

A Simulation-Driven Approach To Scheduling In

Duty-Cycled Networks

by

Van Hai Ho

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Van Hai Ho, 2015

ii

ABSTRACT

Transceiver duty-cycling (DC) is a popular technique to conserve energy in a

wireless sensor network (WSN). In this thesis, our overall objective is to study the

performance of a DC WSN. Namely, we consider the performance of a DC WSN

from the point of throughput, as well as energy consumption, under deterministic

DC behavior. Our elementary notion of traffic is that of a traffic flow, routed via

multiple hops from a source to a destination node. The traffic flows are, by

default, assumed to be greedy, i.e., capable of making use of as much rate as they

are given. We use max-min fairness as our criterion for allocating the available

capacity across the multiple flows. Towards this end, we explore the following

research questions. A first question is that of relating duty-cycling and achievable

throughput through the construction of deterministic transmission schedules, i.e.,

by ensuring coordinated medium access and hence avoiding collisions and

avoiding idle listening. A second question is that of throughput improvement in

DC WSN by means of employing network coding (NC), again via the

construction of a deterministic transmission schedule.

The key component of our methodology is a modelling step whereby the

time-varying topologies of DC WSNs are captured by the notion of repeating

“stages”, i.e., time durations during which the topology is constant. The

periodically repeating stages allow us to express optimization objectives for the

throughput of the traffic flows. Whereas the optimization enables the

determination of the per-flow rates, a novel simulation-based approach is

introduced enabling the construction of periodic TDMA transmission schedules

iii

achieving, or at least closely approximating, those per-flow rates. The schedule

construction process is based on the conjecture that the periodic behavior of a DC

WSN is bound to result in a periodic steady state behavior for the network.

Consequently we use simulation to extricate, and use, the periodic scheduling

induced by the periodic steady state of the network.

Through numerous simulation studies and in comparison with the per-flow

rates produced by the optimization step, we demonstrate that the technique is

accurate and applicable to arbitrary topology DC WSNs. We also demonstrate

how this approach can be used in combination with NC as well. While the

particular NC scheme is one of numerous possible, it is sufficient to demonstrate

the technique’s advantages. The thesis concludes by outlining how the basic idea

can be extended to DC WSNs with different DC periods, non-greedy traffic

demands, and variations of NC schemes.

iv

ACKNOWLEDGEMENT

First of all, I would like to express my deep gratitude to my supervisor Dr. Ioanis

Nikolaidis for consistently supervising this study. Dr. Nikolaidis suggested this

topic, granted a generous amount of time and intellectual effort in problem-

solving discussions, and offered emotional help and encouragement to me.

Next, I would like to thank the examing committee, Dr. Paul Lu, Dr. Janelle

Harms, Dr. Hai Jiang, Dr. Ramiro Liscano, who greatly helped me improve the

thesis. Also, I would like to thank Dr. Martha Steenstrup and Dr. Ehab Elmallah

from Communication Networks group, Department of Computing Science, for

their valuable suggestions to my NetGroup talks.

Then, I would like to thank the technical and administrative staffs in Department

of Computing Science at University of Alberta. Special thanks are for Sharon Bell

for her timely support throughout the course of this research. I am also deeply

grateful to my parents, my wife (Giac Nguyen) and my daughter (An Ho) for their

patience, understanding, love and support during my study.

Finally, I would like to thank those who provided me with financial support. This

work has been supported in part by a Discovery Grant from the Natural Sciences

and Engineering Research Council of Canada (NSERC). My work has also been

supported by a scholarship from the Government of Vietnam.

v

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 SCOPE AND MOTIVATIONS... 1

1.2 ASSUMPTIONS AND METHODOLOGICAL OVERVIEW 5

1.3 NOTATION AND DEFINITIONS ... 11

1.4 ADDITIONAL NOTATION FOR NETWORK CODING..................... 16

1.5 BROAD OBJECTIVES AND RESEARCH QUESTIONS 21

1.6 CONTRIBUTIONS AND THESIS OUTLINE 22

CHAPTER 2 RELATED WORK .. 25

2.1 DUTY CYCLING CLASSIFICATION .. 25

2.2 TDMA SCHEDULING ... 26

2.3 RATE FAIRNESS ... 28

2.4 PERIODIC STEADY STATE ... 30

2.5 NETWORK-CODING... 32

2.6 EARLY RESULTS .. 35

2.7 CHAPTER CONCLUSIONS .. 53

CHAPTER 3 A TDMA SCHEDULING ALGORITHM FOR DUTY-

CYCLED WIRELESS SENSOR NETWORKS 55

3.1 PROBLEM FORMULATION .. 55

3.1.1 MAX-MIN FAIRNESS FORMULATION 55

3.1.2 COMPUTATION OF MAX-MIN FAIR RATES BY THE

WATER FILLING ALGORITHM ... 57

vi

3.1.3 COMPUTATION OF MAX-MIN FAIR RATES BY THE MAX-

MIN PROGRAMMING ALGORITHM 63

3.2 SIMULATION-BASED PERIODIC PATTERN EXCISION 69

3.2.1 SCHEDULING ALGORITHM ... 69

3.2.2 SCHEDULE EXCISION PROCESS ... 71

3.2.3 FLOW BALANCE APPROACHES ... 77

3.3 EVALUATION ... 81

3.3.1 OVERALL PERFORMANCE .. 81

3.3.2 TOTAL THROUGHPUT .. 89

3.3.3 SCHEDULING COMPARISON ... 95

3.4 CHAPTER CONCLUSIONS .. 101

CHAPTER 4 COMBINING DUTY-CYCLING AND NETWORK

CODING ... 103

4.1 PROBLEM FORMULATION .. 103

4.1.1 EXTENDING THE MAX-MIN RATE COMPUTATION TO THE

NC CASE ... 104

4.2 SIMULATION-BASED PERIODIC PATTERN EXCISION 117

4.2.1 DELAY CODING ... 117

4.2.2 EXTENDING THE SCHEDULING ALGORITHM TO NC 121

4.2.3 SCHEDULE EXCISION PROCESS WITH NC 123

4.2.4 FLOW BALANCE APPROACHES WITH NC 124

4.3 EVALUATION ... 132

4.3.1 THROUGHPUT IMPROVEMENT .. 132

vii

4.3.2 ENERGY SAVINGS ... 141

4.4 CHAPTER CONCLUSIONS .. 145

CHAPTER 5 EXTENSIONS AND GENERALIZATIONS 146

5.1 NON-GREEDY TRAFFIC AND ENERGY SAVINGS....................... 146

5.2 DEALING WITH HETEROGENEOUS DUTY-CYCLES 158

5.3 MAXIMUM OCCUPANCY OF BUFFERS ... 159

5.4 EXECUTION OVERHEAD OF MWIS ... 163

5.5 CODING COMBINATIONS OF POSSIBLE FLOWS 164

CHAPTER 6 CONCLUSIONS .. 171

REFERENCES .. 175

APPENDIX A ANOTHER EXAMPLE OF COMPARISON WITH THE

GRONKVIST’S ALGORITHM ... 183

viii

List of Figures

Figure 1.1 Illustration motivating why different nodes could duty-cycle at

different times. .. 4

Figure 1.2 The duty cycle characteristics of node �. ... 7

Figure 1.3 An illustrative example of the defined notation. 12

Figure 1.4 An illustrative example of xor-pairwise network coding. 17

Figure 1.5 An illustrative example for a DC-WSN with NC. 20

Figure 2.1 Taxonomy for DC techniques (adopted from [24]). 25

Figure 2.2 Periodic steady state for periodic input (adopted from [19]). 32

Figure 2.3 An Illustrative example of network coding....................................... 33

Figure 2.4 Illustration of how the scheme in [42] operates. 36

Figure 2.5 Synchronized DC for a 4-node network. .. 37

Figure 2.6 Pictorial depiction of the DC timing and related routing graph 42

Figure 2.7 Structure of caches MCs and OCs at each node. 44

Figure 2.8 Pseudo-code of the NC algorithm executed at each node. 46

Figure 2.9 Throughput gain for 19/32 duty cycle. ... 50

Figure 2.10 Duty cycle energy savings vs. 32/32 (continuously ON). 52

Figure 3.1 Formulation ��(��). .. 57

Figure 3.2 The WF algorithm. .. 58

Figure 3.3 An illustrative example for the WF and MP algorithms’ proofs (CG

= Contention Graph). .. 61

Figure 3.4 The MP algorithm. .. 64

ix

Figure 3.5 Formulation ��(�). ... 65

Figure 3.6 Formulation ��(�,
���). ... 66

Figure 3.7 The scheduling algorithm during Slot � .. 70

Figure 3.8 Illustration of the simulation-based schedule excision

process ... 72

Figure 3.9 Pseudo-code of algorithm slotMatching () 74

Figure 3.10 Pseudo-code of algorithm periodMatching () 75

Figure 3.11 Pseudo-code of algorithm patternMatching ()................................ 76

Figure 3.12 Pseudo-code of algorithm CheckBalance () 78

Figure 3.13 Pseudo-code of algorithm MakeBalance (). 79

Figure 3.14 Schedule constructed in Example 3.1. .. 81

Figure 3.15 Topologies, flows and phases used in the simulations 82

Figure 3.16 Topologies, flows and phases used in the simulations 83

Figure 3.17 Throughput in 3x3 grid with pattern PT-1. 91

Figure 3.18 Throughput in 3x3 grid with pattern PT-2 .. 92

Figure 3.19 Throughput in 3x3 grid with pattern PT-3 .. 93

Figure 3.20 Throughput in 4x4 grid with pattern PT-4 .. 94

Figure 3.21 Topology and flows used in the comparison 95

Figure 3.22 Schedule is constructed by our MMF algorithm (black circles mean

sub-flows are scheduled) ... 97

Figure 3.23 Steps in the Gronkvist’s algorithm to construct a schedule 100

Figure 4.1 Formulation ��(��,
�) ... 105

Figure 4.2 The WF algorithm with NC .. 106

x

Figure 4.3 The MP algorithm with NC .. 107

Figure 4.4 Formulation ��(�,
�). ... 108

Figure 4.5 Formulation ��(�,
���,
�) .. 109

Figure 4.6 An illustrative example for the MP algorithm without NC (CG =

Contention Graph). ... 116

Figure 4.7 An illustrative example for the MP algorithm with NC (CG =

Contention Graph).. .. 117

Figure 4.8 An illustrative example of delay coding process. 118

Figure 4.9 Pseudo-code of the delay coding algorithm. 120

Figure 4.10 The scheduling algorithm with NC during slot � 122

Figure 4.11 Illustration of the simulation-based schedule excision process with

NC. .. 123

Figure 4.12 Pseudo-code of algorithm CheckBalanceNC () 126

Figure 4.13 The process of flow balance enforcement (FBE) 126

Figure 4.14 Pseudo-code of algorithm MakeBalanceNC ().............................. 129

Figure 4.15 The schedule is constructed when we run the scheduling algorithm

without NC on the network in Example 4.1 129

Figure 4.16 The schedule is constructed when we run the scheduling algorithm

with NC on the network in Example 4.1 ... 132

Figure 4.17 Topologies, flows and phases used in the simulations 133

Figure 4.18 Throughput improvement in 4x4 grid with pattern PT-5 139

Figure 4.19 Average packet delay in 4x4 grid with pattern PT-5 140

Figure 4.20 Energy savings from pattern PT-5 and schemes SP, FLP & VLP .. 144

xi

Figure 5.1 An illustrative example for the non-greedy traffic without NC (CG =

Contention Graph). ... 150

Figure 5.2 An illustrative example for the non-greedy traffic with NC (CG =

Contention Graph) .. 151

Figure 5.3 Illustration of the slot deactivation scheme (without NC) 152

Figure 5.4 Schedule constructed in Example 5.1 (with NC) 154

Figure 5.5 Illustration of the slot deactivation scheme (with NC) 155

Figure 5.6 Scheduled spots during slots 128 to 192 for flow ��and ��. 156

Figure 5.7 Scheduled spots during slots 192 to 256 for flow ��and ��. 157

Figure 5.8 An illustrative duty-cycled network with different duty-cycles and

active periods .. 159

Figure 5.9 Pseudo-code of algorithm MaxBufLength () without NC 160

Figure 5.10 Pseudo-code of algorithm MaxBufLength () with NC 162

Figure 5.11 An illustrative example of the combination of possible flows for

coding (before NC) ... 165

Figure 5.12 An illustrative example of the combination of possible flows for

coding (after NC) .. 166

Figure 5.13 Pseudo-code of algorithm PairwiseCoding ()................................ 168

Figure A.1 Topology and flows used in the comparison. 183

Figure A.2 Schedule is constructed by our MMF algorithm (black circles mean

sub-flows are scheduled). .. 184

Figure A.3 Steps in Gronkvist’s algorithm [13] to construct the schedule. 185

xii

List of Tables

Table 3.1 Simulation results with PT-1 and PT-2. .. 86

Table 3.2 Simulation results with PT-3 and PT-4 ... 87

Table 4.1 Simulation results with PT-5... 136

1

CHAPTER 1

INTRODUCTION

1.1 SCOPE AND MOTIVATION

Energy efficiency is one of the most important requirements in wireless sensor

networks (WSNs), in particular, if the nodes are assumed to be powered by

batteries that cannot be easily replaced or recharged. Therefore, the activities of

the nodes should be limited as much as possible to prolong their lifetime to the

maximum allowable ability of the batteries. Among these activities, the wireless

transceiver operation costs significant energy to a node [1]. Some degree of

activity of the transceiver is unavoidable because it is needed to transmit and

receive packets intended for the node. The other two elements, the

listening/sensing of the channel and the reception of packets not intended for the

node are, at least in principle, avoidable. A broad technique employed to save

energy is to avoid idle listening/sensing of the medium by duty-cycling (turning

OFF) a node's transceivers. We use the terms “ON” “awake” and “active”

(conversely, “OFF” “asleep” and “inactive”) to denote the two states of duty-

cycling.

In this thesis, we assume that the data traffic that needs to be delivered is

generated in a random fashion, and it has long idle durations between

transmissions [2], and between generations as sensor readings. Hence, it is quite

reasonable for sensor nodes to work in short-DC mode to achieve long autonomy

if they are powered by non-renewable energy reserves, e.g. batteries [3]. We also

consider WSN deployments with multiple origin-detination pairs of traffic flows,

e.g., multiple applications served in the same WSN, each of them possibly

running on certain of the nodes [4]. The need for multiple origin-destination pairs

of traffic flows recently arises with the emergence of wireless sensor/actuator

networks (WSANs) [57, 58, 59]. In a WSAN, sensor nodes and actuator nodes are

2

interconnected via wireless links in a distributed fashion. Each sensor node

collects information from the physical world and transmits it to actuator nodes

over multi-hop communications. Based on the received information, actuator

nodes can change behaviors of the physical world. In a fire scenario, for example,

different actuator nodes are likely to need the information of detecting fire from

the same sensor node with temperature readings. One actuator may transmit an

emergency signal to the fire department while another may control a water

sprinkler to extinguish the fire. The options for delivering the traffic are

numerous, and, at a low layer, are described by Medium Access Control (MAC)

protocols. In this context, one family of MAC protocols, determine the exact

instants when a node has to be awake to receive (or transmit) a packet. This

family includes Time Division Multiple Access (TDMA) schedules. Besides the

ability to schedule in a fair manner the multiple traffic flows, TDMA is also

excellent in terms of energy consumption due to the fact that a node can disable

the transceiver when no traffic needs to be sent or received. Nevertheless TDMA

schedules are considered as inflexible because they do not adapt to random

fluctuations of the traffic load. At the other extreme, contention-based carrier-

sensing MAC protocols, like ALOHA, attempt transmissions on an as-needed

basis which is quite fit for varying traffic demands but forces the transceivers to

be continuously ON in anticipation of (unpredictable with respect to timing)

receptions and for sensing the medium prior to transmissions. While combinations

of random (ALOHA-like) and schedule (TDMA) scheduling have been proposed,

the standard for the rest of our work is TDMA because of its immediate benefits

insofar energy consumption is concerned.

The reasons mentioned so far show that duty-cycling is useful for WSNs. The

next question though is whether each node should duty-cycle independently or

not. If all nodes duty-cycle at the same time, and have the same period, then this is

equivalent to alternately switching ON and OFF the entire network for some

periods of time. This might make sense in some cases, but the main concern is

that WSNs have actual traffic generation and delivery requirements. They need to

3

both sense and inform (as soon as possible) the destinations. Hence, at least it is

required that some subset of nodes is active at any point in time to monitor for

traffic that might be spontaneously generated or sensor measurements that have to

be performed and to be delivered. In other words, all the nodes are not required to

wake up the same time. Fundamentally, what this also means is that duty-cycling

impacts delivery delay.

Another reason why turning OFF a transceiver at different time from those of the

other transceivers is useful, beyond just avoiding idle listening/sensing of the

medium, is because the energy of each node could be replenished differently by a

renewable energy source (e.g., solar energy, wind energy, and kinetic energy) and

depending on the node’s location. In this case, the duty-cycle represents the time

for which a node can confidently stay ON given the patterns of the energy

replenishment. Although admittedly the degree of replenishment is a random

process it is often quite predictable. For instance, Figures 1.1.a (adopted from [5])

show two possible power output variations with respect to time of a solar cell

exhibiting a distinct diurnal behavior. Similarly, in Figure 1.1.b (adopted from

[6]) the wind speeds at four arbitrarily chosen locations on an annual scale are

shown. For example, if a renewable resource is used, and based on predictable

replenishment patterns, each of the four nodes A, B, C and D in Figure 1.1.c can

save energy by taking turns to sleep (a white dot) or stay awake (black dots) to

sense continuously the same target area (the asterisk), because the areas of sensing

(four big circles) of these nodes can all cover the target. In the example of Figure

1.1.c, even a single node being awake would have been sufficient in terms of

covering the target area.

4

(a) Adopted from [5]

(c) Four nodes duty-cycling

based on alternating sensing

coverage

(b) Adopted from [6]

Figure 1.1. Illustration motivating why different nodes could

duty-cycle at different times.

DC gives the possibility of energy savings due to no idle activities at the price of

possibly long transmission delays caused by OFF-periods. Nevertheless, when DC

is applied, the following three problems come up:

• First, since DC results in different network “links” to be present at

different points in time (a “link” exists only if both adjacent nodes are ON

at the same time), the topology of the network varies over time. Therefore,

routing must be re-thought in this context, in that a path from a source to a

destination might not exist at a particular point in time, but jointly (over

time) the destination is reachable from the source. For practicality’s sake,

we will assume that all destinations are reachable from all sources in the

network, but we have to be aware that this necessitates the construction of

a time-varying-graph (TVG) routing path, i.e., a routing path where certain

5

edges can only be traversed at certain (recurring, usually periodically) time

periods. We consider the definition of topology to be consistent with the

use of the term in TVG literature [60].

• Next, without transmission scheduling, the interaction of transmission

attempts from nearby DC nodes may reduce the throughput of the network

as a rush of packet transmissions happens when a link is active, i.e., both

end points are ON. Using a random-access protocol like ALOHA may not

be the best idea under the circumstances. Given that, as we will see, we

know the DC parameters (and might even be able to control them), it

should be possible to algorithmically schedule transmissions in a way that

collisions can be avoided. We consider therefore a scheduling problem, in

the sense of arranging transmissions to serve multiple flows when nodes

have a link between them, i.e., during the (potentially brief) periods that

their ON periods overlap.

• Finally, by switching nodes (transceivers) OFF, we inescapably reduce the

attainable throughput to a certain degree. We therefore need to find ways

to counter this throughput reduction by exploiting other mechanisms. In

particular, we consider the application of Network Coding (NC), which

will be discussed in detail later.

1.2 ASSUMPTIONS AND METHODOLOGICAL OVERVIEW

In our work, we assume that the traffic is well understood by the network

designer. This is not an unreasonable assumption as certain types networks, such

as WSNs, are built with particular applications in mind in terms of the kind of

data and the pattern with which such data are produced, e.g., by virtue of

periodically sampling a natural phenomenon. We also consider acceptable the use

of centralized algorithms to decide how to configure and control such a network,

in particular if its layout and physical topology is unlikely to change (as is the

case with in many varieties of WSNs). Additionally, WSNs are routinely assumed

6

to need the support of a powerful sink node, or at least some other infrastructure

that gets to use the collected data or to further disseminate them. It is therefore

straightforward to argue that such an infrastructure can be used to help in the

design and configuration of a WSN using off-line centralized algorithms, possibly

uploading to the sensors configuration and scheduling information. Based on the

above-mentioned assumptions, it is totally natural to apply our work in WSNs

because energy efficiency is crucial in the networks. However, leaving the issue

of energy efficiency aside, our work is still applied in (generally)-wireless

networks with multiple origin-destination pairs of traffic flows as long as the

assummptions are satisfied.

To tackle the three main problems mentioned in the previous section, we use the

following approaches. First, for the time-varying routing problem, we notice that

the topology of the network also changes over time due to the duty cycles of the

nodes. In other words, changes in the DC-network’s topology can be described as

Time-Varying Graphs (TVGs) and the changes are too regular and frequent to be

modeled as “anomalies,” i.e., network faults or failures, as pointed out by [7], in

which TVG is the name of a unified framework outlined that integrates a vast

collection of concepts, formalisms, and results in the literature. To simplify the

problem in the early stage of study, we also assume the routing problem can be

solved separately by a time-varying fixed-single-path routing algorithm as

described in the work [8] of I. Chabini, [9] of B. Ding et al., and [10] of H. Chon

et al, which in the future work could be extended to time-varying multi-path

routing algorithms. Hence, the results of predetermined routing paths from the

routing algorithm are used as part of the input to the subsequent scheduling

algorithm.

For the scheduling problem, we use the TDMA skew/staggered scheme, in which

time is divided into slots and all the nodes are synchronously scheduled in a

contention-free manner. Particularly, they are not required to wake up the same

time. For simplicity of description, let’s assume that we are given the duty cycle

characteristics of each node �, in the form of a period T�, the active (ON) period

7

α�, and the phase ϕ� of the active period, relative to time zero (of course,

ϕ� < T�) as described in Figure 1.2. With the skew/staggered scheme, phase ϕ�

of each node is usually different from each other. Besides, cycle period T� and

active period α� of each node are not necessarily the same as those of the others.

In other words, the duty cycle characteristics of each node � are expressed in our

work by the 〈ϕ�, α�, T�〉 tuple.

Figure 1.2. The duty cycle characteristics of node �

For the simplicity of presentation, in our thesis we will almost always assume that

all T� are the same and constant, i.e., T� = T. For the same reason, we will also

frequently assume that α� is the same and constant, i.e., α� = α. As described

above, there are some reasons in having a non-constant α� though, such as to fit

the traffic load demands and/or energy reserves acquired in an energy

replenishment phase (if powered by renewable resources). However, we note that

our models and algorithms still work independently of the assumptions (details

provided later in the thesis).

To further increase the network capacity, we use STDMA (Spatial TDMA), an

extension of TDMA for multi-hop networks, which considers spatial reuse of

timeslots for nodes or links spread out geographically. In STDMA, a cycle or a

schedule of a fixed total number of timeslots is made up and repeated over time.

The cycle is corresponding to a TDMA frame, in which a node or a link is

allocated dedicated slots. The efficiency of the spatial reuse and hence the

implemention of a STDMA protocol relies on the scheduling algorithm, which

generates the schedule. Due to the differences of traffic load on links in multi-hop

networks, the schedule needs to take traffic into consideration similarly to the

8

traffic-sensitive scheduling algorithms in [11, 12, 13, 14]. More specifically, our

traffic-sensitive STDMA scheduling algorithm is to allocate timeslots to

transmissions from nodes, which depends on the link topology of the network and

the traffic rates emanating from the nodes. Furthermore, our scheduling algorithm

is not only to avoid collisions among the transmissions but also to “fairly

minimize” the waiting time for transmissions at the nodes, i.e., to avoid penalizing

particular flows. There are multiple criteria of how to fairly allocate bandwidth

resources to the flow rate demands. In our work, we use the popular and well-

studied criterion of max-min fairness.

Most importantly though, we attempt an unorthodox view of constructing TDMA

transmission schedules for arbitrary topology networks whose nodes duty cycle

(DC) in a periodic fashion. Namely, rather than exploring a purely algorithmic

approach we use a simulation-based technique whereby, assuming all traffic

sources are greedy, we expect a periodic behavior to develop at the steady state.

We extricate this periodic behavior and, with minor adjustments, construct a

template for the transmissions schedule. In short, our work [15] is based on the

thesis that in a network with periodic topology changes (as is the case with duty

cycling), fed by periodic traffic arrivals, and with deterministic behavior, the

system’s pattern of transmissions in the steady state ought to be a periodic one.

Seeing how the network transmissions occur during one such periodic “cycle” in

the steady state is a template which can be repeated continuously in the form of a

transmission schedule.

For the purposes of establishing a performance benchmark against which to

compare the constructed schedule, we consider a lexicographic maximization

formulation of the network throughput problem, i.e., in essence max-min fairness

objective. The lexmax formulation is implemented via our MP (max-min

programming) algorithm, which works similarly to a classic water-filling scheme.

The complete process is as follows: (a) first we use the MP algorithm to determine

the per-flow rates, (b) the rates determined from the first step guide the generation

of a slot-by-slot simulation, and (c) the steady state is detected and the (periodic)

9

template of transmissions is extricated and forms the basis of the TDMA

schedule. As long as the duty cycling behavior and the topology of the network is

known, the described process can take place off-line and the resulting constructed

schedule can be “downloaded” to the nodes for execution.

The process involves a number of non-trivial steps that can conspire to produce a

less-than-perfect result. For example, step (b) is a simulation performed with

global knowledge of the network topology and the state of the queues of all nodes,

yet in order to produce a maximal number of concurrent transmissions (needed to

exploit the spatial reuse in a large network) it resorts to using fast approximations

to the Maximum Weighted Independent Set (MWIS). The approximation can

result in “loss” of throughput compared to what would have been the per-slot

optimal. Note that the complexity of the approximation MWIS algorithm by [21]

used in our work is provided in Chapter 5. Additionally there exists a problem of

discretization of the rate allocation derived from the water-filling algorithm which

is typically a rational number but due to the nature of slotted schedule allocation it

has to be rounded to a ratio of an integer number of transmissions over the

(generally short) schedule length period. We add the fact that not all rates are

schedulable by virtue of the underlying interference graph [16] and that even

periodically scheduling slots to express different rates at a single node is a hard

problem in its own right [17]. To compound the complication, the underlying

communication graph is a TVG [18] and the reader can appreciate why a

simulation-based is, after all, not as outlandish a strategy as it would appear at

first. Our work is inspired by theoretical work in queueing systems, demonstrating

the periodic behavior of the steady state of networks of queues (roughly

corresponding to networks of nodes in our case) as described by Willie [19].

Albeit, our approach is a constructive one and it entails approximation steps

because we need to maximize the concurrent transmissions subject to the

constraints that links interfere with each other (contrary to the assumption of

independent links in classical networks of queues), and that nodes operate in a

half-duplex fashion.

10

To model the interference between simultaneous transmissions at the MAC-layer,

we use the protocol interference model from the work [20] of K. Jain et al,

according to which all possible simultaneous transmissions are mapped into

vertices of a conflict graph. Hence, simultaneous conflict-free transmissions are

corresponding to an independent set of the conflict graph at each timeslot. We

consider a particular variety of this formulation to complement the MMF

scheduling by means of MWIS calculation over the conflict graph (following the

work [21] of S. Sakai et al.).

For the throughput reduction problem, we consider the application of XOR-

pairwise NC approach from [22] with chain mode (detailed later), which is also a

special case of linear network coding [23]. This NC approach was originally

applied in wireless ad-hoc networks and certain conditions need to be met to make

NC worthwhile, e.g., two neighbour nodes being able to receive broadcast packets

from their common intermediate node. Even if these conditions are satisfied,

however, it does not mean this approach can be applied in a DC-WSN, primarily

due to the challenges of the time-varying topology. In a wireless network, network

coding is necessary to improve the total throughput and also to reduce network

congestion by combining packets destined for distinct users. To be more

applicable in wireless networks, as mentioned earlier network coding should be

accompanied with a scheduling algorithm, e.g., TDMA as proposed in our work,

to avoid collisions. In a duty-cycled network, network coding is even more

necessary because the time window for a node to access transmission media is

shortened, which results in the total throughput reduction exhibited as network

bottlenecks.

To gain more opportunities for coding with the XOR-pairwise coding, we design

a delay coding scheme, in which each intermediate node waits for “valid” packets

arrived, i.e., from its expected neighbor nodes, before coding. The delay coding

scheme is feasible in our work because of the following assumptions: (1) all the

routing paths of flows from sources to sinks are assumedly pre-determined,

known, and unchanged during the system operation because the system is a

11

deterministic one with fixed topology and given duty-cycles at nodes; (2) the

combination of any two valid packets for the XOR-pairwise coding at each

intermediate node is also assumedly pre-determined such that NC can be most

beneficial. Note that to be able to solve the issue in implementation, we will

propose, towards the end of the thesis, a heuristic approach of pairing possible

flows at an intermediate node; (3) the sources of traffic of all flows are assumed

greedy so that a source can introduce into the network as much traffic as it could

by seizing any and all transmission opportunities afforded to it. Note that we will

deal with the non-greedy sources of traffic at the end of the thesis. Next, we

present notation and models for the wireless network, the duty cycling, and the

traffic flows, as used throughout the rest of the thesis.

1.3 NOTATION AND DEFINITIONS

The duty cycled wireless sensor network is modeled as a set of nodes, �, a set of

directed links ℒ, and a set of flows ℱ. Unless stated otherwise, we assume that,

between a pair of nodes, u and v, that are within communication range of each

other, both links (u,v) and (v,u) exist in the link set ℒ, but the algorithms and

mechanisms described in this thesis treat each direction separately, and hence

apply even in cases where one of the link’s direction is not present.

Each node is characterized by a triplet 〈ϕ�, α�, T�〉, where T� is its duty cyling

awake+sleep (ON+OFF) period, ϕ� is the phase, i.e., the instant within T� at

which the node switches to ON, and α� is the duration of its awake (ON) period.

For simplicity of presentation, in the following we assume homogeneous nodes,

i.e., nodes that have the same period T� (and we then denote it by T) and the same

α� (and we then denote it by α). Nevertheless, the techniques developed are,

unless indicated, indifferent to whether the nodes are homogeneous or not. This is

due to the fact that the introduced techniques have been developed around the

definition of “stages” explained next.

12

(a.1) Link topology

(a.2) States ON/OFF of nodes (ON slots are gray)

(b) Multi-hop flows

(c.1) CG during �(�)

(c.2) CG during �(�)

(c.3) CG during �(�)

Figure 1.3. An illustrative example of the defined notation.

13

The communication link between two nodes, within communication range of each

other, is not continuously “present” as it depends on whether the two endpoint

nodes are both ON. Time is assumed to be slotted and every packet has length of

one slot. For computational convenience, we divide time into (a repeating

sequence of) stages, �(�), where each stage consists of a integer number of slots.

A stage is defined as a sequence of successive time slots during which the duty-

cycling state (ON or OFF) of all nodes remains the same, i.e., no node switches

state. Hence, switching of duty-cylcing state occurs only at the boundary between

stages. The computations, which are described in this thesis, are only concerned

with the stages, �(�), and for efficiency reasons only for stages in which at least

one active (both endpoints are ON) link (across all nodes) exists. Note that due to

the periodicity of duty cycling, the stages are also repeated in a periodic fashion.

Hence, we can determine the number of such distinct and periodically repeating

stages, which we denote by K. Stages �(�) can be determined in polynomial time

from the active periods of all nodes during cycle T using a simple sorting process.

Exampe 1.1. For illustration, let us consider a simple duty-cycled network with

four nodes � ∈ � = {1, 2, 3, 4}, six directed wireless links in the link set ℒ =

{��, ��, ��, ��, ��, � } shown in Figure 1.3.a.1. The DC-configurations, i.e.,

〈ϕ�, α�, T�〉, of these nodes is as shown in Figure 1.3.a.2, which results in a

sequence of three stages (K=3), in which the link topology is unchanged,

repeating periodically with a period T. Note that for computational efficiency,

duration from slot TS16 to slot TS32 in Figure 1.3.a.2 is not considered as a stage

because there is no active link (both its ends are ON) during the duration.

We define each multi-hop flow ! ∈ ℱ as ! = (!", !#), where !" = $(!) is the

source node and !# = %(!) is the destination node. Unless otherwise noted, we

assume that all traffic sources, hence all traffic flows, are greedy and attempt to

get packets delivered to their destination at the highest rate possible. Each directed

link � ∈ ℒ is specified by a pair of nodes as � = (�", �#), where �" = $(�) is the

origin and �# = %(�) is the destination of link �. We also assume that each flow is

14

routed across a predetermined (single) path, which is a sequence of directed links /

arcs. Note that a technicality we have to assume is that, for all the paths followed

by flows, reachability from source to destination is guaranteed, i.e, there exist

overlaps of the ON intervals between the pairs of nodes that define each arc used

in the routing path of a flow. Nevertheless, such overlaps may be brief and hence

not all arcs along a routing path of a flow can sustain the same traffic rate. The

less the overlap, the more constrained (“bottlenecked”) the possible achievable

rate of the flow.

We define a sub-flow as part of a flow over a specific link/arc on its routing path

during a particular stage. Specifically, given ℱ, ℒ and � defined earlier, we

define &' to be the rate of flow ! (hence, the rate from the source to the destination

of the flow) and denote &'
(�)(�) as the sub-flow rate, i.e., the flow rate of ! over

link � during �(�). Naturally, if not both of the link’s endpoints are ON in a stage,

the sub-flow rate of any flows using that link during that stage is zero. Note that

with the assumption of single-path routing, each sub-flow corresponds to a single

link on the path from source to destination. Hence, we denote (!, �) as a sub-flow

of flow ! over link �. For the sake of description, a link with both endpoints being

active in a slot will be called an ON (or active) link in the slot. Otherwise, a link is

called an OFF (or inactive) link. Correspondingly, sub-flows traversing an ON (or

OFF) link are then called, respectively, ON (or OFF) sub-flows in a specific slot.

Two sub-flows that are ON in the same slot, contend with each other if the

receiver end of one is within the transmission range of the transmitter of the other

(and vice versa). Note that the interference model is the same as that in the work

by Li [26]. The relationship of contending sub-flows is characterized by a sub-

flow contention graph (CG) where vertices correspond to sub-flows and an edge

between two sub-flows indicates the two are contending. We define as contention

domain, in which each sub-flow contends with at least another sub-flow. Hence,

there may be multiple contention domains in a sub-flow contention graph. The

contention domains correspond to maximal cliques (∈) in the contention graph

15

(where) is the set of all maximal cliques in the contention graph). An implication

of the time-varying nature of the graph is that the set of maximal cliques is also

time-varying, because the contention graph changes to consist at any point in time

of links that not only interfere because of the topology, but are also ON at that

point in time. Note that a contending sub-flow can belong to multiple maximal

cliques. An implication is that the maximal cliques determine the maximal rate

that a sub-flow rate can be allocated among other contending sub-flows in the

same clique. Finally, note that since the set of active links does not change during

each stage, the contention graph remains the same throughout each stage, but is

different from stage to stage.

Returning to Example 1.1, note that we have defined two (opposite traversing)

flows !�, !� ∈ ℱ following respectively the paths {��, ��, ��} and {��, ��, � }

indicated in Figure 1.3.b. During the stages, flow !� is represented by the three

sub-flow rates &'*

(�)
(��), &'*

(�)
(��), and &'*

(�)
(��), and flow !� is represented by the

three sub-flow rates &'+

(�)
(��), &'+

(�)
(��) and &'+

(�)
(�). As noted, the contention graph

is different from one stage to the next. In this case, we expect that since we have

three stages, there will be three distinct contention graphs, each of them “lasting”

as long as the corresponding stage. Figures 1.3.c.1, 1.3.c.2, and 1.3.c.3, illustrate,

respectively, the contention graphs in each stage for the given sub-flow graph of

Figure 1.3.b and the duty-cycling behavior of Figure 1.3.a.2. Notice that in this

particular example, the contention graph at each stage consists of a single

maximal clique.

For the sake of implementing the contention graph in each stage, we store all the

M contending sub-flows into a two-dimension contention matrix M_SF [0..M-

1][0..M-1], in which entry M_SF [,][-] indicates whether sub-flow , is contending

with sub-flow - (e.g, presented by 1) or not (e.g, presented by 0). Note that the

contention matrix is unchanged after it is created while the contention graph can

change from one timeslot to the next.

16

1.4 ADDITIONAL NOTATION FOR NETWORK CODING

In Chapter 4 we use XOR network coding between pairs of flows. An example is

shown in Figure 1.4.c. It is a coding scheme similar to the chain mode of COPE

[22], which introduces two main types of network coding, one without

opportunistic listening and the other with oppornistic listening (more details

described later in Section 2.5). In other words, we consider a simple linear NC

without opportunistic listening, where router nodes along a routing path (e.g.,

nodes from 2 to n-1) broadcast a combination of at most two packets, i.e.,

potentially one out of every two transmissions can be saved. Packets are coded at

router nodes using an XOR operation and the original packets are decoded at each

node that receives the coded packet (of two combined packets) and has previously

transmitted one of the two packets combined in the coded packet, i.e., it is a

scheme of hop-by-hop decoding (more information with an illustrative example

and a delay coding algorithm will be provided later in Section 4.2.1).

In Chapter 4 we draw the distinction between two packet types: native packets

(i.e., non-coded packets), and coded packets, i.e., created by XORing two native

packets. In the example of Figures 1.4.a and 1.4.b, two native packets .� and .�

are shown. The receiver can decode a coded packet, e.g., .� ⊕ .�, by XORing

the received packet with one of .� or .�, to obtain the other one. Hence, over a

given link, we can distinguish flows of coded packets and flows of native packets.

The native/non-coded sub-flows remain as defined earlier, i.e., they express the

flow of (native) packets on an arc of the path of a flow. The coded packets, on the

other hand, and the coded sub-flows we introduce, are relevant to two sub-flows,

namely subflows of different flows that traverse a link in opposite directions.

Whereas a native sub-flow’s transmissions are received by a single receiver, the

coded sub-flow’s transmsisisons are to be received by two receivers.

17

(a) Transmissions without NC (b) Transmissions with NC

(c) Topology with XOR-pairwise NC

Figure 1.4. An illustrative example of XOR-pairwise

network coding.

For the sake of completeness, note that in a DC WSN with XOR-like network

coding, a coded sub-flow can be used by a node if two necessary conditions are

satisfied: (1) there exists a common overlap across the active periods of the three

nodes, i.e., of the transmitter and of the two receiving nodes of the coded sub-

flow; (2) there exist two opposite traversing sub-flows crossing the node, i.e., they

belong to two different multi-hop flows traversing in reverse directions across a

common sub-path (a sub-path consisting of two or more hops) in which common

sub-path the transmitting node is one of the hops.

In our work, given all the flows and the duty-cycles of nodes are known, we

assume that all the single-routing paths of the flows are calculated in advance.

Hence, we can pre-determine the coded sub-flows that satisfy the two conditions

and hence pre-determine which nodes will be transmitting coded sub-flows in

addition to native sub-flows. Technically, this means that we can tell in advance

which combination of two non-coded sub-flows could be used to generate a coded

sub-flow.

The best combination of any two non-coded sub-flows into a coded sub-flow (if it

is indeed possible) can be determined in advance by enumerating all possible pair-

wise combinations and then selecting the combinations that can make the best

18

benefits of NC (details later). Because of the combinatorial nature of this

approach, we will use in Chapter 4 a restricted selection criterion for the pairs of

flows we will code, and discuss alternatives in Chapter 5.

We extend the notation introduced earlier to capture the notion of coded sub-

flows. For any !�, !� ∈ ℱ and any ��, �� ∈ ℒ, we denote &'*, '+

(�)
(��, ��) as the rate of

flow !� transmitted over link �� and the rate of flow !� transmitted over link ��

using NC during �(�). Hence, we define notation (!�, !�, ��, ��) of a coded sub-

flow combined from flows !� and !� over links �� and ��, respectively.

This new variable can only be defined if the two links �� and �� are both

simultaneously active (corresponding to necessary condition (1) above) and such

that $(��) = $(��) and �� ≠ �� (corresponding to necessary condition (2) above).

Variable &'*, '+

(�)
(��, ��) represents the rate of !� (resp. !�) that is network-coded and

transmitted over �� (resp. ��) during �(�). During each �(�), let &'

(�)
(�) denote the

rate of flow ! over an active link �, also called the (native) sub-flow rate of flow

!, i.e., corresponding to packets that are not encoded with NC. Also, let � 2 be

defined as the reverse link of active link �, i.e., the ON link such that $(� 2) = %(�)

and %(� 2) = $(�). In principle, in Chapter 4 we allow each node to relay part of

each flow it receives with NC (as a coded sub-flow rate) and the remaining part

without NC (as a native sub-flow rate).

The definition of contention we described earlier, and hence that of contention

graph between sub-flows (and hence the definition of the contention matrix), still

holds if we extend it to now include coded sub-flows as well. Each coded sub-

flow is also a vertex in the contention graph (or an index in the contention matrix).

The difference is that a coded sub-flow has two receivers, and hence is in conflict

with any other sub-flow (coded or native) which would result in collision at any of

its two receivers.

19

For illustration, let us consider again the simple duty-cycled network with four

nodes � ∈ � = {1, 2, 3, 4}, six directed wireless links in the link set ℒ =

{��, ��, ��, ��, ��, � } shown in Figure 1.5.a.1, and two flows !�, !� ∈ ℱ traversing in

opposite directions along two single-routing paths {��, ��, ��} and {��, ��, � }

indicated in Figure 1.5.b. The DC-configurations, i.e., 〈ϕ�, α�, T�〉, of the nodes is

shown in Figure 1.5.a.2, and the period T is divided into three stages �(�). As

shown in Figure 1.5.b, during each stage 3, flow !� is now represented by five

sub-flow components &'*

(�)
(��), &'*

(�)
(��), &'*, '+

(�)
(��, �), &'*

(�)
(��) and &'*, '+

(�)
(��, ��),

and flow !� is represented by five sub-flow components &'*

(�)
(��), &'*

(�)
(��),

&'*, '+

(�)
(��, ��), &'*

(�)
(�) and &'*, '+

(�)
(��, �). Hence, the sub-flow contention graph made

up from the all the coded and native sub-flow components present in each stage

�(�), �(�), and �(�) correspond to Figures 1.5.c1, 1.5.c.2, and 1.5.c.3,

respectively.

20

(a.1) Link topology

(a.2) States ON/OFF of nodes (ON slots are gray)

(b) Multi-hop flows

(c.1) CG during �(�)

(c.2) CG during �(�)

(c.3) CG during �(�)

Figure 1.5. An illustrative example for a DC-WSN with NC.

21

1.5 BROAD OBJECTIVES AND RESEARCH QUESTIONS

Our overall objectives are to formulate and improve where possible the

performance of a DC WSN. In other words, we investigate the trade-off of

throughput and energy consumption under DC configurations. However our

ability to formulate the performance is approached from a pragmatic stance, i.e.,

what is the performance of an actual constructed schedule given the particular DC

WSN. As we will see in the thesis, the rates established through an optimization

solution need to be expressed as a schedule and a degree of success is whether the

constructed schedules indeed abide by the rate specifications imposed on them.

One aspect is the question of formulation of the relation between duty-cycling and

achievable throughput, as well as the related energy efficiency (if there is any).

This line of inquiry accepts that we do not have control over the DC of the nodes,

and it is given to us as-is. In this case, the best we can hope for is that we are

making the best use possible of the particular setup. Naturally, we focus first on

the ability of such a network to attain a level of throughput, or to be more exact, to

ask whether a system with a particular DC configuration can support a given set

of flow with greedy demands.

A second aspect is a question of mitigation of any throughput reduction in a DC

network by means of using NC. Here, as in the previous paragraph, we are trying

to formulate what would be the throughput ability of the system if, additionally,

we employed NC. The reason we look into NC as a potential solution is that it is

in agreement with the primary objective of saving energy. The combination of

multiple packets into coded NC packets has the potential to save energy, and

hence it is a throughput improvement technique that aligns well with the energy

savings intent of DC.

22

1.6 CONTRIBUTIONS AND THESIS OUTLINE

We have sought to answer the broad questions above-mentioned in the thesis,

through the following contributions:

• In our first attempt to answer the second research question (which predates

the rest of the thesis content), we proposed a DC-NC protocol at the MAC

layer applicable to a limited set of topologies, which is used for both

energy savings and throughput improvement in duty-cycled WSNs.

Associated with the protocol, a heuristic NC coding algorithm with

opportunistic listening was also proposed.

• In order to broaden the applicability of our schemes to general topologies,

we proposed a general approach of modeling time-varying topologies of

duty-cycled networks via node phases by dividing node cycles into

unchanged-topology stages, in which numerical rates of multi-hop flows

can be expressed as solution of lex-max formulations (assuming pre-

determined single-shortest-path routing) and computed via the MP (max-

min programming) algorithm.

• We subsequently introduced a novel simulation-based approach of

constructing TDMA transmission schedules for arbitrary topology

networks whose wireless nodes duty cycle in a periodic fashion. This was

performed by exploiting the periodic steady state which induces

(approximately) a periodic pattern of transmissions. This approach was

successful because of the combined impact of the periodic network

behavior and the determinism in determining which nodes transmit, and

for which flow, at each timeslot.

• Back into the domain of the second research question, we proposed a

generaliation of the modeling approach and the schedule construction to

include NC, in which we have noted energy consumption improvement

23

potential of even 23%, and total throughput improvement as high as 50%.

Towards this goal, the lex-max formulations solved by the MP algorithm

have been extended to capture the impact of NC. Particularly, a delay

coding scheme was proposed to extract better performance out of NC.

• We also proposed an approach (equivalent to changing the DC

configurations) of how to turn off active spots of the flow in the template

from the receiver side when the average traffic load is actually much less

than expected. This extends the applicability of the technique to cases

where the traffic is not behaving in a greedy fashion. Further extensions to

accommodate heterogeneous duty-cycles of nodes, straightforward

maximum buffer occupancy calculations, and heuristics for flow selection

to apply NC are described as well.

This thesis is split into six chapters. The present chapter introduces the scope and

motivation of our study, the overall methodological approach and assumptions.

The notation and definitions for the rest of the thesis are also presented in the

chapter. The remaining chapters are organized as follows:

Chapter 2 describes the earlier work of five main areas in the literature that are

related to our study. It starts with the work of duty-cycling (DC), in which DC

taxonomy is used to classify our DC scheme. Then the chapter highlights popular

TDMA and STDMA algorithms, which take traffic intensity or/and max-min

fairness (MMF) into consideration as our scheduling algorithm does when

constructing a schedule. The concept of the periodic steady state is presented

referring to the existence and proofs of the periodic steady state of a multi-server

loss system. Finally Chapter 2 incorporates our early work on combining DC and

NC, albeit for particular topology and with a specific non-TDMA MAC protocol.

Chapter 3 presents our general TDMA scheduling algorithm for DC WSNs and

the process of constructing a schedule template, which is later downloaded to

nodes for use. It starts by modeling time-varying topologies of duty-cycled

24

networks via what we call “stages”. A lex-max formulation of the rate assignment

problem is shown alongside the MP algorithm used to solve it. The derived rates

are used as targets for the scheduling algorithm with the help of an approximate

maximum weighted independent set (MWIS) algorithm which attempts to

concurrently schedule as many sub-flows as possible in each slot, based on their

weights. After the periodic behavior of sub-flow transmissions is detected at the

steady state, a schedule template (with minor adjustments) is constructed.

Chapter 4 provides the extension of modeling time-varying topologies of DC

networks to the use of NC, with the intention of exploiting NC to improve the

total throughput. It starts with the extension of the MP algorithm associated with

lex-max formulations so that it is applicable when NC is used. The chapter also

describes the extension of the scheduling algorithm associated with the excision

process for constructing a schedule template with minor adjustment. It finally

presents our delay coding scheme, which is designed to further exploit the

potential of NC.

Chapter 5 outlines extensions and generalizations of our work. Namely, it

includes: the impact of non-greedy traffic from sources of flows, heterogeneous

duty-cycles of nodes, and elimination of idle listening when the traffic is less than

what anticipate by the greedy assumption. Additionally, the chapter describes

proposed algorithms to compute the maximum length of transmission buffers and

to select a suboptimal coding combination of possible flows in the case of NC. A

review of the computional overhead of the MWIS algorithm, which is used in

each timeslot, is also provided.

Chapter 6 briefly describes and discusses our contributions, and their limitations.

We have unearthed several interesting and challenging open problems during the

research for this thesis, which are also described in the end of this final chapter.

25

CHAPTER 2

RELATED WORK

2.1 DUTY CYCLING CLASSIFICATION

The work [24] of R. C. Carrano et al. proposes a taxonomy of DC mechanisms in

WSNs. DC protocols are classified based on their fashion, either synchronous or

asynchronous or semi-synchronous, of coordinating the schedules of sensor nodes

as depicted in Figure 2.1. The class of synchronous schemes is divided further

into two branches, rendezvous and skew/staggered. In the first branch, all the

nodes have to turn their radio ON and OFF at the same time, which requires strict

time synchronization globally among the nodes. Meantime, in the second branch

each node is scheduled to wake up in a “ladder” pattern, according to its depth in

the topology tree. The skew/staggered wake-up approaches are mainly aimed to

reduce the end-to-end delay and particularly the Data Forwarding Interrupt

Problem described in the work of G. Lu et al. [25], which happens because an

upstream node, unaware that a frame is to come, goes to sleep before this frame

arrives and therefore causes the data flow be interrupted.

Figure 2.1. Taxonomy for DC techniques (adopted from [24])

26

The scheduling approach we develop in this thesis assumes that time is divided

into slots and all the nodes are synchronously scheduled in a contention-free

manner. Hence, it is a synchronous scheme. Furthermore, the nodes in our scheme

are not required to wake up the same time and hence our scheme could be

classified into the skew/staggered schemes. However, our scheduling scheme also

assumes particular traffic behavior, mainly greedy sources of traffic (with some

refinements made in Chapter 5), and hence scheme is assumed to operate

continuously rather than invoked on-demand. The traffic is important in our work

because it influences the construction of the schedule, i.e., we need to derive per-

flow rates to create a schedule. Hence, a missing dimension not expressed by the

taxonomy in [24], yet important for our work is that of how to treat various traffic

sources, or, more specifically in our case, how to treat various flows.

Consequently, our work can be characterized as a synchronous skew/staggered

scheme but additionally it is traffic-aware.

2.2 TDMA SCHEDULING

There are two broad groups of MAC (Medium Access Control) protocols in

wireless networks, and hence in WSNs: contention-based access protocols and

TDMA (Time Division Multiple Access) protocols (including protocols that mix

elements of both). Contention-based MAC protocols, starting from ALOHA,

attempt transmissions on an as-needed basis which is fit for varying traffic

demands but forces the transceivers to be continuously ON in anticipation of

(unpredictable with respect to timing) receptions and for sensing the medium prior

to transmissions. On the other hand, with TDMA protocols, time is divided into

slots and each node or link is assigned to dedicated slots in order to avoid

collisions. While this family of protocols is excellent in terms of energy

consumption due to the fact that a node can disable the transceiver when no traffic

needs to be sent or received, they are considered as inflexible because they do not

adapt to random fluctuations of the traffic load.

27

In an attempt to increase the network capacity, STDMA (Spatial TDMA), is an

extension of TDMA for multi-hop networks that exploits spatial reuse of timeslots

for nodes (or links) that are spread out geographically. This idea makes a lot of

sense in a WSN, where we frequently assume multi-hop flows [26, 27] and single-

hop flows may not be feasible nor power efficient because of the scale of the

network [28]. In STDMA, a cycle or a schedule of a fixed total number of

timeslots is made up and repeated over time. Such techniques have a long history,

starting with the work of Nelson and Kleinrock [29] and Kleinrock and Silvester

[30]. During the TDMA cycle a node or a link is allocated a dedicated slot. The

main advantage is that due to spatial reuse in multi-hop networks, multiple nodes

or links in STDMA can share a single slot without collisions. The efficiency of

the spatial reuse and hence the implemention of a STDMA protocol hinge on the

scheduling algorithm that generates the schedule. Due to the differences of traffic

load on links in multi-hop networks, a schedule needs to be constructed that

honors such load differences. Some traffic-sensitive scheduling algorithms as in

[11, 12, 13, 14] have been proposed by making the schedule more adaptive, i.e.,

giving more time slots to a node or a link when it carries more traffic. An

immediate benefit of contructing an STDMA schedule that honors the various

traffic needs is that the average delay can be decreased considerably [12, 13, 14]

as nodes (links) do not have to wait an entire cycle until the next scheduled

transmission opportunity.

As an example of traffic-sensitive STDMA, [11] allocates slots depending on the

amount of uniform and point-to-point traffic passing through each node, which is

calculated by summing the load of all the outgoing link of that node. The

algorithm schedules the nodes in order of node ID and allocates the number of

slots to each node proportional to its traffic load. After a node’s required slots

have been scheduled, the algorithm attempts to schedule as many additional nodes

in this set of slots as possible. Instead of the node-oriented slot assignment of

[11], a link-oriented traffic-sensitive STDMA scheduling algorithm was proposed

in [12]. We adopt the same approach, i.e., link-oriented schedule construction in

28

our work because the link assignment is preferable to node assignment for its

ability to attain higher throughput as described, e.g., by Gronkvist in [14]. In fact,

the algorithm proposed in [12] is a combination of [29] (to build a basic schedule)

and [11] to allocate extra slots to heavier loaded links.

We pay particular attention to the work of Gronkvist [13, 14] that proposes a

traffic-sensitive scheduling algorithm very close to our assumptions. The

algorithm generates a STDMA schedule, in which each link is allocated a

guaranteed number of slots to carry over its traffic load. Each link has a priority,

whose value is proportional to the two factors, the relative traffic on the link and

the number of timeslots since the link was previously allocated a timeslot. This is

simply a ranking heuristic of the links, which bears some resemblance to the

maximum weighted independent set approximation we adopt in our scheme. The

algorithm is further improved for higher throughput by a novel assignment

strategy [14] in which the actual traffic in queue at the transmitter node of each

scheduled link is taken into account. However, [13] and [14] are different from

our approach in that they are unable to schedule enough slots to accurately (or

exactly for that matter) capture the rate demands of different flows (and hence of

different links). The shortcoming is a result of their reliance on only the relative

traffic load of the links instead of the actual, absolute, traffic (as in our

algorithm). In fact the rounding of relative loads (to generate integer multiples of

a normalized rate) results in the link’s rate in the constructed schedule by [13, 14]

to be different (more or less) by a non-trivial amount to what it should be. An

example of a simple topology and the result of Gronkvist’s scheme versus the

scheme we outline in Chapter 3 are provided in Appendix A.

2.3 RATE FAIRNESS

There are multiple criteria of how to fairly allocate bandwidth resources to traffic

flows. In our work, we use the popular and well-understood criterion of max-min

fairness. Informally, an allocation of a shared resource among multiple

29

participants is called max-min fair if (1) it is feasible and (2) an increase in the

allocation to any participant must result in a decrease in the allocation to some of

the other participants with equal or smaller allocation.

We assume that first the rates are calculated that satisfy the fairness criterion, and

then a schedule is constructed that stays faithful to those rates. This makes our

work similar to that of [31] and [32]. However, our work is different in certain

key assumptions: (1) we assume that the flows, by virtue of being multi-hop,

traverse multiple contention domains and are treated as such, as opposed to an

often used simplifying assumption that all flows are single-hop flows, or

equivalently confined to a single contention domain; but more importantly, (2) the

link topology in all known previous work is unchanged over time while the

underlying topology in our work is time-varying graph due to DC.

Similar to the approach of [31, 32], the scheduling algorithm by Tassiulas et al.

[33] also provides max-min scheduling in wireless ad-hoc networks and their

algorithm only considers single-hop flows. However, they do not need to

explicitly compute the max-min rates because the max-min fair allocation of

sessions is ensured by a token-based protocol that determines which links are

activated. Technically, their algorithm operates using a weight assignment (via the

token mechanism) and by subsequently solving the underlying maximum

weighted matching problem. However, their work is different from ours in that the

constraint of the single-hop contention in their work is defined differently from

that of our work. In their model, any two single-hop flows not sharing a node can

simultaneously transmit packets. This is because each node is assumed to have a

locally unique radio frequency or a transmission code and therefore transmissions

that do not have a common reception node can simultaneously carry on without

any interference. In other words, the simultaneous transmissions in each timeslot

constitute a matching, which is a set of edges such that no two of them have a

common vertex. Meanwhile, in our model any two single-hop flows within two

30

hops are contending with each other. More importantly, as in [31, 32], their work

does not consider the case of DC and hence of TVG topology.

In conclusion, the work in [26] bears also similarities to our work in the sense that

its purpose is to maximize the spatial reuse while maintaining a type of fairness

among multiple multi-hop flows. However, the definition of the fairness enforced

in [26] is different from the commonly understood max-min fairness and

eventually develops an algorithm which is controlled by a choice of weights to

each flow which does not reflect the max-min fairness. Finally, as is the case in all

previous work we have studied, the algorithm in [26] does not consider situations

of time-varying topologies such as those encountered in DC WSNs. In summary,

and to the best of our knowledge, there has not been any work in the literature

where a time-varyling topology of the kind found in DC WSNs was incorporated

into the fairness definition, and subsequently in the schedule construction process.

2.4 PERIODIC STEADY STATE

It should be clear at this point, that the periodic changes in the topology due to DC

are a source of complications. In this section we outline what can be described as

a benefit of this periodic behavior, which then plays a vital role in the technique

we develop for STDMA schedule construction. As already pointed out in Chapter

1, the network topology behavior is a periodic repetition of stages. Consider now

that a per-slot scheduling scheme has been developed (we later point to this being

based on an MWIS approximation) that behaves in a deterministic fashion. Add to

the configuration a non-random behavior of the traffic sources, such as the greedy

behavior we assume. The complete picture is that of a system with periodic and

deterministic behavior. As its dynamics will unfold over time, it ought to behave

in a periodic fashion, rather than randomly. It is precisely this conjecture, of the

periodic behavior of the system as a whole, on which we base the schedule

construction technique.

31

Specifically, the existence, and ways in which a periodic steady state behavior of

a queueing system, can be developed has been the subject of research in queuing

networks. For example, [34, 35, 36, 37, 38] show the existence of the periodic

steady state of a multi-server loss system is indeed the case, albeit under two

conditions, the periodic (hence non-random) inputs having a special structure, i.e.,

the arrival process is a Poisson process with a deterministic, periodic intensity

function, and the service- and arrival times are independent. However, the

independence assumption was subsequently dropped off in the work by Willie

[19] which had important ramifications to the applicability of the result as in

networks of queues the queues are generally correlated. Furthermore, [19]

showed that the specific structure of the periodic Poisson inputs is also

unnecessary and the only sufficient condition is that the traffic inputs are periodic.

An illustration of the periodic steady state is shown described in Figure 2.2

indicating the queue state of several queues developing over time. Regardless of

initial conditions, they behave periodically, i.e., their combine state exhibits

periodicity.

There are differences between the system considered in [19] and the one in our

work, which lead us to treat the anticipation for the periodic steady state as purely

a conjecture. However, from the results in Chapters 3 and 4, it appears that our

conjecture holds. From the differences between [19] and our work, the one with

most impact is that in a queueing system like that of [19] an arrival at a queue can

occur independently of any other arrivals at other queues, i.e., the “transfer” of

one job from one queue to the next does not block (or enable for that matter) the

“transfer” another job from another queue to another one. This behavior is similar

to what one would find in a wired network, if we were to see the nodes of the

network as queues and the links as the links between queues. However, in a

wireless setting operating under a collision free schedule, one transmission

(“transfer” from queue to queue) inhibits other such transmissions/transfers from

taking place.

32

Figure 2.2. Periodic steady state for periodic input

(adopted from [19])

2.5 NETWORK CODING

Network coding (NC) is a technique, which is used to improve the total

throughput and save energy. It is performed by combining multiple transmissions

into one. The throughput achieved by NC is upper-bounded by the minimum

capacity of all cuts according to the max-flow min-cut theorem [39]. It is known

that the upper-bound and a respective set of edge-disjoint paths can be achieved

using traditional routing (with polynomial time algorithms) in a unicast or

broadcast network. However, in a multicast network, the upper-bound cannot be

attained using store-and-forward routing but via adding computational tasks, i.e.,

network coding, performed at intermediate nodes [40].

One of the most distinctive features to differentiate wireless technology from

wired technology is its broadcast nature. This can cause packet collisions if a

contention-based MAC protocol is used. In order to apply NC in a wireless

network, it is preferable to use a scheduling algorithm to minimize such

interference/collisions. Otherwise, any gains from NC in a wireless setting are

negated by the existence of collisions. Even more limiting than wired networks,

wireless nodes cannot transmit and receive simultaneously, i.e., they behave in a

half-duplex fashion. Though NC was originally introduced to be used at Network

layer of the OSI model, in wireless networks, however, it has found applicability

33

at the MAC or Physical layer [41, 22]. A simple illustrative example in the

wireless context with three node topology is shown in Figure 2.3.a (taken from

[22]), in which Alice (or Bob) wants to exchange the packet 1 (or 2) via

intermediate router. Instead of broadcasting packets 1, 2 in sequence by the

traditional method (Figure 2.3.b), the router broadcasts 1 XOR 2 so that both

Alice and Bob can recover the packet of interest while the transmission cost can

be reduced. This method is a simple form of NC.

(a) Current Approach (adopted from [22])

(b) COPE (adopted from [22])

Figure 2.3. An Illustrative example of network coding

Since DC and NC are two techniques that can be used to save energy in a WSN, it

makes sense to combine them together. However, the efforts in this direction have

been few and far between. Our original work (Ho and Nikolaidis [42] is described

in some detail in Section 2.6) as well as the work of Chandanala et al. [43] and

Rout and Ghosh [44] are the only exceptions we are aware of.

Similar to the work in this thesis, [44] uses pairwise XOR NC, which is a special

case of linear NC [23]. The advantage of XOR NC is its simplicity. Also, in our

34

earlier work [42] as well as in [43], opportunistic coding, in the vein of the one by

Katti et al. [22], is used in that all destined receiver nodes need to overhear and

store packets transmitted from their neighbor nodes for decoding. The advantage

of opportunistic coding over the pairwise XOR NC is the ability to combine

multiple transmissions (>2), i.e., more than one transmission can be saved.

However, an intermediate sender must be able to broadcast to multiple destined

receivers with valid packets for decoding, which is highy dependent on a specific

application’s traffic and not always feasible.

The work in [43] considers the simultaneous use of DC and the opportunistic NC

for aggressively saving energy. In order to do this, it exploits the packet

redundancy which happens particularly in flooding applications. Then, a node is

put to sleep, i.e., DC is used, when a redundant transmission happens, i.e., after

the node has received and successfully decoded a sequence of coded packets.

Their work is different from our work in that they assume there is a single

destination/sink and all senders’ traffic is destined to this single sink. Instead, we

assume the more general case that each flow can have a different originating and

destination node. Additionally [43], having no real notion of competing flows,

does not consider any fairness in terms of the rate allocation across flows.

Finally, in [44] a combination of DC and NC is proposed to enhance the lifetime

of WSNs. To this end, [44] focuses on improving the energy efficiency of the

bottleneck zone around the sink node and hence leads to overall improvement of

the network lifetime. The work in [44] differs from this thesis in that, again, the

traffic is destined to a single node, but additionally, the use of combined DC and

NC addresses specifically the region around the sink, while we assume its use

throughout the network. Additionally, [44] relies on a simple random DC, which

appears to have served only in the development of an analytical understanding of

the upper-bound of the network lifetime, rather than be justified on operational

reasons.

35

2.6 EARLY RESULTS

In this section we present some early results obtained at the beginning steps of this

thesis that have also appeared as a conference publication [42]. In this early work

we attempted to direct our attention directly to the combined DC+NC problem.

Given the complexity of this endeavour, certain simplifications had to be

introduced, but the overall intention was to explore whether there is indeed

potential in combining DC+NC; a question that we answered in the affirmative. In

the following we describe the assumptions that were used in this earlier work. The

reader is forewarned that these are assumptions pertaining only to the work

described in Section 2.6, while the rest of the thesis obeys the assumptions put

earlier in the introduction.

Specifically, in this early work we consider networks where the underlying

physical communication graph is completely connected, i.e., each node is within

communication range of each other. Additionally, we assume that the application

implemented is that of sensing coverage, and that it is sufficient for one of the

nodes to be active for the sensing to take place, i.e., the nodes “take turns” (in the

sense of their DC) such that there is at least one node in the ON state at any point

in time; a scenario familiar to applications where the cost of sensing needs to

amortized across a number of co-located nodes. Given that there exists a single

contention domain (and hence a single clique of contending nodes at any point in

time), the question of STDMA scheduling (its ‘S’ aspect) becomes moot. Instead

we describe a distributed MAC protocol to control the transmission instants.

2.6.1 SCHEME OVERVIEW

To illustrate how this early scheme works, let us consider a cluster of four

wireless sensor nodes, 0, 1, 2 and 3, in which each node is within the

communication range of others (Figure 2.4.a, 2.4.b, and 2.4.c). To save energy the

transceiver of node 1 in Figure 2.4.a (or node 2 in Figure 2.4.b) is intentionally

turned off (represented by a white circle). Let us assume that because it is OFF it

36

cannot receive any incoming packets and thus misses packet x1 in Figure 2.4.a (or

packet x2 in Figure 2.4.b) from node 0. However, nodes 3 and 2 in Figure 2.4.a (or

nodes 3 and 1 in Figure 2.4.b), which are in the ON state (represented by a black

circle) may overhear these missed packets. Later, node 3 can XOR the two

packets x1 and x2 and broadcast the result, when both nodes 1 and 2 are turned ON

(Figure 2.4.c). Nodes 1 and 2 can then obtain each other’s packet by XORing the

XOR-ed packet with their overheard packet. Thus, a transmission can be saved

here because both nodes 1 and 2 can regain their missed packets just from a single

transmission.

Figure 2.4. Illustration of how the scheme in [42] operates.

The main requirements that are synthesized to produce the DC+NC combination

are: (1) the load of produced/incoming packets (think of them as data generated

by sensing) should be distributed evenly across the clique's nodes so that every

node will consume approximately equal energy in acting as “representative” of

the clique, (2) there should always be some node in the ON state to receive

incoming packets for the clique, (3) to be meaningful, the ON period of a node

must overlap, at some point, with the ON period of other nodes to allow

transmissions to be delivered eventually to their destinations -- but more crucially,

to make use of NC, there should be periods where a node's ON period overlaps at

the same time with the ON periods of two or more other nodes, and, (4) an explicit

acknowledgement mechanism is needed to determine correctly decoded packets,

in order to prevent redundant coding.

37

2.6.1.1 SYNCHRONIZED DC

Figure 2.5. Synchronized DC for a 4-node network.

To satisfy the previously set requirements, and (3) in particular, we assume that

there are N nodes i identified from (0 to N-1). These nodes have the same awake-

sleep cycle length T (so Tn = T) consisting of the awake (ON) period α which is

the same for all nodes (so αn = α). With respect to the phases, ϕ�, the nodes are

assumed synchronized in such a way that the awake interval α of a node with id i

(from 1 to N-1) is delayed with respect to the previous (i-1) node's α by T/N and

node 0 acts as the time reference, i.e. ϕ� = �(
�

�
). For example, in Figure 2.5, in a

clique of 4 nodes with ids from 0 to 3, the α of node 1 is starts after node 0’s, node

2’s after node 1’s, and node 3’s after node 2’s, each phased T/4 time units apart.

An additional requirement is that α is larger than T/N so that at any point in time

there is always an awake node within the clique to receive incoming packets. In

other words, T ≥ α ≥ T/N. Notice also that the length α determines the extent of

overlap with the ON period of other nodes. For the sake of terminology, if two

nodes have overlapping ON periods, they are called overlapped nodes (otherwise

they are called non-overlapped nodes).

38

A node needs to infer the packet reception status from its overlapped nodes, but

given the DC timing outlined above, the process is greatly simplified. Assume that

all nodes know the (trivial) DC timing as defined. If a node is ON, then it can be

implied that they are ready to receive incoming packets (packet losses due to link

errors are not accounted for). If the node is OFF then it is trivial to surmise that

any packet sent to that node is going to be lost. In principle, an ON-BEACON

packet can be broadcast from a node at the beginning of its α periods which will

be received by the nodes overlapped with it at that point, thus allowing those other

nodes to infer whether the node is ON or OFF. It is also assumed that this

approach is not needed (or needed often) if this scheme could rely on perfectly

synchronized clocks, in which case, the exchange of the ON-BEACON can

happen at the initialization phase (during a first period of length T where all nodes

are assumed to be ON continuously to exchange those ON-BEACONS) and all

subsequent sleep periods are synchronized with respect to this first cycle.

Next, to demonstrate how the NC coding applies with respect to the synchronized

schedule, consider Figure 2.5. Suppose that packet 11, in which the main digit

represents the packet’s receiver node (1 in this case) and the subscript digit (1 in

this case) is the packet’s serial number, is transmitted from node 3 to node 1.

Knowing that node 1 is in its sleep period, nodes 0 and 2, which are in their awake

periods, overhear this packet and consider it as a missed packet. Note that the

overhearing is indicated by two non-dotted arrows from node 3 to nodes 0 and 2.

Similarly, since packet 22 is transmitted from node 3 to node 2, which is currently

sleeping, this missed packet is then overheard by nodes 0 and 1, which are awake

at this moment. Note that the overhearing is indicated by two non-dotted arrows

from node 3 to nodes 0 and 1. Hence, the two missed packets 11 and 22 can be

XOR-ed into a single encoded packet and broadcast from node 0 to both nodes 1

and 2 when they are both awake so that node 1 with packet 22 can decode this

encoded packet to regain packet 11 and node 2 with packet 11 can decode it to

regain packet 22. Note that the broadcasting is indicated by two dotted arrows

from node 0 to nodes 1 and 2. The reader may wonder why node 3 did not wait

39

until node 1 (node 2) woke up and then transmitted packet 11 (packet 22) to the

node instead of transmitting the packet right away. This is mainly aimed to create

more opportunities for network coding to happen so that transmissions and

therefore energy can be saved. Note that as described in [22], with the

opportunistic network coding we can combine more than 2 packets into a coded

packet and then more than one transmission can be saved by a single coded

transmission. With the NC application, we are well aware of packet delay that

may cause by the coding scheme. Since the delay is obvious, the early work only

considers throughput and energy.

2.6.1.2 ACKNOWLEDGEMENT MECHANISM

A node that (having received a suitable NC packet) successfully decodes a

previously missed packet, should reply with an ACK as soon as possible to

prevent further coding attempts to include the (now recovered) packet. The same

ACK is in fact of value not only to the sender of the NC packet but also to any

other (overlapped) node that might have overheard the same missed packet and

could attempt to include them in its NC packets in the future.

To be exact, the process of acknowledgements in the scheme works as follows:

the sender node that transmitted an NC packet which combines some missed

packets implicitly assumes that the receiving nodes will successfully decode the

NC packet. Hence, immediately after the transmission, the sender removes the

overheard packets that contributed to the NC packet from its own cache.

Additionally, any other node that receives the NC packet and has overheard the

missed packets that are contained in the NC packet, will also assume that the

receiving nodes will correctly decode the packets they miss, and hence remove the

corresponding overheard packets from their caches. Finally, for nodes that have

overheard the missed packets but have not received this NC packet because either

they were OFF or just failed to receive it (due to limited link reliability), they will

get the chance to remove those packets from their caches when they hear the ACK

40

packet from the destinations that successfully decoded missed packets. At each

node, the ACK packet triggered from successful decoding is combined with the

rest of the pending ACK packets of the same node and they are transmitted

piggybacked on the next NC packet the node will get an opportunity to transmit.

Note that because transmissions (including the piggybacked ACKs) are not

guaranteed to be received, a final safety mechanism for the disposal of cached

packets is a timeout, which, when it expires, drops the corresponding packet from

the cache, if its successful reception has not been confirmed so far. With the

above mechanisms, it is able to bound the number of cached packets, accepting

that an occasional loss of ability to deliver a packet is considered acceptable if it is

fairly rare. In the simulations, the packet delivery ratio captures the overall ability

to deliver (directly or via NC packets) the combined impact of all the above

mechanisms.

For example, in Figure 2.5, after node 0 has transmitted an NC packet combining

the missed packets 11 and 22 destined for respective nodes 1 and 2, node 0

implicitly assumes that nodes 1 and 2 will successfully decode the NC packet.

Therefore, node 0 removes those missed packets from its packet cache. In

addition, nodes 1 and 2, which have received the NC packet and have overheard

the missed packets, also remove those packets from their caches. For the other

sleeping overlapped nodes of nodes 1 and 2, if there are any, an ACK packet

which is incorporated in the pending ACK packets will become part of the header

in the next NC packet from nodes 1 and 2, which will be discussed furthermore in

the next section.

2.6.2 PROTOCOL ELEMENTS

2.6.2.1 PACKET TYPES

There are three packet types, ON-BEACON, TRAF-DATA, and XOR-ACKED

defined in the scheme. The purpose of the first one was briefly discussed in earlier

subsections and given the assumption of perfect synchronization it is not needed

41

beyond the first, initialization, phase when the phasing of the ON periods is

established.

The TRAF-DATA are the "pure" data traffic packets, and they can be generated

by any node in the network, externally from the clique or from any node in the

clique. A node in possession of a TRAF-DATA packet views the packet as

belonging into one of two possible (logically distinct) groups: either destined for

a node that overlaps with the current node, or destined to a non-overlapped node.

The first group can be delivered directly during the overlapped period. This group

includes packets that have been received by a node in its role as a "representative"

of the clique (because its destination is OFF), in which case the TRAF-DATA

packets will be cached and effort is going to go into combining many of them into

NC packets which, again, will be transmitted during the appropriate overlapped

period (overlapped with more than one other ON periods). The second group of

packets is transmitted from a node which has generated these packets according to

some application-level traffic needs, or it is forwarded from a node which has

received it during the node’s ON periods. How to forward the second group of

packets will be discussed in the next section.

The XOR-ACKED packets are the NC coded packets and they are transmitted by

a node during its ON periods to forward (in a single transmission) multiple missed

packets destined (as their eventual destination) for its overlapped nodes. As the

name suggests, XOR-ACKED contains both NC content and acknowledgements.

The NC part contains the sender addresses, the receiver addresses, and the serial

numbers of the missed packets, which are XOR-ed into the XOR-ACKED

packet’s payload. The ACK part contains the sender addresses, the receiver

addresses, and the serial numbers of the missed packets that the node has regained

through decoding XOR-ACKED packets received from its overlapped nodes but

has not acknowledged yet.

42

2.6.2.2 ROUTING ALGORITHM

(a)

(b)

Figure 2.6. Pictorial depiction of the DC timing and

related routing graph (N=8).

Not all TRAF-DATA packets will be able to be immediately (or at all) coded into

XOR-ACKED packets. Hence, a form of direct delivery is still necessary to bring

those packets to a node that overlaps with the destination (at which point its

inclusion in a NC packet might be possible), but this requires a rudimentary form

of routing. The node determines the least-hop path to the packet’s destination

43

node and forwards the packet. Note that when the duty cycle α/T is greater than

1/2, each node overlaps with the others and thus there is no non-overlapped node

in this situation. In other words, the routing algorithm is only needed in the

scheme when its duty cycle α /T is less than or equal to 1/2.

The least hop path is defined as the least number of transmissions between nodes

that overlap on the way to the destination. For illustration purposes, the duty

cycling of a clique of eight nodes, identified from 0 to 7, with duty cycle α/T (less

than 1/2) is considered in Figure 2.6.a. The solid line arcs, 00’ 11’ and so on,

represent α and the dotted line arcs, 0’0 1’1 and so on, represent T- α (i.e., the

sleep period). The overlaps of this schedule are captured by the graph in Figure

2.6.b, in which the vertices are the nodes and an edge exists if the two

vertices/nodes it connects overlap. It is trivial to observe that for each pair of

nodes there exist at least two paths (one in the clockwise and one in the counter-

clockwise direction). Naturally, the one with the least number of hops will be

chosen.

2.6.2.3 THE NC ALGORITHM

The purpose of the algorithm is to maximize the number of missed TRAF-DATA

packets that can be delivered in a single transmission combined as an XOR-

ACKED packet, subject to the constraint that each of its overlapped nodes has the

right packets already in its possession to successfully decode this XOR-ACKED

packet. The principle is that in order to encode n TRAF-DATA packets p1, ..., pn

into a XOR-ACKED packet and transmit the packet to its n overlapped nodes o1,

..., on, a node can XOR the n packets together only if each overlapped node oi for

which the missed packet pi is destined has all n – 1 packets pj for i ≠ j.

Consider Figure 2.7 and suppose that a node maintains n "missed packet" caches

MC1, ..., MCn to store the TRAF-DATA packets destined for its n respective

overlapped nodes. Assume that each cache MCi contains mi missed packets.

Additionally, the node maintains n overheard caches OC1, ..., OCn to store the

44

overheard packets that its n respective overlapped nodes have also overheard.

Also assume that each cache OCi contains ki overheard packets. These caches

could be implemented as linked lists where Tail points to the oldest packet, which

has been inserted first in the list, and Head points to the most recent packet which

has been inserted last. Figure 2.8 provides the pseudo code of the coding

algorithm which provides an XOR-ACKED packet given the current content of

the packet caches at a node. It is an approximation heuristic because it is able to

produce an acceptable solution rapidly but without searching all possible

solutions, hence missing some coding opportunities. However, what is important

and different from previous work is that the scheme does not consider just coding

pairs of packets. Indeed, it can produce XOR-ACKED packets conveying multiple

data packets.

Figure 2.7. Structure of caches MCs and OCs at each node.

In Figure 2.8, Maximum_Missed_Packets returns an approximation to the

maximal set of packets that can be coded together as a single XOR-ACKED

packet and be decoded successfully by the nodes that will receive this

transmission. Temporary_Missed_Packets is a work temporary variable holding

the progressively expanding set of missed packets that can be coded together.

Missed_Packet (and the corresponding index, r) indicates the missed packets in

the MCi cache. Overlapped_Node (and the corresponding index, i) indicates the

nodes with which the current node overlaps in the duty-cycling schedule. There

45

are four nested for loops in the algorithm. The first and third loops scan across the

overlapped nodes. The second and fourth loops scan across missed packets in a

MC cache. The first and second loops are also used to select the first missed

packet to enter in Temporary_Missed_Packets, while the third and fourth loops

are used to select and combine additional missed packets in

Temporary_Missed_Packets. To decide whether more missed packets can be

included or not, it needs to check two conditions. First, the next missed packet’s

receiver node must have overheard all missed packets of

Temporary_Missed_Packets, so that it could be able to decode the new coded

packet (this condition is checked by the second if). Second, the next missed

packet must have been overheard by every receiver node which has its missed

packet in Temporary_Missed_Packets (this condition is checked by the third if).

The fourth if ensures that Maximum_Missed_Packets contains the maximum

number of packets found possible to combine so far.

We emphasize that this is not an exhaustive search algorithm because whenever

the next missed packet is chosen (which means it satisfies the two conditions) the

fourth for loop stops searching any further in the current MC, so the next

combination that it needs to try out starts with the next available MC. For

example, in Figure 2.7, when the first missed packet 1 is chosen from MC1 and

added into Temporary_Missed_Packets, MC2 is searched to find the next missed

packet for Temporary_Missed_Packets. Suppose that the missed packet 2, which

is satisfied with the two above conditions, is chosen from MC2 and added into

Temporary_Missed_Packets, then any remaining missed packets in MC2 are

ignored. In this example, an encoded packet with the shaded missed packets, 1, 2,

..., and mn are returned by Maximum_Missed_Packets.

Even though it is not exhaustive, this algorithm is (at the cost of a slight

computation overhead) better than limiting the XOR-ACKED packets to be

composed solely out of pairs of data packets. This is in contrast with previous

works on practical NC schemes. It is recognized though that the extra gain by

considering multiple (>2) packet combinations may not be useful under some

46

scenarios. For example, under low traffic loads, or when multiple missed packets

are combined into a transmission it could be that the remaining missed packets

cannot be combined (even in pairs) any more.

Figure 2.8. Pseudo-code of the NC algorithm executed at each node.

The decoding algorithm is obvious: check whether the node’s id is included in the

packet’s header and check to see if the node’s overheard cache OC contains the

47

remaining n–1 missed packets included in the XOR-ACKED packet. If yes,

decode the packet.

2.6.2.4 PRIORITIZING TRANSMISSIONS

XOR-ACKED and TRAF-DATA are scheduled to be transmitted during α

periods. TRAF-DATA are furthermore distinguished to those heading to

overlapped nodes and those heading for non-overlapped nodes. TRAF-DATA to

overlapped nodes, are given the lowest priority, and scheduled to be transmitted

from a node during its α periods whenever there are no packets waiting in any of

the other two transmission queues (XOR-ACKED, and TRAF-DATA to non-

overlapped nodes). TRAF-DATA to non-overlapped nodes are scheduled to be

transmitted from a node during its two intervals at the two ends of the node’s α

period (and they are subjected to the routing algorithm).

Generally, XOR-ACKED packets are given higher priority whenever there are

opportunities for NC to take place (i.e., during periods when one or more nodes'

ON periods overlap with the current node). Note that at the beginning of every

interval T/N of the α period, one more node of the node’s overlapped nodes wakes

up and another node goes to sleep. Therefore, XOR-ACKED packets can be

transmitted at these points to make use of the new opportunities.

However in order to compromise and not starve the TRAF-DATA that are

heading to non-overlapped nodes, the following policy is implemented: if the duty

cycle is less than or equal to 1/2, one XOR-ACKED packet is broadcast at the

beginning of every of these T/N intervals except the two end intervals of the

node’s α to allow for TRAF-DATA packets to non-overlapped nodes. However, if

the duty cycle is greater than 1/2, XOR-ACKED are allowed to be scheduled even

at these end intervals because there cannot exist TRAF-DATA to non-overlapped

nodes (all nodes overlap at some point during their ON periods).

48

2.6.3 SIMULATION RESULTS

The proposed scheme is simulated using the SMURPH/SIDE tool [45]. Only a

single clique of N nodes is considered and all data traffic is produced by the nodes

is destined to randomly uniformly distributed destinations across the remaining N-

1 nodes. The message inter-arrival time is exponentially distributed with the mean

from 0.15 to 100 secs, and the message (payload) length is uniformly distributed

between 256 and 16384 bits. The period, T, is 32 secs and the channel’s

transmission rate, C, is 115000 bits/s. All results are presented with their

corresponding 95% confidence intervals.

To compute the energy consumption, it is assumed that a node consumes energy

only during its α period. The energy consumption Enode-T of a node during a period

T is calculated by the following formula:

Enode-T = Etx-Ton + Erx-Ton + Eidle-Ton (2.1)

where, Etx-Ton (or Erx-Ton) is its energy spent to transmit (or receive) all packets

including XOR-ACKED and TRAF-DATA during its α period, and Eidle-Ton is its

energy spent when the node is in the idle listening state during its α period. We

note that though the nodes are synchronized they are still in the idle listening

mode. This is because the traffic load is unknown (due to its randomly and

exponentially distributed time between message arrivals) and there is no

scheduling scheme for packet transmissions. Also note that the received TRAF-

DATA packets include the packets which are overheard by the node. Due to the

broadcast nature of wireless transmissions, though the TRAF-DATA packets are

from unicast transmissions, they are still able overheard by nearby nodes that are

within the transmission coverage of the sender nodes. The received XOR-ACKED

packets also include the packets which are not destined for the node. To save

more energy, instead of receiving a whole packet of this type, the node just reads

part of the header on the fly until it finds that the packet is not useful for itself and

then discards it. When the duty cycle is less than or equal to 1/2, the forwarded

49

TRAF-DATA packets routed to non-overlapped nodes also show up in the energy

cost.

If the ratio of power consumption is represented by x:y:z corresponding to

Transmission:Reception:Idle then the definition of the energy consumption for a

node becomes:

Enode-T = x·Ttx-Ton + y·Trx-Ton + z·(α – (Ttx-Ton + Trx-Ton)) (2.2)

where, Ttx-Ton (or Trx-Ton) is the time spent to transmit (or receive) all packets

during the ON period α of the node. Ttx-Ton (or Trx-Ton) is calculated based on the

number of all transmitted (or received) packets, the length in bits of a packet, and

the data rate of the channel in bits per second. Note that when the duty cycle is

equal to 1/1 (all nodes continuously ON) period α is equal to T and no XOR-

ACKED are needed then.

2.6.3.1 NETWORK THROUGHPUT

Let’s start by studying the impact that NC can have on DC networks. We

anticipate that, despite NC having the ability to improve the throughput, this this

is limited by two factors: (a) the need to forward, i.e., route packets because only

a specific subset of nodes overlap in their ON periods with each other node, and

(b) the ability to have two or more receivers overlapping (ON) such that NC

packets will be of value. Clearly, (a) is more pressing when the traffic load is

high, the number of nodes, N, is large, and the duty cycle (α/T) is small. The last

two conditions (large N and short duty cycle) force the traversal of more

intermediate hops, thus amplifying the offered load to the system. As far as (b) is

concerned, NC is expected to be useful when there are long overlaps with more

than two other nodes, which means either a large duty cycle (α/T) and/or many

nodes (higher N).

50

Figure 2.9. Throughput gain for 19/32 duty cycle.

As a representative plot of the throughput performance, consider Figure 2.9 where

a duty cycle of 19/32 (19 seconds awake, 13 seconds asleep) is considered. We

use a normalizing factor for expressing the improvement brought, as a percentage,

by NC compared to no-NC use. The x axis is annotated in terms of traffic load

compared not against C, but against a “reduced” C by a factor that depends on the

duty cycle, C’ = (α /T) C. Positive (negative) numbers indicate an improvement

(deterioration) of the throughput versus duty cycling without the use of NC. It can

be seen that at loads lower than a threshold (for these parameters approximately

below 25% of C') the NC scheme provides no throughput improvement. Quite the

contrary, the construction of XOR-ACKED packets and their transmission

(which, incidentally, as outlined before, is given higher priority) is counter-

productive.

The advantage of NC is evident at high traffic loads, leading to a throughput

improvement up to 20% above what is possible with duty cycling but without NC.

The relatively large (>50%) duty cycle results in no need of forwarding while at

the same time there are plenty of opportunities to transmit XOR-ACKED packets.

Note that the lines are terminated early because the system reaches saturation

-5

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t
(%

 o
f
n
o
-N

C
)

Traffic load (% of C’=(19/32)*C)

N=16
N=8
N=4

51

noticeably lower than at 100% of C'. However, the same saturation points are

reached in the case where duty cycling is used without NC, so there are

compelling reasons to use NC at high loads for its ability to sustain higher

throughput when nearing the saturation point. A final note is the larger the number

of nodes, N, the larger the overlapping ON periods, and hence the more drastic the

impact of NC.

The shape of Figure 2.9 is typical of what is seen at duty cycle values longer than

50%, but not too long. That is, once it reaches very long duty cycles, e.g., 28/32,

the improvement in throughput remains around 0%, i.e., no real difference versus

not using NC, which is to be expected because a smaller fraction of packets are

missed by virtue of the receiving node being OFF for shorter time intervals. At the

other extreme, when operating with shorter duty cycles, e.g., 9/32, and a large

number of nodes, e.g., 16, saturation is possible due to the need to perform

forwarding of the packets. The addition of NC has a similar impact as before (in

the best case it is found close to 18% and at 0% in the worst case) but the total

throughput, even after the improvement provided by NC remains small in absolute

numbers to be of any practical interest. Nevertheless, what was really sought to

confirm in this subsection was that there was no significantly detrimental effect on

the throughput (given that capacity was trimmed away by duty cycling and adding

overhead), and in fact it was able to notice an improvement in certain cases.

2.6.3.2 ENERGY SAVINGS

Assume a network consisting of a single clique of sixteen nodes (N=16) and let

the relative cost of transmission, over reception, over idling be x:y:z = 1.8:1.2:1.0.

Suppose that the duty cycle is being changed and the NC scheme described earlier

is applied. The same throughput may be achievable by different duty cycles, but

each duty cycle is associated with different energy costs for transmitting

forwarded packets and/or XOR-ACKED packets as well as, of course, the ability

to switch the transceiver OFF and not incur any energy cost during those periods.

52

Figure 2.10. Duty cycle energy savings vs. 32/32

(continuously ON)

To express the fact that the same throughput is achievable using different duty

cycles, Figure 2.10 plots the throughput (x axis) and the energy saved versus

keeping all nodes continuously ON (a 32/32 duty cycle). A value less than 1.0 on

the y axis means a corresponding savings in energy. Each line represents a

different duty cycle. However note that different duty cycles result in the network

saturating at different loads. This is the reason why not all lines of Figure 2.10

extend all the way from the lowest throughput (10,000 bits/sec) to the highest

(60,000 bits/sec). For example, duty cycles 17/32 and 15/32 cannot reach

throughputs above 30,000 bits/sec without saturating. A squinting reader will

discover that there is also a point for a duty cycle of 13/32, appearing (for 10,000

bits/sec throughput) on the y axis just above the 0.7 tick mark. Notice that in all

simulations a simplistic MAC protocol is used to avoid yet one more complex

interaction between scheduling and MAC. The MAC is a listen-before-transmit

with a fixed back-off window which (for C=115000 bits/sec) saturates close to

60,000 bits/sec for small networks, e.g., N=16. Hence, the range of throughputs in

Figure 2.10 spans up to the intrinsic saturation point of the network even if no

duty cycling was employed.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10000 20000 30000 40000 50000 60000

E
n
e
rg

y
 s

a
v
in

g
s
 (

v
s
.
3
2
/3

2
 d

u
ty

-c
y
c
le

)

Traffic load (bits/sec)

28/32
24/32
21/32
19/32
17/32
15/32
13/32

53

From the results in Figure 2.10, it can be clearly seen that, for a given desirable

throughput, there exists a smallest duty cycle that can sustain the required

throughput and spend the least energy. For example, at 20,000 bits/sec throughput

a duty cycle of 15/32 would be sufficient. The energy savings also exhibit a trend

of diminishing returns, as can be seen by the co-incidence of the lines for duty

cycles 19/32 and lower. Unfortunately, once it crosses into really small duty

cycles (13/32 and lower) performance is drastically reduced because of the

increased load caused by the forwarding.

2.7 CHAPTER CONCLUSIONS

In this chapter we attempted to summarize the relevant previous work by other

researchers as well as some initial results on combining DC and NC. The results

from [42] show that we can combine DC and NC to save energy and improve

throughput as long as we have opportunities to apply NC, e.g., there is an overlap

among duty-cycles of three sequential neighbour nodes. The early results

demonstrated that small duty cycles are, inherently, limiting as they do not allow

nodes to convey enough traffic. Towards relieving this problem, we will have to

expand our scope to allow for NC to be performed at intermediate nodes in the

routing paths and to ensure having sufficient traffic in order to perform NC,

possibly at the cost of delaying traffic. Both these facets will be addressed in

Chapter 4.

Figure 2.10 shows that significant savings of 25% versus continuously-ON

operation could be achieved which makes us hopeful that this approach has

potential. However, even though the early simulations provide convincing

indications, the model used to demonstrate the strength of DC+NC was simplified

with respect to the topology and the particular DC pattern. Hence, from Chapter 3

onwards, we will expand our study to arbitrary topologies and DC patterns. We

will do so by first studying DC in isolation in Chapter 3, and then expanding to

DC+NC in Chapter 4. In addition, in the early results our approach to build a

54

MAC protocol, apart from being complicated, raised issues of prioritizing

transmissions and accounting for backlog of the nodes. Both these are essentially

scheduling issues. Hence, rather than embark on the minutae of building a MAC

protocol, we will, starting with Chapter 3, build in a centralized manner a

complete schedule in order to have a high performance benchmark against which

future MAC protocols could be compared.

55

CHAPTER 3

A TDMA SCHEDULING ALGORITHM FOR DUTY-

CYCLED WIRELESS SENSOR NETWORKS

3.1 PROBLEM FORMULATION

In this chapter we formulate and compute max-min rates for a DC network. The

results are subsequently used to set performance benchmark for the rates to be

achieved by each flow during a slotted STDMA schedule construction. The

STDMA schedule construction operates by performing a simulation of the system

up to the point where a periodic steady state behavior is detected, at which point a

single period of the scheduling decisions is excised and used as a schedule

template. Simulation results and techniques to perform minor adjustments in the

excised schedule to ensure e.g., the flow balance property, are also presented.

3.1.1 MAX-MIN FAIRNESS FORMULATION

The following shows the max-min fairness formulation, which is used by either

the watter filling (WF) algorihm (in section 3.1.2) or the max-min programming

(MP) algorithm (in section 3.1.3) intended to compute the numerical rates of all

the flows � ∈ ℱ. The formulation is for DC WSNs, which is an extension of the

work [46] where it was originally introduced for wireless mesh networks. Let ���� = (�
���, … , �
���) denote a version of vector �� = (
�� , … ,
��) ∈ ℝ�

ordered in the non-decreasing order, i.e., for some permutation φ on the set {1, … , �} it holds that �
��� =
��(�)for � = 1, … , � and �
��� ≤ … ≤ �
���. The

objective (3.1) denotes the lexicographic maximization of the sorted outcome

vector �� over ℛ, as defined in [49, 50, 51, 52]. Since the physical topology is

arbritrary, at any stage (using the definition of “stage” appearing in the notation &

definitions of Chapter 1) a different (but known/computed) number of maximal

56

cliques exist, representing the contention graphs of the network. Constraint (3.2)

specifies the flow conservation constraints which require that at any node � the

rate of each flow summed over all stages is conserved.

� !�"! ��∈ℛ ���� (3.1)

Subject to

�($)(�)$∈%; '(())* − #
�($)(�)$∈%; ,(())* = -
� , � = �.−
� , � = �,0, �0 ∀� ∈ 2, � ∈ ℱ (3.2)

�($)(�)�∈ℱ; (∈ℒ; 45(6)(()∈7 ≤
. 9($) ∀: ∈ %, ∀; ∈ < (3.3)

� ≥ 0,
�($)(�) ≥ 0 ∀� ∈ ℱ, � ∈ ℒ, : ∈ % (3.4)

Constraint (3.2) captures the key difference of this max-min formulation from

general forms of flow rate formulations, in that it confines the flow balance to be

met within a single sequence of stages (which, as described in Chapter 1, will be

periodically repeating). That is, the flow conservation is enforced over a short

time frame and not over an unbounded time frame. Constraint (3.3) specifies, for

each stage, the link capacity restrictions that apply to contending sub-flows which

are active in that stage. The rate r = 1/T (transmissions/slot) is the maximum rate

in a slot and 9($) is the length of stage : in number of slots. Note that constraint

(3.3) considers each maximal clique (; ∈ <) of the contention graph, as defined in

each stage :. Those cliques are, in principle, different in each stage due to the

time varying nature of the underlying graph.

57

3.1.2 COMPUTATION OF MAX-MIN FAIR RATES BY THE WATER

FILLING ALGORITHM

Figure 3.1 shows the >?(
�) formulation, which is used by the watter filling (WF)

algorihm intended to compute the numerical rates of all the flows � ∈ ℱ. The

formulation has the same flow conservation (3.6) and link capacity constraints

(3.7) as those in the max-min fairness formulation in section 3.1.1. The other

constraints are just used by the WF algorithm in Figure 3.2 and LP solver to

compute the max-min fair rates. In the formulation, the objective (3.5) denotes the

maximization of the total numerical rates of all the flows. Constraint (3.8) shows

the numerical rates are changed at each time of submitting >?(
�) to the WF

algorithm.

�"! #
��∈ℱ (3.5)

Subject to

�($)(�)$∈%; '(())* − #
�($)(�)$∈%; ,(())* = -
� , � = �.−
� , � = �,0, �0 ∀� ∈ 2, � ∈ ℱ (3.6)

�($)(�)�∈ℱ; (∈ℒ; 45(6)(()∈7 ≤
. 9($) ∀: ∈ %, ∀; ∈ < (3.7)

� = @� A� = BCDEF, ∀� ∈ ℱ (3.8)

� ≥ 0,
�($)(�) ≥ 0 ∀� ∈ ℱ, � ∈ ℒ, : ∈ % (3.9)

Figure 3.1. Formulation >?(
�)

58

The WF algorithm in Figure 3.2 orignates from the standard water-filling

algorithm as described by Bertsekas and Gallager [47] for wireline networks but is

extended to be applicable to duty-cycled wireless networks. It is associated with

formulation >?(
�) to compute the max-min rates for multi-hop flows in a DC-

WSN. The algorithm works like the water-filling mechanism, in which all the

flow demands are met equally with the tentative rates, which are increased

gradually with a tiny amount of rate. The process is performed repeatedly until the

least demands are fully met first, or determined, then the higher demands next,

and the highest demands last.

Input: �G*, H*, I*� with � ∈ 2; 9($) with : ∈ %; ℒ; ℱ; <;

 Formulation >?(
�) with � ∈ ℱ;

Output: Values @� of numerical max-min rates
� of flows � ∈ ℱ;

Begin

01. Set A� = JKBDF and @� = 0 for all the flows � ∈ ℱ;

02. Repeat

03. Select flow � with A� = JKBDF in a round robin manner;

04. Increase @� by a minuscule value L, i.e., @� = @� + L;

05. Submit >?(
�) to LP solver;

06. If LP solver indicates >?(
�) is infeasible Then

07. Restore @� to the previous value, i.e., @� = @� − L;

08. Change A� = BCDEF;

09. End If

10. Until A� = BCDEF for all the flows � ∈ ℱ;

End

Figure 3.2. The WF algorithm

59

In step 1, states A� are initialized to UNFIXED to indicate all the respective

tentative rates @� are undetermined. Steps from 2 to 10 are repeatedly performed

until all states A� are FIXED, i.e., determined, at which all the max-min rates
�

are figured out. In steps 3 and 4, a flow is chosen in a round-robin manner and

then the @� rate is increased by a minuscule value L, which determines the

accuracy of the algorithm. In step 5, formulation >?(
�) is submitted to LP solver.

In steps from 6 to 9, the return value from LP solver indicates formulation >?(
�)

is infeasible by the recently-increased rate @� of flow �. Hence, at least one of the

active sub-flows of the flow is bottlenecked across all the stages 9($), i.e., the

sub-flow’s rate cannot increase anymore. This causes all the maximal contention

cliques constructed by the bottlenecked sub-flow to become bottlenecked, i.e., the

rates of sub-flows constructing the cliques cannot further increase, otherwise the

sub-flow’s rate could have further increased. Hence, in steps 7 and 8 the rate has

to be restored to the previous value, i.e., @� − L, and its state A� is set to the

determined state, i.e., BCDEF. In other words, the numerical rate
� of flow � has

been determined.

Suppose there are � flows in ℱ, i.e., ��, … , �� ∈ ℱ. We define ��, (in bold), as a

vector of flow rates, i.e., �� = (
�� , … ,
��). Hence, we have �� ∈ ℛ, which is a

set of all feasible flow rates, i.e., satisfying constraints (3.6) to (3.9), and ℛ ⊆ℝ�, which is the set of all real m-vectors.

Property 1. For any allocation vector �� ∈ ℛ and for any flow �O such that

�P >
�PR there exists a flow �� such that such that
�S <
�SR ≤
�PR .

Proof 1. We will prove that the feasible allocation vector ��U = (
��R , … ,
��R) ∈ ℛ

constructed from the WF algorithm is max-min fair by showing that ��U fulfills

Property 1.

60

Example 3.1. To illustrate the proof, we consider a simple duty-cycled network

with four nodes � ∈ 2 = {1, 2, 3, 4}, six directed wireless links in the link set ℒ = {��, �Y, �Z, �[, �\, �]} shown in Figure 3.3.a.1, and two opposite flows ��, �Y ∈ ℱ

traversing, respectively, the paths {��, �Y, �Z} and {�\, �]} indicated in Figure 3.3.b.

Note that there is a subtle distinction regarding the link topology between Figure

2.5 and Figure 3.3.a.1. The former has a circular topology while the latter has a

linear topology although both networks have a single clique for their contention

graph of sub-flows. In other words, nodes in Figure 2.5 can directly communicate

with each other while those in Figure 3.3.a.1 can only directly communicate with

their neighbors along the linear topology. The DC-configurations, i.e., �ϕ_, α_, T_�, of the nodes is as shown in Figure 3.3.a.2, in which period T is

divided into three stages 9($), in units of slots, with : ∈ % = {1,2,3}, such that in

each of these stages the ON/OFF state of the nodes is unchanged and there exists

at least an active link (both its ends are ON). Note that the further detailed

definition of a stage can be refered to Example 1.1. In Figure 3.3.b, during each

stage :, flow �� is represented by three sub-flow components
��($)(��),
��($)(�Y),

and
��($)(�Z), and flow �Y is represented by two sub-flow components
�b($)(�\)

and
�b($)(�]). Hence, the maximal cliques of the sub-flow contention graph which

is made up from all sub-flows competing in each stage 9(�) (from slots TS0 to

TS6), 9(Y) (from slots TS6 to TS12), and 9(Z) (from slots TS16 to TS18) are shown

in Figures 3.3.c.1, 3.3.c.2, and 3.3.c.3, respectively.

61

(a.1) Link topology

(a.2) States ON/OFF of nodes (ON slots are gray)

(b) Multi-hop flows

(c.1) CG in 9(1)

(c.2) CG in 9(2)

(c.3) CG in 9(3)

Figure 3.3. An illustrative example for the WF and MP algorithms’

proofs (CG = Contention Graph)

62

Suppose we have a feasible allocation vector �� ∈ ℛ, and a flow �O, e.g., �Y in

Figure 3.3, such that
�P >
�PR . From the WF algorithm’s pseudo-code, we have

the following observations:

(1) Flow �O must consist of at least an active bottlenecked sub-flow, which

participates in a maximal bottlenecked clique in a stage, e.g., �Y has bottlenecked

sub-flow
�b(Y)(�\) participates maximal bottlenecked clique in Figure 3.3.c.2. In

the other stages, the sub-flow must also be bottlenecked in respective maximal

bottlenecked cliques when it is active, e.g., �Y also has bottlenecked sub-flow

�b(�)(�]) participates maximal bottlenecked clique in Figure 3.3.c.1. Otherwise, the

rate could have been further increased;

(2) Because the maximal cliques participated by the bottlenecked sub-flow of

flow �O are bottlenecked, the other sub-flows that construct the cliques cannot

increase their rates, i.e., they are also bottlenecked, e.g., �� has bottlenecked sub-

flows
��(�)(��) and
��(Y)(�Y) participates maximal bottlenecked clique in Figures

3.3.c.1 and 3.3.c.2;

(3) The maximal bottlenecked cliques and respective flow rates are sequently

found in an increasing order of flow rates, e.g., smallest rate
�� of flow �� is

found first with maximal bottlenecked clique in Figure 3.3.c.3 and larger rate
�b

of flow �Y is found next with maximal bottlenecked cliques in Figures 3.3.c.1 and

3.3.c.2;

(4) Hence, we can always find a flow ��, e.g., flow ��, whose rate is determined

earlier than that of flow �O (i.e.,
�SR ≤
�PR), e.g., flow �Y with
��R ≤
�bR , by the

algorithm and whose bottlenecked sub-flow shares maximal bottlenecked cliques

with that of flow �O when the flow �O’s rate is found, e.g., flows �� and �Y share

maximal bottlenecked cliques in Figures 3.3.c.1 and 3.3.c.2 when rate
�b of flow

�Y is found.

63

Therefore, when the rate
�P of flow �O is increased (>
�PR), the bottlenecked sub-

flow’s rate of the flow is also increased. Since the maximal clique shared between

two bottlenecked sub-flows of the two respective flows �O and �� is bottlenecked,

the sub-flow’s rate of flow �� must be decreased. This causes the rate
�S of flow

�� to be decreased, i.e., <
�SR . In other words, we have proved that there exists a

flow �� such that such that
�S <
�SR ≤
�PR . For example, when the rate
�b of flow

�Y is increased (>
�bR), we can always find a flow �� such that such that
�� <

��R ≤
�bR .

3.1.3 COMPUTATION OF MAX-MIN FAIR RATES BY THE MAX-MIN

PROGRAMMING ALGORITHM

It is obvious that the time complexity of the WF algorithm depends on the L value.

In order to achieve acceptable accuracy, this value needs to be small enough,

which can slow down the computation process. To accelerate the computation and

still ensure the accuracy, the WF algorithm is generalized to the MP algorithm

based on the framework proposed by of Radunovic and Le Boudec [48]. The MP

algorithm no longer uses the L value in figuring out the numberical rate of a flow

and hence the computational time of numerical per-flow rates is significantly less

than that of the WF algorithm and mostly dependent on the number of flows in the

most practical cases, which will be explained later in the next paragraph.

Input: �G*, H*, I*� with � ∈ 2; 9($) with : ∈ %; ℒ; ℱ; <;

 Formulations >? (�) and >? (�, @�O*) with � ∈ ℱ;

Output: Values @� of numerical max-min rates
� of flows � ∈ ℱ;

Begin

01. Set A� = JKBDF for all the flows � ∈ ℱ;

02. Repeat

64

03. Select flow � ∈ ℱ with A� = JKBDF;

04. Submit >? (�) to LP solver;

05. Store rate @�O* of flow � returned from LP solver;

06. For each flow � ∈ ℱ with A� = JKBDF Do

07. Submit >? (�, @�O*) to LP solver;

08. Get rate
� of flow � from LP solver;

09. If
� = @�O* Then

10. Set A� = BCDEF for flow �;

11. End If

12. End For

13. Until A� = BCDEF for all the flows � ∈ ℱ;

End

Figure 3.4. The MP algorithm

The MP algorithm in Figure 3.4 is associated with formulations >?(c) in Figure

3.5 and >? (c, @�O*) in Figure 3.6 to compute the max-min rates for multi-hop

flows in a DC-WSN. The algorithm works like the WF algorithm, in which the

smallest flow rates are found first, then the higher flow rates next, and the greatest

flow rates last. However, it takes much less time for the MP algorithm than for the

WF algorithm to find a flow rate, which includes two main stages in each round of

loop Repeat Until from steps 2 to 13. Note that Figure 3.4 shows the complexity

of the MP algorithm is d(�Y(>?(�, e))Y), where >?(�, e) is the complexity of

linear programming determined by the number of flows � and e linear equalities

in the LP formulations, i.e., >?(�) or >?(�, @�O*). For the sake of completeness

we note that we use LP solvers that, theoretically, have exponential complexity,

however in the most practical cases such as the ones encountered in this thesis the

worst case behaviour did not emerge [48]. For our MP algorithm, the complexity

is d(�YeY).

65

�"! (
f) c ∈ ℱ, Af = JKBDF (3.10)

Subject to

�($)(�)$∈%; '(())* − #
�($)(�)$∈%; ,(())* = -
� , � = �.−
� , � = �,0, �0 ∀� ∈ 2, � ∈ ℱ (3.11)

�($)(�)�∈ℱ; (∈ℒ; 45(6)(()∈7 ≤
. 9($) ∀: ∈ %, ∀; ∈ < (3.12)

� = @� A� = BCDEF, ∀� ∈ ℱ (3.13)

� =
f A� = JKBDF, ∀� ∈ ℱ (3.14)

� ≥ 0,
�($)(�) ≥ 0 ∀� ∈ ℱ, � ∈ ℒ, : ∈ % (3.15)

Figure 3.5. Formulation >?(c)

In the first stage, from steps 3 to 5, the smallest rate @�O* among those of the

flows with undetermined rates is calculated by submitting formulation >?(c) to

LP solver, in which c is a flow with undetermined rate, i.e., JKBDF. In the

second stage, from steps 6 to 12, the flows with their rates equal to @�O* are

identified, i.e., their numberical rates are determined, i.e., BCDEF. This is done by

submitting formulation >?(c, @�O*) to LP solver (step 7) and then comparing

their returned rates to @�O* (steps 9 to 11), in which c is a flow with

undetermined rate. Note that in step 1 the rates of all the flows are initialized to

undetermined rates to properly start the process.

�"! (
f) c ∈ ℱ, Af = JKBDF (3.16)

Subject to

66

�($)(�)$∈%; '(())* − #
�($)(�)$∈%; ,(())* = -
� , � = �.−
� , � = �,0, �0 ∀� ∈ 2, � ∈ ℱ (3.17)

�($)(�)�∈ℱ; (∈ℒ; 45(6)(()∈7 ≤
. 9($) ∀: ∈ %, ∀; ∈ < (3.18)

� = @� A� = BCDEF, ∀� ∈ ℱ (3.19)

� ≥ @�g� A� = JKBDF, ∀� ∈ ℱ (3.20)

� ≥ 0,
�($)(�) ≥ 0 ∀� ∈ ℱ, � ∈ ℒ, : ∈ % (3.21)

Figure 3.6. Formulation >?(c, @�g�)

It is clearly seen that constraints, (3.11), (3.12), (3.13) and (3.15), of formulation >?(c) in Figure 3.5 and constraints, (3.17), (3.18), (3.19) and (3.21), of

formulation >? (c, @�O*) in Figure 3.6, have the same meaning as constraints,

(3.6), (3.7), (3.8) and (3.9), of formulation >?(
�) in Figure 3.1, respectively.

Hence, two formulations >?(c) and >? (c, @�O*) need to be described the

following constraints:

(1) The objective constraint (3.10) in >?(c) is used in the first stage to find the

smallest max-min rate @�O* among the flows with the undetermined status JKBDF by maximizing all the equal undetermined rates
f of flows c;

(2) The constraint (3.14) in >?(c) is to set the undetermined rates
� (with status

JKBDF) of flows � ∈ ℱ to the rate value
f, which are not determined by earlier

steps in the MP algorithm. Note that this constraint associated with the objective

constraint (3.10) is mainly aimed to maximize all the undetermined equal rates;

(3) The objective constraint (3.16) in >?(c, @�O*) is used in the second stage to

find the flows with status JKBDF, whose rates are greater than or equal to the

67

smallest rate @�O* by maximizing only the undetermined rate
f of flow c each

time submitting formulation >?(c, @�O*) to LP solver;

(4) The constraint (3.20) in >?(c, @�O*) is to guarantee all the undetermined rates
� are equal to or greater than the smallest rate @�O*. Note that this constraint

associated with the objective constraint (3.16) is to make sure that the

undetermined rate
f of flow c is both maximized and equal to or greater than the

rate @�O*;

Proof 2. We can reuse Proof 1 of the WF algorithm as that of the MP algorithm

because the latter is an improved version of the former just in the way to find each

numerical flow rate, which does not impact the correctness of the proof.

To illustrate how the MP algorithm in Figure 3.4 figures out all the numerical

flow rates, we reconsider Example 3.1 in Figure 3.3 and walk through the

algorithm step-by-step on the network. Since we have two flows in the network,

there are at most two iterations of loop Repeat Until in steps from 2 to 13. In the

1
st
 iteration, after submitting >? (�) to LP solver in step 4, we get rate @�O*

returned from LP solver in step 5, which is 0.0625 (packets/slot). It is the max-

min rate, which is achievably-allocated to flows with undetermined rates, i.e.

flows �� and �Y. This is because among the three cliques in three Figures 3.3.c.1,

3.3.c.2 and 3.3.c.3, the clique in Figure 3.3.c.3 is bottlenecked first based on the

capacity constraint (3.12). Since there is only flow �� with undetermined rate in

the bottlenecked clique, numerical rate of flow �� is figured out first by loop For

in steps from 6 to 11. Note that from now on the rate of flow �� is determined and

unchanged, i.e., with status BCDEF. More specifically, the flow and sub-flow

rates of all the flows on each stage are determined as follows.

(1) Flow �h - Flow rate:
� = 0.0625;

68

Stage 9(1)
:
��(�)(��) = 0.0625;
��(�)(�Y) = 0;
��(�)(�Z) = 0;

Stage 9(2)
:
��(Y)(��) = 0;
��(Y)(�Y) = 0.0625;
��(Y)(�Z) = 0;

Stage 9(3)
:
��(Z)(��) = 0;
��(Z)(�Y) = 0;
��(Z)(�Z) = 0.0625;

(2) Flow �k - Flow rate:
Y = 0.0625;

Stage 9(1)
:
�b(�)(�]) = 0.0625;
�b(�)(�\) = 0;

Stage 9(2)
:
�b(Y)(�]) = 0;
�b(Y)(�\) = 0.0625;

In the 2
nd

 iteration, after submitting >? (�) to LP solver in step 4, we get rate @�O* returned from LP solver in step 5, which is 0.125 (packets/slot). It is the

max-min rate, which is to indicate the max-min rate achievably-allocated to flows

with undetermined rates, i.e. flow �Y. This is because among the three cliques in

three Figures 3.3.c.1, 3.3.c.2 and 3.3.c.3, two cliques in Figures 3.3.c.1 and 3.3.c.2

are both bottlenecked next based on the capacity constraint (3.12). Since there is

only flow �Y with undetermined rate in the bottlenecked cliques, numerical rate of

flow �Y is figured out next by loop For in steps from 6 to 11. More specifically,

the flow and sub-flow rates of all the flows on each stage are determined as

follows.

(1) Flow �h - Flow rate:
� = 0.0625;

Stage 9(1)
:
��(�)(��) = 0.0625;
��(�)(�Y) = 0;
��(�)(�Z) = 0;

Stage 9(2)
:
��(Y)(��) = 0;
��(Y)(�Y) = 0.0625;
��(Y)(�Z) = 0;

Stage 9(3)
:
��(Z)(��) = 0;
��(Z)(�Y) = 0;
��(Z)(�Z) = 0.0625;

(2) Flow �k - Flow rate:
Y = 0.125;

Stage 9(1)
:
�b(�)(�]) = 0.125;
�b(�)(�\) = 0;

69

Stage 9(2)
:
�b(Y)(�]) = 0;
�b(Y)(�\) = 0.125;

3.2 SIMULATION-BASED PERIODIC PATTERN EXCISION

3.2.1 SCHEDULING ALGORITHM

The network is simulated using greedy traffic sources, i.e., capable to provide as

much traffic as could possibly be accommodated by transmission opportunities.

The transmissions that can be scheduled to occur simultaneously in the network

are determined by invocations of a fast approximation [21] to the Maximum

Weighted Independent Set (MWIS) problem. The simulation progresses in a

slotted fashion, in each slot, sub-flows with backlog (i.e., non-zero queues) and

whose corresponding link is active (both endpoints ON) are assigned a weight to

be used by MWIS. The weight assignment at timeslot g tries to capture two

aspects of the selection of which sub-flow (and hence link) to schedule over

others: (a) sub-flows on link/arc �, of a flow � whose transmissions scheduled so

far, denoted by #�(g, �), lag compared to what should have been the analytically

derived rate
� are given higher weight to “catch” up with the rate they are

supposed to achieve, and (b) sub-flows whose corresponding link which will be

ON for a period of "(�) and the nearest future point at which the link will become

OFF (either one of the endpoints entering the OFF state) is time m(g, �) (seen as a

function of current time g) are given higher weight the closest we are to the

“deadline” of m(g, �). Symbolically, the weight assigned to the arc for the

purposes of MWIS execution is:

n gcℎp(�, �, g) = �"! q0, g.
� − #�(g, �)r + ("(�) − (m(g, �) − g)) (3.22)

nhere the first component captures the sub-flow’s lag and the second is an

expression of the proximity to the link’s next OFF deadline, increasing (hence

becoming more “urgent”) the closer the current time is to the deadline.

70

Figure 3.7 shows the pseudo-code of the scheduling algorithm in a given slot.

Note that the algorithm only works for the ON sub-flows with available packets in

transmission queues. With the input of the contention matrix s_AB [0. . M- 1][0. . M- 1] of all the M contending sub-flows, the weight of each

of the M′ sub-flows of flow � over link � which are ON with available packets in

slot g, the algorithm outputs the array A_AB [0. . M″- 1] of M″ ON sub-flows with

available packets, which are to be scheduled in the timeslot. To this end, the

algorithm performs the three following tasks. First, in step 2, function n gcℎp ()

assigns weight value to each of the ON sub-flows as presented in (3.22), which

indicates its priority among the other ON sub-flows for scheduling in the slot.

Next, in step 3, function c
"eℎ () creates a contention graph {_AB[0. . M′- 1][0. . M′- 1] of M′ weighted ON sub-flows with available packets,

in which sub-flows are vertices and an edge between two vertices indicates the

two contending sub-flows. Finally, in step 5, a maximum weighted independent

set of M″ of the ON sub-flows is found and stored in array A_AB [0. . M″- 1] by

function s|CA () for scheduling.

Input: Contention matrix s_AB [0..M-1][0..M-1] of all the M ON sub-flows;

Weight of each of the M′ ON sub-flows with available packets in slot g;
Output: Array A_AB [0..M″-1] of M″ of ON sub-flows to be scheduled in slot g;
Begin

01. For Each ON sub-flow (�, �) with available packets in queue Do

02. n ← n gcℎp (�, �, g);

03. {_AB [0. . M′- 1][0. . M′- 1] ← c
"eℎ(�, �, n, s_AB [0. . M- 1][0. . M- 1]);

04. End For

05. A_AB [0. . M″- 1] ← s|CA ({_AB [0. . M′- 1][0. . M′- 1]);

End

Figure 3.7. The scheduling algorithm during slot g

71

3.2.2 SCHEDULE EXCISION PROCESS

Without harm to generality and because the DC period is equal to T we anticipate

the periodic steady state to develop over periods that are multiples of T (indeed as

the experiments will show, in some cases, it is exactly T). We forego the

discussion of how it is decided that the steady state has been reached, pointing to

relevant literature on the topic, i.e., [53]. After executing in the steady state, the

simulation-based is interrupted (at points equal to a multiple of T) and a simple

pattern matching procedure is performed. The decisions made by the simulation of

whether a sub-flow transmits or not in a given slot are stored in a two dimensional

vector whereby rows are sub-flows and columns are activity (transmission or not)

taking place in a particular time slot. The array is illustrated in Figure 3.8 where

transmissions that occurred are represented as black circles (white if the

corresponding sub-flow did not transmit). The most recent interval of length T is

used as a prefix template that will be matched to see if it has occurred over the

recent past (scanning backwards in time). Let us denote this as the Tsample

template. The pattern of transmissions within Tsample is compared and assuming it

is found to repeat periodically, it is evidence that not only during the Tsample prefix,

but the entire pattern (of length Tschedule) between successive Tsample matches might

be repeated. A complete comparison then takes place between the transmissions

scheduled over the last Tschedule intervals as delineated by the Tsample prefix and if

the schedules are found in agreement, the most recent (later in simulation time) of

them is excised as the schedule template. If not, the simulation continues and the

same process is attempted at a later point in time. An exact match is not always

possible and hence a mismatch “budget” for the comparison of the two last

success Tschedule intervals is accounted for.

The careful reader will notice that the periodic pattern excision we perform is only

with respect to the pattern of transmissions constructed by the simulation-based

process. Clearly, this is a source of approximation because the total state of the

system (even if it is deterministic) is guided by the queueing behavior, i.e., the

72

backlogs at the nodes. However, the pattern excision we perform disregards

matching the queue backlogs. In other words, the excision we perform is based on

partial state matching of the system. As long as the queues are on average at close

to zero occupancy (which itself is a sign that the match between analytical rate

and simulated rate are approximately equal) we anticipate little impact from

ignoring the queue state and the results seem to confirm this view.

Figure 3.8. Illustration of the simulation-based

schedule excision process

To further understand the excision process in Figure 3.8, we present main

algorithms, which implement the process. For convenience of description, we first

present notations and their functions in the algorithms before we elaborate each of

the algorithms.

We suppose that the scheduling of M sub-flows in each timeslot after the steady

state is detected, i.e., Start Slot, up to the start moment of executing the excision

process, i.e., Check Slot, have been stored in array ScheduleArray [0..Tschedule-

1][0..M-1]. Note that values of Start Slot and Check Slot are chosen as a multiple

of T. A sample pattern is extracted during the last Tsample slots of these slots and

stored in array SampleArray [0..Tsample-1][0..M-1]. Note that Tsample from the

above description is a pre-assigned value of T. Next, the sample pattern is used to

73

approximately match with a series of scheduling patterns that is started backwards

in time from Check Slot to Start Slot. If the sample pattern is approximately found

at a given number of times MAX_REPTS, i.e., periodically found, then two

values can be returned, 9steady, time from Start Slot the scheduling becomes

steady, and the scheduling period, Tschedule, time between two sequential found

sample patterns.

There are three main algorithms used in the excision process, which are

patternMatching (), periodMatching () and slotMatching (). Algorithm

patternMatching () is used to verify if given a threshold of missed-slots, i.e.,

MismatchThreshold, there is any matching between the sub-flow scheduling in

array ScheduleArray [0..Tschedule-1][0..M-1], or ScheduleArray [][] for short, and

that in array SampleArray [0..Tsample-1][0..M-1], or SampleArray [][] for short,

from slot StartSlot to slot CheckSlot. In each slot StartSchedule between StartSlot

and CheckSlot, the algorithm calls algorithm periodMatching () to verify the

matching between the sub-flow scheduling in array ScheduleArray [][] and that

in array SampleArray [][] during Duration given a threshold

MismatchThreshold. To this end, algorithm slotMatching () is used to verify the

matching between the sub-flow scheduling in array ScheduleArray [][] at slot

ScheduleSlot and that in array SampleArray [][] at slot SampleSlot.

Hence, the periodicity of the prefix template Tsample, i.e., the prefix schedule

comparison in Figure 3.8 is performed by algorithm patternMatching ()

including algorithms patternMatching (), periodMatching () while the entire

template Tschedule, i.e., the comparison over Tschedule in Figure 3.8, is done by

algorithm periodMatching (), in which Duration is set to Tschedule.

Input: Slot SampleSlot; Slot ScheduleSlot;

Output: YES if the scheduling in SampleArray [][] at SampleSlot is matching

with that in ScheduleArray [][] at ScheduleSlot or NO otherwise;

74

Begin

01. For g from 0 to M – 1 Do

02. If (A"�e� ~

"� [A"�e� A��p][g] ≠

A�ℎ �m� ~

"� [A�ℎ �m� A��p][g]) Then

03. Return NO;

04. End If

05. End For

06. Return YES;

End

Figure 3.9. Pseudo-code of algorithm slotMatching ()

Figure 3.9 shows the pseudo-code of algorithm slotMatching (), in which loop

For in steps from 1 to 6 traverses each of the M sub-flows. For each sub-flow, in

steps from 2 to 4, the algorithm checks if the scheduling in SampleArray [][] at

slot ScheduleSlot matches that in ScheduleArray [][] at slot SampleSlot.

Input: Slot StartSchedule; Duration Duration; Threshold MismatchThreshold;

Output: YES if the scheduling in SampleArray [][] is matching with that in

ScheduleArray [][] from StartSchedule during Duration or NO

otherwise;

Begin

01. MismatchCount = 0;

02. For Each i from 0 to Duration – 1 Do

03. If (slotMatching (i, StartSchedule + i) = NO) Then

04. If (MismatchCount = MismatchThreshold) Then

05. Return NO;

75

06. Else

07. MismatchCount++;

08. End If

09. End If

10. End For

11. Return YES;

End

Figure 3.10. Pseudo-code of algorithm periodMatching ()

Figure 3.10 shows the pseudo-code of algorithm periodMatching (), in which

loop For in steps from 2 to 10 traverses each slot during Duration. In each slot,

from steps 3 to 9 it checks if the scheduling in array SampleArray [][] at slot i

matches that in array ScheduleArray [][] at slot StartSchedule. In case of

mismatching, from steps 4 to 8 it checks if MismatchThreshold is reached and

then returns NO. Otherwise, MismatchCount is increased by one.

Input: Slot StartSlot; Slot CheckSlot; Threshold MismatchThreshold;

Output: Slot FoundSlot and YES if the scheduling in SampleArray [][] is

matching with that in ScheduleArray [][] from StartSlot during

Duration or NO otherwise;

Begin

01. Count = 0; RepeatThreshold = MAX_REPTS – 1; Duration = Tsample;

02. For Each i from CheckSlot – Duration + 1 to StartSlot Do

03. If (periodMatching (i, Duration, MismatchThreshold) = YES) Then

04. If (Count = 0) Then

05. Attempt0 = i; Count++;

06. Else

76

07. If (Count = 1) Then

08. Attemp1 = i; Count++; PrevCount = i;

09. Else

10. If (i – PrevCount = Attempt1 – Attempt0) Then

11. If (Count = RepeatThreshold) Then

12. T_Schedule = i – PrevCount;

13. T_Steady = Attemp0 – StartSlot + 1;

14. Mis_Slots = MismatchThreshold;

15. FoundSlot = Attemp0;

16. Return YES;

17. Else

18. Count++; PrevCount = i;

19. End If

20. End If

21. End If

22. End If

23. End If

24. End For

25. Return NO;

End

Figure 3.11. Pseudo-code of algorithm patternMatching ()

Figure 3.11 shows the pseudo-code of algorithm patternMatching (), in which

loop For in steps from 2 to 24 traverses each of the slots from StartSlot to

CheckSlot – Duration + 1. For each slot i, from steps 3 to 23 it checks if any

matching between the scheduling in array ScheduleArray [][] and that in array

77

SampleArray [][] during Duration, i.e, T_Sample or Tsample, given a threshold

MismatchThreshold. Steps 4 to 22 determine (1) how long the schedule, i.e.,

T_Schedule or Tschedule, and the steady time, i.e., T_Steady or 9steady in Figure 3.8,

are; (2) how many times the schedule is repeated, i.e., MAX_REPTS; (3) what the

number of missed-slots, i.e., MismatchThreshold, is; and (4) where the found slot,

i.e., FoundSlot, is.

3.2.3 FLOW BALANCE APPROACHES

A final technicality is that the excised schedule pattern (whose periodic repetition

will be the schedule executed by the nodes) does not necessarily obey the flow

conservation constraint. For example the excised schedule does not necessarily

offer the same number of transmissions for inbound traffic of a flow to a node as

it does for outbound traffic of the same flow from that node. This is because the

(analytical) flow conservation property pertains to an infinite time horizon but

fluctuations (imbalances) are always possible over small intervals of time as long

as they are cancelled out in the long run. To address this point we use an ad-hoc

strategy of equating the inbound and outbound transmission for all sub-flows of a

flow either by making it a criterion during the pattern matching process (option A)

that has to be satisfied as much as possible or enforcing it after the excision has

taken place (option B) by trimming away the transmissions that result in the

imbalance (at the loss of some throughput).

To implement options A and B, we use two algorithms CheckBalance () and

MakeBalance () presented by pseudo-codes in Figures 3.12 and 3.13,

respectively. Algorithm CheckBalance () is to check if all the flows in a given

schedule template are balanced, which is used during the pattern matching

process. Meanwhile, algorithm MakeBalance () is to enforce the flow balance on

a given imbalanced schedule template, which is used after the pattern matching

process.

78

With the pseudo-code in Figure 3.12, we suppose that a given schedule template

with length Tschedule and M sub-flows is stored in array ScheduleArray [0..Tschedule

– 1][0..M – 1]. We also assume that the minimum value, i.e., �g� (�), which is

among the numbers of transmissions of a given flow � over each of its links �
along its routing path, is predetermined. In addition, we use variable #�(�) to store

the number of transmissions of each flow � over link �, which is initialized to zero

in step 1. The variable is increased by one whenever � over link � is scheduled,

i.e., ACTIVE (step 3) during traversing the template (steps 2 to 9). Note that

notation (�, �) is to indicate flow � goes over link �. The algorithm returns

imbalance indication (step 6) whenever the variable is greater than the minimum

respective value �g� (�) or balance indication otherwise (step 10).

Input: Schedule array ScheduleArray [0..Tschedule – 1][0..M – 1];

Number �g� (�) of each flow � ∈ ℱ in the array;

Output: YES if the array is balanced or NO otherwise;

Begin

01. Set #�(�) to zero for all the flows � ∈ ℱ over link � ∈ ℒ;

02. For (g from 0 to Tschedule – 1, � from 0 to M – 1) Do

03. If ((ScheduleArray [g][�] = ACTIVE) and (� = (�, �))) Then

04. #�(�) = #�(�) + 1;
05. If (#�(�) > �g� (�)) Then

06. Return NO;

07. End If

08. End If

09. End For

10. Return YES;

End

Figure 3.12. Pseudo-code of algorithm CheckBalance ()

79

With the pseudo-code in Figure 3.13, we suppose that a given imbalanced

schedule template with length Tschedule and M sub-flows is stored in array

ScheduleArray [0..Tschedule – 1][0..M – 1]. We also assume that we have walked

through the active spots of sub-flows of each flow along its routing path from the

source to the sink in the template and accordingly marked the active spots in array

VisitedArray [0..Tschedule – 1][0..M – 1]. Note that only an active spot is marked as

visited only when we have walked through the entire path, i.e., we have reached

the sink. Hence, active spots, which have not marked yet, i.e., NO, are considered

as imbalanced spots by step 2. The imbalanced active spots need to be removed

from the template, i.e., turned to inactive spots, i.e., INACTIVE, by step 3.

Eventually, after traversing the whole template, the algorithm turns the given

schedule array from an imbalanced template to a balanced one.

Input: Imbalanced array ScheduleArray [0..Tschedule – 1][0..M – 1];

Visited array VisitedArray [0..Tschedule – 1][0..M – 1];

Output: Balanced array ScheduleArray [0..Tschedule – 1][0..M – 1];

Begin

01. For (g from 0 to Tschedule – 1, � from 0 to M – 1) Do

02. If ((ScheduleArray [g][�] = ACTIVE) and (VisitedArray [g][�] = NO)) Then

03. ScheduleArray [g][�] = INACTIVE;

04. End If

05. End For

End

Figure 3.13. Pseudo-code of algorithm MakeBalance ()

To illustrate the schedule excision process after flow balance is checked and

guaranteed, we run the scheduling algorithm on the network in Example 3.1. As a

80

result, we construct the schedule in Figure 3.14, in which timeslot � is within

duration Tschedule from 1 to 32, and sub-flow ��(�)(�) indicates flow �, i.e., from ��

to �Y, over link �, i.e., from �� to �], across stages :, i.e., from 1 to 3. Note that

white circles (black circles) mean the respective sub-flows are not scheduled (are

scheduled).

From the results in Figures 3.14, we observe that the constructed schedule is

guaranteed flow balance. For example, the rates of flow �� over links ��, �Y and �Z

along the routing path are equal to 2/32 or 0.0625 while the rates of flow �Y over

links �\ and �] along the routing path are equal to 4/32 or 0.125. The results are

consistent with those from the MP algorithm as described above.

� ��h(�)(�h) ��h(�)(�k) ��h(�)(��) ��k(�)(��) ��k(�)(��)

1 ○ ○ ○ ○ ●

2 ○ ○ ○ ○ ●

3 ○ ○ ○ ○ ●

4 ○ ○ ○ ○ ●

5 ● ○ ○ ○ ○

6 ● ○ ○ ○ ○

7 ○ ○ ○ ● ○

8 ○ ○ ○ ● ○

9 ○ ○ ○ ● ○

10 ○ ● ○ ○ ○

11 ○ ○ ○ ● ○

12 ○ ● ○ ○ ○

81

13 ○ ○ ○ ○ ○

14 ○ ○ ○ ○ ○

15 ○ ○ ○ ○ ○

16 ○ ○ ○ ○ ○

17 ○ ○ ● ○ ○

18 ○ ○ ● ○ ○

19 ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○

32 ○ ○ ○ ○ ○

Figure 3.14. Schedule constructed in Example 3.1

3.3 EVALUATION

3.3.1 OVERALL PERFORMANCE

In order to evaluate the ability of the proposed technique to produce schedules

that capture the desired performance objectives, we restrict ourselves to examples

of regular topologies and experiment with different per-node phases. There is no

restriction to just regular topologies for the application of the proposed scheme,

but the reader can follow easily the layout, phase relation, and flow paths on a

regular topology.

82

(a) 3x3 Grid topology

(b.1) Flow pattern PT-1

(c) Phase scheme for G3x3

(b.2) Flow pattern PT-2

(b.3) Flow pattern PT-3

Figure 3.15. Topologies, flows and phases used in the simulations

83

(a) 4x4 Grid topology

(b) Flow pattern PT-1

(c) Phase scheme for G4x4

Figure 3.16. Topologies, flows and phases used in the simulations

84

We consider a 3x3 and a 4x4 topology as shown in Figures 3.15.a and 3.16.a.

Circular arcs are used to pictorially depict which nodes have the same phases

(e.g., in the 3x3 topology nodes 3, 5, and 7 have the same phase). The duty cycle

period is 32 slots and the ON intervals are all 12 slots long. Given that the phases

can be staggered differently, we explore the impact of staggering by various

“phase gaps” (Figures 3.15.c and 3.16.c) and indicate the phase (counted in slots)

at which the corresponding node switches to ON. Additionally, a number of flows

are simulated in each configuration following certain patterns groups (PT-1 to PT-

3 for 3x3 and PT-4 for 4x4 topology) shown in Figures 3.15.b.1 to 3.15.b.3 and

3.16.b noting that the routes in each pattern group were computed based on

single-shortest-path time-varying routing. The path directions of the four pattern

groups are distinctly different; in patterns PT-1 and PT-4, the directions are along

the sides of the grid; in pattern PT-2, the directions cross the center of the grid; in

pattern PT-3, the directions are parallel with the diagonals of the grid.

Another facet of the experiments is the phase relation between adjacent nodes. We

consider three schemes:

1. Synchronized Phases (SP), in which all the phases are synchronized to start at

the same point in time. This is a benchmark value which essentially eliminates the

time-varying nature of the communication graph.

2. Fixed Ladder Phases (FLP), in which any two adjacent nodes in the grid

(vertically or horizontally) have their phases staggered 2 slots apart. This scheme

is meant to test the impact of flow patterns and their interference on the schedule

construction but with a fairly benign impact by the phase differences, i.e., adjacent

ON periods overlap significantly over relatively long periods of time.

3. Varied Ladder Phases (VLP), in which we vary the staggering of the phases

from 2 to 10 slots (Figures 3.15.c and 3.16.c for topologies 3x3 and 4x4

respectively), creating increasingly “difficult” short periods over which links are

85

active. Note that when the VLP scheme is used, the number of flows in each flow

pattern is kept maximized and unchanged, i.e., in PT-1, PT-2, PT-3 and PT-4 the

number of flows are 6, 4, 6 and 8, respectively.

In all cases, and as a matter of convention, instead of denoting the specific flows

that comprise a certain mix, we create larger sets of flows by adding more flows

in their numerical order. That is, sets of 1, 2, 3, etc. flows comprise

correspondingly of the flows {F1}, {F1, F2}, {F1, F2, F3}, etc. Finally, note that

because of the time varying nature of the underlying communication graph, the set

of parameters used here that guides the duty cycling, generates a great deal of

actual link topologies.

Representative results are summarized in Tables 3.1 (for PT-1 and PT-2) and 3.2

(for PT-3 and PT-4). The #F or Gap is the number of flows for phase schemes SP

and FLP, or the stagger gap for phase scheme VLP. Pre-Sim is the total

throughput of all the flows with sub-flows scheduled in the constructed excised

periodic schedule. Numerical is the total throughput of all the flows including

numerical per-flow rates as derived from the water filling (WF) or max-min

programming (MP) algorithm associated with the max-min fairness formulation.

In other words, Pre-Sim are simulation results while Numerical are analytical

values. Fairness is a fairness index between what should be the achieved rates (as

per water-filling) and what is achieved by the excised schedule. Tschedule/T

expresses how many multiples of the duty cycle period is the length of the excised

periodic schedule. Mismatch captures the fraction as percentage of sub-flows

who did not match exactly during the prefix comparison. Err captures the fraction

of sub-flows that did not match exactly during the complete schedule length

comparison. The note field indicates whether Option A or Option B for correcting

the flow balance was necessary in the corresponding case and which of the two

options produced the best results.

86

The virtually identical numbers in the Pre-Sim and Numerical columns

demonstrate that the process of schedule excision is a reasonable approach to

produce accurate schedules. Despite the fact that a key component of the

simulation-based process is the invocation of an approximation to MWIS [21] the

fact is that a schedule is constructed via multiple (one per slot) invocation of

MWIS, hence what matters is less the worst-case behavior of the approximation

and more the average performance.

Leaving MWIS aside, the process of matching the Tsample prefix cannot be

expected to lead to perfect matches. For this reason, we allowed a maximum of

mismatch (seen as difference in transmissions scheduled for a sub-flow between

two compared patterns) of 10% which turned out to be very pessimistic, i.e., we

did not reach that degree of mismatch. Given that the prefix is only a fraction of

the possible eventual schedule, the mismatch is generally larger (denoted by Err in

our performance tables) when comparing complete Tschedule periods but again not

as large as we had originally anticipated.

Table 3.1. Simulation results with PT-1 and PT-2

Pattern #F or Gap Pre-Sim Numerical FairnessTschedule/T Mismatch Err Scheme Notes

PT-1 1 0.1875 0.1875 1 1 0 0 SP

PT-1 2 0.1875 0.1875 1 1 0 0 SP

PT-1 3 0.28125 0.28125 1 1 0 0 SP

PT-1 4 0.28125 0.28125 1 4 0 0 SP

PT-1 5 0.234375 0.234375 1 2 0 0 SP

PT-1 6 0.28125 0.28125 1 2 0 0 SP

PT-1 1 0.1875 0.1875 1 1 0 0 FLP

PT-1 2 0.21875 0.21875 1 1 0 0 FLP

PT-1 3 0.328125 0.328125 1 2 0 0 FLP

PT-1 4 0.3359375 0.34375 0.99 4 0 0 FLP Option B

PT-1 5 0.3125 0.3125 1 1 0 0 FLP

PT-1 6 0.328125 0.328125 1 4 0 0 FLP

PT-1 2 0.328125 0.328125 1 4 0 0 VLP

87

PT-1 4 0.375 0.375 1 1 0 0 VLP

PT-1 6 0.375 0.375 1 1 0 0 VLP

PT-1 8 0.234375 0.234375 1 4 0 0 VLP

PT-1 10 0.09375 0.09375 1 2 0 0 VLP

PT-2 1 0.125 0.125 1 1 0 0 SP

PT-2 2 0.15 0.15 1 5 0 0 SP

PT-2 3 0.140625 0.140625 1 2 0 0 SP

PT-2 4 0.15 0.15 1 5 0 0 SP

PT-2 1 0.140625 0.140625 1 2 0 0 FLP

PT-2 2 0.171875 0.171875 1 4 0 0 FLP

PT-2 3 0.15234375 0.15234375 1 8 0 0 FLP

PT-2 4 0.15625 0.15625 1 4 0 0 FLP

PT-2 2 0.15625 0.15625 1 4 0 0 VLP

PT-2 4 0.15625 0.15625 1 4 0 0 VLP

PT-2 6 0.125 0.125 1 1 0 0 VLP

PT-2 8 0.078125 0.078125 1 8 0 0 VLP

PT-2 10 0.03125 0.03125 1 4 0 0 VLP

Another aspect of the results is that the produced schedule of duration Tschedule is a

small multiple of T (the DC period). The less loaded the network with flows, the

smaller this multiple tends to be, but there are exceptions. Fundamentally, the

relation Tschedule/T reveals the impact of the queue state. That is, the queues, even

though they tend to behave periodically, exhibit dynamics that develop across

multiple T periods, as traffic possibly enters (inflating the queue) in one period to

be delivered (not necessarily completely) to the next hop in the next period.

Table 3.2. Simulation results with PT-3 and PT-4

Pattern #F or Gap Pre-Sim Numerical Fairness Tschedule/T Mismatch Err Scheme Notes

PT-3 1 0.1875 0.1875 1 1 0 0 SP

PT-3 2 0.1484375 0.1484375 1 8 0 0 SP

PT-3 3 0.15234375 0.15234375 1 8 0 0 SP

PT-3 4 0.1875 0.1875 1 2 0 0 SP

PT-3 5 0.15625 0.15625 1 1 0 0 SP

PT-3 6 0.1640625 0.1640625 1 8 0 0 SP

88

PT-3 1 0.15625 0.15625 1 1 0 0 FLP

PT-3 2 0.1484375 0.1484375 1 8 0 0 FLP

PT-3 3 0.1875 0.1875 1 1 0 0 FLP

PT-3 4 0.1953125 0.1953125 1 4 0 0 FLP

PT-3 5 0.1875 0.1953125 1 5 0 0 FLP Option A

PT-3 6 0.1875 0.1875 1 1 0 0 FLP

PT-3 2 0.1875 0.1875 1 1 0 0 VLP

PT-3 4 0.1953125 0.1953125 1 4 0 0 VLP

PT-3 6 0.234375 0.25 0.98 2 0 0 VLP Option A

PT-3 8 0.1484375 0.15625 0.99 8 0 0 VLP Option A

PT-3 10 0.0625 0.0703125 0.96 4 0 0 VLP Option A

PT-4 1 0.125 0.125 1 1 0 0 SP

PT-4 2 0.1875 0.1875 1 1 0 0 SP

PT-4 3 0.28125 0.28125 1 1 0 0 SP

PT-4 4 0.375 0.375 1 1 0 0 SP

PT-4 5 0.3515625 0.3515625 1 4 0 0 SP

PT-4 6 0.3125 0.3258929 0.93 1 0 0 SP Option A

PT-4 7 0.328125 0.328125 1 2 0 0 SP

PT-4 8 0.375 0.375 1 2 0 0 SP

PT-4 1 0.145833 0.145833 1 3 0 0 FLP

PT-4 2 0.21875 0.21875 1 2 0 0 FLP

PT-4 3 0.28125 0.28125 1 1 0 0 FLP

PT-4 4 0.375 0.375 1 1 0 0 FLP

PT-4 5 0.4 0.4296875 0.99 10 0 0 FLP Option B

PT-4 6 0.3515625 0.375 0.96 4 0 0 FLP Option B

PT-4 7 0.328125 0.328125 1 2 0 0 FLP

PT-4 8 0.375 0.375 1 4 0 0 FLP

PT-4 2 0.375 0.375 1 4 0 0 VLP

PT-4 4 0.375 0.375 1 2 0 0 VLP

PT-4 6 0.5 0.5 1 1 0 0 VLP

PT-4 8 0.3125 0.3125 1 4 0 0 VLP

PT-4 10 0.125 0.125 1 2 0 0 VLP

Across the board, we note that the first set of patterns PT-1 and PT-2 (Table 3.1)

rarely resulted in excised schedule templates that did not exhibit flow balance.

The flow imbalance (and hence the need for corrective action) was more prevalent

89

in PT-3 and PT-4 (Table 3.2). Moreover when flow balance correction had to be

applied, it was always for schedules that were larger than a single T period, i.e.,

who had some queueing dynamics influencing successive T periods. We

conjecture from what we have seen so far that the problem lies with flows that, as

per the numerical findings, ought to have been given a tiny fraction of the data

rate. Hence situations in which one such flow is scheduled (during the simulation)

for a single transmission for one of its sub-flows over a long run of time slots, is a

flow that will likely demonstrate a mismatch during the excision process, or will

exhibit a flow imbalance in the excised schedule. Indirect evidence to this end is

the fact that when the flow balance corrections (options A or B) were taken, after

removing the flow imbalance, certain flows ended up being (unfairly) victimized,

i.e. losing the little allocation they had. Also, the less the overlap (the larger the

phase stagger between nodes) the links remain active only briefly, resulting in

smaller rates assigned to flows traversing them, as they become more

“bottlenecked” leading to smaller (and hence problematic to schedule as just

mentioned) rate allocations.

3.3.2 TOTAL THROUGHPUT

In this section, we evaluate our work by verifying in more detail the impact of the

main factors on the total throughput, which are different types of flow patterns,

i.e., PT-1 to PT-4, different types of phases schemes, i.e., SP, FLP and VLP,

changes of the number of flows of the same pattern and scheme, and changes of

the gaps between two neighbors’ duty-cycles.

To this end, from the results in Tables 3.1 and 3.2, we plot bar charts in Figures

3.17 to 3.20 (corresponding to four patterns, PT-1 to PT-4 with three schemes SP,

FLP and VLP), in which X-axis represents the number of flows (with SP and

FLP) or the gaps between two neighbors’ duty-cycles (with VLP), and Y-axis

represents the total throughput (in packets/slot). The PRE-SIM and

90

NUMERICAL indicate Pre-Sim and Numerical values in Tables 3.1 and 3.2,

respectively, from which we capture the follwing.

With the same pattern and the same number of flows in schemes SP and FLP, the

gap between PRE-SIM and NUMERICAL values is greater in SP than in FLP,

which indicates the impact of phase changes in FLP more than that in SP on the

scheduling algorithm. This is because when the number of flows is increased,

topology change in FLP happens more often than in SP.

The gap between PRE-SIM and NUMERICAL values of the same number of

flows is almosts the same in PT-1 and PT-2 while the gap is larger in PT-3 and

PT-4. This is due to more sub-flows in PT-3 and PT-4 than in PT-1 and PT-2. As

a result, there is more impact on the scheduling alsorithm in PT-3 and PT-4 than

in PT-1 and PT-2. Note that PRE-SIM and NUMERICAL values are not always

the exactly same for the mismatches during the schedule excision process and

then the flow balance corrections (options A or B) are taken as discussed in the

previous sections. Such a case is shown in Table 3.1 with Pattern PT-1, #F 4 and

Scheme FLP (in a red rectangle). The respective case is shown by two bars in

Figure 3.17.b (in a red circle).

In VLP, when the gaps between two neighbors’ duty-cycles increase, the

throughput decreases. The main reason is that the greater gaps cause the smaller

overlaps between two neighbors’ duty-cycles and hence the more congestion at

the neighbors. Also, the flow rates get smaller and then easily become victimized

by the excision process as shown in Figure 3.19.c.

91

(a)

(b)

(c)

Figure 3.17. Throughput in 3x3 grid with pattern PT-1

92

(a)

(b)

(c)

Figure 3.18. Throughput in 3x3 grid with pattern PT-2

93

(a)

(b)

(c)

Figure 3.19. Throughput in 3x3 grid with pattern PT-3

94

(a)

(b)

(c)

Figure 3.20. Throughput in 4x4 grid with pattern PT-4

95

3.3.3 SCHEDULING COMPARISON

(a) Subset of 3x3 grid links involving only links traversed by flows

(b) Multi-hop flows of pattern PT-2

Figure 3.21. Topology and flows used in the comparison

96

To further evaluate the performance of our scheduling algorithm, we compare our

TDMA scheduling algorithm with one of those mentioned in the “Related Work”

chapter, which is the work of Gronkvist [13]. We select this work for performance

comparison because it is most related to our work in the following main aspects:

(1) the work considers multi-hop networks, which are more popular than single-

hop ones; (2) it uses a STDMA scheme for spatial resuse of timeslots; (3) for

reducing the averge delay, its algorithm takes traffic load into consideration in the

STDMA scheme.

For the comparison, we select the network with link topology presented in Figure

3.21.a and flow pattern presented in Figure 3.21.b. The link topology is a subset

of the 3x3 grid links involving only links traversed by flows, which is described in

the previous section. In addition, the flow pattern is also originated from pattern

PT-2 in the previous section, which is described by the table of flow paths. We

select this network for comparison because it is most representive for both of the

algorithms by the following reasons: (1) it is a multi-hop network; (2) there are

multiple contention domains in the network so we can apply the spatial reuse of

timeslots; (3) to be more general, the network intentionally has multiple flows

traversing on a single link.

For easier description, we use our notations in most of the time, and convert those

in [13] to our own when we need to introduce new definitions from this work for

consistency purposes. Since our algorithm can be used for duty-cycled networks

and the work [13] is used for networks without duty-cycling, we need to

“downgrade” it to that without duty-cycling before the comparison. Hence, there

is a single stage, i.e., � = 1, in our algorithm but we still keep a general stage : in

Figure 3.21.b for consistency with notations described so far. Note that in general,

a single stage means all the nodes have to be ON/OFF at the same time and

therefore there is one stage including the ON periods of all the active nodes in this

comparison.

97

There are 8 directional links, from �� to �� in Figure 3.21.a. Also, there are five

flows with flow paths in Figure 3.21.b, flow �� in blue from source 1 to sink 5,

flow �Y in orange from source 9 to sink 5, flow �Z in red from source 4 to sink 6,

flow �[in green from source 7 to sink 3, and flow �\ in purple from source 8 to

sink 2. Note that the algorithm in [13] does not have the concept of sub-flows like

in our work and only needs average traffic loads on links for schedule

construction. Therefore, we need to run our scheduling algorithm on the network

to get all the rates
�($)(�) of flow � over link �, from which we then calculate the

average traffic load, λij on link (i, j), or λ(on link � for consistency with our work.

� ��h(�)(�h) ��h(�)(�k) ��k(�)(��) ��k(�)(��) ���(�)(�k) ���(�)(��) ���(�)(��) ���(�)(��) ���(�)(��) ���(�)(��) ���(�)(��) ���(�)(��)

1 ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2 ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ○

3 ● ○ ○ ● ○ ○ ○ ○ ○ ○ ○ ○

4 ○ ○ ○ ○ ● ○ ○ ○ ○ ○ ○ ○

5 ○ ○ ○ ○ ○ ● ○ ○ ○ ○ ○ ○

6 ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○ ○

7 ○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○

8 ○ ○ ○ ○ ○ ○ ● ○ ○ ● ○ ○

9 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ○

10 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ●

Figure 3.22. Schedule is constructed by our MMF algorithm

(black circles mean sub-flows are scheduled)

For the interference, we assume both the algorithms use the same logical model of

link interference used in the work by Li [26], i.e., two sub-flows that are ON in

the same slot, contend with each other if either the transmitter end or the receiver

end of one sub-flow is within the transmission range of the transmitter end or the

98

receiver end of the other sub-flow. The definition of a contention graph is also

described earlier in Example 1.1. By running our MMF scheduling algorithm on

the network, we construct the schedule for all the sub-flows in each timeslot �

shown in Figure 3.22. With the interference model, for example, sub-flow

��($)(�Y) cannot be scheduled simultaneously with sub-flows
��($)(��) and/or

�b($)(�Z) in timeslot 1.Hence, we have the rates of all the flows over links as

follows.

��($)(��) =
��($)(�Y) =
�b($)(�Z) =
�b($)(�[) =

��($)(�Y) =
��($)(�\) =

��($)(�]) =
��($)(�[) =
��($)(�\) =
��($)(��) =

��($)(�[) =
��($)(��) = ��R = 0.1 packets/slot (3.19)

From (3.19) and flow paths in Figure 3.21.b, we can calculate all the following

traffic loads on links.

λ(� =
; λ(b = 2
; λ(� =
; λ(� = 3
; λ(� = 2
; λ(� =
;
λ(� =
; λ(� =
; where
 = 0.1 (packets/slot) (3.20)

From the network, we have.

N = 9 (nodes); M = 8 (links) (3.21)

Hence, we have the total traffic load of five flows in the network as follows.

λ = 5
 = 0.5 (packets/slot) (3.22)

From [13], we have relative traffic Λ(on link � defined as follows:

Λ(= λ(/ (λ / N (N − 1))

99

Hence, we can calculate the following.

Λ(� = 14.4; Λ(b = 28.8; Λ(� = 14.4; Λ(� = 43.2; Λ(� = 28.8;
Λ(� = 14.4; Λ(� = 14.4; Λ(� = 14.4; (3.23)

From [13] and with (3.21), (3.22) and (3.23), we have the average relative traffic

in the network, which is defined as follows.

Λ� = 1s � �(∀(

= (Λ(� + Λ(b + Λ(� + Λ(� + Λ(� + Λ(� + Λ(� + Λ(�)/s

= 21.6 (3.24)

From [13], we have link � is guaranteed the following number of slots.

�� �� ¡ (3.25)

From (3.24) and (3.25), we have the following.

�� ��� ¡ = 1; �� b�� ¡ = 2; �� ��� ¡ = 1; �� ��� ¡ = 2; �� ��� ¡ = 2;
�� ��� ¡ = 1; �� ��� ¡ = 1; �� ��� ¡ = 1; (3.26)

Figure 3.23 shows the steps (in timeslots) run by the Gronkvist’s algorithm on the

network on Figure 3.21 in order to construct a schedule, in which ¢�£� is the link

priority of link � used in the algorithm, where £� is the number of timeslots since

the link was previously allocated a timeslot. Also, List A is the set of links that

still has not been given all their guaranteed timeslots. Note that the algorithm

stops when the list is empty. Finally, Schedule indicates which links are to be

scheduled in each timeslot �.

100

� ¢�h£�h ¢�k£�k ¢��£�� ¢��£�� ¢��£�� ¢��£�� ¢��£�� ¢��£�� List A Schedule

0 0 0 0 0 0 0 0 0 ��, �Y, �Z, �[, �\, �], ��, �� -

1 0 0 0 0 0 0 0 0 �Y, �[, �\, �], ��, �� ��, �Z

2 - 28.8 - 43.2 28.8 14.4 14.4 14.4 �Y, �[, �\, �], ��, �� �[

3 - 57.6 - 0 57.6 28.8 28.8 28.8 �Y, �[, �\, �], ��, �� �Y

4 - 0 - 43.2 86.4 43.2 43.2 43.2 �Y, �[, �\, �], ��, �� �\

5 - 28.8 - 86.4 0 57.6 57.6 57.6 �Y, �\, �], ��, �� �[

6 - 57.6 - - 28.8 72 72 72 �Y, �\, �� �], ��

7 - 86.4 - - 57.6 - - 86.4 �\, �� �Y

8 - - - - 86.4 - - 100.8 �\ ��

9 - - - - 115.2 - - - ϕ �\

Figure 3.23. Steps in the Gronkvist’s algorithm to

construct a schedule

From (3.20), we rewrite in more details the traffic loads λ(scheduled on link � by

our scheduling algorithm.

λ(� = 0.1; λ(b = 0.2; λ(� = 0.1; λ(� = 0.3; λ(� = 0.2;
λ(� = 0.1; λ(� = 0.2; λ(� = 0.1 (packets/slot) (3.27)

From (3.22), we also rewrite in more details the total throughput λ made by our

algorithm including traffic loads of five flows ��, �Y, �Z, �[and �\.

λ = λ(� + λ(� + λ(� + λ(� + λ(� = 0.5 (packets/slot) (3.28)

From the results in Figure 3.23, we have the traffic loads λ(¤ scheduled on link � by

the Gronkvist’s algorithm.

λ(�¤ = 1/9; λ(b¤ = 2/9; λ(�¤ = 1/9; λ(�¤ = 2/9; λ(�¤ = 2/9;

101

λ(�¤ = 1/9; λ(�¤ = 1/9; λ(�¤ = 1/9 (packets/slot) (3.29)

From (3.29), we also have the total throughput λ¤ made by the Gronkvist’s

algorithm including traffic loads of five flows ��, �Y, �Z, �[and �\.

λ¤ = λ(b¤ + λ(�¤ = 4/9 = 0.4444 (packets/slot) (3.30)

From the results of the two schedules by our algorithm and the Gronkvist’s

algorithm, we have the following observations.

(1) Our schedules provide the total throughput, i.e., λ = 0.5 (packets/slot), greater

than the Gronkvist’s algorithm, i.e., λ¤= 0.4444 (packets/slot);

(2) The Gronkvist’s schedule does not perfectly fit to the actual traffic loads

demands on the links, e.g., traffic load demand on link �[is 0.3 (packets/slot)

but this link is allocated just 0.2222 (packets/slot).

The main reason for the poor performance of Gronkvist’s algorithm results is the

relative and average assumption used in the definition of relative traffic Λ(and

hence the average relative traffic Λ�. Consequently, the guaranteed number of slots

in the schedule for a link �� �� ¡ does not always fit the actual traffic load.

3.4 CHAPTER CONCLUSIONS

It is widely accepted that wireless medium scheduling is a hard problem even if

several simplifications are performed. In this study we opted for situations where

the topology is fixed and known but the actual link dynamics are dependent on the

periodic DC of the nodes. The time-varying nature of the underlying

communication graph compounds the complexity of determining a single periodic

TDMA-like schedule. We attempted to solve the scheduling problem by

performing an off-line simulation-based process of the system for which we have

102

strong evidence that, due to the periodicity of all input factors, a similar

periodicity should be exhibited by the steady state. Part of this periodic steady

state behavior is the transmission decisions. We excise the transmissions

scheduled during the simulation to create a template which can then be

subsequently downloaded to the nodes.

We evaluated our approach based on a number of regular topologies and duty

cycling behaviors. Even though we restricted the evaluation to homogeneous

(same duty cycling period) nodes, the process outlined here can be extended to

situations with different duty cycle characteristics albeit at the cost of computing

the combined (based on the least common multiple of the different cycles)

repeated pattern across all nodes. Furthermore, our technique does not need to

comply to rate allocation derived under lexmax/maxmin criteria. Other objectives

can be used instead. The rate allocations, regardless of how they are calculated, as

long as they are feasible, simply act as a target for the simulation-based process.

The most evident shortcoming of the excision process is that it ignores the state of

the queues whose influence is only accounted for indirectly by excising

scheduling patterns that are multiples of the duty cycle period. The reader can

question whether the state of queues ought to have been a component of the state

comparison/matching. We have, so far, avoided matching the queue state in

addition to the transmissions because it is unclear whether matching the exact

number of packets in the queue is necessary (or just that there are some) and for

the added complexity that this would bring about (the buffers can be as many as

the flows times the number of links in the network). A possible future direction is

to elaborate the inter-dependency between queues and transmissions and how this

is manifested in the schedule template excision. In the next chapter, we introduce

a potent extension, which is the inclusion of NC (and scheduling decisions about

when to code and when not). This is to be a means to improve the throughput

when, due to duty cycling, throughput is “lost” because nodes are in OFF state.

103

CHAPTER 4

COMBINING DUTY-CYCLING AND NETWORK

CODING

4.1 PROBLEM FORMULATION

This chapter provides the NC extension of the schedule construction process,

which is detailed in Chapter 3. For reasons of consistency with Chapter 3, we

demonstrate how the rate optimization formulation can be restated to take into

account NC. In this thesis we use a particular form of pairwise NC, i.e., at each

node, flows can be coded only in a pairwise fashion. This places a restriction on

possible coding options, compared e.g., to the early results of section 2.6 in

Chapter 2, and in particular in this chapter we assume that which pairs are to be

coded together at each node is given. Additionally, a discussion about other

coding options will be presented in Chapter 5. We forewarn the reader that the

notion of max-min fairness we used in Chapter 3, when applied to networks where

NC is added, does not lead to the same results, hence even though we insist on a

max-min formulation for NC, the per-flow allocations will be different, hindering

a flow-by-flow comparison. Instead, when evaluating the performance of adding

NC, the comparison is going to be on the basis of total throughput. Finally,

whereas most of the work in this chapter are extensions/adaptations of the

techniques of Chapter 3, an additional technique unique to NC, that of delay

coding will be introduced in section 4.2. Its purpose is to ensure that, as pointed in

the conclusions of Chapter 2, there exist sufficient data packets available to the

nodes in order to perform NC. Essentially this chapter provides the techniques to

create STDMA schedules which not only determine when a node transmits but

also when it can transmit network coded packets.

104

4.1.1 EXTENDING THE MAX-MIN RATE COMPUTATION TO THE

NC CASE

In a manner similar to that of section 3.1 we can re-formulate the relevant

optimization problems. For example, Figure 4.1 shows the ��(�� , ��)

formulation, which is used with the WF algorithm with NC in Figure 4.2 to

compute the numerical rates of all the flows
 ∈ ℱ. Obviously, the formulation is

different than that without NC, i.e., ��(��), in terms of the constraints, since it is

assumed that there exist any predetermined coding combination of two flows at a

node, which need to be described as follows (using the notation introduced in

section 1.3).

Constraint (4.2) specifies flow conservation constraints which require the rate of

each flow summed-up across stages be conserved at a node
. Note the inclusion

of the combined rates ���, ��(�) (��, ��) for pairs of coded flows. Constraint (4.3)

specifies, for each stage, the link capacity restrictions that apply to contending

sub-flows which are active in that stage. Note that the coefficient of (1/2) before a

coding combination of two flows in the constraints is to prevent double counting

of the same combination of the two flows, since effectively a pair-wise

combination of flows halves the number of transmissions needed for the packets

that are coded together (keeping in mind that there are also packets that are not

coded and are accounted for separately from the coded ones).

��� � ���∈ℱ (4.1)

Subject to

� ���(�)(��)�∈�; ��∈ℒ: �(��)�
 + � ���, ��(�) (��, ��)�∈�; ��∈ ℱ; ��, ��∈ℒ: �(��)� ; �(��)� ;

 − � ���(�)(��#)�∈�; ��$ ∈ℒ: %(��$)�
 −

105

− � ���,��$
(�) (��# , ��#)�∈�; ��$∈ ℱ; ��$,��$ ∈ℒ: %(��$)� ; �(��$)��(��$);

= ' ��� ,
 = ((
�)−��� ,
 =)(
�)0 , +�,+ ∀
 ∈ .,
� ∈ ℱ (4.2)

� ��(�)(�) +�∈ℱ �∈ℒ /0(1)(�)∈2
 �� � ���, ��(�) (��, ��)��,��∈ℱ ��,��∈ℒ: �(��)��(��)/0�, 0�(1) (��,��)∈2

 ≤ �. 5(�) ∀6 ∈ �, ∀7 ∈ 8 (4.3)

� ���, ��(�) (��, ��)�∈� ≤ � ���(�)(��9)�∈� + � ���, �:(�) (��9, �;)�∈�

�,
�,
; ∈ ℱ:
� ≠
�,
� ≠
;; ��, ��, ��9, �; ∈ ℒ: ((��) = ((��), ((�;) = (=��9> (4.4)

���, ��(�) (��, ��) = '0 , ((��) = ((
�) 0 , ((��) =)(
�) ���, ��(�) (��, ��) , +�,+ ∀
�,
� ∈ ℱ, ��, �� ∈ ℒ (4.5)

�� = ?� @� = ABCDE, ∀
 ∈ ℱ (4.6)

�� , ��(�)(�), ���, ��(�) (��, ��) ≥ 0 ∀
,
�,
� ∈ ℱ, �, ��, �� ∈ ℒ, 6 ∈ � (4.7)

Figure 4.1. Formulation ��(�
, ��)

Constraints (4.4) state that the rate coded from a pair of flows at a node ((��) (if

it exists) over active link �� cannot be larger than that from one of the two flows

traversing over inverse link ��9 , which is generally created from two components,

the non-coded and the coded, received at the node ((��) across stages. Constraints

(4.5) on the variable ���, ��(�) (��, ��) specify that the coding from any two flows
�

and
� at a node
 = ((��) = ((��) is not allowed if the node
 is the source or

the destination of flow
� ∈ ℱ during each stage 5(�), and the constraints also

indicate the symmetry of coding the two flows.

The solution process is similar to the WF of Chapter 3. For the sake of

completeness we provided it here. The WF algorithm with NC in Figure 4.2 is the

106

same as that without NC except ��(��) is replaced by ��(�� , ��). In other words,

the WF algorithm with NC works exactly the same as that without NC because

their correctness is independent of the predetermined coding combinations of two

flows.

Input: Formulation ��(�� , ��) with
 ∈ ℱ;

Output: Numerical max-min rates ?� of all the multi-hop flows
 ∈ ℱ;

Begin

01. Set @� = G�ACE and ?� = 0 for all the flows
 ∈ ℱ;

02. Repeat

03. Select flow
 with @� = G�ACE in a round robin manner;

04. Increase ?� by a minuscule value H, i.e., ?� = ?� + H;

05. Submit ��(�� , ��) to LP solver;

06. If LP solver indicates ��(�� , ��) is infeasible Then

07. Restore ?� to the previous value, i.e., ?� = ?� − H;

08. Change @� = ABCDE;

09. End If

10. Until @� = ABCDE for all the flows
 ∈ ℱ;

End

Figure 4.2. The WF algorithm with NC

We can similarly restate the MP algorithm with NC to accelerate the computation

process the WF algorithm with NC.

Input: Formulations �� (
, ��) and �� (
, ?IJ , ��) with
 ∈ ℱ;

Output: Numerical max-min rates ?� of all the multi-hop flows
 ∈ ℱ;

Begin

01. Set @� = G�ACE for all the flows
 ∈ ℱ;

107

02. Repeat

03. Select flow
 ∈ ℱ with @� = G�ACE;

04. Submit �� (
, ��) to LP solver;

05. Store rate ?IJ of flow
 returned from LP solver;

06. For each flow
 ∈ ℱ with @� = G�ACE Do

07. Submit �� (
, ?IJ , ��) to LP solver;

08. Get rate �� of flow
 from LP solver;

09. If �� = ?IJ Then

10. Set @� = ABCDE for flow
;

11. End If

12. End For

13. Until @� = ABCDE for all the flows
 ∈ ℱ;

End

Figure 4.3. The MP algorithm with NC

The MP algorithm with NC in Figure 4.3 is associated with ��(K, ��) in Figure

4.4 and �� (K, ?IJ , ��) in Figure 4.5 to compute the max-min rates for multi-

hop flows in a DC-WSN. The MP algorithm with NC is exactly the same as that

without NC, in which ��(K) and �� (K, ?IJ) are replaced by ��(K, ��) and �� (K, ?IJ , ��).

��� (�L) K ∈ ℱ, @L = G�ACE (4.8)

Subject to

� ���(�)(��)�∈�; ��∈ℒ: �(��)�
 + � ���, ��(�) (��, ��)�∈�; ��∈ ℱ; ��, ��∈ℒ: �(��)� ; �(��)� ;

 − � ���(�)(��#)�∈�; ��$ ∈ℒ: %(��$)�
 −

108

− � ���,��$
(�) (��# , ��#)�∈�; ��$∈ ℱ; ��$,��$ ∈ℒ: %(��$)� ; �(��$)��(��$);

= ' ��� ,
 = ((
�)−��� ,
 =)(
�)0 , +�,+ ∀
 ∈ .,
� ∈ ℱ (4.9)

� ��(�)(�) +�∈ℱ �∈ℒ /0(1)(�)∈2
 �� � ���, ��(�) (��, ��)��,��∈ℱ ��,��∈ℒ: �(��)��(��)/0�, 0�(1) (��,��)∈2

 ≤ �. 5(�) ∀6 ∈ �, ∀7 ∈ 8 (4.10)

� ���, ��(�) (��, ��)�∈� ≤ � ���(�)(��9)�∈� + � ���, �:(�) (��9, �;)�∈�

�,
�,
; ∈ ℱ:
� ≠
�,
� ≠
;; ��, ��, ��9, �; ∈ ℒ: ((��) = ((��), ((�;) = (=��9> (4.11)

���, ��(�) (��, ��) = '0 , ((��) = ((
�) 0 , ((��) =)(
�) ���, ��(�) (��, ��) , +�,+ ∀
�,
� ∈ ℱ, ��, �� ∈ ℒ (4.12)

�� = ?� @� = ABCDE, ∀
 ∈ ℱ (4.13)

�� = �L @� = G�ACE, ∀
 ∈ ℱ (4.14)

�� , ��(�)(�), ���, ��(�) (��, ��) ≥ 0 ∀
,
�,
� ∈ ℱ, �, ��, �� ∈ ℒ, 6 ∈ � (4.15)

Figure 4.4. Formulation ��(K, ��)

��� (�L) K ∈ ℱ, @L = G�ACE (4.16)

Subject to

� ���(�)(��)�∈�; ��∈ℒ: �(��)�
 + � ���, ��(�) (��, ��)�∈�; ��∈ ℱ; ��, ��∈ℒ: �(��)� ; �(��)� ;

 − � ���(�)(��#)�∈�; ��$ ∈ℒ: %(��$)�
 −

109

− � ���,��$
(�) (��# , ��#)�∈�; ��$∈ ℱ; ��$,��$ ∈ℒ: %(��$)� ; �(��$)��(��$);

= ' ��� ,
 = ((
�)−��� ,
 =)(
�)0 , +�,+ ∀
 ∈ .,
� ∈ ℱ (4.17)

� ��(�)(�) +�∈ℱ �∈ℒ /0(1)(�)∈2
 �� � ���, ��(�) (��, ��)��,��∈ℱ ��,��∈ℒ: �(��)��(��)/0�, 0�(1) (��,��)∈2

 ≤ �. 5(�) ∀6 ∈ �, ∀7 ∈ 8 (4.18)

� ���, ��(�) (��, ��)�∈� ≤ � ���(�)(��9)�∈� + � ���, �:(�) (��9, �;)�∈�

�,
�,
; ∈ ℱ:
� ≠
�,
� ≠
;; ��, ��, ��9, �; ∈ ℒ: ((��) = ((��), ((�;) = (=��9> (4.19)

���, ��(�) (��, ��) = '0 , ((��) = ((
�) 0 , ((��) =)(
�) ���, ��(�) (��, ��) , +�,+ ∀
�,
� ∈ ℱ, ��, �� ∈ ℒ (4.20)

�� = ?� @� = ABCDE, ∀
 ∈ ℱ (4.21)

�� ≥ ?�M
 @� = G�ACE, ∀
 ∈ ℱ (4.22)

�� , ��(�)(�), ���, ��(�) (��, ��) ≥ 0 ∀
,
�,
� ∈ ℱ, �, ��, �� ∈ ℒ, 6 ∈ � (4.23)

Figure 4.5. Formulation ��(K, ?�M
, ��)

Example 4.1. To illustrate how the MP algorithm with NC calculates the per-flow

rates, we first consider a simple example in Figures 4.6 and 4.7, in which Figure

4.6 (or Figure 4.7) includes all possible maximal cliques without NC (or with NC)

that created from contending sub-flows in each stage. Then we walk through the

algorithm step-by-step, first running it without NC and next with NC.

The duty-cycled network has four nodes
 ∈ . = {1, 2, 3, 4}, six directed

wireless links in the link set ℒ = {��, ��, �;, �T, �U, �V} shown in Figure 4.6.a.1, and

three flows
�,
�,
; ∈ ℱ traversing, respectively, the paths {��, ��, �;}, {�T, �U} and {�V} indicated in Figure 4.6.b. The DC-configurations, i.e., 〈ϕY, αY, TY〉, of the

nodes is as shown in Figure 4.6.a.2, in which period T is divided into two stages

110

5(�), in units of slots, with 6 ∈ � = {1,2}, such that in each of these stages the

ON/OFF state of the nodes is unchanged and there exists at least an active link

(both its ends are ON).

In Figure 4.6.b, during each stage 6, flow
� without NC is represented by three

sub-flow components ���(�)(��), ���(�)(��) and ���(�)(�;), flow
� without NC is

represented by two sub-flow components ���(�)(�T) and ���(�)(�U), and flow
;

without NC is represented by one sub-flow component ��:(�)(�V). Hence, the

maximal cliques of the sub-flow contention graph (CG) which is made up from all

sub-flows competing in each stage, i.e., 5(�) and 5(�), are shown in Figures

4.6.c.1 and 4.6.c.2, respectively.

In Figure 4.7.b, during each stage 6, flow
� with NC is represented by four sub-

flow components ���(�)(��), ���(�)(��), ���(�)(�;) and ���,��(�) (�;, �U), flow
� with NC is

represented by three sub-flow components ���(�)(�T), ���(�)(�U), and ���,��(�) (�;, �U),

and flow
; with NC is still represented by one sub-flow component ��:(�)(�V).

Hence, the maximal cliques of the sub-flow contention graph (CG) which is made

up from all sub-flows competing in each stage, i.e., 5(�) (from slots TS4 to TS12)

and 5(�) (from slots TS12 to TS16), are shown in Figures 4.7.c.1 and 4.7.c.2,

respectively. Note that coded sub-flows, e.g., ���,��(�) (�;, �U), are not manually

specified but they are created algorithmically from non-coded sub-flows, e.g.,

���(�)(�;) and ���(�)(�U), at intermediate nodes under the certain conditions that will

be described later in Section 4.2.1. Note that in case with more than one

possibility of pairing non-coded sub-flows at an intermediate node, we use the

heuristic approach proposed in Chapter 5.

When the MP with NC runs on the network without NC, i.e., Figure 4.6, there are

only two iterations of loop Repeat Until in steps from 2 to 13.

111

In the 1
st
 iteration, after submitting �� (
) to LP solver in step 4, we get rate ?IJ

returned from LP solver in step 5, which is 0.03125 (packets/slot). It is the max-

min rate, which is feasible to allocate to flows with undetermined rates, i.e. flows
�,
� and
;. This is because among the two cliques in two Figures 4.6.c.1 and

4.6.c.2, the clique in Figure 4.6.c.2 is bottlenecked first based on the respective

capacity constraint. Since there are only two flows
� and
� with undetermined

rate in the bottlenecked clique, the rate of flows
� and
� are determined first by

loop For in steps from 6 to 11. Note that from now on the rate of flow
� and
�

are determined and unchanged, i.e., with status ABCDE. More specifically, the

flow and sub-flow rates of all the flows on each stage are determined as follows.

(1) Flow]^ - Flow rate: �� = 0.03125;

Stage 5(1)
: ���(�)(��) = 0.03125; ���(�)(��) = 0; ���(�)(�;) = 0;

Stage 5(2)
: ���(�)(��) = 0; ���(�)(��) = 0.03125; ���(�)(�;) = 0.03125;

(2) Flow]` - Flow rate: �� = 0.03125;

Stage 5(1)
: ���(�)(�U) = 0; ���(�)(�T) = 0;

Stage 5(2)
: ���(�)(�U) = 0.03125; ���(�)(�T) = 0.03125;

(3) Flow]a - Flow rate: �; = 0.03125;

Stage 5(1)
: ��:(�)(�V) = 0.03125;

Stage 5(2)
: ��:(�)(�V) = 0;

In the 2
nd

 iteration, after submitting �� (
) to LP solver in step 4, we get rate ?IJ returned from LP solver in step 5, which is 0.21875 (packets/slot). It is the

112

max-min rate, which is to indicate the max-min rate feasible to allocate to flows

with undetermined rates, i.e. flow
;. This is because among the two cliques in

two Figures 4.6.c.1 and 4.6.c.2, the clique in Figure 4.6.c.1 is bottlenecked next

based on the respective capacity constraint. Since there is only flow
; with

undetermined rate in the bottlenecked clique, the rate of flow
; is determined

next by loop For in steps from 6 to 11. More specifically, the flow and sub-flow

rates of all the flows on each stage are determined as follows.

(1) Flow]^ - Flow rate: �� = 0.03125;

Stage 5(1)
: ���(�)(��) = 0.03125; ���(�)(��) = 0; ���(�)(�;) = 0;

Stage 5(2)
: ���(�)(��) = 0; ���(�)(��) = 0.03125; ���(�)(�;) = 0.03125;

(2) Flow]` - Flow rate: �� = 0.03125;

Stage 5(1)
: ���(�)(�U) = 0; ���(�)(�T) = 0;

Stage 5(2)
: ���(�)(�U) = 0.03125; ���(�)(�T) = 0.03125;

(3) Flow]a - Flow rate: �; = 0.21875;

Stage 5(1)
: ��:(�)(�V) = 0.21875;

Stage 5(2)
: ��:(�)(�V) = 0;

Turning out attention to the execution of MP with NC, i.e., Figure 4.7, there are

also only two iterations of loop Repeat Until in steps from 2 to 13.

In the 1
st
 iteration, after submitting �� (
) to LP solver in step 4, with NC we get

rate ?IJ returned from LP solver in step 5, which is 0.04166 (packets/slot). Note

113

that this rate is 30% greater than it was without NC. It is the max-min rate, which

is feasible to allocate to flows with undetermined rates, i.e. flows
�,
� and
;.

This is because among the two cliques in two Figures 4.6.c.1 and 4.6.c.2, the

clique in Figure 4.6.c.2 is bottlenecked first based on the respective capacity

constraint. Since there are only two flows
� and
� with undetermined rate in the

bottlenecked clique, the rates of flow
� and
� are determined first by loop For in

steps from 6 to 11. Note that from now on the rate of flow
� and
� are

determined and unchanged, i.e., with status ABCDE. More specifically, the flow

and sub-flow rates of all the flows on each stage are determined as follows.

(1) Flow]^ - Flow rate: �� = 0.04166;

Stage 5(1)
: ���(�)(��) = 0.04166; ���(�)(��) = 0;
���(�)(�;) = 0; ���,��(�) (�;, �U) = 0;

Stage 5(2)
: ���(�)(��) = 0; ���(�)(��) = 0.04166;
���(�)(�;) = 0; ���,��(�) (�;, �U) = 0.04166;

(2) Flow]` - Flow rate: �� = 0.04166;

Stage 5(1)
: ���(�)(�U) = 0; ���,��(�) (�;, �U) = 0;
���(�)(�T) = 0;

Stage 5(2)
: ���(�)(�U) = 0; ���,��(�) (�;, �U) = 0.04166;
���(�)(�T) = 0.04166;

(3) Flow]a - Flow rate: �; = 0.04166;

114

Stage 5(1)
: ��:(�)(�V) = 0.04166;

Stage 5(2)
: ��:(�)(�V) = 0;

In the 2
nd

 iteration, after submitting �� (
) to LP solver in step 4, with NC we get

rate ?IJ returned from LP solver in step 5, which is 0.20833 (packets/slot). Note

that this rate is less than the one without NC because of the increase of flow
�’s

rate by NC. It is the max-min rate, which is to indicate the max-min rate feasible

to allocate to flows with undetermined rates, i.e. flow
;. This is because among

the two cliques in two Figures 4.7.c.1 and 4.7.c.2, the clique in Figure 4.7.c.1 is

bottlenecked next based on the respective capacity constraint. Since there is only

flow
; with undetermined rate in the bottlenecked clique, the rate of flow
; is

determined next by loop For in steps from 6 to 11. More specifically, the flow

and sub-flow rates of all the flows on each stage are determined as follows.

(1) Flow]^ - Flow rate: �� = 0.04166;

Stage 5(1)
: ���(�)(��) = 0.04166; ���(�)(��) = 0;
���(�)(�;) = 0; ���,��(�) (�;, �U) = 0;

Stage 5(2)
: ���(�)(��) = 0; ���(�)(��) = 0.04166;
���(�)(�;) = 0; ���,��(�) (�;, �U) = 0.04166;

(2) Flow]` - Flow rate: �� = 0.04166;

Stage 5(1)
: ���(�)(�U) = 0; ���,��(�) (�;, �U) = 0;
���(�)(�T) = 0;

115

Stage 5(2)
: ���(�)(�U) = 0; ���,��(�) (�;, �U) = 0.04166;
���(�)(�T) = 0.04166;

(3) Flow]a - Flow rate: �; = 0.20833;

Stage 5(1)
: ��:(�)(�V) = 0.20833;

Stage 5(2)
: ��:(�)(�V) = 0;

From the above example and its results when we run the MP algorithm with NC

on the network, we have the following observations of the impact of NC:

(1) NC can improve the rates of two flows, e.g., flows
� and
�, traversing a node

(greater than those without NC), at which the two flows can be combined and

transmitted together for saving the flow transmissions;

(2) NC may indirectly cause the decrease of the rates of flows, e.g., flow
;, (less

than those without NC), which cannot be combined with any of the other flows,

because of the increase of the rates of flows by NC;

(3) NC may change the max-min allocation to flows compared to the case when

no NC is applied because it may increase some flows’ rates but also

simulraneously decrease the other flows’ rates as observed from (1) and (2),

however leading to higher overall throughput (the total prior without NC is

0.28125 while with NC it is 0.29165).

116

(a.1) Link topology

(a.2) States ON/OFF of nodes (ON slots are gray)

(b) Multi-hop flows

(c.1) CG in 5(1)

(c.2) CG in 5(2)

Figure 4.6. An illustrative example for the MP algorithm without

NC (CG = Contention Graph)

117

(b) Multi-hop flows

(c.1) CG in 5(1)

(c.2) CG in 5(2)

Figure 4.7. An illustrative example for the MP algorithm with NC

(CG = Contention Graph)

4.2 SIMULATION-BASED PERIODIC PATTERN EXCISION

4.2.1 DELAY CODING

To improve the throughput that is generally reduced due to DC, our work uses the

XOR-pairwise NC, in which there exist two flows over a common part (at least

two hops), or a coding segment for short, of their routing paths. The duty-cycle of

each intermediate node of the segment must simultaneously overlap the duty-

cycles of its two neighbors along the segment so that the coded sub-flow from the

two flows transmitted at the intermediate node can be received by the two

neighbors.

118

(a) Link topology

(b) Multi-hop flows

(c) States ON/OFF of duty-cycled nodes (ON slots are gray)

(d) Flow pattern of non-delayed streams

(e) Flow pattern of delayed streams

Figure 4.8. An illustrative example of delay coding process

119

Given a coding segment, we know where to apply the network coding, i.e., at the

intermediate nodes along the coding segment, and when to apply the network

coding, i.e., during the overlap period of the three cycles of an intermediate node

and its two neighbors of the same segment, which is called a coding stage for

short.

Example 4.2. For illustration, we use the network with link topology in Figure

4.8.a and flow pattern in Figure 4.8.b, which includes two flows, flow
� from

source node 1 to sink node 5 and flow
� from source node 6 to sink node 2, and a

coding segment (from nodes 2 to 5) of the routing paths of the two flows. Figure

4.8.c shows the duty-cycles of nodes including intermeadiate nodes of the coding

segment, e.g., nodes 3 and 4, at which the two flows
� and
� can be combined or

coded only during the coding stage 5(2)
, where exists the overlap between the

nodes’duty-cycles and their neighbors’.

To produce more coding opportunities, we introduce the delay coding scheme, in

which packets from one flow have to delay at an intermediate node until they are

coded with those from the other flow. However, the packets should be delayed

only in a coding stage, where the coding can take place. Outside the coding stage,

if the link connection is still available, then packets should be scheduled for

transmissions to utilize the available bandwidth. To implement the idea, we create

two streams of packets scheduled only along a coding segment in the delay coding

scheme, in which the delayed stream, e.g., green arrows in Figures 4.8.c and 4.8.e,

exists only in the coding stage, e.g., 5(2)
 in Figure 4.8.c, while the non-delayed

stream, e.g., blue and red arrows in Figures 4.8.c and 4.8.d, exists both inside and

outside the coding stage, e.g., 5(1)
 and 5(3)

 in Figure 4.8.c.

Specifically, given a coding segment with two flows traversing in opposite

directions, the delay coding scheme has two stages, the initial stage and the steady

stage. In the initial stage, the packets from one flow with smaller id, e.g.,
�, go

forward while those from the inverse flow with larger id, e.g.,
�, wait for coding

120

at the intermediate node next to the segment’s end, e.g., node 4 in Figure 4.8.e,

until the packets of the two flows meet for the first time. In the steady stage,

which follows the initial stage, packets from the two inverse flows have to wait

for each other at intermediate nodes for coding. Note that non-delayed packets

from the non-delayed stream are regular packets while delayed packets from the

delayed stream are created by converting from regular packets at the two ends of

the coding segment during the coding stage.

Input: Coded sub-flow ���, ��(�) (��, ��) from node
 during a coding stage;

Transmission queue ef [0. . L - 1] of node
;

Output: A coded packet, i.e., � ≠ �G��, or none, i.e., � = �G��;

Begin

01. � ← K+l (ef [0. . L - 1], ED�mn);

02. If (� ≠ �G��) �
) (o�M�+) (�, ef [0. . L - 2], ED�mn) ≠ �G��) Then

03. � ← � ⊕ o�M�+) (�, ef [0. . L - 2], ED�mn);

04. Else

05. If (� ≠ �G��) �
) (o�M�+) (�, ef [0. . L - 2], �qED�) ≠ �G��) Then

06. � ← � ⊕ o�M�+) (�, ef [0. . L - 1], �qED�);

07. Else

08. If (� ≠ �G��) Then

09. M
,+�l (�, ef [0. . L - 2]); � ← �G��;

10. End If

11. End If

12. End If

End

Figure 4.9. Pseudo-code of the delay coding algorithm

Figure 4.9 shows the pseudo-code of the delay coding scheme, which outputs a

coded packet, i.e., � ≠ �G��, or none, i.e., � ← �G��. Suppose we have coded

sub-flow ���, ��(�) (��, ��) combined from two flows
�,
� in a coding stage at an

intermediate node
 with transmission queue ef [0. . L - 1] with length L or ef []

121

for short. From steps 1 to 4, only the delayed stream is chosen and a coded packet

is output if the coding condition in step 2 is satisfied during the coding stage. Note

that to further improve the throughput, the delayed stream, i.e., steps 2 to 4, is

treated with higher priority than the non-delayed stream, i.e., steps 5 to 7. To

provide even more opportunities for coding, the delayed stream’s packets are

allowed to code with those of the non-delayed stream, i.e., steps 5 to 7. The

following functions are used in the pseudo-code: (1) K+l (ef [], ED�mn) or K+l (ef [], �qED�) is to get a packet of the delayed stream or the non-delayed

stream from transmission queue ef [] of node
; (2) o�M�+) (�, ef [], ED�mn)

or o�M�+) (�, ef [], �qED�) is to pair packet � with another packet of the

delayed stream or the non-delayed stream from queue ef [] of node
; (3) M
,+�l (�, ef [], ED�mn) is to insert packet � back into queue ef [] of node
.

4.2.2 EXTENDING THE SCHEDULING ALGORITHM TO NC

The scheduling algorithm with NC works exactly the same as that without NC

does except non-coded sub-flows are extended to both non-coded and coded sub-

flows. Without NC, the transmission of an ON non-coded sub-flow of flow
 over

link � in timeslot M by invoking the Maximum Weighted Independent Set (MWIS)

approximation algorithm is determined by the weight r+MKℎl(
, �, M) of the sub-

flow as computed by (3.22). With NC, the weight assigned to an ON coded sub-

flow from two flows
� and
� over two respective links �� and �� during timeslot M
is calculated as follows.

r+MKℎl(
�,
�, ��, ��, M) = ���(r+MKℎl(
�, ��, M), r+MKℎl(
�, ��, M)) (4.30)

Note that the ��� () function in (4.30) is to maximize the weight assignment of

the coded sub-flow from the two component weights, r+MKℎl (
�, ��, M) and r+MKℎl (
�, ��, M), so that the scheduling algorithm can get more opportunities to

benefit from NC.

122

Figure 4.10 shows the pseudo-code of the scheduling algorithm with NC in a

given slot. Note that the only differences between the algorithm and the one

without NC are coded sub-flows and their weight assignment to the MWIS

algorithm as described in the previous paragraph.

Input: Contention matrix t_@A [0..M-1][0..M-1] of all the M ON sub-flows;

Weight of each of the M′ ON sub-flows with available packets in slot M;
Output: Array @_@A [0..M″-1] of M″ of ON sub-flows to be scheduled in slot M;
Begin

01. For Each ON sub-flow, (
, �) or (
�,
�, ��, ��), with packets in queue Do

02. If It is an ON non-coded sub-flow (
, �) Then

03. r ← r+MKℎl (
, �, M);

04. Else

05. r ← ��� (r+MKℎl (
�, ��, M), r+MKℎl (
�, ��, M));

06. End If

07. y_@A [0. . M′- 1][0. . M′- 1] ← K��oℎ(
, �, r, t_@A [0. . M- 1][0. . M- 1]);

08. End For

09. @_@A [0. . M″- 1] ← tzB@ (y_@A [0. . M′- 1][0. . M′- 1]);

End

Figure 4.10. The scheduling algorithm with NC during slot M

123

4.2.3 SCHEDULE EXCISION PROCESS WITH NC

Figure 4.11. Illustration of the simulation-based schedule

excision process with NC

The schedule excision process without NC includes two main comparisons, the

prefix schedule comparison and the entire schedule comparison, in which the state

of whether a sub-flow is scheduled or not is considered in each timeslot.

Therefore, in order for the schedule excision process with NC to properly function

like that without NC, we need to add more scheduling states to a coded sub-flow.

These states capture the fact that an NC coded transmission introduced in the

schedule may have up to two simulataneous possible recipients.

For a non-coded sub-flow determined by two ends, one sender and one receiver

for only one flow, we only need the two following states: (1) the active state that

indicates both the sender end and the receiver end are active represented by black

circles in Figure 4.11, or ACTIVE for short; (2) the inactive state that indicates

either the sender end or the receiver end is inactive represented by white circles in

Figure 4.11, or INACTIVE.

124

However, for a coded sub-flow determined by three ends, one sender and two

receivers for at most two flows, we need the four following states: (1) the active

state that indicates the sender end and both the receiver ends are active

represented by red circles in Figure 4.11, or BT_ACT for short; (2) the active state

that indicates the sender end and the 1
st
 receiver end are active represented by blue

circles in Figure 4.11, or F1_ACT; (3) the active state that indicates the sender

end and the 2
nd

 receiver end are active represented by green circles in Figure 4.11,

or F2_ACT; (4) the inactive state that indicates either the sender end or both the

receiver ends are inactive represented by white circles in Figure 4.11, or

INACTIVE.

4.2.4 FLOW BALANCE APPROACHES WITH NC

As mentioned in Chapter 3, we have the two following options to get a template

without NC, which has flow balance guaranteed: (1) by making it a criterion

during the pattern matching process (option A); (2) by enforcing it after the

excision has taken place (option B) by trimming away the transmissions that result

in the imbalance.

To implement options A and B with NC, we use two algorithms

CheckBalanceNC () and MakeBalanceNC () presented by pseudo-codes in

Figures 4.12 and 4.14, respectively. Algorithm CheckBalanceNC () is to check if

all the flows in a given schedule template are balanced, which is used during the

pattern matching process. Meanwhile, algorithm MakeBalanceNC () is to enforce

the flow balance on a given imbalanced schedule template, which is used after the

pattern matching process.

With the pseudo-code of algorithm CheckBalanceNC () in Figure 4.12, we

suppose a given schedule template with length Tschedule and M sub-flows is stored

in array ScheduleArray [0..Tschedule – 1][0..M – 1]. Note that the array can contain

five possible values: ACTIVE, BT_ACT, F1_ACT, F2_ACT, and INACTIVE, in

125

which INACTIVE can be used for both non-coded and coded sub-flows. We also

assume that the minimum value, i.e., �M
 (
), which is among the numbers of

transmissions of a given flow
 over each of its links � along its routing path, is

predetermined. In addition, we use variable #�(�) to store the number of

transmissions of each flow
 over link �, which is initialized to zero in step 1. The

variable is increased by one whenever
 over link � is scheduled, i.e., ACTIVE

(step 4), or BT_ACT or F1_ACT (step 10), or BT_ACT or F2_ACT (step 16),

during traversing the template (steps 2 to 21). Note that notation (
, �) is to

indicate flow
 goes over link �. The algorithm returns imbalance indication (steps

6, 12 or 18) whenever the variable is greater than the minimum respective

value �M
 (
) or balance indication otherwise (step 22).

Input: Schedule array ScheduleArray [0..Tschedule – 1][0..M – 1];

Number �M
(
) of each flow
 ∈ ℱ in the array;

Output: YES if the array is balanced or NO otherwise;

Begin

01. Set #�(�) to zero for all the flows
 ∈ ℱ over link � ∈ ℒ;

02. For (M from 0 to Tschedule – 1, | from 0 to M – 1) Do

03. If ((ScheduleArray [M][|] = ACTIVE) and (| = (
, �))) Then

04. #�(�) = #�(�) + 1;

05. If (#�(�) > �M
(
)) Then

06. Return NO;

07. End If

08. End If

09. If ((ScheduleArray [M][|] = F1_ACT) or

 (ScheduleArray [M][|] = BT_ACT)) and (| = (
, ��))) Then

10. #�(��) = #�(��) + 1;

11. If (#�(��) > �M
(
)) Then

12. Return NO;

13. End If

126

14. End If

15. If ((ScheduleArray [M][|] = F2_ACT) or

 (ScheduleArray [M][|] = BT_ACT)) and (| = (
, ��))) Then

16. #�(��) = #�(��) + 1;

17. If (#�(��) > �M
(
)) Then

18. Return NO;

19. End If

20. End If

21. End For

22. Return YES;

End

Figure 4.12. Pseudo-code of algorithm CheckBalanceNC ()

The idea of the enforcement of flow balance (option B) upon the template is that

for each flow we walk through the active spots of sub-flows of the flow along its

routing path from the source to the sink in the template. We then mark the spots as

visited only when we have walked through the entire path, i.e., we have reached

the sink. Hence, the active spots, which have not marked yet, are the imbalanced

spots, which need to be removed from the template, i.e., turned to inactive spots.

(a) A common spot between

two routing paths

(b) FBE for fully-

coded spots

(c) FBE for partially or

non-coded spots

Figure 4.13. The process of flow balance enforcement (FBE)

From

Source 1

From

Source 2

From

Source 1 To

Sink 1

To

Sink 2

127

The idea is effective only with a template without NC, in which all the routing

paths are separated. However, in a schedule template generated to include NC, the

paths may have common active spots of coded sub-flows (in red circles) as

presented in Figure 4.13.a and hence we need a more elaborate enforcement of

flow balance for non-coded and coded spots.

(1) Assume we have performed the marking process for all the flows as described

earlier. If the active imbalanced spot is a coded sub-flow with its active sender

end and two receiver ends, i.e., in red circle, we turn the spot from red to blue or

green (or white) if it is marked once (or none) by walking through the routing path

of its 1
st
, i.e., indicated as YES_F1, or 2

nd
, i.e., indicated as YES_F2, receiver end

(or none, i.e., indicated as NO). This scenario is illustrated by Figure 4.13.b.

Noting that by doing so, the trimming of one flow’s active imbalanced spot, i.e.,

to turn from red to blue or green or white, does not impact the other flow’s active

balanced spot combined in the coded sub-flow;

(2) If the active imbalanced spot is a coded sub-flow with just one active receiver

end, i.e., in blue or green circle, or the imbalanced spot is a non-coded sub-flow in

the active state, i.e., in black circle, we turn the spot from blue or green or black

into white, if it has not been marked at all. This scenario is illustrated by Figure

4.13.c.

The idea is demonstrated in the pseudo-code of algorithm MakeBalanceNC () in

Figure 4.14. We assume that we have walked through the active spots of sub-

flows of each flow along its routing path from the source to the sink in the

template and marked the spots in array VisitedArray [0..Tschedule – 1][0..M – 1].

Note that only an active spot is marked as visited only when we have walked

through the entire path, i.e., we have reached the sink. The array can contain the

following values, NO (unmarked), YES (marked on an active spot of a non-coded

sub-flow), YES_F1 (marked once on an active spot via the 1
st
 receiver end of a

coded sub-flow), YES_F2 (marked once on an active spot via the 2
nd

 receiver end

128

of a coded sub-flow), YES_BT (marked twice on an active spot via both the

receiver ends of a coded sub-flow).

Hence, active spots, i.e., ACTIVE or F1_ACT or F2_ACT or BT_ACT, which

have not been marked yet, i.e., NO visited, are considered as imbalanced spots in

steps 2 and 3. The active imbalanced spots are illustrated in Figures 4.13.b and

4.13.c (mostly). Hence, they need to be removed from the template, i.e., turned to

inactive spots, i.e., INACTIVE, by step 4. There are also other active imbalanced

spots, i.e., BT_ACT, which have marked only once, i.e., YES_F1 or YES_F2, are

considered as imbalanced spots in steps 8 and 11, respectively. The active

imbalanced spots are illustrated in Figure 4.13.b, which need to be trimmed into

F1_ACT or F2_ACT for enforcement of flow balance. Eventually, after traversing

the whole template, the algorithm turns the given schedule array from an

imbalanced template to a balanced one.

Input: Imbalanced array ScheduleArray [0..Tschedule – 1][0..M – 1];

Visited array VisitedArray [0..Tschedule – 1][0..M – 1];

Output: Balanced array ScheduleArray [0..Tschedule – 1][0..M – 1];

Begin

01. For (M from 0 to Tschedule – 1, | from 0 to M – 1) Do

02. If (VisitedArray [M][|] = NO) Then

03. If ((ScheduleArray [M][|] = ACTIVE) or

 (ScheduleArray [M][|] = F1_ACT) or

 (ScheduleArray [M][|] = F2_ACT) or

 (ScheduleArray [M][|] = BT_ACT)) Then

04. ScheduleArray [M][|] = INACTIVE;

05. End If

06. Else

07. If (ScheduleArray [M][|] = BT_ACT) Then

08. If (VisitedArray [M][|] = YES_F1) Then

09. ScheduleArray [M][|] = F1_ACT;

10. Else

11. If (VisitedArray [M][|] = YES_F2) Then

129

12. ScheduleArray [M][|] = F2_ACT;

13. End If

14. End If

15. End If

16. End If

17. End For

End

Figure 4.14. Pseudo-code of algorithm MakeBalanceNC ()

To illustrate the schedule excision process with NC after flow balance is checked

and guaranteed, we run the scheduling algorithm without and with NC on the

network in Example 4.1. As a result, we construct the schedule without NC in

Figure 4.15 and that with NC in Figure 4.16.

 ~ �]^(�)(�^) �]^(�)(�`) �]^(�)(�a) �]`(�)(��) �]`(�)(��) �]a(�)(��)

1 ○ ○ ○ ○ ○ ○
2 ○ ○ ○ ○ ○ ○
3 ○ ○ ○ ○ ○ ○
4 ○ ○ ○ ○ ○ ○
5 ○ ○ ○ ○ ○ ●
6 ○ ○ ○ ○ ○ ●
7 ○ ○ ○ ○ ○ ●
8 ○ ○ ○ ○ ○ ●
9 ○ ○ ○ ○ ○ ●
10 ● ○ ○ ○ ○ ○
11 ○ ○ ○ ○ ○ ●
12 ○ ○ ○ ○ ○ ●
13 ○ ● ○ ○ ○ ○
14 ○ ○ ● ○ ○ ○
15 ○ ○ ○ ● ○ ○
16 ○ ○ ○ ○ ● ○
17 ○ ○ ○ ○ ○ ○
… ○ ○ ○ ○ ○ ○
32 ○ ○ ○ ○ ○ ○

Figure 4.15. The schedule is constructed when we run the scheduling

algorithm without NC on the network in Example 4.1

130

In Figure 4.15, timeslot ~ is within duration Tschedule without NC, i.e., from 1 to 32,

and non-coded sub-flow �](�)(�) indicates flow
, i.e., from
� to
;, over link �,
i.e., from �� to �V, across stages 6, i.e., from 1 to 2. Note that white circles (black

circles) mean the non-coded sub-flows are not scheduled (are scheduled).

Meanwhile, in Figure 4.16, timeslot ~ is within duration Tschedule with NC, i.e.,

from 1 to 96, and coded sub-flow �]^,]`(�) (�a, ��) indicates two flows
� and
� can

be combined over two links �; and �U across stages 6. Note that red circles (white

circles) at column ���,��(�) (�;, �U) mean both flows
� and
� are scheduled (not

scheduled) over two links �; and �U.

From the results in Figures 4.15 and 4.16, we observe that the constructed

schedules are guaranteed flow balance. For example, the rates of flow
� over

links ��, �� and �; along the routing path are equal to 1/32 or 0.03125 in Figure

4.15 while they are 4/96 or 0.04166 in Figure 4.16. The results are consistent with

those from the MP algorithm as described above. Paticularly, with NC in this

example, two non-coded sub-flows, ���(�)(�;) and ���(�)(�U), are no longer scheduled

(presented by white circles) because of scheduling coded-subflow ���,��(�) (�;, �U)

(presented by red circles). We observe that the length of the constructed schedule

changes with the introduction of additional coded sub-flows in this example, e.g.,

the schedule length increases from 32 to 96 slots when coded sub-flow

���,��(�) (�;, �U) is created. We will see later from the simulation results in Table 4.1,

the introduction of additional coded sub-flows may result in the decrease of the

schedule length. From the observations, we have no conclusive answer on

whether adding NC reduces or expands the schedule length.

 ~ �]^(�)(�^) �]^(�)(�`) �]^(�)(�a) �]^,]`(�) (�a, ��) �]`(�)(��) �]`(�)(��) �]a(�)(��)

1 ○ ○ ○ ○ ○ ○ ○

2 ○ ○ ○ ○ ○ ○ ○

3 ○ ○ ○ ○ ○ ○ ○

4 ○ ○ ○ ○ ○ ○ ○

5 ○ ○ ○ ○ ○ ○ ●

131

6 ○ ○ ○ ○ ○ ○ ●

7 ○ ○ ○ ○ ○ ○ ●

8 ○ ○ ○ ○ ○ ○ ●

9 ○ ○ ○ ○ ○ ○ ●

10 ○ ○ ○ ○ ○ ○ ●

11 ● ○ ○` ○ ○ ○ ○

12 ○ ○ ○ ○ ○ ○ ●

13 ○ ● ○ ○ ○ ○ ○

14 ○ ○ ○ ○ ○ ● ○

15 ○ ○ ○ ○ ○ ○

16 ○ ○ ○ ○ ○ ● ○

17 ○ ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○ ○

32 ○ ○ ○ ○ ○ ○ ○

33 ○ ○ ○ ○ ○ ○ ○

34 ○ ○ ○ ○ ○ ○ ○

35 ○ ○ ○ ○ ○ ○ ○

36 ○ ○ ○ ○ ○ ○ ○

37 ○ ○ ○ ○ ○ ○ ●

38 ○ ○ ○ ○ ○ ○ ●

39 ○ ○ ○ ○ ○ ○ ●

40 ○ ○ ○ ○ ○ ○ ●

41 ○ ○ ○ ○ ○ ○ ●

42 ● ○ ○ ○ ○ ○ ○

43 ○ ○ ○` ○ ○ ○ ●

44 ○ ○ ○ ○ ○ ○ ●

45 ○ ● ○ ○ ○ ○ ○

46 ○ ○ ○ ○ ○ ○

47 ○ ○ ○ ○ ○ ● ○

48 ○ ○ ○ ○ ○ ● ○

49 ○ ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○ ○

64 ○ ○ ○ ○ ○ ○ ○

65 ○ ○ ○ ○ ○ ○ ○

66 ○ ○ ○ ○ ○ ○ ○

67 ○ ○ ○ ○ ○ ○ ○

68 ○ ○ ○ ○ ○ ○ ○

69 ○ ○ ○ ○ ○ ○ ●

70 ○ ○ ○ ○ ○ ○ ●

71 ○ ○ ○ ○ ○ ○ ●

72 ○ ○ ○ ○ ○ ○ ●

73 ○ ○ ○ ○ ○ ○ ●

74 ● ○ ○ ○ ○ ○ ○

75 ○ ○ ○` ○ ○ ○ ●

76 ● ○ ○ ○ ○ ○ ○

77 ○ ● ○ ○ ○ ○ ○

78 ○ ○ ○ ○ ○ ○

79 ○ ● ○ ○ ○ ○ ○

132

80 ○ ○ ○ ○ ○ ○

81 ○ ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○ ○

96 ○ ○ ○ ○ ○ ○ ○

Figure 4.16. The schedule is constructed when we run the scheduling

algorithm with NC on the network in Example 4.1

4.3 EVALUATION

4.3.1 THROUGHPUT IMPROVEMENT

In order to evaluate the ability of the proposed NC technique to improve the total

throughput, we continue to use regular topologies as in Chapter 3, and experiment

with different per-node phases. Like those without NC, there is no restriction to

just regular topologies for the application of the proposed scheme, but the reader

can follow easily the layout, phase relation, and flow paths on a regular topology.

We also consider a 4x4 topology as shown in Figure 4.17. Circular arcs are used

to pictorially depict which nodes have the same phases (e.g., in the 4x4 topology

nodes 3, 6, and 9 have the same phase). The duty cycle period is 32 slots and the

ON intervals are all 12 slots long. Given that the phases can be staggered

differently, we explore the impact staggering by various “phase gaps” (Figures

4.17.c) and indicate the phase (counted in slots) at which the corresponding node

switches to ON. Additionally, a number of flows are simulated in the

configuration following the pattern PT-5, which is shown in Figures 4.17.b. Note

that the routes in pattern PT-5 were computed, based on single-shortest-path time-

varying routing, i.e., the directions are along the sides of the grid. Also, to create

opportunities for the XOR-pairwise NC in flow pattern PT-5, one flow (Source,

Sink) always has the respective reverse flow (Sink, Source) with the same routing

path. In our work, we only investigate whether the coding can be applied in DC-

WSNs and how it can be applied. i.e., not to maximize the coding benefit when

there are multiple choices of given flows for coding. This is a matter we briefly

address in Chapter 5.

133

(a) 4x4 Grid topology

(b) Flow pattern PT-5

(c) Phase scheme for G4x4

Figure 4.17. Topologies, flows and phases used in the simulations

134

Another facet of the experiments is the phase relation between adjacent nodes. We

again consider three schemes:

1. Synchronized Phases (SP), in which all the phases are synchronized to start at

the same point in time. This is a benchmark value which essentially eliminates the

time-varying nature of the communication graph.

2. Fixed Ladder Phases (FLP), in which any two adjacent nodes in the grid

(vertically or horizontally) have their phases staggered 2 slots apart. This scheme

is meant to test the impact of flow patterns and their interference on the schedule

construction but with a fairly benign impact by the phase differences, i.e., adjacent

ON periods overlap significantly over relatively long periods of time.

3. Varied Ladder Phases (VLP), in which we vary the staggering of the phases

from 2 to 10 slots (Figures 4.17.c), creating increasingly “difficult” short periods

over which links are active. Note that when the VLP scheme is used, the number

of flows in each flow pattern is kept maximized and unchanged, i.e., in PT-5, the

number of flows is 16.

In all cases, and as a matter of convention, instead of denoting the specific flows

that comprise a certain mix, we create larger sets of flows by adding more flows

in their numerical order. That is, sets of 1, 2, 3, etc. flows comprise

correspondingly of the flows {F1}, {F1, F2}, {F1, F2, F3}, etc. Finally, note that

because of the time varying nature of the underlying communication graph, the set

of parameters used here that guides the duty cycling, generates a great deal of

actual link topologies.

Representative results are summarized in Table 4.1 for pattern PT-5 with schemes

SP, FLP and VLP. The Coding indicates the results done without NC, i.e., NC0,

or with NC, i.e., NC1. The #F or Gap is the number of flows for phase schemes

SP and FLP, or the stagger gap for phase scheme VLP. Pre-Sim is the total

throughput of the constructed excised periodic schedule. Numerical is the total

throughput as derived from the water filling algorithm. Fairness is a fairness

135

index between what should be the achieved rates (as per water-filling) and what is

achieved by the excised schedule. Tschedule/T expresses how many multiples of

the duty cycle period is the length of the excised periodic schedule. Mismatch

captures the fraction as percentage of sub-flows who did not match exactly during

the prefix comparison. Err captures the fraction of sub-flows that did not match

exactly during the complete schedule length comparison. The note field indicates

whether Option A or Option B for correcting the flow balance was necessary in

the corresponding case and which of the two options produced the best results.

With NC, the virtually identical numbers in the Pre-Sim and Numerical columns

again demonstrate that the process of schedule excision is a reasonable approach

to produce accurate schedules. Despite the fact that a key component of the

simulation-based process is the invocation of an approximation to MWIS the fact

is that a schedule is constructed via multiple (one per slot) invocation of MWIS,

hence what matters is less the worst-case behavior of the approximation and more

the average performance.

The process of matching the Tsample prefix and the entire Tschedule with NC also

cannot be expected to lead to perfect matches. For this reason, we allowed a

maximum of mismatch (seen as difference in transmissions scheduled for a sub-

flow between two compared patterns) of 10% which turned out to be very

pessimistic, i.e., we did not reach that degree of mismatch in both the Tsample

prefix and the entire Tschedule, which are presented by Mismatch and Err in the

performance tables, respectively.

Another aspect of the results is that the produced schedule of duration Tschedule

with and without NC is a small multiple of T (the DC period). Without NC, the

less loaded the network with flows, the smaller this multiple tends to be, but there

are exceptions. With NC, the duration tends to be shorter than that without NC.

This makes a lot of sense because with NC, particularly the delay coding, each

pair of two non-coded sub-flows is possibly combined into a coded sub-flow,

which leads to reduction of network load. As mentioned earlier, the relation

136

Tschedule/T reveals the impact of the queue state. With NC, the queues still tend to

behave periodically as without NC. Especially, due to the combination of two

transmissions into one with NC, which results in the release of congestion in the

network, the ratio Tschedule/T with NC tends to be smaller than that without NC as

shown in Table 4.1.

From the results with the three phase schemes, SP, FLP and VLP, in Table 4.1,

we note that the set of scheme FLP resulted in excised schedule templates that

exhibit flow imbalance more than the other two schemes. Moreover when flow

balance correction had to be applied, it was always for schedules that were larger

than a single T period, i.e., who had some queueing dynamics influencing

successive T periods. Again, indirect evidence to this end is the fact that when the

flow balance corrections (options A or B) were taken, after removing the flow

imbalance, certain flows ended up being (unfairly) victimized, i.e. losing the little

allocation they had. In addition, the less the overlap (the larger the phase stagger

between nodes) the links remain active only briefly, resulting in smaller rates

assigned to flows traversing them, as they become more “bottlenecked” leading to

smaller (and hence problematic to schedule as just mentioned) rate allocations.

Table 4.1. Simulation results with PT-5

Coding #F or Gap Pre-Sim Numerical Fairness Tschedule/T Mismatch Err Scheme Notes

NC0 2 0.125 0.125 1 1 0 0 SP

NC1 2 0.1875 0.1875 1 1 0 0 SP

NC0 4 0.1875 0.1875 1 2 0 0 SP

NC1 4 0.25 0.25 1 1 0 0 SP

NC0 6 0.28125 0.28125 1 2 0 0 SP

NC1 6 0.375 0.375 1 1 0 0 SP

NC0 8 0.375 0.375 1 2 0 0 SP

NC1 8 0.5 0.5 1 1 0 0 SP

NC0 10 0.3515625 0. 3515625 1 8 0 0 SP

NC1 10 0.46875 0.46875 1 2 0 0 SP

NC0 12 0.296875 0.328125 0.99 10 0 0 SP Option B

NC1 12 0.375 0.40625 0.99 1 0 0 SP Option A

NC0 14 0.328125 0.328125 1 4 0 0 SP

NC1 14 0.4375 0.4375 1 1 0 0 SP

NC0 16 0.375 0.375 1 4 0 0 SP

137

NC1 16 0.5 0.5 1 1 0 0 SP

NC0 2 0.145833 0.145833 1 3 0 0 FLP

NC1 2 0.21875 0.21875 1 2 0 0 FLP

NC0 4 0.21875 0.21875 1 4 0 0 FLP

NC1 4 0.291666 0.291666 1 3 0 0 FLP

NC0 6 0.28125 0.28125 1 2 0 0 FLP

NC1 6 0.375 0.375 1 1 0 0 FLP

NC0 8 0.375 0.375 1 2 0 0 FLP

NC1 8 0.5 0.5 1 1 0 0 FLP

NC0 10 0.390625 0.4296875 0.99 20 0 0 FLP Option B

NC1 10 0.503125 0.520833 0.99 20 0 0 FLP Option B

NC0 12 0.3515625 0.375 0.96 4 0 0 FLP Option B

NC1 12 0.421875 0.421875 1 24 0 0 FLP

NC0 14 0.328125 0.328125 1 4 0 0 FLP

NC1 14 0.4375 0.4375 1 1 0 0 FLP

NC0 16 0.375 0.375 1 16 0 0 FLP

NC1 16 0.5 0.5 1 1 0 0 FLP

NC0 2 0.375 0.375 1 16 0 0 VLP

NC1 2 0.5 0.5 1 1 0 0 VLP

NC0 4 0.375 0.375 1 8 0 0 VLP

NC1 4 0.5 0.5 1 1 0 0 VLP

NC0 6 0.5 0.5 1 1 0 0 VLP

NC1 6 0.5 0.5 1 1 0 0 VLP

NC0 8 0.3125 0.3125 1 32 0 0 VLP

NC1 8 0.3125 0.3125 1 32 0 0 VLP

NC0 10 0.125 0.125 1 4 0 0 VLP

NC1 10 0.125 0.125 1 4 0 0 VLP

Based on the results in Table 4.1, we create Figures 4.18.a, 4.18.b and 4.18.c,

which show the throughput improvement by NC in SP, FLP and VLP,

respectively. In the bar charts, X-axis represents the number of flows (with SP and

FLP) or the gaps between two neighbors’ duty-cycles (with VLP), and Y-axis

represents the total throughput (in packets/slot). The PRE-SIM_NC0 and PRE-

SIM_NC1 indicate Pre-Sim values without and with NC, respectively, from

which we capture the following.

For the sake of comparison, we define the coding gain as the ratio of the number

of transmissions required by the non-coding approach to those by the delay coding

approach to deliver the same set of packets. This coding gain can be

138

approximately calculated by the ratio of the total throughput with NC to that

without NC of the same network configuration.

From results with schemes SP, FLP and VLP in Figures 4.18, the improvement

from the case without NC to that with NC can increase up to 50%, which is

corresponding to the coding gain of 1.5. This is in good agreement with the results

by Katti et al. [22], in which the coding gain in a chain topology with two flows

in reverse directions and N nodes is approximately calculated as 2N/(N+1). This

gain is limited by the upper-bound of 2 when the chain length grows and the

interference among simultaneous transmissions is not included in the calculation.

Note that in Figure 4.18.c, due to no overlap among the duty-cycles of an

intermediate node and its two neighbors and therefore NC not happening at the

intermediate node, there is no coding gain when the gap between two neighbors’

duty-cycles inceases from 6 to 10.

To investigate the impact of NC on the average packet delay, we performed more

simulations and made Figures 4.19.a, 4.19.b and 4.19.c, which show the average

packet delay when NC is applied in SP, FLP and VLP, respectively. In the bar

charts, X-axis represents the number of flows (with SP and FLP) or the gaps

between two neighbors’ duty-cycles (with VLP), and Y-axis represents the

average packet delay (in slots/packet). The DELAY_NC0 and DELAY_NC1

indicate the average packet delay without and with NC, respectively, from which

we capture the following.

In Figures 4.19.a and 4.19.b, when the number of flows increases, the interference

among simultaneous transmissions tends to increase, which results in more

congestion and hence packet delay. Also, NC definitely helps to significantly

reduce the average packet delay. This is because with greedy sources, the

combination of two transmissions into one by NC helps to release the congestion.

In Figure 4.19.c, when the gap between two neighbors’ duty-cycles increases,

without NC the congestion and delay also increase because of smaller overlap

between the two neighbors’ duty-cycles.

139

(a)

(b)

(c)

Figure 4.18. Throughput improvement in 4x4 grid with pattern PT-5

140

(a)

(b)

(c)

Figure 4.19. Average packet delay in 4x4 grid with pattern PT-5

141

4.3.2 ENERGY SAVINGS

To evaluate the energy saving, we calculate the energy cost per unit of throughput

(packets/slot) for the same DC configuration of nodes in the network with NC and

without NC, and then compare the two costs. Essentially, we want to know with

one unit of throughput received at all the sinks whether energy cost spent in the

network with NC is greater than that spent in the network without NC. We expect

the normalized cost per throughput of the network with NC is less than that of the

network without NC. The main reason is that in the network with NC one

transmission can be received by up to two receiver nodes while in the network

without NC one transmission is corresponding to one reception. Therefore, one

transmission can be saved in the network with NC. Suppose we have

��/ �� = #%����������� (4.31)

which is the total throughput of the network with NC. It is calculated by the ratio

of the number of packets delivered to all the destinations, i.e., #)+�, during the

constructed schedule, i.e., e����%���.

If we represent by x and y the power consumption normalized with a energy unit,

e.g., Joule (J), corresponding to a transmission and a reception then the definition

of the normalized energy cost per unit time becomes

��/ �� = �.#�� ��.#/���������� (4.32)

in which #l� and #�� are the respective numbers of transmissions and receptions

during the constructed schedule e����%��� and x:y is the ratio of power

consumption corresponding to Transmission:Reception=1.5:1.0.

Hence, we can approximately calculate the normalized energy cost per throughput

of the network with NC from (4.31) and (4.32) as follows.

142

��/ ����/ �� = ��.#�� � �.#/���������� � . ����������#%�� � = �.#�� � �.#/�#%�� (4.33)

Similarly, we can approximately calculate the normalized energy cost per

throughput of the network without NC as follows.

��/ ����/ �� = ��.#��$ � �.#/�$
��������� � . ����������#%��$ � = �.#��$ � �.#/�$

#%��$ (4.34)

in which ��/� �� and ��/� �� are the total throughput and the normalized energy

cost per unit time during the constructed schedule e����%��� (i.e., without NC).

Also, #l�# and #��# are the respective numbers of transmissions and receptions,

and #)+�# is the number of packets delivered to all the destinations during e����%���.

Note that working under the scheduling algorithm, duty-cycled nodes are almost

always transmitting or receiving packets during active periods. The nodes

receiving or transmitting a sub-flow that are not scheduled in a timeslot are to be

deactivated transceivers to save energy in the timeslot. Hence, the calculation of

energy saving in (4.33) and (4.34) does not include the energy consumption

during idling periods as such idle periods no longer exist.

Figures 4.20.a, 4.20.b and 4.20.c show the normalized energy costs per throughput

unit with NC (legend EGY_COSTS_NC1) and without NC (legend

EGY_COSTS_NC0) under the three phase schemes, SP, FLP and VLP,

respectively. With two schemes SP and FLP, the energy consumption of the

configuration with NC is reduced by 23% compared to without NC when the

number of flows increases from 2 to 16. Meanwhile, with scheme VLP, the

energy consumption of the configuration with NC decreases around 23% that

wihout NC when the gap between two neighbors’ duty-cycles increases from 2 to

4. When the gap increases from 6 to 10, the energy consumptions with and

143

without NC are the same because of no NC. Note that we can approximately

verify the gap from the simulation results by substituting the ratio x:y=1.5:1 into

(4.33) and (4.34) as follows.

��/ ����/ �� = �.U.#�� � #/�#%�� (4.35)

��/ ����/ �� = �.U.#��$ � #/�$
#%��$ (4.36)

We observe that with the same number of packets delivered to the destinations per

time unit in both cases with and without NC, i.e., (#)+� = #)+�#), the number of

transmitted packets is equal to that of received packets in the case without NC,

i.e., (#l�# = #��#), while the number of transmitted packets is always greater

than half that of received packets in the case with NC, i.e., (#l� > 0.5. #��),

thanks to the pairwise-XOR network coding. We also observe that the numbers of

received packets per time unit in both cases with and without NC are equal, i.e., #�� = #��#, so that the same thoughput can be attained. After applying the

observations into (4.35) and (4.36) we have

��/ ����/ �� : ��/ ����/ �� > 0.7 (4.37)

Obviouslly, the normalized energy costs per throughput unit with and without NC

in Figures 4.20.a, 4.20.b and 4.20.c are conformable to (4.37).

144

(a)

(b)

(c)

Figure 4.20. Energy Savings from pattern PT-5 and

schemes SP, FLP and VLP

145

4.4 CHAPTER CONCLUSIONS

In this chapter, we attempt to solve the problem of throughput reduction due to

duty-cycling by introducing pairwise XOR NC. We introduce a delay coding

scheme to ensure there are enough data packets available to perform NC. By

applying NC we are aware that the max-min fair rate allocation of the flows

changes as well. This is because additional constraints are introduced to reflect the

fact that the data of a flow now have two options when it comes to be forwarded

at an intermediate node: they can be forwarded as they are, or as coded packets

with the packets of another flow.

As in Chapter 3, we perform the simulation-based process to determine that we

have reached the periodic steady state. Particular to the case of NC is that we

make use of the delay coding approach to further attain coding benefits, by giving

coded sub-flows higher priority than non-coded sub-flows of the same weight.

Even in the presence of NC, we still have strong evidence that, due to the

periodicity of all input factors, part of which is the periodic behavior of the

transmission decisions, a similar periodicity is exhibited by the steady state.

The process of manipulating the excised schedule template is more elaborate in

the case of NC. Without NC, an active non-coded sub-flow or spot in the template

is only used for a single routing path, whereas with NC, an active coded sub-flow

or spot in the template is possibly used for up to two single routing paths. Hence,

we introduce additional active states for an active coded sub-flow in the flow

balance process, and we treat it accordingly if it needs to be trimmed during the

flow balance adjustment performed on the excised schedule template.

A key assumption used in this chapter is that the pairs of flows that are coded

together have been decided a-priori. In fact, there are multiple options for coding

combinations, and this will be revisited in Chapter 5 where we will discuss

extensions and generalizations of the techniques developed in Chapters 3 and 4.

146

CHAPTER 5

EXTENSIONS AND GENERALIZATIONS

5.1 NON-GREEDY TRAFFIC AND ENERGY SAVINGS

In Chapters 3 and 4, we described a methodology that relies on the assumption

that the traffic sources are greedy. As part of the computation of the flow rates, a

certain rate is eventually assigned to each flow and implemented by the schedule.

A particular concern is what happens when the traffic generated by a source is

lower than the rate implemented by the schedule. The intent of STDMA is to

allow the nodes to know exactly when to transmit or receive, thus avoid idle

listening. In the event of less traffic than the schedule assumes, it is possible that a

node anticipates to receive but the reception does not happen, hence energy is

wasted, as the corresponding slot becomes equivalently an idle listening slot;

precisely what we wanted to avoid in the first place. (Note that a similar concern

for the side of transmission does not exist.)

In this section we detail how an additional scheme can be used to avoid such idle

listening in the event when traffic is less than what the schedule is constructed to

carry. Effectively, the additional scheme involves the “deactiviation” of slots in

the template, from the perspective of the receiver. We start with the assumption

that all the nodes are synchronized, a requirement that is needed anyway for a

slotted system. The schedule template is assumed to have been downloaded to all

nodes, i.e., it is common knowledge. The proposed approach follows the three

main steps:

(1) The source plays the role of a traffic regulator of the given flow � in the sense

that it is responsible for collecting and measuring the actual traffic load ��. With

the traffic load, the schedule template’s length T����	
�� and the flow’s rate �� as

147

calculated during the max-min fairness step (and represented by the schedule), the

source can determine a duration T
�, as follows.

T
� = ��T����	
��/�� (5.1)

(2) Under the assumption that the traffic load �� is less than the flow’s rate ��, T
�

is greater than T����	
��, the source will send to its downstream node an indication

(described next) to turn off reception for duration T
� while the source collects

enough packets in order to form a burst of rate �� over an entire schedule’s length

T����	
�� before transmitting it to the downstream node. In other words, the

source forms bursts that can sustain the rate �� over limited time lengths (length

equal to T����	
��). The process is the inverse of a smoothing traffic regulator,

since its explicit purpose is to make traffic bursty. The downstream node relays to

its downstream nodes along the routing path the same indication and burst until

the destination of the flow is reached. (Note that while transmitting to the

downstream node, the source still collects packets from its traffic source.)

(3) After a duration T����	
��, because the traffic is less than �� all the

downstream nodes along the routing path until the sink have to turn off reception

for duration (T
� − T����	
��) so that the source has more time for collecting

enough packets from its traffic source to form the next burst. All the downstream

nodes repeat this step (3) until they receive a new turning-off indication from the

source.

A few clarifications are in order. First, the technique outlined here is to be applied

to each flow separately. From the point of view of the receiver, the scheme

dictates how long it should assume there will be no traffic from the upstream node

of that subflow. Second, the means to indicate to downstream nodes that they

should avoid idle listening, i.e., the indication sent from upstream/source node can

be either implicit or explicit. For a simple implicit signaling works as follows: if

the receiver has received no packet in the first (in T����	
�� order) inbound slot of

148

flow �, then all the following slots in T����	
�� for flow � in the schedule will be

assumed to also have no traffic, and hence the receiver will switch off reception

during those slots. This signaling wastes one slot for idle listening. A better

mechanism (which can be made more reliable in the presence of

noise/interference using low rate coding) is that of explicit signaling, where a

single slot is sacrificed to convey the burst characteristics constructed by the

source. The advantage of explicit signaling is that it can contain more information,

e.g., T
�.

Example 5.1. To understand the slot deactivation scheme, we will consider the

simple network of Figures 5.1 and 5.2, without and with NC, respectively and

construct the corresponding schedules via simulation-based periodic steady state

excision.

The duty-cycled network has four nodes � ∈ � = {1, 2, 3, 4}, six directed

wireless links in the link set ℒ = {� , �!, �", �#, �$, �%} shown in Figure 5.1.a.1, and

two flows � , �! ∈ ℱ traversing, respectively, the paths {� , �!, �"} and {�$, �%}

indicated in Figure 5.1.b. The DC-configurations, i.e., 〈ϕ), α), T)〉, of the nodes is

as shown in Figure 5.1.a.2, in which period T is divided into two stages ,(-), in

units of slots, with . ∈ / = {1,2}, such that in each of these stages the ON/OFF

state of the nodes is unchanged.

In Figure 5.1.b, during each stage ., flow � without NC is represented by three

sub-flow components ��0
(-)(�), ��0

(-)(�!) and ��0
(-)(�"), and flow �! without NC is

represented by two sub-flow components ��1
(-)(�$) and ��1

(-)(�%). Hence, the

maximal cliques of the sub-flow contention graph (CG) which is made up from all

sub-flows competing in each stage, i.e., ,() and ,(!), are shown in Figures

5.1.c.1 and 5.1.c.2, respectively.

149

In Figure 5.2.b, during each stage ., flow � with NC is represented by four sub-

flow components ��0
(-)(�), ��0

(-)(�!), ��0,�1
(-) (�!, �%), and ��0

(-)(�"), and flow �! with

NC is represented by three sub-flow components ��1
(-)(�$), ��1

(-)(�%), and

��0,�1
(-) (�!, �%). Hence, the maximal cliques of the sub-flow contention graph (CG)

which is made up from all sub-flows competing in each stage, i.e., ,() and ,(!),
are shown in Figures 5.2.c.1 and 5.2.c.2, respectively.

Without NC, from the MP algorithm associated with lex-max formulations, we

have the following flow rates.

� = 0.03125, �! = 0.09375;

��0
()(�) = 0.03125, ��0

()(�!) = 0.03125, ��0
()(�") = 0,

��1
()(�$) = 0.09375, ��1

()(�%) = 0.09375;

��0
(!)(�) = 0, ��0

(!)(�!) = 0, ��0
(!)(�") = 0.03125,

��1
(!)(�$) = 0, ��1

(!)(�%) = 0; (5.2)

With NC, from the MP algorithm associated with lex-max formulations, we have

the following flow rates.

� = 0.03125, �! = 0.109375;

��0
()(�) = 0.03125, ��0

()(�!) = 0, ��0,�1
() (�!, �%) = 0.03125, ��0

()(�") = 0, ��1
()(�$) =

0.109375, ��1
()(�%) = 0.078125;

��0
(!)(�) = 0, ��0

(!)(�!) = 0, ��0,�1
(!) (�!, �%) = 0, ��0

(!)(�") = 0.03125,

��1
(!)(�$) = 0, ��1

(!)(�%) = 0; (5.3)

150

(a.1) Link topology

(a.2) States ON/OFF of nodes (ON slots are gray)

(b) Multi-hop flows

(c.1) CG in ,(1)

(c.2) CG in ,(2)

Figure 5.1. An illustrative example for the non-greedy traffic

without NC (CG = Contention Graph)

151

(b) Multi-hop flows

(c.1) CG in ,(1)

(c.2) CG in ,(2)

Figure 5.2. An illustrative example for the non-greedy traffic with

NC (CG = Contention Graph)

Assume now for the purpose of demonstrating the impact of the slot deactivation

scheme, that the traffic load ��0 of flow � equals to 50% of the flow’s rate ��0

shown by ��0
(-)(�), ��0

(-)(�!) and ��0
(-)(�") from (5.2) corresponding to the

constructed schedule of length, T����	
�� = 32 slots, shown in Figure 5.3.a. From

(5.1) and the above approach, we have the slot deactivation scheme shown in

Figure 5.3.b for downstream nodes 2, 3 and 4 after receiving an explicit indication

with information T
�0 = 64 slots from the source node 1 of flow � .

152

; <=>
(?)(@>) <=>

(?)(@A) <=>
(?)(@B) <=A

(?)(@C) <=A
(?)(@D)

1 ○ ○ ○ ○ ○
2 ○ ○ ○ ○ ○
3 ○ ○ ○ ○ ○
4 ○ ○ ○ ○ ○
5 ○ ○ ○ ● ○
6 ○ ○ ○ ○ ●
7 ○ ○ ○ ● ○
8 ○ ○ ○ ○ ●
9 ● ○ ○ ○ ○

10 ○ ● ○ ○ ○
11 ○ ○ ○ ● ○
12 ○ ○ ○ ○ ●
13 ○ ○ ○ ○ ○
14 ○ ○ ○ ○ ○
15 ○ ○ ○ ○ ○
16 ○ ○ ● ○ ○
17 ○ ○ ○ ○ ○
18 ○ ○ ○ ○ ○
19 ○ ○ ○ ○ ○
… ○ ○ ○ ○ ○
32 ○ ○ ○ ○ ○

(a) Schedule constructed in Example 5.1 (without NC)

(b) Turning-off reception of nodes 2, 3 and 4 with ��0equal to 50% of ��0

(c) Turning-off reception of nodes 2 and 1 with ��1equal to 33.3% of ��1

Figure 5.3. Illustration of the slot deactivation scheme (without NC)

153

Similarly, when the traffic load ��1 of flow �! equals to 33.3% of the flow’s rate

��1, which is shown by ��1
(-)(�$) and ��1

(-)(�%) from (5.2) corresponding to the

constructed schedule of length, T����	
�� = 32 slots, shown in Figure 5.3.a. From

(5.1) and the above approach, we have the slot deactivation scheme shown in

Figure 5.3.c for downstream nodes 2 and 1 after receiving an explicite indication

with information T
�1 = 96 slots from the source node 3 of flow �!.

Note that in Figures 5.3.b and 5.3.c, we assume that two source nodes, 1 and 3, of

two respective flows, � and �!, start their slot deactivation scheme at the same

time, i.e., timeslot 0, as shown by the timeslot axis (in timeslots). Also, the OFF

duration indicates that the receptions at the respective downstream nodes are off

while the Tschedule indicates the receptions of the respective downstream nodes are

active corresponding to the template.

We observe that without NC, the slot deactivation scheme for the downstream

nodes along a flow, e.g., � , do not impact the operation of the scheme for the

downstream nodes of another flow, e.g., �!. This is because each scheduled spot

in the template is dedicated just to a single sub-flow of a flow. In other words,

active spots scheduled for nodes along a flow’s path in the template guarantee the

flow can transmit to its sink all the packets that have been generated from its

source.

A question arises at this point is that whether the slot deactivation approach

described above still works with NC, in which an active spot in the template may

be scheduled for two flows, i.e., an active spot for a coded sub-flow. To answer

this question, let us reconsider Example 5.1 with NC, which has the template with

T����	
�� = 64 slots shown in Figure 5.4. Note that the template with NC is

different from that without NC in Figure 5.3.a that the former has an additional

column for non-coded sub-flow ��0,�1
(-) (�!, �%) from two flows � and �!. In addition,

��0
(-)(�!) is not scheduled because � (with smaller numerical rate) is entirely

coded by �! (with greater numerical rate).

154

; <=>
(?)(@>) <=>

(?)(@A) <=>
(?)(@B) <=>,=A

(?) (@A, @D) <=A
(?)(@C) <=A

(?)(@D)

1 ○ ○ ○ ○ ○ ○

2 ○ ○ ○ ○ ○ ○

3 ○ ○ ○ ○ ○ ○

4 ○ ○ ○ ○ ○ ○

5 ○ ○ ○ ○ ● ○

6 ○ ○ ○ ○ ○ ●

7 ○ ○ ○ ○ ● ○

8 ○ ○ ○ ○ ○ ●

9 ○ ○ ○ ○ ● ○

10 ● ○ ○ ○ ○ ○

11 ○ ○ ○ ○ ○

12 ○ ○ ○ ○ ● ○

13 ○ ○ ○ ○ ○ ○

14 ○ ○ ○ ○ ○ ○

15 ○ ○ ○ ○ ○ ○

16 ○ ○ ● ○ ○ ○

17 ○ ○ ○ ○ ○ ○

18 ○ ○ ○ ○ ○ ○

19 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

32 ○ ○ ○ ○ ○ ○

33 ○ ○ ○ ○ ○ ○

34 ○ ○ ○ ○ ○ ○

35 ○ ○ ○ ○ ○ ○

36 ○ ○ ○ ○ ○ ○

37 ○ ○ ○ ○ ○ ●

38 ○ ○ ○ ○ ● ○

39 ○ ○ ○ ○ ○ ●

40 ○ ○ ○ ○ ● ○

41 ● ○ ○ ○ ○ ○

42 ○ ○ ○ ○ ○

43 ○ ○ ○ ○ ● ○

44 ○ ○ ○ ○ ○ ●

45 ○ ○ ○ ○ ○ ○

46 ○ ○ ○ ○ ○ ○

47 ○ ○ ○ ○ ○ ○

48 ○ ○ ● ○ ○ ○

49 ○ ○ ○ ○ ○ ○

50 ○ ○ ○ ○ ○ ○

51 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

64 ○ ○ ○ ○ ○ ○

Figure 5.4. Schedule constructed in Example 5.1 (with NC)

155

Similar to the case without NC, we assume that the traffic load E=> of flow =>

equals to 50% of the flow’s rate <=>and the traffic load E=A of flow =A equals to

33.3% of the flow’s rate <=A. From (5.1) and the above approach, we have the slot

deactivation scheme shown in Figure 5.5.a for downstream nodes 2, 3 and 4 after

receiving an explicit indication with information FE=> = >AG slots from the

source node 1 of flow =>. Also, from (5.1) and the above approach, we have the

slot deactivaton scheme shown in Figure 5.5.b for downstream nodes 2 and 1 after

receiving an explicit indication with information FE=A = >HA slots from the

source node 3 of flow =A.

With NC, we again see the slot deactivation scheme for the downstream nodes

along a flow, e.g., � , does not impact the scheme for the downstream nodes along

the other flow, e.g., �!. This is because each scheduled spot of a coded sub-flow in

the template can carry both flows, i.e., no matter whether one of the two receivers

turns off reception. Namely, the active spots scheduled for nodes along a flow’s

path in the template guarantee the flow can transmit all its packets to the

destination that have been generated from its source.

(a) Turning-off reception of nodes 2, 3 and 4 with ��0equal to 50% of ��0

(b) Turning-off reception of nodes 2 and 1 with ��1equal to 33.3% of ��1

Figure 5.5. Illustration of the slot deactivation scheme (with NC)

156

; <=>
(?)(@>) <=>

(?)(@A) <=>
(?)(@B) <=>,=A

(?) (@A, @D) <=A
(?)(@C) <=A

(?)(@D)

1 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

5 ○ ○ ○ ○ ○ ○

6 ○ ○ ○ ○ ○ ○

7 ○ ○ ○ ○ ○ ○

8 ○ ○ ○ ○ ○ ○

9 ○ ○ ○ ○ ○ ○

10 ● ○ ○ ○ ○ ○

11 ○ ○ ○ ○ ○

12 ○ ○ ○ ○ ○ ○

13 ○ ○ ○ ○ ○ ○

14 ○ ○ ○ ○ ○ ○

15 ○ ○ ○ ○ ○ ○

16 ○ ○ ● ○ ○ ○

… ○ ○ ○ ○ ○ ○

32 ○ ○ ○ ○ ○ ○

33 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

37 ○ ○ ○ ○ ○ ○

38 ○ ○ ○ ○ ○ ○

39 ○ ○ ○ ○ ○ ○

40 ○ ○ ○ ○ ○ ○

41 ● ○ ○ ○ ○ ○

42 ○ ○ ○ ○ ○

43 ○ ○ ○ ○ ○ ○

44 ○ ○ ○ ○ ○ ○

45 ○ ○ ○ ○ ○ ○

46 ○ ○ ○ ○ ○ ○

47 ○ ○ ○ ○ ○ ○

48 ○ ○ ● ○ ○ ○

… ○ ○ ○ ○ ○ ○

64 ○ ○ ○ ○ ○ ○

Figure 5.6. Scheduled spots during slots 128 to 192 for flow � and �!

For illustration, from Figures 5.5.a and 5.5.b we consider duration T����	
�� from

slots 128 to 192, during which downstream nodes along � ’s path, i.e., nodes 2, 3

and 4, are activated according to the template in Figure 5.4. Meanwhile,

downstream nodes along �!’s path, i.e., nodes 2 and 1, turn off reception

completely. The slot deactivation scheme for � and �! in this duration is

equivalent to the template in Figure 5.6, in which the coded sub-flow’s spots in

blue indicate � ’s receiver is active while �!’s receiver is off.

157

; <=>
(?)(@>) <=>

(?)(@A) <=>
(?)(@B) <=>,=A

(?) (@A, @D) <=A
(?)(@C) <=A

(?)(@D)

1 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

5 ○ ○ ○ ○ ● ○

6 ○ ○ ○ ○ ○ ●

7 ○ ○ ○ ○ ● ○

8 ○ ○ ○ ○ ○ ●

9 ○ ○ ○ ○ ● ○

10 ○ ○ ○ ○ ○ ○

11 ○ ○ ○ ○ ○

12 ○ ○ ○ ○ ● ○

13 ○ ○ ○ ○ ○ ○

14 ○ ○ ○ ○ ○ ○

15 ○ ○ ○ ○ ○ ○

16 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

32 ○ ○ ○ ○ ○ ○

33 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

37 ○ ○ ○ ○ ○ ●

38 ○ ○ ○ ○ ● ○

39 ○ ○ ○ ○ ○ ●

40 ○ ○ ○ ○ ● ○

41 ○ ○ ○ ○ ○ ○

42 ○ ○ ○ ○ ○

43 ○ ○ ○ ○ ● ○

44 ○ ○ ○ ○ ○ ●

45 ○ ○ ○ ○ ○ ○

46 ○ ○ ○ ○ ○ ○

47 ○ ○ ○ ○ ○ ○

48 ○ ○ ○ ○ ○ ○

… ○ ○ ○ ○ ○ ○

64 ○ ○ ○ ○ ○ ○

Figure 5.7. Scheduled spots during slots 192 to 256 for flow � and �!

Similarly, from Figures 5.5.a and 5.5.b we consider duration T����	
�� from slots

192 to 256, during which downstream nodes along � ’s path, i.e., nodes 2, 3 and 4,

are turned off completely. Meanwhile, downstream nodes along �!’s path, i.e.,

nodes 2 and 1, are activated according to the template in Figure 5.4. The slot

deactivation scheme for both � and �! in this duration is equivalent to the template

in Figure 5.7, in which the coded sub-flow’s spots in green indicate � ’s receiver

is off while �!’s receiver is active.

158

5.2 DEALING WITH HETEROGENEOUS DUTY-CYCLES

From the beginning of this thesis we have assumed that all nodes have the same

cycle length T) and the same active period α). This was done for reasons of

convenience of presentation of our work. In reality, for multiple reasons as

described at the beginning of the thesis, those values are expected to be different

from one node to another. When this happens, our algorithms and models still

apply because of the following reasons.

(1) The time-dependent shortest single-path routing we assumed was calculated in

all cases to determine the routing paths for all the flows in our work, is

deterministic and is described in [8,9,10] without any constraint on the particular

DC structure. Hence, the routing paths can be equally well predetermined and

provided as input to our algorithms and models. Note that the cycle period T is

then calculated as the least common multiple (LCM) of the cycle periods T) of all

the nodes. In addition, for the reachability from the source to the sink of a given

flow, we still assume that the duty-cycles of nodes are overlapped one after

another along the routing path of the flow.

(2) The ON/OFF state of node � is deterministic in each timeslot and

characterized by its triplet 〈ϕ), α), T)〉. Hence, the states of all the nodes during

the LCM period T are also deterministic. As a result, the least number I of stages

,(-), in unit of slots with . ∈ /, such that during each of these stages the states

(ON/OFF) of nodes are unchanged, is also deterministic and trivial to calculate.

Since our MP algorithms operate on T, / and ,(-), input, all those inputs can be

constructed even in the case of heterogeneous DC.

For illustration, Figure 5.8.a shows a DC network with line topology and a single

flow as shown in Figure 5.8.b, in which nodes DC are different as shown in

Figure 5.8.c. We observe that despite the heterogeneous DC, the time-varying

shortest single-routing path (in blue) of flow � , including three sub-flows

159

��0
(-)(�), ��0

(-)(�!) and ��0
(-)(�"), is deterministic from source 1 to sink 4 through

overlaps of nodes 1, 2, 3 and 4. In addition, we find that 7 stages, from ,() to

,(J), are deterministic during T, which is the least common multiple of all the

cycle periods, from T1 to T4.

(a) Link topology

(b) A multi-hop flow

(c) States ON/OFF of nodes (ON slots are gray)

Figure 5.8. An illustrative duty-cycled network with different

duty-cycles and active periods

5.3 MAXIMUM OCCUPANCY OF BUFFERS

A direct and fortunate side-effect of producing a deterministic schedule is that the

buffer occupancy of all intermediate nodes can be determined in advance. First

160

consider a simple situation without NC, in which each flow’s packets are stored at

a node in a separate buffer. The following algorithm calculates the maximum

length of a buffer that stores packets for a given flow.

Input: Schedule array ScheduleArray [0..Tschedule – 1][0..M – 1];

Flow � ∈ ℱ; Upstream link �KL ∈ ℒ; Downstream link �MN ∈ ℒ;

Output: Maximum buffer length OPQ�R�KL, �MNS for flow � with links �KL and �MN;

Begin

01. Set #�R�KL, �MNS and OPQ�R�KL, �MNS to zeroes;

02. For (U from 0 to Tschedule – 1, V from 0 to M – 1) Do

03. If ((ScheduleArray [U][V] = ACTIVE) and (V = (�, �KL))) Then

04. #�R�KL, �MNS = #�R�KL, �MNS + 1;
05. End If

06. If ((ScheduleArray [U][V] = ACTIVE) and (V = (�, �MN))) Then

07. If (#�R�KL, �MNS > OPQ�R�KL, �MNS) Then

08. OPQ�R�KL, �MNS = #�R�KL, �MNS;

09. End If

10. #�R�KL, �MNS = #�R�KL, �MNS − 1;
11. End If

12. End For

13. Return OPQ�R�KL, �MNS;

End

Figure 5.9. Pseudo-code of algorithm MaxBufLength () without NC

The input to MaxBufLength () in Figure 5.9, is a schedule template with length

Tschedule and M sub-flows is stored in array ScheduleArray [0..Tschedule – 1][0..M –

1]. We also assume that upstream link �KL and downstream link �MN of a given

flow � at an intermediate node along the routing path are predetermined (as

indeed they are). With the given assumptions, the algorithm returns the

maximimum length of a buffer at the intermediate node for the flow at step 13.

161

To this end, we use variables #�R�KL, �MNS and OPQ�R�KL, �MNS, which are initialized

to zeroes at step 1. Variable #�R�KL, �MNS is increased (or decreased) by one

whenever upstream link �KL (or downstream link �MN) carrying flow � is

scheduled, i.e., ACTIVE in step 3 (or step 6), during traversing the schedule

template (steps 2 to 12). Hence, variable #�R�KL, �MNS indicates the number of

packets currently in the intermediate node’s buffer. Note that before the variable

is decreased, its greatest value so far is stored into variable OPQ�R�KL, �MNS in steps

7 to 9, which therefore indicates the maximum buffer length. Note that notation

(�, �) is to indicate flow � goes over link �.

To extend the algorithm to allow multiple flows � ∈ ℱ with multiple respective

upstream and downstream links, �KL and �MN, stored in the buffer, we still use the

two variables, #�R�KL, �MNS and OPQ�R�KL, �MNS, for each of the flows �. However,

variable #�R�KL, �MNS is increased (or decreased) by one whenever any upstream

link �KL (or any downstream link �MN) carrying flow � is scheduled, i.e., ACTIVE

(step 3), during traversing the schedule template (steps 2 to 12).

To be able to work with NC, i.e., a single flow � on upstream link �KL and

downstream link �MN can be a non-coded or coded sub-flow, we extend the

algorithm in Figure 5.9 into that in Figure 5.10. Note that array ScheduleArray

[0..Tschedule – 1][0..M – 1] now can contain four possible active values for a non-

coded or coded sub-flow: ACTIVE, F1_ACT, F2_ACT and BT_ACT. Hence,

variable #�R�KL, �MNS is increased (or decreased) by one whenever upstream link

�KL (or downstream link �MN) carrying flow � is scheduled, i.e., ACTIVE or

F1_ACT or F2_ACT or BT_ACT in step 3 (or step 6), during traversing the

schedule template (steps 2 to 12).

Input: Schedule array ScheduleArray [0..Tschedule – 1][0..M – 1];

Flow � ∈ ℱ; Upstream link �KL ∈ ℒ; Downstream link �MN ∈ ℒ;

Output: Maximum buffer length OPQ�R�KL, �MNS for flow � with links �KL and �MN;

162

Begin

01. Set #�R�KL, �MNS and OPQ�R�KL, �MNS to zeroes;

02. For (U from 0 to Tschedule – 1, V from 0 to M – 1) Do

03. If (((ScheduleArray [U][V] = ACTIVE) or

(ScheduleArray [U][V] = F1_ACT) or

(ScheduleArray [U][V] = F2_ACT) or

(ScheduleArray [U][V] = BT_ACT)) and (V = (�, �KL))) Then

04. #�R�KL, �MNS = #�R�KL, �MNS + 1;
05. End If

06. If (((ScheduleArray [U][V] = ACTIVE) or

(ScheduleArray [U][V] = F1_ACT) or

(ScheduleArray [U][V] = F2_ACT) or

(ScheduleArray [U][V] = BT_ACT)) and (V = (�, �MN))) Then

07. If (#�R�KL, �MNS > OPQ�R�KL, �MNS) Then

08. OPQ�R�KL, �MNS = #�R�KL, �MNS;

09. End If

10. #�R�KL, �MNS = #�R�KL, �MNS − 1;
11. End If

12. End For

13. Return OPQ�R�KL, �MNS;

End

Figure 5.10. Pseudo-code of algorithm MaxBufLength () with NC

To extend the algorithm to allow multiple flows � ∈ ℱ with multiple respective

upstream and downstream links, �KL and �MN, stored in the buffer, we still use the

two variables, #�R�KL, �MNS and OPQ�R�KL, �MNS for each flow �. However, variable

#�R�KL, �MNS is increased (or decreased) by one whenever any of the upstream links

�KL (or any of the downstream links �MN) carrying flow � is scheduled, i.e.,

ACTIVE or F1_ACT or F2_ACT or BT_ACT in step 3 (or step 6), during

traversing the schedule template (steps 2 to 12).

163

5.4 EXECUTION OVERHEAD OF MWIS

In our work, we need to find a maximum weighted independent set (MWIS) in the

contention graph of ON sub-flows as vertices at each timeslot. This is aimed to

find as many ON sub-flows with higher priority as possible for simultaneous

transmission at the current timeslot. Since the MWIS problem is NP-hard, we use

the approximation greedy algorithm by Sakai et al. [21] which has a time

complexity of Y(�!), where � is the number of ON sub-flows. To find out the

computational overhead of our scheduling algorithm including the state matching

and excision process, we should compare the complexity of the approximation

MWIS algorithm used in our work with exact MWIS algorithms because the

MWIS algorithm is most frequently used in work, i.e., in each timeslot.

There have been exact algorithms with exponential time complexity to solve the

MWIS problem in the literature. One of the most inefficient algorithms is a brute

force algorithm which solves the problem in time Y(�!2N) by checking every

vertex subset of the graph whether it is an independent set. Much more efficient

than this naïve algorithm is the work by Robson [54] which solves the problem in

time (1.2108N), the work by Bourgeois [55], and the work by Fomin [56] that

solve MWIS in Y(1.2127N) and Y(1.2209N), respectively.

From the complexity of the above exact algorithms, we can compare the time

efficiency between the approximation algorithm from [21] and those from [54, 55,

56], which depends on the number of ON sub-flows, i.e., � in the above-

mentioned algorithms. For example, suppose � is 50 ON sub-flows and it takes

around 15 minutes for us to run a simulation using the greedy approximation

algorithm as the MWIS step. The exact brute force algorithm would take 2
50

 * 15

minutes, which takes for ever to run the simulation. Compared this also to the

work of [54, 55, 56] which would take around 2 hours. However, if � is 100 ON

sub-flows and a simulation takes 15 minutes to run, then the work of [54, 55, 56]

would take more than 2 years to run a single simulation.

164

5.5 CODING COMBINATIONS OF POSSIBLE FLOWS

From earlier observations of Example 5.1., it is obviously seen that we can benefit

from coding two flows, � and �! with respect to throughput when the rates of the

two flows are not equal, e.g., when a fraction of the larger (let’s say) �! is coded

with the entire flow � . Hence, another question is raised, when there is more than

one possibility to pair flows for coding at an intermediate node, which pairing can

give the best benefit in terms of throughput improvement?

Example 5.2. To answer the question, let us add another flow, i.e., �" shown in

Figure 5.11.b, which can be coded with one of the two flows, i.e., � . Hence, there

are two possible combinations for coding in the example, between flows �! and �

as shown in Figure 5.12.b.1 or between flows �! and � as shown in Figure

5.12.b.2. To decide which combination can give better benefit of coding, we

compute the rates of flows in cases without NC and with NC by each of the

combinations.

From Figure 5.11, i.e., without NC, we can calculate the following numerical flow

rates in all stages.

� = 0.03125, �! = 0.046875, �" = 0.046875;
��0

()(�) = 0.03125, ��0
()(�!) = 0.03125, ��0

()(�") = 0;
��1

()(�$) = 0.046875, ��1
()(�%) = 0.046875;

��Z
()(�) = 0.046875, ��Z

()(�!) = 0.046875;
��0

(!)(�) = 0, ��0
(!)(�!) = 0, ��0

(!)(�") = 0.03125;
��1

(!)(�$) = 0, ��1
(!)(�%) = 0;

��Z
(!)(�) = 0, ��Z

(!)(�!) = 0; (5.4)

In Figure 5.12.b.1, i.e., with the coding combination of flows �! and � , we have

the following flow rates.

165

(a.1) Link topology

(a.2) States ON/OFF of nodes (ON slots are gray)

(b) Multi-hop flows

(c.1) CG in ,(1)

(c.2) CG in ,(2)

Figure 5.11. An illustrative example of the combination of possible

flows for coding (before NC)

166

(b.1) Multi-hop flows with the coding of �! and � (smaller rate)

(b.2) Multi-hop flows with the coding of �! and �" (greater rate)

(c.1) CG in ,(1)

(c.2) CG in ,(2)

Figure 5.12. An illustrative example of the combination of possible

flows for coding (after NC)

167

� = 0.03125, �! = 0.0546875, �" = 0.0546875;
��0

()(�) = 0.03125, ��0
()(�!) = 0, ��1,�0

() (�%, �!) = 0.03125, ��0
()(�") = 0;

��1
()(�$) = 0.0546875, ��1

()(�%) = 0.0234375;
��Z

()(�) = 0.0546875, ��Z
()(�!) = 0.0546875;

��0
(!)(�) = 0, ��0

(!)(�!) = 0, ��1,�0
(!) (�%, �!) = 0, ��0

(!)(�") = 0.03125;
��1

(!)(�$) = 0, ��1
(!)(�%) = 0; ��Z

(!)(�) = 0, ��Z
(!)(�!) = 0; (5.5)

In Figure 5.12.b.2, i.e., with the coding combination of flows �! and �", we have

the following flow rates.

� = 0.03125, �! = 0.0625, �" = 0.0625;
��0

()(�) = 0.03125, ��0
()(�!) = 0.03125, ��0

()(�") = 0;
��1

()(�$) = 0.0625, ��1
()(�%) = 0, ��1,�Z

() (�%, �!) = 0.0625;
��Z

()(�) = 0.0625, ��Z
()(�!) = 0;

��0
(!)(�) = 0, ��0

(!)(�!) = 0, ��0
(!)(�") = 0.03125;

��1
(!)(�$) = 0, ��1

(!)(�%) = 0, ��1,�Z
(!) (�%, �!) = 0; ��Z

(!)(�) = 0, ��Z
(!)(�!) = 0; (5.6)

From (5.4), (5.5) and (5.6), we have the following observations: (1) the greater

coding rate, e.g., ��1,�0
() (�%, �!) or ��1,�Z

() (�%, �!), the more the coding benefit; (2) the

coding rate is constrained by the smaller of the two rates of the paired flows; (3)

when the smaller rate cannot increase due to a flow constraint, e.g., the rate of �

from (5.5), the coding still helps the coding pair of flows to consume less

bandwidth than that without NC; (4) when the smaller rate can increase further,

the coding can also help to improve the rate, e.g., the rate of �! and �" from (5.6).

From the above observations, we propose the following heuristic approach when

there is more than one possibility of coding two flows at an intermediate node we

should select the pairs of flows, in which the smaller rate of the pair is greater

than that of the other pairs, i.e., the other possibilities. This approach is essentially

aimed to take full advantage of coding.

168

Input: Sub-flow array [_]^ [0..M-1] of all the M sub-flows;

Nodes � ∈ �; Flows � ∈ ℱ; Links � ∈ ℒ;

Output: Pairing matrix __]^ [0..M-1][0..M-1] of all the pairs of M sub-flows;

Begin

01. For (U from 0 to M – 1, V from 0 to M – 1) Do

02. `_]^ [U][V] = NO; __]^ [U][V] = NO;

03. End For

04. For Each node � ∈ � Do

05. OPQePfg = −1; OPQh = −1; OPQi = −1;

06. For (U from 0 to M – 1, V from 0 to M – 1) Do

07. If ((`_]^ [U][V] = NO) and

 (jPU� R(� , �), (�!, �!)S = YES)) Then

08. n_ o(� , �), (�!, �!), ��0 , ��2p;

09. `_]^ [U][V] = YES;

10. If (OU� R��0 , ��1S > OPQePfg) Then

11. OPQePfg = OU� R��0 , ��1S;

12. OPQh = U; OPQi = V;

13. End If

14. End If

15. End For

16. If ((OPQePfg > 0) and

((OPQh ≥ 0) and (OPQh ≤ M)) and

((OPQi ≥ 0) and (OPQi ≤ M))) Then

17. __]^ [OPQh][OPQi] = YES;

18. End If

19. End For

20. Return __]^ [0..M-1][0..M-1];

End

Figure 5.13. Pseudo-code of algorithm PairwiseCoding ()

169

The pseudo-code of algorithm PairwiseCoding () in Figure 5.13 shows more

details of how to implement the proposed heuristic approach. We assume that the

shortest-single-path routing for all the flows is predetermined, which means all the

sub-flows are also determined. Hence, we suppose all the M sub-flows are stored

in array [_]^ [0..M-1]. With these assumptions, the algorithm returns pairing

matrix __]^ [0..M-1][0..M-1] (step 20), whose entry __]^ [i][j] indicates YES

when sub-flow i can be paired with sub-flow j for the best coding at the common

sender of the two sub-flows.

To this end, we use coding matrix `_]^ [0..M-1][0..M-1], whose entry `_]^ [i][j]

indicates YES (at step 9) when sub-flow i has been attemped to be paired with

sub-flow j for coding at the common sender of the two sub-flows and hence the

significant running time of steps 7 to 14 can be saved. Also, we use variables

OPQePfg, OPQh and OPQi, which are initialized to negative values (at step 5) at

the beginning of loop For (steps 4 to 19). Variable OPQePfg is used to indicate

which pair of sub-flows has the smaller rate greater than that of the other pairs at

node n (steps 10 to 13). Meanwhile, variables OPQh and OPQi are two indexes of

entry __]^ [OPQh][OPQi], which stores the best selected pair (at step 17).

The algorithm works as follows. First, matrixes `_]^ [0..M-1][0..M-1] and __]^

[0..M-1][0..M-1] are initialized to NO, i.e., no pairs of sub-flows have been

selected for coding. Then, for each node n (steps 4 to 19), it checks if any pair of

sub-flows, which has not been selected for coding and sastified with the coding

condition, i.e., the two sub-flows have a common sender and the duty-cycle of the

sender overlaps those of the two receivers of the two sub-flows, (� , �) and

(�!, �!). This condition is checked by function jPU� R(� , �), (�!, �!)S at step 7,

which returns YES if it is satisfied. Hence, two numerical rates ��0 and ��1 of two

respective flows � and �! are returned by calling function

n_ t(� , �), (�!, �!), ��0 , ��1u, which is actually done by lex-max formulations

associated with the MP program from Chapter 3 and indicated by turning YES the

170

entry `_]^ [U][V]. Finally, steps 10 to 13 are to check and store the best coding

pair of sub-flows at node n, which are then updated to entry __]^ [OPQh][OPQi]
by steps 16 to 18. Note that function OU� R��0 , ��1S is to find the minimum value

between two rates ��0 and ��1.

The algorithm is a heuristic one because it does not consider all possibilities of

pairing sub-flows for coding and hence the algorithm can save more time while

being able to provide an acceptable solution. One of the most inefficient

algorithms in time is a brute force algorithm that solves the problem in time

Y(O!2vn_(�, j)) by checking every subset of O sub-flows whether it can result

in the maximum total throughput, where n_(�, j) is the complexity of linear

programming determined by the number of flows � and j linear equalities in the

LP formulations. Meanwhile, the heuristic algorihm in Figure 5.13 solves the

problem in time Y(O!�n_(�, j)), where � is the number of nodes in the network,

which is much smaller than that of the brute force algorithm when the number of

sub-flows becomes greater.

171

CHAPTER 6

CONCLUSIONS

Since transceiver duty-cycling (DC) is very popular technique to conserve energy

in a wireless sensor network (WSN), we started our research with the intention of

combining DC with Network Coding (NC), a technique that has also been seen as

a means to achieve better throughput and energy efficiency. We have proposed

and used a model for the DC characteristics of each node �, given in the form of a

tuple 〈ϕ�, α�, T�〉. This model originates from an abstract view of WSNs where

the periodic DC is dictated by, either, application and hence traffic generation and

coverage demands, or because of energy harvesting operation that varies from

location to location.

An early attempt to combine DC and NC (Section 2.6) resulted in a MAC

protocol and an elaborate NC mechanism, which demonstrated that the

combination of DC and NC could indeed bear fruit. However, this early work was

limited in applicability because of its assumptions pertaining to network topology

and the particular DC timing. Reflecting on those early results, it was decided that

developing schemes that would work in arbitrary topologies would be essential to

broadening the applicability of NC+DC. However, with arbitrary topologies

becoming our standard assumption for the subsequent parts of the thesis, the

ability for spatial reuse of the medium would have to be incorporated. It was no

longer sufficient to think in terms of extending the MAC protocol of the early

work, but in terms of what would be a benchmark performance, by producing a,

short, collision-free schedule. Hence, the quest for arbitrary topologies

necessitated also the production of STDMA schedules.

The next step was to, first, express traffic flow rates as part of solving an

optimization problem (in this case, with the objective to ensure fair rate

172

allocation) and then perform the schedule construction that achieves those rates

(Chapter 3). Two contributions helped in achieving the construction of the

schedule. One was the characterization of the DC network as periodically

repeating “stages”, and, second, the observation (and experimental confirmation)

that the system as a whole would exhibit a periodic steady state. Essentially, in a

simulation of the system, it becomes evident that the scheduling decisions repeat

again and again in a periodic fashion (with some period) as they reflect

deterministic actions on the periodically repeating state of the network. This

periodic steady state was isolated, excised, and became a scheduling template, i.e.,

an STDMA schedule.

What Chapter 3 was lacking, i.e., the inclusion of NC, was addressed in Chapter

4. The techniques of Chapter 3 were extended to account for NC, and proved to be

potent as they were without NC. However, dealing with NC required two

additional techniques that to be developed. One was to create systematic NC

opportunities such that they could be determined a-priori, i.e., during schedule

construction. This was accomplished by combining (in the NC sense) pairs of

flows. In other words, pairwise XOR NC was used. The scheme was applied at

intermediate nodes, hence reducing the overall network traffic. However, a second

technique had to be developed as a consequence of needing systematic

opportunities for NC, a delay coding technique that could ensure the supply of

enough packets to nodes such the NC combinations could take place. Essentially,

by paying a bit of upfront delay cost, the flows are certain to have enough traffic

to perform NC.

Our objective appears to have been achieved because with our proposed

techniques we have provided simulation results in Chapter 4 that show, e.g.,

energy consumption savings of 23%, and throughput improvement of up to 50%

in DC+NC configurations.

173

Finally, in Chapter 5, we demonstrated how the techniques of Chapter 3 & 4 can

be applied to more general environments, e.g., with heterogeneous DC, or with

less traffic than what the schedule was anticipating, or with different combinations

of flows being paired for NC.

6.1 THESIS STATEMENT

To the extent that a thesis has been put forward, it is that in a network with

periodic topology changes (as is the case with DC), fed by greedy traffic arrivals,

and with deterministic behavior, the system’s pattern of transmissions in the

steady state ought to be a periodic one and that periodic behavior could be used to

construct transmission schedules, i.e., a simulation is a valid way to produce the

schedule.

6.2 OPEN ISSUES

There are many open issues towards making NC+DC schemes a viable set of

techniques.

• In our future work, we will attempt to elaborate the inter-dependency

between queues and transmissions and how this is manifested in the

schedule template excision. As is now, it is based purely on conjecture that

the periodic steady state will emerge and will morph the scheduling

decisions into also being periodically repeating. A shortcoming of the

excision process is that it ignores the “true” state of the system, i.e., the

state of the queues whose influence is only accounted for indirectly by the

impact they have on the scheduling decisions from slot to slot. The reader

can question whether the state of queues ought to have been a component

of the state comparison/matching. We have, so far, avoided matching the

queue state in addition to the transmissions because it is unclear whether

matching the exact number of packets in the queue is necessary (or just

174

that there are some) and for the added complexity that this would bring

about (the buffers can be as many as the flows times the number of links in

the network).

• We have separated the routing from the scheduling problem, assuming that

routing is given to us, or at least it is pre-calculated. The question of joint

routing and scheduling for a DC network remains (and even more so for

DC+NC).

• It remains an open issue of how to construct a MAC scheme that

resembles the performance we can extract with the centralized STDMA

schedule construction. In particular, a MAC protocol with randomized

behavior would undermine seriously the determinism we assumed

throughout the schedule construction. NC would then be also extended

from pairwise-coding to opportunistic coding like COPE [22], becoming

able to combine multiple transmissions.

• Similar to the concerns arising from the randomness of a MAC protocol

would also arise if the active periods are also random. In particular, if the

active periods are assumed to be a function of harvesting energy, their

length could vary from one period to the next. Our framework currently

has no provision for random active periods.

• A final note is that we have consistently opted for sacrificing delay in the

interest of obtaining higher throughput (e.g., in the delay coding technique,

in the slot deactivation extension, etc.). However, this approach is not

acceptable to all applications. A drastically different approach would be

needed if we wish to e.g., optimize the delay, as it would have to

inescapably be mapped to a priority service scheme of (sub-)flows that

honors delay requirements of the flows and not weight constructs like

those we use for the sake of MWIS.

175

REFERENCES

[1] Somayeh Kianpisheh and Nasrolah Moghadam Charkari, “Dynamic Power

Management for Sensor Node in WSN Using Average Reward MDP”,

Wireless Algorithms, Systems, and Applications, 4th International

Conference, WASA 2009, Boston, MA, USA, August 16-18, 2009.

Proceedings 2009

[2] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,

T. Dawson, P. Buonadonna, D. Gay, and W. Hong. “A Macroscope in the

Redwoods”. In Proc. of ACM SENSYS, 2005

[3] Y. Gu and T. He. “Data Forwarding in Extremely Low Duty-Cycle Sensor

Networks with Unreliable Communication Links”. In Proc. Of ACM

SENSYS, 2007

[4] P. Ciciriello, L. Mottola, and G. P. Picco. “Efficient routing from multiple

sources to multiple sinks in wireless sensor networks”. In Proc. of the 4th

EWSN, 2007

[5] Aman Kansal , Jason Hsu , Sadaf Zahedi , Mani B. Srivastava, “Power

management in energy harvesting sensor networks,” ACM Transactions on

Embedded Computing Systems (TECS), v.6 n.4, p.32-es, September 2007

[6] Wind Data 2001. Noaa recorded average wind speed data through 2001.

http://www.berner.com/new/energy-windspeed.htm

[7] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-

Varying Graphs and Dynamic Networks,” Arxiv preprint

arXiv:1012.0009v2, 2011

176

[8] I. Chabini, “Discrete dynamic shortest path problems in transportation

applications: Complexity and algorithms with optimal run time,”

Transportation Research Records, vol. 1645, pp. 170–175, 1998

[9] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths over

large graphs,” in Proceedings of Extending database technology

(EDBT’08), 2008, pp. 205–216

[10] H. Chon, D. Agrawa, and A. Abbadi., “Fates: Finding a time dependent

shortest path,” Mobile Data Management, vol. 2574, pp. 165–180, 2003

[11] Shor, J.; Robertazzi, T.G., “Traffic Sensitive Algorithms and Performance

Measures for the Generation of Self-Organizing Radio Network

Schedules,” Communications, IEEE Transactions on , vol.41, no.1,

pp.16,21, Jan 1993

[12] O. Somarriba, “Multihop Packet Radio Systems in Rough Terrain”,

Tech.lic. thesis, Radio Communication Systems, Department of S3, Royal

Institute of Technology, SE-100 44 Stockholm, Sweden, Oct.1995

[13] Gronkvist, J., “Traffic Controlled Spatial Reuse TDMA in Multi-hop Radio

Networks,” Personal, Indoor and Mobile Radio Communications, 1998. The

Ninth IEEE International Symposium on , vol.3, no., pp.1203,1207 vol.3, 8-

11 Sep 1998

[14] Jimmi Gronkvist, “Novel Assignment Strategies for Spatial Reuse TDMA

in Wireless Ad Hoc Networks”, Wireless Networks, 12:255–265, 2006

[15] Van Ho, Ioanis Nikolaidis, “A Schedule Template Construction Technique

for Duty Cycled Sensor Networks”, ADHOC-NOW 2015: 48-61

177

[16] F. Zuyuan and B. Bensaou. “Fair bandwidth sharing algorithms based on

game theory frameworks for wireless ad-hoc networks,” In INFOCOM

2004, pp. 1284-1295

[17] A. Bar-Noy, V. Dreizin, and B. Patt-Shamir. “Efficient algorithms for

periodic scheduling,” Computer Networks, vol. 45, no. 2, pp. 155-173,

2004

[18] A. Casteigts et al. “Time-varying graphs and dynamic networks,” In

ADHOC-NOW 2011, pp. 346-359

[19] H. Willie, “Periodic steady state of loss systems with periodic inputs”,

Advances in Applied Probability, vol. 30, no. 1, pp. 152-166

[20] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interference

on multi-hop wireless network performance,” in MobiCom 2003

[21] S. Sakai, M. Togasaki, and K. Yamazaki. “A note on greedy algorithm for

the maximum weighted independent set problem,” Discrete Applied

Mathematics, vol. 126, no. 2-3, pp. 313-322, 2003

[22] Katti, S.; Rahul, H.; Wenjun Hu; Katabi, D.; Medard, M.; Crowcroft, J.,

“XORs in the Air: Practical Wireless Network Coding,” Networking,

IEEE/ACM Transactions on , vol.16, no.3, pp.497,510, June 2008

[23] S. Li, R. Yeung, and N. Cai, “Linear Network Coding”, in IEEE

Transactions on Information Theory, Vol 49, No. 2, pp. 371–381, 2003

[24] Carrano, R.C.; Passos, D.; Magalhaes, L.C.S.; Albuquerque, C.V.N.,

“Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor

178

Networks,” Communications Surveys & Tutorials, IEEE , vol.16, no.1,

pp.181,194, First Quarter 2014

[25] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An Adaptive Energy-

Efficient and Low-Latency MAC for Data Gathering in Wireless Sensor

Networks,” Proc. 18th Int’l. Parallel and Distrib. Processing Symp., Apr.

2004, p. 224

[26] Baochun Li, “End-to-End Fair Bandwidth Allocation in Multi-Hop Wireless

Ad Hoc Networks,” Distributed Computing Systems, 2005. ICDCS 2005.

Proceedings. 25th IEEE International Conference on , vol., no., pp.471,480,

10-10 June 2005

[27] H. Luo, S. Lu, and V. Bharghavan, “A New Model for Packet Scheduling in

Multihop Wireless Networks,” in Proceedings of ACM MobiCom, 2000, pp.

76–86

[28] Aman Kansal , Jason Hsu , Sadaf Zahedi , Mani B. Srivastava, “Power

Management in Energy Harvesting Sensor Networks,” ACM Transactions

on Embedded Computing Systems (TECS), v.6 n.4, p.32-es, September 2007

[29] R. Nelson, L. Kleinrock, “Spatial-TDMA: A Collision-Free Multi-hop

Channel Access Control”, IEEE Transactions On Communications 33

(1985) 934-944

[30] L. Kleinrock and J. Silvester, “Spatial reuse in multihop packet radio

networks,” Proceedings of the IEEE , vol.75, no.1, pp.156,167, Jan. 1987

[31] Xiao Long Huang, Brahim Bensaou, “On max-min fairness and scheduling

in wireless ad-hoc networks: analytical framework and implementation”,

179

Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc

Networking & Computing, October 04-05, 2001

[32] Zuyuan Fang; Bensaou, B., “Fair bandwidth sharing algorithms based on

game theory frameworks for wireless ad-hoc networks,” INFOCOM 2004.

Twenty-third Annual-Joint Conference of the IEEE Computer and

Communications Societies , vol.2, no., pp.1284,1295 vol.2, 7-11 March

2004

[33] L. Tassiulas , S. Sarkar, “Maxmin fair scheduling in wireless ad hoc

networks”, IEEE Journal on Selected Areas in Communications, v.23 n.1,

p.163-173, September 2006

[34] Heyman, D.P. and Whitt, W. (1984), “The asymptotic behavior of queues

with time-varying arrival rates”, J. Appl. Prob. 21, 143-156

[35] Bambos, N. and Walrand, J. (1989), “On queues with periodic inputs”, J.

Appl. Prob. 26, 381-389

[36] J.M. Harrison and A.J. Lemoine, “Limit theorems for periodic queues”, J.

Appl. Prob. 14, 566-576, 1977

[37] A.J. Lemoine, “Waiting time and workload in queues with periodic Poisson

input”, J. Appl. Prob. 26, 390-397, 1989

[38] T. Rolski, “Approximation of periodic queues”, Adv. Appl. Prob. 19, 691-

707, 1987

[39] C. H. Papadimitriou, K. Steiglitz (1998), “6.1 The Max-Flow, Min-Cut

Theorem”, Combinatorial Optimization: Algorithms and Complexity.

Dover. pp. 120–128

180

[40] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. “Network Information

Flow”, IEEE Transactions on Information Theory, 2000

[41] Firooz, M.H.; Zhiyong Chen; Roy, S.; Hui Liu, “Wireless Network Coding

via Modified 802.11 MAC/PHY: Design and Implementation on

SDR,” Selected Areas in Communications, IEEE Journal on , vol.31, no.8,

pp.1618,1628, August 2013

[42] Van Ho; Nikolaidis, I.; , “Trade-offs of Combining Network Coding and

Duty Cycling in WSNs,” Communication Networks and Services Research

Conference (CNSR), 2011 Ninth Annual , vol., no., pp.231-238, 2-5 May

2011

[43] R. Chandanala, W. Zhang, R. Stoleru and M. Won, “On combining network

coding with duty-cycling in flood-based wireless sensor networks,” Ad Hoc

Networks, vol. 11, no. 2, pp. 490-507, 2013

[44] Rout, R.R.; Ghosh, S.K., “Enhancement of Lifetime using Duty Cycle and

Network Coding in Wireless Sensor Networks,” Wireless Communications,

IEEE Transactions on , vol.12, no.2, pp.656-667, February 2013

[45] Gburzynski, P., “Olsonet Communications: SIDE/SMURPH: a Modeling

Environment for Reactive Telecommunication Systems,” Version 3.1

manual, 2008

[46] Shabdanov, S.; Rosenberg, C.; Mitran, P., “Joint routing, scheduling, and

network coding for wireless multihop networks,” Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2011

International Symposium on , vol., no., pp.33,40, 9-13 May 2011

[47] D. Bertsekas and R. Gallager. Data Networks (2e), Prentice Hall, 1992

181

[48] Radunovic, B.; Le Boudec, J.-Y., “A Unified Framework for Max-Min and

Min-Max Fairness With Applications,” Networking, IEEE/ACM

Transactions on , vol.15, no.5, pp.1073,1083, Oct. 2007

[49] D. Nace and M. Pioro. “Max-min fairness and its applications to routing

and load-balancing in communication networks: A tutorial”, IEEE Comm.

Surv. Tutorials, vol. 10, no. 4, pp.5 -17, 2008

[50] M. Pioro and D. Medhi. “Routing, Flow and Capacity Design in

Communication and Computer Networks”, Morgan Kaufmann Publishers

(2004)

[51] J. Kleinberg, Y. Rabani, and E. Tardos. “Fairness in routing and load

balancing”. In Proc. 35th Annual Symposium on Foundations of Computer

Science, 1999

[52] W. Ogryczak, M. Pioro and A. Tomaszewski. “Telecommunications

Network Design and Max-Min Optimization Problem”. J.

Telecommunications and Information Technology 3/2005, pp. 1-14

[53] M. Eickhoff, D. McNickle, and K. Pawlikowski. “Detecting the duration of

initial transient in steady state simulation of arbitrary performance

measures,” In ValueTools 2007, article #42

[54] Robson, J. M. , “Algorithms for maximum independent sets”, Journal of

Algorithms 7 (3): 425–440, 1986

[55] Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis Th.; van Rooij,

Johan M. M., “A bottom-up method and fast algorithms for MAX

INDEPENDENT SET”, Algorithm theory—SWAT 2010, Lecture Notes in

Computer Science 6139, Berlin: Springer, pp. 62–73, 2010

182

[56] Fomin, Fedor V.; Grandoni, Fabrizio; Kratsch, Dieter, “A measure &

conquer approach for the analysis of exact algorithms”, Journal of

ACM 56 (5): 1–32, article no. 25, 2009

[57] Akyildiz, I. F.; Kasimoglu, I. H. “Wireless sensor and actor networks:

research challenges”, Ad Hoc Netw. 2004, 2 (4), 351-367

[58] Rezgui, A.; Eltoweissy, M. “Service-oriented sensor-actuator networks:

Promises, challenges, and the road ahead”, Computer Communications

2007, 30, 2627-2648

[59] Melodia, T.; Pompili, D.; Gungor, V. C.; Akyildiz, I. F. “Communication

and Coordination in Wireless Sensor and Actor Networks”. IEEE

Transactions on Mobile Computing 2007, 6(10), 1116-1129

[60] Arnaud Casteigts, Paola Flocchini, Emmanuel Godard, Nicola Santoro, and

Masafumi Yamashita. “On the expressivity of time-varying graphs”. In 19th

International Symposium on Fundamentals of Computation Theory (FCT),

Liverpool, United Kingdom, 2013

183

APPENDIX A

ANOTHER EXAMPLE OF COMPARISON WITH THE

GRONKVIST’S ALGORITHM

For the sake of comparison of the Gronkvist’s scheduling algorithm [13] against

the one we present in Chapter 3, we present the simple topology of Example A.1

in Figure A.1 to clarify the steps of constructing a schedule.

(a) Link topology

(b) Multi-hop flows

Figure A.1. Topology and flows used in the comparison.

Example A.1. There are 3 directional links, from �� to �� in Figure A.1.a. Also,

there are three flows with flow paths in Figure A.1.b, flow �� in blue from source

1 to sink 4, flow �� in red from source 2 to sink 4, and flow �� in green from

source 3 to sink 4. Noting that the algorithm in [13] does not have sub-flows like

in our work and only requires the average traffic loads on links to perform its

schedule construction. Therefore, we run our scheduling algorithm on the

network to get all the rates ��
()(�) of flow � over link �, from which we then

calculate the average traffic load, λij on link (i, j), or λ� on link � and provide it as

184

input to the algorithm in [13]. To model the interference among simultaneous

transmissions, we assume both algorithms use the same model of link interference

as in the work by Li [26].

By running our MMF scheduling algorithm on the network, we construct the

schedule for all the sub-flows in each timeslot
 shown in Figure A.2. Hence, we

achieve the rates of all the flows over links as follows.

���
()(��) = ���

()(��) = ���
()(��)

���
()(��) = ���

()(��) =

���
()(��) = �

� = 0.166666 (packets/slot) (A.1)

 ���
(�)(��) ���

(�)(��) ���
(�)(��) ���

(�)(��) ���
(�)(��) ���

(�)(��)

1 ● ○ ○ ○ ○ ○

2 ○ ● ○ ○ ○ ○

3 ○ ○ ● ○ ○ ○

4 ○ ○ ○ ● ○ ○

5 ○ ○ ○ ○ ● ○

6 ○ ○ ○ ○ ○ ●

Figure A.2. Schedule is constructed by our MMF algorithm

(black circles mean sub-flows are scheduled).

From (A.1) and flow paths in Figure A.1.b, we can calculate all the following

traffic loads on links.

λ�� = �; λ�� = 2�; λ�� = 3�; where � = 0.166666 (packets/slot) (A.2)

Now, to construct the schedule as per [13] we have.

N = 4 (nodes); M = 3 (links) (A.3)

185

Hence, we have the total traffic load of three flows in the network as follows.

λ = 3� = 0.5 (packets/slot) (A.4)

From [13], we have relative traffic Λ� on link � defined as follows:

Λ� = λ�/ (λ / N (N − 1))

Hence, we can calculate the following.

Λ�� = 4; Λ�� = 8; Λ�� = 12; (A.5)

From [13] and with (A.3), (A.4) and (A.5), we have the average relative traffic in

the network, which is defined as follows.

Λ) = �
* + ,�∀� = (Λ�� + Λ�� + Λ��)// = 8 (A.6)

From [13], we have link � is guaranteed the following number of slots.

012
1) 3 (A.7)

From (A.6) and (A.7), we derive the following.

012�
1) 3 = 1; 012�

1) 3 = 1; 012�
1) 3 = 2; (A.8)

 4��5�� 4��5�� 4��5�� List A Schedule

0 0 0 0 ��, ��, �� -

1 0 0 0 ��, �� ��

2 - 8 12 ��, �� ��

3 - 16 0 �� ��

4 - - 12 Φ ��

Figure A.3. Steps in Gronkvist’s algorithm [13] to

construct the schedule.

186

Figure A.3 shows the steps (in timeslots) run by the Gronkvist’s algorithm on the

network on Figure A.1 in order to construct a schedule, in which 4�5� is the link

priority of link � used in the algorithm, where 5� is the number of timeslots since

the link was previously allocated a timeslot. Also, the List A is the set of links

that still has not been given all their guaranteed timeslots. Note that the algorithm

stops when the list is empty. Finally, the Schedule indicates which links are to be

scheduled in each timeslot
.

From (A.2), we rewrite in more details the traffic loads λ� scheduled on link � by

our scheduling algorithm.

λ�� = 0.166666; λ�� = 0.333333; λ�� = 0.5 (packets/slot) (A.9)

From (A.4), we also rewrite in more details the total throughput λ made by our

algorithm including traffic loads of three flows ��, �� and ��.

λ = λ�� = 0.5 (packets/slot) (A.10)

From the results in Figure A.3, we have the traffic loads λ�
7 scheduled on link � by

the Gronkvist’s algorithm.

λ��
7 = 0.25; λ��

7 = 0.25; λ��
7 = 0.5 (packets/slot) (A.11)

From (A.11), we also have the total throughput λ7 made by the Gronkvist’s

algorithm including traffic loads of three flows ��, �� and ��.

λ7 = λ��
7 = 0.5 (packets/slot) (A.12)

Clearly, [13] fails to capture the traffic demands accurately, even though it is

indeed collision-free.

