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ABSTRACT: Partial least-squares discriminant analysis (PLS-DA) and
support vector machine (SVM) techniques were applied to develop a
crystal structure predictor for binary AB compounds. Models were trained
and validated on the basis of the classification of 706 AB compounds
adopting the seven most common structure types (CsCl, NaCl, ZnS,
CuAu, TlI, β-FeB, and NiAs), through data extracted from Pearson’s
Crystal Data and ASM Alloy Phase Diagram Database. Out of 56 initial
variables (descriptors based on elemental properties only), 31 were
selected in as unbiased manner as possible through a procedure of
forward selection and backward elimination, with the quality of the model
evaluated by measuring the cluster resolution at each step. PLS-DA gave
sensitivity of 96.5%, specificity of 66.0%, and accuracy of 77.1% for the validation set data, whereas SVM gave sensitivity of 94.2%,
specificity of 92.7%, and accuracy of 93.2%, a significant improvement. Radii, electronegativity, and valence electrons, previously
chosen intuitively in structure maps, were confirmed as important variables. PLS-DA and SVM could also make quantitative
predictions of hypothetical compounds, unlike semiclassical approaches. The new compound RhCd was predicted to have the
CsCl-type structure by PLS-DA (0.669 probability) and, at an even stronger confidence level, by SVM (0.918 probability). RhCd
was synthesized by reaction of the elements at 800 °C and confirmed by X-ray diffraction to adopt the CsCl-type structure. SVM
is thus a superior classification method in crystallography that is fast and makes correct, quantitative predictions; it may be more
broadly applicable to help identify the structure of unknown compounds with any arbitrary composition.

1. INTRODUCTION
A fundamental goal in chemistry is identifying what compounds
form given an arbitrary combination of elements and what
structures they adopt. Even for the simplest case, that of
equiatomic binary compounds AB, where A and B are any
elements in the periodic table, the problem is complex because
there are many factors that influence structure formation. In the
early days of crystallography, when structure determination was
still difficult, it was hoped that, by correlating atomic properties
and systematizating empirical structural information, “perhaps
we had come to a time when we could predict what the structures
are without X-ray dif f raction patterns.”1 Size factors were first
invoked through radius ratio rules to rationalize the structures
of ionic solids AB and the preferred coordination geometries of
ions, but they failed to account for the observation that NaCl-
type structures are far more prevalent than predicted.2 Later,
other atomic and physical properties were included, such as
electronegativities and valence electron numbers, giving a more
nuanced picture and generating structure maps (e.g., Mooser
and Pearson,3,4 Phillips and van Vechten,5 Pettifor,6 Zunger,7

Villars8,9) that succeeded in segregating structure types. For
example, focusing on intermetallic compounds AB, Villars
considered 182 variables and tested mathematical combinations
of these variables to identify three expressions, difference in
Zunger pseudopotential radii sums, difference in Martynov-

Batsanov electronegativity, and sum of valence electrons, that
separated 988 compounds into 20 structure types with <3%
violations, an impressive achievement.8 The elucidation of such
structure maps could be described as a semiclassical or
semiempirical approach toward structure prediction. At the
other extreme, first-principles electronic structure calculations
can be performed to evaluate the stability of compounds; this
approach is feasible if powerful computational facilities are
available and can provide guidance to discovering new
compounds.10−13 However, regardless of the methods,
predictions are worthless unless they can be validated
experimentally.
Chemometric techniques have been applied to understand a

variety of chemical systems such as predicting optimal
experimental conditions,14,15 identifying patterns in jet fuels,16

classifying gasoline samples according to type or origin,17−21

and discovering biomarkers.22,23 In materials science, the wealth
of information in databases24,25 offers opportunities for data
mining to address problems such as engineering band gaps of
semiconductors,26 enhancing hardness of nitrides,27 and
designing topologies of zeolites.28 Cluster analysis and principal
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component analysis (PCA) have been widely used to identify
inherent patterns in chemical data.29,30 Arguably the most
popular technique for data exploration, PCA is effective in
reducing the dimensionality of a large data set, to help visualize
similarities among samples and correlations between variables
in the data. Supervised classification or pattern recognition
tools such as linear discriminant analysis and partial least-
squares discriminant analysis (PLS-DA) are also applied
routinely to chemical data.31

Another supervised approach is the group of support vector
machine (SVM) methods. SVMs are boundary-based methods
that aim to maximize the gap (a hyperplane in a higher
dimensional space) separating samples belonging to two
classes; they do not model the entire ensemble of samples in
each class but, instead, are constructed on the basis of those

samples close to the boundary between the two classes.32 SVMs
have been popular in biochemistry and medicine33 and have
been used extensively to model and study ligand binding,34

protein folding,35 and other biological processes. In contrast,
they have been less commonly applied in other branches of
chemistry and, to our knowledge, never before in inorganic
crystallography. Compared to linear discriminant analysis
methods, SVMs are more flexible because the kernel function
(used to build the model through a radial or linear basis) can be
changed to optimize the performance. Automatic tuning of the
kernel function to maximize the separation boundaries between
classes improves classification.
When a chemometric model is constructed, feature selection

is an important step. The goal is to remove (or minimize) the
influence of noisy or irrelevant variables that degrade model

Figure 1. Fisher ratio scores for all variables (identified in the legend) selected during backward elimination (red stars) and forward selection (blue
circles).
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quality in terms of its performance for the classification
problem, so that the final model is thereby built primarily upon
variables having high information content.36 Model quality can
be evaluated through statistical measures such as sensitivity
(proportion of true positives), specificity (proportion of true
negatives), and accuracy (proportion of true results). Feature
selection is commonly achieved through inspection of Fisher
(F-ratio) scores, the ratio of between-group variability
(explained variance) to within-group variability (unexplained
variance);16 selectivity (S-ratio) scores, which evaluate the
usefulness of each variable in a regression model;37 or loadings
and variable importance in projection (VIP) scores38 (or similar
statistics) during model optimization. Generally, variables with
higher scores contribute more information to the model.
Another parameter that can be used to guide feature selection is
the model quality metric termed cluster resolution (CR), which
is the product of the maximal size of noncolliding confidence
(hyper)ellipses that can be generated around samples clustered
by class assignment in any reduced dimensionality score space
(e.g., PCA space). An initial subset of variables that are likely to
have high information content is selected and tested
sequentially, from the lowest-ranked (least likely to be useful)
to the highest-ranked (most likely to be useful). Through a
process called cluster resolution-guided feature selection (CR-
FS), implemented by means of a hybrid backward elimination/
forward selection of variables, the contribution of all variables
to model quality can be evaluated in the context of other
variables.39

Here, we revisit the longstanding problem of predicting the
structures of binary AB compounds, with several goals. First, we
use the CR-FS algorithm applied in PCA space to determine
what combinations of variables (atomic and physical proper-
ties) best optimize the discrimination of structure types and
thereby evaluate the reliability of previous structure maps and
gain insight on factors influencing structural preference.
Second, variables retained after feature selection were used to
build PLS-DA and SVM models, with the superior one chosen
to predict the structure of a new compound. Third, we confirm
the existence of a heretofore unknown AB compound through
experiment. Although more than half of the possible AB
compounds (out of all combinations of elements) remain
uninvestigated, the latest report of a newly synthesized CsCl-
type binary compound (at ambient conditions and containing
nonradioactive elements) was that of RhZn, over 15 years
ago.40 The overarching motivation is to develop tools to guide
and accelerate the search for other AB compounds and, more
broadly, new materials.

2. EXPERIMENTAL SECTION
2.1. Chemometric Analysis of AB Phases. Crystallographic data

of AB compounds were extracted from Pearson’s Crystal Data24 and
ASM Alloy Phase Diagram Database;25 additional data (up to
September 2015) were obtained from searches on SciFinder.41 All
possible AB combinations were considered provided that (i) they did
not contain hydrogen, noble gases, or elements with Z > 83
(radioactive elements and actinides) and (ii) they exhibit exact 1:1
stoichiometry. Out of 2926 possible combinations satisfying these
conditions, 974 compounds are experimentally confirmed to exist
under ambient temperatures and pressures, crystallizing in 107 unique
structure types (Table S1 and XLSX file).
Variables used to describe atomic properties were chosen from

those which have well-defined values for all or most elements (or
which can be interpolated, such as for the lanthanide series). They
generally fall into a small number of categories: (i) electronegativities

in different scales,42−46 (ii) various types of radii,2 and (iii) properties
derived from position in the periodic table (e.g., number of valence
electrons, group number, and others).47 Mathematical expressions
(such as sums or differences for two elements A and B) derived from
these properties were also treated as variables. In total, 56 variables
were considered (see legend of Figure 1 later).

The data for these AB combinations and variables were represented
in a 974 × 56 matrix. To ensure good statistical reliability, only those
compounds (706) crystallizing in structure types containing more than
30 representatives were retained in this analysis: 257 in CsCl, 205 in
NaCl, 102 in TlI, 42 in β-FeB, 36 in NiAs, 33 in ZnS, and 31 in CuAu
structure types. The data were normalized, mean-centered, and scaled
to unit variances along the columns (variables) of the data matrix. The
preprocessed data were split into two parts, two-thirds (470) for
training (i.e., variable selection and model building) and one-third
(236) for external validation, such that each set had approximately the
same proportions of compounds belonging to the different structure
types. (In general, at least half of the data should be assigned to the
training set.) The training data were split in half, with 235 samples
being used for feature ranking and 235 samples for optimization.
Although the data splitting was performed only once, based on past
experience with the CR-FS algorithm, we consider the size of the data
set to be sufficiently large that the feature selection procedure will not
depend on the assignment of particular compounds to the training and
validation sets.

The CR-FS algorithm was implemented in a three-dimensional
PCA score space (PC1 vs PC2 vs PC3) with variables ranked by F-
ratio. The 20 most highly ranked variables were used for initial model
construction and subjected to backward elimination. The remaining
variables were tested during forward selection. In this procedure, the
initial subset of variables that are likely to have a high information
content was selected and tested sequentially, from the lowest-ranked
(least likely to be useful) to the highest-ranked (most likely to be
useful). If removing a variable improved CR, it was eliminated from
the model; otherwise, the algorithm proceeded to the next variable.
The forward selection step began with those variables that survived
backward elimination and then tested progressively lower-ranked
variables which had not been initially considered, in turn. Those
variables whose inclusion improved the model quality were retained,
while those that did not were discarded. For large data sets (with
millions of variables), the forward selection step is stopped after
progressing for sufficiently long that the likelihood of finding a new
useful variable is essentially zero. For small data sets (with <1000
variables), all variables are tested, as was the case here.

Subsequently, PLS-DA and SVM models were generated with all
samples from the training set (feature ranking and optimization sets
combined) using only those variables retained by CR-FS. The SVM
classification was performed with a radial basis function and a venetian
blind cross-validation with 10-fold data split to optimize the model.
The ability of SVM vs PLS-DA models to correctly predict the crystal
structure of new compounds was evaluated using the validation set
data. The model was then used to predict the crystal structure of a
completely unknown compound, RhCd.

Data handling and feature selection were performed with in-house
written algorithms in Matlab 2015a (The Mathworks, Natick, MA).
PLS-DA and SVM models were generated using PLS Toolbox Version
8.0.1 (Eigenvector Research Inc., Wenatchee, WA). Results for
objective comparison were class predicted probabilities of the PLS-
DA and SVM models.48 All computations were performed on a
Windows PC, running on an Intel Core i7-4790 CPU with 32 GB
RAM.

2.2. Synthesis and Characterization of RhCd. From the
chemometric analysis above, RhCd was predicted to adopt a CsCl-
type structure. A pressed pellet of Rh powder (99.95%, Alfa-Aesar)
and filed Cd pieces (99.95%, Alfa-Aesar) in a 1:1 molar ratio with a
total mass of 0.2 g was placed in a fused-silica tube, which was
evacuated and sealed. The tube was heated to 800 °C, kept at that
temperature for 1 week, and quenched in cold water. The product was
examined by powder X-ray diffraction (XRD) performed on an Inel
diffractometer equipped with a curved position-sensitive detector and
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by energy-dispersive X-ray (EDX) analysis on a JEOL JSM-6010LA
scanning electron microscope.
Small single crystals, confirmed by EDX analysis to have the

composition RhCd, were selected for structure determination.
Intensity data were collected at room temperature on a Bruker
PLATFORM diffractometer equipped with a SMART APEX II CCD
area detector and a graphite-monochromated Mo Kα radiation source,
using ω scans at 8 different ϕ angles with a frame width of 0.3° and an
exposure time of 15 s per frame. The structure was solved and refined
with use of the SHELXTL (version 6.12) program package.49 Face-
indexed absorption corrections were applied. The cubic space group
Pm3 ̅m was chosen on the basis of Laue symmetry, intensity statistics,
and systematic absences. Full crystallographic data, in CIF format, have
been sent to Fachinformationszentrum Karlsruhe, Abt. PROKA, 76344
Eggenstein-Leopoldshafen, Germany, as supplementary material No.
CSD-431550 and can be obtained by contacting FIZ (quoting the
article details and the corresponding CSD numbers).

3. RESULTS AND DISCUSSION

3.1. Cluster Resolution Feature Selection. The CR-FS
algorithm is well-suited to the simultaneous optimization of
multiple-class (i.e., n ≥ 3) problems, by using the product of all
pairwise cluster resolution values as the objective func-
tion.39,50−52 In this case, the optimization was for a seven-

class problem, with each class representing one of the seven
common structure types adopted by binary compounds AB:
CsCl, NaCl, ZnS, CuAu, TlI, β-FeB, and NiAs.
For feature selection, the 56 variables used to describe atomic

properties were first ranked according to Fisher (F-ratio) or
selectivity ratio (S-ratio) scores (Figure S1). The choice of
which ratio to use was not found to be critical because both
tended to arrive at similar results. The variables included in the
final model according to F-ratio scores consist of those retained
in the backward elimination step (red stars) and those added in
the forward selection step (blue circles) (Figure 1). Some high-
ranked variables were eliminated while some low-ranked ones
were added, indicating that high F-ratios only suggest potential
importance but do not guarantee actual importance of variables
to the intended classification model. After backward elimination
and forward selection, 31 out of 56 variables were retained. The
initially high-ranked variables that were removed through
backward elimination were average Martynov-Batsanov or
Mulliken electronegativities, Pauling electronegativities (and
expressions derived from them), interatomic distances, and
differences of Zunger radii sums (rs + rp). Conversely, the
initially low-ranked variables that were included through

Figure 2. (a) Latent value scores for AB compounds and (b) predicted probability for CsCl-type structures for PLS-DA models using 31 selected
features.
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forward selection were average numbers of valence electrons
and Zunger radii sums (and some expressions derived from
them).
3.2. PLS-DA Prediction. To predict the structure type that

a compound is likely to adopt, PLS-DA was applied as a
classification technique. Plots of the scores of PLS-DA, namely,
the latent values, provide information about the underlying
patterns in the data; that is, they serve as structure maps in
which compounds with similar properties are projected close to
each other in latent values score spaces (Figure 2a). This
guidance can be very valuable in cases where the experimental
synthesis is high-risk (e.g., with radioactive elements like Tc) or
expensive (e.g., with precious metals like Rh). As a test, we
arbitrarily chose a hypothetical compound RhCd, which has not
been previously reported and for which no phase diagram
investigations (in the Rh−Cd system) have been conducted.
The hypothetical compound RhCd is located at the point
marked by the black hexagram in Figure 2a and predicted by
the PLS-DA model to adopt a CsCl-type structure. Samples
lying within the confidence ellipse (95%) of the model indicate
that they can be predicted with a higher degree of confidence.
However, this point also falls at the peripheries of the predicted
probabilities of CuAu- and NiAs-type structures, which overlap
slightly with CsCl-type structures. Note that the CuAu-type
structure is essentially a tetragonally distorted version of the
cubic CsCl-type structure with the inequivalent a- and c-
parameters being only slightly different. It is not surprising that
these two structure types are difficult to distinguish
experimentally (as they have similar X-ray diffraction patterns)
and theoretically.
The results can also be visualized as plots of the sample

number on the abscissa and the prediction probability on the
ordinate, as shown for the CsCl-type structure using the
variables selected (Figure 2b). The probability should be close
to unity for samples predicted to belong to a given class and
close to zero for all other samples. The PLS-DA model
predicted the training set data with sensitivity of 95.9% and
specificity of 66.6%. Although the model predicts the CsCl-type
structure largely correctly, the false positive rate is very high and
the overall model accuracy was 77.2%. When the model was
applied to the validation set (containing 236 data points), the
sensitivity was 96.5%, the specificity was 66.0%, and the

accuracy was 77.1%. Even though there seemed to be some
improvement in predicting the validation set data, the
prediction probability for the test compound RhCd is 0.669,
which is only slightly higher than the decision boundary. A
better classifier is desired.

3.3. SVM Prediction. We present here for the first time an
application of SVM to inorganic crystal structure prediction.
With the same training and validation set data used as in the
PLS-DA model, a SVM classification model was generated to
predict various structure types. The prediction probabilities for
the CsCl-type structure were much starker (Figure 3). For the
training set data, the sensitivity was 100.0%, the specificity was
99.3%, and the accuracy was 99.6%; for the validation set data,
the sensitivity was 94.2%, the specificity was 92.7%, and the
accuracy was 93.2%. Thus, the model performance was
significantly better with SVM than with PLS-DA methods.
To evaluate the need for feature selection, a SVM model was

constructed on the basis of all 56 variables using the full
training data set. This model led to prediction sensitivity,
specificity, and accuracy of 42.7%, 100%, and 79.2%,
respectively, on the training data. When this model was applied
to the validation set, prediction sensitivity, specificity, and
accuracy were found to be 44.2%, 98.0%, and 78.4%,
respectively, thus demonstrating that feature selection is
essential.
The feature selection process with the CR-FS algorithm took

about 12 h to complete, involving the simultaneous
optimization of CR for seven classes in three-dimensional
score space and 720 pairwise CR calculations required at each
step of the optimization. However, once the feature selection is
completed, the process of training, validation, and prediction
was extremely fast, taking less than 1 min to complete for either
PLS-DA or SVM models.
Figure 3 reveals a handful of false negatives (compounds that

are experimentally found to adopt CsCl-type structures
notwithstanding a low predicted probability) in the SVM
model, and it may be interesting to see if any insight can be
gained by examining them. Starting from the worst predictions
(lowest probability), these are CaPd, CsI, CuY, CuEu, and YRh.
Although there do not seem to be any common features among
them, the most glaring outlier is CsI. The cesium halides (CsCl,
CsBr, CsI) also stand out as false negatives in the PLS-DA

Figure 3. Predicted probability for CsCl-type structures for SVM model using 31 selected features.
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model. As has been discussed previously,53 the CsCl-type
structure is actually very rare for highly ionic compounds, and
when it does occur, it is over a narrow range of stability in
which size factors must compete with electrostatic factors.
It is important to emphasize that, like all statistical methods,

the reliability of these crystallographic predictions depends on
the size and quality of the experimental data set. First, for AB
compounds belonging to structure types that are rare or

unique, it may be difficult to train the model because the
variance cannot be captured adequately. For this reason, we
examined structure types containing a relatively large number
of representatives (30 or more), but it may be interesting in
future iterations of this model to include less common structure
types. Second, AB compounds for which no experimental
information was available about their existence were excluded
from the model. Including such unknown compounds would

Figure 4. New binary compound RhCd. (a) SEM image of crystals, (b) EDX spectrum indicating presence of equal ratios of Rh and Cd in crystals,
and (c) powder XRD pattern confirming CsCl-type structure.
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bias the model with unreliable information because we do not
know if they really do not exist or were just missed; moreover,
the overwhelming amount of data belonging to the class of
hypothetically nonexistent compounds could lead to a problem
of overfitting with the SVM method and thus worsen the
quality of the predictions. Third, we recognize that many AB
compounds may have a homogeneity range so that deviations
from exact 1:1 stoichiometry are possible and that there are
binary phases with nearly 1:1 stoichiometry adopting other
structure types. The problem of dealing with solid solutions is a
difficult one even from the standpoint of assigning what
structure type they belong to. For example, at what point
should solid solutions derived from CsCl-type be designated as
W-type or those from NaCl-type as Cu-type? Although there
remain challenges in extending this predictive model to more
complicated situations, there are major advantages of our
approach. The CR-FS algorithm (implemented in conjunction
with the SVM model) almost always converges to a solution
giving a subset of features that are important to help distinguish
between different classes. However, if the cluster resolution
converges to a low value, then the model quality (as measured
by sensitivity, specificity, and accuracy) will also be poor.
Predictions of the structure type of an unknown compound are
expressed quantitatively in the form of a probability (a number
between 0 and 1).
3.4. Prediction and Experimental Verification of RhCd.

From the analysis above, 31 out of 56 variables were important
for separating CsCl-type structures from others (Figure 2a). As
has been emphasized in the past, the CsCl-type structure is,
notwithstanding the ionic character of the prototype compound
CsCl itself, essentially a metallic one adopted by hundreds of
intermetallics, exhibiting the highest coordination geometries
(cubic, CN8) among AB-type structures.53 Bond character (as
gauged by electronegativity differences) and radius ratios are
thus key factors in the formation of the CsCl-type structure.
Although PCA/PLS-DA has been used elsewhere to classify
structures over limited types of compounds,54 its application to
the broader set of data here was not as successful. For
hypothetical RhCd, the predicted probability that it adopts the
CsCl-type structure was only 0.669 and the overall quality of
the PLS-DA model was not great (Figure 2b). The SVM model
yielded significant improvement in sensitivity, specificity, and
accuracy (>92%) after feature selection and gave a much higher
probability of 0.918 of a CsCl-type structure for RhCd (Figure
3). The probabilities of RhCd adopting other types of
structures were extremely low or essentially nil (Figures S2−
S7). Thus, SVM achieves a clearer separation between structure
types and gives more definitive predictions in this case.
The synthesis of RhCd was attempted by reaction of the

elements at 800 °C. The products were examined by SEM,
EDX, and powder XRD (Figure 4). Small single crystals, <50
μm in their longest dimension, were obtained. Their average
composition is 47(2)% Rh and 53(2)% Cd, in excellent
agreement with the formula RhCd. The powder XRD pattern
confirms that RhCd adopts the CsCl-type structure. Small
amounts of Rh metal (<9%) were found as a byproduct; this is
understandable given that Cd metal is volatile and a small
amount was found sublimed on the walls of the fused-silica
tube. The structure was refined from single-crystal diffraction
data (Table S2). With an assignment of fully occupied Rh at 0,
0, 0 and Cd at 1/2, 1/2, 1/2 in space group Pm3̅m, an excellent
agreement factor (R1 = 0.008) was obtained. (Note that,

because there are only 13 unique reflections and 4 refinable
parameters, a low data-to-parameter ratio is unavoidable.)
During the review of this manuscript, we became aware of

unpublished information giving evidence for the existence of
RhCd.55 A recent report has also now appeared describing a
second binary phase, Rh2Cd15, in the Rh−Cd system.56

3.5. Factors Influencing Structures of AB Compounds.
It is instructive to compare the variables selected by CR-FS
with those used in earlier schemes to derive structure maps of
AB compounds. Previously, Villars noted that the most
common variables used in such structure maps can be grouped
according to the pattern of behavior with position in the
periodic table and represented by five prototypical properties:
(A) radius, (B) atomic number, (C) atomization energy, (D)
electronegativity, and (E) number of valence electrons.8 Of
these, excellent separation of structure types was achieved using
expressions involving radius, electronegativity, and number of
valence electrons. Because these earlier structure maps were
deduced by trial-and-error and chemical intuition, it was not
certain if other combinations of properties could give better
separation; however, inclusion of additional variables from
classes B and C (atomic number, atomization energy) could be
ruled out. Our results confirm that cluster resolution is
optimized by properties related to radius and electronegativity,
which were high-ranked variables, and by number of valence
electrons, which was, surprisingly, a low-ranked variable.
Of course, there are many scales of radii and electro-

negativities and different ways of expressing the number of
valence electrons. In structure maps, an arbitrary decision had
to be made in selecting one of these scales, based on the subset
of AB compounds being examined. In CR-FS, the selection of
these scales is performed in an unbiased manner. It may appear
that introducing too many different scales conveying similar
information could confuse the learning algorithm. However, as
in all statistical methods, some redundancy is desirable to
provide stability in the iterative selection of variables; thus,
variables are eliminated not because they are low-ranked but
because they do not contribute meaningfully to model quality.

3.5.1. Electronegativity. Among the ∼20 different scales that
have been developed for electronegativity, 5 were chosen that
are appropriate for intermetallics (which constitute the majority
of AB compounds, given that the periodic table consists of
mostly metals): Pauling, Martynov-Batsanov, Gordy, Mulliken,
and Allred- Rochow.42−46 Only two, Martynov-Batsanov and
Allred-Rochow, survived the model used to optimize cluster
resolution, in the form of electronegativity differences (Δχ) or
ionic character ( f = 1−exp(−1/4(χA − χB)

2), where χA and χB
are electronegativities of A and B atoms, respectively). It is
interesting that the Pauling scale, which is the most familiar and
widely used among chemists, is simply not as effective. The
Allred-Rochow scale relates the attraction of valence electrons
in an atom to electrostatic force, evaluated from effective
nuclear charge (estimated using Slater’s rules) and covalent
radius (obtained experimentally); it differs from the Pauling
scale largely with respect to the precious metals, which have
corrected values that are not the same as in sulfur and
phosphorus. The Martynov-Batsanov scale is evaluated from
average ionization energies of valence electrons; because it was
specifically developed for crystalline inorganic substances, it is
reassuring that it works well to separate structure types of AB
compounds, as was also concluded by Villars.8

3.5.2. Size. Since the earliest days of crystal chemistry, size
factors were intuitively believed to be crucial in determining
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crystal structures. However, even for the very limited subset of
alkali-metal halides among AB phases, radius ratio rules (based
on ionic radii) fail miserably (notwithstanding misrepresenta-
tions in some introductory chemistry textbooks). If a much
larger variety of AB phases is considered, exhibiting diverse
types of bonding, it is not obvious which scales of radii (atomic,
ionic, covalent, metallic, and others) would be most
appropriate. Even if one assumes that metallic bonding is
predominant because AB phases are mostly intermetallic
compounds, the bonding interaction between metal atoms
can have different degrees of polar character. As a brute force
way to evaluate these different scales of radii (“the proof of the
pudding is in the eating”), we compared the sums of radii with
the actual A−B bond lengths found in all AB phases with CsCl-,
NaCl- and ZnS-type structures reported in Pearson’s Crystal
Data, including metastable phases and theoretical calculations
(Figure 5). Overall, the observed bond lengths agreed much

better with sums of covalent radii than with ionic or atomic
radii; the average deviation was less than 5%, which is even
smaller than the deviation of cell parameters for multiple
reports of the same compound at the same conditions.
Introducing a Porterfield correction57 to account for polar
character in A−B bonds (rAB (in Å) = rA + rB − 0.07(Δχ)2) did
not lead to improvement; in fact, the change was negligible,
with the average deviation barely changing from 4.9% to 5.0%.
Surprisingly, the calculated distances did not agree better with
experimental values even in highly ionic compounds, for which
this correction was specifically designed to tackle. This analysis
suggests that the covalent radii scale is expected to be a good
variable choice to represent size within a large set of
compounds exhibiting a wide variety of chemical bonding
interactions. Although the sum of covalent radii tends to be
slightly smaller than the experimental distances, the trends (as
measured by the slope) are the same.
The size variables selected by CR-FS were actually a

combination of atomic, covalent, and ionic radii, reflecting a
compromise to capture the diversity of bonding interactions in
AB compounds. However, we also considered Zunger
pseudopotential radii.7 In this scale, orbital radii are obtained
by quantum calculations within a pseudopotential (Simons-
Bloch) in which core electrons are frozen. For a single atom A,

the radii sum (rs + rp)
A can be defined. Although the difference

of Zunger radii sums, (rs + rp)
A − (rs + rp)

B, was chosen by
Villars as a coordinate in his structure map,8 it did not survive
in the model optimization. Instead, the sum of Zunger radii
sums, (rs + rp)

A + (rs + rp)
B, was a high-ranked variable that was

effective according to cluster resolution.
3.5.3. Electron Count. Electron count is an important factor

for normal valence compounds following the octet rule.58 Thus,
the total number of valence electrons, ΣVEAB, was a third
coordinate in Villars’ structure map.8 In our study, the average
number of valence electrons, VEAB, was an initially low-ranked
variable selected in model optimization. These two expressions
convey similar information originating from position of
elements in the periodic table, but the average is more effective
in separating structure types for compounds formed from
disparate vs closely related elements. To expand on this idea,
we introduced a family number that classifies elements into: (1)
alkali metals, (2) alkaline-earth metals, (3) f-block metals, (4)
d-block metals, (5) p-block metals, (6) p-block metalloids, (7)
p-block nonmetals, (8) chalcogens, and (9) noble gases. This
classification is not the same as group number (1−18 or IA−
VIIIA/IB−VIIIB), but it reflects better the drastic differences in
chemical behavior in the p-block in which elements in the same
group can form quite different compounds and structures. (The
concept is comparable to that of Mendeleev numbers, which
are sequential integers assigned to each element so that those of
similar chemical properties are grouped close together.9) As
expected, variables based on this family number make a
significant contribution to separating structure types.

4. CONCLUSIONS
The problem of predicting structures a priori is a challenging
one that pervades all of chemistry. Although it can be addressed
directly through variational quantum mechanical calculations, a
semiempirical approach is attractive because it makes use of
chemical concepts (such as atomic size, bond character, and
electron count) which we intuitively believe must be important.
However, relying on user-selected variables poses the risk of
introducing bias. In quantum mechanical calculations, the
crystal structure that is obtained is the one in which the total
energy is minimized when atomic orbitals interact with each
other. In the semiempirical approach, the implicit assumption is
that there is a correspondence between the total energy of a
crystal structure with higher-level properties such as radii and
electronegativity. The relationship is undoubtedly complex, but
it is reassuring that most of the spread in the structure types
adopted by AB compounds can be captured in a few number of
principal components that depend on combinations of variables
that were previously suspected to be critical: Zunger
pseuodopotential radii, Martynov-Batsanov electronegativities,
and numbers of valence electrons.
The size factor plays a greater role in formation of CsCl-type

structures than of other cubic structures (NaCl- and ZnS-type)
for AB phases. This can be appreciated by comparing nearest-
neighbor heteroatomic A−B contacts vs next-nearest-neighbor
homoatomic A−A and B−B contacts (Figure 6). The
homoatomic distances are typically only slightly longer (0.4−
0.6 Å) than the heteroatomic distances in CsCl-type structures,
but they are considerably longer (>1.0 Å) in NaCl- and ZnS-
type structures. The interpretation is that a more complex
balance of long-range heteroatomic (A−B) and homoatomic
(A−A and B−B) interactions influences the formation of CsCl-
type structures, whereas heteroatomic interactions dominate in

Figure 5. Comparison of experimental distances in AB compounds
with sums of covalent radii (or other scales of radii, as indicated).
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NaCl- and ZnS-type structures. This disparity persists even
when polymorphism occurs (e.g., CsCl/NaCl or NaCl/ZnS)
for a fixed combination of elements.
The successful preparation of RhCd adopting a CsCl-type

structure has been achieved, suggesting that the SVM model
shows promise as a powerful predictive tool in crystallography.
However, we wish to emphasize that these predictions do not
preclude overcoming experimental difficulties; the synthetic
chemist must still grapple with practical considerations such as
choice of starting materials and reaction temperatures.
Moreover, critical inspection of existing data and addition of
experimental data in the form of new compounds can be fed
back into the SVM model to help improve it, so that the
experiment and prediction synergically benefit each other.
Efforts are in progress to extend the use of SVM to predict the
structures of other binary and ternary phases.
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Table S1.  Structure Types of Binary Compounds AB a 
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a Legend: 

0-does not exist 
1-CsCl (Pm-3m) 
2-NaCl (Fm-3m) 
3-ZnS (F-43m) 
4-LiB (P63/mmc) 
5-NaTl (Fd-3m) 
6-LiGe (I41/a) 
7-LiAs (P121/c1) 
8-LiRh (P-6m2) 
9-LiSn  
10-CuAu 
11-FeSi 
12-BN 
13-BCl 
14-TlI 
15-FeB-b 
16-MoB 
17-NiAs 
18-SiC 
19-RbC 
20-WC 
21-ZnO 
22-CoO 
23-SeN 
24-CuO 
25-HgS 
26-PbO 
27-BiO 
28-HgCl 
29-TlF 
30-NaSi-a 
31-NaP 
32-NaPb 
33-NaTe 
34-NaHg 
35-MgGa 
36-AuCd 
37-MgIr 
38-CuAl 
39-InCl 
40-CeAl!

41-DyAl 
42-KGe 
43-FeAs 
44-SiAs 
45-AsS 
46-TiP 
47-NbAs 
48-CsTe 
49-CrS 
50-FeS 
51-NiS 
52-CuS-b 
53-GaS-a 
54-GeS 
55-AsS 
56-InS 
57-PtS 
58-CsSb 
59-TlS 
60-ZrCl 
61-CuI 
62-InCl 
63-AuCl 
64-SrAg 
65-SrIn 
66-KHg 
67-CaCu 
68-PuGa 
69-CuTi 
70-CdTi 
71- TaIr 
72-VIr 
73-CdNi 
74-AuMn 
75-MnGa 
76-CoSn 
77-CoGe 
78-CdNi 
79-TbNi 
80-NiBi 
81-BaCu!

82-CuTe 
83-CuPt 
84-CdSb 
85-GaSe 
86-ThIn 
87-GeTe 
88-NbAs 
89-AsCs 
90-PdS 
91-AuSe 
92-TlSe 
93-BiSe 
94-BiBr 
95-SrAu 
96-AuZr 
97-ZrSb 
98-PdPb 
99-PdBi 
100-HgIn 
101-InBi 
102-TeI 
103-CsTe 
104-TlTe 
105-AuI 
106-BiI 
107-TiO 
 
 
 
 
 

x-phase exists but 
structure is unknown 
(OsB, NiW, TbIn, HoIn, 
AuIn) 
 
*-contains Tc and Pm 
 
+-uninvestigated 
GaW 
GaOs 
ZnW 
ZnRe 
ZnOs 
ZnTa 
ZnHf 
MnW 
AgNb 
CdNb 
NbPb 
GeTa 
GeOs 
CdRu 
InRu 
RuPb 
CdRh 
AgW 
CdTa 
CdW 
CdOs 
CdIr 
HfIn 
InW 
InRe 
InOs 
SbEu 
SbTa 
SbOs 
EuBi 
BiW 
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Table S2.  Crystallographic Data for RhCd 

Data collection and refinement  

formula RhCd 

fw (amu) 215.31 

space group Pm

! 

3 m (No. 221) 

a (Å) 3.2191(7) 

V (Å3) 33.358(13) 

Z 1 

!calcd (g cm–3) 10.718 

T (K) 296(2) 

crystal dimensions (mm) 0.05 ! 0.03 ! 0.03 

radiation graphite monochromated Mo K", " = 0.71073 Å 

µ(Mo K") (mm–1) 27.489 

transmission factors 0.285–0.666 

2# limits 17.96–65.48° 

data collected –4 # h # 4, –4 # k # 4, –4 # l # 4 

no. of data collected 234 

no. of unique data, including Fo
2 < 0 13 (Rint = 0.0152) 

no. of unique data, with Fo
2 > 2$(Fo

2) 13 

no. of variables 4 

R(F) for Fo
2 > 2$(Fo

2) a 0.0086 

Rw(Fo
2) b 0.0185 

goodness of fit 1.297 

($!)max, ($!)min (e Å–3) 0.617, –0.339 

Positional and displacement parameters c  

Rh at 1a (0, 0, 0)  

 Uiso (Å2) 0.02(2) 

Cd at 1b (1/2, 1/2, 1/2)  

 Uiso (Å2) 0.016(14) 
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Interatomic distances (Å)  

Rh–Cd (!8) 2.7878(6) 

Cd–Cd (!6) 3.2191(7) 

Rh–Rh (!6) 3.2191(7) 
 a 

! 

R F( )= Fo " Fc# Fo# . 

 b 

! 

Rw Fo
2( )= w Fo

2 " Fc
2( )2[ ] w# Fo

4#
$ 
% & 

' 
( ) 

1/ 2

; 

! 

w"1 = #2 Fo
2( )+ Ap( )2 + Bp[ ] where 

! 

p = max Fo
2,0( )+ 2Fc

2[ ] 3. 
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Figure S1.  Fisher (blue solid line) and selectivity (red dashed line) ratio scores for 56 variables 
(defined in the legend in Figure 1 in the main text). 
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Figure S2.  Predicted probability for NaCl-type structures for SVM model using 31 selected 
features. 
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Figure S3.  Predicted probability for ZnS-type structures for SVM model using 31 selected 
features. 
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Figure S4.  Predicted probability for CuAu-type structures for SVM model using 31 selected 
features. 
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Figure S5.  Predicted probability for TlI-type structures for SVM model using 31 selected 
features. 
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Figure S6.  Predicted probability for !-FeB-type structures for SVM model using 31 selected 
features. 
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Figure S7.  Predicted probability for NiAs-type structures for SVM model using 31 selected 
features. 
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