Download the full-sized PDF of Development of new fluorescent protein biosensorsDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Graduate Studies and Research, Faculty of


This file is in the following collections:

Theses and Dissertations

Development of new fluorescent protein biosensors Open Access


Other title
Fluorescent protein
Type of item
Degree grantor
University of Alberta
Author or creator
Belal, Ahmed S. F.
Supervisor and department
Campbell, Robert (Chemistry)
Examining committee member and department
Zechel, David (Chemistry)
McDermott, Mark (Chemistry)
Vederas, John (Chemistry)
Department of Chemistry

Date accepted
Graduation date
Doctor of Philosophy
Degree level
The discovery of green fluorescent protein (GFP) from the Aequorea victoria Jellyfish followed by the extensive efforts of protein engineers to produce other fluorescent proteins (FPs) spanning the visible color spectrum made fluorescent proteins indispensable biochemical tools in the scientific community. Experimental biologists have utilized FPs as genetically encoded markers for the imaging of subcellular structures and protein dynamics in live cells. Another important application of FPs is their design for use in biosensors for either enzymes or small biological molecules of interest. The work described in this thesis is an attempt to portray different experimental designs of FP based biosensors with the final objective of either modifying previously reported or introducing novel biosensors. We addressed the FP biosensors based on the principle of intramolecular Förster resonance energy transfer (FRET) in two projects. In the first project we demonstrated a modification of a methodology of development and optimization of FRET-based biosensor for a post translational modification. The end result of this project has led to improving a previously reported protein kinase B (PkB) biosensor and the discovery of a new cyclin B1- cyclin dependent kinase 1 (Cyclin B1-CDK1) biosensor of a higher dynamic range than previously published one. In the second project our efforts were directed to develop a matrix metallo proteinase 2 (MMP2) FRET based biosensor, with the ultimate goal of using this biosensor in live cell imaging of cardiomyocytes to explore postulated MMP2 intracellular role in ischemia-reperfusion injury. We designed protein constructs based on both previously reported MMP2 substrate sequences and potential cardiac protein target sequences. After testing and characterizing the designed constructs, the expression of the best candidate in neonatal cardiomyocytes cell lines is undertaken by our collaborator Professor Richard Schulz, Department of Pharmacology, University of Alberta. In the third and final project we utilized single FP-based biosensor concept in trying to develop Hydrogen peroxide biosensors of different hues. Our efforts were fruitful in discovering two green biosensors, one is with direct and the other is with inverse response to hydrogen peroxide.
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (Portable Document Format)
Mime type: application/pdf
File size: 12993243
Last modified: 2015:10:12 19:43:18-06:00
Filename: Belal_Ahmed_Fall 2013.pdf
Original checksum: b619e71b320196dd0a9633552487ea29
Well formed: true
Valid: true
File title: Microsoft Word - thesis_corrected_final
File author: Ahmed
Page count: 138
Activity of users you follow
User Activity Date