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Abstract

Dangling Bonds (DBs) on the silicon surface exist when a silicon atom lacks

a bonding partner, resulting in a localized orbital which is not involved in

any chemical bonds. On the hydrogen-terminated Si(100) surface, such DBs

introduce a mid-gap state. DBs can be created on this surface by the se-

lective desorption of a surface hydrogen atom using a Scanning Tunneling

Microscope (STM). This thesis deals with characterization and fabrication of

DBs in STM, as well as some of their potential applications. We discuss the

unusual appearance of the silicon DB in STM, which can be understood in

detail by considering the non-equilibrium charging effects that take place dur-

ing imaging. We also show that the single-electron tunneling events that lead

to non-equilibrium charging of the DB are directly observable in STM exper-

iments. The tip-sample tunnel junction serves as a single electron-sensitive

charge sensor, which measures the fluctuating charge of a single silicon DB as

electrons tunnel on and off of the DB. Corresponding single-electron transfer

rates are extracted, and these agree with the previously proposed model of

non-equilibrium charging. Progress in DB fabrication is also discussed. Image

analysis and desorption algorithms permit creation of DBs at pre-determined

locations, leading to the creation of DB patterns of various sizes, from sev-

eral DBs to thousands. Finally, a potential application of DBs, Quantum-

dot Cellular Automata (QCA), is discussed. QCA is an emerging technology

which promises tremendous advantages over today’s Complementary Metal-
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Oxide-Semiconductor (CMOS) technology, if it can be realized at the atomic

or molecular scale. Silicon DBs are a promising platform for QCA devices.

Here, we focus on the issue of quantum correlations in QCA circuits, an issue

which has not been important in prototype QCA demonstrations, but which

may play an increasingly central role as QCA is brought to the atomic scale.

Through computational simulations, we find that the inclusion of intercellular

correlations qualitatively alters the ground state and thermal steady state of

the QCA circuit.
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Preface

This thesis is an original work by Marco Taucer. Some of the work presented

in this thesis is also presented in recent publications. In particular, parts of

Chapter 3 were published in Livadaru et al. (2011),1 parts of Chapter 4 were

published in Taucer et al. (2014),2 and parts of Chapter 7 were published in

Taucer et al. (2015).3 All figures are original unless otherwise indicated in the

figure caption.
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A noiseless patient spider,

I mark’d where on a little promontory it stood isolated,

Mark’d how to explore the vacant vast surrounding,

It launch’d forth filament, filament, filament, out of itself,

Ever unreeling them, ever tirelessly speeding them.

— Walt Whitman, from A Noiseless Patient Spider
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1 Introduction

This thesis deals primarily with Dangling Bonds (DBs) on the hydrogen-

terminated silicon (100) surface. The experimental tool used is the Scanning

Tunneling Microscope (STM). The first aim of this thesis is to make sense

of the varied behaviours that can be observed at the DB in STM. Since the

ultimate aim of this effort is to create atom-scale technologies, the later part

of this thesis will discuss the process of creating DBs on a larger scale with

atomic precision, as well as one of the potential applications of this atom-scale

technology, Quantum-dot Cellular Automata (QCA). This first chapter aims

to build up some basic concepts that underly the physics of DBs and STM.

While the tone is pedagogical, it is not meant to be a complete overview of

required concepts. Rather, the intention is to provide a heuristic description

to illustrate a way of thinking about the basics. The concepts specific to STM

and silicon will be further developed in Chapter 2.

1.1 Quantum Mechanical Concepts

In this section, I will present some introductory thoughts on quantum me-

chanics. The goal will be to introduce concepts that will be used throughout

the thesis, like quantum states, superpositions, and time evolution. Rather

than attempting to cover all concepts in a rigorous way, I will attempt to con-

vey a way of thinking about quantum mechanical things which will hopefully

be useful whether or not the reader is already familiar with the intricacies of

quantum theory.

Many introductory texts describe quantum theory as the theory of very

small things — atoms and molecules — yet there is nothing in the quantum

1



theory that dictates this limitation. Personally, I find it useful to think of

quantum theory simply as a theory, and to ask what the world looks like in

that theory, at all scales. Of course, the quantum description of the world

will seem to have very little to do with our common experience. Nonetheless,

I feel that the exercise helps develop an intuition about quantum mechanics.

Furthermore, there is an interpretation of quantummechanics which postulates

that the strange reality that results from applying quantum theory at all scales

is real and, despite appearances, is not at odds with our experience.

1.1.1 Superpositions

Superpositions are the feature of quantum mechanics that most strikingly dif-

ferentiates it from classical mechanics. The existence of superpositions broad-

ens the class of states that is open for discussion in any given system — and

by a state, we may simply mean “a state of affairs.” Our classical intuition

tends to consider a certain set of states for a particular system. For example,

“my coffee cup is on the left side of my desk” is a state that we can denote

|L〉. And we can denote the state “my coffee cup is on the right side of my

desk” by |R〉. |L〉 and |R〉 represent two perfectly reasonable states of affairs.

Quantum mechanics departs from intuition by asserting that for any states

that are allowed within a system, any superposition of them is also a perfectly

valid state. This means that |both〉 ≡ (|L〉+ |R〉) /
√

2 is also a perfectly valid

state. So in quantum mechanics, there is a state that is made up of equal parts

|L〉 and |R〉, where the coffee cup is both on the left and on the right side of

the desk. It is not in the middle of the desk, and it is not moving from one

side of the desk to the other, nor is it split into two pieces. The whole coffee

cup is in a state which has a component “here,” and also a component “there,”

all at once.

The parts of a superposition do not need to be equal, however, so any state

(a|L〉+ b|R〉) is also valid — a superposition can have more or less of this or

that state. In addition, there can be a phase relationship between the compo-

nents that make up the superposition, so we can have a state
(
a|L〉+ eiφb|R〉

)
,

which is different from
(
a|L〉+ eiθb|R〉

)
, if φ and θ are different. The most

2



general state we can make with one coffee cup is (α|L〉+ β|R〉), where α and

β are complex numbers. Actually, this state is too general, since the overall

phase does not matter. That is, (α|L〉+ β|R〉) and eiφ (α|L〉+ β|R〉) represent
exactly the same physical state. What is important is the relative phase of

the different components: in this case, the phase of |R〉 relative to |L〉 is the

only meaningful phase. Finally, and least importantly, states are normalized

so that |α|2 + |β|2 = 1.

So a system that in classical mechanics has only two states, in quantum

mechanics has a continuous range of states. Such a two-state classical system

is called a bit, and of course the quantum analog is the famous qubit. The

qubit states are continuous in two senses: the weight of the two states can

vary continuously from all |L〉 to all |R〉, and the relative phase between them

can vary from φ = 0 to φ = 2π. Yet of all the states of the general form

(α|L〉+ β|R〉), only the pure |L〉 and pure |R〉 states are classically intuitive.

They are the only ones we ever observe in the macroscopic world.

From the perspective of today’s understanding of physics, quantum me-

chanics is fundamental, and our everyday experience is puzzling. Why are

superpositions of things like coffee cups never observed if they are perfectly

valid states? The bridge from quantum concepts and dynamics to classical

ones is made with the aid of a variety of ad hoc postulates and tricks.4 One

example is the Copenhagen interpretation, which postulates wavefunction “col-

lapse” at the moment of measurement. For a wide variety of situations, this

view succeeds in giving sensible results from quantum mechanical calcula-

tions. However, the addition of a “measurement” step in the conceptualization

of quantum dynamics is arbitrary and inelegant. Furthermore, it raises the

question of what exactly a measurement is, a question which remains unan-

swered. Philosophical attempts to sidestep this problem posit that reality is

created by observation, or that quantum mechanics is merely a tool used to

predict the outcome of classical experiments, and should not be considered to

represent reality. These streams of thought are often called phenomenalist, or

operationalist.

Among those who do not accept an operationalist view of science — that it

3



is a mere tool to predict the outcome of experiments, rather than a window into

the reality of nature — the question of how the classical world comes about

in quantum mechanics remains controversial, subtle, and unresolved. Some

fundamental insights may come from considering the interactions of systems

with their environments from a quantum mechanical perspective. From the

invention of quantum mechanics to the present, the overwhelming majority

of work was done on isolated quantum systems, with environmental interac-

tions treated in a cursory way, or treated in analogy with classical physics as

a source of friction or energy dissipation. However, recent work has shown the

tremendous importance of the system-environment interaction in understand-

ing quantum mechanics and its relation to our classical experience. These

insights have not yet been taken up in textbooks, classrooms, or the broad

perspective of the field. The seeds of these insights can be traced back to the

earliest work in the field, but their elaboration took place starting in the 1980s

and generally falls under the rubric of the “program of decoherence”∗.

1.1.2 Wavefunctions

The wavefunction describes the state of a quantum system and it does not

necessarily have anything to do with waves. The states described above, such

as |L〉, |R〉, or (α|L〉+ β|R〉), are all wavefunctions. A wavefunction is defined

by specifying the magnitude and phase of each of its components. The com-

ponents are expressed in terms of the basis states, which are usually chosen

to be orthogonal (so that if you are in one basis state, |L〉, you are certainly

not in another, |R〉), and they should span the space of all possible states of

the system. They are usually also normalized, thereby constituting a complete

orthonormal basis.

The space of all possible states, including superpositions, is a Hilbert space,

and so far we have talked about a very simple one where only two states can

span the entire Hilbert space: a single particle is either here or there, or in a

superposition of here and there. But we can imagine a much larger Hilbert
∗The recent work of people like W. Zurek, E. Joos, D. Zeh, and others4–6 is in some ways

a continuation of ideas that go back as far as Schrödinger and von Neumann.7
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space, where a particle (an electron or a coffee cup) can be at any position.

Then we need to specify an amplitude (magnitude and phase) for each possible

state — that is, each possible position if we are in the position basis. If we

use ψ to denote that amplitude, then we need a unique ψ for each position in

space. The function ψ(r) specifies the amplitude at each point in space. This

function, ψ(r), is also a wavefunction, and it describes a quantum state when

the particle can be at any position in space. In fact, this function is the reason

that the wavefunction is called the wavefunction. Wavefunctions of electrons

in space, expressed as ψ(r), often have a wavy (oscillatory) character, and also

evolve in time in a rippling, wave-like way.

1.1.3 Time Evolution

The change of a system in time presents another interesting difference between

classical and quantum mechanics — or between our experience of the world

and the description provided by quantum theory. It is possible to say, in

both quantum and classical mechanics, that the time evolution of a system

is determined by the system’s state. That is, time evolution is deterministic.

But something subtly different is meant in each case. In classical mechanics,

in order to predict the evolution of a system, we need to know the system’s

coordinates in phase space, which means that we need to know not only the

positions of the particles, but also the rates of change of those positions. In

quantum mechanics, we only need to know the quantum state at any given

instant to know the future evolution of the system. Put another way, in

classical mechanics, a picture of the system does not determine what happens

next; we need two pictures separated by an infinitesimal time interval. In

quantum mechanics, a single picture of the quantum state (including the phase

of each component) suffices to determine its future course.

In paticular, the rate of change of a quantum state is determined by the

Schrödinger equation,

i~
∂

∂t
|ψ〉 = H|ψ〉, (1.1)

where H is the Hamiltonian operator, and ~ is the reduced Planck constant,
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which can be written in the position basis as

H = − ~2

2m
∇2 + V (r), (1.2)

where m is the particle mass, and V (r) is the potential energy of the particle

at each position. V (r) is an operator which is diagonal in the position basis.

Eigenvalues of the Hamiltonian satisfy[
− ~2

2m
∇2 + V (r)

]
ψn(r) = Enψn(r), (1.3)

which is the time-independent Schrödinger equation, often just called the

Schrödinger equation. The states ψn(r) and energies En are the eigenstates

and eigenvalues of the Hamiltonian.

1.2 Covalent Bonds, Ionic Bonds, and Qubits

We can illustrate how this works with a toy model. A double well provides a

good picture to work with. We can imagine any confining potential for each

of two identical wells — it could be the confining potential of an atom, or of a

quantum dot, for example — and we will consider only one particular bound

state (it could be the ground state of a harmonic oscillator, for instance),

whose energy is E0. We then imagine bringing the two wells closer together

until there is a small overlap between the wavefunction centered on the first

well, and the wavefunction centered on the second. This overlap results in a

“hopping” amplitude for an electron localized in one well to hop to the other.

The Hamiltonian for this double well system is

Ĥ = E0 − t (|L〉〈R|+ |R〉〈L|) ≡

E0 −t
−t E0

 , (1.4)

where t is the hopping amplitude (with units of energy) between the left and

right well, and the {|L〉, |R〉} basis states denote the eigenfunctions localized

in the left and right wells, respectively. The ground state is
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(b) (a) 

Figure 1.1: The ground and excited states of (a) ionic and (b)

covalent bonds are superpositions of the localized states on the left

and right sites.

|+〉 =
1√
2

(
|L〉+ |R〉

)
(1.5)

with energy −t, and the excited state is

|−〉 =
1√
2

(
|L〉 − |R〉

)
(1.6)

with energy +t. This can be thought of as a covalent bond, where energy

levels, with energy E0, combine to form a symmetric wavefunction — the

bonding orbital — and an antisymmetric wavefunction — the anti-bonding

orbital. The difference in energy between these two eigenfunctions is exactly

2t, which leads to the familiar picture of the covalent bond, shown in Figure

1.1a.

As a thought experiment, we can imagine preparing the wavefunction of

the electron in the state on the left, |ψ(τ = 0)〉 = |L〉, where τ denotes time

(to avoid confusion with the hopping parameter t). We can then ask how the

wavefunction will evolve coherently in time:
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Figure 1.2: Coherent evolution of a double-well system (analogous

to a covalent bond). Given an initial state localized on the left, the

electron oscillates from left to right and back.

|ψ(τ)〉 = e−iHτ/~|L〉

= e−iHτ/~
|+〉+ |−〉√

2

=
e−iEgτ/~|+〉+ e−iEeτ/~|−〉√

2

=

(
e−iEgτ/~ + e−iEeτ/~

)
|L〉+

(
e−iEgτ/~ − e−iEeτ/~

)
|R〉

2

= cos

(
tτ

~

)
|L〉+ i sin

(
tτ

~

)
|R〉. (1.7)

Figure 1.2 shows the probability of finding the electron in states |L〉 and
|R〉 as a function of time. We see that an electron that starts in the left well

will coherently evolve until it has completely shifted to the right well, and will

then evolve back to the left well returning to its original state, and so on. The

period of this oscillation is h/2t (where h is the Planck constant). This can

be thought of as coherent tunneling.

We can think of a two level system more generally, without the assumption

of resonance between the two unperturbed on-site energies. This represents a

bond between orbitals of unequal energy, for instance, like an ionic bond, as

8



shown in Figure 1.1b. In that case, the energies EL and ER may be different,

such that ER − EL ≡ ∆. The Hamiltonian for this system then becomes

H =

−∆/2 −t
−t ∆/2

 , (1.8)

Where we have assumed the average energy, (EL +ER)/2 to be zero — if this

is not the case, a constant energy can be added trivially. If we express the

Hamiltonian in units of ∆/2, then the only important parameter left in the

Hamiltonian is the ratio 2t/∆. The problem turns out to be greatly simplified

by considering a right angle triangle whose side lengths are 2t and ∆, as shown

in Figure 1.3. The Hamiltonian then becomes

H

∆/2
=

 −1 − tan θ

− tan θ 1

 , (1.9)

where θ ≡ tan−1(2t/∆).

✓

2t

�

Figure 1.3: The hybridization of two non-resonant energy levels can

be understood by thinking of a right angle triangle.

The eigenstates and eigenvalues of the Hamiltonian can then be expressed

as

Eg = −∆
2

sec θ ; |g〉 =

 cos(θ/2)

sin(θ/2)



Ee = ∆
2

sec θ ; |e〉 =

 sin(θ/2)

− cos(θ/2)

 .

(1.10)

Note that the difference in energy between the ground state and the excited

state is ∆ sec θ =
√

∆2 + (2t)2, which is the hypotenuse of the triangle shown

9



in Figure 1.3.

The ratio of 2t to ∆ (or we might say the angle θ) determines the degree

to which hybridization is important. When 2t is much smaller than ∆, very

little hybridization occurs: the ground and excited state energies are very close

to the on-site energies at each location, and the corresponding wavefunctions

are dominated by one or the other localized state. Only when 2t becomes

comparable to the splitting, ∆, is there a significant degree of hybridization,

as the energies and eigenstates depart from those of the localized states. In

the opposite limit, where 2t� ∆, we return to the case of the covalent bond.

1.3 The Tight Binding Model and Bloch Functions

This idea of creating an abstraction where we define discrete sites, each with its

own energy, and with a probability for hopping from site to site, is widely used

and is known as the tight-binding model. It is readily used to construct “toy

models,” which often provide insight into the important factors in a problem.

In many cases, the tight-binding model, if appropriately parametrized, can

actually provide a good description of real systems. It is also a starting point

for many more complicated methods, such as the Hubbard model and its many

variations. Here, we will employ it as a useful way to illustrate some general

topics in solid state physics.

1.3.1 A Simple 1D Chain

A very simple tight-binding Hamiltonian, where sites along a 1D chain have a

constant hopping t between nearest neighbours, can be written

Ĥ = −t
N−2∑
n=0

(|n〉〈n+ 1|+ |n+ 1〉〈n|) , (1.11)

where n has been used to label the sites, which go from n = 0 to n = N − 1.

Each term in the summation couples site n to site n + 1, and the summation

runs up to N − 2 since there is no site to the right of the right-most site. This

is depicted in Figure 1.4

10



...
n= 0 1 2 3 4 5 N−2 N−1

t t t t t t

Figure 1.4: The simple 1D chain consists of a series of equally

spaced sites with a hopping constant, t, coupling neighbouring sites.

For N = 1, the system is trivial: there is only one site, and therefore no

hopping, and the Hamiltonian is equal to zero. For N = 2, we recover exactly

the double well Hamiltonian outlined above, whose two eigenstates are the

bonding and anti-bonding orbitals. For N = 3, there are three eigenstates of

the Hamiltonian, each with a distinct energy.

Figure 1.5 shows the orbitals and energy levels for values of N from 1

to 5. For each value of N there are precisely N energy eigenstates, which

span a range of energies which increases with N . The ground state of an

isolated site has been taken to be a Gaussian wavefunction. This is chosen

simply for the sake of illustration, but could for example represent the case

of a locally quadratic confining potential at each site. Certain patterns in the

wavefunctions are apparent. The lowest energy eigenstate consistently has all

orbitals in phase (chosen to be positive — shown as blue — in this diagram),

while the highest energy orbital has the phase of the orbitals alternate. In

general, as the energy increases, the wavefunction crosses zero more (precisely

n−1 times in fact, for the nth energy eigenstate). These turn out to be general

features.

As the number of orbitals in the one dimensional chain is increased, the

features identified above persist. Figure 1.6 shows energy level diagrams for

chains of increasing length, from N = 1 to N = 50. The energy eigenstates

span an increasingly wide range of energies, but asymptotically approach a

total width of 4t. The total number of eigenstates, however is always N ,

meaning that the total density of energy eigenstates continues to increase as

the number of orbitals in the chain increases. Clearly, the discrete states that

make up the energy level structure of a tight-binding chain effectively become

11



 | |2

(a)

(b)

(c)

(d)

(e)

Figure 1.5: (a-e) Illustration of the energy levels and wavefunctions

of a one-dimensional chains of orbitals within the tight binding

model. Starting from the left, each subfigure shows a schematic

representation of the tight-binding chain, followed by the energy

level diagram, followed by a graphical representation of the wave-

functions and modulus square of the wavefunctions, with offsets to

bring them in line with the energy level diagram. The absolute y-

scale of the wavefunctions is arbitrary, although the relative scale

is consistent within each panel. Color represents phase, with blue

indicating positve values, and red indicating negative values of the

wavefunction (there are no imaginary components).
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Figure 1.6: Diagram showing the formation of a band as orbitals

are sequentially added to a one-dimensional chain within the tight-

binding model. For each number of orbitals in the chain, N , the

energy levels are plotted as horizonal lines.

a continuum at some point.

The example just described illustrates the formation of a band. In a solid,

bands form when the orbitals of its constituent atoms overlap, allowing transfer

of electrons from the orbital of one atom to the orbitals of its neighbours. This

results in a spreading of the initially discrete states of the constituent atoms

into bands which span a range of energies. In principle, bands are composed of

a large number of discrete states, but since the number of atoms, N , is typically

very large for real solids, bands are considered to be continuous. Nonetheless, it

is clear from Figure 1.6 that the energy eigenstates are not distributed equally

across the band, but are instead more dense at some energies than at others

(in this case, there are more eigenstates at the extremes of the band, near ±2t,

than in the middle, near 0). For that reasons, one of the ways of looking at

the band structure of a solid is through the solid’s Density of States (DOS).

As stated above, it is also possible to consider the wavefunctions of tight-

binding chains in terms of the phase of the wavefunctions that constitute it.

For short chains, the energy of the wavefunction was higher for wavefunc-

tions that changed sign more frequently. This points to a general feature of

wavefunctions: energies are highest for wavefunctions whose phase oscillates

more rapidly. This fact can be seen by inspection of the Schrödinger equation

(Equation 1.3) and is illustrated in Figure 1.5. This suggests that wavefunc-
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tions might be categorized (or labelled) according to their “wavyness”. This

can be made formal by labeling wavefunctions by their wavevector, k. We will

now switch to analytical calculations to show this.

We can define a state |kj〉 as a linear combination of all the localized states,

|n〉,

|kj〉 ≡
1√
N

N−1∑
n=0

eikjxn|n〉 ; xn = ns, (1.12)

where xn is the position of the nth site, s is the spacing between adjacent sites,

and kj is a wavevector defined by

kj =
2πj

Ns
; j = −N/2,−N/2 + 1, . . . , N/2− 1, (1.13)

where we have assumed that N is even (trivial adjustments need to be made

if it is not). The states |kj〉 then form their own orthonormal basis. The

localized states can be expressed in terms of the wavevector components,

|n〉 ≡ 1√
N

N/2−1∑
j=−N/2

e−ikjxn|kj〉. (1.14)

The |k〉 states are the discrete Fourier transform of the the localized states,

|n〉. Substituting the above expression for |n〉 into Equation 1.11 diagonalizes

the Hamiltonian, yielding

H =
∑
kj

[−2t cos(kjs)] |kj〉〈kj|, (1.15)

which allows us to express energy as a function of the wavevector:

E(k) = −2t cos(ks). (1.16)

Figure 1.7a shows E(k), which is the band structure for this simple model —

it plots the distribution of energies in reciprocal space. The discrete points

show the energies and wavevectors of the discrete eigenstates in the case of

N = 50. As N is increased, more wavevectors are allowed and the points

along the curve E(k) become more closely spaced. As N tends to infinity, the
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discrete points completely fill the continuous curve represented by the solid

line.
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Figure 1.7: (a) Band diagram in reciprocal space for a simple 1D

tight-binding chain. The solid line represents the energies of k

states for an infinite line, and the points represent the energies of

discrete k states for the case of N = 50. (b) Density of States

(DOS) for the infinite chain, normalized by the number of atoms,

N .

We can note that in the case of finite N , the allowed wavevectors are evenly

spaced along the k axis, and their density is

dN

dk
=
Ns

2π
. (1.17)

The density of states in energy, in the limit of large N , can then be expressed

as

DOS(E) =
dN

dE
=
dN

dk

dk

dE
=

N

2π
√

(2t)2 − E2
. (1.18)

The density of states is shown in Figure 1.7b. The divergences at E = ±2t

are characteristic of the one-dimensional character of the present model, and

they are known as van Hove singularities. In other dimensionalities, different

types of singularities are observed.

We can also note that if each orbital can accommodate two electrons (one
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for each spin), we would then have to double the density of states calculated

above. If each orbital also comes with a single electron, for instance if we

imagine stringing together a chain of neutral hydrogen atoms, then the band

that is formed will be exactly half filled. At zero temperature, electrons will

exclusively occupy the energy levels in the lower half of the band. As temper-

ature increases, the border between occupied and unoccupied energy levels is

blurred. The occupation is described by Fermi statistics,

f(E) =
1

1 + e(E−µ)/kBT
, (1.19)

where µ is the chemical potential. In this thesis chemical potential, µ, and

Fermi energy, EF , will be used interchangeably. The border between occupied

and unoccupied energy levels at low temperature would be located at E = 0,

in the case of the band structure described above, for a half-occupied band.

This would describe a metallic electronic structure, since there is a non-zero

density of states at the Fermi level.

1.3.2 Broadening of a Discrete Level in Contact with a Continuum

It is possible to ask other questions about the formation of a band as well.

Figure 1.5 gives some sense of how a band is formed as atoms are sequentially

added. But we can ask exactly how an individual atom goes from having its

own discrete state to becoming intricately connected with the extended energy

levels of an entire crystal (in this case, a simple one-dimensional chain). Figure

1.8 shows precisely this process. One orbital is brought in from the left, in

Figure 1.8a, until it is at the standard spacing for the one-dimensional chain,

in Figure 1.8d. In this diagram, the wavefunctions are represented using the

thickness and darkness of lines, which are both proportional to |ψα(n)|2, where
n labels the sites as usual, and α is an index which identifies the energy

eigenstate. A vertical slice represents the energy levels present at each site,

essentially the local density of states (LDOS), while the horizontal slices can

be interpreted as the modulus squared of the wave functions themselves.

The chain is composed of 20 equally spaced sites, at positions 0 through 19,
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Figure 1.8: A 1-dimensional chain of sites in the tight-binding

model, composed of 20 equally spaced sites at positions 0 through

19, with an additional site brought in from the left. The positions

of the additional site as it approaches from the left are (a) −6s,

(b) −3.5s, (c) −2s, and (d) −1s, where s is the standard spacing

between nearest neighbours. This last case, therefore corresponds

to a chain of 21 regularly spaced sites.

with an additional site brought in from the left. The positions of the additional

site as it approaches from the left are −6s, −3.5s, −2s, and −s, respectively
for Figures 1.8a to d. Here, we have assumed an exponential dependence of

the hopping parameter on separation from the nearest neighbour, of the form

t(s) = toe
1−s, which decreases by a factor of e for each unit of separation.

When the additional site is far from the chain, at x = −6s it has a single

energy level, as shown in Figure 1.8. In Figure 1.8b, the additional site begins

to hybridize with the energy levels of the band which are closest in energy.

We see that in addition to the very prominent energy density at E = 0,

the additional site begins to show some density corresponding to the nearest

extended energy eigenstates. Additionally, the eigenstate at E = 0, which

is dominantly localized on the additional site, begins to have a delocalized

component which extends across the 1D chain. At the closer separation in

Figure 1.8c, the delocalized part of the wave function is even stronger, and

the energy levels at the site are spread out over a significant part of the band,

though clearly with most density still in the neighbourhood of E = 0. Finally,
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in Figure 1.8d, the additional site becomes a part of the periodic structure of

the 1D chain. The energy level structure at the additional site has broadened

from a single level to include varying amplitudes across all energies of the

band, from −2t to +2t. At the same time, an extended wavefunction with

energy E = 0 has also appeared.†

This broadening of a discrete energy level in contact with an extended

reservoir is a well-studied phenomenon in the context of quantum transport.

The coupling of a discrete level with a continuum can be described by a transfer

rate, Γ, or equivalently, by an energy defined as γ = ~Γ. The density of states

of the discrete level can be described in terms of this coupling energy using

the relation8

DOS(E) =
1

2π

γ

(E − E0)2 + (γ/2)2
, (1.20)

where E0 is the energy of the unbroadened energy level. This equation is

plotted in Figure 1.9 for various values of γ. It says that as we bring the

discrete state into closer contact with an extended reservoir (increasing the

rate Γ), the state is gradually broadened according to a Lorentzian distribution

centered on E0. The integral of the DOS is always equal to precisely unity,

regardless of the degree of broadening. In that sense, we can think of the

initially discrete state as having been “smeared out”.

While it may be useful to use terms like “smearing” or “broadening,” it is

worth keeping in mind that what is really happening is that the discrete state

hybridizes with the extended levels of the reservoir, preferentially with those

spatially closest and closest in energy. When the previously localized orbital

is coupled to the bulk, it is no longer an energy eigenstate of the system. The

true energy eigenstates are altered so that what used to be extended states

confined to the reservoir gain a small component on the additional site, while

the discrete state itself is altered to acquire a component which is delocalized

inside the reservoir.
†While it is tempting to think of the initially localized eigenstate as having transformed

into the extended state at E = 0 in Figure 1.8d, we should instead think of it as having
merged into the entire band. This point would be made clearer by the addition of yet
another atom to the chain, after which there would in fact be no extended eigenstate at
E = 0. In general, simple tight-binding chains have an eigenstate at E = 0 only when the
number of sites is odd.
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Figure 1.9: DOS of a broadened energy level in contact with a

reservoir for various values of the coupling energy, γ. The integral

of each each curve is precisely unity.

1.3.3 The Dimerized 1D Chain

We can also construct different types of band structures using this same tight-

binding model, by modifying the hopping constants. For instance, we can de-

fine a new Hamiltonian, in which atoms are paired by a large tunnel-coupling,

t0, and pairs are in turn coupled through a weaker tunnelling constant, t1,

H =

N/2−1∑
p=0

−t0
(
|2p〉〈2p+ 1|+ |2p+ 1〉〈2p|

)

+

N/2−1∑
p=0

−t1
(
|2p+ 1〉〈2p+ 2)|+ |2p+ 2〉〈2p+ 1|

)
, (1.21)

where p labels the pairs, and the number of sites, N , has been assumed to

be an even number. In effect, this amounts to a chain of sites, with alter-

nating hopping constants, however it is useful to think of the Hamiltonian as

describing coupled pairs, as shown in Figure 1.10. The first summation de-

scribes the Hamiltonian for each pair, while the second summation describes

the interactions between neighbouring pairs. This Hamiltonian turns out to

be analytically diagonalizable. We will solve the Hamiltonian by a series of

changes of basis.

We saw above that it is straightforward to solve the Hamiltonian for a
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Figure 1.10: The dimerized 1D chain consists of pairs of sites, cou-

pled by a strong hopping constant, t0, which are in turn tunnel

coupled by a weak hopping constant, t1. Pairs are sequentially la-

beled by p and sites are sequentially labeled by n, such that n = 2p

and n = 2p+ 1 for the two sites in pair p.

tunnel-coupled pair of sites with resonant energies. This suggests that we

might start by solving the Hamiltonian for each pair of atoms, and then work-

ing with the resulting wavefunctions. Each term in the first summation in

Equation 1.21 corresponds to the Hamiltonian for a particular pair, and we

can note that this Hamiltonian is essentially identical to the one in Equation

1.4. Each pair has a lower energy state, |+p〉, with energy −t0, and a higher en-

ergy state, |−p〉, with energy +t0. These are the symmetric and antisymmetric

combinations of the two localized states of the pair, |p〉 and |p+ 1〉.
The states |+p〉 and |−p〉 define a new orthonormal basis. In that basis,

the Hamiltonian can be written as

H =

N/2−1∑
p=0

{
−t0|+p〉〈+p| −

t1
2

(
|+p〉〈+p+1|+ |+p+1〉〈+p|

)}

+

N/2−1∑
p=0

{
+t0|−p〉〈−p|+

t1
2

(
|−p〉〈−p+1|+ |−p+1〉〈−p|

)}

+

N/2−1∑
p=0

{
− t1

2

(
|+p〉〈−p+1|+ |−p+1〉〈+p|

)
+
t1
2

(
|−p〉〈+p+1|+ |+p+1〉〈−p|

)}
. (1.22)

This form is particularly telling. The first and second summations resemble

the Hamiltonian in Equation 1.11 — that is, they appear to describe a one di-
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mensional chain of orbitals (the bonding or antibonding orbitals of the pairs),

which are tunnel coupled with their neighbours through a hopping constant of

±t1/2. Were it not for the third summation, the Hamiltonian would immedi-

ately be solved by taking the Fourier transforms of the bonding orbitals, and

also of the anti bonding orbitals. The the third summation, however, compli-

cates things by mixing the bonding orbitals with the anti bonding orbitals. In

light of this, we can label the three summations as three distinct parts of the

Hamiltonian, H+, H−, and H+/−, respectively.

We proceed by diagonalizing the first two parts, H+ and H−. This requires

a change to the basis,

|kj〉 =

√
2

N

N/2−1∑
p=0

eikjxp|+p〉 ; kj =
2πj

Ns

(1.23)

|qj〉 =

√
2

N

N/2−1∑
p=0

eiqjxp|−p〉 ; qj =
2πj

Ns
.

Note that “k” and “q” are used to label states in the lower and upper bands

respectively, but that the wavevectors kj and qj are equal. The separation, s,

refers to the distance from the center of one pair to the center of the next,

so that s = s0 + s1, with s0 the separation between the two sites of a pair,

and s1 the separation between the two closest atoms of neighbouring pairs. As

promised, the first two parts of the Hamiltonian are diagonalized,

H+ =

N/2−1∑
j=0

{−t0 − t1 cos(kjs)} |kj〉〈kj| (1.24)

and

H− =

N/2−1∑
j=0

{+t0 + t1 cos(qjs)} |qj〉〈qj|, (1.25)

and the third part of the Hamiltonian, which “mixes” these two bands, becomes

H+/− =

N/2−1∑
j=0

{−it1 sin(kjs)} |kj〉〈qj|+
N/2−1∑
j=0

{+it1 sin(kjs)} |qj〉〈kj|. (1.26)
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While this third part of the Hamiltonian means that we still have not quite

diagonalized the Hamiltonian, we see that the mixing between the two bands

is of a very particular form. A state in one band with a particular value of j

— that is, with a particular wavevector — mixes only with the state in the

other band with precisely the same wavevector, and no others. Furthermore,

the basic properties of the band structure are already revealed at this point: a

lower-energy band is formed out of the symmetric bonding orbitals, |+〉, and
a higher energy band, with opposite curvature, is formed out of the antisym-

metric anti-bonding orbitals, |−〉. The rest of the process of diagonalizing only

adds a small correction to this picture.

The final step in diagonalizing the Hamiltonian is then to combine the

terms for each value of j, from the three parts of the Hamiltonian (H+, H−,

and H+/−), into a single two-state Hamiltonian called Hj,

Hj = [−t0 − t1 cos(kjs)] |kj〉〈kj| + [+t0 + t1 cos(kjs)] |qj〉〈qj|
(1.27)

+ [−it1 sin(kjs)] |kj〉〈qj| + [+it1 sin(kjs)] |qj〉〈kj|.

The total Hamiltonian is then simply written as a series of uncoupled 2 × 2

Hamiltonians, H =
∑
j

Hj. In matrix form, we can write

Hj =


−∆j/2 −itj

+itj +∆j/2

 ;

∆j = 2t0 + 2t1 cos(kjs)

tj = t1 sin(kjs),

(1.28)

in the basis {|kj〉, |qj〉}. These 2×2 matrices are then diagonalized in the exact

same manner as Equation 1.8. For each wave vector, kj, we find two energy

eigenstates, one in the lower band and one in the upper band, which we will

label |k+
j 〉 and |k−j 〉, respectively.

The eigenstates and eigenvalues from the lower band are then given by

|k+
j 〉 = cos

(
θj
2

)
|kj〉 − i sin

(
θj
2

)
|qj〉 ; E+

j =
−∆j

2
sec θj (1.29)
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while the eigenstates and eigenvalues for the upper band are given by

|k−j 〉 = sin

(
θj
2

)
|kj〉+ i cos

(
θj
2

)
|qj〉 ; E−j =

+∆j

2
sec θj, (1.30)

where θj is defined as

θj ≡ tan−1

(
2tj
∆j

)
. (1.31)

Figure 1.11a shows the band structure for this type of 1-dimensional chain

of pairs of atoms. The bonding and anti-bonding orbitals of the pairs have

given rise to two bands with opposite curvature. The width of each band is

2t1, and the two bands are centered at ±t0.
It is informative to consider the eigenfunctions of the Hamiltonian in terms

of the eigenstates of the individual pairs, |+p〉 and |−p〉. In that basis, we can

express the eigenstates belonging to the +-band as

|k+
j 〉 =

√
2

N

N/2−1∑
p=0

eikjxp
[
cos

(
θj
2

)
|+p〉 − i sin

(
θj
2

)
|−p〉

]
. (1.32)

This illustrates a very general feature of crystal wavefunctions: they are com-

posed of a part which is identical from unit cell to unit cell, multiplied by a

phase which rotates as a function of the unit cell position. In this case, the

factor eikjxp is a phase which is different for each pair (and the pairs are the

unit cells), and the part in the square brackets is exactly the same from one

unit cell to the next (the amplitudes of the bonding and antibonding orbital

in each unit cell are a function of j, but they are independent of p).

Wavefunctions that have this property are called Bloch functions. In this

case, we have written the wavefunction in the form

ψk(r) =
∑
R

eikRψ0k(r−R), (1.33)

where R is a Bravais vector — a vector which points from one unit cell to

another, and ψ0k is a wavefunction localized in the unit cell. Note that ψk(r) =

ψk+K(r), where K is a reciprocal space lattice vector, defined such that K ·R
is a multiple of 2π. The phase factor for each unit cell is unchanged by the
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addition of a reciprocal lattice vector. Likewise, the wavefunction that applies

to each unit cell, ψ0k, is also unchanged by a change in the reciprocal lattice

vector from k to k + K. This can be seen by inspection of Equation 1.32,

where a reciprocal lattice vector would be any integer multiple of 2π/s.
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e
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)
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DOS (t−1
0 )

2
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Figure 1.11: (a) Band structure for the dimerized 1D tight-binding

model. The continuous line corresponds to the limit of infinite N ,

and the points correspond to N = 100, or 50 pairs. (b) Density of

States (DOS) of the dimerized tight-binding chain in the limit of

large N , normalized by N .

More often, Bloch functions are expressed as9

ψk(r) = eikruk(r), (1.34)

where uk(r) is a periodic function, uk(r) = uk(r + R). The equality ψk(r) =

ψk+K(r) is less obvious in this case, since the phase factor eikr is not equivalent

for k→ k+K. Indeed the wavefunction appears to be dramatically “curvier”

rotating its phase one additional time per unit cell. The equality comes from

the fact that the added curviness in this phase factor can be compensated

by a change in the periodic function, uk(r). In practice, this issue is usually

unimportant since we generally consider wavevectors in the first Brillouin zone

only — the natural unit cell of reciprocal space.
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It is also possible to calculate the DOS, as was done for the simple 1D chain.

While one can express the DOS in terms of energy, it can also be immediately

expressed in terms of the wavevector, k, as

DOS(k) =
N
√

(t0 + t1 cos ks)2 + (t1 sin ks)2

2πt0t1 sin ks
. (1.35)

The DOS is plotted in Figure 1.11b. If we again consider the scenario in which

each localized orbital comes with a single electron, then the available energy

levels will again be half-filled. In the case of this paired 1D chain, this results

in a lower band which is completely occupied, and an upper band which is

completely unoccupied. This type of band structure describes a semiconduc-

tor or an insulator, depending on the size of the energy gap which separates

occupied from unoccupied states.
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Figure 1.12: A 1-dimensional dimerized chain of sites in the tight-

binding model, composed of 30 equally spaced pairs of sites, with

an additional site brought in from the left. The positions of the ad-

ditional site as it approaches from the left are (a) −4s1, (b) −2s1,

and (c) −s1, where s1 is the spacing between nearest neighbours of

different but adjacent pairs. In the last case, therefore, the addi-

tional site is in the next lattice site to the left of the 30-pair chain.

Figure 1.12 shows the process of bringing one additional orbital to a dimer-

ized chain of 60 orbitals (30 paris), with the separation of the additional atom

from the rest of the chain as 4s1, 2s1, and s1, for (a), (b), and (c) respec-
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tively, the last one therefore representing the normal spacing between pairs.

As the additional orbital is brought into tunnel coupling with the rest of the

chain, the discrete level gains a decaying tail in the gap of the dimerized chain.

The extended states, meanwhile, gain a small amplitude at the additional site.

However, unlike the case of the simple 1D chain, shown in Figure 1.8, when

the orbital comes to the adjacent lattice site, in the last panel of both figures,

the localized level does not delocaliize across the entire crystal. Instead, it

retains its localized character, developing an exponentially decaying tail into

the band gap.

The localized state developed at the unpaired atom in Figure 1.12c can be

thought of as a model for a dangling bond. Because it is missing its normal

bonding partner, its unpaired orbital fails to hybridize with the extended states

of the crystal, and sits instead in the midgap. In this sense, it bears a very close

resemblance to a dangling bond on the hydrogen-terminated silicon surface,

where the lack of a capping hydrogen atom leaves the unpaired orbital as a

deep-level defect with a localized wavefunction.

1.4 Tunneling

1.4.1 Tunneling Through a Barrier

Tunneling is a quantum phenomenon whereby a particle can traverse a po-

tential energy barrier which is higher than the particle’s total energy. In

classical mechanics, this is impossible: a particle incident upon a barrier will

be reflected at the point where the potential energy equals the particle’s total

energy. This point is called a classical turning point. Figure 1.13 shows such

a barrier. While the classical trajectory bounces off of the barrier at the left

turning point, xa, a quantum wavefunction has a probability to be transmitted

through the barrier. Even in the classically forbidden region from xa to xb,

the wavefunction can have a non-zero amplitude, which allows the electron to

emerge in the second classically allowed region to the right of xb.

Usually, in introductory treatments of tunneling, this description is made

formal by considering a rectangular barrier of width |xb−xa| and of height V0.

26



E

V (x)

xa xb Position

Po
te

nt
ia

l E
ne

rg
y

Figure 1.13: A quantum mechanical wavepacket incident from the

left on a potential barrier, which it would not be able to cross

classically, nonetheless has an amplitude to emerge on the other

side. The energy of the patricle is E, and xa and xb label the

classical turning points.

The Hamiltonian is

H =
−~2

2m

d2

dx2
+ V (x) ; V (x) =

{ V0 for xa < x < xb

0 otherwise.

(1.36)

The Schrödinger equation can be solved separately in three regions, to the left

of the barrier, inside the barrier, and to the right of the barrier, as described, for

instance, in Cohen-Tanoudji.10 In the classically allowed regions, the solutions

are just the solutions of the free electron, proportional to e±ikx. Inside the

barrier, the Schrödinger equation dictates an exponential function of the form

e±κx. The wavevector, k, and the exponential constant, κ, are given by

k =

√
2mE

~2
and κ =

√
2m(V0 − E)

~2
. (1.37)
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The solutions found in each of the the three distinct regions are

ψ+
L = A+

Le
ikx

ψ−L = A−Le
−ikx

}
for x < xa

ψ+
bar = A+

bare
κx

ψ−bar = A−bare
−κx

}
for xa < x < xb (1.38)

ψ+
R = A+

Re
ikx

ψ−R = A−Re
−ikx

}
for x < xa

Typically, A+
L and A−L are interpreted as the amplitudes of incoming and

outgoing waves to the left of the barrier, and likewise for A+
R and A−R. By

setting A−R to zero, we consider the case in which no particle is ”approaching

from the right.” A+
L is then interpreted as the amplitude of the incident par-

ticle (from the left), A−L is interpreted as the reflected amplitude, and A+
R is

interpreted as the transmitted amplitude. The amplitudes in each region are

then adjusted such that the wavefunction and its derivative are continuous

at the edges of the barrier, xa and xb. In this way, a valid solution of the

Schrödinger equation can be constructed from an incoming wave from the left,

which decays through the barrier and has a small component to the right of

the barrier. The transmission probability is then described by

T =
|A+

R|2
|A+

L |2
=

4E(V0 − E)

4E(V0 − E) + V 2
0 sinh2(κ|xb − xa|)

(1.39)

This simple result demonstrates the basic phenomenon of tunneling: it

shows a non-zero probability for a particle to pass through the barrier. But the

interpretation of the result is rather peculiar in the context of most quantum

calculations. We have described a wavefunction which satisfies the Schrödinger

equation — that is we have found a stationary state. If the particle is prepared

in this state, the time evolution of the system will leave the state unchanged

aside from an overall phase. And yet we interpret this stationary state in a

dynamic way, as a particle incident from the left and subsequently reflecting

partly and transmitting partly. This is a strange way to think about a station-

ary state. Furthermore, in the context of STM, electrons occupy the extended
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states of the sample and tip, and they are in some sense always incident on the

barrier. If the above expression gives the probability to traverse the barrier, we

then need to know how often each electron tries to traverse it. In some scenar-

ios, an attempt frequency is used to convert a transmission probability into a

transmission rate, for instance by using the frequency of a Bohr orbital in the

context of atoms.11 However, in many cases it is not entirely clear that such an

“attempt frequency” is applicable. It would be useful to develop an approach

to tunneling which aims to calculate dynamics from the start — something we

will do presently, first for tunneling between discrete states, then for tunneling

from a discrete state to a continuum.

1.4.2 Tunneling Between Discrete States

Sections 1.2 and 1.3 dealt with Hamiltonians in which localized sites were cou-

pled by hopping constants, which describe tunneling from site to site. Here, we

will describe the process by which realistic Hamiltonians can be approximated

by simple tight-binding models. This will shed light on the origin and meaning

of the hopping constants. We will also comment on some general features of

tunneling between discrete states.

First, we consider overlap between eigenstates of two separate atoms, which

we will denote ψL, an eigenstate of the left atom, and ψR, an eigenstate of the

right atom,

Hα|ψα〉 = Eα|ψα〉 ; α ∈ {L,R} . (1.40)

When the two atoms are well separated, these two wavefunctions are good

eigenstates of the total Hamiltonian,

H =
p2

2m
+ VL + VR, (1.41)

where VL and VR are the confining potentials for the left and right atoms

respectively. As the atoms are brought closer, however, they cease to be perfect

eigenstates, and a probability emerges for electrons to be transferred from one

orbital to the other.

In order to see how these eigenfunctions are modified because of their
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interaction, we consider a two state basis spanned by these states only. We

will comment on this assumption later. In this basis, the diagonal elements of

the Hamiltonian are

HLL = 〈ψL|H|ψL〉 = EL + 〈ψL|VR|ψL〉
(1.42)

HRR = 〈ψR|H|ψR〉 = ER + 〈ψR|VL|ψR〉.

This can be interpreted as meaning that the normal energies of the diagonal

terms are corrected by an amount equal to the interaction of the left orbital

with the confining potential of the right atom, and vice versa. The more

important off-diagonal terms are

HLR = H∗RL = 〈ψL|H|ψR〉

= EL〈ψL|ψR〉+ 〈ψL|VR|ψR〉. (1.43)

The first term is proportional to the overlap between the two wavefunctions,

S ≡ 〈ψL|ψR〉. The second term involves one of the confining potentials as well.

However, if we express it as an integral in space, we see that the integrand

is small except where the overlap is non-negligible. As long as the two sites

are not too close together, this region will be far from the center of either

confining potential, where the confining potential nearly vanishes, so that the

second term can often be neglected. Roughly speaking, then, we can say that

the matrix element which connects these two states is proportional to the

overlap, S.

Equation 1.38 described the exponential decay of wavefunctions in clas-

sically forbidden regions. It says that a wavefunction must decay with an

exponential constant determined by the barrier height. In principle, expo-

nential increase is also possible, but is excluded on physical grounds. Using

that result, we can expect that orbital overlap, and therefore the off-diagonal
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matrix element, will decay with separation, s, as

S ∝ e−κs ; κ ≡
√

2mEi
~2

, (1.44)

where Ei is the confining potential.

It is worth noting that if the two orbitals described above belong to two

realistic atoms, then there are other eigenstates of each atom that need to be

taken into account. Section 1.2 discussed the case where a hopping constant

connected two non-resonant orbitals. When the hopping constant became

comparable with the energy splitting between the orbitals (that is, when 2t

became comparable with ∆), significant hybridization occurred. By the same

token, whenever orbital overlap with other eigenstates becomes large enough

that the resulting hopping constant is on the order of the energy difference,

those additional orbitals need to be taken into account. This is the limitation

of the assumption made above. The restriction to two states is only valid

when the hopping constants are much smaller than the spacing of energy levels

around those eigenstates for each atom.

The tight-binding model is a good approximation for confining potentials

with relatively widely spaced energy levels, and where overlap between orbitals

of neighbouring sites is small in comparison. This allows us to use the heuristic

results from Section 1.2 to consider the transfer of a single electron between

discrete states. For resonant states, the electron is transferred back and forth

sinusoidally between the two orbitals, as depicted earlier in Figure 1.2. The

probability of being in the initial state, as a function of time, is

Pi = |ψi(τ)|2 = cos2

(
tτ

h

)
, (1.45)

which of course assumes coherent time-evolution. Such coherent oscillations

have been proposed as the basis for charge qubits made from silicon DBs.12,13

This conceptualization of tunneling is a step in the right direction compared

with the previous treatment that considered an incident wave, but it still

presents difficulties of its own. In this picture, tunneling is not a one-way

process as we normally think of it in the context of STM. The electron cycles
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indefinitely. The quantity Γ = 2t/h has units of frequency and represents the

rate at which the electron cycles back and forth. It is difficult to use this in

considering STM, however, since it would seem to indicate that any electron

transferred to the sample from the tip would then return to the tip over an

equal time. Clearly this does not happen. The cycling rate that describes

tunneling between discrete states may give an idea of a natural timescale

for tunneling, but it should not be thought of as a “transfer rate.” In order

to effectively describe tunneling as a one-way process, we need to consider

transfer of an electron not from discrete state to discrete state, but instead

from a discrete state to a continuum, or from continuum to continuum.

1.4.3 Tunneling from Disctrete State to Continuum

Time-dependent perturbation theory provides a means to address problems

of dynamics whenever a small perturbation is added to a known and solved

potential. In this case, we can imagine tunneling from a discrete state of a

known potential to a continuum of states, such as the continuum formed by the

band structure of a metal or semiconductor. We are interested in the transfer

of electrons from an initial state, ψi, to the states of the continuum, φn.

The general idea is to imagine a perturbation turned on at time t = 0 (in

this section, we will use t to represent time as usual, not to be confused with the

hopping t used earlier in this chapter). In this case, the perturbation will be

the overlap between the discrete orbital and the eigenstates of the continuum.

We might imagine the moment at t = 0, where the overlap is turned on, as

representing a moment when the discrete orbital is physically brought close to

the continuum states. More accurately, this is a tool to consider what happens

starting from an initial state where an electron occupies the discrete state, ψi.

How are electrons subsequently transferred to states of the continuum, φn?

We start by assuming that a varying potential is added to a known Hamil-

tonian,

H = H0 + V (t), (1.46)
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where the known Hamiltonian is already solved,

H0|n〉 = En|n〉. (1.47)

The time-dependent potential used in this context has the simplest possible

possible time-dependence,14

V (t) =

{
0 , for t < 0

V , for t ≥ 0,
(1.48)

so that aside from turning on, the potential actually has no time dependence at

all. We consider an initial state, |ψi〉, which is an eigenstate of the unperturbed

Hamiltonian, H0, with energy Ei, and consider transitions to the contiunuum

states, |φn〉, also eigenstates of the unperturbed Hamiltonian, with associated

energies, En.

What is the significance of the added potential V in the context of tun-

neling? When V is zero, ψi and φn are exact eigenstates of the Hamiltonian.

This scenario was depicted earlier, in Figure 1.8a, where the discrete state is

widely separated from the continuum states. When they are brought closer, it

becomes possible for the discrete state to hybridize with the extended states,

φn, as depicted, for instance, in Figures 1.8b and c. In Section 1.3.2, we dis-

cussed the fact that this hybridization leads to a “broadening” of the discrete

state, however it also has the effect of enabling an initially localized electron

to be transferred to the extended (continuum) states. V is an addition to the

Hamiltonian which accounts for this small degree of hybridization, and thereby

enables the transfer of electrons, as we will show presently.

The time evolution operator is U(t) = e−iHt/~ so that the wavefunction at

time, t, is given by

|ψ(t)〉 = e−iHt/~|ψi〉. (1.49)

The probability of a transition to state |φn〉 is then

Pi→n(t) =
∣∣〈φn|ψ(t)〉

∣∣2, (1.50)
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which, to first order in perturbation theory, is given by,14

Pi→n(t) =
4|Vin|2

(En − Ei)2
sin2

[
(En − Ei)t

2~

]
, (1.51)

where Vin is the matrix element of the perturbing potential, 〈ψi|V |φn〉. For

small values of t, this expression reduces to |Vin|2t2/~2. Comparing this to the

analogous behaviour described in the case of tunneling between discrete states,

we can see that Vin here plays the role that the hopping constant played in

that case. That is, Vin, can be thought of as a hopping constant connecting

ψi to φn.

Equation 1.51 presents all the same problems as did the equivalent expres-

sion in the case of tunneling between discrete states (which is to be expected

since we have not yet used the fact that the states φn form a continuum).

Specifically, it is periodic with time, so that it does not seem to describe a

one-way transition from the discrete state to the continuum. Furthermore,

the short-time behaviour is quadratic with time, whereas a process character-

ized by a tunneling rate is expected to linearly transition on short timescales.

Sensible results are found by considering transitions not just to a single

level, n, but to the set of all levels of the continuum, which we will denote

{n}. The probability of transitioning to this set of states, is then

Pi→{n} =
∑
n

Pi→n ≈
∫ +∞

−∞
dEnρ(En)Pi→n(En), (1.52)

where ρ(En) is the density of states of the continuum per unit energy, and

we have assumed that the transition probability, Pi→n, can be written as a

function of the final energy only. This amounts to assuming that the modulus

squared of the matrix element Vin can be written as a function only of En, or

alternatively, that it can be replaced by a coarse-grained average of its values

for energies near En. We can denote this coarse-grained value of the modulus
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squared as |Vi{n}|2. This allows us to write

Pi→{n} =

∫ +∞

−∞
dEnρ(En)

4|Vin|2
(En − Ei)2

sin2

[
(En − Ei)t

2~

]
=

2|Vi{n}|2ρn(Ei)t

~

∫ ∞
−∞

dx sinc2(x), (1.53)

using the substitution x = (En − Ei)t/~. The presence of (En − Ei)2 in the

denominator of the first line indicates that the integrand is sharply peaked at

energies near the energy of the initial state (but the divergence is avoided by

the presence of the sin function). Since the integrand is sharply peaked, we

can assume that the density of states of the continuum varies slowly over the

important range of energies, allowing the density of states to be replaced with

its value at the initial energy, ρn(Ei).

The integral in the second line of Equation 1.53 is equal to π, which gives

the following result for the probability of a transition to the final states, {n},

Pi→{n} =

(
2π

~
|Vi{n}|2ρn(Ei)

)
t. (1.54)

This result is known as Fermi’s Golden Rule, and the rate associated with

the transition, Γi→{n}, is simply the quantity in brackets. We also note that

even though we have considered transitions to a continuum of states, it has

turned out that only transitions to states close in energy play an important

role. In that sense, tunneling resonant: the electron can tunnel from a state

with energy Ei to states of the continuum with the same, or very nearly the

same, energy.

We saw earlier that the added potential, V , was related to the possibility

to transition from the discrete state to the continuum of states. We now see

that the transition rate from the discrete state to the continuum depends on

the modulus squared of Vin. What determines the magnitude of these matrix

elements? In the previous section, on tunneling between discrete states, we

discussed the origin of the hopping constant, t, which connected two states,

ψL and ψR. The close analogy allows us to think of Vin as a hopping constant

connecting state ψi to state φn, and following the same reasoning as described
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above for the case of tunneling between discrete states, we can say that the

value of Vin is determined primarily by the overlap between the wavefunctions

ψi and φn.

This gives a sensible rate for an electron in a discrete state to tunnel to

the energy levels of a continuum of states. The linear transition is a result of

the existence of a continuum of final states; while the transition to any one

of these final states is actually quadratic in time for small times, the total

transition probability turns out to be linear after we take a sum over all the

possible final states.

The description of tunneling from a continuum to a continuum is essentially

no different from this one. We simply consider the initial state, ψi to be one

of the continuum states of one electrode, and the states φn again represent the

continuum states of the other electrode. The total transition rate from one

electrode to the other then requires an additional sum (or integral) over the

states of the “initial” electrode.

This description of tunneling is the basis of the first successful theory of

tunneling in STM, put forward by Tersoff and Hamann,15 which will be de-

scribed in more detail in the next chapter.
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2 Scanning Tunneling Microscopy and

the Silicon Surface

2.1 Scanning Tunneling Microscopy

The Scanning Tunneling Microscope (STM) belongs to the family of Scanned

Probe Microscopy (SPM). Other members of the SPM family are Atomic Force

Microscopy (AFM) and its many variations, which all measure the forces of in-

teraction between the tip and sample, Scanning Near-field Optical Microscopy

(SNOM), and many others, most of which came after the invention of STM.

What all SPM techniques have in common is that a probe is scanned over a

sample in order acquire spatially-resolved information about the interaction

between the probe and the sample. The spatial resolution of the technique is

determined by the nature of this interaction and the sharpness of the probe.

The advantage of STM is that it relies on the rapidly exponentially decay-

ing tunneling current through vacuum in order to probe samples. This is the

feature of STM that allows it to achieve atomic resolution routinely.

The STM was invented in 1982 by Binnig and Rohrer,16 who had first

demonstrated the ability to form a controllable tunneling gap through vac-

uum,17 a necessary prerequisite for the STM. Figure 2.1 shows the first re-

ported atomically resolved STM image, which the authors described as “our

shining example of an STM graph.” It shows two unit cells of the 7× 7 recon-

struction of the Si(111) surface.

In the years that followed its invention, the field of STM exploded, as

the technique was applied to a variety of metallic and semiconducting sur-
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Figure 2.1: First reported STM topographical image showing two

unit cells of the Si(111) 7 × 7 surface. Reprinted figure with per-

mission from Binnig et al., Physical Review Letters 50, 120, 1983.18

Copyright (1983) by the American Physical Society.

faces, providing real-space images of atomic surface reconstructions for the

first time.18–23 The field soon grew further to include the study of surface

chemistry24,25 and atomic scale manipulations.26 In 1986, Binnig and Rohrer

were awarded the Nobel prize for their design of the STM.

2.1.1 Basic Principles of STM

The simplest description of the STM is a sharp metallic tip scanning a con-

ducting surface, as shown in Figure 2.2. A bias, VS, is applied between the tip

and sample, and a tunneling current, IT , is measured when the tip is within

. 1 nm. By convention, the bias of the sample relative to the tip is used,

no matter which of the two is grounded in reality. Sometimes, sample bias is

simply called “bias” in the context of STM, and denoted V . Tunneling current

is maintained constant by the use of a feedback loop, which causes the tip to

move toward the sample whenever current is too low, and move away from
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the sample whenever current is too high. Typical sample biases can range

from tens of mV for metallic samples, to ∼ 2 V for semiconducting samples.

Typical tunneling currents may vary from 10 pA to 1 nA.

Images are acquired in STM by raster scanning a tip over a region of a

surface. As the tip moves along a line over the surface, the feedback loop

maintains a constant tunneling current, and therefore a (roughly) constant

tip-sample separation, as shown in Figure 2.2. In practice, the measured to-

pography is convolved with information about the sample DOS, as will be

discussed in the next section. As the tip moves along a line, for example in the

x-direction, the tip height, z, is measured. The tip is then moved a small dis-

tance in the perpendicular direction, y in this example, and another line along

x is measured. This is repeated until a (typically square) image is acquired.

The first reported STM image from Binnig and Rohrer illustrates this nicely,

since the individual line profiles making up the topographic image are directly

used to show the topography, as seen in Figure 2.1. This type of depiction

of topographic maps is no longer in common use. Instead, it is customary to

show STM images as a colormap of topography. In black and white images,

brightness corresponds to protrusions and darkness to depressions.

The schematic in Figure 2.2 shows three piezoelectric elements, labeled x, y,

and z. Such materials experience a change in their physical length in response

to an applied bias. The position of the tip in each dimension can be controlled

by applying different biases to each of these piezo elements. The position of

the tip, relative to its centered position, where all piezo elements are unbiased,

is then proportional to the applied bias on each piezo. Typically, biases of up

to hundreds of volts can be applied to the piezo elements, and their total range

is typically one or several microns. It is often necessary to move the tip much

further than this range, for instance to move to a different area of the sample,

or to approach the sample surface from a distance on the order of 1 mm. Such

coarse positioning is accomplished by a separate mechanism, often stick-slip

motors, which can move through a range on the order of centimetres in steps

on the order of 100 nm.

All STMs are extremely sensitive to mechanical noise, since tip position
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Figure 2.2: Schematic representation of an STM. The left panel

zoom-in shows that an atomically sharp tip traces the atomic cor-

rugations of the sample, z(x, y), by maintaining a constant tunnel-

ing current, IT . The right panel shows that the STM tip scans the

surface using piezoelectric elements, labeled x, y, and z, to con-

trol its position on the atomic scale, with a potential VS applied

between the tip and sample.

needs to be maintained within a fraction of a typical bond length. Any signifi-

cant vibration of the tip relative to the sample results in an uncontrolled crash

of the sharp apex into the sample, often putting an end to the day’s research.

Care needs to be taken to isolate the STM from all mechanical noise, starting

from the room in which the STM is located, ideally on the lowest floor of a

building and even with its own foundation, and proceeding through various

other means of isolation, possibly including air-legs or active isolators to float

the entire microscope, springs to hang the scanner and sample, and eddy-

current damping. And because very small currents are always being measured

in STM, equal care needs to be taken to eliminate all sources of electronic

noise.

While it is possible to do STM in air or other environments, the vast

majority of work, and many of the most exciting results, have come from

STM done in Ultra-High Vacuum (UHV). UHV corresponds to pressures below

∼ 10−9 Torr. Such pressures are required to ensure that the atomic structure

of surfaces can be studied in the absence of interfering atoms and molecules
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from the environment. Even at pressures as low as 10−8 Torr, a typical surface

atom is struck by a molecule from the environment on the order of once per

minute. This leads to a fairly high chance of sample contamination as well

as an increased chance of tip changes, as molecules can react with the tip. It

also leads to the possibility of artifacts in measurement, due, for instance, to

physisorbed molecules. Ideally, experiments are performed at pressures around

10−10 Torr or below.

2.1.2 Theory of STM

The basic theory of STM was developed by Tersoff and Hamann,15 and is

based on Bardeen’s earlier approach to tunneling which he developed to de-

scribe tunneling between superconductors.27 We will take this approach as the

basis for the presentation in this section. It applies Fermi’s Golden Rule to

transitions from tip to sample, or vice versa. Transitions from a state µ of the

tip (scanned probe) to the state ν of the sample are considered to take place

at the rate

Γµν =
2π

~2
|Mµν |2, (2.1)

where Mµν is usually called the “matrix element” connecting state µ to state

ν — a remarkably uninformative nomenclature. Comparing this expression to

Equation 1.54, we see that the matrix element Mµν is the matrix element of

the perturbing potential, V , which was added to the known Hamiltonian, H0,

in order to account for hybridization between states of the tip and sample,

and enabling transfer of electrons. The “matrix element” is therefore a small

matrix element in the Hamiltonian, related to the overlap of the wavefunctions

ψµ and ψν .

Bardeen showed that the matrix element could be expressed as

Mµν =
~2

2m

∫
dS ·

(
ψ∗µ∇ψν − ψν∇ψ∗µ

)
, (2.2)

where the surface integral is over any surface within the tunneling barrier

region separating the tip from the sample. This form provides a means of

directly calculating the value of Mµν whenever the wavefunctions of the tip
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and sample are explicitly known. However, some general features of the matrix

element can be worked out using the argument outlined in Section 1.4.3. In

particular, we expect wavefunctions in the vacuum barrier to decay with an

exponential constant, κ =
√

2mEi/~2. We can then expect, since the matrix

element Mµν is a function of wavefunction overlap, that

|Mµν | ∝ e−κs, (2.3)

where s is the separation between tip and sample. Since the biases used in

STM are usually small in comparison to the work functions, we expectM to be

a relatively slowly varying function of energy. Aside from the dependence on

energy, the exponential dependence on distance makes it clear that the STM

is extremely sensitive to surface topography.

The total current is given by a sum over all the transition rates from all the

states of the probe to all the states of the sample. It also needs to take into

account the occupations of these states. That is, electrons can only tunnel from

a state µ to a state ν if µ is occupied and ν is unoccupied. The probability

of µ being occupied is given by the Fermi function, f(Eµ;Etip
F ), where Etip

F

is the Fermi level of the tip∗. Likewise, the probability of the state ν being

unoccupied is [1 − f(Eν ;E
sam
F )]. This leads to the following expression for

tunneling from tip to sample:

I =
2πe

~
∑
µ,ν

f(Eµ;Etip
F )
[
1− f(Eν ;E

sam
F )

]
|Mµν |2δ(Eµ − Eν), (2.4)

where the delta function accounts for the fact that tunneling is elastic.

The sums over states of the tip and sample can be converted to an integral

over energies, making use of the density of states per unit energy in both tip

and sample. The resulting equation for current is

I =
2πe

~

∫
dEf(E;Etip

F )
[
1− f(E;Esam

F )
]
|Mµν(E)|2ρtip(E)ρsam(E), (2.5)

∗In the case of semiconductors and insulators, the Fermi level may not be well defined.
When the term “Fermi level” is used in such cases, it is to be understood as signifying
a chemical potential, since Fermi levels and chemical potentials are used interchangeably
throughout this thesis.
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or, assuming low temperature, so that the Fermi functions can be replaced by

step functions, one can write more simply,

I =
2πe

~

∫ Etip
F

Esam
F

dE|Mµν(E)|2ρtip(E)ρsam(E), (2.6)

where the matrix elements connecting states of the tip and sample are now

assumed to be a function only of energy.

In general, since we want to study the properties of the sample, we try (or

hope) to use a tip with a nearly flat density of states near its Fermi level (this

makes metal tips more suitable than semiconducting tips). In an ideal case,

the density of states of the tip is constant over the range of energies of interest.

In that case, we can further simplify the expression for the current to

I =
2πe

~
ρtip

∫ Esam
F +eV

Esam
F

dE|Mµν(E)|2ρsam(E). (2.7)

This shows that the tunneling current can be considered as coming from an

integral from Fermi level to Fermi level, of the density of states, weighted by

the matrix element. It also has the consequence that the sample density of

states is immediately accessible, since the derivative with respect to sample

bias is

dI

dV
=

2πe

~
ρtip|Mµν(E

sam
F + eV )|2ρsam(Esam

F + eV )

∝ ρsam(Esam
F + eV ). (2.8)

Sometimes the density of states is taken instead to be proportional to the

differential conductivity, dI/dV , normalized by the total conductivity, I/V .

In general, this normalization is only a small correction, but creates some

cancellation of terms, and accounts to some extent for the energy-dependence

of Mµν .

One assumption we have made in this line of argument, which may be ques-

tioned at points in this thesis, is the use of Fermi-Dirac statistics to describe

the occupation of energy levels of the tip and sample. For mid-gap states and
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at low temperatures, it is possible for states in a semiconducting sample to

be out of equilibrium with respect to their own Fermi level because of the

injection or extraction of electrons from or to the STM tip. We will explore

this issue more in several places throughout this thesis.

2.1.3 STM of Semiconductors

STM of semiconductors introduces some peculiarities that require special con-

sideration. Figure 2.3 shows a band diagram depicting a tip tunnel-coupled to

a semiconductor sample. One notices that unlike in the case of STM of metals,

the potential difference between tip and sample does not only drop across the

vacuum barrier, but continues to have an effect deep into the sample. This is

because semiconductors have a much smaller density of free electrons to screen

charge, compared to metals. While in a metal, electrons quickly rush to (or

from) the surface to exclude any field from penetrating, semiconductors may

have few or no free carriers to do this. The result is that most of the potential

difference typically drops across the vacuum barrier, but there is still a residual

potential drop in the near-surface region of the semiconductor.

The potential drop near the surface of the semiconductor is called Tip-

Induced Band Bending (TIBB), since the spatially changing electrostatic po-

tential shifts the sample’s energy levels up or down. The degree of TIBB

depends on the mismatch between the vacuum level, Evac, in the metal and

the vacuum level deep inside the sample. The depth of the TIBB in the sample

depends on the screening length in the sample, which itself is determined by

doping density and carrier type — screening of upward band bending may be

different from screening of downward band bending in a given sample.28

The defining feature of the semiconducting sample is its bandgap at the

Fermi level — an energy window with zero density of states. Considering Equa-

tion 2.7, it is clear that in a range of energies corresponding to the bandgap,

we can expect zero current. Equations aside, this is clear since in that range of

energies, there are no sample states that can accept a tunneling electron from

the tip, nor supply one to it. This makes the bandgap a dangerous place for

STM. Since tip height in STM is adjusted to ensure constant tunneling cur-
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Figure 2.3: Band diagram illustrating STM of a semiconductor,

and indicating many of the important variables.

rent, the inability of the sample to provide any tunneling current will result

in an uncontrolled approach of the STM tip towards the sample, as it seeks to

maintain the desired non-zero current. Since this current never turns on, the

approach of the tip can continue until the tip has been forced into the sample,

ruining its once sharp apex in the process. This is the dreaded “tip crash.”

It is important to note that vacuum levels may be misaligned even at 0 V.

The condition VS = 0 V states that the Fermi levels in the tip and samples

are aligned, Etip
F = ESi

F . However, different samples can have different work

functions, φ, and if φtip 6= φSi then there can be a misalignment in vacuum

levels between tip and sample even at 0 V. The difference between the work

functions at two surfaces is called the Contact Potential Difference (CPD).

2.1.4 The Origin of the Contact Potential Difference

The origin of the differing work functions in different materials is their differ-

ing ability to bind electrons. We can imagine two materials, A and B, both

neutral so that the total number of electrons is equal to the total number of
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protons in each, and initially not in contact with one another. For a variety of

reasons (orbital structure, lattice configuration, etc.), material A might bind

its electrons more efficiently than does B, so that they lie deeper below the

vacuum level; the work function of A will be greater than that of B. As long

as both materials remain neutral (and assuming charge does not re-arrange

itself within each material, for instance preferring certain facets of the mate-

rial’s surface), the vacuum level is equal everywhere, within both materials

and outside them as well.

Note that with both materials neutral, the Fermi levels are necessarily

misaligned, with A’s being lower. Now if the two materials are brought into

contact, since A bound its electrons more deeply, it may have unoccupied levels

which are lower in energy than some occupied levels of B. Electrons will be

transferred from B to A. The increase in the electron density in A will shift its

bands upward, along with its Fermi level and its vacuum level. Likewise, these

same levels in B will be shifted downward, until the Fermi levels of A and B

are aligned. At the end of this process, the potential difference between the

two materials is zero (since their Fermi levels are aligned), but there is now

a misalignment in their vacuum levels. The magnitude of the misalignment

in the vacuum levels is precisely the CPD. In order to re-align the vacuum

levels between the two materials, a potential difference must be applied, equal

in magnitude to the CPD — a state of affairs referred to as “the flat band

condition.”

It is strange, but true, that two tunnel coupled materials at 0 V may

experience a fairly large electric field across the vacuum barrier, and despite

this, no net current flows from one material to the other. Tunneling current is

determined by differences in Fermi levels.

2.1.5 Quantum Effects

There are other effects, peculiar to STM of semiconductors, which come from

quantum effects. In general, we consider bands to “bend” rigidly. That is, the

energy level structure of the material stays constant, aside from a rigid shift

upward or downward depending on the electrostatic potential at each location.
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This is a powerful and very broadly applicable way to think of semiconductors.

However, one might question just how far one can take this. In the case of

TIBB, bands may bend by an amount on the order of one eV over a distance

of a few nanometers — approaching the atomic scale. One might well suspect

that the assumption of rigid shifting of energy levels might break down, and

indeed it does in some cases.

Figure 2.4 illustrates two quantum effects that may need to be taken into

account in some instances. Bands are shown as bending abruptly downward

at the surface.

The first quantum effect, in the CB, is the quantization of levels. If bands

shifted rigidly, the lowered CB levels near the surface would have a large

density of states. However, the lowered CB instead acts as a potential well, able

to support only discrete quantized bound states. The shape of the confining

potential is similar to a half-lens, roughly circular in the plane of the surface,

under the tip, and extending only a shallow depth into the semiconductor.

A second quantum effect is the evanescent tails of wavefunctions from the

VB, reaching toward the surface. This effect is a simple consequence of the

ability of wavefunctions to extend into classically forbidden regions, as de-

scribed above. The larger the barrier separating the wavefunction from the

surface, the smaller its evanescent tail at the surface, as depicted by the two

wavefunctions shown in the VB in Figure 2.4. Of course, the symmetrical

effects are equally possible when the bias is opposite, where the evanescent

tails extend from the CB, and likewise, near-surface states in the VB may be

quantized.

2.2 Silicon

2.2.1 Bulk Silicon

Bulk silicon has a diamond structure in which every atom is tetrahedrally

bonded to four nearest-neighbour silicon atoms, as shown in Figure 2.5. We

have labelled the top four corners of the unit cell with the cardinal directions.

Of course, they should instead be described using the unit vectors of the unit
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Figure 2.4: Band diagram of a semiconductor experiencing down-

ward band bending near its surface. Two quantum effects are vis-

ible: discretization of confined states in the near surface region of

the CB, and evanescent tails of the extended states of the VB de-

caying toward the surface. This figure is based on a figure from.29

cell, but since it can be easy to lose track of the meanings of directions like

[1̄10], I will use the cardinal directions for convenience in parts of this section.

The diamond structure is Face-Centred Cubic (FCC) with a basis. In

Figure 2.5, the silicon atoms belonging to each of the two FCC lattices are

coloured in slightly different shades of grey. The tetrahedral bonds connect

each atom with the four neighbouring atoms of the other sublattice. The light

grey lattice is given by the dark grey one translated by a vector equal to one

quarter the distance across the unit cell diagonally, from the “bottom West”

corner to the opposite, “top East” corner. The bond length is then a
√

3/4,

where a is the lattice constant (sidelength of the unit cell). This works out to

a bond length of 2.352 Å.

A crystal consists of a large number of unit cells repeated periodically, as

shown in Figure 2.6. Bond lengths are equal for every Si-Si bond throughout

the crystal (except in the vicinity of defects or surfaces). At first sight, it might
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Figure 2.5: The conventional unit cell of silicon. The crystal struc-

ture is FCC with a basis. Silicon atoms from each sublattice are

colored in different shades of grey. The cardinal directions are used

as shorthands for the indicated lattice directions. The lattice con-

stant at room temperature is 5.431 Å.
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Figure 2.6: The silicon lattice made up of many unit cells. Only

surface atoms are shown, and the three visible surfaces are the

(100), (010), and (001) surfaces.

seem that this arrangement of atoms should lead to a single band without gaps,

like in the case of the simple one dimensional chain described using the tight-

binding model above, where atoms were equally spaced. This turns out to

not be the case. In three dimensions (actually, for dimensions greater than

one), it is possible to have a pairing structure even with a single bond length

throughout the crystal, because of the spatial arrangement of atoms. In this

case, the smallest possible unit cell contains two atoms, not one. In order to
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conceptualize a tight-binding approach, one would first have to consider the

eigenstates of the unit cell, as was shown for the dimerized one-dimensional

chain in Section 1.3.3. Like in that case, this leads to a splitting in the resulting

bands for silicon, which opens a gap between occupied and unoccupied states,

making silicon a semiconductor.

In order to calculate more realistic band structures, one must include all of

the orbitals of the individual atoms, which can give rise to several bands, as

well as hybridization between the bands originating from different orbitals. In

practice, band structures are calculated with more sophisticated methods such

as the Orthogonalized Plane Wave (OPW) method30 or the pseudopotential

method.31 Figure 2.7 shows the band structure of silicon as calculated by F.

Herman in 1955 using the OPW method.32 The silicon band structure has an

indirect band gap of 1.12 eV at room temperature, which goes to 1.17 eV near

0 K.

Figure 2.7: Band structure of silicon as a function of wavevector.

Reprinted figure with permission from F. Herman, Procedings of

the IRE 43, 1703, 1955.32 Copyright (1955) IEEE.
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2.2.2 The Silicon (100) 2×1 Surface and Dangling Bonds

The three surfaces of the crystal shown in Figure 2.6 are the (100), (010), and

(001), which are all identical by symmetry. Throughout this thesis, we will

generally refer to it as the (100) surface, although it is sometimes also called the

(001) surface. This surface is of tremendous technological relevance. It is the

standard surface used in CMOS fabrication, which makes the semiconductor

devices in nearly all high-tech products. Silicon, and this surface in particular,

is the basis of the semiconductor industry.

In reality, unreconstructed surfaces like this one are often unstable, as this

particular surface certainly is. We can see why this is by considering more

closely the bonding structure for the top layers of atoms of the (001) surface.

Figure 2.8a shows the unreconstructed surface atoms as well as the next layer

of atoms below. Each surface atom is bonded to two silicon atoms below, one

to the South and one to the North, leading to a zigzag of bonds running from

South-to-North (along the [1̄10] direction). This zigzag of bonds is already

visible in the unit cell in Figure 2.5. One can also infer from the unit cell

that the distance between neighbouring atoms on the unreconstructed (100)

surface is a/
√

2 = 3.84 Å.

The instability of the surface comes from the fact that the surface atoms are

missing their bonding partners above. As a result, two unbonded sp3 orbitals

extend upward and to the West, and upward and to the East, in keeping

with the tetrahedral bonding tendency of silicon. The unbonded orbitals are

called Dangling Bonds (DBs), and are shown as blue lobes in Figure 2.8. Each

dangling bond on this surface can lower its energy by forming a chemical bond.

Clearly there is no shortage of potential bonding partners on this surface, and

while the nearest dangling bond on the surface is further away than the normal

nearest neighbour distance, the lattice can be strained to bring pairs of surface

atoms closer together, allowing new bonds to form. The surface reconstructs

to form rows of pairs of surface atoms, as shown in Figure 2.8b. The resulting

reconstructed surface is the clean Si(100)-2 × 1 surface, and it has precisely

one dangling bond per surface atom.

The dangling bonds that occur at a surface can be removed by reacting the
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Figure 2.8: (a) The unreconstructed Si(100) surface. (b) The re-

constructed Si(100)-2 × 1 surface. (c) The hydrogen-terminated

surface, H-Si(100)-2× 1.

surface with a molecule or atom. Hydrogen radicals (that is, H, as opposed

to H2) are ideal capping elements, since they are extremely reactive, and only

have one unpaired valence electron, and thus are satisfied with only one chem-

ical bond. In practice, Hydrogen-termination of the (100) silicon surface is

relatively straightforwardly accomplished by exposure to hydrogen radicals at

a temperature of around 330oC. Each dangling bond reacts with a hydrogen

atom, so that the resulting surface consists of a 2 × 1 reconstructed surface

with a single hydrogen atom capping each surface silicon atom, written H-

Si(100) 2× 1 and depicted in Figure 2.8c. The pairs of atoms on this surface

are known as dimers, and the rows formed by these pairs are known as dimer

rows. We can schematically represent this surface with diagrams like the one

shown in Figure 2.9b.

We can also note that if we were to repeat the same argument as above, but

considering the surface atoms to be from the lighter-coloured sublattice, for

instance by considering the atoms a single atomic layer lower, then we would

have to take into account that their bonding structure, while also tetrahedral,

is rotated by 90◦ relative to the darker-coloured sublattice. It follows from

this that the surface reconstruction would then have to be rotated by 90◦.

Indeed, atomically resolved images of this surface show that the dimer rows on

adjacent terraces (separated by a single atomic step) are always perpendicular,

as shown, for instance, in Figure 2.10.
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Figure 2.9: (a) The H-Si(100)-2× 1 surface, and (b) its schematic

representation. The blue lobe/circle represents a dangling bond,

the orange dashed line encircles a single dimer, and the red dashed

line encircles a dimer row.

Isolated DBs will exist on this surface wherever a single hydrogen atom is

missing from an otherwise hydrogen-terminated surface, as shown in Figure

2.9a. The presence of an isolated DB on the H-Si(100) 2×1 surface introduces a
localized state with an associated mid-gap energy level, much like the unpaired

atom described at the end of Section 1.3.3. Like in that case, the localization

of the DB orbital is a result of the fact that the hydrogen-terminated silicon

crystal offers no resonant energy levels with which the DB energy level can

hybridize. This opens great opportunities for engineering the electronic struc-

ture and wavefunctions of DB structures and devices; these can be fabricated

with atomic control of positions, and, in the window of energies corresponding

to the silicon bandgap, the substrate is in some sense invisible — it acts as a

“solid state vacuum.”

2.3 The Dangling Bond Orbital

We can describe the wavefunction of an isolated DB using a Slater-Type Or-

bital (STO), which has the two-lobe form characteristic of p-orbitals,

ψDB(r, θ) = Nze−ζ(z)r, (2.9)
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Figure 2.10: 80 nm× 80 nm image of the H-Si(100)-2× 1 surface,

showing seven atomic terraces separated by single atomic steps.

Bright localized protrusions are DBs. IT = 80 pA, VS = −2.0 V.

where ζ is an exponential decay constant and N is a normalization constant.

This orbital is different from normal STOs in the fact that the decay con-

stant, ζ, has a spatial dependence, reflecting the fact that the orbital occurs

at a surface and sees two very different potential landscapes toward vacuum

and toward bulk. In particular, we generally expect the decay constant of a

wavefunction in a barrier to have the value
√

2m(V − E)/~2, as described in

Section 1.4, where V is the energy of the barrier and E is the energy of the

orbital. The quantity V −E can be called the ionization potential, Wi. Since

the DB is at the interface between silicon and vacuum, it sees a barrier height
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equal to the vacuum level (on the order of 5 eV above the DB energy level)

on the vacuum side, and equal to the CB edge (on the order of 0.5 eV above

the DB energy level) on the bulk side. We can therefore assume a functional

form for the ionization potential which transitions from the bulk value at large

negative values of z to the value in vacuum for large positive values of z,

Wi(z) = Wbulk +
1

2
(Wvac −Wbulk)[tanh(z/w) + 1], (2.10)

which transitions from Wbulk to Wvac over a width w centred at the surface.

The decay constant is then simply

ζ(z) =

√
2mWi(z)

~2
, (2.11)

which can easily be expressed in polar coordinates and incorporated it into

Equation 2.9.

The orbital described by Equation 2.9 can be used to describe both the

singly occupied (neutral) orbital as well as the doubly occupied (negative)

orbital, with the difference that the higher energy of the doubly occupied

orbital reduces the ionization potential, Wi(z), everywhere, which causes the

DB orbital to decay less rapidly. Figure 2.11 shows the neutral and negative

DB orbitals.

This description of the DB orbital is useful because it can be described with

a simple analytical formula. It also accurately describes the exponential tails

of the wavefunction toward the vacuum and toward the bulk as a function

of the DB energy level, as well as the relative weights of the lobes in bulk

and in vacuum. However, some assumptions are made which we know to be

untrue. The STO orbital used makes the assumption of a p-orbital, when in

fact we expect that the orbital will have a significant s-component. More to

the point, a realistic calculation would show corrugation of the wavefunction

with a structure related to the lattice. The STO, at best, describes an envelope

for the realistic wavefunction. Finally, the STO has an axial symmetry with

respect to rotations about the z-axis, which reflects the assumed symmetry

in the potential energy landscape in the vicinity of the DB. In fact, we know
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that no such symmetry exists because of the bonding configuration of the

host atoms and the reconstruction of the surface, both of which break the

rotational symmetry. Taking this into account, the only expected symmetry

is a reflection symmetry through the plane to which the direction of the dimer

rows is normal. Keeping all this in mind, the STO is a useful computational

tool which captures many of the important features.

c

a b

Figure 2.11: (a) neutral and (b) negative DB orbitals, showing iso-

density surfaces of the DB calculated according to Equation 2.9,

both plotted with the same color scale. The negative DB is ex-

panded relative to the neutral one. (c) Cross sections of the neutral

and negative orbitals along the z-axis. The energy of the neutral

DB level is set at 0.35 eV above the VB edge, and the charging

energy, U , is set at 0.3 eV. While this is an underestimate for the

charging energy, it is used in order to be able to plot both orbitals

on the same color scale.
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2.4 DB Charge States

2.4.1 Charge States of the DB

As mentioned above, Dangling Bonds (DBs) introduce a single surface state

whose energy level is within the bandgap. DBs are interesting entities from a

number of different perspectives, many of which derive from the fact that they

can be variably occupied. Being a single mid-gap energy level, they offer the

possibility of being in one of three occupations: completely unoccupied, singly

occupied (with either spin state), and doubly occupied (with one electron of

each spin state). Pauli exclusion forbids more.

The silicon atom which hosts a DB has three of its sp3 orbitals involved in

chemical bonds, along with the associated valence electrons†. The remaining

sp3 orbital constitutes the DB. If the fourth valence electron remains in that

orbital, then the silicon atom’s nuclear charge will be compensated, and the

DB will be neutral overall. If a second electron occupies the orbital, there

will be a diffuse negative charge associated with the doubly occupied orbital.

It is also possible to render the orbital completely unoccupied, in which case

there is no electron cloud to compensate the nuclear charge so that the silicon

atom behaves as a point-like positive charge, and we say that the DB is in

a positively charged state. We refer to these three scenarios as the negative,

neutral, and positive charge states, denoted DB−, DBo, and DB+.

So far we have talked about a DB energy level. This is somewhat mislead-

ing, since in reality the DB energy level is not fixed. Firstly, it can be shifted

up or down by an electrostatic potential. Secondly, it can shift depending on

its own occupation: the energy for the first electron to occupy the dangling

bond is lower than the energy for an additional electron to occupy it. This is

primarily because when the second electron is introduced an additional energy

price is paid as a result of the repulsion between the two electrons. This is

sometimes called the charging energy, U .
†In reality, the electrons which participate in the bond become delocalized across the

whole crystal, but since all electrons involved in bonding are also delocalized, the overall
charge density is usually not changed (for covalent bonds).
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Density Functional Theory (DFT) has been used to determine the energy

levels of the DB charge states, and places the neutral state, DBo, at 0.35 eV

and the negative state, DB−, at 0.85 eV above the Valence Band (VB)12,33

(Figure 4.1). Other studies have calculated the energy level of the positive

charge state, DB+. We will not discuss the energy level associated with the

positive charge state here, since it is not clear that it even has meaning. This

issue will be discussed further in the next section.

2.4.2 Charge States vs. Energy Levels

The energy level for the first and second electrons to occupy the DB are some-

times called transition levels, labeled +/0 and 0/− respectively. In this thesis,

I will sometimes use the simple terms neutral level and negative level instead,

as is common in the literature. The nomenclature of transition levels, how-

ever, has an advantage in that it avoids a confusion. When presented with a

neutral and a negative energy level, one is tempted to ask what the energy of

the positive charge state is. In my opinion, the only justified answer to this

question is that there is no energy level associated with the positive charge

state. The energy levels are associated with transitions between charge states,

and although there are three charge states, there are only two transition levels,

and therefore only two energy levels. This appears to be a point of disagree-

ment in the community, and since this view is not universally accepted,1,34 I

will elaborate these thoughts presently.

When we talk about energy levels or draw energy level diagrams in the

context of solid state physics, we are talking about electronic energy levels.

We make the approximation that the Schrödinger equation for electrons can

be solved with the degrees of freedom of the nuclei treated as parameters

(the Born-Oppenheimer aproximation). From that point on, whether we are

discussing the hydrogen atom or a many-body wavefunction, the energy levels

that we calculate, measure, or discuss, are electronic energy levels. In short,

there are two energy levels of the DB because there is the energy of a single

electron, and then there is the energy of two electrons. The question of the

electronic energy of no electrons is ill-posed.
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We might ask if considering the notion of holes rather than electrons gives

some meaning to the notion of an energy level associated with the positive

charge state. After all, when a DB is neutral it has one bound hole. When it

becomes positive, it acquires an additional bound hole. Could the energy level

of the positive charge state be the binding energy of the second hole? We often

draw energy level diagrams for a DB as shown in Figure 2.12. Again, since we

draw a singly occupied level, and a doubly occupied level, it seems natural to

draw the unoccupied level. It may even seem necessary in order to preserve

the symmetry between electrons and holes. Again, this is a fallacy. The third

energy level, shown with question marks in Figure 2.12, in fact breaks the

symmetry. This is not apparent because of the conventions of nomenclature

and labelling that we use.

Consider the symmetry between electrons and holes. If the positive DB

level were real, we would expect an equivalence like: “The DB− level is to elec-

trons as the DB+level is to holes.” We can test this with a thought experiment.

Imagine a discrete, unoccupied, energy level near the surface, which we will

call the “test level.” We will imagine that it empties quickly into some empty

reservoir, so that it always stays unoccupied. Since it is near the surface,

tunneling between the DB and the test level is possible whenever a resonance

condition is met. Let us further imagine that we can tune its energy. Start-

ing from the top of the band gap, as we lower its energy, we first come into

resonance with the DB− level. Since the test level is unoccupied, an electron

can be transferred from the DB to the test level. As we lower the test level

further, we then come into resonance with the DBo level. Again, since the test

level is empty, the remaining electron that occupies the DB can be transferred

to the test level. As we continue to lower the test level, it eventually comes

into resonance with the hypothetical DB+ level. Since both the DB level and

the test level are already empty, nothing happens.

Now consider the symmetric case. We consider a test level that is filled,

and connected to a filled reservoir, and we will imagine raising its energy level

starting from the bottom of the bandgap. The first thing that happens is

that the test level comes into resonance with the imagined DB+ level. If the
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DBo +/0 

DB- 0/- 

DB+ ? ? 

CB 

VB 
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level 

(a)

DBo +/0 

DB- 0/- 

DB+ ? ? 

CB 

VB 
test 
level 

(b)

Figure 2.12: Band diagrams depicting a thought experiment. (a)

An empty test level, in contact with an empty reservoir and tunnel-

coupled to a DB, is swept from an energy at the top of the band

gap to an energy at the bottom, crossing the DB energy levels on

its way. (b) A filled test level is swept in the opposite direction,

from the bottom of the gap to the top.
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situation were symmetric, then one hole would be transferred from the DB

to the test level. In other words, one electron should be transferred from the

tip to the DB. But we know that this cannot happen, since an energy of DBo

is required for one electron to occupy the DB. So we immediately see that

the scheme that includes a DB+ level does not exhibit any symmetry between

electrons and holes. To continue the thought experiment, we will find that one

hole is transferred from the DB to the test level when the test level comes into

resonance with the DBo level (equivalently, an electron is transferred to the

DB). Subsequently, another hole is transferred from the DB to the tip when

the test level comes into resonance with the DB− level (equivalently, another

electron is transferred to the DB).

Note that whether the test level was filled or empty, nothing happened

when the test level came into resonance with the hypothetical DB+ level.

Clearly, in this picture, there is no symmetry between the DB+ and the DB−

level.

DBo 

+/0 

DB- 

0/- 

DB+ 

CB 

VB 

Figure 2.13: Band diagram indicating the correct way to think

of the transition levels of the DB. The energies referred to as the

neutral and negative energy levels are more accurately referred to

as the +/0 and 0/− transition levels respectively. The position of

the Fermi level with respect to these transition levels determines

the charge state of the DB.
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The symmetry is restored by removing the DB+ level altogether. This is

justified, since even in a thought experiment, it has no effect whatsoever on

the dynamics. In fact, to the best of my knowledge, there is no conceivable

experiment that could show a signature of a third energy level associated with

the positive charge state. At best, it seems to be a theoretical extrapolation

that does not represent a real energy level. In my opinion, the best way to

think of these energy levels is as thresholds or transition levels. When the

sample Fermi level is below both transition levels, the DB is positive, when it

is between the two, the DB is neutral, and when it is above both, the DB is

negative, as depicted in Figure 2.13 (assuming equilibrium statistics apply).

One final note might be necessary as a caution. Although we have drawn

the singly occupied DB energy level and the doubly occupied level, that is, the

+/0 and the 0/− transition levels, one above the other, we should not think of

this as an excited state. These two levels are really a single eigenstate, which

shifts depending on its occupation. If one electron already occupies the DB,

then the next electron does not see an energy level at the +/0 transition, but

instead only sees an energy level at the higher 0/− transition level.

2.4.3 More Transition Levels

The previous section described why one should think of two transition levels

associated with a single DB, rather than three levels, associated with the

three charge states. Here, I will describe a perspective that gives six transition

levels for a single DB. While these have not been observed experimentally, this

subtlety of the system may be important to understand future observations.

The arguments made so far have all relied on the Born-Oppenheimer ap-

proximation — that the lattice is effectively still on timescales associated with

electronic processes. This is undoubtedly true for most electronic processes,

however it will be shown later in this thesis that some electronic processes,

which determine the charge state of the DB, can be extremely slow, on the or-

der of milliseconds. This gives the lattice ample time to respond to the chang-

ing electronic configuration. This does not imply that the Born-Oppenheimer

approximation is invalid; the electrons almost certainly occupy eigenstates of
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the electronic wavefunction, with the lattice coordinates treated simply as pa-

rameters. Nonetheless, if each charge state gives rise to a unique configuration

of the lattice in the vicinity of the DB, then the transition levels of the DB

will be solutions of different Schrödinger equations depending on the charge

state of the DB.

The result of this is that our previous picture of two transition levels, as-

suming an absolutely fixed lattice, becomes altered, so that the two transition

levels are multiplied by the number of lattice configurations, as shown in the

following diagram:

(0/−)

(+/0)
→

(0/− ; Si−)

(+/0 ; Si−)

(0/− ; Sio)

(+/0 ; Sio)

(0/− ; Si+)

(+/0 ; Si+)

,

where Si+,0,− labels the configuration of the silicon lattice. This alters some-

what the picture of changes of charge state of the DB. Electrons can tunnel

into or out of the localized levels determined by the present configuration of

the lattice, thereby changing the charge state. After this tunneling event, the

lattice is temporarily in an energetically unfavourable configuration. Unless

the original charge state is rapidly restored‡, the lattice will subsequently relax

to a new configuration, altering the electronic energy levels nearby, including

the transition levels.

In practice, this distinction may not be significant in most experiments,

but such lattice deformations, coupled to the DB charge state, are consistently

reported in DFT calculations of DBs.1,34,35 Indeed, the relaxation of the lattice

after a change in charge state has been suggested as a mechanism to drastically

increase the rate of inelastic electronic recombination by coupling the electronic

transition to lattice phonons.36

‡Lattice relaxation times are on the order of picoseconds.
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2.4.4 Excited States

Earlier, we made an important distinction between transition levels and excited

states. It has been suggested that the DB may in fact have a localized excited

state, separate from the previously discussed transition levels. For the delta-

doped Si(111) surface, a rather unusual surface where each surface atom is

capped from below by a Boron acceptor, there is strong evidence for a bound

excited state at isolated DBs.37 This excited state was identified by Nguyen et

al. by a strong peak in dI/dV spectroscopy, and could be mapped in dI/dV

imaging, as shown in Figure 2.14. The authors noted that the excited state

was only accessible if one avoided significant (near one) occupation of the 0/−
transition level.

Figure 2.14: (a) dI/dV spectroscopy at three sites near a DB on the

Si(111)-(
√

3 ×
√

3)R30◦ surface. (b) Topographical map showing

the DB and labeling the three sites for spectroscopy. (c) and (d)

show dI/dV maps at bias voltages corresponding to the ground and

first excited states, respectively. Reprinted figure with permission

from Nguyen et al., Physical Review Letters 105, 226404, 2010.37

Copyright (2010) by the American Physical Society.

In the case of the H-Si(100) surface, there is less evidence for such a lo-

calized excited state. At present, the main argument for the existence of this

excited state is its inclusion in a model to describe the unusual topography
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of multi-DB structures in STM.34 The excited state is used to explain certain

protrusions in topography which do not correspond to the locations of any

DBs. These features in STM images of multi-DB structures will be discussed

in Chapter 6.
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3 Non-Equilibrium Imaging of DBs in

Empty States

In this chapter I will describe STM imaging of DBs on highly doped n-type

silicon surfaces, making use of the theoretical description given by Livadaru et

al. (2011).1

3.1 STM of Dangling Bonds

Typical empty and filled state images of a DB are shown in Figure 3.1a and

b. As a very general observation, we can say that DBs are dark in empty

states and bright in filled states. This is already well understood as the result

of a negative charge state for the DB. A negatively charged DB has a doubly

occupied energy level, and because of Pauli exclusion, it cannot accept any

more electrons from the STM tip. Since empty state imaging involves injection

of electrons from tip to sample, one expects that a fully occupied sample energy

level would not contribute anything to the observed tunneling current. In this

sense, the DB can be expected to be invisible to the STM in empty states,

and hence dark. By the same token, the doubly occupied DB should present a

good source of electrons to the STM tip in filled states, where the tip extracts

electrons from the surface. In this case, one expects the DB to contribute

significantly to the current in STM, and should therefore be visible. Indeed,

in filled states (at high biases — we will discuss other scenarios below), the

DB appears as a very bright protrusion.

This first interpretation, based solely on the occupation of the DB, seems

to agree well with the experiment at a glance. Clearly, however, there are
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a b

c d

Figure 3.1: (a) 10×10 nm2 empty state image of a DB. IT = 40 pA

and VS = 2.0 V. (b) 8×8 nm2 filled state image of a DB. IT = 40 pA

and VS = −2.0 V. (c-d) Cross-sections of the DB along the lines

shown in (a) and (b), respectively. Height, ∆z, is given relative to

the mean height in each image.
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further effects at play. In particular, it is clear from Figure 3.1a that the DB

has an extended effect on the silicon in its vicinity, as far as a few nanometers

away. Based on the argument of occupation, one can understand why the DB

orbital might not be seen in empty state imaging, but it is not clear from this

idea alone that the DB should have any effect on the current from the tip to

the bulk silicon levels. Evidently, in the region of the halo, not only is there no

extra current through the DB, but there is a suppression of current from the

STM tip to the extended states of the silicon sample. Indeed, these alterations

of the normal tunneling current in the vicinity of the DB are seen in the cross-

sections both in empty and filled states, as shown in Figure 3.1c and d. To

understand the influence of the DB on the tip-sample current at some lateral

separation, we need to consider the band bending that occurs because of the

localized charge of the DB.

3.1.1 The Dangling Bond as a Gate

In STM of Dangling Bonds, one of the most important effects of the DB is its

electrostatic effect on the surrounding silicon. The DB’s charge shifts nearby

energy levels in the silicon conduction band and valence band. Figures 3.2a-c

show the band diagram as a function of the lateral position, x, along the sur-

face, crossing the dangling bond for the positive, neutral, and negative charge

states respectively. The completely unoccupied DB has no bound electrons to

compensate the nuclear charge, so that it acts as a point-like positive charge.

The resulting electrostatic effect is a Coulomb potential modified by the di-

electric of silicon and screening from free carriers, bending bands downward

near the DB. The singly occupied DB is to a first approximation neutral, and

therefore has little or no effect on the surrounding energy levels. The doubly

occupied DB has an overall negative charge coming from the excess electron

density, which is spread out over the DB orbital. Far from the orbital, the

negatively charged DB’s electrostatic effect can again be approximated by a

modified Coulomb potential, bending nearby energy levels upward.

Figures 3.2d-f show the corresponding band diagrams as a function of z, the

direction normal to the surface, including the presence of an STM tip above the
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Figure 3.2: Band diagrams showing the band bending induced by

a charged DB. (a-c) Band bending as a function of lateral posi-

tion, crossing the DB, for the positive, neutral, and negative DB

charge states respectively. (d-f) Band bending as a function of

the surface-normal coordinate, z, showing the STM tip above the

surface, for the positive, neutral, and negative charge states, re-

spectively. TIBB is ignored in these diagrams.
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surface. These diagrams depict the effect of the DB on the tunneling current

from the tip to the sample, and ignore the tunneling current which passes

through the DB itself. It is clear that for empty state imaging, the tunneling

current is enhanced by a nearby positively charged DB (Figure 3.2d), since

the downward band bending in the sample opens the possibility to tunnel into

more states of the CB. Likewise, tunneling current is reduced near a negatively

charged DB (Figure 3.2f). Because of the approximately Coulombic nature of

the electrostatic effects in both cases, we expect that either the enhancement

of current due to a positively charged DB, or the suppression of current in the

case of the negatively charged DB, should become more pronounced closer to

the DB, decaying as lateral separation increases.

These considerations provide a good explanation for the extended effect of

the DB shown in Figure 3.1. The DB acts as a gate, increasing or decreas-

ing the current between the tip and the sample, even at considerable lateral

separation. A negatively charged DB explains a suppression of current near

the DB in empty state imaging, as seen in the halo region. Within the halo

region, also, the silicon appears to slope downward toward the DB, consis-

tent with Coulombic band bending. Furthermore, reversing the argument for

filled states, one would expect that a negatively charged DB would lead to

an enhancement of current. Indeed, the cross-section shown in Figure 3.1d

shows that the silicon appears to slope upward toward the DB in filled states,

consistent with an enhancement of current from a localized negative charge.

3.1.2 Bias Dependent Imaging of DBs

Initial descriptions of DBs on the silicon surface used the above arguments to

understand the topography of DBs in STM. The halo surrounding the DB in

empty states was correctly attributed to a Coulomb-like band bending near

the DB. This description is appealing in its simplicity: on the n-type samples

studied, one expects negatively charged DBs, and this interpretation says that

STM images are a simple map of the silicon surface with negatively charged

DBs. However, carefully considering high quality images of DBs shows that

there are fundamental elements missing from this simple description. The
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reality is that the STM is intimately involved in the charge dynamics at the

surface, and has a large, sometimes dominant, effect on the charge state of

these mid-gap states.

Figure 3.3 shows empty state images of the DB at biases from 2.0 V to

1.2 V. At VS = 2.0 V (Figure 3.3a) the DB halo is about 2 nm in diameter,

with a mirror symmetry about an axis perpendicular to the dimer rows, and

with a very sharp edge. The first problem with the description of the halo given

so far, is that the sharpness of the edge of the halo is not consistent with band

bending from a localized negative charge, which is expected to decay smoothly

as the distance to the DB increases. Instead, the suppression of current near

the DB gradually weakens as lateral separation increases, up to the edge of

the halo, at which point it suddenly and drastically stops — even reverses,

becoming an enhancement of current. The edge of the halo can be extremely

sharp, even much less than the apparent size of an atom, particularly for high

bias images.

As the bias is lowered, the halo expands continuously and its edge becomes

less well defined until it extends outside of the image frame in Figure 3.3i∗.

The bias dependence of the size of the halo poses another problem for the

simple picture of Coulombic band bending. In that picture, the halo is not

expected to have an edge at all, so it clearly cannot account for this systematic

change in the shape of the halo edge.

In all the images in Figure 3.3, the silicon slopes downward toward the DB

in the region inside the halo. Outside of this region, there is a brightening

of the silicon as the silicon appears to slope upward toward the DB, most

apparent at high biases. We sometimes refer to this as a “volcano effect,” since

the silicon rises initially and then drops suddenly into a “crater” (the halo).

This effect is also visible in the cross section in Figure 3.1c. The silicon surface

initially appears to rise as one approaches the DB from either side, and then
∗Note that at the lowest biases in Figure 3.3, with VS . 1.6 V, there is a region within

the halo, nearest to the DB, which is noticeably darker than the rest of the halo. This is
likely a simple DOS effect, resulting from the tip DOS, the silicon DOS, or their convolution.
As the tip approaches a negatively charged DB in empty states, the effective bias decreases
because of the DB-induced band bending. The decreasing effective bias can eventually
exclude sample or tip states from the tunneling process. This “halo within a halo” is not
observed for all tips.
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Figure 3.3: 8 nm × 8 nm images of a single DB at biases from

VS = +2.0 V to +1.2 V , and tunneling current of IT = 80 pA.

drops suddenly into the halo. The enhancement of current outside of the halo

in empty states again poses a challenge to the simple interpretation described

above, in which DBs are negative, and the STM passively images them. In

fact, from the description of the DB’s electrostatic effect given above, and

of its resulting gating effect on the silicon around it, one can see the that

enhancement of current outside of the halo is indicative of a positive charge

state for the DB. A positively charged DB is surprising on an n-type sample,

where the Fermi level is normally at the top of the band gap, ensuring that all

gap states are fully occupied.

Finally, the bias-dependent filled state imaging of DBs poses another prob-
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lem to such simplified interpretations of STM of DBs. Usually in filled states,

the DB appears as a bright protrusion, with the silicon around it sloping up-

ward, as in Figure 3.1b. In fact, at low biases, a halo can also be observed in

filled states, as shown by Labidi et al..38 While this halo is not shown here, it

is similar to the empty state halo, including the so-called volcano effect, with

the difference that there is often no protrusion at the atomic site in the center

of the halo. Such filled state halos again indicate unusual charge states for the

DB, which appears negative outside the halo, but positive inside the halo (the

opposite of the case we just described for empty states).

3.1.3 Effects of the Tip on the Sample

The previous section described several problems with the interpretation of

STM images of DBs as simple maps of the silicon surface in the presence of a

statically charged defect. One of the difficulties presented by the topography

in the vicinity of a DB is that the charge state required to explain the apparent

sloping of the silicon is different in different regions of the silicon. In particular,

the topography appears to indicate a negative charge state inside the DB halo,

as expected for n-type silicon, but it also indicates a positive charge state in

the region outside the halo, which is surprising on an n-type sample. The fact

that the charge state of the DB appears to depend sensitively on the position

of the STM means that we need to consider the effect of the STM tip on the

sample more closely.

The effect of the tip on the sample can be divided into two distinct com-

ponents:

(1) Tip-Induced Band Bending (TIBB), and

(2) Injection (in empty state imaging) or extraction (in filled state imaging)

of electrons to or from the sample.

These two effects can be considered separately, and in fact, they pull in oppo-

site directions. TIBB, in empty state imaging, tends to bend bands upward,

along with any localized energy levels, and in some cases even brings these

levels above the sample Fermi level. In that sense, its tendency is to empty
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nearby energy levels. Another way of saying this is to note that in empty state

imaging, the tip bias is negative relative to the sample. This means that the

tip will have an excess of electrons, relative to the sample, and these electrons

will tend to be more concentrated near its apex. The field effect of this sharp,

negatively charged tip at the surface tends to repel nearby electrons in the

sample. This “field” description is exactly equivalent to the idea of TIBB. On

the other hand, the second effect, injection of electrons from the tip (in empty

state imaging), directly places electrons into the energy levels of the sample at

the location of the tip. So the first effect tends to empty nearby energy levels,

and the second effect tends to fill them.

Usually in STM, it is safe to describe the occupation of levels in the sample

according to Fermi-Dirac statistics set by the sample Fermi level. In other

words, it is safe to neglect the second effect, that of injection or extraction

of electrons. This amounts to assuming that dynamics within the sample are

much faster than the transfer rates between the tip and sample. When that

condition is satisfied, any transfer which changes the occupation of energy

levels in the sample is quickly followed by a reconfiguration within the sample

to restore its equilibrium. This seems reasonable, given that the atoms of

the sample are tightly (chemically) bonded to other atoms of the sample. One

expects transfer of electrons to be fast within such a tight-knit lattice of atoms.

On the other hand, the tip is separated by a vacuum barrier, and wavefunctions

from the tip and sample usually have relatively small overlap only in the region

of their exponential tails.

Localized mid-gap states are the exception to the rule. They are separated

by a large energy from any nearby energy levels of the sample, and usually

the only resonant states are other mid-gap states, which are located at distant

defects, too far to be tunnel-coupled. This isolation, both in energy and in

space, can lead to a very slow approach to equilibrium within the sample.

As a result, the dynamics of electron transfer between tip and sample can

out-compete the dynamics within the sample, and the occupation of such

mid-gap levels is no longer dictated by equilibrium statistics. Instead, the

competition between filling and emptying rates determines the occupation of
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mid-gap states. The DB is a perfect example of such a mid-gap state, and

exhibits a wide range of unusual behaviours as a result.

Far from the tip apex, the DB is negatively charged, since the sample is

degenerately doped n-type. As the tip approaches the DB, however, the DB

transition levels are shifted upward, eventually bringing the 0/− transition

level above the sample Fermi level, and causing the equilibrium charge state

of the DB to be the neutral charge state. As the tip gets closer to the DB,

the +/0 transition level can be shifted above the sample Fermi level, causing

the equilibrium charge state to be the positive charge state. This brings both

transition levels above the sample Fermi level. So the DB under the influence

of the tip field — or equivalently, under the influence of TIBB — is posi-

tively charged in equilibrium. TIBB alone does not bring the sample out of

equilibrium. Rather, it shifts the energy levels of the sample, which changes

their alignment with respect to the sample Fermi level. The occupation of the

sample’s energy levels does change as a result of TIBB, but can continue to

obey the sample’s equilibrium statistics.

This description of TIBB with equilibrium occupation in the sample al-

ready describes a situation in which the DB charge state can change as a

function of the tip position. But the change in the DB charge state under

the influence of TIBB appears to be the opposite of what is observed in the

empty state image and cross-section of Figure 3.1a and c. That is, the pic-

ture of TIBB describes a transition from a negative charge state to a positive

charge state as the tip approaches the DB. The observed topography, however

is consistent with an abrupt transition in the opposite direction, from positive

to negative. TIBB explains why the signature of a positive DB is seen on an

n-type sample where the DB is expected to be negative, but understanding

the halo requires the second effect described above — that of the injection of

electrons from the tip to the sample, which creates the possibility for the DB

to have an occupation different from what its Fermi-Dirac statistics dictate.
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3.2 Occupation and Nonequilibrium Current

Deviation from equilibrium occurs when injection of electrons from the tip into

the DB becomes possible. In that case, the tip begins to fill the DB at the rate

ΓF, while the sample attempts to restore equilibrium by emptying the DB at a

rate ΓE. In general, both of these rates depend upon the charge state of the DB.

Obviously, ΓE must be zero for a DB which is already completely unoccupied,

and ΓF must be zero for a DB which is doubly occupied. This leaves two

filling rates and two emptying rates. For now, we will assume that there is a

single filling rate which applies to the transitions (+ → 0) and (0 → −), and

a single emptying rate which applies to the transitions (− → 0) and (0→ +).

I will show later that experiments justify this simplification, since it turns out

(surprisingly, perhaps) that the two emptying rates are similar as are the two

filling rates, in the cases where we can measure them.

If the DB orbital can accommodate only one electron, then it is easy to

show that the overall rate for electrons to traverse through the DB is

Γ1e− =
ΓEΓF

ΓE + ΓF

, (3.1)

and the non-equilibrium occupation of the orbital is

f ∗1e− =
ΓF

ΓE + ΓF

. (3.2)

The overall rate, Γ1e− , approaches the slower of the two rates when one rate

dominates, and is equal to one half of either rate when the two rates are equal.

The occupation increases slowly from 0 to 1 as the ΓF overtakes ΓE.

In reality, the orbital can accommodate two electrons, which changes the

overall rate to

Γ2e− =
Γ2

EΓF + ΓEΓ2
F

Γ2
E + ΓEΓF + Γ2

F

, (3.3)

which also approaches the slower of the two rates whenever one rate dominates,

but is equal to two thirds of either rate whenever the two rates are equal.

Before defining an occupation, we define the probabilities for the neutral and
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Figure 3.4: Comparison of a level which can only accommodate a

single electron with a level that can accommodate two electrons.

(a) Overall rates for current through a single level that can accom-

modate a single electron, or two electrons. (b) Non-equilibrium

occupation, f ∗1e− , of a one-electron level (which is the probability

for the level to be occupied), and probabilities, P+, Po, and P−,

for the unoccupied, singly occupied, and doubly occupied states

respectively of the two-electron level. (c) Twice the occupation of

the one-electron level, and the expectation value of the occupation

of the two-electron level, 〈n2e−〉.
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negative states (singly and doubly occupied) as

Po =
ΓEΓF

Γ2
E + ΓEΓF + Γ2

F

(3.4)

and

P− =
Γ2

F

Γ2
E + ΓEΓF + Γ2

F

. (3.5)

This allows us to define the expectation value of the DB’s occupation as

〈n2e−〉 = Po + 2P−, (3.6)

which transitions from 0 to 2 as the filling rate overtakes emptying.

Figure 3.4 compares the case where the DB can accommodate two electrons

with the case where it can accommodate only one. Outside of the region where

ΓF ≈ ΓE, the two treatments are very similar. Figure3.4b shows that for

ΓF < ΓE, the probability to be in the singly occupied state of the two-electron

level, Po, closely matches the non-equilibrium occupation of the one-electron

level, f ∗1e− . Likewise, for for ΓF > ΓE, the probability for the doubly occupied

state closely matches f ∗1e− . For this reason, we may use the simpler one-electron

equations in thinking about non-equilibrium dynamics, as we will do in parts

of this section. In particular, we will use the concept of a non-equilibrium

occupation, f ∗, with the understanding that twice this number (for the two

electrons) is roughly the expectation value of the DB orbital’s occupation, as

shown in Figure 3.4c.

The illustration in Figure 3.5 shows six processes which transfer electrons

between the tip, DB, and sample. The currents associated with each of these

six processes are given in Table 3.1. We will use upper case letters to label

currents, and lower case letters to refer to rates. For example, CSTM
n and IDB−Si

refer to currents, while cSTM
n and iDB−Si, refer to characteristic rates of electron

transfer in units of Hz. One gets from the characteristic rate to the associated

current by multiplying by the elementary charge, e, and in the case of currents

which involve the DB one must take into account its occupation as well. For

instance, the rate characterizing tunneling from the tip to the DB may be large

as a result of large overlap between the DB orbital and the tip wavefunctions,
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Figure 3.5: Schematic diagram illustrating the six dominant pro-

cesses that contribute to the transfer of electrons between the tip,

the DB, and the bulk silicon. (Figure from Livadaru et al. (2011).1)

but if the DB orbital is nearly full (f ∗ near unity), the resulting current may

still be small since the DB cannot accommodate any additional electrons.

1 Itip−Si → Direct tip-sample tunneling current.

2 CSTM
n → Inelastic capture of electrons from the STM.

3 Itip−DB → Direct tip-DB tunneling current.

4 IDB−Si → Elastic tunneling from DB to CB.

5 En → Thermal emission from DB to CB.

6 Cp → Inelastic recombination with a hole in the VB.

Table 3.1: Currents associated with each of the six dominant pro-

cesses of electron transfer illustrated in Figure 3.5.

3.3 Estimation of Rates

In this section we will briefly discuss theoretical treatments for quantitatively

modelling each of the processes shown in Figure 3.5 and listed in Table 3.1.

Three of these processes involve resonant tunneling: Itip−Si, Itip−DB, and IDB−Si.

These can be modelled following the formalism set out by Tersoff and Hamann,
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as described in Section 2.1.2. What needs to be specified then, are the partic-

ular wavefunctions of the tip, sample, and DB, involved in resonant tunneling.

The other three processes are inelastic. Two involve inelastic capture (CSTM
n

and Cp), which depends on the capture cross-section of the DB wavefunction,

and the other (En) involves thermal emission, which is of course dependent

on temperature in addition to the cross-section. A more detailed treatment of

each process can be found in Livadaru et al..1

3.3.1 Tip-sample Tunneling

Following the Teroff-Hamann description of STM, the wavefunction for the tip

can be expressed as

ψtip
E,K(r) =

1√
Ωtip

c0tζtipR0

exp
{
−ζtip(E)

[
|r− rtip| −R0

]}
ζtip(E)|r− rtip|

(3.7)

for |r− rtip| > R0, where rtip is the position of the tip center, R0 is the

tip radius, c0t is a dimensionless constant of the order of unity, ζtip(E) =√
2m(Evac − E)/~ is a decay constant, and Evac the vacuum level.

For the sample wavefunctions, we can assume a form based on a modified

“jellium model”,39

ψSi
E,K(r) = −cSi

kz exp
{
−
√
ζ2

Si +K2[z −H(R)]
}

√
ζ2

Si +K2 − ikz
exp(iK ·R), (3.8)

where E is the eigenenergy of the state. K = (kx, ky) is the surface par-

allel wavevector and R = (x, y) is the surface parallel position, and kz is

the surface normal wavevector. ζSi =
√

2m(Evac − E)/~ is a decay constant,

cSi = ic0s/
√

ΩSi with c0s a dimensionless constant of the order of unity, and

ΩSi is the sample volume. H(R) is the corrugation of the sample surface. The

density of states of the CB can be approximated within the effective mass

approximation as

gCB
Si (E) =

8π
√

2

~3
m3/2
e

√
E − ECB, (3.9)

where ECB is the energy of the CB edge. For energies less than ECB (but
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greater than EVB), the density of states is understood to be zero.

Since the tip-sample tunneling current is an integral over all energies from

the sample Fermi level to the tip Fermi level, it is clear this current can be

greatly affected by local band bending resulting from a charged DB. This band

bending is reflected in a shift in the sample density of states, as the CB edge

can be shifted upward or downward in energy, along with the entire sample

density of states.

3.3.2 Vicinity Electron Capture

The rate of capture for a deep-level state is proportional to the velocity of the

electron being captured,40

cn = σnvnn, (3.10)

where vn is the group velocity, and σn is the capture cross-section. In equi-

librium, at finite temperature, electrons sit at the bottom of the conduction

band, and their energy distribution is well described by Maxwell-Boltzmann

statistics, as long as ECB − ESi
F � kBT . This allows vn to be replaced with

vth, the thermal velocity. The thermal velocity is the average group veloc-

ity for all electrons in the conduction band. Assuming equilibrium statistics

and a parabolic conduction band minimum, the thermal velocity is given by

vth =
√

8kBT/πme ≈ 107 cm/s at room temperature, where me is the effective

mass.

However, in calculating the excess capture rate, cSTM
n , due to electrons

injected from the tip into the conduction band, we no longer have recourse to

Maxwell-Boltzmann statistics. We therefore need to use the group velocities

directly. For simplicity, we can make the assumption of an isotropic parabolic

band, so that Ek = ~2k2/2me. In addition to simplifying calculations, this

ensures that group velocities are parallel to their associated wavevectors.

The injected electrons can tunnel into eigenstates in the conduction band

with energies below Etip
F , however we expect that tunneling will occur most

readily into states with high kz (surface normal) and low K (surface-parallel)

values. Thus their velocities are not evenly distributed across the range of polar

angles, θ. We can solve for the angular distribution of tip-injected electrons
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by considering the matrix element, |Mµν(k)|2, for tunneling from tip states to

sample states with wavevector, k. The angular distribution of wavevectors,

and hence also of velocities, of the injected electrons is then given by

D(θ) = N
∫ √

2m(µtip−ECBM)/~

0

k2 |Mµν(k)|2 dk (3.11)

where

N =
2π∫ 2π

0

∫ π/2
0

∫√2m(µtip−ECBM)/~
0 k2 |Mµν |2 sinθdkdθdφ

. (3.12)

Ultrafast pump-probe reflectivity measurements of the Si(100) surface place

the momentum relaxation time of free carriers at 32 fs.41 Electrons traveling

with speed vth (much slower than the average velocity for injected electrons)

will travel a distance of roughly 6 nm in this time. We therefore make the

approximation that injected electrons retain their initial group velocities over

the distance scales relevant to the present problem. The local excess electron

density at each point in the silicon sample, due to the injected current from

the STM tip when the DB is neutral, IDB0

tip−Si, is then given by

nSTM(r) = D(θ)
IDB0

tip−Si

2πr2v
(3.13)

where r = (r, θ, φ) being the distance vector from the STM tip apex, with

the polar angle θ being measured from the tip axis pointing toward the silicon

crystal.

Finally we account for the occupation of the DB with one electron, 1−f ∗DB,

and write the capture current by the DB level as

CSTM
n = (1− f ∗DB)

∫
ΩDB

dr |ψDB(r)|2D(θ)IDB0

tip−Si

σn

2πr2
, (3.14)

where we assume that the capture cross section for an infinitesimal volume is

|ψDB|2 σndr. The capture rate cSTM
n in s−1 is obtained by dividing CSTM

n by

the elementary charge and assuming a neutral DB, i.e. f ∗DB = 0.
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3.3.3 Tip-DB Tunneling Current

The tunneling current from the tip to the DB is calculated in the same way

as the current from the tip to the sample, with the difference that there is a

single DB level to tunnel into. In that case, the tip wavefunction can be mod-

elled using the Slater-type orbital described by Equation 2.9. Direct tunneling

from tip to DB is of course expected to have a very sensitive (exponential)

dependence on the lateral distance from the DB to the tip apex.

Some interesting features of this process are left out of the present descrip-

tion. In particular, the DB orbital associated with the singly occupied DB

is different from that of the doubly occupied DB, which is more spread out.

Furthermore, as mentioned above, the realistic DB orbital is much more in-

teresting and structured than our analytical treatment would suggest. This is

evidenced by the striking shape of the DB orbital, as well as DFT calculations.

This would add a non-trivial position dependence to the tip-DB tunneling rate.

3.3.4 DB-CB Tunneling

With sufficient upward band bending, it is possible for the energy level of

the DB (in either charge state) to be raised above the normal CB edge. In

that case, the DB may see resonant levels in the silicon CB some distance

away, where band bending is less severe. It is then possible for electrons to

tunnel through a roughly triangular barrier to these CB states. Like tip-sample

tunneling and tip-DB tunneling, this resonant tunneling process can be treated

using the Tersoff-Hamann approach. The conduction band wavefunctions are

again described by Equation 3.8, and the DB wavefunction is again described

as a Slater-type orbital, Equation 2.9.

Since TIBB is much sharper in the surface-normal direction, z, than it is

in the surface-parallel direction, the shortest path for tunneling from the DB

will usually be along z toward the bulk. The tunneling rate is qualitatively

determined by the evanescent tail of the DB orbital through the triangular

barrier formed by the tilted bandgap along this direction. The shape of this

barrier can be expected to strongly depend on the applied bias, since higher
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biases will result in greater band bending, and therefore a smaller triangular

barrier. We therefore expect this tunneling rate to depend strongly on applied

sample bias.

3.3.5 Thermal Emission of Electrons

An electron can be promoted from the DB energy level to the CB through

thermal excitation. This escape rate depends on the barrier height, the cross-

section for electron capture, and the temperature,

en = σnvnNc exp[−(ECB − EDB)/kBT ], (3.15)

where the prefactor is an attempt frequency and Nc is the effective density of

states at the bottom of the conduction band,

Nc =
1√
2

(
mekBT

π~2

)3/2

. (3.16)

While this process can play a significant (even dominant) role at room tem-

perature, its temperature dependence means that it is rapidly extinguished as

temperature decreases. At 4.2 K, this process is completely turned off.

3.3.6 Inelastic Recombination

A hole in the VB can also recombine with an electron localized at the DB,

contributing to the DB-to-bulk current. The capture of holes is calculated

analogously to the capture of electrons, according to

rrec = σppvp,th, (3.17)

where σp is the cross-section for hole capture, p is the density of holes, and vp,th

is the thermal velocity of holes in the VB. Both p and vp,th are functions of

temperature. Additionally, p is a function of band bending, since holes become

more likely to be found near the DB as bands are bent upward more. Like

thermal emission, this process has a sensitive dependence on temperature, and
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as a result is expected to be very small at low temperatures.

3.4 Summary

Given the rates described in the previous section, it is possible to theoretically

investigate rates as a function of lateral tip position. This was done in detail

for room-temperature,1 and the results of that calculation are shown in Figure

3.6a. Many of the qualitative features discussed in the previous section (re-

garding dependence of rates on tip-position), are visible there. In particular,

the strong dependence of itip on tip position is visible, as this rate starts out

being negligible, but quickly rises as the tip approaches the DB, overtaking all

other rates.

The occupation of the DB is expected to follow the form of Equation 3.2

(with the exception that the DB can accommodate two electrons, as described

above). Realizing that the overall filling rate is just the sum of all filling rates,

and likewise for the emptying rates, we can classify all the previously described

rates into these two categories, and write the non-equilibrium occupation as

f ∗ =
itip + iSi + cn + cSTM

n

itip + iSi + cp + en + cn + cSTM
n

. (3.18)

This quantity is plotted in Figure 3.6b, which shows that as the tip approaches

the DB, the filling fraction rises from 0 to 1, which in the case of an orbital

which can accommodate two electrons, translates to a transition in occupation

from 0 to 2 electrons. This signifies a change in the occupation of the DB from

a situation of equilibrium with the sample, to a situation in which the electron

dynamics at play in STM imaging have brought the DB occupation out of

equilibrium.

This out-of equilibrium charge-state of the DB is what gives rise to the DB

halo, as shown in Figure 3.6c. When the DB becomes negatively charged, its

gating effect decreases the current from the tip directly to the extended states

of the silicon CB. This creates the apparent depression around the DB, and

explains the signature of a negative DB inside the halo. The calculation that

generated this figure, however, only considered the transition from a neutral
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Figure 3.6: (a) Rates, (b) non-equilibrium occupation, and (c) tun-

neling current, all a function of lateral tip-DB separation. (Figure

from Livadaru et al. (2011).1)

DB to a negative DB, and therefore does not show the signature of a positive

DB outside the halo region. Nonetheless, it is easy to see that by considering

the positive charge state, and its associated band bending and gating, one

would similarly see the signature of the positive charge state outside the halo

region (that is, one would see an apparent topography that slopes upward

toward the DB, before dropping rapidly into the halo).

Figure 3.7 shows an idealized topography, tracing the contour one might

expect to see given perfect resolution and perfect signal-to-noise. When the tip

is far from the DB, the DB is negatively charged, because of the doping of the

sample. As the tip approaches, its band bending effect shifts the DB transition

levels upward, eventually causing the DB to become neutral, and then negative.
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Throughout this process, the DB remains in equilibrium with the rest of the

sample. When the tip gets still closer, direct injection of electrons from the tip

to the DB begins to dominate, and the DB is brought away from its equilibrium

charge state and becomes negatively charged. This happens at the edge of the

halo, which is sharp because of the sensitive dependence of itip on tip-DB

separation.

There may be a very narrow region at the edge of the halo in which a

neutral charge state may have a non-negligible occupation, as shown in Figure

3.4b. This is the point where filling rates roughly balance emptying rates, al-

lowing the fraction of time spent in each of the DB charge states to be roughly

comparable. However, within the assumptions used here — that there is a

single filling rate and a single emptying rate to describe the system dynam-

ics, independent of the DB charge state — the neutral state does not become

dominant at the edge of the halo. Instead, it makes its appearance only tran-

siently, as the charge state flickers unstably. When the flickering of the DB

charge state is fast, it is averaged out by the measurements of current which

DB+

DBo

DB�

Charge state
transitions
due to
injection

Charge state
transitions
due to TIBB

halo region
injection dominates
non-equilibrium

TIBB dominates
equilibrium

TIBB dominates
equilibrium

Figure 3.7: Schematic showing idealized topography across a dan-

gling bond. The faint coloured lines represented the topography

one would see if the DB could be held in each particular charge

state. The observed topography reflects the dynamically changing

DB charge state as the DB approaches.
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occur on the relatively slow timescale of approximately one millisecond. The

resulting topography drops into the halo rapidly, but smoothly.

In the next section, we will see that the temperature dependence of the rates

described in this section allows us to slow the dynamics at the DB significantly

by dropping the temperature to ∼ 4.2 K. This effectively turns off thermal

emission (the dominant mechanism for emptying electrons from the DB to the

bulk silicon at room temperature), and drastically reduces the density of free

carriers in the CB and VB. As a result, resonant tunneling from the DB to

CB levels becomes the dominant mechanism for emptying of electrons from

the DB. Under these circumstances, the single electron dynamics can be slow

enough to be directly observed in STM current measurements.

88



4 Single Electron Dynamics of DBs

This chapter describes recent experiments which analyzed the noise in tun-

neling current related to the single electron dynamics at the DB. These ex-

periments provide a way of directly observing the dynamics described in the

pervious chapter. This chapter is closely based on Taucer et al. (2014),2 and

includes several figures from that paper, as indicated in the captions.

Despite the central role of single-electron dynamics in STM imaging of

DBs1,36,37 as well as their importance in potential DB-based atom-scale de-

vices,42 until recently, they had not been directly observed in an STM experi-

ment. Here, we discuss direct observation of single-electron charging dynamics

of DBs. The dynamics are consistent with our model of non-equilibrium charg-

ing, in which the DB acts as the island of an SET, tunnel-coupled to the STM

tip and to the silicon bulk. The variably charged DB has a gating effect on

the tip-sample tunnel junction, so that the total tunneling current acts as a

single-electron sensitive charge sensor. In this experiment, the DB does not act

as a current-carrying state: a negligible fraction of the current passes through

the DB. The tip Fermi level is at all times higher in energy than both transi-

tion levels. Thus, this experiment allows observation of the three DB charge

states, whereas more familiar Scanning Tunneling Spectroscopy (STS) exper-

iments would be fundamentally limited to observations of the two transition

levels.

The experiments described in this chapter were performed using an Omi-

cron LT-STM operated at 4.2 K. The tungsten tip was prepared by electro-

chemical etching followed by electron beam heating and field ion microscopy

cleaning and sharpening.43 The sample was cleaved from a 3-4 mΩ · cm n-type

As-doped Si(100) wafer, and was cleaned by heating several times to roughly
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Figure 4.1: Band diagram representing the non-equilibrium dynam-

ics of STM imaging of a DB. Etip
F and ESi

F label the tip and sample

chemical potentials, respectively, and Γ labels filling and emptying

processes. TIBB was calculated using the Semitip code28 assum-

ing typical STM experimental parameters and resulting bands are

shown as green curves, corresponding to the case of DBo. For the

case of DB−, combined tip- and DB-induced band bending (shown

as blue curves) are calculated using a Slater-type orbital for the

DB1 assuming also that dynamic screening effects in the sample

are negligible. (Figure from Taucer et al. (2014).2)

1250oC, and H-terminated at 330oC.44 The high temperatures used to clean

the sample are known to deplete the dopants near the surface.45

4.1 Observation of Single Electron Dynamics

As explained in Chapter 3, the DB halo can roughly be attributed to upward

band bending near a negatively charged DB. The more detailed theory of STM

of DBs, which captures the qualitative features of the topography in the vicin-

ity of the DB, was put forth by Livadaru et al..1 In unoccupied state imaging,

Tip-Induced Band Bending (TIBB) tends to empty nearby states (including
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the DB). At the same time, electrons tunnel from the tip to the unoccupied

sample energy levels. When an electron is injected into the DB, the dynamics

which would re-establish thermal equilibrium in the sample can be relatively

slow, and the equilibrium picture of STM no longer applies. According to this

non-equilibrium picture of STM imaging of DBs, the charge state of the DB

is determined by the competition of filling and emptying processes, as shown

in Figure 4.1.

4.1.1 Current Instability at the Edge of the Halo

At low temperature, many thermal processes become negligible, and dynamics

can be slow enough to be within the STM pre-amplifier bandwidth. Figure

4.2a shows a topographical unoccupied state image of a DB at 4.2 K. At these

conditions, the edge of the halo is no longer sharp, but instead shows a dis-

tinctive streaky noise. When the tip is positioned in the halo region, and the

tip height is held constant, the measurement of current as a function of time

shows unusual jumps to discrete values, as seen in Figure 4.2c. Such current

steps are absent when the tip is far from from any DBs. The histogram of

current measurements shown in Figure 4.2b demonstrates that there are pre-

cisely three dominant current values. We identify these as corresponding to

the negative (doubly occupied), neutral (singly occupied), and positive (unoc-

cupied) charge states of the DB. Each charge state of the DB causes a different

DB-induced band bending under the tip apex, and thereby creates a different

current from tip to sample.

The electron dynamics represented in Figure 4.2b and c are for a particular

tip position and voltage, but in general the dynamics and probabilities of the

three charge states will depend on these parameters. Each panel in Figure

4.3 compactly shows a collection of histograms at different lateral positions

crossing the edge of a DB halo, for a particular tip voltage. Colormap intensity

is proportional to the number of counts at a particular current and tip-DB

separation, and tip height is constant for all the data presented. At all voltages

there is a periodic modulation in current as a function of position, due to the

surface topography; as the tip moves laterally at constant height, the tip-
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Figure 4.2: (a) Topographical STM image of a single DB taken

with VS = 1.4 V and IT = 20 pA. The double-ended arrow shows

the range of lateral positions used to acquire the data shown in

Figure 4.3. (b) Histogram of current measurements with the tip at

a constant height and a constant voltage of VS = 1.45 V positioned

3.14nm from the DB. The peak at lowest current corresponds to the

negative charge state, while the peaks at intermediate and highest

current correspond to the neutral and positive charge states. (c)

An example of a current-time trace. The sampling rate is 10 kHz

and the entire trace (not shown) is 2s in length. (Figure from

Taucer et al. (2014).2)

sample distance is modulated because of the periodicity of the silicon surface.

The striking feature is the appearance of current instability reflected by the

broadening and/or existence of multiple current levels at particular voltages

and positions.

At the lowest sample voltage (Figure 4.3a at 1.30 V), the DB is in a single

charge state at all tip positions. The STM current decreases as the tip moves

toward the DB (aside from the abovementioned periodic modulation due to

topography), indicating upward band bending near the DB, consistent with
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Figure 4.3: Colormaps showing frequency of current measurements

as a function of tip-DB separation and current from (a) 1.30 V

to (h) 1.65 V. Colormap intensity is proportional to the number

of instances of a particular measurement of current at a particular

position. Any vertical slice of any colormap gives a histogram whose

total integral is 2 s × 10 kHz = 20000 samples. In particular, the

dotted line in (d) corresponds to the data shown in Figure 4.2b.

(Figure from Taucer et al. (2014).2)

a negative charge state. As the tip bias is increased (Figure 4.3b-h), two

additional charge states become visible, which we identify as the neutral and

positive DB states. For voltages greater than 1.35 V, there is a transition region

in which all three charge states are visible, with the positive DB charge state

becoming dominant at larger tip-DB separations. Above 1.50 V, transitions

occur on a timescale which competes with the data acquisition rate, so that the

three states become blurred and eventually averaged. At 1.55 V and above,

the high-current peak dominates for most tip positions, and here we see that

current increases as the tip moves toward the DB, indicating downward band

bending near the DB, consistent with a positive charge state. All traces show

a low-current value at the smallest tip-DB separation because direct tunneling

from the tip to the DB becomes dominant, in turn causing negative charging

of the DB.
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4.1.2 Transition Rates

Looking at Figure 4.2c we can see that the I(t) traces contain dynamical

information; the traces consist of plateaux of various lengths, and the dynamics

can in principle be extracted by measuring their lengths as well as which states

they transition to. This would give the transition rates, Γ
(E)
−/o, Γ

(E)
o/+, Γ

(F)
o/−, and

Γ
(F)
+/o, for the kinetic scheme

DB−
Γ

(E)
−/o

Γ
(F)
o/−

DBo
Γ

(E)
o/+

Γ
(F)
+/o

DB+ ,

which assumes that there is no direct transition between the negative state

and positive state, thus neglecting any particular two-electron filling or emp-

tying processes. The superscripts (F) and (E) indicate filling and emptying

rates. Determining these rates by simply measuring the lengths of plateaux

in Figure 4.2c turns out to be problematic, since the noise in the plateaux

is comparable with their separation. Motivated by this, we take an approach

developed by Hoffmann and Woodside46 called signal-pair analysis, which con-

siders the evolution of subsets of a dataset for a current-time trace chosen to

initially belong to a particular charge state, fitting their evolving distributions

using a dynamical model, and thereby extracting the transition rates between

states even if their signals overlap significantly. This analysis combines earlier

work on single-molecule fluorescence studies,47 and a signal-pair correlation

approach to analyzing structural dynamics of proteins.46 The procedure is ex-

plained in more detail in Chapter 5.

The extracted filling and emptying rates for sample biases of 1.40 V, 1.45 V,

and 1.50 V, are shown in Figure 4.4. At higher biases, dynamics could not

be extracted because the transition rates were faster than the pre-amplifier

bandwidth. At lower voltages, the DB tended to stay in the negative charge

state at all tip positions, again making it impossible to extract the dynamics.

Figure 4.4a shows the dependence of filling rates on tip position for three

different voltages. There is an exponential decay in the filling rate with in-

creasing tip-DB separation, with values from roughly 3kHz to 50Hz, with no
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clear systematic dependence of filling rates on voltage. This is consistent with

the prediction that direct tunneling from tip to DB dominates the filling of

the DB, assuming a constant density of tip states over the energy range of

interest. The exponential fits to the filling rates of the neutral and negative

charge states are shown as a black dashed-dotted line and a black solid line,

respectively. Their decay rates are k(F)
o/− = 1.91 nm−1 and k(F)

+/o = 2.54 nm−1.

We attribute the slower decay of Γ
(F)
o/− to the upward shift of the DB− energy

level with respect to that of DBo, resulting in a smaller ionization potential,

and a slower decay of the DB− wavefunction into vacuum.

Figure 4.4b shows emptying rates. In contrast to Figure 4.4a, we see a

strong voltage dependence and a very weak position dependence. The average

emptying rate for each of the three voltages is shown as a horizontal dashed

line. We find relatively flat emptying rates of 172 Hz, 434 Hz, and 1369 Hz

for sample voltages of 1.40 V, 1.45 V, and 1.50 V respectively. While cal-

culations for DBs at room temperature1 found thermal emission of electrons

to dominate emptying in unoccupied-state STM imaging, this process is vir-

tually eliminated at 4.2 K. We instead consider the dominant mechanism at

low temperature to be tunneling from the DB energy level to distant resonant

Conduction Band (CB) levels. As the bias is increased, TIBB is also increased,

while the associated barrier for an electron on the DB to tunnel to the CB

becomes narrower. The weak dependence of emptying rates on lateral tip po-

sition is an indication that TIBB is relatively uniform on the scale considered

here, as expected.

We can now see that the edge of the DB halo is the point at which filling

rates overtake emptying rates. This corresponds to the intersection of the

horizontal dashed lines (emptying) in Figure 4.4(b) with the exponential solid

and dashed dotted lines (filling). As voltage is increased, the emptying rate,

which is nearly flat with respect to position, increases while the filling rate

remains an unchanged exponential. The point of intersection (edge of the halo)

thus moves toward the DB. This is consistent with our routine observation of

a DB halo size which decreases with increasing bias (not shown). Beyond the

dependence of rates on bias and tip-DB lateral separation, we see that both
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Figure 4.4: (a) Experimentally measured filling rates as a function

of lateral tip distance from DB for three different voltages. The

dashed dotted line indicates the exponential fit to the filling rate

of the neutral DB energy level, while the solid line indicates the

fit for the negative DB level. (b) Experimentally measured emp-

tying rates as a function of lateral tip distance from DB for three

different voltages. For each voltage, emptying rates have a weak

dependence on tip position. The dashed coloured lines show the

average emptying rate for each voltage, while the dashed-dotted

and solid black lines show the same fits to the filling rates as shown

in (a). (Figure from Taucer et al. (2014).2)
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filling rates are similar in magnitude, as are both emptying rates. At this time,

a quantitative study is not permitted by the data we can acquire, but a more

detailed discussion of the orbitals and band bending effects associated with

DBo and DB− will be provided in the next section.

4.2 Further Considerations on Transition Rates

Detailed comparisons between the two filling rates and between the two emp-

tying rates are beyond the scope of the data in this thesis. Further measure-

ments and analysis of these rates have been undertaken by Roshan Achal.

However, some noteworthy features of the data can be commented upon al-

ready. Specifically, we can address the fact that the two filling rates are of a

similar magnitude, as are the two emptying rates.

4.2.1 Filling Rates

First, considering the filling rates, the DB− orbital has a lower ionization

energy than the DBo orbital. One might at first expect that this would lead

to a much larger filling rate for DB−, since a lower ionization results in an

expanded orbital, perhaps leading one to expect greater overlap between tip

and DB wavefunctions. Upon careful consideration this turns out not to be

the case. Since the DB is not acting as a current-carrying state, only a very

small orbital overlap between the tip and DB wavefunctions is needed to get

single electron charging events (around 100’s of Hz). Although it is true that

an orbital with a smaller binding energy will quite generally be less localized

than one with a larger binding energy, it does not necessarily follow that the

less localized orbital will have a greater overlap with the tip wavefunctions at

a given lateral separation.

In Chapter 2, Figure 2.11 showed a heuristic depiction of the DB wave-

function, which despite its simplicity captures the essential features. Here, the

DB is treated as a p-like orbital whose lobes decay according to the ionization

potentials in each direction, defined by the previously described Slater-type

orbital.
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The lobe that extends into vacuum decays according to the ionization po-

tential into vacuum (4.8 eV for the neutral DB and 4.5 eV for the negative

DB), while the lobe that extends into the bulk decays according to the much

smaller ionization potential into the bulk conduction band (0.77 eV for the

neutral DB and 0.47 eV for the negative DB). Note that the difference in

energy between the singly-occupied energy level and the doubly occupied en-

ergy level is underestimated for the sake of being able to plot the two orbitals

with the same scale to see the qualitative features. The charging energy of

U = 0.3 eV used in Figure 2.11 in reality is estimated closer to 0.5 eV. Still,

this model is sufficient to capture the essential characteristics: the dependence

of the exponential decay rates, and the relative weights of the two lobes on

the DB energy in the bandgap.

Since the ionization potential into vacuum is much larger, than the ion-

ization potential, the lobe in the silicon is much larger than the lobe in the

vacuum. For mid-gap levels, the total electron density above the surface rep-

resents only about 1% of the whole orbital, or less. However, comparing the

neutral orbital to the negative orbital shows a noteworthy difference. While

the negative DB is indeed expanded overall as we should expect, we see that

the lobe in the bulk expands at the expense of the lobe in the vacuum. The

lobe in vacuum goes from making up 1.22% of the whole orbital for the neutral

DB, to making up only 0.42% for the negative orbital. On careful consider-

ation, this makes sense. The ionization energy into bulk is far more affected

by the upward shift of the DB energy level than is the ionization energy into

vacuum. For single electron transfer directly from tip to DB, the important

factor is the degree to which the orbital extends upward into the vacuum. For

the negative DB orbital, the decay of the wavefunction is slower, so that the

DB orbital in some sense reaches out further, but the weight of the vacuum

lobe is significantly smaller. So although the orbital is expanded overall, the

overlap with the tip wavefunctions may not be increased. The main difference

between the two cases should be the decay rate of overlap (and therefore of

filling rates) with increasing lateral separation. This accounts for the different

decay constants observed in Figure 4.4.
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It is important also to note that the decay constants describing the decay

of the DB wavefunction into vacuum are slower than what one would expect

for the decay toward vacuum, where the barrier is roughly 4 or 5 eV. This is

not altogether surprising, since the STM tip moves away from the DB laterally,

and not in the direction of fastest decay of the wavefunction. The observed

decay rate may be related to the angle of the tip at the DB position, a few nm

from the tip apex. This angle would define the effective rate at which tip-DB

separation increases as one increases the lateral separation.

There may be other possibilities to describe the observed decrease in the

tip-DB tunneling rate. Our treatment of the filling processes, in the last

chapter, considered direct overlap of the tip wavefunctions with the lobe of

the DB orbital in vacuum, as well as the possibility of capture of hot electrons

from the tip by the idealized Slater-type orbital. Capture of hot electrons was

found to be negligible in comparison to direct tunneling. However, we need

to keep in mind the limitations of the very idealized treatments used so far.

First, the realistic orbital is very different and much more complicated than

the simple p-like orbital we have been using. We know this both from DFT

and from the remarkable shape of the halo which is seen with sharp tips. This

may alter the capture of hot electrons, and may also affect direct tunneling in

a non-trivial way. It is even possible that the portion of the DB wavefunction

in the silicon (the more realistic analog of the silicon lobe) may extend to the

surface, leading to direct tip-sample tunneling via the silicon “lobe” in the bulk.

This can only be investigated by more accurate calculations (which need to

capture the small exponential tails of wavefunctions), ideally combined with

further measurements of single-electron dynamics.

4.2.2 Emptying Rates

We turn our attention now to emptying rates. Like with filling rates, there is a

surprising similarity between the observed rates for emptying from the doubly

and singly occupied orbitals. When the DB becomes negatively charged, sug-

gesting at first a narrower confinement potential, the localized negative charge

has a band bending effect on the nearby conduction band levels, presenting
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that state with a higher and broader barrier. Figure 4.1 shows the CB edge

for a neutral DB in green (including tip-induced band bending), and for a neg-

ative DB in blue (including tip-induced band bending and also DB-induced

band bending). The blue curve shows that the barrier faced by the negatively

charged DB is both higher in energy, and spatially wider than it would oth-

erwise be. This increase in the height and width of the barrier is our current

explanation for the comparable emptying rates.

Other mechanisms could play a role in the emptying of the DB. Recombi-

nation with holes in the valence band may play a role in emptying. Figure 4.1

also shows that TIBB and DB-induced band bending may bring the VB near

or even above the sample Fermi level. This could allow holes to accumulate at

the location of the DB, thus enabling recombination. While, in principle, this

mechanism also contributes to the emptying rates, it is currently seen as neg-

ligible for two main reasons: (i) the space-charge layer associated with TIBB

is severely depleted of mobile carriers, and (ii) the thermal velocity of holes at

4.2K is very small compared to room temperature. Lattice deformations re-

sulting from changes in charge state, and associated phonon-coupling,48 could

also contribute to recombination dynamics, and hence to emptying rates. As

described in Section 2.4.3, each change in the DB’s charge state is expected to

be quickly followed by a rearrangement in the lattice to accommodate the new

charge. This change in the lattice configuration alters the electronic levels.

It is not entirely clear how this would affect the rates of transitions between

charge states, but it is very possible that this phenomenon plays some role in

determining transition rates.

4.3 Relation to Room Temperature Results

Chapter 3 described the theory of STM imaging of DBs, particularly in the

case of room temperature imaging. It was found that the topography in the

vicinity of DBs was best explained using the concept of a non-equilibrium

current through the DB. The results described in this chapter substantiate

those concepts through the direct observation of the single electron dynamics
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that give rise to non-equilibrium occupation of the DB. These results also

provide a more complete fromework within which to understand further results

at room temperature which were previously difficult to address.

Figure 4.5 shows the topography of a DB for three different sample biases

for an n-type sample at 300 K. At low sample biases, as in Figure 4.5a, the dark

halo which surrounds the dangling bond at +1.2 V can be understood as a

natural consequence of the DB charge state changing as the tip approaches the

DB, as described in Chapter 3. While the tip-DB separation remains greater

than ∼ 1 nm, TIBB raises the doubly occupied DB level above the Fermi level,

leaving the DB charge neutral. TIBB at the surface is less at 300 K than it is

at 4.2 K, as a result of the enhanced screening. Since there is no DB-induced

band bending for this neutral DB, the H-silicon images without topographical

distortion over this region (see also the +1.2 V cross section in Fig. 4.5d). As

the tip-DB separation reaches ∼ 1 nm, however, direct tunneling from the tip

causes the DB’s negative state to be filled faster than it can empty. The DB

therefore takes on a negative charge state, leading to upward band bending,

and the appearance of the dark halo in the vicinity of the DB.

As the bias is raised, the tip-sample separation increases to maintain the

same tunneling current, decreasing tunneling from tip to DB, while at the

same time increasing the field effect of the tip, and associated TIBB. As a

result, the diameter of the dark halo gradually decreases (similar to Figure

3.3) until, as in Figure 4.5b, the dark halo disappears altogether. At this

higher bias of + 1.8 V, the decrease in the fraction of current injected from

the tip to the DB, as well as the increased emptying rate of the DB (driven

by the increased TIBB at the DB), leads to a situation where the DB is on

average neutral independent of the tip-DB separation. The dark halo is now

completely absent (see also the + 1.8 V cross section in Figure 4.5d). While

near the DB there may still be charging dynamics which are faster than the

bandwidth of the preamplifier, the time-average of these shows a neutral DB.

When the bias is raised further to + 2.6 V (Figure 4.5c and the +2.6 V cross

section in Figure 4.5d), a new and different halo emerges. In this case, the H-Si

surface appears to slope upward as the tip approaches the DB, but abruptly
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Figure 4.5: Constant-current empty-state STM imaging of DBs

on n-type H:Si(100) at 300 K. (a) VS = +1.2V. H-silicon within

∼ 0.8nm of the DB images with depressed height. (b) VS = +1.8V.

DB images as a single bright protrusion. The height of the sur-

rounding H-silicon is unperturbed. (c) VS = +2.6V. DB images

as a slight protrusion. H-silicon height within ∼ 0.8nm of the DB

is weakly perturbed. Beyond ∼ 0.9nm, the H-silicon displays an

abrupt increase in imaging height (∼ 0.02nm) which decays with

increasing distance from the DB centre. (d) Topographic cross sec-

tions (0.5 nm wide) extracted along the central H-silicon dimer row

(indicated by black arrows in (a)) and across the DB centre. Tun-

nel current: 20 pA. Image areas: ∼ 6 × 6nm2. This experimental

data was acquired by Dr. Paul Piva. (Figure from Taucer et al.

(2014).2)

drops to a height which is comparable to the height of the unperturbed surface.

We can understand this as resulting from a continuation of the trends discussed

so far. The increased level of TIBB tends to empty the DB, leading to a positive
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charge state when the tip is at an intermediate distance. This accounts for the

brightening (i.e. increased imaging height) of the silicon in the vicinity of the

DB. At even smaller tip-DB separations, direct tunneling from the tip to the

DB becomes competitive and restores the DB to a neutral state on average,

creating the new halo. Instead of imaging below the plane of the unperturbed

H-silicon surface as in Figure 4.5a, the bottom of the halo (∼ 1 nm from

the DB) images with roughly the same height as the unperturbed surface far

(∼ 4 nm) from the DB.

4.4 Summary

In this chapter, we have shown that single-electron dynamics are directly ob-

servable in STM of single DBs when the tunnel junction between the tip and

the sample acts as a single-electron sensitive charge detector. We can directly

resolve the three possible charge states, negative, neutral, and positive, of the

DB. The dynamics extracted from current traces are consistent with the non-

equilibrium model of STM imaging of the silicon DB, in which the DB acts

as an atomic quantum dot, tunnel-coupled both to the tip and to the bulk Si,

with its occupation determined by the competition of filling from the tip and

emptying to the bulk.

This measurement of single-electron dynamics should provide a means of

quantitatively studying single-electron dynamics for DBs, multi-DB structures,

and perhaps for other mid-gap defects at semiconductor surfaces. In particular,

there is a great deal to be done in studying the position-dependence and bias-

dependence of the filling and emptying rates of the DB. These can shed light

on the shape and nature of the DB orbital, as well as its overlap with the bulk

states of the CB in cases where TIBB is sufficient. Relatively straightforward

extensions of this experiment may also demonstrate not only measurement,

but also control of the DB charge state. Furthermore, there is no fundamental

reason why the single atom charge state sensing demonstrated here cannot in

future be implemented in an STM-free, lithographic structure.
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5 Analysis of Random Telegraph Sig-

nals

5.1 Overview

Fluctuations in tunneling current have been observed in STM experiments in

many different contexts, including charge state dynamics, as described in the

previous chapter and also in studies of subsurface dopants in GaAs,49–51 as

well as in studies of the dynamics of molecules with different stable configura-

tions,52 and in atomic magnetic systems.53 Undoubtedly, many other examples

of such fluctuations in tunneling current exist. They are likely to occur any

time random changes in the sample switch between states which have dis-

tinct conductivities, or which gate the tip-sample tunneling current, as in the

case described here. Of course very similar situations exist in completely dif-

ferent contexts, such as in measurements of extension as a function of time

with constant force applied to the ends of a strand of DNA, in optical tweezer

measurements.47 Despite the fact that what is being measured is nothing like

tunneling current, the problem is identical from a data analysis perspective.

In many cases, dynamics can be extracted from time-dependent measure-

ments by a simple thresholding analysis, in which one measures the lengths of

plateaux corresponding to a given state, as well as which plateaux the system

transitions to. Measuring all the plateaux lengths and the transitions in this

way gives all the information about the dynamics of the system. Whenever

the inherent noise in the signal associated with each state is much smaller

than the separation between the signals corresponding to different states, this
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method gives accurate results.

Another interesting method involves custom built analog circuitry, which

takes the tunneling current as an input, and has outputs proportional to transi-

tion rates.54 This method was applied to molecules on a surface, which switched

randomly between two states.52 This approach is attractive in that it gives a

real-time measurement of dynamics, allowing one to map dynamics as one

might map any other quantity in STM. Since it is essentially based on an

implementation of a thresholding method, it has the same requirement of low

noise compared to separation between states. In addition, it requires tuning

of the threshold to the particular transition. As one imagines more states,

and particularly if those states do not give a fixed position-independent sig-

nal (for example, the tunneling current associated with the negatively charged

DB is not fixed, but rather becomes smaller as the tip approaches the DB),

one sees that such circuits might require significant and careful tuning. More

importantly, when noise competes with transitions between states, the output

of such circuits would become unreliable.

In this chapter, I will describe the method that was used to analyze the

telegraph data presented in the last chapter, and I will generalize it to the case

of N states with arbitrary transitions. The disadvantage of this procedure

is that it is somewhat complicated. It cannot be adequately described in a

sentence or even a paragraph. The advantage is that it is robust and gives

good results even for borderline cases, where noise nearly blurs the distinct

states. An easy implementation of this technique requires a reliable algorithm.

Significant progress toward this end has been made, but further automation

and reliability would be needed for this technique to be more widely used.

5.1.1 Qualitative Description

Since we are thinking of STM the measured signal is current, our starting

point is a measured trace of current as a function of time, I(t), with a constant

sampling rate, so that time can be discretized into time steps at times ti =

i∆t, where the sampling rate is 1/∆t and i is an integer. The measured

currents can then be labeled Ii. Usually in STM, the noise is, roughly speaking,
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randomly distributed around a mean value so that the distribution of measured

currents is something like a gaussian. Each data point is randomly sampled

from this distribution (assuming white noise). In this case there are essentially

no dynamics of any interest.

The situation becomes interesting when the distribution of currents is no

longer a single gaussian, but has multiple, say two, peaks. The overall distribu-

tion might then be the sum of two gaussian distributions. When one looks at

the time trace, one sees that the currents around a particular moment are ran-

domly distributed according to one of the gaussian distributions. After some

time, the system might “click” into the other state, and suddenly currents are

distributed according to the other distribution. When a long enough trace is

measured, many such switching events are observed, so that the system spent

part of its time in one state and part of its time in the other, and the overall

distribution is the sum of the two gaussians.

If the distributions corresponding to each of the two states have no sig-

nificant overlap, then given a single data point, Ii, one can say which state

the system was in at time ti. This is the case where thresholding works well.

However, if there is significant overlap between the two distributions, it might

not be possible, given a single data point, to say what state the system is in.

For instance, if the data point happens to be in the region of overlap, then it

can be equally likely to have been caused by either state of the system. This is

the case where thresholding begins to be unreliable since it becomes difficult

to distinguish random fluctuations within a state from random jumps between

states. In principle, thresholding can be saved by, for example, using a median

or mean filer to smooth the data, however this too runs into problems since

smoothing runs the risk of smoothing out rapid transitions to the other state.

In the case of overlap between the two distributions, however, there is still

hope of distinguishing the two states. We saw that a single point, Ii, was not

enough to determine the system state with any confidence, but if we look at the

data points around Ii, we see that they are very likely distributed according to

one distribution or the other, as long as we look at a neighbourhood around ti
that is closer than the timescale associated with transitions between the two
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states. So points near ti are likely to reflect the state of the system at that

time in their distribution.

Points further from ti may have undergone a transition, and so the expected

distribution of these further points will no longer reflect the distribution corre-

sponding to the state of the system at time ti, but will instead begin to reflect

a chance for the system to be in the other state. Taking this further, if we

consider a group of points very far from ti, then many transitions will have

taken place in the interim, so that it has no memory of its state at ti. The

expected distribution of these distant points will simply be the distribution

for the whole time trace.

Very roughly speaking, this is the idea behind this analysis. We look at the

evolution of distributions. Starting very near a data point, we might find that

the distribution reflects a particular state. Some time later, the distribution

no longer reflects that state, but begins to reflect different states. How far

from the first data point do we need to get before we start to see that the

distribution reflects states other than the initial state? Very roughly speaking,

the timescale of this deviation is the time constant characterizing the transition

from one state to the other. In actuality, we do not single out one data point,

Ii, but instead follow this procedure for any data point within a chosen range

Ilow < Ii ≤ Ihigh. We make these concepts precise in the next section.

5.2 Mathematical Description

5.2.1 Basic Concepts: Datasets, Subsets, Probabilities

We denote the whole dataset corresponding to a current trace as D ≡ {Ii},
the set of all the currents, Ii. The total number of points in the data set is

the cardinality of the set, written |D| (the cardinality is simply the number

of elements in a set). Most of the analysis involved in this procedure involves

considering certain subsets of the dataset, S ⊆ D. For instance, one can

consider the subset S ≡ {Ii : Ilow < Ii ≤ Ihigh}, that is, the set of all data

points Ii such that Ii is between Ilow and Ihigh, two arbitrarily chosen currents.

One can use this to define the probability that a given condition is met for
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a randomly chosen datapoint. For instance, the probability that a randomly

chosen datapoint falls between the currents Ilow and Ihigh is

P (Ilow < I ≤ Ihigh) =

∣∣{Ii : Ilow < Ii ≤ Ihigh}
∣∣

|D| , (5.1)

that is, the number of data points that satisfy the condition divided by the

total number of data points∗.

A histogram can be built by binning the data into ranges of width ∆I

around values In = n∆I, where n labels the bin. The probability for bin n,

per bin width, is given by

pn =
P
(
In − ∆I

2
< I ≤ In + ∆I

2

)
∆I

=

∣∣∣{Ii : In − ∆I
2
< Ii ≤ In + ∆I

2

}∣∣∣
|D| ∆I

. (5.2)

Imagining an idealized dataset with an infinite number of data points, we can

take the limit as ∆I → 0, to arrive at the coninuous function

p(I) = lim
∆I→0

∣∣∣{Ii : In − ∆I
2
< Ii ≤ In + ∆I

2

}∣∣∣
|D| ∆I

, (5.3)

which is called the Probability Density Function (PDF) and has units of inverse

current. We use upper case P to denote probability, and lower case p to denote

probability density. The discrete probability densities, pn, and the continuous

PDF, p(I), by definition obey the following conditions

∑
n

∆I · pn = 1 and

∫
dI · p(I) = 1 . (5.4)

Equation 5.3 is the PDF for the entire dataset, D. We can define a PDF for

any set at all, including a subset of the dataset, S, with the slightly modified

equation,

p(I;S) = lim
∆I→0

∣∣∣{Ii ∈ S : In − ∆I
2
< Ii ≤ In + ∆I

2

}∣∣∣
|S| ∆I

. (5.5)

∗Of course, the true probability is an idealization in which the total number of data
points goes to infinity. In practice we have finite datasets, and any measurement is subject
to error due to the finite sample size.
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If the system under study only has a single static state, then, ideally,

repeated measurements of the system would yield exactly the same value over

and over. The PDF that describes this is a delta function. In reality, there are

various sources of noise, specific to the system and the measuring apparatus,

which cause a spread in the PDF around a mean value. The exact form of

this spread depends on the nature of the noise, but in many cases it can be

approximated by a gaussian function, and this serves as a good first guess (or

simply as a way to think about the situation).

p(I)
P↵p↵(I)

P�p�(I)

Figure 5.1: Probability density function for a two-state system,

where the PDF for each state is a gaussian distribution. Data

points to the left of the blue dashed line, coloured in a darker shade

of blue, can be said to correspond to the system state α. Likewise

for data points to the right of the brown dashed line for state β.

In between, there is a region of overlap, where data points could

correspond to either state.

Things become more interesting when the system can be in one of several

states. If the system were locked in a particular state, α, we would expect a

certain distribution of measured currents given by pα(I). Locked in a different

state, β, current measurements are distributed according to a different PDF,

pβ(I). These PDFs can be expressed in terms of conditional probability†. That

† A conditional probability, P (A | B), is the probability of A given that B is the case.
It can be expressed as

P (A | B) =
P (A ∩B)

P (B)
, (5.6)
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is, pα(I) = p(I | α), the probability density for measuring the current I, given

that the system is in state α.

If the system has only these two states, then the PDF is p(I) = Pαpα(I) +

Pβpβ(I), where Pα and Pβ are the probabilities for the system to be in the states

α and β, respectively. Such a PDF is depicted in Figure 5.1. Generalizing to

an arbitrary number of states, the PDF is

p(I) =
∑
α

Pαpα(I), (5.7)

where the sum is over all states of the system. The integral of this PDF is

equal to one, since the integral of each pα(I) is one, and the sum of all the

probabilities, Pα, is also one.

5.2.2 Fitting Histograms

Having measured a current trace, and looking to make sense of the data, the

first thing we look at is the histogram of data, pn. This is our experimental

measure of the continuous PDF, p(I). We then seek to extract from the his-

togram pn some of the most important details to the analysis: the number of

states, Nstates; the PDF for each state, pα(I); and the relative probabilities of

each state, Pα. This is done by fitting the histogram using Pα as free param-

eters, as well as any free parameters introduced by the freedom in choosing

the individual PDFs, pα(I). Each pα(I) is described by typically at least one

free parameter (its position, i.e. mean, mode, median, or characteristic value),

and perhaps others as well.

To use a concrete example, we could assume that the PDFs for the different

states are gaussian functions, in which case each function pα(I) has two free

parameters, the mean, µα, and the width, σα. In that case, the fit of the

histogram would have a total of 3Nstates free parameters: Pα, µα, and σα for

each state. This can quickly lead to an excess of free parameters, and when

the fit becomes too “flexible,” the resulting parameters can lose their meaning.

where A∩B stands for “A and B,” or in terms of sets, the intersection of A and B. Equivalent
expressions can be written for probability densities.
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For that reason, it is important to constrain the fit to the histogram as much

as possible. In the data analysis used in the last chapter, we used the fact that

gaussian widths could be approximated as a linear function of their means.

This eliminated several free parameters, giving more meaningful fits. This

will be discussed in more detail in Section 5.3, along with a more robust and

better-founded way to parametrize the PDFs.

Another difficulty in fitting histograms is determining the number of states.

This can be trivial if it is a manual input, since the eye can often pick out the

number of states directly. Most of the time, the number of states is simply the

number of peaks. Sometimes, however, the peaks can be so close that they

cannot be easily resolved, or if the probability of one state is much smaller

than a neighbouring one, it may appear simply as a shoulder on a larger peak.

Adding to the difficulty is the fact that it is almost always possible to improve

the quality of a fit by adding another peak (thereby increasing the number of

free parameters). With luck, it may be possible to fix the number of states

simply on the basis of a physical argument. Otherwise, in order to automate

the analysis, it needs to be done on the basis of statistical significance.

5.2.3 Evolution of Subsets

Once we have a good fit to the total PDF, p(I), we know the overall probability

for each state, Pα, as well as the corresponding PDF associated with each state,

pα(I). At this point we are ready to extract information about the dynamics

between states. In this subsection, we will describe how we can track an

evolving subset through the data set (this phrase will make more sense soon).

The evolution of the subset should take place in a predictable way as long

as transitions between the various states of the system are a Poisson process,

consisting of randomly occurring transitions characterized by a single rate for

each transition.

We start by choosing a subset of the data corresponding to a given range

of data points. For simplicity, we consider a subset that is almost guaranteed

to belong to a particular state. For example, the dark blue region of Figure

5.1 to the left of the dashed blue line is almost exclusively made up of data
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points corresponding to state α, since it avoids the region of overlap. This

is the distribution corresponding to the data points for which current is less

than Iblue, indicated by the dashed blue line; that is, S(0) ≡ {Ii : Ii ≤ Iblue}.
We can define a PDF for this subset, p(I;S(0)), using Equation 5.5. This

distribution is a truncated version of the total distribution shown in Figure

5.1, with the same shape as the part of the histogram shaded in slightly darker

blue. It is not necessary to choose a subset that avoids the region of overlap,

but it makes things a little easier to think about. We will come back to this

point later.

The 0 in S(0) refers to a time delay of zero. We define a subset with a

non-zero time delay, τ , as S(τ) ≡ {I(ti + τ) : I(ti) ≤ Iblue}, where τ must be

a multiple of the sampling time ∆t. Another way to say this is that S(τ) is

the subset of points that were measured at a time precisely τ later than the

original data points that make up the set S(0). The PDF associated with S(τ)

is given by Equation 5.5, or, to make it explicit,

p(I;S(τ)) = lim
∆I→0

∣∣∣{Ii ∈ S(τ) : In − ∆I
2
< Ii ≤ In + ∆I

2

}∣∣∣
|S(τ)| ∆I

. (5.8)

What relation do we expect there to be between S(τ) and S(0)? Clearly

it depends on τ . If we take the smallest possible delay, τ = ∆t — that is,

the data points that occurred one time step after each of the data points for

which current was less that Iblue — then we can be confident that the system

will not have changed its state over this very small time interval. Nonethe-

less, assuming that the noise that gives rise to the distribution pα(I) is white

noise (so that each datapoint samples it independently), then S(∆t) will be

randomly distributed according to the PDF for state α, which is pα(I), the

blue gaussian in Figure 5.1. We can state this mathematically by saying,

p(I;S(∆t)) ≈ pα(I).

As τ increases, there is an increasing chance, with each additional time step,

that the system will have made a transition from state α to state β. Some

intermediate time later, we can expect most data points to still be distributed

according to pα(I), but a growing number will have transitioned, and these
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are distributed according to pβ(I). The general form of the distribution is

p(I;S(τ)) ≈ Cαpα(I) + Cβpβ(I), (5.9)

where Cα is a decreasing scalar and Cβ is increasing, for small times, reflecting

the transitions from α to β. Because of the similarity between Equation 5.9

and Equation 5.7, as well as the fact that the sum of Cα and Cβ is always

equal to one, we can think of the constants Cα and Cβ as probabilities, and

write them Pα(τ) and Pβ(τ). So we can think of the subset S(0) changing

in time as probability “flows” from Pα(τ) to Pβ(τ). The rate at which Pβ(τ)

increases, for small times, is the transition rate from α to β. Things change for

longer times, since it becomes possible to have transitions backward, from β

to α. For longer times, or when the initial subset chosen does not correspond

to a single state, or when there are more than two states involved, it is not

as easy to determine the underlying transition rates from the changes in the

probabilities, Pα(τ). The next section will connect the changes in Pα(τ) to the

underlying rates.

To summarize, the distribution p(I;S(τ)) is specified by probabilities Pα(τ),

according to the equation,

p(I;S(τ)) =
∑
α

Pα(τ)pα(I), (5.10)

since the distributions for each state, pα(I), are known from the fit to the

distribution of the full data set, p(I). The distributions p(I;S(τ)) are extracted

from the measured time trace, and the values of Pα(τ) are found by fitting these

distributions with Equation 5.10, using Pα(τ) as free parameters. We then

compare these measured values of Pα(τ) with predictions based on calculations

of dynamics (covered in the next section).

Arbitrary Initial Subsets Note that the delay-dependent probabilities ex-

tracted from the data are understood to depend on the initial subset that was

singled out. In the example used previously, the initial subset, S(0), was cho-

sen to be the set of data points with Ii ≤ Iblue. With this subset, the initial
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probabilities were approximately zero for the “pink” state and nearly one for

the “blue” state. Had we chosen a different starting subset, the initial proba-

bilities would have been different, and the time-dependent probabilities Pα(τ)

would also have been different. In general, the starting probabilities need not

be concentrated in a single state.

For an initial subset specified by a range of currents, from Ilow to Ihigh, we

can extract the starting probability distribution straightforwardly using the

equation,

Pα(0) =

∫ Ihigh
Ilow

dIPαpα(I)∫ Ihigh
Ilow

dIp(I)
, (5.11)

recalling that Pα and pα(I) are known from the fit to the total distribution,

p(I).

5.2.4 N -state Dynamics

So far, we have seen how we can extract time-dependent (or rather delay-

dependent) probabilities by considering subsets of the dataset that makes up

a time trace. We now need to compare this to what we would expect for a

particular “kinetic scheme,” like the ones illustrated in Figure 5.2a and b for

a three-state system and a five-state system respectively. That is, we will

postulate a structure of connections between the various states of the system,

specifying the transition rates connecting each state to each other state. Hav-

ing done this, we can predict what the time dependent probabilities should be.

If we can get this prediction to match the time-dependence extracted from the

data, then we can be fairly certain that we have found the correct rates. In

other words, the rates for transitions between states become free parameters

used to fit the curves, Pα(τ), defined in the previous section.

In general we can define a matrix of transition rates whose elements, Γαβ,

represent the transition rate from state α to state β. This matrix has zeros

along its diagonal, since we set Γαα = 0 by definition. This describes the

most general kinetic scheme in which direct transitions are allowed between

each state and each other state, as depicted in the three-state system shown in

Figure 5.2a. More specific kinetic schemes, in which certain direct transitions
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Figure 5.2: Two examples of kinetic schemes for (a) a three-state

system, and (b) a five-state system.

are assumed to not exist, can also be used, as depicted in Figure 5.2b. In this

case, certain off-diagonal elements of the Γ matrix are assumed to be zero at

the outset. Here, we will treat the most general case, in which all off diagonal

elements can be non-zero.

Once we define the transition rates via the matrix Γ, we are in a position

to calculate the flow of probability from state to state. In the last section, we

discussed probabilities as a function of a specifically defined delay, τ . We can

define, using the probabilities of each state, Pα(τ), a “flux” matrix, Φ, whose

elements are given by

Φαβ(τ) = Pα(τ)Γαβ − Pβ(τ)Γβα. (5.12)

Each element gives the “flow” of probability directly from state α to state β

— like the highway traffic in one direction minus the highway traffic in the

other. This matrix also has zeros along its diagonal, and is antisymmetric with

respect to the transpose, Φαβ = −Φβα. The flux matrix describes a directed

graph, where vertices represent states and edges represent flux, as shown in

figure 5.3.

A E 

B C 

D 
�A,D

�C,D

�B,C

�A,B

�D,E

Figure 5.3: The flux matrix, Φ describes a directed graph.
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In steady state, when τ → ∞, there is no change in the probability dis-

tribution in time. We describe steady state quantities with the superscript

(ss). At first glance, this might seem to imply that all elements of the flux

matrix must go to zero for large times — there should be no net highway traffic

between different states. This condition is known as detailed balance, and is

expected for a system in equilibrium. However, in this section, we hope to

describe non-equilibrium as well as equilibrium dynamics, so we do not nec-

essarily expect detailed balance to be obeyed in the steady state. Still, the

requirement that probabilities are constant in steady state tells us something

about the system. The flux between states needs to be balanced such that

probability flux into a state from one place is balanced by flux out of the state

towards others. For instance, Figure 5.2a shows a cyclic three-state kinetic

scheme, where a steady state can be reached if probability flows continually in

a clockwise or counter-clockwise direction, as long as the flux into each state

is equal to the flux out. The true constraint turns out to be Kirchoff’s law:

the net flux of probability into any state is equal to the net flux out of that

state. Mathematically, ∑
β

Φ
(ss)
αβ = 0, (5.13)

which means that the sum along any row or column of the Φ(ss) matrix must

be zero.

Both kinetic schemes in Figure 5.2 have a loop in them. It is therefore

possible for both to have a steady state in which probability flows continually

but in a balanced way. But whenever there is no loop, i.e. for linear kinetic

schemes, then the condition of steady state implies the condition of detailed

balance. All elements of Φ must tend to zero for large times. The kinetic

scheme postulated in the last chapter was an example of such a linear kinetic

scheme.

We should note that for N states, Equation 5.13 represents N different

equations, but only N − 1 independent equations. We can show that the last

equation follows the others. That is, given
∑
β

Φ
(ss)
αβ = 0 for α 6= γ, and Φαα = 0
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for all α, we can prove that
∑
β

Φ
(ss)
γβ = 0 as follows:

∑
α6=γ

∑
β

Φ
(ss)
αβ = 0

∑
β

∑
α6=γ

Φ
(ss)
αβ = 0

∑
β

(∑
α

Φ
(ss)
αβ − Φ

(ss)
γβ

)
= 0

−
∑
β

(∑
α

Φ
(ss)
βα + Φ

(ss)
γβ

)
= 0

∑
α

(∑
β

Φ
(ss)
αβ + Φ(ss)

γα

)
= 0

∑
α6=γ

(∑
β

Φ
(ss)
αβ + Φ(ss)

γα

)
+

(∑
β

Φ
(ss)
γβ + Φ(ss)

γγ

)
= 0.

The first term in the first set of brackets is zero since α 6= γ, and the second

term in the second set of brackets is zero by definition. So we have

∑
α6=γ

Φ(ss)
γα +

∑
β

Φ
(ss)
γβ = 0,

which implies ∑
β

Φ
(ss)
γβ = 0.

This can be expressed conceptually in the following way: if Kirchoff’s law is

obeyed at all but one vertex of a graph, then it is necessarily obeyed at the

final vertex as well.

So Equation 5.13, which describes the steady state, gives N−1 constraints

on the fluxes Φ
(ss)
αβ . This is important because the steady state probabilities are

precisely the probabilities, Pα, which are found from the fit to the histogram

for the entire data set. This means that we can use the fit to the entire dataset

to constrain the possible values of the matrix elements Φ
(ss)
αβ . But the fluxes are

not the quantity of interest, and it would be more useful to directly constrain
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the rates, Γαβ which determine these fluxes.

To do this, we first need to choose which particular rates we wish to

constrain in terms of the others. A convenient choice is to constrain the

rates from one state to an adjacent one, where we label states sequentially,

α = 1, 2, · · · , N . Here, I will choose to constrain the rates Γα,α−1, express-

ing these rates in terms of the others‡. In terms of the Γ matrix, this choice

amounts to constraining the subdiagonal, shown in red here:

Γ =



0 Γ1,2 Γ1,3 Γ1,4 · · ·

Γ2,1 0 Γ2,3 Γ2,4 · · ·

Γ3,1 Γ3,2 0 Γ3,4 · · ·

Γ4,1 Γ4,2 Γ4,3 0 · · ·
...

...
... . . . . . .


. (5.14)

In terms of transition rates, Equation 5.13 becomes

∑
β

(PαΓαβ − PβΓβα) = 0, (5.15)

which can be rearranged to express the constraints as

Γα,α−1 =

Pα−1Γα−1,α −
∑

β 6=α−1

(PαΓαβ − PβΓβα)

Pα
. (5.16)

Finally, we derive the time-dependence of the probabilities by noting that

the rate of change of the probability of state α is given at any time by the flux

into the state minus the flux out of it. We express this more easily by defining
‡Note that here I am assuming non-cyclic labels. That is, I am not equating state α = N

with a state α = 0. This means that there is no transition rate, Γ1,0 since there is no state
α = 0, so there are precisely N − 1 rates that can be written as Γα,α−1, corresponding to
the N − 1 constraints alluded to earlier.
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a matrix, M, whose elements are

Mαβ = Γβα for α 6= β (off − diagonal)

Mαα = −∑
β

Γαβ (diagonal).

(5.17)

Then,
d

dτ
P(τ) = MP(τ), (5.18)

where P(τ) is the probability “vector,” P(τ) ≡ (P1(τ), P2(τ), · · · , PN(τ))T.

Equation 5.18 describes a system of coupled differential equations for the evo-

lution of the probabilities represented by P(τ), which are decoupled by diag-

onalizing M, yielding,

P(τ) = SeJτS−1P(0), (5.19)

where M = SJS−1. This equation is used to fit the time-dependent probabili-

ties extracted from the data, giving the underlying rates, Γαβ.

5.2.5 Summary

The procedure for extracting characteristic rates from a time trace is as follows:

1. Generate a PDF (normalized histogram), p(I), from the data in the time

trace.

2. Fit this PDF using a sum of distributions, pα(I), weighted by the prob-

ability Pα for each state, α.

3. Select one or more subsets of the data, corresponding to a range of

currents, such as Ilow < I ≤ Ihigh.

4. For a given subset, the initial probabilities, Pα(0), are given by equation

5.11.

5. Generate a delay-dependent PDF using Equation 5.8.

6. Fit the delay-dependent PDF to extract the functions Pα(τ) from the

data.
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7. Fit all the functions Pα(τ) for a given subset using Equation 5.19, to find

the rates Γαβ.

5.3 Current Noise in STM

The widths of the distributions that make up the histograms we have been

discussing are determined by the character of the noise in tunneling current,

which is dominated by two contributions: the intrinsic electronic pre-amplifier

noise, and tip-height noise. The intrinsic noise of the STM pre-amplifier, δIpre,

is a constant. The noise in tip height, δz, is also a constant on a given day

on a given machine, but in general depends on the mechanical coupling of the

STM to its environment, and the mechanical noise in the environment (for

instance, whether noisy pumps or fans are on).

The contribution of tip-height noise to the current noise, δIz, is approxi-

mately δIz ≈
∣∣dI
dz

∣∣ δz. But since the current is an exponential function of tip

height, we have
∣∣dI
dz

∣∣ ∝ I, which leads to the conclusion that the noise in tip

height contributes a noise in current that is proportional to the mean cur-

rent: δIz ∝ µI . With these approximations, we are led to the conclusion that,

for gaussian distributions, the width should be well approximated by a linear

function of the mean.

This approach was used in the previous chapter to analyze the three-state

noise due to the changing charge state of a DB. By constraining the gaussian

widths, the number of free parameters in the triple gaussian fits was decreased,

which allowed us to analyze a wider range of data (e.g. cases in which some

peaks would otherwise be hard to resolve). In the data presented in the last

chapter, good fits were found by constraining the widths to be the following

linear function of the mean:

σ = 0.5 pA + 0.05µ. (5.20)

We can go beyond the approximation of strictly gaussian distributions with

a linear dependence of width on mean by considering more carefully the noise

in current due to mechanical noise in tip height. We can start by assuming
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that the distribution of tip heights is gaussian, so that the distribution of tip

heights is given by

p(z) =
1

σz
√
π
e−(z−µz)2/σ2

z , (5.21)

such that the probability of finding the tip in a range dz around z is p(z)dz.

Thus, p(z) is a PDF with units of inverse distance. Given that current is an

exponential function of tip height,

I(z) = I0e
−κz, (5.22)

we can invert this relation to say that the tip height which gives a particular

current is

z(I) = −1

κ
log

(
I

I0

)
. (5.23)

The PDF of tip heights can be expressed in terms the current,

p(z(I)) =
1

σz
√
π
e−(z(I)−µz)2/σ2

z

=
1

σz
√
π
e
−
[
− 1
κ

log
(
I
I0

)
−µz

]2
/σ2
z . (5.24)

We would like to find an expression for the distribution of currents, pz(I), with

units of inverse current. We can find this expression using the relation between

the distributions in z and in I,

pz(I) =
p(z)∣∣dI
dz

∣∣ . (5.25)

Noticing that the mean tip height, µz, can be expressed as a function of the

mean current, µI , through Equation 5.23, we can write the distribution of

currents as §

pz(I) =
λ

σzI
√
π

exp

−
 log

(
I
µI

)
κσz

2
 . (5.26)

This equation describes the expected probability density function of currents

due to the uncertainty in tip height. The subscript z is there to remind us
§ In fact, using Equation 5.23 to express µI as a function of µz is an approximation,

since I(z) is not linear. This is most likely a fairly benign assumption in most cases.
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that this is the current noise that comes from mechanical noise (z noise).

In addition to this, there is a contribution to the noise from the electronic

noise of the pre-amplifier. This noise exists even when there is no tunneling

current at all, and we can express it as,

ppre(I) =
1

σpre

√
π
e−I

2/σ2
pre , (5.27)

where we have assumed that the noise is centred at I = 0. The total noise

is a convolution of the noise from the preamplifier and the noise from the tip

height,

p(I) = ppre(I) ∗ pz(I). (5.28)

In practice, the preamplifier noise sets a lower limit on the spread of the

distribution, but when the tip is closer to the sample and the mean current

is high, mechanical noise dominates, and the preamplifier noise barely has

any effect. The distribution of the preamplifier noise is specified by a single

parameter, σpre. The distribution of the mechanical noise, on the other hand,

depends on µI , σz, and κ.

The shaded histograms in Figure 5.4 show measured distributions of current

for different tip heights on the H-Si(100) surface, far from any DB’s or other

defects. These distributions are fit using Equation 5.28, and the fit is shown

with the solid lines for each distribution. Each distribution in this figure is fit

with mean as a free parameter. A single value for σpre and a single value for σz
are used for all the peaks. The decay constant of current with increasing tip

height, κ, is extracted from the corresponding I(z) data, shown in the inset.

The power of Equation 5.28 is that most of the parameters can be deter-

mined beforehand and thereafter taken to be constant. These can be measured

in regions where there is a single state, like the data in Figure 5.4. The I(z)

curve fixes the value of κ, while measured distributions with a single state

can determine the values of σpre and σz. Once these parameters are known,

the only free parameter that defines the PDF for a specific state of a multi-

state system is the mean current, µI . This connects the current distribution

to measurable quantities, whereas Equation 5.20 simply introduced additional
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Figure 5.4: Measured distributions (PDFs) of current for five differ-

ent tip heights, shown as shaded histograms. The solid lines show

fits to these histograms, using Equation 5.28. The inset shows mean

current as a function of relative tip height (with arbitrary zero).

The fit to the inset gives κ = 22.2 nm−1. The five histograms are

fit using σz, σI , plus the five means of the five distributions, µI , as

free parameters. The means are roughly 5, 10, 20, 40, and 80 pA,

and the other parameters are σz = 3.35 pm, σI = 3.39 pA.

arbitrary free parameters.

5.4 Analysis of DB Charge State Dynamics

Figure 4.2c in the previous chapter showed a current trace, I(t), of the tip-

sample tunneling current at the edge of a DB halo. We will take this as an

example of the generalized analysis method that we have described so far in

this chapter.

At an appropriate tip position, it is possible to directly observe current

levels corresponding to the negative, neutral, and positive charge states of the

DB, and it is possible to determine the total fraction of time spent in each of

these states. In other words, we can determine the probabilities for the DB to
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be found in each of the three charge states, P−, Po, and P+, whose sum must

of course be one. We can represent these three probabilities more concisely

with the probability vector, P ≡ (P−, Po, P+)T. The integral area of each of

the three gaussian fits shown in Figure 4.2b of the manuscript is proportional

to the probability for that charge state, which we refer to as the steady state

probability, whose vector is P(ss).

As described before, this first fitting procedure — fitting the multi-state

histogram in Figure 4.2b using a sum of individual distributions — is important

and involves some informed guesses at the outset. As described above, two

main assumptions were made here. First, it was assumed that the distribution

for each state was a gaussian. Second, in order to further confine the fit, it

was assumed that the gaussian widths were linearly related to their means

through Equation 5.20. These assumptions allowed good fits to nearly all the

I(t) traces where multiple states could be resolved. (Alternatively, we could

have used a “control” dataset like the one shown in Figure 5.4 to find the

characteristic parameters of the noise, and subsequently used Equation 5.28

for the distribution corresponding to each state.) Once we have fit the total

histogram, we know a great deal about the system: not only do we know the

steady state probabilities contained in the vector P(ss), we also know the PDFs

corresponding to each state, pα(I) for α = {−, 0,+}, gaussians in this case.

The histogram corresponding to the entire I(t) trace, or the entire data set

D, is shown as a grey histogram in Figures 5.5a-d. This is exactly the histogram

shown in Figure 4.2b. In Figure 5.5a, the orange part of the histogram shows

the distribution corresponding to the subset of data points for which current is

less than 19 pA, that is S(0) ≡ {I(ti) : I(ti) ≤ 19 pA}. This is one particular

“initial subset” which we single out. We can then consider the distribution

of points which occur exactly a time τ later than the original subset, that is

S(τ) ≡ {I(ti + τ) : I(ti) ≤ 19 pA}. The orange histograms in Figures 5.5b-d

show the distributions p(I;S(τ)) for τ equal to 0.5 ms, 2.0 ms, and 8.0 ms

respectively¶. As τ increases, we see that the distribution first spreads to take
¶ While the PDFs are normalized so that their integral is one, the plotted histograms in

Figure 5.5 are not. They can be taken to be |D|·p(I) for the grey histograms and |S|·p(I;S)
for the orange histograms. This reflects the “fraction” of D that is made up of S.
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Figure 5.5: (a-d) The grey histogram is the histogram correspond-

ing to the data set, D, shown in Figures 4.2b and c. The su-

perimposed orange histogram in (a) shows the subset, S(τ = 0),

chosen such that I(t) ≤ 19.0 pA. The superimposed histograms

in (b-d) show the subsets S(τ = 0.5 ms), S(τ = 2.0 ms), and

S(τ = 8.0 ms) respectively. (e) The three components of P(τ) are

plotted as a function of τ for the initial subset shown in (a), that

is S(0) ≡ {I(t) : I(t) ≤ 19.0 pA}. The vertical dashed lines show

the components of P corresponding to the subsets shown in (b-d).

(f) Likewise, the three components of P(τ) for a different initial

subset S(0) ≡ {I(t) : 20.6 pA ≤ I(t) ≤ 23.8 pA}. (g) The three

components of P(τ) for S(0) ≡ {I(t) : 25.4 pA ≤ I(t)}. (Figure

from Taucer et al. (2014).2)

roughly the shape of the negative charge state gaussian, and subsequently the

amplitude of that peak decreases as the other two increase. At 8.0ms the
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orange distribution, S(τ = 8.0 ms) is approaching the steady state, which is

to say that it becomes a scaled down version of the grey one, D.
The probability vector, P(τ), corresponding to each subset, S(τ), is de-

termined by the constrained triple gaussian fit described above, with Pα(τ)

as free parameters. Such a triple gaussian fit needs to be performed for each

value of τ , giving the three components of P at the delay τ . This procedure

generates the data points plotted in Figure 5.5e. Note that the subset, S(0),

shown in Figure 5.5a was chosen so that P−(0) ≈ 1, so the evolution of the

probability vector for this subset starts with P−(τ) near one, and the other

two near zero. The plot again shows the negative charge state probability

dropping as the other two probabilities increase, and all three tending towards

their steady state values. Figures 5.5f and g show the evolution of P(τ) for

subsets corresponding to the neutral and positive charge states, respectively.

The solid lines in Figures 5.5e-g come from another fitting procedure, which I

explain next.

The theoretical prediction for P(τ) is based on a set of coupled differential

equations, corresponding to the kinetic scheme

DB−
Γ

(E)
−/o

Γ
(F)
o/−

DBo
Γ

(E)
o/+

Γ
(F)
+/o

DB+ , (5.29)

which can be concisely expressed as

d
dτ
P(τ) = MP(τ) ; (5.30)

M ≡


−Γ

(E)
−/o Γ

(F)
o/− 0

Γ
(E)
−/o −Γ

(E)
o/+ − Γ

(F)
o/− Γ

(F)
+/o

0 Γ
(E)
o/+ −Γ

(F)
+/o

 .

Note that we have made the assumption here that direct transitions, − → +

or + → −, can be neglected. This sets the corresponding matrix elements,

Γ−/+ and Γ+/−, to zero.
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Before fitting, we can apply one further constraint on the rates, based on

the steady state probability vector, P(ss). It follows from Equation 5.30 that

the filling and emptying rates are related to the steady state probabilities

through the two relations,

Γ
(E)
−/o

Γ
(F)
o/−

=
P

(ss)
o

P
(ss)
−

and
Γ

(E)
o/+

Γ
(F)
+/o

=
P

(ss)
+

P
(ss)
o

, (5.31)

which is the analog of Equation 5.16 for the kinetic scheme discussed here.

The set of coupled differential equations represented by Equation 5.30 is

uncoupled by diagonalizing the matrix M. Defining a unitary matrix, S, we

find a diagonal J, such that M = SJS−1. The time evolution of the probability

vector is then given precisely by Equation 5.19. Any matrix of the form of

M has at least one eigenvalue equal to zero with the other two less than or

equal to zero. This means that each component of P(τ) is comprised of a

constant term (the steady state probability for that charge state) plus two

decaying exponentials. The solid curves in Figures 5.5e-g are fits to the data

using Equation 5.19, constrained by the relations 5.31. All nine curves are fit

using only two free parameters, Γ
(F)
o/− and Γ

(F)
+/0. Thus these fits, along with the

constraints of the steady state, give the four rates for the transitions between

states.

This analysis was repeated for all current traces where multiple charge

states could be resolved, leading to the rates plotted in Figure 4.4.
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6 Dangling Bond Fabrication

Over distances of several nanometers, DBs can exhibit strong electron-electron

interactions via Coulombic repulsion or attraction. In addition to this, more

closely spaced DBs can exhibit tunnel-coupling, which permits the transfer of

electrons directly from one DB to another. These two effects have been used

to show that small DB structures can be polarized by external biases lead-

ing to localization of an electron on asymmetric sites of otherwise symmetric

structures.33 If DBs are brought closer together still, something similar to a

chemical bond forms between them, as bonding and anti-bonding orbitals are

formed. Clearly, any number of complex structures, comprising many DBs,

are possible. Tight-binding Hamiltonians like the ones described in Chapter 1

can be embodied by tailored DB devices. Work in this area is still in its early

stages, but engineering of energy levels and wavefunctions has been reported

by several groups.34,55–57

This ability to control wavefunctions and elctron-electron interactions has

already been widely explored and developed in the context of quantum dots,

with applications from novel transport devices, to quantum computing. Single

electrons can be trapped and manipulated in single- or multiple-quantum dot

structures which allows control over occupation down to single electrons,58,59

single electron charge detection,60,61 and coherent control of both spatial wave-

functions62,63 and spin states.64–66 Schemes for employing quantum dot systems

have been developed to the level of architectures for both classical67,68 and

quantum69 information applications. A drawback of most quantum dot sys-

tems is the need for cryogenic temperatures, a consequence of the relatively

small charging energies of the quantum dots. As quantum dots are miniatur-

ized, charging energies are increased. Ultimately miniaturized quantum dots
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are embodied in atomic impurities and atom-scale “defects”, which are giving

birth to a new arena for technological progress.

Recent work on embedded impurities in Si has delivered impressive sin-

gle electron devices, demonstrating a single atom Single Electron Transistor

(SET),70 coherent spin control,71 and optical addressing of single atoms.72,73

Embedded phosphorus atoms can be embedded in silicon with nanometer pre-

cision by delta-doping. However, the inability to control the placement of

impurities on a truly atomic scale is a fundamental limitation for some ap-

plications.74 By contrast, Dangling Bonds (DBs) on the silicon surface can

be fabricated with atomic precision,33,55 making them an attractive candidate

for atomic quantum dots. The commonalities between these two areas lead

to a description of DBs as Atomic Silicon Quantum Dots (ASiQDs). There

is already a body of theoretical work exploring the possibility of using DBs

as building blocks for transport and logic devices.12,13,42,75 The potential of

using DBs to create functional device elements is only just being explored

and understood,34,55,76 and likewise fabrication is now being optimized and

commercialized.57,77,78

This chapter will provide a brief description of some of progress in DB

fabrication. The development of atomic silicon quantum dot technology will

require reliable fabrication of DB structures, large and small, with nearly per-

fect atomic precision. At present, we can make small structures of a few atoms

perfectly, and larger structures can be made with nearly atomic precision. We

start this section by discussing image analysis, the process by which the pe-

riodicities of the surface can be extracted automatically from STM images.

We follow this with a description of the process of hydrogen desorption, and

finally, we discuss some of the patterns that have been created.

6.1 Image Analysis

For DB fabrication, the most important piece of information that can be ex-

tracted from an STM image is the periodicity and alignment of the surface.

Although the periodicity of the H-Si(100) 2×1 surface is known exactly, errors
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in the acquired data inevitably occur and need to be compensated for. Cali-

bration of the piezoelectric scanners, for instance, is not necessarily constant,

and needs to be continually re-measured and re-calibrated in order to ensure a

good match to the lattice. Furthermore the angle of the surface unit cell with

respect to the scanner coordinates is slightly different for each sample that is

diced and loaded into the microscope. This chapter starts by considering the

properties of continuous and discrete Fourier Transforms (FTs) in one and two

dimensions, with an aim to automatically fitting the peaks corresponding to

surface periodicities.

6.1.1 Continuous Fourier Transforms

The FT of an STM image contains the information about the periodicity of

the surface. This section describes methods of extracting that information by

analysis of STM images. Before discussing two dimensional Fourier transforms,

we will briefly review the continuous and discrete Fourier transform in one

dimension.79

We will use the bra and ket notation of quantum mechanics to describe

functions in position and in frequency space. For a basis, we can use the set

of eigenstates of position, {|x〉}. From these, we can construct the basis for

the Fourier transform, {|k〉}, defined as oscillatory functions (plane waves in

higher dimensions),

〈x|k〉 =
1√
2π
eikx. (6.1)

Both basis sets obey the usual equations of orthonormality, 〈xi|xj〉 = δ(xi−xj)
and 〈ki|kj〉 = δ(ki − kj).

We can express a function in terms of its Fourier components,

f(x) = 〈x|f〉 = 〈x|
[∫

dk|k〉〈k|
]
|f〉 =

∫
dk〈x|k〉〈k|f〉

=
1√
2π

∫
dkf̃(k)eikx, (6.2)
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or we can express the Fourier components in terms of the function,

f̃(k) = 〈k|f〉 = 〈k|
[∫

dx|x〉〈x|
]
|f〉 =

∫
dx〈k|x〉〈x|f〉

=
1√
2π

∫
dxf(x)e−ikx. (6.3)

Equations 6.2 and 6.3 are the inverse Fourier transform, and the Fourier trans-

form, respectively. We denote the Fourier transform of a function, f(x), as

F [f(x)] or equivalently, f̃(k).

Note that the Fourier transform of the sum of two functions is equal to the

sum of the Fourier transforms:

F [f1(x) + f2(x)] =
1√
2π

∫
dx [f1(x) + f2(x)] e−ikx

=
1√
2π

∫
dxf1(x)e−ikx +

1√
2π

∫
dxf2(x)e−ikx

= F [f1(x)] + F [f1(x)] . (6.4)

The Fourier transform of a delta function is trivial:

F [δ(x− x0)] =
1√
2π

∫
dxδ(x− x0)e−ikx =

1√
2π
e−ikx0 , (6.5)

whose real and imaginary parts are even and odd, respectively:

Re {F [δ(x− x0)]} =
1√
2π

cos(kx0)

(6.6)

Im {F [δ(x− x0)]} =
1√
2π

sin(kx0) .

Since any real function can be constructed as an infinite sum of delta functions,

it follows that the Fourier transform of a real function will always have an even

real part and an odd imaginary part. The STM images we intend to analyze,

of course, contain real data only, so this will also apply to the FTs of STM

images.

We will now briefly consider the one-dimensional equivalent of the image

analysis required to extract the periodicity from an STM image. We consider
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the Fourier transform of a periodic function,

f(x) = A cos [k0(x− x0)] , (6.7)

which has an amplitude of A, a periodicity described by the wavevector k0,

and a maximum at x0. How does the information contained in the simple

function f(x) show up in the Fourier transform? The Fourier transform can

be worked out, and it gives

f̃(k) =
A
√

2π

2

[
e−ik0x0δ(k − k0) + eik0x0δ(k + k0)

]
. (6.8)

The Fourier transform exhibits two peaks at k = ±k0, with phases of ∓k0x0,

and with equal amplitudes of A
√
π/2∗. The periodicity of the function is

encoded in the position of the two corresponding peaks; the amplitude of the

periodic function is encoded in the amplitude of the peaks; and the position

of the maximum is given by the phases of the peaks. Incidentally, all the

information about the function is contained in only one of the peaks. This

is the result of the fact, shown above, that the Fourier transform of any real

function has an even real part and an odd imaginary part — the positive side

of a function (where x ≥ 0) dictates the negative side (where x ≤ 0).

6.1.2 Discrete Fourier Transforms

In experimental settings, we deal with finite data sets, and as such, we need

to consider the discrete Fourier transform, rather than the continuous one

outlined above. This means that we have a situation where space is divided

into discrete units of size ∆ located at xn = n∆; i = 0 , 1 , . . . , N − 1. As

before, a discrete function can be expressed in terms of its Fourier components,

f(xn) =
1√
N

N−1∑
j=0

f̃(kj)e
ikjxn ; xn = n∆, (6.9)

∗Strictly speaking we should say that the integral of each peak is A/2, since the amplitude
— in the sense of height — is infinite.
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and the Fourier components can be expressed as

f̃(kj) =
1√
N

N−1∑
n=0

f(xn)e−ikjxn ; kj =
2πj

N∆
. (6.10)

The discrete Fourier transform of a discretized periodic function is more

involved than the Fourier transform of a continuous function. If the periodic

function is

f(xn) = Aeikxn , (6.11)

where an arbitrary phase can be included through A, then the Fourier trans-

form is

f̃(kj) =
A√
N

∑
n

ei2π
(z−j)
N

n, (6.12)

where z is defined such that

k =
2πz

N∆
. (6.13)

We can think of k as the “generating” wavevector, since it generates the pe-

riodicity in f(x). z can be thought of as the value of k in units of 2π/N∆,

the spacing between the discretized wavevectors. When z happens to be an

integer 0 ≤ z ≤ N − 1, Equation 6.12 is trivially evaluated and gives

f̃(kj) =


√
NA if j = z

0 if j 6= z

 . (6.14)

When z is not an integer, however, the we need to make an approximation.

Each sequential term in the sum in Equation 6.12 takes a step in phase of

size 2π(z− j)/N . When these steps are small we can replace the sum with an

integral. More precisely, we can change to an integral whenever (z − j)� N .

This approximation is therefore valid for values of kj near k — that is, it is

valid for Fourier components near the generating wavevector. In practice this

means that it is valid near the peak in the Fourier transform. Making this
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approximation, we see that

∑
n

ei2π
(z−j)
N

n ≈
∫ N

0

ei2π
(z−j)
N

ndn =
−iN

2π(z − j)
(
ei2π(z−j) − 1

)
= Neiπ(z−j) sinc [π(z − j)] , (6.15)

so the Fourier transform can be expressed as

f̃(kj) =
√
NAeiπ(z−j) sinc [π(z − j)] . (6.16)

The Fourier transform of a discretized periodic function, therefore, may have

multiple non-zero values for the Fourier components. We can think of this

in two distinct ways: firstly, we can say that this is because we are using a

discrete set of periodicities which does not necessarily include the one which

generated the discrete real-space function; or secondly, we can note that the

discrete real-space function is actually not periodic, even though the function

which generated it is.

For negative frequencies, the derivation is similar:

F [Ae−ikxn ] =
A√
N

∑
n

e−i2π
(z+j)
N

n. (6.17)

For the case where z is an integer, we have a very similar result to the one

obtained above,

f̃(kj) =


√
NA if j = N − z

0 if j 6= N − z

 . (6.18)

In the case where z is not an integer, there are often no values of j for

which the steps in phase, 2π(z + j)/N , are small (� 2π), since z and j are

positive numbers. However, if the quantity 2π(z + j)/N is close to 2π, then

the sum can again be replaced with an integral. If we let N + ε ≡ z+ j, where
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Figure 6.1: A periodic function, f(xn), and its 1D Fourier trans-

form, f̃(kj), with a periodicity exactly matching a discrete Fourier

component. The magnitude of the Fourier transform is plotted,

and the phase of particular Fourier components are indicated by

the insets in the lower panel. Dotted lines indicate the continuous

function and its continuous Fourier transform.

ε is small, then we can write the sum as

∑
n

e−i2π
(N+ε)
N

n =
∑
n

e−i2π
ε
N
n ≈

∫ N

0

e−i2π
ε
N
ndn

= Ne−iπε sinc (πε) , (6.19)

which allows us to write the Fourier transform as

F [Ae−ikxn ] =
√
NAeiπ(N−j−z) sinc[π(N − j − z)] (6.20)

The Fourier transform of a real periodic function can be expressed by a

sum of Equations 6.16 and 6.20:

F {A cos[k(xn − xsh)]} =

√
NA

2
e−ikxsheiπ(z−j) sinc[π(z − j)] (6.21)

+

√
NA

2
eikxsheiπ(N−z−j) sinc[π(N − z − j)],
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Figure 6.2: A periodic function and its 1D Fourier transform, with

a periodicity exactly matching a discrete Fourier component. The

offset in the function (upper panel) shows up as a phase in the cor-

responding peaks in the Fourier transform (insets of lower panel).

where xsh represents the lateral shift of the periodic function. Equation 6.22

shows that a single periodicity in a real function gives rise to two peaks in

the discrete FT. This was also the case for the continuous FT, where peaks in

the FT showed up at ±k, but in the case of the discrete FT, since there are

no negative components in the dicrete FT, the “negative” peak instead shows

up at 2π(N − z)/N∆. The highest discrete components of the FT are in fact

equivalent to negative wavevectors.

Figure 6.1 shows a discrete periodic function, whose generating wavevector

corresponds to one of the Fourier component (meaning that z is an integer).

The discrete FT has two non-zero components, at j = z and at j = N − z.
The inset of the FT shows that the phases of these two peaks are both zero.

Figure 6.2 shows a different function, generated from the same wavevector, but

shifted laterally. The magnitude of the discrete FT is identical to the unshifted

function, but we see that the phases of the two peaks are no longer equal.

In fact, they are opposite, as expected from the factors e±ikxsh in Equation

6.22. We therefore see that the information about the periodicity is, roughly

speaking, contained in the magnitude of the FT, and the information about

136



the phase of the periodic function is contained in the phase of the peaks.
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Figure 6.3: A periodic function and its 1D Fourier transform,

with a periodicity which does not match a discrete Fourier com-

ponent. The continuous function and its continuous Fourier trans-

form are indicated by dotted lines. Because the peak in the contin-

uous Fourier transform does not coincide with one of the discrete

components, many discrete components have non-zero magnitudes.

Phases of Fourier components near the two peaks are shown in the

insets.

Figure 6.3 shows a pseudo-periodic function whose generating wavevector

does not correspond to a Fourier component (meaning that z is not an integer),

and which also experiences a shift, xsh. First, we see that there are many non-

zero components of the discrete FT, which are peaked near the generating

wavevector, where j is close to z, but are also peaked near N − z. Secondly,

we see that the phases of the components are no longer simply related to the

shift. From one side of a peak to the other, the phase abruptly shifts by a

phase of ∼ π. Roughly speaking, this change in the phase is centered on the

phase ±kxsh, bringing the phase from ±kxsh − π/2 to ±kxsh + π/2, for the

two peaks.

Note that in Figures 6.1, 6.2, and 6.3, the discrete points represent the

discrete function and the computed discrete FT. The solid black line in the FT
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independently shows the predicted FT using Equation 6.22. We can see that in

almost all cases, the discrete FT components fall precisely on the line defined

by this equation, indicating the the discrete FT can be well approximated

using sinc functions in this way.

6.1.3 Fitting a 1D Fourier Transform with Noise

We can fit noisy signals using the magnitude of the sinc function given by

Equation 6.22 and the magnitude of the computed discrete FT. This works

well in finding the periodicity if we start with a good guess (meaning, within

about one Fourier component). However, it leaves out the phase of the periodic

signal, and generally has difficulty finding the best fit for bad initial guesses.

The difficulty in fitting comes from the bumpy nature of the magnitude of the

sinc function. This means that when we algorithmically attempt to minimize

the errors in a fit, we are looking for the minimum of a highly corrugated

surface, where fits almost always “get worse before they get better,” and the

fit often settles in a local minimum.

When we fit using complex FT components, and keeping the phase infor-

mation in Equation 6.22, fitting is less sensitive to the initial guess, but still

requires the initial guess of k to be within a few Fourier components. Figure

6.4 shows a fit to a periodic signal with deliberately added noise. Despite the

rather extreme noise, and a poor initial guess, a good fit is found. In this case,

the fit also gives the correct value for the phase of the periodic signal.

6.1.4 Two-dimensional Discrete Fourier Transforms

As in the case of one-dimension, we can express two-dimensional discrete func-

tions in terms of their Fourier components,

f(xnm) =
1

N

∑
i,j

f̃(kij)e
ikij ·xnm , (6.22)
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Figure 6.4: Fourier transform of a periodic function with simulated

noise. The red dashed line in the lower panel shows the fit to the

discrete values. Parameters for data generation were: A = 1.0,

xshift = 1.5, z = 4.3, and a noise level set at 0.3. Parameters for

initial guess are A = 0.5, xshift = 0.0, z = 4.0. Parameters found

by fitting are: A = 1.046, xshift = 1.307, z = 4.250.

and the components can be expressed in terms of the function as

F{f(xnm)} = f̃(kij) =
1

N

∑
n,m

f(xnm)e−ikij ·xnm , (6.23)

which, again, are the inverse Fourier transform and the Fourier transform,

respectively. Note that the two dimensional Fourier transform can be written

in the form

f̃(kij) =
1√
N

∑
n

{
1√
N

∑
m

f(xnm)e−ikixn

}
e−ikjxm , (6.24)

which makes it clear that the two dimensional Fourier transform can be thought

of as the one-dimensional Fourier transform along one dimension (say, rows)

of the one-dimensional Fourier transform along the other (say, columns).

139



Figure 6.5: Simulated two-dimensional periodic image, with its two

periodicities chosen to not correspond to an exact Fourier compo-

nent.

In the specific case of a periodic function,

f(xnm) = Aeik
o
ij ·xnm , (6.25)

as shown for example in Figure 6.5, the two-dimensional Fourier transform
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turns out to be the product of two one-dimensional Fourier transforms:

F{Aeiko
ij ·xnm} = f̃(kij) =

1

N

∑
n,m

{
Aeik

o
ij ·xnm

}
e−ikij ·xnm

= A

{
1√
N

∑
n

eik
o
i xne−ikixn

}{
1√
N

∑
n

eik
o
jxme−ikjxm

}
= A · F

{
eik

o
i xn
}

(ki) · F
{
eik

o
jxm
}

(kj)

≈ A ·
{√

Neiπ(zi−i) sinc[π(zi − i)]
}

×
{√

Neiπ(zj−j) sinc[π(zj − j)]
}

F{Aeiko
ij ·xnm} ≈ ANeiπ(zi+zj−i−j) sinc[π(zi − i)] sinc[π(zj − j)], (6.26)

where zi and zj are defined such that ko
i = 2πzi/N∆ and ko

j = 2πzj/N∆†.

Figure 6.6 shows the magnitude of the computed FT, f̃(kij), of the 2D

function shown in Figure 6.5, along with the predicted FT according to Equa-

tion 6.26, denoted f̃th(kij), in panels a and b. Panels c and d show the logs of

these same functions. This shows that the 2D sinc function provides a good

approximation to the magnitude of the exact discrete FT, except in regions

far from the peaks, where the magnitude of the FT is very small. Figure 6.7

likewise compares the phase of the exact FT and the approximated one. Here,

larger differences can be seen between. Still, the region very near each peak

shows good agreement between these two representations of the two dimen-

sional FT.

In practice, we have found that for real images including noise, fits to the

two dimensional FT were most reliable when phase information was ignored,

and the fit aimed to capture magnitude only. Just as in the case of the one

dimensional FT, this results in a need for a very good initial guess. In practice,

this is not a significant problem since a local maximum in the FT is often within

one pixel of the underlying periodicity.
†There is an ambiguity here with regard to the symbol i, which can denote an integer

index or the imaginary unit. I leave it to context to distinguish the two, but in general, the
index can be recognized by its symmetry with respect to the index j.
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Figure 6.6: Two-dimensional Fourier transform of the periodic func-

tion shown in Figure 6.5 and its approximate representation, using

Equation 6.26. (a) Computed Fourier transform of the image in

Figure 6.5. (b) Approximate Fourier transform calculated using

Equation 6.26. (c-d) Logarithms of the Fourier transform, com-

puted and approximated.

6.2 Fabrication

DBs are fabricated using the STM tip by simple application of a pulse in

voltage, which gives rise to a pulse in current. Typically, biases above ∼ 1.6 V
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Figure 6.7: Phase of the two-dimensional Fourier transform, (a)

computed, and (b) approximated using Equation 6.26.

are required to break the H-Si bond. In general, the STM tip is brought closer

to the surface before the application of the pulse, to increase current during

the pulse. Typically, the relevant parameters for DB fabrication are: pulse

duration, τpulse, change in tip height (relative to a setpoint height), ∆zpulse,

and pulse bias, Vpulse.

Figure 6.8 shows the result of this process of DB fabrication repeated at

points arranged in a square grid of sites with nearest neighbours separated by

2 nm. For each line of this grid, the change in tip height for DB fabrication

was gradually increased to bring the tip gradually closer to the sample. At

the leftmost site, DB fabrication was attempted with no change in tip height,

∆z = 0, so that the tip height during the pulse was determined solely by the

feedback loop. At the rightmost site, DB fabrication was attempted with the

tip brought closer to the sample by 200 pm. Aside from a brief period of time

during the pulse, the feedback loop is left on. This experiment was performed

for pulse biases of +2.4 V, +2.6 V, and +2.8 V.

The grids in Figure 6.8 illustrate the effects of tip height and tip bias on

hydrogen desorption. The lack of DBs on the left side for all three pulse biases

shows that the tip must be brought closer to the sample in order to remove
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Vpulse = 2.8 V

Vpulse = 2.6 V

Vpulse = 2.4 V

�zpulse = 0 �zpulse = �200 pm

Figure 6.8: Grids of DBs fabricated with varying tip heights as

the tip proceeds from left to right along each line, starting from

∆z = 0 on the left and proceeding to ∆z = −200 pm on the right.

Tip displacements are defined relative to a tip height corresponding

to the setpoint of IT = 40 pA at VS = +2.0 V.

hydrogen. As expected, desorption occurs more readily for higher pulse biases,

indicated by the fact that the +2.8 V grid extends furthest to the left: high

pulse biases allow removal of hydrogen at greater tip-sample separations.

A more interesting and less obvious observation is in the quality of desorp-

tion. Comparing the appearance of the DBs in the three panels of this figure,

we see that the uniformity of the DBs is greatest for the lowest pulse biases,

at +2.4 V. Furthermore, these are the darkest DBs. The DBs fabricated with

higher voltage pulses appear more often as brighter and non-symmetrical pro-

trusions. The reason for this is not that there is anything “wrong” with the

DBs fabricated at higher biases. It is that multiple hydrogen atoms are more

likely to be desorbed at higher biases. What appear to be single DBs in the

upper two panels of Figure 6.8 are often actually tight clusters of multiple DBs.

This illustrates an important fact for DB creation: it is in general preferable

to desorb at low bias, with the tip close to the surface, rather than at higher
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bias, with the tip further. The approach of the tip to the surface, however, if

taken too far, can lead to changes in the atomic structure of the tip.

Figure 6.9: Grid of DBs at a 2nm pitch. Pulse bias was +2.4V and

∆zpulse was -150pm. Pulse width was 2 ms.

This illustrates one way to find good parameters for hydrogen desorption.

For the tip and sample used in this experiment, optimal parameters for des-

orption are around Vpulse = +2.4 V and ∆zpulse = −150 pm. Figure 6.9 shows

a grid of 1024 DBs created at these roughly optimized desorption conditions.

The spacing between DBs is 2 nm. Single DBs are created in most cases, and

in large portions of the grid, excellent uniformity is achieved. As described pre-

viously, most DBs which appear to be unusually bright and/or oddly shaped

are in fact sites of multiple desorptions leading to clusters of DBs. The error

rate in the number of DBs created (considering a single DB to be a success

and zero or multiple DBs to be a failure) is in the range of 10-25%.

In Figure 6.9, there are placement errors in addition to the errors in the

number of hydrogen atoms desorbed. That is, the created DBs were not cre-

ated at exactly the sites of the 32×32 grid of pre-decided locations where des-

orption was attempted. In this case, this is entirely expected, since the grid

of desorption sites was not defined with reference to the surface atoms, but
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instead was arbitrarily chosen to have nearest neighbour spacing of 2 nm. By

luck, 2 nm is close to the distance of five atomic spacings, equal to ∼ 1.92 nm,

so that portions of the grid may happen to align with the silicon surface.

Since the desorption attempts most often do not correspond exactly to the

locations of surface atoms, it would be impossible to not have placement error

in this case. In order to have good alignment between the tip and the surface

atoms, the image analysis methods described in the previous section need to

be applied.

With analysis of the Fourier transforms described in the previous section,

and care to minimize and account for other spurious effects such as drift, it is

possible to achieve excellent alignment of the tip with the sample, as shown

in Figure 6.10. This figure shows an attempt to desorb 12 hydrogen atoms in

a line, with a spacing of exactly 1.536 nm, or four atoms over. Figure 6.10a

shows 2 nm× 2 nm images recorded before and after each desorption attempt

in order to establish whether or not good alignment was achieved for each

desorption attempt. Desorption was attempted at the center of each image, at

the intersection of the dashed lines. The larger STM image shown in Figure

6.10b shows the resulting line, circled in red. Part of a different attempt is

visible in the bottom of this image.

This figure shows that much higher desorption success rates are possible

with proper alignment between tip and sample. In this case 12 out of 12

desorption attempts resulted in single DBs being created at the intended site.

(Note that the additional DB above and to the right of the third DB, as well

as the additional DB below the eighth DB, were both pre-existing, as seen in

the top right edge of the third “before” image as well as the eighth “before”

image.) While this is a best case scenario, and does not indicate a genuine

100% success rate in all cases, it does show that much higher success rates

are possible. A different attempt, visible in the lower part of Figure 6.10b

shows a case with an error, both in number of DBs and location, at one of the

sites. This is perhaps more representative of general statistics. With proper

tip-surface alignment and good desorption parameters, success rates around

90% are typical.
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Figure 6.10: 1.0V 20pA images. (a) 2nm x 2nm images and (b)

15nm x 15nm image.

Also noteworthy in this figure is the challenge posed by tip changes. The

lattice looks different depending on each tip. The first “before” picture gives

the impression that we are aiming for the top left side of the dimer. In fact we

are aiming for the bottom right side, but this tip happens to image the dimer

rows in a way that exagerates the space between the atoms in a dimer, and

under-emphasizes the space between dimer rows.

In general, near-perfect alignment between the tip and sample results in

higher success rates for DB fabrication. In practice, great care needs to be
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taken to achieve near-perfect alignment. An error in the initial placement

of the tip for the first desorption misaligns the entire pattern relative to the

lattice. Furthermore, even with perfect image analysis, drift can warp images,

leading to incorrect unit vectors extracted from surface analysis, and of course

drift can also cause misalignment later, when desorption is attempted. In

addition to all this, hysteresis — or “creep” — in the scanner position adds

another challenge to tip positioning. The result of all this is that extreme care

needs to be taken to ensure near-perfect registry of the tip with the surface.

At present, this requires a great deal of input from the STM operator.

6.3 Multi-DB Structures

The ability to fabricate DBs on the silicon surface opens very exciting avenues

for creating technologies at the smallest scales. Conducting structures could

be created, enabling transport-based devices, which could draw a fraction of

the current of today’s CMOS devices. An even more exciting prospect is the

possibility of harnessing the very different properties of matter on this scale. It

appears to be possible to make tailored wavefunctions by precisely controlling

wavefunction overlap between neighbouring sites. Furthermore, the small scale

of DB structures allows much stronger Coulombic coupling, opening the door

for technologies based on strongly interacting electrons.

Figure 6.11, 6.12, and 6.13, show three of the simplest multi-DB structures

that can be fabricated, a two-, three-, and four-DB line respectively. These

three structures were created on a a single sample, separated by 20 to 60

nm from one another (meaning that they were isolated). This allowed these

structures to be studied with a single STM tip, so that differences between

these images and the corresponding topographical cross-sections, from one

structure to another, are entirely due to the structures themselves, and not to

any changes in the tip.

A noteable feature of these images is the presence of protrusions between

the atomic sites of the DBs. We typically refer to these (rightly or wrongly) as

“antinodes,” since they look as if there were a maximum in the DB wavefunc-
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Figure 6.11: Two-DB structure. STM images and cross-sections.
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Figure 6.12: Three-DB structure. STM images and cross-sections.
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Figure 6.13: Four-DB structure. STM images and cross-sections.

tion, where one might expect a minimum. An explanation for these antinodes

was provided by Schofield et al.,34 who proposed that these features are due

to the hybridization of excited states of the DB. This explanation is perfectly

plausible, but, given that these features appear inside the DB halo, it is impor-

tant to connect this explanation (or any other) to the non-equilibrium ideas

of competing filling and emptying processes described in this thesis.

As these structures are imaged at varying biases, there are significant

changes in the relative brightness of each atom, as well as in the appearance of

the antinodes. In general antinodes become more visible as bias is increased.

In the case of the four-DB structure, it is interesting that the central antinode

appears at a much lower bias than the two outer anti-nodes.

Figure 6.14 shows a six-DB structure, comprised of a straight three-DB line

and a kinked three-DB line. This structure illustrates an interesting feature

of the antinodes, which is that they tend to be perpendicular to the line con-

necting two DBs. Thus we can see that the antinodes in the kinked three-DB

structure are tilted relative to the lattice, while the antinodes in the straight
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Figure 6.14: STM images of a six-DB structure at the six different

biases indicated. IT = 40 pA.

three-DB structure are aligned with it. Also notable in this figure is the fact

that this structure collectively exhibits a halo, and at some biases this halo

has the distinctive speckly noise that is characteristic of charge fluctuations.

It would be interesting to study such fluctuations. Do they correspond to a

changing charge state of the entire structure, or to the transfer of charge from

one part of the structure to another?

In this thesis, we will not deal with the detailed topography of these struc-

tures, although this too is a fascinating topic in which there is clearly a great

deal of work to be done. Instead, we simply present them as an illustration of

the rich structures that can be made, even with only a few DBs.

6.4 Large Scale DB Patterning

Image analysis and automated desorption routines allow fabrication of DB

structures from few DBs to many. The previous section showed some exam-

ples of small DB structures whose intricate topography is suggestive of rich

electronic structure, and possibly complex dynamics during STM imaging.
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Here, we discuss the possibility of using automated fabrication algorithms to

pattern the H-terminated silicon surface on a much larger scale.

Figure 6.15 shows fabrication of a repeated pattern on different scales.

Figures 6.15a and b show the repetition of the pattern in a 2 × 3 grid, and

a 7 × 7 grid, respectively. While the precision of fabrication is still relatively

rough, resulting in many atoms out of place, we see that the STM tip succeeds

in making single DBs in most instances. This process can be scaled up to

large scale patterning, as shown in Figure 6.15c, which shows the result of

patterning over 24 hours, at a rate of slightly more than one desorption per

second, resulting in the repetition of the atomic pattern over approximately

1.0 µm× 0.4 µm.

Figure 6.15d is a close up view of one unit of the repeated pattern after large

scale patterning (the repeated pattern consists of four rotated quadrants, one

of which is shown in Figure 6.15e). This STM image shows, first, that there

remains a significant degree of inaccuracy in DB placement. Perhaps more

important, however, is the resolution of the image, which is an indication

of the condition of the STM tip. Even after the desorption of several tens

of thousands of hydrogen atoms, the STM tip remains in excellent condition,

still able to create single DBs, and still able to image with excellent resolution.

This suggests that STM tips could be used to pattern on a large scale, without

significant degradation of the STM tip.
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a b

c d

e

Figure 6.15: (a) 40×40 nm2 STM image of a pattern repeated in a

2×3 grid. VS = −2 V and IT = 100 pA. (b) 80×80 nm2 STM image

of the same pattern repeated in a 7× 7 grid. VS = 1.8 V and IT =

100 pA. (c) 80 × 80 nm2 STM image after large scale patterning.

The atomic pattern was repeated in a grid of size 1.0 × 0.4 µm2,

roughly, corresponding to fabrication of approximately 30 000 DBs.

VS = −2 V and IT = 100 pA. (d) 12 × 12 nm2 STM image after

large scale patterning. VS = −2 V and IT = 100 pA. (e) Schematic

diagram of one quadrant of the repeated atomic pattern. The full

repeated pattern consists of four such configurations, each rotated

by 90◦.
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7 Quantum-dot Cellular Automata

In this chapter, we discuss a potential application of silicon DBs: Quantum-dot

Cellular Automata (QCA). We begin by reviewing some of the basic concepts

of QCA. We then discuss the typical assumptions of QCA simulation, and

proceed to examine the role of quantum correlations in QCA. Much of the

discussion in this chapter makes use of the descriptions in Taucer et al. (2015).3

7.1 Introduction to QCA

QCA was first proposed by C. S. Lent in 1993.80 It provides a basis for compu-

tation fundamentally different from the transistor-based technology that has

dominated high-tech innovation for well over half a century.81 While QCA

makes use of quantum dots, and quantum tunneling between these dots, it is

an architecture for classical computation, not to be confused with the entirely

different (though related) field of quantum computing.

In QCA, information is encoded in cells made of quantum dots. A cell

consists of four quantum dots arranged at the corners of a square, as shown in

Figure 7.1. Each cell contains two mobile electrons, which can tunnel between

adjacent dots, described by hopping constants, tij, but they cannot tunnel

from cell to cell. Electrons of course experience mutual repulsion, described

by an interaction energy, Vij. In general, this repulsion causes the electrons to

occupy opposite corners of the cell, forcing the configuration of the cell to fall

into one of the two antipodal (or “diagonal”) configurations.

In addition to the mutual repulsion between the two electrons inside a

cell, there is a slightly weaker repulsion between the electrons of neighbouring

cells, which tends to align their electronic configurations, when the cells are
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tij
Vij

Figure 7.1: Single QCA cell.

placed side by side. A simple line of cells thus acts as a binary wire, trans-

mitting information, as shown in Figure 7.2a. Other arrangements of cells

lead to different interactions between the electronic configuration of each cell.

For instance, diagonally placed QCA cells (corner-to-corner), cause an anti-

alignment of their respective electronic configurations. This is the basis of

the logical inverter shown in Figure 7.2b. Just like the binary wire, this gate

operates only on the basis of electron-electron repulsion, but with different cell

placement. Likewise, the arrangement of cells shown in Figure 7.2c is known as

a majority gate, since the single output is determined by a “vote” of the three

inputs. The binary wire, inverter, and majority gate are sufficient to enable

the design of a universal computer capable of very low power operation.82,83

Computing speed can in principle be enormously improved by the incor-

poration of clocking,84,85 where clock zones are used to sequentially send “bit

packets” through a QCA array to allow for pipelining. A clock zone is a group

of cells whose parameters can be tuned to either allow or disallow the group

of cells to become polarized (i.e., to take on one of the antipodal configura-

tions). Within a clock zone, the cells can be rendered “active,” or “inactive.”

Active cells are ones that can adopt one or the other antipodal configuration.

Thus they are sensitive to the polarization of cells around them, and they are

likewise able to affect cells nearby. Inactive cells are ones that, in one way or

another, have been rendered insensitive to their environment. In simulations,

this can be done by forcing electrons in a clock zone to delocalize, so that the

cells are depolarized. It can also be done by forcing the two electrons into two

out-of-plane dots, where they no longer have any effect on neighbouring cells.84

In either case, the inactive cell is insensitive to its surroundings and cannot

transmit information. A bit packet consists of a group of interacting cells in
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Figure 7.2: Basic QCA logic gates: (a) QCA wire. (b) Logical

inverter. (c) Majority gate.
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“active” clock zones, and can be moved through the circuit. As envisioned

theoretically, many bit packets could be processed simultaneously in a single

QCA circuit by modulating clock zone parameters appropriately.

QCA cells were demonstrated experimentally in metal-island quantum dots

as early as 1997.86 These metal-island QCA cells have been used to demon-

strate transmission of information, logic gates,87,88 and clocking.89,90 In this

implementation, clocking is realized by modulating the null-dot potential be-

tween dots. However, the relatively large size of the quantum dots means

that energy levels are closely spaced, so metal-island devices must be kept

at temperatures below ∼ 5K91,92 in order for quantum effects to be observ-

able. As the dimensions of a QCA cell are reduced, the operating temperature

increases, and at the molecular scale room temperature operation becomes

possible. Further advantages of miniaturization include fast switching times

and increased device density. For these reasons, molecular scale QCA has held

great promise. Suitable candidates have been synthesized chemically,93,94 and

a QCA cell made of silicon DBs has also been realized.33 DBs are an extremely

promising route to QCA since they naturally exist at the atomic scale, and

their presence on the Si(100) surface suggests avenues for integration into ex-

isting CMOS architectures. For QCA cells at the atomic scale, it is probably

neither feasible nor desirable to have addressable control over the parameters

of individual cells. Instead, large groups of cells could be addressed by external

fields,84,95,96 with the variation in these external fields producing clock zones.

A great deal of simulation and theory has been done on the topic of

QCA.81,97–101 This research has aimed to capture the qualitative and quan-

titative characteristics of QCA cells and of arrays of cells. Because of the

difficulties inherent in solving the complete quantum mechanical problem, a

number of simplifying approximations are typically made. These include a

reduction of the Hilbert space to two states per cell,98 a mean-field approach

to the intercellular interactions,81,97 and finally an assumption of exponential

energy relaxation.82,99 These approximations have allowed the field to progress

tremendously, simulating devices from small groups of cells, to large-scale QCA

processors. A great deal has already been learned about the nature and impor-
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tance of quantum mechanical calculations that go beyond these approxima-

tions, including full and partial quantum correlations. Quantum correlations

have been shown to affect dynamics in QCA wires98 and circuits.99 The degree

of correlations and and magnitude of their effect has also been studied.

The work presented in this chapter applies standard equations from the

literature to the simulation of clocked QCA, which have so far not been studied

with the inclusion of intercellular correlations. We see that the inclusion of

intercell correlations can significantly change the steady state of the system not

only quantitatively, but qualitatively, even in the case of very simple systems,

such as an unbiased line of QCA cells. Full quantum mechanical simulations,

with the approximation of exponential relaxation to a thermal steady-state,

predict an exponential loss of information even as bit packets propagate, as

well as coherent oscillations whose period strongly depends on the size of the

bit packet. This contrasts with mean-field simulations, which show perfect

and indefinite propagation of information. The results presented here will

have implications for molecular-scale QCA device design, and will highlight

the need for implementation-specific theoretical treatments of the interaction

of a QCA system with its environment.

In Section 7.2 we review the basic theory of QCA as well as some of the

most common approximations used in QCA simulations. In Section 7.3 we

consider the full Hamiltonian for a QCA line, and the characteristics of its

solutions. In Section 7.4 we present the results of fully quantum mechanical

simulations. Section 7.5 discusses the main results presented in this chapter,

their scope, and their implications for QCA design, and finally Section 7.6

concludes.

7.2 Simulation of QCA Systems

The dynamic behaviour of QCA was first explored by Tougaw and Lent (1996),98

who examined the time evolution of QCA cells by considering a basis set con-

sisting of all sixteen possible states of a four-dot QCA cell populated by two

electrons of opposite spin. In this sixteen-state approach, the authors con-
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struct a Hubbard-type Hamiltonian, given as98

Ĥ =
∑
i,σ,m

E0n̂i,σ(m) +
∑

i>j,m,σ

ti,j

[
â†i,σ(m)âj,σ(m) + â†j,σ(m)âi,σ(m)

]
+

∑
i,m

EQn̂i,↑(m)n̂i,↓(m) +
∑

i>j,σ,σ′ ,m

VQ
n̂i,σ(m)n̂j,σ′ (m)

|ri(m)− rj(m)|

+
∑

i,j,σ,σ′ ,k>m

VQ
n̂i,σ(m)n̂j,σ′ (k)

|ri(m)− rj(k)| , (7.1)

where the operator âi,σ(m) (â†i,σ(m)) annihilates (creates) an electron on the

ith site of cell m with spin σ, the operator n̂i,σ(m) ≡ â†i,σ(m)âi,σ(m) is the

number operator for an electron on the ith site of cell m with spin σ, and

VQ = q2
e/(4πε) is a constant where qe is the charge of the electron and ε the

electrical permittivity of the medium. The first term in Equation 7.1 represents

the on-site energy of a dot. The second term describes the electron tunnelling,

where ti,j is a hopping constant (with units of energy) between neighbouring

sites i and j, determined from the structure of the potential barriers between

the dots in the cell. The third term in Equation 7.1 accounts for the energetic

cost, EQ, of putting two electrons of opposite spin at the same site, and the

final two terms are related to the Coulombic interactions between electrons in

the same cell and in neighbouring cells, respectively. The polarization of each

cell can then be found by evaluating

Pm =
(ρm1 + ρm3 )− (ρm2 + ρm4 )

ρm1 + ρm2 + ρm3 + ρm4
, (7.2)

where ρmi is the expectation value of the number operator on the ith site of

cell m; i.e., ρmi = 〈n̂i(m)〉. Sites within a cell are labeled counter-clockwise

starting from the top left. While this Hamiltonian considers the complete

many-body configuration space, including correlation effects within and be-

tween cells, it becomes computationally intractable when used to model large

systems. The exponential growth of the basis set makes it computationally

prohibitive to model any circuit larger than just a few cells. We will now

discuss three ubiquitous approximations used for studying QCA circuits and

systems.
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Figure 7.3: The various single QCA cell configurations.

7.2.1 Two-State Approximation

Figure 7.3 shows several different possibilities for the configuration of a QCA

cell with two electrons. These can be broadly classified into antipodal con-

figurations, where the electrons occupy opposite corners of the cell, adjacent

configurations, where they occupy adjacent sites, and double occupancy con-

figurations, where both electrons occupy the same site. Because of the small

scale of a QCA cell, the electron-electron repulsion can be quite strong, leading

to a large energy difference between these different types of configurations. As

long as temperature is not too high, the QCA adopts the antipodal configura-

tions, or a superposition of them, with high probability.

More rigorously, Tougaw and Lent (1996)98 showed that the ground state

of a single cell remains almost completely contained within a two-dimensional

subspace of the full sixteen-dimensional Hilbert space. For sufficiently low

temperatures, we can therefore expect the state of a cell or a line to be well

described by a two-state approximation. For simplicity, we consider idealized

cells with saturation polarizations of ±1. A more realistic treatment would

have the polarizations spanning a slightly smaller range, however the basic

argument that follows would be unchanged. We therefore refer to our reduced

basis as the polarization basis, and denote the two states as |0〉 and |1〉, with
respective polarizations P = −1 and P = +1, as shown in Figure 7.4.
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Figure 7.4: Schematic representation of the two diagonal states

which form the basis in the two-state approximation.

The Hamiltonian in the polarization basis for a system of N interacting

QCA cells, under the influence of driver cells, is then described by a 2N × 2N

Ising-like Hamiltonian:

Ĥ = −
N∑
i=1

γiσ̂x(i)−
1

2

N∑
i<j

Ei,j
k σ̂z(i)σ̂z(j) +

1

2

∑
D

N∑
i=1

Ei,D
k PDσ̂z(i), (7.3)

where γi is an effective tunneling energy, related to the hopping energy, ti,j,

in equation 7.1. Ei,j
k is the so-called kink energy between cells i and j, and

accounts for the energetic cost of two cells having opposite polarization. PD
labels the polarization of the driver cell labelled D, and Ei,D

k is the kink energy

between cell i and driver D. The driver cells provide a mechanism for input

into the QCA circuit and have a polarization that can range from −1 to +1.

The Pauli operators for the ith cell, σ̂a(i); a = x, y, z, represent the tensor

product of N 2× 2 identity operators, with the ith identity operator replaced

by the one of the Pauli matrices,

σ̂x =

 0 1

1 0

 , σ̂y =

 0 i

−i 0

 , σ̂z =

 −1 0

0 1

 .

For example, σ̂y(2) ≡ 1⊗ σ̂y⊗1⊗ . . .⊗1. The polarization of a cell, i, can now

be defined as Pi = −〈σ̂z(i)〉. The first term in Equation 7.3 accounts for the

kinetic energy of electrons, and tends to bring the cells to a superposition of
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Figure 7.5: Analogy between QCA cell and covalent bond.

polarization states. The second and third terms account for the energy cost of

having a cell misaligned with its neighbour, or with a driver cell respectively.

The Hamiltonian in Equation 7.3 is very similar to the quantum Ising model

with a transverse field, which has been extensively studied.102,103

In Section 7.3 we will use the two-state approximation to study systems of

interacting QCA cells. This procedure, like the full sixteen-state one, naturally

includes the effects of inter-cell entanglement, or quantum correlations. The

price we pay for proper inclusion of quantum correlations is an exponential

growth in the basis set with the number of interacting cells, N . Even with the

two-state approximation, this limits its application to systems containing only

a small number of interacting cells. Further approximations are used to solve

the problem of scaling.

7.2.2 Intercellular Hartree Approximation

One way to eliminate the problem of exponential scaling is to ignore inter-

cellular entanglement effects altogether and solve the Schrödinger equation

for each individual cell separately. This method is known as the Intercellular

Hartree Approximation (ICHA).81,97 In this Hartree-type treatment, cells are

coupled to one another through expectation values (polarizations) rather than

operators. The Hamiltonian (in the polarization basis) for a single cell i, is

then simply

Ĥi = −γiσ̂x +
1

2

∑
j

Ei,j
k Pjσ̂z, (7.4)

162



where Pj is the polarization of cell j. The polarization of cell i is found by

evaluating, Pi = −〈σz〉. Note that this equation is precisely Equation 1.8 used

to describe the ionic bond in Chapter 1. In particular, the hopping constant

between states, t, has been replaced by γi, and and the difference between the

two on-site energies, ∆, has been replaced with
∑

j E
i,j
k Pj. This allows us to

think of each cell as a relatively simple two-state quantum system, without

dealing with the exponentially growing Hilbert space that would come from

quantum interactions.

Because the solutions of one cell’s Hamiltonian define parameters that en-

ter its neighbours’ Hamiltonians, the system of Schrödinger equations must

be solved iteratively to obtain self-consistency. In calculating the state at a

particular time, the initial guess is typically taken to be the state of the system

at the previous time step.

The primary benefit of this approximation is that it only requires the diag-

onalization of N 2× 2 Hamiltonians, which scales linearly with the number of

cells in the system. Furthermore, if each cell remains in its ground state, the

problem simplifies further since the polarization of any cell, i, can be evaluated

analytically using,104

Pi =

1
2γ

∑
j

Ei,j
k Pj√√√√1 +

(
1

2γ

∑
j

Ei,j
k Pj

)2
. (7.5)

Equation 7.5 produces the well-known nonlinear cell-to-cell response function

shown in Figure 7.6.

While the ICHA is generally capable of arriving at the correct ground state

of an array of QCA cells in a single clocking zone with a fixed driver, it can

predict a latching mechanism within a group of cells that allows them to re-

tain (and even obtain) a polarization in the absence of a perturbing cell. This

latching turns out to be something that is added when we make a mean-field

approximation. Compared to the “more exact” fully quantum mechanical cal-

culation, this latching appears to be an inaccuracy of the ICHA. This goes

beyond previously noted inaccuracies of the ICHA, such as in dynamics and
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finite temperature behaviour, where fully coherent calculations of QCA wires

were used to show that the many-cell excited states are needed to get quanti-

tatively correct results.98

Figure 7.6: Nonlinear cell-to-cell response function for γ � Ek and

kBT � Ek (optimal conditions for QCA). The output cell is almost

completely polarized for even a small driver polarization. (Figure

from Taucer et al. (2015).3)

To illustrate the effects of the ICHA on the calculated ground state of QCA

arrays, consider the driven two-cell wire shown in Figure 7.7. Two simulations

were conducted on the wire; the first using the ICHA, and a second using the

more complete quantum mechanical treatment discussed in Section 7.2.1. For

each simulation, the driver cell polarization is varied between −1 ≤ P ≤ +1,

for three different values of Ek/γ. For each value of the driver cell polarization,

the steady state response is calculated. The polarization of the first cell as a

function of driver cell polarization is plotted in Figures 7.7a and b.

Let us first consider the results from the ICHA simulation. When using

the ICHA, one has freedom in choosing an initial guess for the polarizations.

The most common method in dynamic simulations is to use as an initial guess

at each time step the solution from the previous time step. Though there

are no time dynamics in our simulations, we can illustrate the effect of this
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(a) (b)

Figure 7.7: Simulations of a driven two-cell wire. (a) Polarization

of Cell 1 as a function of the driver cell polarization, calculated

using the ICHA. The ICHA predicts a hysteretic response indi-

cating a memory effect. Where two solutions exist, the one with

lowest energy is shown in bold. (b) Polarization of Cell 1 as a

function of the driver cell polarization, calculated using the more

complete quantum mechanical treatment described by equation 7.3.

This more complete simulation shows no hysteresis. We have taken

kBT ≈ Ek/4, which corresponds to Ek ≈ 100 meV for room tem-

perature. Inset shows the two-cell wire being simulated in both

cases. (Figure adapted from Taucer et al. (2015).3)

method by using the solution from the previous iteration as an initial guess

for the current one. This amounts to the common sense approach of using the

solution from a very similar Hamiltonian (i.e. very similar driver polarization)

as an initial guess for some new Hamiltonian. With this method, Cell 1’s

response to the driver cell follows the hysteresis curve shown in Figure 7.7a.

There is a retained polarization even as the driver polarization goes to zero,

indicative of a memory effect.

When the driver cell is turned on, both the driven cells align themselves

with the driver polarization. As the driver cell polarization is removed, the

coupling between the two driven cells (through expectation values) allows them
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to retain part of their polarization even as the driver cell polarization reaches

zero. Only after a sufficiently strong driver polarization in the opposite direc-

tion do both cells switch polarizations. The strength of the driver polarization

required to switch the driven cells depends solely on the ratio γ/Ek; the lower

the tunnelling rate, the larger the residual polarization of the driven cells as

the driver cell’s polarization is removed.

The other method that can be used with the ICHA is to sample the space

of polarizations in search of the self-consistent solution with the lowest energy.

For certain driver cell polarizations, there are two self-consistent solutions. In

Figure 7.7a, the lowest energy solution is shown in bold. If the lowest energy

solution is always used, the ICHA predicts a discontinuity in the response of

the driven cells at zero driver cell polarization. As the driver’s polarization

crosses zero, the cells respond by abruptly “snapping” to the other polarization

state. The ICHA is not typically used in this way, however.

Simulations conducted using a more complete quantum mechanical treat-

ment show no hysteresis, as shown in Figure 7.7b. Here, as the driver polar-

ization is removed, Cell 1 also relaxes to zero polarization. Thus, there is a

“depolarizing” effect that is not predicted when treating QCA systems using

the ICHA. Also, the response is continuous, though still non-linear and with

a slope greater than unity at the origin.

The ICHA has been widely used to show successful propagation of bit pack-

ets, and information processing, in clocked QCA wires82 and circuits.105–107

On the basis of the results shown here, it appears that this is the result of

the use of the ICHA with the first method outlined above — that is, the one

that yields a hysteresis curve. The ICHA represents, in a sense, the mini-

mum inclusion of quantum mechanical effects and we will see in the following

sections that this approximation can lead to errors when applied to clocked

QCA, as compared with the many-cell Hamiltonian. It is possible to make a

less drastic simplification of the system dynamics by including some, but not

all, intercell correlations, for example by including only nearest-neighbour pair

correlations.99,100 Including some of the correlations has been shown to give

the correct answer in some cases where the ICHA fails. In Section 7.4 we will
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show a case in which the ICHA fails, and the inclusion of nearest neighbour

correlations does not help.

7.2.3 Relaxation Time Approximation

A final approximation to be discussed here is the relaxation time approxi-

mation, which is commonly used in simulations of QCA dynamics. In the

absence of energy dissipation and other decohering effects, a QCA array will

evolve coherently according to the Liouville equation for the density matrix,

ρ̂:

d

dt
ρ̂(t) =

1

i~

[
Ĥ(t), ρ̂(t)

]
, (7.6)

which, for a pure state, is exactly equivalent to the Schrödinger equation. The

Hamiltonian in Equation 7.6 may be time-dependent, e.g., when driver cells

are switched or when cell parameters are changed to implement clocking.

Over fairly short time scales, quantum mechanical systems often fall to

a thermal steady state.82 If the QCA system is weakly-coupled to the en-

vironment, and the energy transfer between the system and environment is

well-described by a Markov process, then at low temperatures, the simplest

way to incorporate energy dissipation into a model of QCA dynamics is via the

relaxation time approximation.82,99,108,109 This is done by adding a dissipation

term to Equation 7.6:

d

dt
ρ̂(t) =

1

i~

[
Ĥ(t), ρ̂(t)

]
− 1

τ
(ρ̂(t)− ρ̂ss) , (7.7)

where τ is a phenomenological time constant, and ρss is the steady-state matrix

defined as

ρ̂ss ≡
e−Ĥ(t)/kBT

Tr
{
e−Ĥ(t)/kBT

} . (7.8)

Determining the steady state density matrix exactly is tantamount to solving

the complete Schrödinger equation for the system, and thus comes up against

all the difficulties mentioned above. It is therefore usually calculated using the
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ICHA and the two-state approximation.

Equation 7.7 imposes an exponential approach of the density matrix to-

wards its steady-state value, with a time constant τ . This is one example of

a quantum master equation, or an equation of motion for the density matrix,

which in this case is phenomenological. It would be useful to derive a quantum

master equation based on the microscopic details of the system, its environ-

ment, and their interaction. This would show whether or not the form of Equa-

tion 7.7 is correct, and how the value of τ relates to microscopic parameters.

However, a precise quantum master equation will in general be implementa-

tion dependent. In this paper, we treat an idealized QCA that is not tied

to a specific implementation. Furthermore, regardless of the specifics of the

quantum master equation, the density matrix in Equation 7.8 will very often

represent the real steady state of atomic and molecular systems. We therefore

attempt to calculate the correct steady state behaviour, acknowledging that

the dynamics and the specific value of τ will be implementation-dependent.

7.3 Full Quantum Mechanical Calculations

Having developed an appreciation for the effects of the ICHA and of the relax-

ation time approximation on the calculated dynamics of QCA arrays, we will

briefly consider the qualitative features of some tractable systems of interact-

ing QCA cells by once again considering the two-state Hamiltonian described

in Equation 7.3.

The difficulty in solving Equation 7.3 can be reduced by assuming only

nearest-neighbour coupling so that Ei,j
k = Ekδi±1,j and Ei,D

k = 0 for cells that

are not adjacent to the driver labelledD. This does not imply that correlations

beyond nearest neighbours are ignored, however. We also restrict our attention

to linear chains of cells.

The spectrum for an unbiased line of N (ranging from 1 to 8) QCA cells,

within the two-state approximation is shown in Figure 7.8a. For a line of N

cells, there are 2N eigenstates. Under the conditions required for QCA-based
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(a) Line Spectra

(b) Analogous Double Well Systems

Figure 7.8: (a) Spectra of unbiased lines of interacting QCA cells,

ranging in length from one to eight cells, with γ/Ek = 0.1. The

spectra are solutions of Equation 7.3, with a constant (N − 1)Ek/2

added for ease of interpretation. The inset shows the difference

in energy between the two lowest energy levels for each line. (b)

Conceptually, the array can be viewed as a single two state system

with a barrier that increases with the number of cells. (Figure from

Taucer et al. (2015).3)

computing, that is γ << Ek, the energy levels come in clusters separated

roughly by Ek. There are always two non-degenerate lowest-energy states.

In the case of a single cell, these are in fact the only two states, and their
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separation is exactly 2γ, just as in the case of the covalent bond, described

in Chapter 1. The ground and excited state correspond to the symmetric

(|ψs〉 = 1√
2
(|0〉+ |1〉)) and anti-symmetric (|ψa〉 = 1√

2
(|0〉 − |1〉)) combinations

of the polarization states (with the former being the ground state). Note that

the polarization basis vectors, |0〉 and |1〉, are not energy eigenstates of the

undriven cell. If a single quantum measurement of σ̂z is carried out on a

QCA cell in its ground state (or in its first excited state for that matter), the

outcome will yield either −1 or +1, with equal probability, i.e., P = 0. In this

sense, one can say that the ground state of a single unbiased cell carries no

information. Only in the limit where γ → 0 do the polarization basis vectors

become valid energy eigenstates.

For longer lines, the separation between the two lowest-lying energy eigen-

states becomes smaller and they represent entangled states. Specifically, they

are the symmetric and anti-symmetric combinations of the state with all cell

polarizations aligned along one diagonal, and the state with them aligned along

the other. That is, |ψs,a〉 ≈ 1√
2
(|000 . . . 0〉 ± |111 . . . 1〉). The equality becomes

exact in the limit where Ek/γ →∞.

Again, note that the “aligned” states, |000 . . . 0〉 and |111 . . . 1〉, are not the
energy eigenstates. The energy eigenstates are in fact superpositions of the

aligned states, and the polarization of any cell in a line in its ground state

(or first excited state) is P = 0. This indicates that the eigenstates do not

carry information. The inset of Figure 7.8a shows that the splitting between

these two lowest-lying states decreases exponentially. Specifically, each added

cell causes the splitting to decrease by a factor of ∼ 2γ/Ek, so that the first

excitation energy, ∆, for a line of N cells is

∆(N) ≈ Ek

(
2γ

Ek

)N
. (7.9)

Only in the limit where this splitting goes to zero (i.e. an infinite number

of interacting cells), do the aligned states become energy eigenstates.103 With

the decrease in the splitting of the two lowest energy levels, comes an increase

in the time required for coherent tunnelling from one polarization state to

the other. For low temperatures, we can think of the group of cells as a
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two-state system, analogous to a double well, as depicted in Figure 7.8b. As

the length of the line increases, the barrier separating the two aligned states

increases. It follows that longer lines acquire increased bistability. However, at

finite temperature, thermal fluctuations may cause excitations and an eventual

approach to the unpolarized steady state.

Figure 7.9 shows the unitary time evolution of unperturbed lines of one,

three, and five cells initially in an aligned state in each case. All the cells in the

wire oscillate, in unison, between the two polarization states. This simulation

represents the limit of infinite relaxation time (i.e., no energy dissipation or

loss of phase coherence), and is meant to indicate the internal dynamics of the

system. A realistic system will have its dynamics altered by its interaction

with the environment. Depending on the interaction and its strength, this

can lead to several behaviours110 including stochastic dynamics, relaxation to

the ground state (as discussed here), or a stabilization of the polarization, as

suggested in Blair and Lent.111

Regarding the internal dynamics of the system, it is clear that longer lines

exhibit increased bistability, meaning that the polarization state can be main-

tained for an arbitrary length of time by increasing the number of cells in the

line, even in a completely coherent system. For single cells and small groups

at the atomic scale, coherent oscillations will likely be much faster than the

measurement time of a classical apparatus, and therefore will lead to a loss of

classical information. If such sinusoidal oscillations do exist, it is unlikely that

they would proceed with phase coherence, and so even the phase information

would quickly be lost. For larger groups, the loss of information will likely be

limited by decoherence and energy relaxation.

Finally, we emphasize that short unbiased lines, like individual cells, have

a unique ground state. This contrasts with the commonly made assertion that

cells and lines have two degenerate states,112 namely, the aligned states. The

ground state is an entangled state, and is therefore not accessible to the ICHA.

Based on this observation, as well as the above-mentioned shortcomings of the

ICHA in predicting the behaviour of even very short lines, we are led to a

more in-depth investigation of QCA line dynamics, particularly with regard
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to clock zones which are spatially separated from any driver cells.

Figure 7.9: Coherent oscillations of the first cell in unperturbed one,

three, and five cell lines. The cells are all initially in the P = 1

state. In each line, the cells oscillate together, so the polarizations

of the first cell gives a good representation of the polarization of

all its neighbours. The fast oscillations in the 3 and 5 cell lines are

due to a small component of higher-energy states, which manifest

as kinks propagating and reflecting through the line. γ = 10 meV

and Ek = 100 meV. (Figure from Taucer et al. (2015).3)

7.4 Loss of Polarization in Isolated Bit Packets

As discussed in Section 7.2.2, the ICHA predicts a latching mechanism within

a line of interacting cells that allows them to polarize (and retain this polar-

ization) in the absence of a fixed driver cell. This phenomenon is found to

be an artifact of the ICHA, not necessarily representative of actual dynamics,

at least as described by more complete Hamiltonians like Equation 7.3 and

Equation 7.1. The result of this latching mechanism is seen in simulations

that use the ICHA to model the propagation of information in QCA circuits.

One such example is shown in Figure 7.10, from Timler and Lent (2003).113

172



This figure shows the result of a calculation done using the ICHA, showing

lossless propagation of bit-packets down a seven-cell QCA wire. In this sec-

tion, we contrast these simulations with new results that include intercellular

correlations.

Consider a single, unbiased QCA cell. At low temperatures, the QCA cell

will relax to its ground state, |ψs〉 = 1√
2
(|0〉 + |1〉), and thus will have a po-

larization, P = 0. At higher temperatures, interactions with the environment

can cause the QCA cell to be in a mixed state, and it is best described by

a density matrix. If the steady state density matrix of the system is the one

described in Equation 7.8, then it is easy to show that the expectation value

of σz is zero, and therefore the polarization is also zero. For longer lines, the

same reasoning applies, the only differences being that |ψs,a〉 represent the

entangled states described in Section 7.3, and the splitting in their energies is

decreased. It can be shown that the polarization of any cell in the unbiased

line is zero if the line is in the steady state described by Equation 7.8.

Figures 7.11 and 7.12 show the results of two simulations of six cells in a

one-dimensional chain, with periodic boundary conditions and nearest neigh-

bour coupling only. γ is modulated between 1 meV and 200 meV for the first

simulation, and between 1 meV and 1000 meV in the second. Ek = 108.5 meV

in both simulations. The Hamiltonian in Equation 7.3 is used, so that intercel-

lular correlations are completely included. In both simulations, the tunneling

barriers in cells 1, 2, and 3 are initially high (meaning that γ is low) while

the tunneling barriers in cells 4, 5, and 6 are low (so that γ is high). As time

progresses, the tunneling barriers in cell 4 are raised, allowing it to polarize,

and the barriers in cell 1 are lowered, which causes it to depolarize. Next,

cell 5 has its barriers raised as the barriers in cell 2 are lowered, and so on.

Because of the periodic boundary conditions, the bit packet moves cyclically

through the six cells. Throughout the process, the Hamiltonian changes quasi-

adiabatically, by which we mean that dγ/dt � E2
k/~. For our initial state,

we create a nearly full negative polarization in the three active cells by taking

the normalized sum of the two lowest energy eigenstates. The resulting cell

polarizations are plotted as a function of time with and without dissipation in
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Figure 7.10: Propagation of information (alternating sequence of

0’s and 1’s) down a 7-cell QCA wire, simulated using the ICHA.

For each cell, polarization is plotted as a function of time in units of

the clock period. In addition to the seven clocked QCA cells, there

is a driver cell acting as an input adjacent to Cell 1, and a “Demon

Cell,” which is a fictitious computational aid, added to prevent

spurious reflections resulting from the finite wire length. Reprinted

figure with permission from Timler and Lent, Journal of Applied

Physics 94, 1050, 2003.113 Copyright (2003) AIP Publishing LLC.
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each case. A third curve plotting the exponential decay, proportional to e−t/τ ,

is also shown in each plot as a reference.

In the simulation of Figure 7.11, as time progresses, the bit packet travels

along the periodic line, and a polarization is maintained when there is no

dissipation. Because the Hamiltonian is changed quasi-adiabatically, no kinks

are created as the bit packet moves, and the bit packet evolves qualitatively

the same as it would if it were stationary. Because the tunneling barriers

are never lowered completely (γ has a maximum value of 200 meV), the cells

never reach zero polarization. The interaction between the three active cells

at a given time, plus the residual polarization in the “inactive” cells, slows

the coherent oscillations to the point where the bit packet is fully polarized

over the period of the simulation, as long as there is no dissipation. However,

the steady state still has zero polarization in all cells, so the bit packet loses

polarization exponentially when relaxation is included in the model. The slow

oscillation frequency demonstrated in this simulation simply permits the cells

to maintain their polarizations over several clock cycles.

In the simulation of Figure 7.12, since the tunnelling barriers are lowered

enough to completely depolarize the cells (γ is now allowed as high as 1000

meV), fewer cells are “on” at any given time, and the coherent oscillations

from negative to positive polarization state are sufficiently fast to be observed

over the time scale of the simulation. As in Figure 7.11, the dissipation of

energy does indeed bring the system exponentially to its steady state of zero

polarization. In this simulation, because of the visible coherent oscillations, the

polarization does not follow the decaying exponential as it does in Figure 7.11,

but instead the amplitude of the oscillation is proportional to the exponential

decay.

7.5 Discussion

The simulations in Section 7.4 show that the ICHA does not always provide a

good approximation to the full quantum mechanical model of an isolated array

of QCA cells. In the case of bit packets which are not coupled to a driving cell,
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Figure 7.11: Simulations of a six cell line with periodic boundary

conditions. The value of γ is adiabatically raised and then lowered

between 1 < γ < 200meV, with a period of 217~/Ek, with a differ-

ent phase for each cell. The circled line shows the polarization of

each cell in the absence of any energy dissipation. The solid line

shows the polarization of each cell with an energy relaxation time

of 434~/Ek. For reference, a decaying exponential as a function of τ

is shown with the dashed line. (Figure from Taucer et al. (2015).3)

the exponential relaxation causes any initial polarization to be lost. Within

the framework of Equations 7.3, 7.7, and 7.8, the maximum time for a clocked

computation will be limited by the loss of classical information either through

energy relaxation or through oscillations of the type shown in Figures 5 and

7. In principle, coherent oscillations do not imply a loss of information (the

information can be retrieved by a carefully timed measurement), however, the

oscillations may be much more rapid than the duration of a measurement, e.g.
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Figure 7.12: Simulations of a six cell line with periodic boundary

conditions, using the same parameters as Figure 7.11, except that

the value of γ varies in the range 1 < γ < 1000meV, with a higher

upper bound. Otherwise, line colours and styles are the same as

in Figure 7.11. Half a period of a coherent oscillation can be seen

over the course of the simulation, flipping the polarization state

from negative to positive. (Figure from Taucer et al. (2015).3)

in the case of a small number of cells, and will in general suffer phase decoher-

ence, which will erase even this phase information. All the dynamic simulations

presented here were done within the two-state approximation of equation 7.3,

which is an approximation of equation 7.1. As mentioned previously, working

directly with equation 7.1 is very computationally expensive. However, based

on the conceptual understanding outlined in this chapter, in addition to other

computational results on very small groups of cells (not shown here), it is clear

that these new features of clocked QCA are not an artifact of the two-state
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approximation, but are the result of the inclusion of intercellular correlations

and the use of the relaxation time approximation.

Previous simulations have used the ICHA to predict the latching of lines

and the successful propagation of clocked pulses across QCA arrays (even when

tunnelling rates were varied by only one order of magnitude82). These have

seen some degree of validation from experimental work on lithographically

defined QCA-like systems.89,90 The results presented here show that these ex-

periments do not embody the dynamics of equations 7.3 and 7.7. The use

of intermediate quantum dots and multiple tunnel junctions in these experi-

ments makes it possible to tune the tunneling time from 10 ps to ∼ 3000 s.89

This drastic change in tunneling rates amounts to a crossover from a regime

where quantum tunneling is important to one where electrons are completely

localized. The normal relaxation dynamics are suppressed because the system

is strongly coupled to the environment through σz, which has the effect of

localizing charge.110 In molecular and atomic implementations, it is likely that

the range of tunneling rates that allows this crossover from quantum dynam-

ics to classical dynamics by directly modulating tunnel barriers, will not be

achievable. A more promising approach to achieving such a crossover would

be to change the internal dynamics of a bit-packet by changing its size. In

section 7.3, we showed that longer lines exhibit slower dynamics and greater

bistability. This suggests that for sufficiently large bit packets, there may be

sufficient bistability that the coupling to the environment results in localiza-

tion of charge, even with a limited range of tunneling rates available. The

precise tunneling rate and bit packet size that will allow localization of charge

with sufficiently slow relaxation dynamics will be determined by the nature

and strength of the coupling of the environment to the QCA system, which

will in turn compete with the QCA system’s internal dynamics. A detailed

analysis will need to take into account the microscopic details of a specific

implementation.

The simulations performed here clearly identify depolarization due to quan-

tum correlations as a critical issue for classical computation using clocked QCA

at the molecular and atomic scale. However, it is important to note that this
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loss of polarization occurs only when a set of cells becomes isolated from a per-

turbing influence such as a fixed driver cell, and thus, QCA systems operating

within a single clocking zone will not experience such an effect.

It might be argued that for some QCA implementations the ICHA may

actually provide a good assumption about the physics of the system, rather

than an approximation to the many-cell Hamiltonian. This amounts to as-

suming that the effect of the interaction of the system with its environment

is to completely eliminate quantum correlations between cells, while leaving

superpositions and entanglement within a cell (that is, entanglement between

the two electrons within the cell) undisturbed. Notwithstanding the arbitrary

cutoff — allowing entanglement completely within each cell but not at all be-

tween cells — such an interaction is at least conceivable. But it would raise

a new set of problems. In certain cases where the ICHA is known to “fail,”100

such as the majority gate with uneven input legs which can become trapped

in a metastable state,99 we would then no longer have recourse to intercell

correlations. The metastability of the state with the wrong logical output

would be a genuine prediction of the model. A QCA system which obeys the

ICHA will probably require fine-grained clocking to address this problem – an

increasingly impractical solution as cells are miniaturized. Intercellular cor-

relations, which we expect to play a role in the dynamics of molecular and

atomic QCA systems, alleviate this problem, however the results that we have

presented here show that they may present us with new problems which need

to be considered in QCA theory and design.

7.6 Conclusion

In this chapter, we have assessed some limitations of conventional approaches

to QCA simulation. Full quantum mechanical calculations show that the

ground state of an unbiased cell, or of a line of cells, is a superposition of the

two fully aligned states, and thus holds no polarization and carries no classi-

cal information. When the assumption of exponential relaxation to a thermal

steady state is made, we find that cells, or groups of interacting cells, lose their
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polarization over time unless they are influenced by a fixed driver. This is the

case even if the cells start with an initial polarization before being decoupled

from a fixed driver cell. This depolarization effect was not predicted in previ-

ous QCA simulations, which had often predicted a false latching mechanism

among cells that would allow them to retain their polarization even in the ab-

sence of a driver cell. This discrepancy is related to the ICHA which neglects

correlations and shows hysteresis in array polarization. Although lithographic

QCA systems have managed to avoid this problem thanks to their inherently

long tunnelling times, the molecular and atomic implementations of QCA re-

quired for room temperature operation will likely behave in a more purely

quantum mechanical way, so that the solutions of the many-cell Hamiltonian

need to be included. Only an appropriate and sufficiently strong interaction

of a QCA array with its environment will make clocked QCA possible.

While these findings do not affect the original concept of ground state com-

puting with QCA, they may require a reconsideration of QCA architecture

for molecular and atomic QCA, specifically relating to clocking and memory

devices. Because the simulations presented here are still for a very highly ide-

alized model of QCA behaviour, and ignore, among other things, the specifics

of the interaction with the environment, it would be wrong to conclude that

clocking and memory are impossible in QCA. Effective clocking requires a

tuneable change from quantum mechanical behaviour to classical. It remains

to be shown how and if this can be achieved at the molecular scale. This un-

derscores the need for a more sophisticated theory of QCA operation, which

should include implementation-specific dynamics beyond the phenomenologi-

cal relaxation time approximation.
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8 Conclusion

This thesis has focused primarily on isolated dangling bonds on the hydrogen-

terminated silicon surface. These DBs occur when a hydrogen atom is removed

from the surface, or when a hydrogen atom happens to be missing from an

otherwise terminated surface, leaving an unbonded, localized orbital with a

mid-gap energy level. In principle, DBs can be variably occupied, depending

on the Fermi energy relative to the DB transition levels. In empty state STM

imaging, DBs are surrounded by a darkened region known as a halo. The

DB halo was associated with a negative charge in early descriptions of STM

of DBs. In Chapter 3, we saw that in fact there are a number of effects at

play when the DB is imaged in empty state STM imaging, and the acquired

STM image is far from being a simple picture of a negatively charged DB.

The topography around a DB can only be understood in detail as the result of

multiple factors: tip-induced band bending, direct injection of electrons, and

processes which tend to bring the sample toward an equilibrium state. The

result is a non-equilibrium picture of STM of DBs where filling and emptying

processes compete to determine the charge state of the DB. The rates associ-

ated with these processes depend on applied bias as well as the tip position,

so that the DB charge state is not a static feature of the sample, but rather

responds dynamically as the tip scans the DB.

It was shown in Chapter 4 that these non-equilibrium dynamics, initially

postulated to explain the topography of DBs in empty-state imaging, are in

fact directly observable in STM imaging of DBs at low temperature (∼ 4.2 K).

The tip-sample tunnel junction, with the tip placed roughly at the edge of the

DB halo, can act as a single-electron sensitive charge detector; the fluctuating

charge of the DB has a gating effect on the tip-sample tunnel junction, causing
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the tip-sample current to undergo random jumps when one measures current as

a function of time. Analysis of the I(t) traces reveal three distinct plateaux,

corresponding to the three charge states of the DB, negative, neutral, and

positive. The fraction of time spent in each of these charge states depends

on the tip position and the tip bias. An analysis of the current-time traces

reveals the underlying transition rates connecting the different charge states

of the DB. These rates are therefore the rates of transfer of single electrons

from tip to DB, and from DB to bulk. The single electron transition rates

were found to depend on bias and tip position in a way that is consistent

with injection of electrons by tip-DB tunneling, and emptying of electrons

toward the bulk via tunneling from the DB level to the extended states of the

conduction band. These observations broadly corroborate the model of STM

imaging proposed to explain topography.

The analysis required to extract single electron rates from I(t) traces re-

quired the application of novel analysis methods for STM data, which were

covered in Chapter 5. Because of the inherent noise in sensitive STM measure-

ments, the signals due to different states of the system may overlap, making

it difficult or impossible to apply simple analysis methods, like thresholding.

Instead an analysis method, based on techniques used in biophysics, was de-

veloped. This method allows extraction of the rates involved in multi-state

dynamics even when states are only marginally resolvable in experiments.

While the first part of this thesis was concerned with the dynamics at play

in STM imaging of DBs, the latter part of the thesis dealt with issues aimed

at applications. Chapter 6 described fabrication of DBs, starting with the

process of image analysis to extract the periodicities of the lattice. It went on to

describe some of the small structures that can be created, as well as large-scale

patterns, up to thousands of DBs. Chapter 7 described an exciting potential

application of DBs, quantum-dot cellular automata. QCA is an alternative

method of doing classical computation, which operates without the need for

any macroscopic currents. The particular issue of quantum correlations was

explored with regard to the dynamics of small systems, and their approach

to thermal steady state. This is an issue which was largely ignored for the
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large, lithographic QCA structures that have been fabricated in the past two

decades, but as QCA is miniaturized to the atomic scale, either through atomic

implementations based on silicon DBs, or through other proposed routes to

molecular QCA, quantum effects will become more important, and the nature

and behaviour of the system will need to be understood from a quantum

mechanical perspective.

My hope is that the work described in this thesis might help in painting

a clearer picture of these silicon DBs, as well as what precisely is going on

when we image them in STM, and how they might be employed in emerging

atom scale technologies. As with many academic subjects, the scope of this

work is in some senses very specific and limited. Nonetheless, it is sometimes

possible for a clear understanding of the specific to offer a clear view of the

more general. Many of the ideas applied to DBs on the H-Si(100) surface likely

apply also to other mid-gap states. As similar analyses are applied to different

but related problems, a clearer picture of non-equilibrium dynamics will likely

emerge.

Even within the system described here, there are a number of questions

that remain unanswered, which we have the ability to address immediately.

The quantitative data on single electron processes in empty state imaging,

presented in this thesis, are hopefully compelling, and they are certainly con-

sistent with many of our previous notions of non-equilibirum dynamics. But

these measurements can certainly be improved upon, and far more detailed

measurements could provide a wealth of information on the shape and extent

of the DB orbitals (neutral and negative), as well as the processes that empty

these into the bulk. Furthermore the measurements shown in this thesis are

a very small step away from deliberate control of the charge state of a DB,

which could open the door to a range of interesting experiments.

A study of the filled state spectroscopy of these same DBs on n-type silicon

has already shown that similar non-equilibrium considerations are required to

make sense of the current which flows from bulk to DB to tip.38 In that case,

the non-equilibrium dynamics tell us about the connection of DBs to the bulk

silicon, as well as transport through the disordered electron donors near the
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surface.

Non-equilibrium dynamics can also be studied at entirely different time

scales by making use of all electronic pump-probe techniques,53 which will

offer a different and complementary view on these same issues. Such pump-

probe experiments are still relatively novel, and have not, to date, been applied

to charge dynamics. DBs present a system in which electron dynamics are

known to extend from Hz, to kHz, and beyond (where we lose our ability to

resolve them, because of the limit of the pre-amplifier bandwidth — a limit

which is circumvented by pump-probe techniques). They therefore seem to be

fertile ground for these first studies of fast charge dynamics. This too is being

investigated at present.

The method used to analyze telegraph noise in tunneling currents was

developed to address a very specific problem. Nonetheless, it is in principle

very broadly applicable, not only within the field of STM, but also in any

case where random fluctuations are observed through measurement of a noisy

signal. The difficulty in adopting this method at present lies in the fact that

it is complicated, or at least seems to be, which creates a barrier to adoption.

More widespread use of this technique would require, first, a clear explanation

of the technique, and second, ideally, a procedure for automating the analysis.

Hopefully, this thesis has done something for the first. Efforts to address the

second issue, of automation, are also underway.

It was shown in this thesis that large-scale DB patterns can be made with

reasonable precision, and that structures of several atoms can be made with

perfect atomic placement. There does not appear to be any fundamental im-

pediment to nearly perfect patterning on the H-Si(100) surface at arbitrary

scales (e.g. many thousands of atoms). Rather, there are a number of chal-

lenging issues, each of which may require a significant development effort to

be overcome. Continued progress in the ability to fabricate DB structures will

make the fabrication of increasingly complex structures increasingly routine.

Demonstrations of technologically useful structures are possible already (an ar-

gument could be made that they have already been created), and undoubtedly

many will be made in the coming years.
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The ability to understand such structures is an entirely different subject,

however. One outcome of the work presented here, which was perhaps not

emphasized as much as it could have been, is that the STM tip, in some

ways, gives an extremely distorted view of the sample — distorted, that is, by

the effects of band bending and carrier injection/extraction. In particular, if

we want to study and understand the potential for atomic technologies that

rely on the interactions of single electrons in the sample, the STM is an odd

choice of measuring apparatuses, since it is a tremendous disturbance to nearby

electrons in the sample, creating a strong electric field, and perhaps worse,

overwhelming the sample with a continuous stream of injected electrons or

holes — roughly one billion per second. In addition to all of this, most STMs

are limited in that they consist of a single probe. Issues of transport on the

atomic scale can be studied indirectly,114,115 but directly measuring the flow

of current through atom-scale structures is usually not possible in STM.

There are exciting responses to these challenges, including the use of multiple-

probe STM to study transport on the atomic scale in a direct way.116 The issue

of the perturbing effect of the STM, on the other hand, can be met by non-

contact atomic force microscopy, which, like STM, gives atomically resolved

information about the surface, but does not require the application of a bias,

nor the flow of current between the tip and sample. These related techniques

are sure to give new perspectives on the challenges facing the development

of silicon DBs as a technology, and will likely provide a way of studying DB

structures in a less perturbing way.

Of course, everything described so far is also part of a much broader effort.

There is a feeling among many people that atom-scale technology is bound to

play a role in the future of technology. This could take many forms, from tran-

sistor technology with dopants placed with atomic precision,117 to single-atom

single electron transistors,70 to quantum computers based on the nuclear spin

of embedded impurities in isotopically pure silicon.118 Several materials are also

candidates including not only silicon,119,120 but also III-V semiconductors,121

and physisorbed species on insulating layers grown on metal substrates.53,122

Each system has different features of interest, and presents different challenges,
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but all are interesting.

DBs are a versatile building block for atom-scale technologies at this early

stage of the development of the field. They are also a necessary intermediate

step in a process for embedding phosphorus donors in silicon, where STM

tip-induced hydrogen desorption selectively enables the chemical adsorption

of phosphine molecules at pre-determined sites, giving sub-nanometer control

over donor placement. Furthermore, the study of DBs, it has been found

recently, sheds light on the dynamics at play in the near-surface substrate,

including dynamics associated with subsurface electron-donors.38 Near-surface

dopants are relevant to a number of technological applications, and also present

a range of surprising behaviours that require further exploration. DBs provide

a unique perspective on the issues associated with these near-surface dopants.

This thesis presents a very small part of the broad effort to realize atom-

scale devices. Silicon DBs are promising candidates for such emerging tech-

nologies, and they are intimately connected with other silicon-based approaches.

The surprisingly rich physics of these localized orbitals, studied in STM, has

been one of the main topics of this thesis. As our understanding and capabil-

ities grow, there is every reason to expect increasingly compelling demonstra-

tions of single-electron control. The study of multi-DB structures also promises

tremendous opportunities and undoubtedly many surprises along the path to

technological applications.
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