edge involving the corresponding patch type weighted
by the degree of structural and floristic contrast between adjacent
patches (see edge contrast matrix; Appendix 2).

AWMECI Area-weighted mean edge
contrast index (%)

Mean patch edge contrast weighted by patch area as a percent of
maximum contrast; equals 100% when all edge is maximum
contrast and approaches 0 when all edge is minimum contrast.

MSI Mean shape index Mean patch shape complexity; equals 1 when all patches are
square and increases as patches become more complex in shape.

DLFD Double log fractal
dimension

Measures patch shape complexity by regressing log(perimeter) on
log(area); sensitive to small sample sizes (e.g., less than 20
patches).

AWMPFD Area-weighted mean patch
fractal dimension

Mean patch shape complexity weighted by patch area based on the
fractal dimension of each patch; not sensitive to sample size.

TCA Total core area (ha) Total amount of core area of the corresponding patch type; core
areas were defined by eliminating a 100 m wide buffer along the
perimeter for each patch.

MCA2 Mean area per disjunct
core

Average size of core area per patch containing interior forest
habitat.

CASD2 Disjunct core area
standard deviation

Absolute measure of core area variability.

MNN Mean nearest neighbor
distance

Average distance between neighboring patches of the same type.

NNSD Nearest neighbor standard
deviation

Absolute measure of nearest-neighbor variability.

MPI Mean proximity index The degree of isolation and fragmentation of a patch type; all other
things being equal, a patch containing more of the corresponding
patch type than another patch will have a larger value; similarly,
all other things being equal, a patch located in a neighborhood in
which the corresponding patch type is distributed in larger, more
contiguous, and/or closer patches than another patch will have
larger value.

IJI Interspersion and
juxtaposition

The extent to which patch types are interspersed (not necessarily
dispersed); higher values result from landscapes in which the patch
types are well interspersed (i.e., equally adjacent to each other),
whereas lower values characterize landscapes in which the patch
types are poorly interspersed (i.e., disproportional distribution of
patch type adjacencies).


