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To Mom
Beause she couldn’t be here to see it.



Abstract

Many robotic systems are required to navigate or home to learned location using

minimal resources. Autonomous robots are generally limited in computation and

storage resources, imposing significant challenges on algorithm design. Particularly

when only visual data is used, these algorithms need to be robust and efficient. In

addition, independence from a scene model is preferred. Extraction of models and

calibration procedures are time consuming and sensitive to changes in the environ-

ment. Visual homing without a geometric model is studied in mapless or qualitative

visual homing. In this thesis, we adopt a framework based on View-Sequenced

Route Representation (VSRR) and contribute in two areas: Compact representa-

tion of the path and visual homing along a desired route using the representation,

and secondly develop an algorithm which localizes the robot using a novel concept

we call eigensegments. The effectiveness of the system is demonstrated with both

indoor and outdoor environments.
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Chapter 1

Introduction

Autonomous and semi-autonomous robots have a broad range of applications from
planetary space exploration to household cleaning. A common attribute of such
applications is that the robot needs to travel between two previously visited loca-
tions. Visual homing deals with navigating between locations but, faces significant
challenges due to limitations in on board resources, sensing modalities, and robot
actuation.

Mobile robots typically do not have the resources required to perform 3D re-
constructions of an environment. It is possible to construct 3D scene model and
use it for homing; however, it typically requires large computational and storage
resources. It is, therefore, desirable to have mapless qualitative algorithms and con-
trol architectures that are free of 3D models. Sensory input is often corrupted by
measurement noise, outliers and uncertainties in actuation, requiring algorithms ro-
bust, efficient and practical for resource limited setups. Qualitative methods relax
strict constraints of 3D models and makes decisions based on a qualitative measure.

The basic problem this thesis addresses is mapless qualitative visual homing
using a compact path representation. Specifically, visual homing in environments
without obstacles or visual occlusions. A novel visual homing method is developed
using the Gabor-gist descriptor of [45] and the View-Sequence Route Representation
framework of [29].

In Chapter 2 a background of visual homing in robotics is presented. The general
overview of the literature is divided into two main classes of algorithm, namely key-
point and whole image methods. Chapter 3 presents the proposed method, divided
into a training phase in Section 3.1 and replay phase in Section 3.2. The training
phase details how to construct a visual path using the Gabor-gist descriptor. While
the replay phase covers how this visual path representation is used to autonomously
retrace the path. Chapter 4 presents experiments and evaluations, divide experi-
ments into indoor environments in Section 4.3.1 and outdoors in Section 4.3.2.

The contributions of this thesis are: (1) A new compact representation of a path
using the Gabor-gist descriptor. (2) A novel method for representing a segment of
the visual path using Gabor-gist and eigenvector’s or principal components.
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Chapter 2

Background and Literature
Review

2.1 Overview of Visual Homing

This chapter reviews the visual homing literature and formulates the visual homing
problem. Appearance-based homing methods are divided into three main categories:
Keypoint, Machine learning and Whole Image methods. Each category is discussed
using the available homing algorithms to motivate why mapless methods are an
important area of research and the storage problems this thesis addresses.

Section 2.1.3 refers to methods using SIFT, SURF, etc. but only in a qualitative
sense, and not performing a metric reconstruction of the environment. Section 2.1.4
presents methods which use machine learning techniques to form a mapping between
images and heading corrections. These methods do not generally use a sequence of
keyframes to perform the homing task. Finally Section 2.1.5 refers to methods
using whole images as keyframes, comparing these with the current view to derive
a heading correction and localize the robot.

2.1.1 Visual Odometry

Many of today’s robots, such as the Mars rovers [39, 6], perform visual navigation
tasks such as homing using visual odometry. In navigation, traditional odometry is
the use of data from the movement of actuators to estimate change in position over
time.

While useful, traditional odometry techniques suffer from precision problems
because wheels tend to slip and slide on any surface creating a non-uniform dis-
tance traveled compared to the wheel rotations. Visual odometry is the process of
determining equivalent odometry information using sequential images to estimate
the distance traveled and, allows for enhanced navigational accuracy in robots or
vehicles on any surface.

A proven technique, visual odometry typically makes heavy use of local image
features to extract the metric measurement of change in position [39]. An alter-
native is the “direct” or appearance-based visual homing techniques, which seek
to minimize errors directly in sensor space. These methods generally avoid feature
extraction, matching, tracking and the costly 3D reconstruction and estimations.
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Further these methods can be made more compact requiring less storage space than
other methods.

2.1.2 Appearance-based Homing

Appearance-based strategies consist of two procedures. First, a training phase where
images or prominent features of the environment are recorded and stored as tem-
plates. The templates are labeled with certain localization information and/or with
an associated control steering commands. Second, an autonomous navigation stage,
where the robot has to recognize the environment and self-localize in it by matching
the current view with the stored templates. The main problems of appearance-
based strategies are finding an appropriate algorithm to create the environment
representation and defining the view matching criteria.

Deviations between the route in the training phase and the route navigated in the
replay phase yield different sets of images, and thus differences in the perception of
the environment. Contributions have focused mainly on improving the way images
are recorded and then matched in the replay phase. There are two main approaches
for environment perception and recognition without using a map:

1. Model-based Approaches. These approaches use pre-defined object models to
recognize features in complicated environments and self-localize.

2. View-based Approaches. The self-localization is performed using image match-
ing algorithms.

In this thesis we concentrate on the view-based approach. Matsumoto’s work [29]
presents a model which is capable of both localization and steering angle determi-
nation simultaneously using standard pixel images without the need for predefined
models. In his work [29] Matsumoto proposed a visual representation of the route,
the View-Sequenced Route Representation (VSRR). The VSRR is a non-metrical
model of the route, which contains a sequence of front view images along a route
memorized in a training run creating a visual path. In the autonomous run the two
types of both localization and steering angle are achieved in real-time by match-
ing between current view It and the memorized view sequence using a correlation
technique.

A visual path is defined by arranging keyframes Ii in a sequence, termed the
view sequence. We acquire the view sequence in a training run, thus dividing the
path into segments, each with a keyframe Ii. The entire path can be seen as a
sequence of segments:

path = {I0, ...IN−1} (2.1)

where I denotes the keyframe is an intensity image and i the index within the view
sequence, and N is the number of segments in the path. Building a view sequence
is done through a simple algorithm.

1. i=0

2. Save the current view It as keyframe Ii where i is the current keyframe.
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3. Move the robot forward until current view It changes to a certain degree with
respect to the latest keyframe Ii.

4. i = i+ 1.

5. goto 1.

. . .

. . .

Figure 2.1: The construction of the visual path from a stream of images. Keyframes
are selected by comparing the current image It with the latest keyframe Ii.

During the autonomous replay phase It is compared to the current keyframe
Ii and the calculation of similarity is done. In [29] this process was achieved by
template matching, using the central rectangle portion of one image as the tem-
plate. As a result of this matching process, the horizontal displacement value of the
template is acquired and used as a steering correction signal. Matsumoto’s work
demonstrates the ability to retrace a route using images and odometry information.
Specifically it is shown that a view sequence consisting of images has the necessary
information for localization, and steering angle determination.

Matsumoto presented the view-sequence as a sequence of images. A more gen-
eral framework is to view the path as a sequence of segment’s. A segment represents
a portion of the path rather than a single goal location. Segments can be repre-
sented as single views or keyframes, but also by a set of keypoint’s, image’s, image
descriptor’s or any description that characterizes the images captured within the
segment.

2.1.3 Keypoint Methods

Keypoints while prone to matching errors are proven to be effective at recognizing
objects. Treating a scene as an object to be recognized some authors propose a sim-
ple approach for visual homing. These algorithms like [29] are qualitative in nature,
requiring no explicit map of the environment, nor image Jacobian, homography, or
fundamental matrix. Keypoint image coordinates are compared with those obtained
during the training phase in order to determine heading corrections. These systems
require single off-the-shelf forward-looking cameras with no calibrations. Keypoints
also provide some invariance to rotation and partial scene occlusion giving these
methods the ability to operate both indoors and outdoors as well as on flat, slanted,
and rough terrain with dynamic occluding objects.

As opposed to whole images keypoint methods [5, 3, 40] make use of features
such as SIFT[26], SURF[4], etc. Keypoints are defined in terms of a neighborhood
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around a point of interest, a procedure commonly referred to as feature extraction.
Keypoint detection produces local decisions as to whether there is a feature at a given
image point. A descriptor is a description of an image pattern around a keypoint.
It is usually associated with a change of an image property or several properties
simultaneously. Image properties commonly considered are intensity, color, and
texture. The descriptors can then be used for various applications, but here we are
concerned with matching and aligning images.

Features have proven to be a powerful tool in mapless homing [5, 3, 40]. Key-
points must be extracted in the image stream and matched with a keyframe to design
the control law. Robust extraction and real-time tracking or matching of these visual
cues is a nontrivial task and a bottleneck of a real-time system [29, 28, 21, 38, 5].

2.1.4 Machine Learning Methods

An alternate mapless approach is to learn the mapping from images to turning
commands based on their classification [1]. Ackerman introduces a method for
rapidly classifying visual scenes globally along a small number of navigationally
relevant dimensions: depth of scene, presence of obstacles, path versus non-path, and
orientation of path. They show that the algorithm reliably classifies scenes in terms
of these high-level features, based on globally localized spectral analysis similar to
early-stage biological vision. They demonstrate successful training and subsequent
autonomous path following for two different outdoor environments. However, these
methods rely on an unstable learning algorithms.

Another approach that has received considerable attention [11, 48, 50, 42, 23,
46, 18] is to store an example image with each specific location of interest. At run
time, the image database is searched to find the image that most closely resembles
the current one (or, alternatively, the current image is projected onto a manifold
learned from the database [24, 33]). Such approaches require extensive training and
have difficulty providing sufficient spatial resolution to determine actual turning
commands in large environments. Similarly, sensory-motor learning has been used
used to map visual inputs to turning commands, but the resulting algorithms have
been too computationally demanding for real-time performance [13].

Mateus Mendes[31] proposes the visual path be encoded in a data structure other
then a sequence of keyframes. Many authors agree that the source of intelligence
is, to a large extent, the use of a huge memory [17, 22, 2]. It has been proposed
that sequences of events which guide our later behaviour are stored in an associata-
tive memory structure. Inspired by that idea, Mendes [31] controls a robot using
sequences of images stored in a Sparse Distributed Memory a kind of associative
memory based on the properties of high dimensional binary spaces - which theoret-
ically exhibits some human-like properties. J. Hawkins [17] proposes the Memory
Prediction Framework, modeling the brain as continuously making predictions about
the environment. When a prediction is violated, adjustments in the brain’s memo-
ries are made according to the new data. This memory appears to be organized in
a hierarchy, each level responsible for learning only a portion of the overall model.
Kanerva [22] proposed a model to implement this prediction framework, known as
a Sparse Distributed Memory (SDM). It is designed for storing and retrieving large
amounts of information without focusing on the accuracy of the information. It
uses input patterns as memory addresses, where information is retrieved based on
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similarities between these addresses and thus patterns.
Localization is calculated based on the similarity of two views: A keyframe Ii

and the current view It. Whichever view is returned by the SDM is essentially the
keyframe used for heading correction. To calculate the heading correction error a
window search process is used. A search window selected from the center of the
returned keyframe image is matched against an equivalently sized window in the
current view, calculating the horizontal displacement that results. The robot shows
good ability to correctly follow most of the sequences learned, with small errors and
immunity to the kidnapped robot problem.

A limitation of this approach is that of sensitivity to image noise and illumination
changes. A furthur drawback is the structure only requires storage of about 0.1
bits per bit, limiting the scalability of the approach. Currently this method shows
promise but requires a large overhead of both computation and storage, computation
in regards to processing of images into the memory structure and storage of pixel
images in that memory, limiting the scalability of this method.

2.1.5 Whole Image Methods

Keypoint’s have benefits, some authors however propose new ways of comparing im-
ages. Matsumoto’s original work [29] uses a cross correlation to measure similarity,
others have proposed new more robust methods. Dame [8] proposes to use entropy,
they show that it is possible to navigate along a visual path without relying on the
extraction, matching or tracking of keypoints. The proposed approach relies directly
on the information contained in the image. Dame shows that it is possible to build
a control law directly from the maximization of the mutual information between a
current image and the current keyframe. Mutual information has been shown to be
robust to illumination variations and occlusions [7, 36]. As a result, the need for the
generally complex task of keypoint extraction and matching is eliminated.

The primary drawback of this approach and other similar methods is the require-
ment of saving pixel images, and the storage requirements this entails. The storage
space requirements are multiplied by the need for a dense sampling of the visual
path. High frequency of keyframe sampling roughly three images/m is required for
Dame’s method [8]. For a route of 100 m 300 images are required to encode the
visual path. If images are on the order of even 320x240 for a 100 m route 14 MB
of images are required, even if the images are compressed.

In this thesis we will demonstrate it is possible to define a control law directly
linked to a similarity maximization while eliminating the need of for saving pixel
images. We show that the visual path can be encoded using a whole image de-
scriptor known as Gabor-gist, reducing the storage requirements to a few hundred
bytes/keyframe.

2.2 Gabor-gist image descriptor

Gist refers to the meaningful information that an observer can identify from just a
glimpse of a scene [35]. The idea of gist is to define what a “scene” is, as opposed
to an “object” or “texture” within a scene. Gist essentially attempts to capture the
spatial arrangement of individual elements. Keypoint feature’s (SIFT, SURF, etc)
are primarily designed to recognize objects within a scene. While keypoint’s have
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been demonstrated as useful for tasks such as homing, we demonstrate that visual
homing can be accomplished by capturing gist of a scene. There exist numerous
methods of extracting the gist of a scene [41, 14, 19, 12, 34, 32, 16, 43, 37, 45, 10,
35, 40]. Here we concentrate on the Gabor-gist method of [44, 45].

When viewing a scene for a short time, humans extract enough visual infor-
mation to accurately recognize its categorical properties (e.g., trees on a mountain
side). Most of the information concerning individual objects and their locations are
overlooked, rather viewing a scene as having it’s own shape, carrying its identity.
Object categories like cars or animals, look alike because they have the same “func-
tion”, Oliva [35] showed that scenes belonging to the same category share a similar
and stable spatial structure (shape) that can be extracted and used to classify a
scene into categories (e.g. Outdoors, Indoors, etc). They show that perceptual
properties exist that can be uncovered using simple computations, and that these
properties can be translated into a meaningful description of the scene shape.

The gist description of a scene is useful beyond scene classification. Torralba
and Oliva expand their gist methodology to the estimation of depth from image
structure. They demonstrate that, by recognizing the properties of the structures
present in the image, they can infer the scale of the scene and, therefore, its absolute
mean depth [44]. They expand their work to place and object recognition [45]. In
both [44, 45] they use a wavelet image decomposition, where each image location is
represented by the output of filters tuned to different orientations and scales.

The representation of an image is given by a collection micro-feature statistics.
Here the collection of micro-features are the responses to a set of Gabor filters hk(x)
convolved with a pixel image I 1.

1Here we only consider gray scale images but the same technique can be applied to RGB channels.
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Figure 2.2: Gabor filters tuned to different scales and orientations. Each row rep-
resents a scale and, each column an orientation.

hk(x) =

(
1

2πσxσy

)
exp

[
−1

2

(
x̃2

σ2x
+
ỹ2

σ2y

)]
exp [2πjWx̃] (2.2a)

x̃ = x cos θ + y sin θ
ỹ = −x sin θ + y cos θ

(2.2b)

Ik(x) =
∑
x′

I(x′)hk(x− x′) (2.3)

vLt = {Ik(x)}k=1,N where N = # of filters (2.4)

mt(x, i) =
∑
x′

∣∣vLt (x′)
∣∣wi(x− x′) (2.5)

where wi(x) is an averaging window.

vGt = mt(x, i), i = 1,M (2.6)

where M is the number of averaging windows, capturing the mean response
value of a Gabor-filter within the window. These mean values capture the spatial
relationships between image regions. The final result vGt is a concatenation of a grid
of averages. (See figure 2.3).

Gabor filters hk (eq 2.2) are interesting due to their connection to biological
vision. Jones et al. have shown that Gabor filters are an accurate approximation
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Figure 2.3: Overview of gist descriptor creation. An input image It is convolved
with a bank of Gabor filters hk. A mean value is extracted from the cells of a grid
placed over each response image Ik. The mean values are concatenated into the
final vector vGt .

of neural response patterns in the mammalian visual cortex [20]. Our understand-
ing of visual information processing in the mammalian cortex has been dominated
by neurons which respond to narrow ranges of stimulus orientation and spatial fre-
quency [20]. The 2D Gabor filters flexibility (ie. continuous nature) may confer
advantages on the system that employs them because the parameters are continu-
ous, a system can be fine-tuned according to the environment, either through early
visual experience [20] or by continual reconfiguration [27]. Gabor representations
have been shown to be optimal in the sense of minimizing the joint two-dimensional
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uncertainty in orientation and frequency [9]. By examining the distributions of 2-D
Gabor coefficients found by a neural network in different image regions, it is possible
to achieve image segmentation on the basis of spectral signature.

Essentially these filters can be considered orientation and scale tunable edge
detectors, the statistics of which, in a given region, are often used to characterize
the underlying texture information [30]. The Gabor-gist image representation has
proven to be effective at both depth estimation [44] and object detection and local-
ization [45]. It has been applied to robotic localization and loop closure problems
[40, 25]. It has yet to be applied to the problem of visual homing, where it is used
to make navigation decisions towards a specific goal. This thesis will show that the
Gabor-gist representation can be applied to the problem of visual homing.
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Chapter 3

Gabor-gist Visual Homing

This chapter introduces the Gabor-gist visual homing method. The proposed
method incorporates Gabor-gist into the general framework of VSRR (View Se-
quence Route Representation). The contributions of this chapter are twofold:

1. A visual path encoding using the Gabor-gist descriptor, segmenting the path
into non-overlapping segments and encoding them using keyframes and eigen-
vectors.

2. A control system that utilizes the path encoding for both heading correction
and localization along the path.

Section 3.1 details the training phase of the system, creation of a path represen-
tation. During this phase keyframes are selected from the image stream. Images
not defined as keyframes are used to create a representation of the segment we term
an eigensegment. In Section 3.2 we present the control system used to perform au-
tonomous navigation. Heading correction in Section 3.2.1 responsible for adjusting
the robots trajectory during homing. Second, present the localization of the robot
along the path using eigensegments.

3.1 Training Phase

Using the VSRR framework established by [3, 15, 5, 8, 17] the robot is driven man-
ually along the desired route processing images into a sequence of non-overlapping
segments. Unlike previous approaches of storing pixel images or keypoints, the
path is encode in segments as a compact Gabor-gist descriptor vGi and, a matrix of
eigenvectors we have term an eigensegment.

The keyframe of a segment vGt is a Gabor-gist descriptor describing the goal
location of the robot during replay. During training the current view vGt is com-
pared with the current segment’s keyframe vGi . When the similarity between the two
descriptors (vGt and vGi ) falls below an empirically determined threshold, a new seg-
ment is created and the process repeats. The result is a sequence of non-overlapping
segments each with a keyframe vGt .

Previous methods do not generally consider non-keyframe images beyond the
selection of keyframes. Our method uses these intermediate images to characterize
a segment for localization. It occurred to us that images between keyframes are self
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similar but could vary in distinct ways from other segment’s images. Further these
variations could be used to recognize a segment. In the language of information
theory we want to extract relevant information from a set of images in order to rec-
ognize them later. An approach is to capture the variation in a sequence of images,
independent of any judgment of features. In mathematical terms, find the principal
components of the distribution of images defining a segment, or the eigenvectors
of the covariance matrix of the images gist descriptors. These eigenvectors can be
thought of as features which together characterize a segment. Because these vectors
are eigenvectors, and describe a path segment we call them an eigensegment.

An efficient way of learning and characterizing a segment by variation is Principal
Component Analysis (PCA). In similar applications, PCA has been used to compare
descriptors in a lower dimensional subspace saving computation time. However, per-
forming comparisons in a reduced dimensional space compares only the information
left after the projection to that subspace, like comparing two 3D objects by their
2D shadows. While the hope is to compare only those components that contain the
most information, we have found this leads to decreased performance with respect
to Gabor-gist (see Section 4.2).

Given vGi is gist descriptor of dimension N (classically N=320), these descriptors
can be thought of as a point in an N dimensional space. Many such descriptors then
map to a collection of points in an N dimensional space. Descriptors captured within
a segment, being similar will not be distributed randomly within the descriptor
space. The main idea of principal component analysis (PCA) is to find vectors,
which best account for the distribution of these segment descriptors within the
entire descriptor space. These vectors or principal components define the subspace
of segment descriptors that best describe a segment.

Let l = vG0 , ..., v
G
M be a sequence of gist descriptors where M is the number of

images captured during this segment’s training. This set of descriptor vectors is then
subjected to PCA which seeks a set of N orthogonal vectors and eigenvalues which
best describe the distribution of descriptors l. The eigenvectors are then sorted by
their eigenvalues, the top k of which form our eigensegment matrix Ui.

The resulting Ui matrix can then be viewed as a representation of the segment
in terms of the components that best describe a segment’s descriptor distribution.
During the autonomous phase, this representation is used to localize the robot along
the path. Figure 3.1 shows the entire process of creating a visual path.
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Figure 3.1: The training system builds a sequence of segments using the current view
It. Each segment contains a gist description of the desired view or keyframe vGi and,
a set of eigenvectors derived by PCA from images captured between keyframes Ui.
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Algorithm 1 Gabor-gist training algorithm

I ← capture(cam)
vGt ← gist(I)
keyframes← {vGt }
frames← {}
eigensegments← {}
i← 1
threshold← 0.1
done← False
while done == False do

I ← capture(cam)
vGt ← gist(I)
if (vGt · keyframes[i]) > threshold then

keyframes← keyframes+ {vGt }
(mean, eigenvectors)← PCACompute(frames)
eigensegments← eigensegments+ {(mean, eigenvectors)}
frames← {}

else
frames← frames+ {I}

end if
i← i+ 1
if UserStop then done = True
end if

end while

3.2 Replay Phase

In the replay phase, the robot proceeds autonomously and sequentially through
the segments starting from approximately the same initial location as that of the
training phase. The replay phase is broken into two components, heading correction
and segment selection (ie. localization along the path). These two components
run in parallel and at each time step we evaluate both heading corrections and
segment selection. Heading correction adjusts the robot’s heading, guiding it to the
goal location. Segment selection localizes along the path beginning with the first
segment.

3.2.1 Heading Correction

Heading correction using vision is essentially an image alignment problem, the robots
current view vGt is aligned with the current segment’s keyframe vGi . A similar window
search to that of [8, 29, 31] has been modified for use with Gabor-gist. Performing
a comparison at each location x, a gist descriptor is extracted from within the
search window and compared to the current segment’s keyframe vGi . We write this
windowed gist as vGt (I, x), where I is the input image and x the coordinates of the
windows center.

Image coordinates x are computed with respect to a coordinate system centered
at the principal point (i.e. the intersection of the optical axis and the image plane),
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resulting in positive coordinates on the right and negative coordinates on the left.
The search returns a set of similarity values associated with the position x of

the search window. The results of a search can be graphed, showing the similarity
of a window with respect to the horizontal position, as shown in Figure 3.2. The x
position associated with the maximum similarity is the amount of shift required to
align the two descriptors. x is then passed to the steering controller to execute the
proper turning action, aligning towards the goal location 1.

x = argmax
xi

(
1− vGt (I, x) · vGi

)
(3.1)

passing x to a proportional controller, corrects the robots heading.

Pout = Kpx (3.2)

where Kp is an empirically determined gain unique to the robot.

1The use of integral images make this search very efficient, requiring only around 100 floating
point operations per search window.
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Figure 3.2: Heading correction. A search window scans the current view, comparing
with the current segment’s keyframe. The region with the greatest similarity defines
the error between the current and desired heading. This error value is then passed
to a proportional controller, controlling the wheels.
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3.2.2 Path Segment Selection

Previous methods in selecting when to transition between segments are based on
detecting when the robot has past a segment’s goal location and should navigate
towards the next goal. This has primarily been done by comparing the current view
to the segment’s keyframe, when a threshold in similarity is reached the robot is
commanded to navigate based on the next segment in the sequence. Some methods
incorporate odometry or other sensor data to improve performance. Such approaches
have, however, proven difficult to extend and remain error prone. Segment transition
errors are particularly hazardous to navigation because when an error occurs heading
corrections are computed based on an incorrect assumption as to the robots location.

Each descriptor of a path image used to train an eigensegment can be repre-
sented by a linear combination of eigenvectors. The number of possible eigenvectors
is equal to the descriptor size of gist. However a segment can also be approximated
using only the “best” eigenvectors, or those that have the largest eigenvalues, which
account for the largest variations. These eigenvectors are calculated by first sub-
tracting the common elements then finding the largest varitions. To subtract the
common elements the average descriptor of the training set is subtracted from the
descriptors. This has the effect of leaving only the segment vartiations in visual
structure. In segment recognition the common visual elements generally shared
with many segments, the variations in a segment are what distinguish it from oth-
ers. These large variations are generally not shared between segments, making them
features capable of distinguishing segments.

The proposed method makes use of eigenvectors created using principal compo-
nent analysis (PCA). An eigensegment characterizes a segment based on components
which best represent the distribution of the segment’s descriptors in the high dimen-
sional space. PCA has traditionally been used to reduce the number of dimensions
allowing for a faster comparison between descriptors. Our method uses PCA to
measure an eigensegment’s ability to reproduce the current view’s descriptor. The
current view descriptor is projected into a lower dimensional space and then re-
projected back to the original space. This reprojection or reconstruction is then
compared with the original descriptor, the eigensegment which best reconstructs
the original descriptor is used as the current segment.

The following steps summarize the segment selection process:

1. Project the current view’s descriptor vGt into several eigensegments lower di-
mensional spaces vUi±c, where c is a constant that defines a window of segments
around the current segment i.

2. Reproject the descriptors vUi±c back to the high dimensional space vGi±c
′

3. Compare the original and reconstructed vectors and return the best recon-
struction.

4. Set the current segment to the segment which best reconstructs the current
view’s descriptor.

Segments of a path consist of both a gist descriptor vGi and a set of eigenvectors
in a matrix Ui. Both of these are stored in a sequence {(vGi , Ui), ..., (v

G
M , UM )}. At

each time step the robot’s current view vGt is compared with the current segment
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(vGi , Ui), as well as neighboring segments (vGi±c, Ui±c). The first step is to project
the current views descriptor into an eigensegment’s subspace.

vUt = Ui(v
G
t − µi) (3.3)

where µi the average gist descriptor of the the segment i. The result of this is a
reduced gist vector vUt of dimension k, where k <= N and N is the gist descriptor’s
original dimension.

We then attempt to reconstruct the original descriptor vGt
′

by:

vGt
′
= (UTΦs) + µi (3.4)

The resulting vector vGt
′

is of the same dimension as the original i.e. N , but is
not an exact reproduction of the original descriptor because less than N eigenvectors
are used. The reconstruction error e between vGt and vGt

′
is determined using the

cosine distance e = vGt · vGt
′
. The eigensegment which minimizes the reconstruction

error e becomes the current segment, and thus localizes the robot along the path.
Figure 3.3 shows the entire process of selecting the next segment.
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Figure 3.3: Selecting the next segment is done by projecting the current view into a
range of eigensegments and then reprojected back. Which ever eigensegment does
the accurately reconstructs the descriptor is selected as the current segment.
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Algorithm 2 Gabor-gist replay algorithm

keyframes← {load(keyframes)}
eigensegments← {load(eigensegments)}
finished← False
i← 1 # current segment index
x← {x0, x1, ...xn} # Search window locations
while finished == False do

I ← capture(cam)
e(t)← argmax

xi

(
1− vGt (I,x) · keyframes[i]

)
sims← {}
for j = (i− 1) to (i+ 4) do

vGU ← PCAproject(vGt (I, e(t)), eigensegments[j])

vGU
′ ← PCAreproject(vGU , eigensegments[j])

sims[j − (i− 1)]← (1− vGt (I, e(t)) · vGU
′
)

end for
i← argmin

h
(sims[h])

if i >= |keyframes| then
finished← True

end if
end while

3.3 Summary

The preceding section details the Gabor-gist visual homing algorithm. Section 3.1
covers training of the visual path. In training an operator manually drives the

robot along the path. Images captured are processed using Gabor-gist into segments,
each consisting of a keyframe and a set of eigenvectors. Keyframes are selected by
comparing the latest segments keyframe to the current view, when the similarity
drops below a threshold a new segment is created. In the creation of a new segment
image descriptors captured since the previous keyframe are analyzed using PCA
into an eigensegment.

Section 3.2 presents the autonomous replay of a learned visual path. In the
replay phase the robot is placed at the paths starting location. As the robot replays
the path each image captured are used to both correct the heading and localize the
robot along the path. Heading correction performs a search of the current image
for the region most similar to the current keyframe. The horizontal distance from
the image center to the most similar region is passed to a proportional controller,
controlling the drive. Localization using eigensegment’s is accomplished through a
reconstruction of the current views descriptor. The current segment is selected by
comparing the ability of a set of eigensegments to reconstruct the current view’s
descriptor, the eigensegment with the best reconstruction is selected as the current
segment, localizing the robot.

Experimental results and evaluations are presented in Chapter 4. The results
show that the proposed method is promising and can be applied to a real-time
robotic system.
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Chapter 4

Experiments

4.1 Experimental Setup

To demonstrate Gabor-gist visual homing experiments were conducted both indoors
and outdoors. Further simulations to validate the eigensegment method of segment
selection were conducted. Only a single monocular camera has been used, no other
sensor data such as GPS, radar, odometry are considered and the 3D structure of
the scene remains fully unknown. No obstacle avoidance is considered therefore
the navigation tasks have been performed in quiet conditions. Nevertheless several
people do appear in the camera’s view despite this, and thanks to the robustness of
Gabor-gist descriptor, the navigation tasks completed successfully.

The experimental setup is built using ROS (Robotic Operating System), created
in the Stanford artificial intelligence laboratory, and further developed by Willow
Garage. ROS provides libraries and tools to help software developers create robotic
applications. It provides hardware abstraction, device drivers, libraries, visualizers,
message-passing, and package management. ROS is licensed under an open source,
BSD license [47].

The experimental setup consists of these hardware components:

• Monocular Point Grey Dragonfly camera (640x480 30fps)

• Pioneer P3-AT Robot platform (Differential drive)

• MacBook Pro (OS X)

ROS configuration:

• Camera Node: Captures and sends images to other nodes

• Gist Homing Node: Calculates heading corrections from captured images

• Controller Node: Uses heading corrections to control the robot

• Pioneer Node: Controls the robot’s drive system
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4.2 Eigensegment Experiments

This section establishes the feasibility of the eigensegment as a replacement for
keyframe comparisons. Simulations consisted of both indoor and outdoor datasets
each containing a loop. Some sample images are shown in Figure 4.1. Each environ-
ment poses separate challenges. Indoor environments tend to produce a great deal
of visual aliasing, where two different locations share similar visual characteristics.
Outdoor environments present challenges in terms changes in lighting and dynamic
components such as people moving through the scene.

Figure 4.1: Sample images from outdoor’s(left) and indoor’s(right) datasets.

Initially the eigensegment method needed to be verified in a simple and intuitive
way. The robots belief about where it is along a path can be visualized as a 2D
graph with position on the x-axis and likelihood on the y. The experiment shown in
Figure 4.2 illustrates the belief the robot has about where it is along a path given
an image. The eigensegments are trained using the first loop of the datasets. From
the second loop an image near the middle of the loop are selected and compared
with all the trained segments. The number of principal components used is an
important variable, determining how much of the original descriptor’s information
must be maintained for correct localization. The path segments are trained with 2,
10, and 50 principal components. Figure 4.2 shows the spike in similarity near the
middle segments and how the number of principal components affects the result 1.
Interestingly the number of principal components does not appear to significantly
effect the method, 2 PCs giving relatively the same results as 50 PCs.

1The spike in similarity is slightly offset from the graphs middle due to the varying size of
segments, some segments are larger than others.
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(a) Indoors path consisting of 32 segments.
The correct segment is 14.

(b) Outdoors path consisting of 49 segments.
The correct segment is 33.

Figure 4.2: A visual demonstration of the eigensegment method localizing a robot
along a path. The x-axis represents the path in terms of the sequence of segments,
the y-axis the similarity (1-cosine distance) of the chosen image to each eigenseg-
ment. The image chosen is from the center of the path. (A) Shows the results
of an indoor environment and (B) outdoors. The results shown correctly localized
the robot the highlighted region shows the local window searched during the robots
replay phase to localize the robot. Notice the direct comparison curve for indoor
environments is not at as convex as the proposed eigensegment method.
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The ultimate performance of any localization method is how often it correctly
localizes the robot, or the percentage of correct localizations out of a test set. In this
experiment 1000 random test images are selected and compared with eigensegments
containing 2, 10, and 50 PCs. Figure 4.3 shows the results as compared with the
previous method of comparing keyframes with the current view. The eigensegment
method outperforms the keyframe comparisons, achieving 72% vs. 15% correct
localizations. Further the number of PCs does not appear to affect performance
considerably. Outdoors, a slight positive correlation of correct localizations with
the number of PCs can be seen however, the same is not true for indoors.

Figure 4.3: The % correct localization of the eigensegment method vs. keyframe
comparisons. Each bar represents the percentage of correct localizations out of 1000
tests. Three paths are trained each with a different number of PCs namely 2, 10,
and 50. Each test randomly selects an image from the second loop of a dataset and
compares it to all the eigensegments of a path.

These results show improvement over the previous method of keyframe compar-
isons but is still only 50% effective. During homing we do not perform a global
search of all segments to localize the robot. Instead we need only check in a neigh-
bourhood around the current segment. Visual homing allows for this optimization
because the the robot proceeds sequentially along the path from one segment to the
next. The method maybe only 50% accurate in a global search, within a local search
window the performance has proven to be effective for homing. Figure 4.2 shows
similarity around the correct values is a convex curve with the correct segment at
the apex.

4.3 Homing Experiments

In this section, the visual homing method is experimentally demonstrated. To eval-
uate this new method of homing, the experiments have been divided into indoor and
outdoor environments, each with challenges. Within each environment we present
experiments that demonstrate the system is capable of handling specific challenges.
Each experiment is performed in real-time with certain changing conditions. Obsta-
cle avoidance has not been considered and the experiments are conducted in quiet
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conditions. People still appear and pass through the field of view while not ob-
structing the view. The robot is able to complete the path successfully in these
cases.

Initial experiments conducted empirically tuned the parameters of the system.
Table 4.1 shows the values for each parameter. Gabor-gist requires convolution of the
input image with a filter bank. Smaller images of course allow for faster computation.
However heading correction requires a certain amount of image detail to choose the
correct heading. This leads to a trade-off in the speed of computation vs. image
detail. A final image size of 600x200 from 640x480 was arrived at by repeating paths
with different sizes watching how the system responded 2. The Gabor-gist grid
dimensions control encoding of spatial relationships, and has traditionally been set
at 4x4. Heading correction however requires a greater amount of spatial detail on the
horizontal axis as a result we have chosen a 6x4 grid giving greater spatial resolution.
Using the results of section 4.2 we choose two PCs to encode the eigensegments. This
value has performed well experimentally while minimizing storage requirements.
The creation of segments is determined using a threshold of similarity between the
latest segment’s keyframe and current view and in experiments the value of 0.1 -
0.3 radians was found to produce similar results which proved effective. Given the
current segment i only a local window i− 1, i+ 4 is searched to localize the robot,
the window’s range was chosen empirically. Search window size is the size of window
used to search the current view for heading correction, a value of 300x200 pixels was
selected empirically. Each of these parameter values is held constant throughout
the following experiments.

Parameters Value

Image Size 600x200 pixels
Gabor-gist grid 6x4 cells (100x50 pixels/cell)
Eigensegment PCs 2 PCs
Segment threshold 0.1 rad
Localization window [i− 1, i+ 4]
Search window size 300x200 pixels

Table 4.1: The parameters of the system. Image size refers to the size of image used
to create the Gabor-gist descriptor. Gabor-gist grid refers to the spatial resolution
the descriptor maintains. Eigensegment PCs control how much information is re-
tained to characterize a path segment. Localization window controls which segments
around the current segment i are checked during segment selection.

During initial experiments replay performance was found to increase when the
visual path is encoded by three independent visual paths. During training three
separate gist windows offset from each other are trained (see Figure 4.4). Each gist
window encodes the path as described in Section 3.1. Each window independently
determines when to transition between segments and returns its heading correction
signal. During replay, the heading correction signals from each window are averaged
together to determine the final correction signal using a weighted average. The
weights of each signal are given by the difference between a signals max and min

2We also leverage a GPU to convolve the input image with the Gabor filter bank.
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similarity over the windowed search. This difference is a measure of how successful
the search was in finding the correct image region to steer towards.

Figure 4.4: Three visual paths blue, red and green offset from each other encode
the path using different regions of the image. During replay, each path returns a
heading correction signal, which are averaged together to create the final correction
signal.

During the early homing experiments the robot would often fail to arrive at the
destination, especially if tight turns where required. Initially only a search window
from the center of the image was used to make heading corrections. The approach
was moderately successful, achieving ∼ 50% success rate. The problem appeared
to occur primarily in a turn. In a turn the current view can change quickly and
cause both incorrect heading correction and poor localization. Three paths gives
better results because if one path is temporarily incorrect the other two generally
produce the correct answer. This method raised the success rate to 80% during our
experiments.

Figure 4.5 shows a graphical view of the system navigating an indoors path. On
the left is the robot’s current view It. At the top right three progress bars show
the progress along the path, while below three similarity graphs show the robot’s
heading corrections from the three paths (Similarity is in cosine distance and not 1-
cosine, making the lowest point of the curve the most similar). See video ”Gabor-gist
robots view” 3.

3 Gabor-gist robots view url http://youtu.be/M87HiO3j2sc.
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Figure 4.5: A visualization of a running robot. The top left is the view from
the robots camera It. On the right is a view of three visual paths being traversed
simultaneously. The similarity curves are shown as just cosine distance, thus smaller
values are more similar. On the top right are progress bars showing the robots
progress along the path.

4.3.1 Indoor Experiments

Indoor environments present a challenge to homing methods because they often
have many repeating patterns, which cause visual aliasing. Visual aliasing presents
a challenge to both heading correction and localization. Many indoor environments
use a repeating pattern, when employing a window search this repetition can cause
search regions to look alike, providing no useful information for heading correction.
Secondly repeating patterns cause many separate locations indoors to appear sim-
ilar, complicating localization using images. The locations selected for the indoor
experiments contain repeating patterns as well as large blank walls.

The indoor experiments are divided into straight and turning. Straight paths
demonstrate the robots ability to traverse a hallway and primarily test the local-
ization of the robot along a path that has many similar visual elements. Figure 4.6
shows a sample of the robot along the path, notice the repeating visual elements on
both sides of the hallway. Table 4.2 gives the path and storage details and compares
with the entropy based visual homing [8]. This experiment was repeated five times
using the same training path. It achieved a success rate of 100%, five out of five
trials. See video ”Gabor-gist straight hallway test” 4.

4Gabor-gist straight hallway test url http://youtu.be/eKfvNECxVzI
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Figure 4.6: Indoor experiment, testing the methods ability to perform proper local-
ization down a hallway. This experiment tests the ability to travel a straight line and
also to properly localize the robot in an environment with many repeating patterns.
This path is approximately 12 m. The robot completed the path successfully.

Method Path length Segments/m Storage

Gabor-gist 12 m ∼3 648 KB
Entropy 12 m 3 1.3 MB

Table 4.2: Comparison of the storage space and segment density of Gabor-gist
homing vs entropy homing in a straight hallway environment.

Turning is generally a difficult task for vision only homing methods. Depending
upon the angle of the required turn the resulting heading of the robot may not fall
into view at the beginning of a turn. Therefore many segments may be required
as intermediate steps. These segments are often small encoding only a few images,
making correct localization during replay difficult. Figure 4.7 shows the robot per-
forming the test, along with the route in red. Table 4.3 gives the path and storage
details and compares with the entropy based visual homing [8]. This experiment
was repeated 5 times using the same training path. It achieved a success rate of 80%
or 3 out of 5 trials. During the 3rd and 4th test the robot became lost at different
locations for unknown reasons. We were unable to reproduce the errors. See video
”Gabor-gist turning test” 5.

5Gabor-gist turning test url http://youtu.be/JayN0vKG62w.
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Figure 4.7: Indoor experiment, testing the methods ability to perform the types of
turns required for indoor navigation. The path is approximately 10m. The robot
completed the path successfully.

Method Path length Segments/m Storage

Gabor-gist 10 m ∼3 560 KB
Entropy 10 m 3 989 KB

Table 4.3: Comparison of the storage space and segment density of Gabor-gist
homing vs entropy homing in a indoors turn.

Indoors a robot may be required to work in tight and constrained spaces. The
homing method is tested by driving an obstacle type course weaving between chairs.
To compare Gabor-gist homing with the entropy method of [8] the segment sam-
pling rate of entropy had to be increased to 5 images/m. Our method required no
parameter changes. Figure 4.8 shows the robot navigating the path, while Table 4.4
shows the storage and sample rate details for the experiment. This experiment was
repeated 5 times using the same training path. It achieved a success rate of 80% or
4 out of 5 trials. During the 5th test the robot became lost when it failed to localize
properly near the end of the path. This was due to not transitioning to the final
segment for 2 out of the 3 paths. The path is considered complete when the each is
within two segments of the final segment. Here two paths did not achieve this and
were giving incorrect heading corrections pulling the robot off course. The robot
was however within one meter of the final goal but had to be shutoff manually. See
video ”Gabor-gist tight constraint homing” 6.

6Gabor-gist tight constraint homing https://www.youtube.com/watch?v=aleNT8_V3Bs.
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Figure 4.8: Indoor experiment, chosen to test the methods ability to perform in
constrained spaces. This path is approximately 5 m.

Method Path length Segments/m Storage

Gabor-gist 5 m ∼3 360 KB
Entropy 5 m 5 1.5 MB

Table 4.4: Comparison of the storage space and segment density for Gabor-gist
homing vs entropy homing in a tight indoor environment. For the entropy method
to navigate the path the segment sampling rate was increased to 5 images/m.

4.3.2 Outdoor Experiments

Outdoor environments provide a different set of challenges to visual homing. Indoors
the primary problem is one of visual aliasing, in outdoor locations the primary
problem is one of changes in lighting. The outdoor experiments consisted of a 100m
route, the first half of which is dominated by trees and shrubs, the second half of
two brick buildings. The route was chosen for its variety of visual elements common
in outdoor environments. The route was trained using the parameters of Table 4.1
in the afternoon. The route was then repeated later the next day around 10am
with different lighting conditions namely overcast. See Figure 4.9 for a sample of
the training and replay images. In this figure one can see the differing shadows cast
on the ground. Figure 4.10 shows the robot replaying the outdoor path. Table 4.5
gives a comparison between our method and entropy homing in terms of storage
space. This experiment was repeated 3 times using the same trained path. The
replay phase was done once immediately after training and twice the next day when
lighting conditions had changed. A success rate of 100% or 3 out of 3 trials was
achieved. When replayed under different lighting conditions the robot would at
times visibly deviated from the proper heading mainly at the beginning when the
concrete walkway dominates the robot’s view. This is due to the shadows present
during training but not during replay see Figure 4.9. See video ”Gabor-gist homing
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outdoors test” 7. At time 0:00-0:08 the deviation can be seen.

Figure 4.9: Two images one from training (left) taken in the afternoon and one from
the replay the next morning (right). The images show a distinct change in lighting
conditions particularly on the ground. The robot still completed the path correctly.

Figure 4.10: The outdoor path of approximately 100 m seen from above.

7Gabor-gist homing outdoors test url http://youtu.be/kof6o6_AmV8
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Figure 4.11: The robot replaying the outdoor path using Gabor-gist homing.

Method Path length Segments/m Storage

Gabor-gist 100 m ∼0.5 1 MB
Entropy 100 m 3 14 MB

Table 4.5: Comparison of the storage space and segment density for Gabor-gist
homing vs entropy homing in an outdoor environment.

4.4 Summary

This section details the experiments used to demonstrate Gabor-gist visual homing.
Section 4.2 covered the initial investigations of eigensegments. Section 4.3.1 covers
indoor experiments while Section 4.3.2 covers the outdoor experiments.

To validate the use of eigensegments for localization several simulations are pre-
sented in Section 4.2. These simulations first demonstrate the intuition behind the
method by graphing a likelihood function of one image against all the segments of
a path, showing a distinct spike at the correct segment. The performance of the
method is then tested by determining the percentage of correct localizations from
1000 random images. These results are compared with another method of directly
comparing keyframes with the current view. The eigensegment method achieves a
performance of 72% vs. 15%.

The system detailed in this thesis is not without failure cases. Gabor-gist homing
often fails during turns. This is primarily due to insufficient overlap in images,
where the current view does not contain enough of the goal segment’s keyframe
to make proper heading corrections. During training a similarity threshold is used
for keyframe selection, this a constant threshold and can choose keyframes to far
apart, during replay this results in not being able to see the goal image causing
incorrect heading correction. Another problem in turns is localizing the robot.
During a turn the current view changes a great deal in a short time. In training this
can lead to insufficient training images to represent a segment. In replay it then
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becomes difficult to properly localize the robot and make proper heading corrections.
The cause of this can be due to an improper similarity threshold during keyframe
selection in training, or due to an incorrect localization. Tight turns are often also
prone to incorrect localization because in a turn the current view changes quickly
and as a result a segment does not enough training images.

Section 4.3.1 demonstrates the results of testing the algorithm in an indoor en-
vironment. Several situations are tested, including straight, turns, and constrained
environments. Section 4.3.2 covers the outdoor experiments where the method is
tested outdoors where lighting changes in terms of shadows at different times of
day. Each of these tests completed successfully and required a fraction of the stor-
age space required by previous methods.
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Chapter 5

Conclusions and Future
Directions

5.1 Conclusions

Vision-based robotics is an active area of research with significant progress being
made in developing both visual navigation algorithms during the past three decades.
The interest in using cameras for sensing comes from the observation that images
provide a natural way of perceiving the environment. Most current research ef-
forts in visual homing tend to focus on 3D reconstructions of the environment to
develop controllers taking some type of explicit models of the robot, cameras, or
environments into account. Many of these systems however require large amounts
of computation and special sensors beyond a camera. There is a push to develop
algorithms that can be applied to hardware constrained systems.

Because robots need to act on the fly, computer vision algorithms should run in
real-time. There are challenges in real-time processing of visual information. Most
notably, visual measurement is often corrupted by noise and outliers. Uncertainties
in the motor actuation always exist as well. This imposes significant challenges
on algorithm design. To perform practical homing in unstructured settings vision-
based robots require algorithms which (1) do not depend on explicit models, and
(2) are robust against sensing uncertainties and outliers. Consequently, this thesis
has concentrated on the development of a visual homing algorithm to avoid the
requirements of explicit models. This thesis is a step towards answering the question
on how to efficiently control the motion of a vision-based robot on occlusion-free
paths in different environments.

In the contributions we have emphasized the importance of using the biologically
inspired gist image descriptor which compactly represents an image, while maintain-
ing the information crucial to vision-based homing. We have described how to use
the gist descriptor for heading correction using a simple window search across the
horizontal axis of the current image. Further, we have introduced a novel method
for encoding a segment of the visual path, which we have termed an eigensegment.
Using PCA to encode the statistically important qualities from a set of consecu-
tive images gist descriptors, we demonstrate that it performs better then keyframe
comparisons. Although we have presented only the first steps towards a practical
implementation, hopefully we have shown the potential of using Gabor-gist in the
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area of visual homing.

5.2 Future Directions

The method presented is a novel approach to visual homing. The goal of this
research is to employ compact visual homing using Gabor-gist. Future research
could include using Gabor-gist to create path templates, useful beyond on explicitly
trained path. The Sparse Distributed Memory mentioned in the Chapter 2 could
also benefit from the Gabor-gist compact image representation. Gabor-gist itself is
a broad and general approach to scene classification many, texture analysis Gabor
filters are tuned to detect specific patterns this could be applied here.

During an indoor experiment the robot made a mistake but exhibited the ability
to use a trained path to correctly navigate in a location it had never before seen.
The experiment was repeated twice more with the same result, suggesting that
Gabor-gist might provide a way to encode a general path like structure that could
be applied to other never before seen paths. In future work it would be of interest
to train a path and then place the robot at a different but visually similar location
and see if it performs the proper actions. This might prove a useful way of making
path templates and associated actions that could be used to navigate a path the
robot has not been explicitly trained for. This is similar to the work of Ackerman
[1].

In Chapter 2 we introduced the use of a sparse distributed memory [31], the main
limitation of which is in the storage requirements of 0.1 bits per bit of traditional
memory. In its current setup the authors encode a pixel image of 80x64. Gabor-gist
being a compact representation of an image could alleviate the storage problems
considerably from needing to encode 5120 (80x64) pixels/keyframe to 480 (6x4x20)
floats/keyframe.

Lastly Gabor-gist uses a even distribution of filters across the scale and frequency
ranges. Others have tuned Gabor filters to detect certain objects or patterns [49,
9, 30]. It would be interesting to tune the filter bank of Gabor-gist in such a way
so as to increase the performance of the heading correction or localization. Heading
correction performance may be increased by tuning the filters towards more vertical
edges. Localization might benefit from more lower frequency filters rather than
noisy high frequency ones. It is also conceivable that separate filter banks could be
used depending on the environment, one bank for outdoors and another indoors.
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