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Abstract 
 

Risk factors for postpartum depression (PPD) include history of a major 

depressive episode, premenstrual dysphoric disorder, or a prior episode of PPD. 

Fluctuations in estrogen, progesterone, and neuroactive steroids occur in the 

postpartum, and these molecules act as modulators of a number of 

neurotransmitter systems, including that of glutamate (Glu).  Recent 

investigations demonstrate alterations in brain Glu levels in mood disorders, and 

fluctuations in brain Glu have been demonstrated in response to hormone 

changes over the menstrual cycle. 

Using magnetic resonance spectroscopy to measure Glu in the medial 

prefrontal cortex (MPFC) in the early postpartum, the studies presented in this 

thesis demonstrate decreases in MPFC Glu levels compared to the follicular 

phase of the menstrual cycle (FP), and in women with risk factors for PPD 

compared to women without risk factors.  

Alterations in MPFC Glu occurring in the early postpartum may be 

related to the development of PPD. 
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I. Introduction 

I.1  Depression in the Postpartum 

 The female reproductive cycle is associated with a risk of development of symptoms of 

mental health disorders including premenstrual dysphoric disorder (PMDD) and peri-menopausal 

depression (Pinkerton et al, 2010).  The postpartum is also associated with the onset of both the 

worsening of bipolar affective disorder (Yonkers et al, 2011) and psychotic disorders (Henshaw, 

2003).   

Depressive episodes in the postpartum, termed postpartum depression (PPD), are 

common.  Childbirth is a risk factor for the development of depression, with an odds ratio of 3.26 

in the first 5 weeks after delivery compared to non-postpartum women (Cox et al, 1993).  

However, the diagnosis of PPD is complicated by variability in the time frame in which 

symptoms may be considered etiologically related to childbirth.  The Diagnostic and Statistical 

Manual of Mental Disorders, Fourth Edition Text Revision (DSM-IV-TR), does not differentiate 

the symptoms of PPD from other major depressive episodes (MDE), and considers postpartum 

onset to be within 4 weeks of delivery (American Psychiatric Association, 2000).  However, the 

International Statistical Classification of Diseases and Related Health Problems (World Health 

Organization, 2004) defines psychiatric symptoms occurring within 6 weeks of delivery as being 

associated with childbirth.  One review of hospital admissions for depression found elevated 

rates for the first 5 months postpartum (Munck-Olsen et al, 2006).  Other sources suggest that 

depression occurring up to one year following delivery may be classified as postpartum 

(Riecher-Rossler and Hofecker, 2003; Perfetti et al, 2004).  This lack of diagnostic agreement 

has led to variability in reported prevalence rates, with estimates ranging from 5% to 25% 

(Leahy-Warren and McCarthy, 2007).  Reviews of the literature suggest a period prevalence of 
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19.2% for the first 3 months postpartum, a maximum prevalence of 12.9% in the third month 

(Gavin et al, 2005), and a 1-year prevalence of 13% (O’Hara and Swain, 1996).  Current expert 

consensus suggests that PPD be defined as an MDE starting within 3 months of delivery (Elliot, 

2000; Cox, 2004).  However, risk factors for early onset PPD, occurring 6-8 weeks after 

delivery, differ from risk factors for later onset (Bloch et al, 2006).  A history of prior MDE, 

PPD, or PMDD are all risk factors for early, in contrast to later, development of PPD (Sugawara 

et al, 1997; Robertson et al, 2004).  In other words, early onset PPD is more closely associated 

with other episodes of mood symptoms linked to the female reproductive cycle and previous 

depression. 

Symptoms of PPD may be confused with usual behavioral changes following childbirth.  

For example, sleep disturbance, weight loss, and fatigue are not specific signs of depressive 

disorders in the puerperium (Lee and Chung, 2007).  Indeed, the Edinburgh Postnatal Depression 

Scale, a rating scale developed specifically to screen for PPD, intentionally excludes somatic 

symptoms common in the postpartum period (Cox et al, 1987).  Depressive episodes in the 

postpartum tend to be self-limiting (Robertson et al, 2004); however, some studies have shown 

prolonged symptoms persisting over 6 months (Beck 2002).  The impact of PPD is apparent in 

both mother and infant.  New mothers suffering from PPD experience loneliness, anxiety, lack of 

control, guilt, insecurity, fear that life will not return to normal, lack of positive emotions, and 

fear of contemplation of harming themselves and their infants (Beck, 1992).  However, there is 

no elevation in rates of suicide in women during the first year following delivery compared to the 

general female population (Brockington, 2004).  Symptoms of depression may interfere with a 

mother’s ability attend to her child (Logsdon et al, 2006), and longer and repeated depressive 

episodes are associated with a greater impact on the maternal-infant dyad (Campbell et al, 1995).  
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This may influence the normal development of emotional auto-regulation, and children of 

depressed mothers are prone to expressing higher levels of negative affect than their peers 

(Whiffen and Gotlieb, 1989).  These children also exhibit cognitive difficulties compared to the 

children of healthy controls, with some studies showing differences present at age 5 (Grace et al, 

2003), and potentially at age 14 (Beck, 1998).  This effect is more pronounced in male children 

than females, and is more likely to occur if other contributing factors, such as lower parental 

education, are also present (Murray et al, 2003).  Mothers suffering from PPD have children with 

higher rates of antisocial and neurotic behavior at school-age, even when other risk factors such 

as gender, parental conflict, socioeconomic status, and attachment style are taken into account 

(Murray et al, 1999).   

Many risk factors for the development of PPD, both biological and psychosocial have 

been proposed (McCoy et al, 2006; Boyce, 2003; Beck, 2001).  One way to divide risk factors is 

into those present prior to delivery and those occurring after delivery [Table I.1].  Antenatal risk 

factors, including depression during pregnancy, anxiety during pregnancy, distressing life events, 

and a previous history of depression have a moderately strong effect size in producing 

postpartum symptoms; neuroticism and marital problems during pregnancy have a moderate 

effect; and obstetrical difficulties has a mild effect (Robertson et al., 2004).  A survey of 

postpartum women presenting to a psychiatric clinic revealed that a family history of any 

psychiatric illness was strongly associated with a diagnosis of major depressive disorder (Steiner, 

2002).  In a sample of dizygotic twin sibling pairs, 42% of women with a family history of PPD 

occurring in the first 4 weeks following delivery experienced an MDE following their first 

delivery, compared to 15% of women without a similar family history (Forty et al, 2006).  

Women who report a history of depressive illness prior to pregnancy (Beck, 2001), during 
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pregnancy (O’Hara and Swain, 1991), or associated with previous births (Cooper and Murray, 

1995) are at higher risk of developing symptoms than women with no history of depression.  

Indeed, the risk of recurrence in individuals with a history of PPD is up to 65% (Cooper and 

Murray, 1995).  No link has been established between caesarian delivery (Carter et al, 2008) or 

breastfeeding status (Brockington, 2004) and the development of PPD.  Depressed mood on the 

fifth day after delivery did increase the risk of PPD at 4 and 8 weeks in one study of Nigerian 

women (Adewuya, 2006).  While some risk factors appear consistently in the literature, differing 

methodologies and study populations likely contribute to conflicting evidence existing for others. 

 

Table I.1: Risk factors for postpartum depression 

Risk Factors Present Before Pregnancy 
• Family history of any psychiatric illness 
• Family history of postpartum depression 
• Previous depressive episode outside of the postpartum period 
• Previous episode of postpartum depression 
• Previous distressing life events  
• Neuroticism  

 
Risk Factors Associated with Pregnancy and Delivery 

• Depression during pregnancy  
• Anxiety during pregnancy  
• Marital problems during pregnancy  
• Obstetrical complications  
• Depressed mood in the early postpartum period  

 
Protective Factors for Postpartum Depression 

• Higher socioeconomic status  
• Psychosocial support  

 

Despite the significant impact of PPD, and its relatively high rate of occurrence, little is 

understood about the pathophysiology of this disorder.  It is unclear whether PPD reflects a 

single disease process or a number of conditions with a variety of causative factors (Riecher-
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Rossler and Hofecker, 2003; Halbreich, 2005).  Theories of PPD tend to focus either on 

contributing psychosocial or biological factors, and childbirth may represent both (Musters et al, 

2008).  Stress during gestation induces depressive-like behavior in rats and affects care-giving 

behaviors (Smith et al, 2004).  In humans, role changes, issues of attachment to family and the 

new infant, and a changing self-identity may produce psychological stress (Beck, 2002).  The 

onset of PPD may represent a stress-diathesis model, where environmental pressures activate an 

underlying biological predisposition (O’Hara et al, 1991).  Research into the neurochemical 

mechanisms involved in PPD is limited due to the fact that few animal models exist, and that 

postpartum functional imaging research in humans is in its infancy (Nemeroff, 2008), although 

this technique has been useful in other depressed populations (Zonana and Gorman, 2005).  The 

biogenic amine neurotransmitters serotonin (5-HT), noradrenaline, and dopamine, have 

traditionally been implicated in the pathogenesis of major depressive episodes (Nestler et al, 

2002; Baker and Mitchell, 2009) and in PPD (Zonana and Gorman, 2005).  Few studies have 

been specifically examined the treatment of PPD.  A recent systematic review identified only 

nine studies using pharmacotherapy, and cited low power and methodological heterogeneity 

between the studies as limiting the ability to draw conclusions about the efficacy of these 

interventions (Ng et al, 2010).  In spite of this, existing antidepressant medications thought to 

modulate biogenic neurotransmitter systems, are often used to treat PPD. A number of other 

potential contributors to the development of PPD have been proposed, including the 

hypothalamic-pituitary-adrenal axis, sex hormones and neuroactive steroids, and other 

neurotransmitter/neuromodulator systems (Zonana and Gorman, 2005).   
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I.2  Neuroactive Steroids 

Early observations suggested that steroid hormones exert their effects by binding to 

intracellular receptors that move to the nucleus and bind as homo- or hetero-dimers to response 

elements located in regulatory promoter regions of specific genes (Truss and Beato, 1993).  

Through this mechanism, steroid receptors become transcriptional factors that regulate gene 

expression (Evans, 1988).  More recently, investigations have demonstrated that steroids also 

bind to specific neurotransmitter receptors and alter neuronal excitability (Paul and Purdy, 1992; 

Rupprecht, 2003).  Steroid molecules that act as neuromodulators are termed “neuroactive 

steroids” (NAS) (Paul and Purdy, 1992).  NAS investigated in mood disorders include 

pregnenolone and pregnenolone sulfate, dehydroepiandrosterone (DHEA) and 

dehydroepiandrosterone sulfate (DHEAS), progesterone, and a number of 3α-reduced NAS.  

While steroid-induced actions at the genomic level take minutes to hours, the effects of NAS 

occur in a much shorter period, milliseconds to seconds (McEwen, 1991).  These interactions 

occur in both the central and peripheral nervous system (Mellon and Griffin, 2002).  Centrally, 

NAS appear to have a number of biological roles, including neurodevelopment (Compagnone 

and Mellon, 1998; Mellon, 2007), neuroprotection (Cardounel et al, 1999), and are involved in 

physiologic processes including sleep (Lancel, 1999) and cognitive functions (Valée et al, 2004).  

Mounting evidence suggests that NAS are involved in the pathophysiology of a number of 

neuropsychiatric conditions (Dubrovsky, 2005; Strous et al, 2006; MacKenzie et al, 2007) 

including affective disorders (Dubrovsky, 2006; Eser et al, 2006), and may be specifically 

involved in memory impairment, sleep disturbance, and anxiety that is commonly associated 

with depression (Dubrovsky et al, 2004).  Some trials have shown significant improvement in 

depressive symptoms with administration of exogenous estrogen and progesterone (Girdler et al, 
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1999) and DHEA (Wolkowitz et al, 1997; Wolkowitz et al, 1999), and non-significant trends 

towards improvement with pregnenolone (Meieran et al, 2004). 

Neuroactive steroids either originate as circulating steroid hormones or are produced 

locally in the brain from cholesterol [Figure I.1] (Corpechot et al, 1981; Akwa et al, 1992; Strous 

et al, 2006).  Adrenal steroids (i.e. cortisol) and gonadal steroids (i.e. estrogens and 

progesterone) are also able to cross the blood-brain barrier to act as NAS.  The subset of NAS 

derived centrally is referred to as neurosteroids.  The synthesis of neurosteroids occurs at 

multiple sites in the nervous systems including in neurons, oligodendrocytes, Schwann cells, and 

type 1 astrocytes (Schumacher et al, 2000).  The first and rate-limiting step in the production of 

neurosteroids is the conversion of cholesterol to pregnenolone (Warner and Gustafsson, 1995).   

Estrogen and progesterone levels rise during pregnancy, with precipitous drops in 

concentrations occurring in the brain and periphery following delivery (Okano and Nomura, 

1992; Bloch et al, 2003).  These abrupt changes in sex hormones may be a contributing factor in 

the development of PPD.  Indeed, symptoms of depression were induced in women with a 

history of PPD, but not controls, after 8 weeks of exposure to supraphysiologic doses of estradiol 

and progesterone followed by abrupt withdrawal meant to simulate pregnancy and the 

postpartum (Bloch et al, 2000).   

Neuroactive steroids are similarly increased in pregnancy, and return to pre-pregnancy levels in 

the first 6-7 weeks postpartum (Pearson Murphy et al, 2001; Gilbert et al, 2005).  While the 

impact that this has on the development of depressive symptoms is unclear, it has been proposed 

that rapid decreases in estrogen concentrations cause disturbances in the equilibrium between 

NAS and sulfated-NAS that affect the opposing actions of these agents on the γ-aminobutyric 

acid (GABA)-A receptor and may lead to anxiety and depression (Strous et al, 2006).  Findings 
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of altered NAS in PPD are inconsistent (Bloch et al, 2000; Zonana and Gorman, 2005).  For 

example, some evidence suggests that women experiencing postpartum “blues” may have 

decreased plasma concentrations of allopregnanolone (Nappi et al, 2001).  In one longitudinal 

study of NAS levels through pregnancy and the postpartum, levels of 5α-dihydroprogesterone 

were elevated in the third trimester in depressed women compared to non-depressed women 

(Pearson Murphy et al, 2001).  In another sample, elevations of progesterone and DHEA were 

associated with mood disturbance during pregnancy, and higher levels of testosterone were 

associated with mood disturbance in the postpartum (Buckwalter et al, 1999).  The role of NAS 

and ovarian hormones in the treatment of PPD remains similarly unclear.  It was previously 

recommended that women with a history of PPD use prophylactic progesterone to prevent 

recurrence (Dalton, 1989); however one study has shown that administration of progesterone in 

the postpartum may increase the risk of PPD (Lawrie et al, 1998).  Further evaluation of the role 

of NAS and ovarian hormones in euthymic women and those with mood disorders during 

pregnancy and the postpartum are needed to elucidate their role in the development of mood 

disorders during this period. 

Hormone fluctuations during the menstrual cycle are analogous to, but of smaller 

amplitude than, those seen in the postpartum.  Approximately 3-8% of women will experience 

PMDD, significant depressive symptoms associated with the end of the luteal phase that usually 

resolve shortly after ovulation (Braverman, 2007).  Premenstrual syndrome (PMS), a set of 

predictable somatic, cognitive, and affective symptoms occurring at the end of the menstrual 

cycle that are of lesser intensity than those occurring in PMDD, is more common.  Given the 

similarities in hormone changes occurring through pregnancy and the menstrual cycle, research 

into the role of NAS in PMS and PMDD may be of interest in the study of PPD. 
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Investigations of NAS and ovarian hormones in PMS and PMDD reveal 

conflicting findings.  For example, no differences were found in levels of 

allopregnanolone in the luteal phase in patients with PMS compared to controls (Schmidt 

et al, 1994; Wang et al, 1996), increased luteal phase concentrations have been 

demonstrated in patients with PMDD compared to controls (Girdler et al, 2001), and 

lower luteal phase concentrations of allopregnanolone have been associated with PMS 

(Rapkin et al, 1997; Monteleone et al, 2000) in various studies.  Lower follicular phase 

concentrations of allopregnanolone are also associated with PMS in some patients 

(Bicikova et al, 1998).  In one study examining allopregnanolone over the course of the 

menstrual cycle, the ratio of luteal to follicular phase concentrations was 3 times lower in 

patients with PMS than controls (Girdler et al, 2001).  Similarly, improvement in 

symptoms of PMS may be associated with increases in levels of allopregnanolone 

(Freeman et al, 2002).  Measured levels of circulating neuroactive steroids have not been 

clearly associated with catamential depressive disorders. 

Alterations in the conversion of progesterone to allopregnanolone have been 

observed in women with histories of depression or PMDD (Klatzkin et al, 2006).  In one 

study, women with PMDD demonstrated the elevated baseline ratios of 

allopregnanolone/progesterone, and following the administration of a standard dose of 

micronized progesterone, women with a history of any form of depression (including 

PMDD) had lower levels of allopregnanolone than controls.  Therefore, it may be that 

women with hormone-sensitive depression have altered metabolism of NAS. 

Some trials have demonstrated improvement in symptoms of distress and anxiety 

associated with PMS using treatment with exogenously administered progesterone 
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(Dennerstein et al, 1980; Baker et al, 1995; Magill, 1995), while in other studies there is 

no difference between patients treated with progesterone and those treated with placebo 

(Freeman et al, 1990; Freeman et al, 1995; Vanselow et al, 1996).  Specific oral 

contraceptive pills have been shown to be effective in reducing the symptoms of PMDD 

in double-blind placebo controlled trials (Pearlstein et al, 2005; Yonkers et al, 2006), but 

high dose oral contraceptives seem to worsen symptoms of PMDD (Rapkin, 2003).  

While ovarian hormones and NAS likely contribute to the pathophysiology of PMDD, 

more evidence is needed to determine the exact relationship between the activity of these 

molecules and the development of depressive symptoms. 

Many major neurotransmitter systems, including those of GABA (Majewska et al, 

1986; Lambert et al, 1995), glutamate (Glu) (Wu et al, 1991; Park-Chung et al, 1994; 

Weaver et al, 1997a; Weaver et al, 1997b) and 5-HT (Wetzel et al, 1998; Dong et al, 

2009), and the σ1 receptor (Maurice et al, 2001) are influenced by NAS.  The functions of 

these neurotransmitter systems are intertwined, and the physiological impacts of NAS on 

their interactions are complex.  For example, DHEAS decreases Glu release in rat 

prelimbic cortex (Dong et al, 2009).  This effect is blocked by administration of a 5-HT3 

receptor antagonist or a σ1 receptor antagonist, suggesting that the effect of DHEAS on 

Glu release in this brain region is indirectly mediated through the interaction of multiple 

neurochemical systems.  Indeed, NAS may act as either positive or negative modulators 

of various neurotransmitter receptors (Rupprecht and Holsboer, 1999), mediating their 

role in biological processes and in neuropsychiatric disorders including depression and 

PPD (Strous et al, 2006).  Furthermore, an association between PPD and PMDD 

(Sugawara et al, 1997; Bloch et al, 2006) may indicate that some women are at 
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heightened sensitivity to the effects of physiological fluctuations in NAS (Sundstrom et 

al, 2003).	  	  This sensitivity is likely reflected in changes in the functioning of other 

neurochemical systems associated with depression. 

 

I.3  Glutamate 

Glutamate (Glu), an amino acid neurotransmitter which cannot pass through the 

blood-brain barrier (Hediger, 1999) and is therefore produced centrally in neurons and 

glia (Szabo et al, 2009), is primarily derived from glucose and α-ketoglutarate, with a 

small amount created from glutamine (Gln) [Figure I.2].  Gln synthesized in glia is 

transported to the neurons where it is converted to Glu via the action of glutaminase.  Glu 

is then packaged into secretory vesicles by the vesicle glutamate transporters (VGLUT).  

The merger of vesicles with the synaptic membrane results in exocytosis of Glu into the 

synapse.  Glutamatergic activity is regulated through the removal of Glu from the 

synapse by excitatory amino acid transporters (EAAT).  A proportion of Glu returns to 

the presynaptic neurons, but most is collected into astrocytes via EAATs (Kugaya and 

Sanacora, 2005).   

 

 

 

 

 

Figure I.2 Glutamate metabolism 
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Glutamatergic neurotransmission occurs through both ionotropic and 

metabotropic receptors [Table I.2] (Schoepfer et al, 1994; McAllister et al, 2008).  

Ionotropic Glu receptors are classified on the basis of pharmacologic affinities to 

synthetic ligands, are sensitive to N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA), or kainate. Approximately 70% of the 

synapses in the mammalian brain contain NMDA or AMPA receptors (Bekkers and 

Stevens, 1989).  These receptors occur in particularly high density in the cerebral cortex, 

hippocampus, amygdala, striatum, and septum.  On a subcellular level, these receptors 

have unique responses to activation by Glu (Szabo et al, 2009).  Calcium influx through 

NMDA ion channels activates a number of intracellular kinases and phosphatases, 

thereby altering the characteristics of the synapse; however, neuronal death results from 

excess influx of calcium through the NMDA receptor occurring in the context of anoxia 

or hypoglycemia.  Glutamatergic signalling therefore plays a role in both neuroplasticiy 

and excitotoxicity.  AMPA receptors have a lower affinity for Glu than NMDA receptors, 

and are responsible for an initial excitatory potential when Glu is present in the synapse.  

This change in membrane polarization leads to the removal of a magnesium atom from 

the channel in the NMDA receptor, which must occur before calcium transit is possible.  

The exact nature of the role of kainate receptors remains unclear.  

Metabotropic Glu (mGlu) receptors are structurally and functionally distinct from 

ionotropic receptors (Palucha and Pilk, 2007).  The eight currently identified mGlu 

receptors are classified in three groups based on the intracellular cascades with which 

they are coupled, sequence homology, and pharmacology.  The type I mGlu receptors 

(mGlu1 and mGlu5) are present both presynaptically and postsynaptically, but the type II  



 

1Adapted from Mitchell and Baker, 2010 13	  

(mGlu2, mGlu3) and type III (mGlu4, mGlu6, mGlu7, mGlu8) receptors occur on glial cells 

and presynaptic neurons where they act to regulate Glu release (Cartmell and Schoepp, 

2000).  These receptors are thought to have multiple functions related to their membrane 

location on the neuron and density in different regions of the brain, both of which vary by 

type. 

 
Table I.2. Types of glutamate receptors1 
 
Receptor Subunits Signalling Mechanism Location 

Ionotropic Glutamate Receptors 
N-methyl-D-
aspartate (NMDA) 

NR1, NR2, NR3 Calcium channel Postsynaptic 

α-Amino-3-hydroxy-
5-methylisoxazole-4-
propionic acid 
(AMPA) 

GluR1, GluR2, 
GluR3, GluR4 

Sodium channel(Primary) 
Calcium channel(Subset) 

Postsynaptic 

Kainate GluR5, GluR6, 
GluR7, KA1, KA2 

Sodium channel Presynaptic and 
Postsynaptic 

Metabotropic Glutamate Receptors (mGlu) 
Type I mGlu  
(mGlu1, mGlu5) 

 G-protein coupled to 
Phosphatidylinositol/Calcium 
pathway and 
Diacylglycerol/Protein 
Kinase-C pathway 

Presynaptic and 
Postsynaptic 

Type II mGlu  
(mGlu2, mGlu3) 

 G-protein coupled to 
Adenylyl Cyclase 

Presynaptic 

Type III mGlu  
(mGlu4, mGlu6, 
mGlu7, mGlu8) 

 G-protein coupled to 
Adenylyl Cyclase and 
Phosphodiesterase 

Presynaptic 

 

 Evidence of dysregulation of Glu in depression in humans has been mounting in 

recent years (Sanacora et al, 2003; Mitchell and Baker, 2010).  Investigations have 

attempted to associate depressive phenotypes with changes in levels of Glu and its 

metabolites, and with changes in Glu receptors.  During the Sequenced Treatment 

Alternatives to Relieve Depression (STAR*D) clinical trial, treatment-emergent suicidal 
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ideation with the antidepressant citalopram was associated with polymorphisms in genes 

encoding subunits of the AMPA receptor and the kainate receptor (Laje et al, 2007).  

Different polymorphisms in the same genes were also associated with treatment-emergent 

suicidal ideation in other cohorts (Menke et al, 2008).  Genetic variability also appears to 

be associated with treatment response.  Data from the first phase of STAR*D revealed 

that the effectiveness of citalopram was associated with a polymorphism in GRIK4, a 

gene encoding the KA1 subunit of the kainate receptor (Laje et al, 2007). 

Clinical trials with glutamatergic agents also provide evidence that Glu plays a 

role in the neurobiology of depression (Krystal, 2007; Zarate et al, 2010).  Ketamine, an 

antagonist at the NMDA receptor, has been demonstrated to have rapid and prolonged 

antidepressant effects on individuals with treatment-resistant depression after a single 

intravenous administration in randomized trials (Berman et al, 2000; Zarate et al, 2006).  

Recent evidence also suggests that ketamine infusions may reduce suicidal ideation in 

depressed patients (DiazGranados et al, 2010).  Riluzole, another NMDA receptor 

antagonist, has been used in clinical trials for numerous psychiatric conditions (Pittenger 

et al, 2008).  In humans, riluzole showed antidepressant effects as monotherapy in one 

open-label trial (Zarate et al, 2004), and as an augmenting agent in another trial 

(Sanacora et al, 2007).  Similarly, memantine, which also acts as an NMDA receptor 

antagonist, demonstrated similar antidepressant effects to citalopram in individuals with 

comorbid alcohol dependence and depression (Muhonen et al, 2008). 

Measurements of Glu in mood disorders also reveal differences from controls.  

Plasma Glu levels may be elevated in individuals with major depression (Kim et al, 

1982).  These elevations appear to be proportional to the severity of depressive symptoms 
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(Mitani et al, 2006) and do not normalize following treatment with fluoxetine (Mauri et 

al, 1998).  However, not all reports in the literature support a relationship between 

peripheral Glu levels and depressive symptoms (Altamura et al, 1995; Maes et al, 1998), 

and the relationship between plasma concentrations of Glu and central levels is not clear 

(Shulman et al, 2006). 

Direct collection and measurement of Glu in the central nervous system (CNS) in 

living humans is technically challenging.  In one study of neurosurgical samples of 

frontal cortex taken from patients undergoing psychosurgery for major depression, there 

were no differences in Glu concentrations compared to individuals undergoing 

neurosurgery reasons unrelated to depression (Francis et al, 1989).  A study of mixed 

bipolar and unipolar depression reported decreased levels of Glu in the cerebrospinal 

fluid (CSF) of individuals with mood disorders (Frye et al, 2007).  In this investigation, 

the unipolar cohort represented the minority of patients (Unipolar = 8, Bipolar = 24), and 

these results have not been replicated in a population of purely unipolar major depressive 

disorder.  Indeed, a study of CSF levels of Gln in unipolar depression demonstrated 

significantly higher levels in affected individuals than in euthymic controls (Levine et al, 

2000).  Changes in levels of Gln in the cerebrospinal fluid may represent changes in 

overall brain Glu, but do not account for region-specific alterations in metabolites. 

 

I.4 Interactions of Neuroactive Steroids and Glutamate 

 The interaction between NAS, particularly those derived from female sex 

hormones, and the glutamatergic system is poorly understood at present.  Specifically, 
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there have been few investigations into the interface of these systems in depression, or in 

humans in general. 

 Investigations in rats point to activity of NAS in modulating the activity of 

gluamatergic neurons.  Pregnenolone sulfate induces synaptic release of Glu and 

increases AMPA receptor activity in Purkinje cells of the cerebellum (Zamudio-Bulcock 

and Valenzuela, 2010).  Similarly, pregnenolone sulfate causes a long lasting increase in 

glutamatergic activity in developing hippocampal CA1 neurons in neonatal rat cortical 

slices (Mameli et al, 2005).  Glutamatergic activity also impacts the production of NAS.  

In quail frontal cortex, exposure to kainate and AMPA decrease the activity of 

aromatases involved in NAS metabolism in neurons (Balthazart et al, 2001).  The 

presence of kainate receptor antagonists inhibited this effect, suggesting that Glu may 

mediate NAS production through activity at kainate receptors.  Aromatase function is not 

altered when NMDA receptors are activated (Balthazart et al, 2006).  In mice, estradiol 

levels in the forebrain are decreased by infusions of Glu or NMDA (Remage-Healey et 

al, 2008).  These effects may be related to the activity of calcium-dependent 

phosphorylation of enzymes involved in NAS metabolism (Balthazart et al, 2003).  

Similar rapid changes in NAS levels as a result of glutamatergic activity have not been 

demonstrated in humans. 

 Fluctuations in plasma Glu levels across the menstrual cycle have been observed 

in one recent study (Zlotnick et al, 2010).  In this investigation, blood levels of Glu, 

estrogen, and progesterone were examined in women through the menstrual cycle.  Blood 

Glu levels were lower at day 7, day 12, and day 21 in comparison to day 1 of the 

menstrual cycle, at the onset of menses.  Similarly, blood Glu levels were lower on day 
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12 and day 21 compared to day 7, but were significantly higher on day 21 compared to 

day 12.  This suggests a progressive decrease in blood Glu over the menstrual cycle, with 

peak levels present during the early follicular phase and nadir levels occurring in the 

early luteal phase, just after ovulation.  The authors suggest that decreases in Glu may be 

caused by fluctuations in hormones, and that this may account for a neuroprotective 

effect of estrogen and progesterone.  However, this study measured peripheral Glu, which 

does not necessarily correlate with central concentrations (Shulman et al, 2006), and 

levels of NAS derived from estrogen and progesterone were not obtained. 

 Central measurement using magnetic resonance spectroscopy (MRS) 

demonstrates fluctuations in brain Glu over the course of the menstrual cycle.  In a study 

of 12 women suffering from PMDD and 13 healthy controls, levels of Glu in the medial 

prefrontal cortex (MPFC) decreased from the follicular phase (day 6-12) to the luteal 

phase (day 22-27) of the menstrual cycle (Batra et al, 2008).  These reduced MPFC Glu 

levels were observed in both healthy controls and in women with PMDD.  The authors 

concluded that women developing PMDD may be susceptible to the behavioral effects of 

physiologic alterations in MPFC Glu occurring as a result of hormonal fluctuations over 

the menstrual cycle.  Similar investigations in the postpartum have not been reported.  

 

I.5 Magnetic Resonance Spectroscopy 

I.5.1 Overview 

The measurement of metabolite concentrations in a region of interest (ROI) or 

voxel in vivo can be accomplished with MRS (Behar et al, 1983; Jansen et al, 2006).  

Like other forms of nuclear magnetic resonance, MRS exploits the magnetic properties of 
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nuclei containing odd numbers of nucleons.  Elementary particles possess a quantum 

mechanical property known as ‘spin’, which can be considered as the rotational motion 

(angular momentum) of the particle.  A proton is a composite particle composed of 3 

quarks, with a spin-½.  In nuclei with an odd number of protons, the angular momentum 

of the nucleus generates a magnetic field, similar to that generated by a rotating electrical 

charge (Frangou and Williams, 1996), which is often illustrated as a small bar magnet.  In 

the absence of an external magnetic field, the distribution of these magnetic fields is 

random, however, when a fixed magnetic field is applied, such as that used in MRS, these 

nuclei will align either parallel (North-South : North-South) or anti-parallel (North-South 

: South-North) to the applied magnetic field.  The populations of these aligned groups of 

nuclei are not equal since the antiparallel state is a higher energy state, therefore, a larger 

number of the nuclei preferentially align in the parallel orientation.  The difference in the 

populations of nuclei is directly proportional to the magnetic field strength.  In MRS, the 

signal generated during relaxation from parallel and antiparallel oriented nuclei cancel 

each other out, therefore the net signal detected is from the surplus of parallel oriented 

nuclei. 

In order to perturb these nuclei from their orientation in the fixed magnetic field, a 

radiofrequency (RF) pulse is applied at a frequency equal to that of the nuclear 

precession, and as a result the nuclei efficiently absorb the energy and their magnetic 

field no longer aligns with the static magnetic field.  The resonant frequency is 

determined by the particular characteristics of the nucleus under investigation (Cady, 

1990), and is proportional to the applied magnetic field and a nuclei-specific constant 

known as the gyromagnetic ratio.  The nuclei spin in three-dimensional space, and when 
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plotted on a cartesian plane, precess around the Z-axis.  The effect of applying an RF 

pulse at the resonant frequency is to perturb the direction of the spin, creating a rotation 

on the xy plane. It is this precesion about the xy-plane that is measured as a signal in 

NMR, since the rotating magnetic moments generate an electromotive force (emf) in the 

RF coil. 

On cessation of the RF pulse the nuclei relax back to the equilibrium state. The 

relaxation processes occur in three dimensional space, with the T1 (spin-lattice) relaxation 

time reflecting the longitudinal (Z-axis) reorientation of the nuclei as they return to a 

parallel orientation.  The decay of the T1 signal occurs as the axis around which the 

nucleus is precessing approaches the Z-axis.  The T2 (spin-spin) relaxation reflects the 

transverse (XY-axis) reorientation of the ensemble of nuclei from a state where they are 

all rotating synchronously to a state where their rotation is distributed equally around the 

XY-axis, which results in a net zero emf induced in the RF coil.  The decay of the signal 

by T2 relaxation occurs as the individual signals from the nuclei cancel each other out as 

their rotation approaches an even distribution..  In in vivo applications, the T1 relaxation 

usually takes longer than the T2 relaxation. 

The RF pulse may be repeated numerous times during a single MRS session.  The 

repetition time (TR) is the time between RF pulse sequences.  The amplitude of the signal 

obtained during MRS is dependent on the TR.  Using a longer TR allows more of the net 

magnetization to return back to the parallel low energy state through T1 relaxation, and 

thereby improving the signal to noise ratio on repeated signal-averaged scans.   

The echo time (TE) is the time from the administration of an RF pulse sequence 

to data acquisition.  Analogous to TR, the amplitude of the signal is dependent on TE, 
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with longer TE decreasing the amplitude of the signal, as the signal decays through T2 

relaxation. 

The time-dependent decay of the NMR signal measured from the excited nuclei is 

analyzed, using a mathematical model known as the Fourier transform, to generate a 

spectrum (Ernst and Anderson, 1966; Frangou and Williams, 1996).  The spectral lines 

reflect the different chemical and electronic environments of the measured nuclei within 

the sample.  The frequency of the energy emitted during relaxation will vary based on the 

environment of the local chemical bonds; therefore, each nucleus will resonate at a 

characteristic frequency in the spectrum.  In order to allow comparison of spectra 

acquired at different field strengths, the frequency scale is normalized to a frequency 

proportional to the static magnetic field, and is called the chemical shift.  The chemical 

shift is not affected by the strength of the magnetic field used, and so is consistent for a 

given molecular species.  The resultant spectrum will have peaks representing each type 

of like-nuclei within the sample. The area under each peak is proportional to the amount 

of nuclei from  each metabolite in the sample.  

Various nuclei with odd numbers of protons can be used for MRS,	  including 

hydrogen (1H), lithium (7Li), carbon (13C), fluorine (19F), and phosphorus (31P). Each of 

these nuclei have properties that are useful for different target metabolites in MRS.  For 

example, 7Li is often used in pharmacological studies (Keshavan et al, 1995) as it is not 

usually biologically present, and 31P is useful in investigations in energy metabolism as it 

is incorporated into various molecules involved with the generation and storage of 

chemical energy in cells (Cady, 1990).  Similarly, since it can be tracked through 

metabolic pathways, 13C is often used in investigations of biosynthesis.  The 1H nucleus 
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is the most commonly observed nucleus in MRS (Frangou and Williams, 1996).  The 1H 

nucleus consists of a single proton, leading to the term proton magnetic resonance 

spectroscopy (1H-MRS). 

 

I.5.2 Data Acquisition 

 The accurate identification of the ROI is essential when using in vivo MRS.  This 

is accomplished by obtaining structural MRI images in the coronal, sagittal and axial 

planes, and registering the voxel to the ROI.  Two common localization techniques are 

Stimulated Echo Acquistion Mode (STEAM) (Frahm et al, 1985) and Point Resolved 

Spectroscopy (PRESS) (Bottomley, 1987).  A three-dimensional voxel is defined using 

STEAM through the application of three 90° slice-selective pulses.  PRESS differs in that 

a 90° pulse is followed by the application of two 180° slice-selective pulses.  STEAM 

generates a better-defined voxel with less contamination from external signals and less 

signal decay associated with long TEs.  PRESS results in a more favorable signal-noise 

ratio, less motion artifact, and less macromolecular signal contamination associated with 

short TEs (Kim et al, 2005). 

To obtain a spectrum of optimum quality, the fixed magnetic field must be 

homogenous, and this is ensured through a process known as shimming.  The magnetic 

field is mapped and homogeneity is achieved by the application of small currents in shim 

coils, which generate linear and non-linear magnetic fields .  Shimming ensures that 

identical protons within the volume sampled resonate at as close as possible to a coherent 

frequency.  This results in spectral peaks that are well resolved with narrow width, and 

maximizes the signal-noise ratio (Cady, 1990).  Fast Automatic Shimming Technique by 
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Mapping Along Projections (FASTMAP) (Gruetter, 1993) is a common shimming 

protocol that allows for calculation of the linear and non-linear shim currents that need to 

be applied to correct for magnetic field heterogeneities, and is used prior to data 

acquisition. 

 The most abundant hydrogen-containing molecule in organic tissues is water.  

The 1H signal from water is up to 10,000 times greater than the signal from other 

common metabolites (Cady, 1990; Stanley et al, 1995).  Due to this large dynamic range 

in signal strength, various techniques have been developed to suppress the water signal.  

A commonly used water-suppression technique is chemical shift saturation (CHESS) 

(Cox, 1996).  A series of 90° pulses excite protons in water, followed by dephasing.  

Repetition of this sequence allows for significant suppression of the water signal.  An 

alternative method is the water eliminated fourier transform (WEFT) (Patt and Sykes, 

1972) inversion recovery sequence, where the frequency selective inversion pulse is 

applied at the water frequency.  The timing interval between the inversion pulse and 

localization sequence is adjusted to minimize water signal at its inversion null.  Since the 

water signal consists of contributions from GM, WM, and CSF, all of which have 

different T1 relaxation rates, it is often difficult to suppress the water signal completely.  

Improved water suppression can be achieved using a double-inversion recovery pulse 

sequence.   

Metabolite concentrations are often reported as a ratio in relation to a reference 

metabolite such as creatine (Jansen et al, 2006), or as values relative to water (Wellard et 

al, 2005).  The use of a reference metabolite can be problematic, as variations in the 

concentrations of the reference molecule result in apparent fluctuations in levels of target 
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metabolites.  Furthermore, variations in the compartments within the voxel (CSF, white 

matter (WM) and grey matter (GM)) may affect the measured metabolite levels if they 

are referenced to water content, and the metabolite may be preferentially present in only 

one tissue compartment.  In order to correct for this, segmentation, an estimation of the 

voxel content of CSF, WM and GM is essential. 

 

I.5.3 Metabolites Measured Using 1H-MRS 

Common metabolites measured in 1H-MRS include Glu, Gln, N-acetylaspartate 

(NAA), creatine (Cr), and choline (Cho).   

NAA is the second most abundant free amino acid in the CNS after Glu (Baslow, 

2002).  It is synthesized in mitochondria and is present throughout neuronal cytoplasm.  

As such, NAA is commonly viewed as a marker of neuronal integrity (Moffet et al, 

2007), with concentrations higher in the GM than WM.  The function of NAA in neurons 

is not well understood.  It may act as a central osmolyte or may be involved in 

communication between neurons and glia (Baslow, 2002).  Decreases in NAA have been 

observed in neurodegenerative disorders such as Alzheimer’s disease (Baslow, 2002).  

However, recovery of NAA levels has been observed without a concomitant neuronal 

recovery.  Decreased NAA levels are also found in animal models in of stress (Mathew et 

al, 2003), and following early life trauma in humans (van Elst et al, 2001).  Increases in 

NAA levels have been observed in individuals being treated with antidepressants (Gonul 

et al, 2006).  The NAA peak occurs at a chemical shift of 2.01 ppm, and represents both 

NAA and its precursor/metabolite N-acetylaspartylglutamate.  In adults, overall brain 

NAA content decreases by approximately 2% per decade during normal aging, with the 
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most significant decreases occurring in cortical tissue and the hippocampus (Angelie et 

al, 2001). 

Unequivocal measurement of Glu using MRS in humans is difficult, as the 

spectrial peaks from Glu overlap with a number of other neurochemicals, primarily Gln.  

Recent advances using stronger magnetic fields allow for the isolation of one of the Glu 

signal (2.35 ppm).  Prior to these developments, most studies reported a combined Glu + 

Gln peak as ‘glutamix’ (Glx) (Capizzano et al, 2007).  The earliest clinical report of MRS 

used to examine Glx in depression was of a cancer patient who had recurrent suicidal 

ideation and depressive symptoms associated with chemotherapy (Cousins and Harper, 

1996).  In this individual, Glx was decreased in the cerebral white matter.  Various brain 

regions have subsequently been targeted during investigations using MRS in depression 

with reduced Glu or Glx levels demonstrated in many frontal regions and the 

hippocampus (Yüksel and Öngür, 2010). 

At 3.03 ppm, the Cr peak is comprised primarily of creatine and phosphocreatine, 

with small contributions from lysine, GABA, and glutathione.  Phosphocreatine is 

involved in the process of energy production in cells, acting as a phosphate donor for the 

regeneration of adenosine triphosphate.  The level of the measured Cr peak in brain tissue 

has long been used as a reference molecule in investigations using MRS since it was to 

have a stable concentration and be uniformly distributed in the brain (Cecil et al, 1998; 

Barkovich, 2011). 

The Cho peak occurs at 3.21 ppm and represents a combination of the 

contributions of many choline-containing compounds including phosphorylcholine, 

glycerophosphorylcholine, and free choline.  A high Cho peak is considered indicative of 
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a process consistent with significant breakdown of cellular membranes, such as 

inflammation, neurological tumors, or neurodegenerative processes (Barkovich, 2011).  

 

I.5.4 Limitations of MRS 

While1H-MRS has allowed for investigations of in vivo neurochemistry in 

humans, there are limitations to this methodology.  

Issues with methodology can affect the validity and applicability of MRS results.  

Specifically, the choice of voxel must be considered.  The occipital lobe is commonly a 

target for MRS as excellent magnetic field homogeneity with less signal distortion from 

bone-air interfaces and high iron content can be achieved.  This is in contrast to data 

observed from the prefrontal cortex and the basal ganglia (Soreni et al, 2006). Since MRS 

acquires a signal from a macroscopic ROI, it does not allow for the localization of 

neurochemicals within the voxel.  For example, the relative concentrations of a 

metabolite in neurons, in the synaptic cleft, and in glia cannot be determined.  Inadequate 

shimming techniques, water-signal suppression, and motion artifact may also result in 

limitations to the quality and assessment of the resultant spectrum (Burlina et al, 2000).   

The spectrum generated by MRS may be affected by a number of factors.  First, 

metabolites with low concentrations (i.e. less than 0.5 to 1 millimolar) are not easily 

identified or quantified with current techniques (Burlina et al, 2000).  Second, 

overlapping spectral peaks arising from substances with similar chemical shift may result 

in an inability to determine accurate metabolite concentrations.  For example, earlier low 

magnetic field studies with MRS were limited to reporting the combined peak of Glu and 

Gln as ‘glutamix’ or Glx.  Acquiring MRS data at higher field strength and optimizing 
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data acquisition techniques, such as the use of target TE times, allow for better separation 

of Glu and Gln peaks.  A longer TE also minimizes signal contamination from 

macromolecules in the voxel.  Finally, the spectra generated with 1H-MRS are limited to 

identifying concentrations present at the time of the study, and do not represent 

metabolite cycling or turnover.   

When analyzing 1H-MRS studies, it is important to consider methodological 

differences that may give rise to difficulties in comparing the results of various trials, 

such as the strength of the applied magnetic field, the use of reference molecules or 

water-quantification, and the selection of the voxel. 

 

I.6 Magnetic Resonance Spectroscopy of Glutamate in Depressive Disorders 

 As described above, technical limitations of MRS technology have resulted in 

many studies reporting the combined Glx peak.  A variety of brain regions have been 

investigated with regard to Glx levels in depression.  Decreased Glx has been 

demonstrated in the anterior cingulate cortex (Auer et al, 2000; Pfleiderer et al, 2003), 

the amygdala (Michael et al, 2003a), the dorsolateral prefrontal cortex (Ajilore et al, 

2007), and the hippocampus (Milne et al, 2009) of individuals suffering from depression.  

However, increased Glx levels have been measured in the occipital cortex in depression 

following cerebrovascular accidents (Glodzik-Slobanska et al, 2006).  Similarly, altered 

Glx levels have been shown to resolve following successful treatment with sleep 

deprivation (Murck et al, 2009), and in some studies using electroconvulsive therapy 

(Michael et al, 2003b); however, a recent study investigating Glu in the medial prefrontal 
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cortex (MPFC) showed no change in levels with treatment response to electroconvulsive 

therapy (Merkl et al, 2011).   

Investigations of Glx in the occipital cortex have shown increased (Sanacora et al, 

2004) levels or no difference in levels (Price et al, 2009) in comparison to healthy 

controls.  While the anterior cingulate is an area of interest in mood disorders (Pizzagalli, 

2011), the relevance of the occipital cortex in mood disorders is less clear. 

 The selection of voxel location, the method of data acquisition used, and the 

criteria applied to diagnose depressed subjects make comparing studies, and the 

development of a comprehensive theory of glutamatergic dysfunction in depressive 

disorders, difficult.  Indeed, the applicability of the voxel location that is selected should 

be validated with other etiopathologic studies of depression. 

 

I.7  Medial Prefrontal Cortex 

The MPFC, with its interconnections with limbic structures, is an area of interest 

in mood and anxiety disorders (Rigucci et al, 2010).  The induction of sadness in non-

depressed women using images of human faces or recall of appropriate life events results 

in an increase in MPFC blood flow measured using positron emission tomography (PET) 

(George et al, 1995).  Similarly, increased MPFC activity, measured with functional 

magnetic resonance imaging (fMRI), occurs after viewing a film clip designed to induce 

transient sadness in healthy subjects (Beauregard et al, 1998).  Increases in MPFC 

activity are also observed during the presentation of words with a negative emotional 

valence that are felt to be self-referenced (Fosatti et al, 2003), a possible correlate of guilt 

or shame.   
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Other neuroimaging studies have shown abnormalities in prefrontal cortex in 

patients with major depression including: decreases in regional cerebral blood flow 

(Gonul et al, 2004); changes in metabolism measured with PET (Kennedy et al, 2001; 

Kennedy et al, 2007); and alterations in functional connectivity measured with fMRI 

(Anand et al, 2009).  One investigation using MRS demonstrated decreases in the 

Glu+Gln signal in the ventromedial and dorsomedial/dorsal anterolateral prefrontal 

regions of 20 depressed individuals compared to healthy controls (Hasler et al, 2007).  

More recently, decreased levels of Glu have been found in the anterior cingulum in 

individuals with major depression when compared to healthy controls (Merkl et al, 2011). 

 

I.8 Rationale and Hypotheses 

While an increasing body of evidence indicates that the glutamatergic system is 

involved in the pathophysiology of depression, research into the role of Glu in the 

postpartum and in PPD is lacking.  A role for hormonal fluctuations in the 

pathophysiology of PMDD and PPD is suggested by the association of depressive 

episodes in women with events in the reproductive cycle.  Reductions in MPFC Glu 

levels are seen in the late luteal phase of the menstrual cycle, concurrent with large drops 

in circulating estrogen and progesterone.  Similar hormonal changes, of a greater 

magnitude, occur in the postpartum.  The goal of the research project described in this 

thesis is to test the hypotheses that: 1) alterations in MPFC Glu also occur in the early 

postpartum in women with no depressive symptoms, and 2) alterations in MPFC Glu are 

more pronounced in individuals with a history of hormone-sensitive depression than 

women with no such history.  This is part of a larger research program aimed at 

examining changes in MPFC Glu throughout the female reproductive lifecycle and 
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correlating these changes with depressive symptoms in order to better understand the 

links between NAS, Glu, and depression.
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 II.1  Introduction 

 Depression in the postpartum (PPD) is common, affecting up to 15% of women 

(Gaynes et al, 2005) with a recurrence rate of 30% to 50% with subsequent deliveries 

(Schaper et al, 1994; Wisner et al 2006).  The DSM-IV-TR (American Psychiatric 

Association, 2000) indicates that the use of the postpartum-onset specifier only can be 

applied to a major depressive episode (MDE) episode that has an onset within 4 weeks of 

birth.  However, most experts suggest that, based on epidemiologic studies, an MDE 

within 3 months of delivery should be considered to be PPD (Elliot, 2000; Cox, 2004). 

The analysis of risk factors for PPD indicates that differences exist between those who 

develop it early (within 6-8 weeks of delivery) and those who develop it later (Bloch et 

al, 2006).  Several authors have hypothesized that specific biological dysregulations are 

associated with early onset PPD whereas less well defined psychosocial factors represent 

a greater risk factor for late onset PPD (Robertson et al, 2004, Bloch et al, 2006).  It may 

be that some women are susceptible to the physiological fluctuations in sex hormones 

and associated neuroactive steroids (NAS), occurring in the early postpartum.  Indeed a 

previous history of PPD or of premenstrual dysphoric disorder (PMDD) have been 

associated with a greater risk of early onset PPD (Bloch et al, 2006). 

 Recent evidence suggests that glutamate (Glu), an amino acid neurotransmitter, 

may play a role in the development of major depressive disorders (Sanacora et al, 2003; 

Mitchell and Baker, 2010), and the glutamatergic system is also sensitive to the effects of 

sex hormones and associated neuroactive steroids (NAS) (Weaver et al, 1997a; Weaver 

et al, 1997b; Park-Chung et al, 1994; Wu et al, 1991).  While theoretical associations.
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exist between alterations in sex hormone and NAS levels in the postpartum and changes 

in brain neurochemical function, evidence of this interaction is scarce in the literature. 

Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive in-vivo 

imaging technique that can directly assess levels of various neurochemicals, in targeted 

brain regions (Rudkin and Arnold, 1999).  Common metabolites measured with 1H-MRS 

include Glu, N-acetylaspartate (NAA), choline containing compounds (Cho), and 

creatine/phosphocreatine (Cr).  NAA is often used as a marker of neuronal integrity, as it 

occurs primarily in neuronal cytoplasm.  Decreases in NAA are present in a number of 

neurodegenerative disorders, where reductions in neuronal tissue occur (Baslow, 2002).   

The medial prefrontal cortex (MPFC) is an area of particular interest in mood 

disorders and alterations in metabolism in this region, as measured using positron 

emission tomography, are seen when individuals experience sadness, (PET) (George et 

al, 1995).  Changes in MPFC functioning can also be measured using PET in non-

depressed cohorts as a result of alterations in ovarian hormones over the menstrual cycle 

(Reiman et al, 1996), and as a result of administration of exogenous hormones (Berman 

et al, 1997).  Therefore, the MPFC is of particular interest in mood disorders occurring in 

the context of the female reproductive cycle. 

A number of 1H-MRS studies have examined alterations in levels of ‘glutamix’, 

the combined spectroscopic peak of Glu and glutamine, in various brain regions in MDE 

(Yüksel and Öngür, 2010).  In a population of depressed adults of both genders, an 

investigation using 1H-MRS demonstrated decreased levels of the combined metabolite 

peak of Glu and glutamine, termed ‘glutamix’, in the MPFC (Hasler et al, 2007).  A more 

recent study, designed with the ability to measure Glu, showed a similar decrease in the 
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anterior cingulate (Merkl et al, 2011).  Furthermore, using a unique 1H-MRS 

methodology (see Methods), we have collected pilot data suggesting that women 

suffering from PPD exhibit decreased MPFC Glu levels compared to healthy controls 

(Burgess et al, 2009). 

Alterations in MPFC Glu during the menstrual cycle have been observed using 

1H-MRS, with the lowest MPFC Glu levels occurring in the luteal phase (Batra et al, 

2008).  During the menstrual cycle, ovarian hormone levels gradually rise during the 

luteal phase, with a sudden decrease in the late luteal phase to return to baseline levels by 

the start of the follicular phase (FP).  A similar abrupt withdrawal of ovarian hormones 

occurs after delivery with elevated plasma estradiol returning to FP levels by postpartum 

day 3, and plasma progesterone levels returning to FP levels by day 3 to 7.  However, 

plasma levels of NAS remain altered for several weeks after delivery (Pearson Murphy et 

al, 2001).  These rapid fluctuations may contribute to the development of mood disorders 

in the postpartum.   

Given the decreased  MPFC Glu levels observed in depression and PPD, and the 

impact of hormonal fluctuations on MPFC Glu levels, the early postpartum may be 

associated with a decrease in MPFC Glu levels that could contribute to the increased risk 

of depression in the puerperium. 

Brain Glu levels in the early postpartum have not previously been reported.  We 

hypothesize that levels of Glu in the MPFC are reduced in women 3 weeks after delivery 

in comparison to women in the FP of the menstrual cycle. 
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II.2  Materials and Methods 

II.2.1 Subjects 

 Advertisements in a local maternity-related periodical, posters, and collaboration 

with obstetrical and postpartum wards at local health care institutions were used to recruit 

subjects in accordance with the guidelines of the Health Research Ethics Board of the 

University of Alberta.  After a complete description of the study was provided, written 

informed consent was obtained from all subjects.  Participants were compensated for 

their time.  

 Eligible participants were women aged 18-40 years, physically healthy, and not 

taking any medications, psychotropic drugs, or herbal products in the 3 months prior to 

entering the study or at the time of inclusion.  Women were included only if they did not 

currently meet any Axis I DSM-IV-TR diagnosis including MDE (American Psychiatric 

Association, 2000).  Exclusion criteria included a prior history of any DSM-IV-TR 

mental illness; any medical illness including brain injury, endocrine disorders, or 

neurological disorders; and contraindications for undergoing magnetic resonance imaging 

(MRI).  Additionally, participants were eligible only if they did not use any street or 

recreational drugs in the previous 6 months or during the study, or currently use any form 

of hormonal contraception.  One research subject in the postpartum group was a smoker 

(2 cigarettes/day), and none of the women met criteria for alcohol abuse or alcohol 

dependence.  

Twenty-six women were recruited for the postpartum group (3wPP), and thirteen 

women were recruited for the follicular phase group (FP).  Participants were administered 
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the Structured Clinical Interview for DSM-IV Axis I Disorders (First et al. 2002) to 

screen for current or lifetime Axis I psychiatric disorders.   

Women in 3wPP underwent 1H-MRS scanning 3 weeks after delivery, and those 

in FP were scanned between days 6 and 12 of the menstrual cycle, following the onset of 

menses.  Participants were instructed not to use nicotine or caffeine or alcohol for at least 

12 hours prior to the MRS session.  Follow-up in person or over the phone for 3wPP 

continued for at least 7 weeks postpartum in order to ensure that these women did not 

develop PPD during the early postpartum. 

 

II.2.2 Magnetic Resonance Spectroscopy 

All 1H-MRS imaging occurred at the Peter S. Allen MR Research Centre, 

University of Alberta, Edmonton, Canada, using a 3-Tesla magnet (Magnex Scientific, 

Concord, California).  The magnet was equipped with a spectrometer (Surrey Medical 

Imaging System, Surrey, United Kingdom) and a quadrature birdcage resonator.  Figure 

II.1 shows the placement of the MPFC voxel, measuring 2 x 3 x 3 cm with the narrowest 

dimension perpendicular to the midline.  The posterior edge contacted the rostrum of the 

corpus callosum in the mid-sagittal plane, with one inferior corner touching the anterior 

commissure-posterior commissure line.  The voxel was rotated such that the anterior edge 

was equidistant to the brain surface. 

Shimming was achieved with an in-house auto-shimming routing and FASTMAP 

(Gruetter, 1993).  A stimulated echo acquisition mode (STEAM) technique at an echo 

time (TE) of 240 msec, a mixing time (TM) of 27 msec and a repetition time (TR) of 3 

sec were used.  Experimental timings calculated prior to acquisition and data analysis 
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were performed using a MATLAB (The MathWorks, Inc., Natick, Massachusetts) 

environment.  The timings were optimized using numerical simulation to maximize the 

contrast of Glu at 2.35 ppm against background metabolite signals (Thompson and Allen, 

2001).  This technique also reduced signal contamination by Gln, and the long TE 

resulted in minimal contamination from macromolecules (Hwang et al, 1996).   

 

 

Figure II.1.  Medial prefrontal cortex voxel. Shown in A) mid-sagittal section with the 
posterior inferior corner contacting the anterior commissure- posterior commissure line, 
B) transverse, and C) coronal views. 

 

The water signal was measured at several TE values (TE = 20, 40, 60, 80, 100, 

150, 200, 250, 300, 350, 400, 450, 500, 700, 900, 1100, 1300, and 1500 msec; TR = 
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12000 msec; 2 averages per TE), and this data was fitted to a non-negative-least-squares 

algorithm.  The result of this analysis yielded the T2 components present in the decay and 

their relative proportions, and permitted an estimation of the water peak at a theoretical 

TE = 0 msec. 

In order to estimate the grey matter (GM): white matter (WM): cerebrospinal fluid 

(CSF) composition, segmentation data were acquired, using a double-inversion recovery 

PRESS 1-D projection method (Hanstock & Allen, 2000).  These data were included to 

scale for differences in the composition (GM:WM) of each subjects brain in the MPFC 

region, but most importantly to allow the elimination of the non-brain-containing-volume 

occupied by the CSF. The PRESS selected volume was registered precisely to the same 

selected region as the STEAM acquisition.  Two hyperbolic secant inversion pulses (110 

ms length, bandwidth = 150 Hz) were added immediately prior to the PRESS pulse 

sequence.  The delay time between the two inversion pulses and between the last 

inversion pulse and the PRESS sequence were optimized to suppress two components, 

which included CSF and either GM or WM. Ten GM and ten WM 1D-projections were 

acquired, TR = 9 s, TE = 120 ms, 2 averages with 5kHz sample frequency digitized over 

128 data points.  An additional ten CSF 1D-projections were acquired with no inversion 

pulses and with a TE of 500 ms.  At this long TE the signal contamination from GM and 

WM was virtually zero (<0.2% residual signal after accounting for T2 losses), while 

maintaining significant signal from CSF (~50% residual signal).  All computations 

necessary for calculating experimental timings prior to acquisition, and for the data 

analysis, were performed using the MATLAB program environment. 
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Levels of in vivo brain metabolites were determined using the LCModel analysis 

program (version 6.0-1) (Provencher, 1993).  Metabolite peak areas were derived for N-

acetylaspartate (NAA), creatine (Cr), choline (Cho), and Glu.  A sample spectrum is 

shown in Figure II.2.  These spectra were the sum of 512 averages, acquired in 16 blocks 

of 32.  Each of the subspectra was examined for artifact due to movement or hardware 

fluctuations prior to final summation. 

 

 

Figure II.2.  Sample STEAM Localized MRS Data. Acquired from the medial prefrontal 
cortex and LCModel analysis fit. Sequence timings were optimized for recovering the 
signal from glutamate (TE = 240 msec; TM = 27 msec; TR = 3 sec). 
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Quantification of neurochemicals was accomplished using: 1) the metabolite 

spectra from the LCModel analysis, 2) estimated water concentration in the voxel 

determined from segmentation for grey matter, white matter, and cerebrospinal 

compartment sizes; 3) the estimated water peak (at TE = 0 msec) used as the reference 

MR signal standard.   

 

II.2.3 Statistical Analysis 

 All results are reported as mean ± standard deviation.  Statistical calculations and 

linear regression modelling was performed using PASW Statistics 18. Unpaired t-tests 

were used to analyse differences between 3wPP and FP groups on age and water-

quantified neurochemicals measured using 1H-MRS.  Statistical significance was set at p 

< 0.05 (two-tailed).   

 

II.3  Results 

There was no significant difference between 3wPP and FP in age (29.08 ± 4.70 

years, 27.08 ± 5.87 years; t(37) = 1.15, p = 0.26).  Beck Depression Inventory scores did 

not vary between groups (3wPP: 2.85 ± 3.31, FP: 1.38 ± 1.98; t(37) = 1.45, p = 0.16).  

None of the women in the 3wPP group developed PPD during the follow-up period. 

Water-quantified Glu was decreased in the MPFC of 3wPP compared to FP (7.09 

± 1.63 vs. 8.65 ± 1.71, t(37) = 3.69, p < 0.001).  Figure II.3 shows a scatter-plot of the 

MPCF Glu levels in both groups.  Water-quantified NAA was also decreased at 3wPP 

compared to FP (8.95 ± 1.35 vs. 10.07 ± 1.31, t(37) = 2.48, p = 0.02).  No differences 

were detected in levels of other brain metabolites between groups, as shown in Table II.1.   
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Figure II.3.  Water-Quantified Glutamate (Glu) in the Medial Prefrontal Cortex of 
Euthymic Women in the Early Postpartum (3wPP n = 26) and the Follicular Phase of the 
Menstrual Cycle (FP n = 13).  Decreased levels of Glu were measured in 3wPP compared 
to FP. 

 

Glutamate and NAA are both primarily localized in neuronal tissue in the brain.  

As such, decreased grey matter and increased water content in the voxel may both 

account decreased water-quantified NAA and water-quantified Glu in the postpartum.  

By taking a ratio of Glu/NAA, the water signal is eliminated mathematically; therefore, 

the Glu/NAA ratio may control for changes in voxel content effecting the water-

quantified Glu measurement.  The Glu/NAA ratio was also significantly lower in 3wPP 

group compared to FP (3wPP: 0.79 ± 0.15, FP: 0.90 ± 0.10, t(37) = 2.22, p = 0.03) 

(Figure II.4). 

Segmentation of the voxel, represented by %GM, %WM, and %CSF also varied 

between groups as shown in Table II.1.  As metabolites are not located in the CSF in 

significant concentrations, the ratio of parenchymal components of the voxel were 
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determined.  The percentage of brain GM (%BrainGM) and the percentage of brain WM 

(%BrainWM) were calculated (%BrainGM = 100*%GM/(%GM+%WM); %BrainWM = 

100*%WM/(%GM+%WM).  After controlling for the %CSF mathematically, 

%BrainGM remained decreased, and %BrainWM remained elevated, in the 3wPP group. 

 
Table II.1.  Water Quantified Brain Metabolites (Mean ± Standard Deviation) and Voxel 
Segmentation in the Medial Prefrontal Cortex at 3 weeks Postpartum (3wPP), Compared 
to the Follicular Phase of the Menstrual Cycle (FP) Measured Using Magnetic Resonance 
Spectroscopy 
	  
Metabolite 3wPP (n=26) FP (n=13) t-statistic 

(df = 37) 
p-value 

Glutamate (Glu) 7.09 ± 1.63 8.98 ± 1.24 3.39  < 0.001 
N-acetyl-
aspartate (NAA) 

8.95 ± 1.34 10.07 ± 1.31 2.48 0.02 

Creatine 10.06 ± 2.48 10.11 ± 2.25 0.06 0.95 
Choline 1.77 ± 0.35 1.70 ± 0.22 0.61 0.55 
Glu/NAA Ratio 0.79 ± 0.15 0.90 ± 0.10 2.22 0.03 
% Grey Matter 51.85 ± 8.44 62.82 ± 5.40 4.26 <0.001 
% White Matter 30.25 ± 5.77 25.44 ± 4.44 2.99 <0.001 
% Cerebrospinal 
Fluid 

17.90 ± 6.43 11.31 ± 5.27 2.63 0.01 

% Brain Grey 
Matter 

62.95 ± 7.58 71.18 ± 4.74 3.57 <0.001 

% Brain White 
Matter 

37.05 ± 7.58 28.82 ± 4.74 3.57 <0.001 
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Figure II.4.  Glutamate/N-acetylaspartate ratios (Glu/NAA) in the Medial Prefrontal 
Cortex of Euthymic Women in the Early Postpartum (3wPP n = 26) and the Follicular 
Phase of the Menstrual Cycle (FP n = 13).  Decreased Glu/NAA was observed in 3wPP 
compared to FP.	  

 

A linear regression model was applied to water-quantified Glu data, and to the 

Glu/NAA ratio, using age, study group, and %GM as possible independent variables, and 

again using age, study group, and %BrainGM as independent variables (Table II.2).  

Postpartum status was the only variable with a significant effect in all models.	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



 

 59	  

Table II.2. Linear Regression of Water-Quantified Glu and Glu/NAA Ratios in the MPFC 
Using Study Group, Age, and Percentage of Grey Matter as Potential Independent 
Variables, and Using Study Group, Age, and Percentage Brain Grey Matter as 
Independent Variables 
 
   Significance (p-value) 

Dependent Variable = Water-Quantified Glutamate 
Model (Study Group + Age + % Grey Matter) <0.01 
 Independent Variables  
  Study Group  <0.001 
  Age 0.58 
  % Grey Matter 0.14 
    
Model (Study Group + Age + % Brain Grey Matter) <0.001 
 Independent Variables  
  Study Group <0.001 
  Age 0.69 
  % Brain Grey Matter 0.38 
    

Dependent Variable = Glu/NAA Ratio 
Model (Study Group + Age + % Grey Matter) 0.01 
 Independent Variables  
  Study Group <0.001 
  Age 0.67 
  % Grey Matter 0.02 
    
Model (Study Group + Age + %Brain Grey Matter)  
 Independent Variables <0.001 
  Study Group 0.01 
  Age 0.51 
  % Brain Grey Matter 0.22 
    
 

 

II.4 Discussion 

The results of our study indicate that levels of Glu in the MPFC are lower in 

women in the postpartum compared with follicular phase controls.  This is consistent 

with previous observations of lower Glu levels in the MPFC women in the late luteal 

phase of the menstrual cycle when compared to those in the follicular phase (Batra et al, 

2008).  Fluctuations in circulating levels of ovarian hormones in the early postpartum are 
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analogous to, but are more pronounced than, fluctuations seen in the late luteal phase of 

the menstrual cycle.  It may be that declining levels of estrogen, progesterone, and 

derived NAS are influencing the function of the glutamatergic system at these times.  

Metabolites of progesterone, specifically pregnenolone and pregnenolone sulfate, are 

known to have activity as neuromodulators of the glutamatergic system (Rupprecht et al, 

1999; Gibbs et al, 2006).  

Multiple observations of glutamatergic dysfunction in animal models and humans 

provide compelling evidence for a role of Glu in the pathophysiology of depression 

(Mitchell and Baker, 2010).  Rapid antidepressant effects occur following administration 

of intravenous ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, may 

lead to the development of rapid acting antidepressants (Zarate et al, 2006).  However, a 

recent review article outlines numerous MRS studies which have reported decreases in 

Glu levels in various brain regions in depression (Yüksel and Öngür, 2010).  Therefore, 

the relationship of the antagonistic activity of ketamine at the NMDA receptor to 

antidepressant effects seems counterintuitive.  Two separate mechanisms may underpin 

this observed antidepressant effect.  First, administration of ketamine results in an 

increase in release of Glu into the synapse (Deakin et al, 2008).  Secondly, a recent study 

demonstrated that pre-treatment with NBQX, an alpha-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid (AMPA) receptor antagonist, blocked the 

antidepressant action of intravenous ketamine in rats (Maeng et al, 2008).  It has been 

suggested that increased AMPA-NMDA receptor throughput is a necessary for the 

antidepressant effect of ketamine (Maeng and Zarate, 2007).  Phosphorylation of the 

GluR1 subunit of the AMPA receptor is significantly reduced following the 
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administration of ketamine, sensitizing the AMPA receptor in the presence of Glu 

(Palmer et al, 2005).  Increased release of Glu into the synapse and increased sensitivity 

of the AMPA receptor result in increased glutamatergic neurotransmission with ketamine 

infusion, and may contribute to antidepressant effects.  Therefore, decreased Glu levels in 

the MPFC in the postpartum may contribute to the onset of depressive symptoms.  

The development of PPD may result from underlying vulnerability to physiologic 

alterations in ovarian hormones, NAS, and resultant changes in neurotransmitter function.  

A protocol of withdrawal from supraphysiologic doses of estrogen and progesterone, 

meant to simulate the postpartum, induces depressive-like behaviour and alters the 

expression of a number of genes involved neuronal signalling in rats (Suda et al, 2008).  

In women with a history of PPD, administration of exogenous ovarian hormones 

followed by abrupt withdrawal can precipitate depressive symptoms (Bloch et al, 2000).  

 This study has several methodological strengths.  The spectroscopic data was 

collected using a 3T magnet and STEAM sequencing to allow for the resolution of the 

Glu peak from that of Gln.  At lower field strengths, there is a higher signal to noise ratio, 

and separation of Glu and Gln signals is not possible.  Since Glu and Gln levels vary 

independently, interpretation of data obtained at lower field strengths is limited, leading 

many studies to report the combined peak of ‘Glutamix’.  Secondly, segmentation within 

the voxel was measured an analyzed.  As both Glu and NAA are primarily localized in 

neuronal tissue, fluctuations in the voxel content of either component may result in 

erroneous interpretation of metabolite concentrations.  Differences in %GM and 

%BrainGM were observed in between groups in this study.  However, these did not 

appear to significantly contribute to reductions in Glu in our sample, as demonstrated by 



 

 62	  

comparing Glu/NAA ratios and by using a linear regression model.  Finally, the 

exclusion of current psychiatric conditions in this study limited potential confounding of 

Glu dysregulation associated with a number of neuropsychiatric illnesses (Belsham, 

2001; Javitt, 2004).  

 While the data show a significant difference in water-quantified Glu levels in the 

MPFC between groups, it is not possible using our current study protocol to localize the 

Glu within the voxel to either neurons or glial cells.  It also does not give a measure of 

Glu metabolism or Glu-Gln cycling, which is a measure of synaptic glutamatergic 

activity (Shen et al, 1999).  It is also possible that differences in measured Glu between 

groups reflects a difference in the intracellular environment in which it resides. The Glu 

signal is acquired using a long TE time, and there is significant weighting of metabolite 

measured from T2 relaxation.  The rate of T2 relaxation is related to the “free” motion of 

metabolites, and any changes in the environment of the compartment in which the Glu 

resides could affect T2 and affect the MRS measurement as a result (Hanstock et al, 

2002).	  

One limitation of this study is its cross-sectional nature.  Ideally, a group of 

women could be followed from pre-pregnancy to the postpartum with serial 

measurements of Glu made at various points in the reproductive cycle. 	  

Physiological fluctuations in brain metabolites in the postpartum, and their 

relationship to the development of neurobehavioral symptoms, is poorly understood.  To 

date, there have been very few investigations of brain function using neuroimaging in the 

postpartum.  Decreased levels of γ-aminobutyric acid (GABA) have been observed with 

1H-MRS in the occipital cortex of a sample of women in the postpartum compared to 
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follicular phase healthy controls, but differences were found between women with PPD 

and women without (Epperson et al, 2006).  A recent investigation using positron 

emission tomography (PET) demonstrated elevated density of monoamine oxidase A 

(MAO-A) in various brain regions in the early postpartum in euthymic subjects (Sacher 

et al, 2010).  The authors hypothesize that this change in MAO-A density occurs as a 

result of changes in estrogen and progesterone levels, and is a potential contributor to the 

increased risk of mood disorders in the postpartum as the activity of this enzyme is to 

catabolize neurotransmitters such as serotonin, norepinephrine, and dopamine.  Our 

investigation is the first 1H-MRS study examining brain Glu levels in the early 

postpartum, a time when women may be at risk of developing PPD due to rapid 

fluctuations in ovarian hormone and NAS levels. 

In summary, our data indicate decreased levels of Glu in the MPFC 3 weeks 

following delivery compared to during the follicular phase of the menstrual cycle.  Lower 

MPFC Glu levels may contribute to the increased vulnerability towards depression 

occurring in the early postpartum. 
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III.1 Introduction 

 Epidemiological studies have shown that postpartum depression (PPD) is 

common, affecting up to 15% of women (Gaynes et al, 2005), with a recurrence rate of 

30% to 50% (Schaper et al, 1994; Wisner et al, 2006).  Recent expert opinions suggest 

than a major depressive episode (MDE) with an onset within 3 months of delivery should 

define PPD (Elliot, 2000; Cox, 2004).  However, the etiologic contributors to the 

development of PPD may vary based on the time of onset.  Indeed, recent studies have 

suggested that risk factors for early onset PPD (6-18 weeks after delivery) differ from 

those associated with onset later (Bloch et al, 2006). A history of prior MDE, PPD, or 

premenstrual dysphoric disorder (PMDD) are all risk factors for early-onset PPD (McGill 

et al, 1995; Sugawara et al, 1997; Robertson et al, 2004).   

The menstrual cycle, pregnancy, and the postpartum are associated with large 

fluctuations of ovarian hormones and their neuroactive metabolites (neuroactive steroids).  

Female reproductive hormones gradually rise after ovulation, followed by sudden 

decreases in the late luteal phase.  Similarly, increases in ovarian hormones and 

neuroactive steroids in pregnancy are followed by an abrupt withdrawal after delivery.  

Although the pattern of hormonal fluctuations is similar to that at the end of the 

menstrual cycle, the amplitude of these changes are greater in the postpartum (Bloch et 

al, 2003).  Estradiol levels rise to 50 times the highest menstrual cycle levels by the third 

trimester of pregnancy.  These levels return to early follicular phase levels by postpartum 

day 3.  Plasma progesterone levels increase to 10 times the highest levels seen during the
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menstrual cycle by the third trimester of pregnancy and fall to follicular phase levels by 

postpartum day 3 to 7.  Plasma levels of neuroactive steroids remain altered from non-

pregnant levels for several weeks postpartum (Pearson Murphy et al, 2001).  

Investigations have failed to conclusively associate alterations in plasma levels of female 

sex hormones with mood disturbances in pregnancy and the postpartum (Nappi et al, 

2001; Bloch et al, 2000).  In one study (Bloch et al, 2000), women with a history of PPD 

were more likely than controls to develop symptoms of depression after an 8-week 

administration and abrupt withdrawal of supraphysiologic doses of estrogen and 

progesterone, meant to simulate pregnancy and the ensuing postpartum.  This suggests 

that the risk for early onset PPD is associated with the normal fluctuations in ovarian 

hormones occurring during the early postpartum. 

Glutamate (Glu), the most abundant excitatory neurotransmitter in the mammalian 

brain, has become the major target of interest in research into the pathophysiology of 

mood disorders (Paul and Skolnick, 2003; Sanacora et al, 2003).  Glutamate is primarily 

localized within grey matter (GM).  Measurements of Glu in vivo can be accomplished 

using proton magnetic resonance spectroscopy (1H-MRS).  Because of the overlap in the 

spectral peak of Glu and glutamine (Gln), its precursor/metabolite, previous studies have 

reported the combined peak as ‘glutamix’ (Glx).  A recent review article reports a 

number of MRS investigations that have demonstrated alterations in Glx levels in various 

regions in the brains of depressed individuals (Yldiz-Yesiloglu, 2006).  Successful 

treatment of depression reverse deficits in Glx when using electroconvulsive therapy 

(Michael et al, 2003a; Michael et al, 2003b) or therapeutic sleep deprivation (Murck et 

al, 2009). Recent advances in MRS technology, including the use of more powerful 
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magnets and specific data acquisiton techniques, have allowed for better resolution of the 

Glu peak.  

The medial prefrontal cortex (MPFC) is a brain region implicated in sadness in 

both healthy and depressed individuals (George et al, 1995; Beauregard et al, 1998).  

Decreases in Glx levels (Hasler et al, 2007) and Glu levels (Merkl et al, 2011) have been 

observed in this brain region in patients with MDE.  We have also demonstrated 

decreases in MPFC Glu concentrations in women suffering from PPD (Burgess et al, 

2009).  Additionally, fluctuations in female hormones affect the activity of the MPFC, 

making this brain area of further interest in the context of the dramatic changes in female 

hormones occurring during the postpartum.  Positron emission tomography studies show 

activation of the MPFC as a result of pharmacological manipulation of female hormones 

(Bermann et al, 1997) as well as the natural fluctuations that occur during the menstrual 

cycle (Reiman et al, 1996).  Furthermore, we have shown, using 1H-MRS, that the 

fluctuations of female hormones naturally occurring during the menstrual cycle induce a 

decrease in Glu levels in the MPFC from the follicular phase to the luteal phase (Batra et 

al, 2008).       

Brain Glu levels of euthymic women in the postpartum have never been 

investigated.  This study aims to measure Glu levels in the MPFC during the early 

postpartum in women with increased risk for the development of early-onset PPD.  We 

hypothesize that levels of Glu in the MPFC will be reduced 3 weeks after delivery in 

euthymic women with a history of MDE, PPD or PMDD (HCPHy), compared to 

euthymic women with no such history (HC). 
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III.2  Materials and Methods 

III.2.1 Subjects 

 Advertisements in a local maternity-related periodical, posters, and collaboration 

with obstetrical and postpartum wards at local health care institutions were used to recruit 

subjects in accordance with the guidelines of the Health Research Ethics Board of the 

University of Alberta.  After a complete description of the study was provided, written 

informed consent was obtained from all subjects.  Participants were compensated for 

their time.  

 Eligible participants were women aged 18-40 years, physically healthy, and not 

taking any medications, psychotropic drugs, or herbal products in the 3 months prior to 

entering the study or at the time of inclusion.  Women were included only if they did not 

currently meet any Axis I DSM-IV-TR (American Psychiatric Association, 2000) 

diagnosis including MDE.  Based on the association with PPD, women in the at-risk 

group (HCPHy) were required to have a history of MDE, PPD or PMDD.  Exclusion 

criteria for both groups included: a lifetime history of psychotic disorder, bipolar 

disorder, eating disorder, substance dependence, or significant personality disorder; any 

medical illness including brain injury, endocrine disorders, or neurological disorders; a 

multiple pregnancy; and contraindications for undergoing magnetic resonance imaging 

(MRI).  Additionally, participants were eligible only if they did not use any street or 

recreational drugs in the previous 6 months or during the study, or currently use any form 

of hormonal contraception.  One research subject (HC) was a smoker (2 cigarettes/day), 

and none of the women consumed alcohol during pregnancy or the postpartum.   
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Recruitment resulted in 26 individuals in the HC group and 12 in the HCPHy.  Of 

the women in the HCPHy group, 2 had PPD with a previous pregnancy but no other 

history of MDE, 1 woman had a history of PMDD, 6 women had previous MDE without 

PPD, and 3 women a history of both MDE and PPD.   

Participants were administered the Structured Clinical Interview for DSM-IV 

Axis I Disorders to screen for current or lifetime Axis I psychiatric disorders, and the 

Edinburgh Postnatal Depression Scale (EPDS).  The EPDS, a 10-item self-report 

questionnaire, is the most common screening tool used in the puerperal period (Clay and 

Seehusen, 2004) and does not take into account changes in weight or sleep that may be 

expected during this time (Cox et al, 1987).   

Women underwent MRS scanning 3 weeks after delivery.  Participants were 

instructed not to use nicotine or caffeine for at least 4 hours prior to the MRS session.  

Follow-up in person or over the phone was continued until at least 7 weeks postpartum in 

order to ensure that these euthymic women did not develop PPD during the early 

postpartum. 

 

III.2.2 Magnetic Resonance Spectroscopy 

All MRS imaging occurred at the Peter S. Allen MR Research Centre, University 

of Alberta, Edmonton, Canada, using a 3 Tesla (3T) magnet (Magnex Scientific, 

Concord, California).  The magnet was equipped with a spectrometer (Surrey Medical 

Imaging System, Surrey, United Kingdom) and a quadrature birdcage resonator.  Figure 

III.1 shows the placement of the MPFC voxel, measuring 2 x 3 x 3 cm with the narrowest 

dimension perpendicular to the midline.  The posterior edge contacted the rostrum of the 
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corpus callosum in the mid-sagittal plane, with one inferior corner touching the anterior 

commissure-posterior commisure line.  The voxel was rotated such that the anterior edge 

was equidistant to the brain surface. 

 

 

 

Figure III.1  Medial Prefrontal Cortex Voxel. Shown in a) mid-sagittal section with the 
posterior inferior corner contacting the anterior commissure- posterior commissure line, 
b) transverse, and c) coronal views.  

 

Shimming was achieved with an in-house auto-shimming routing and FASTMAP 

(Gruetter, 1993).  Experimental timings calculated prior to acquisition and data analysis 

were performed using a MATLAB (The MathWorks, Inc., Natick, Massachusetts) 
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environment.  A stimulated echo acquisition mode (STEAM) technique at an echo time 

(TE) of 240 msec, a mixing time (TM) of 27 msec and a repetition time (TR) of 3 sec 

maximized the contrast of Glu at 2.35 ppm against background noise.  This technique 

also reduced signal contamination by Gln (Thompson and Allen, 2001), and the long TE 

resulted in minimal contamination from macromolecules (Hwang et al, 1996).  Spectra 

obtained were the sum of 512 averages, acquired in 16 blocks of 32.  Each of the 

subspectra was examined for artifact due to movement or hardware fluctuations prior to 

final summation. 

The water signal was measured at several TE values (TE = 20, 40, 60, 80, 100, 

150, 200, 250, 300, 350, 400, 450, 500, 700, 900, 1100, 1300, and 1500 msec; TR = 

12000 msec; 2 averages per TE), and these data were fitted to a non-negative-least-

squares algorithm.  The result of this analysis yielded the T2 components present in the 

decay and their relative proportions, and permitted an estimation of the water peak at a 

theoretical TE = 0 msec. 

Segmentation data were obtained to estimate composition of the voxel in terms of 

grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF).  A double-

inversion recovery PRESS 1-D projection method was used (Hanstock & Allen, 2000). 

The PRESS selected volume was registered precisely to the same selected region as the 

STEAM acquisition. Two hyperbolic secant inversion pulses (110 ms length, bandwidth 

= 150 Hz) were added immediately prior to the PRESS pulse sequence.  The delay time 

between the two inversion pulses and between the last inversion pulse and the PRESS 

sequence were optimized to suppress two components, which included CSF and either 

GM or WM. Ten GM and ten WM 1D-projections were acquired, TR = 9 s, TE = 120 
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ms, 2 averages with 5kHz sample frequency digitized over 128 data points.  An 

additional ten CSF 1D-projections were acquired with no inversion pulses and with a TE 

of 500 ms.  At this long TE the signal from CSF was maintained, while contamination 

from GM and WM was eliminated.  All computations necessary for calculating 

experimental timings prior to acquisition, and for the data analysis, were performed using 

the MATLAB program environment. 

 Levels of in vivo brain metabolites were determined using the LCModel analysis 

program (version 6.0-1) (Provencher, 1993).  Metabolite spectra were derived for N-

acetylaspartate (NAA), creatine (Cr), choline (Cho), and Glu.  A sample spectrum is 

shown in Figure III.2. Segmentation data were also obtained to determine voxel 

composition of GM, white matter (WM), and cerebrospinal fluid (CSF).  

Quantification of neurochemicals was accomplished using: 1) the metabolite 

spectra from the LCModel analysis, 2) estimated water concentration in the voxel 

determined from segmentation for grey matter, white matter, and cerebrospinal 

compartment sizes; 3) the estimated water peak (at TE = 0 msec) used as the reference 

MR signal standard.  

 

III.2.3 Statistical Analysis 

 All results are reported as mean ± standard deviation.  Unpaired t-tests were used 

to analyse differences between HC and HCPHy groups on age, score on EPDS, tissue 

composition, and water-quantified neurochemicals measured using 1H-MRS.  Statistical 

significance was set at p < 0.05 (two-tailed). The Pearson correlation coefficient was used 

to analyse relationships between EPDS scores and neurochemical concentrations. 
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Figure III.2  Sample STEAM Localized MRS Data. Acquired from the medial prefrontal 
cortex and LCModel analysis fit. Sequence timings were optimized for recovering the 
signal from glutamate (TE = 240 msec; TM = 27 msec; TR = 3 sec). 
 

 

III.3 Results 

There were no significant differences between HC and HCPHy in age (29.08 ± 

4.70 years vs. 30.25 ± 4.00 years; t(36) = 0.75, p = 0.46).  

None of the women in either group met DSM-IV-TR criteria for an MDE at initial 

interview or during the follow-up period.  Scores on the EPDS did not significantly vary 

between HC and HCPHy (3.00 ± 2.24 vs. 4.58 ± 2.78; t(36) = 1.87, p = 0.07).  No 

significant correlations existed between scores on the EPDS and water-quantified Glu in 
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either group (HC: r = 0.06, p = 0.79; HCPHy: r = -0.09, p = 0.78), or the study population 

as a whole (r = -0.10, p = 0.53). 

Water-quantified Glu was decreased in the MPFC of HCPHy compared to HC 

(5.73 ± 0.86 vs. 7.09 ± 1.63, t(36) = 2.58, p = 0.01).  Figure III.3 shows a scatter-plot of 

the MPCF Glu levels in both groups.   

No differences between groups were detected in levels of other brain metabolites, 

as shown in Table III.1.  Decreased white matter (%WM) was measured in the HCPHy 

group compared to the HC group (25.79 ± 7.05 vs. 30.55 ± 2.57, t(36) = 2.10, p = 0.04). 

 

 

Figure III.3  Water-Quantified Glutamate (Glu) in the Medial Prefrontal Cortex of 
Euthymic Women with a History of PPD, PMDD or MDE in Pregnancy (HCPHy n=12) 
and Healthy Controls (HC n=26) at 3 Weeks Postpartum.  Lower levels of Glu were 
measured in HCPHy (Mean = 5.73 ± 0.86) compared to HC (Mean = 7.09 ± 1.63) (p = 
0.01). 
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Table III.1  Water-Quantified Brain Metabolites and Segmentation Data (Mean ± 
Standard Deviation) from the Medial Prefrontal Cortex 3 weeks Postpartum Measured 
Using Magnetic Resonance Spectroscopy 
 
Metabolite HC(n=26) HCPHy (n=16) t-Statistic 

(df = 36) 
p-value 

Glutamate 7.09 ± 1.63 5.73 ± 0.86 2.71 0.01 
N-acetyl-
aspartate 

8.95 ± 1.34 8.54 ± 1.00 0.78 0.35 

Creatine 10.06 ± 2.48 8.88 ± 1.84 1.47 0.15 
Choline 1.77 ± 0.35 1.70 ± 0.26 0.62 0.54 
% Grey Matter 51.85 ± 8.44 56.62 ± 4.22 1.85 0.07 
% White Matter 30.25 ± 5.77 25.70 ± 7.05 2.10 0.04 
% Cerebrospinal 
Fluid 

17.90 ± 6.43 17.68 ± 8.13 0.09 0.93 

% Brain Grey 
Matter1 

62.95 ± 7.58 69.17 ± 6.10 2.49 0.02 

% Brain White 
Matter2 

37.05 ± 7.58 30.83 ± 6.10 2.49 0.02 

1Calculated as % Brain Grey Matter = 100 * % Grey Matter / (% Grey Matter + % White Matter) 
2Calculated as % Brain White Matter = 100 * % White Matter / (% Grey Matter + % White Matter) 
 

 

III.4 Discussion 

 To the best of our knowledge, this investigation is the first to examine brain 

neurochemical levels in the MPFC in the early postpartum in euthymic women at risk for 

PPD.  

Our study indicates that levels of Glu in the MPFC are lower in women at high 

risk for early onset PPD (history of PPD, PMDD, or MDE) 3 weeks after giving birth 

than in healthy controls.  This is consistent with previous observations of lower Glu 

levels in the MPFC of patients with MDE (Hasler et al, 2007), and in women suffering 

from PPD (Burgess et al, 2009).  This supports speculation that lower MPFC Glu levels 

in HCPHy women at 3 weeks postpartum represent a biological risk factor for PPD that 

emerges because of normal postpartum hormonal fluctuations.  The exact mechanism by 

which these fluctuations impact Glu levels is unclear; however, exogenous administration 
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and withdrawal of hormones meant to simulate pregnancy and the postpartum can 

produce depressive symptoms in sensitive populations (Bloch et al, 2000), and 

neuroactive steroids are known to modulate the activity of Glu receptors (Rupprecht et al, 

1999; Gibbs et al, 2006). 

We need to consider the possibility that decreases in MPFC Glu levels in HCPHy 

women are a result of past psychiatric disorders, particularly previous MDE, rather than 

representing a risk factor for PPD occurring during the postpartum.  However, this 

possibility is not supported by previous MRS studies that show alterations in Glu + Gln 

levels associated with MDE resolve following clinical treatment to levels similar to those 

seen in controls (Yldiz-Yesiloglu, 2006; Michael et al, 2003a and 2003b; Murck et al, 

2009).  Recently, an MRS investigation comparing levels of Glu + Gln in the anterior 

cingulate cortex of unmedicated individuals with a history of MDE to that of controls and 

found no significant differences between groups (Taylor et al, 2009).  This again suggests 

that lower Glu levels do not persist after the resolution of a MDE. 

This study has several methodological strengths.  First, spectroscopic data was 

collected using a 3-T magnet and STEAM sequencing to allow for the resolution of the 

Glu peak from that of Gln.  At lower field strengths, there is a higher signal to noise ratio, 

and separation of Glu and Gln signals is not possible.  Since Glu and Gln levels vary 

independently, interpretation of data obtained at lower field strengths is limited.  Second, 

brain metabolite concentrations were normalized to water, which prevents the difficulties 

associated with interpreting alterations of brain metabolites referenced to other 

metabolites.  Third, the exclusion of current psychiatric conditions in this study limited 
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potential confounding of Glu dysregulation associated with a number of neuropsychiatric 

illnesses (Belsham, 2001; Javitt, 2004).  

There are also some limitations to our study.  First, the sample size, although 

comparable with that of many other 1H-MRS studies, is small.  The small sample limits 

the ability to examine differences that may be present between subgroups (history of PPD 

vs. history of PMDD vs. history of MDE).  While women did not meet criteria for MDE 

during the study period or follow-up, at the time of scanning there was a non-significant 

trend towards higher EPDS scores in the HCPHy group.  However, these EPDS scores 

were well below the threshold score for this screening tool.  A statistically significant 

correlation between scores on the EPDS and measured Glu was not found in this 

population, but a larger sample may have allowed us to better explore such a relationship 

between changes in neurochemical levels and the severity of subsyndromal symptoms of 

an PPD.  Second, the extent to which a decrease in Glu measured on 1H-MRS relates to 

changes in glutamatergic neurotransmission and effects at cellular level are unknown.  

Decreases in Glu may be neuronal or glial, and 1H-MRS is unable to make that 

distinction.  However, as NAA is considered to be a marker of neuronal integrity (Tallan, 

1956; Rudkin and Arnold, 1999), and its levels did not vary between groups, we do not 

suspect that neuronal loss is responsible for the observed decreases in Glu.  

Measurements of Glu levels using 1H-MRS do not give an indication of the rate of Glu-

Gln cycling, a measure of synaptic glutamatergic activity (Shen et al, 1999).  The 

alterations in Glu levels may therefore reflect a slowing of its metabolism, a reduction in 

intracellular accumulation, or both.  Third, it is possible that the measured decrease in 

Glu actually reflects a change in the intracellular environment in which it resides.  The 
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Glu signal is acquired using a long TE time, and there is significant weighting of 

metabolite measured from T2 relaxation.  The rate of T2 relaxation is related to the “free” 

motion of metabolites, and any changes in the environment of the compartment in which 

the Glu resides could affect T2 and affect the MRS measurement as a result (Hanstock et 

al, 2002). 

In our sample, none of the women in either group met criteria for an MDE during 

the early postpartum.  Therefore, it may be that the decrease seen in Glu in the MPFC is a 

marker of an underlying vulnerability to physiologic changes occurring in the 

postpartum, such as changes in ovarian hormones and neuroactive steroids, regardless of 

the future development of clinical depression.  Alternatively, it is possible that changes in 

Glu are mood-state dependant, with decreases preceding the appearance of the depressive 

phenotype.  In this context, a threshold-effect may occur in the postpartum, with the 

development of PPD occurring only when decreases in Glu levels are of sufficient 

magnitude.  Unfortunately, our current design does not allow for these determinations, 

and longitudinal observations are required to examine the temporal relationship between 

decreases in Glu in the MPFC during the postpartum and the onset of depressive 

symptoms. 

The finding of decreased %WM in the early postpartum was unexpected.  While 

this may be a statistical anomaly, a recent meta-analysis of volumetric changes in brain 

tissue associated with depression showed significant decreases in total frontal WM+GM, 

and non-significant reductions in frontal WM and total volume of the anterior cingulate 

(Kempton et al, 2011).  Women in the HCPHy group all had a history of a previous 
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depressive episode, either MDE, PPD, or PMDD, and it may be that a change in %WM in 

our voxel is a result of this prior mood disturbance. 

In summary, our data indicate an association between decreased Glu in the MPFC 

3 weeks following delivery and a history of PPD, PMDD, or MDE.  These women are 

known to be at increased risk for developing early-onset PPD.  Physiologic hormonal 

fluctuations occurring after delivery may contribute to this change in biologically 

vulnerable women, and the precise effect of fluctuations in ovarian hormones on Glu 

levels in the postpartum warrants further investigation.  As well, longitudinal studies 

extending through the late pregnancy and the postpartum are needed to observe the 

temporal relationship between alterations in Glu and the development of depressive 

symptoms.   
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IV. General Discussion 

IV.1 Discussion 

 Little is known about the normal physiological changes in brain function that 

occur in the postpartum.  The postpartum remains a time when women are at increased 

risk of developing depression, and our understanding of the pathophysiology of this 

condition remains limited. 

In the studies reported in this thesis, decreases in MPFC Glu levels were observed 

in the early postpartum when compared to the FP levels.  Further, this decrease was 

observed to a greater extent in the early postpartum in individuals with risk factors for 

early-onset PPD when compared to women with no such risk.  These findings are 

consistent with our hypotheses.  Taken together, they suggest that the early postpartum, 

which is known to be a time when women are at increased risk for developing depression 

and also a time when significant hormonal fluctuations occur, is also associated with 

changes in central Glu activity.  While it is known that some NAS have effects on the 

glutamatergic system, particularly at the NMDA receptor, it remains to be proven that 

physiologic changes in hormone and NAS levels are the cause of Glu fluctuations in the 

postpartum.  Supporting this theory is the observation that fluctuations in estrogen and 

progesterone during the menstrual cycle are also associated with decreases in MPFC Glu 

(Batra et al, 2008).  However, while all women experience large changes in ovarian 

hormone levels in the postpartum, not all women develop PPD.  The association of 

PMDD with PPD may suggest that some women are more biologically vulnerable to 

developing depressive symptoms associated with hormonal changes during the 

reproductive lifecycle.   



 

 89	  

 Studying MPFC Glu in the postpartum is made more challenging because of 

changes in MPFC voxel composition, particularly decreased %GM, which may influence 

Glu measurements.  Previously, measurements of GM in the MPFC through pregnancy 

and the postpartum have been reported in a cohort of healthy, non-depressed women 

(McEwen et al, 2011).  Compared to FP levels, %GM decreases through pregnancy and 

the early postpartum, with a gradual return to FP levels a number of months following 

delivery.  Therefore, when comparing metabolite levels, such as Glu and NAA, in FP 

controls to postpartum women, voxel composition must be taken into account.  In our 

sample, both normalizing Glu to NAA and the use of a linear regression confirmed that 

the observed change in Glu was not artifactual.  When comparing two groups of women 

at the same time postpartum, reduced %WM was observed in those at risk for PPD.  A 

recent meta-analysis of structural changes depression reported non-significant decrease in 

anterior cingulate volume and in frontal white matter in individuals with a history of 

depression (Kempton et al, 2011).  Women identified as being at increased risk had a 

history of depression, and it may be that the difference in %WM reflected this history.  It 

is worth noting that voxel composition is rarely reported in MRS studies and, particularly 

when women of reproductive age are involved, presents a potential confounding variable. 

Further investigations are required to elucidate the role of Glu in the 

pathophysiology of PPD.  For example, correlation of ovarian hormone levels and levels 

of NAS with MPFC Glu are required.  This may establish a temporal relationship 

between fluctuations in hormone levels and changes in central Glu levels.  Similarly, the 

timing of changes in MPFC Glu need to be correlated with the onset of depressive 

symptoms.  It may be that decreases in Glu predict the onset of depressive symptoms.  
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Interventions could then be targeted at identifying at risk individuals and offering early 

treatment. 

 These studies validate the glutamatergic system as being of interest in the 

development of PPD.  As more is known about the interaction of NAS and Glu in the 

postpartum it may be possible to identify women at risk of developing PPD, or to develop 

specific treatments aimed at these systems. 
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