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Abstract

The classification of animal images based on camera trapping data is an important

and challenging task in the domains of computer vision, machine learning and eco-

logical management. This thesis presents an animal species identification system

that can automatically identify the species of an animal captured in an image by a

camera trap. We use the Fisher Vector coding approach on top of the dense Scale

Invariant Feature Transform features and the cell-structured Local Binary Pattern

descriptors to generate a fixed length vector representation for each image and then

feed this vector representation to the linear Support Vector Machines for learning

and classification. Unlike traditional Bag of Visual Words models that only use a

generative method or discriminative method, the powerful Fisher Kernel framework

combines the advantages of both generative and discriminative approaches to en-

code image descriptors and then classify images. The key idea is to characterize

an image with a gradient vector derived from a generative probability model and to

subsequently feed this gradient vector to a discriminative classifier. Instead of only

using zero-order image statistics like in conventional approaches, the Fisher Vec-

tor coding method retains zero-order, first-order and second-order information and

thus allows less image approximation error. Extensive experimental study shows

that our method achieves the highest classification accuracy compared to various

conventional.
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Chapter 1

Introduction

1.1 Motivation

The worldwide industrial development and human infrastructure potentially have

great impacts on the ecosystem. The increment of land usage for human society

(e.g., city expansion) keeps narrowing the territory of the wildlife and isolating

some wildlife species from the others. In addition, oil and gas pipelines and human

infrastructure, like highway and railway, could cut off terrestrial animals’ migration

routes, and thus threaten the survival of those animals. The extensive study of the

impact of industrial development and human infrastructure on animal population

size should be performed before any construction.

Over the years, ecologists have worked to understand population sizes, distri-

bution and movement of wildlife in order to make informed polices regarding pre-

serving biodiversity and allowing the development of the industry and human in-

frastructure. Wildlife monitoring and surveying thus is a critical need all over the

world.

Recently, advancements in computer engineering and multimedia technologies

have enabled the production of digital images and the storage of large scale image

collections with little cost. This has popularized the usage of imaging devices and

increased the size of image collections, including medical imaging, photo archives,

and so on. In the realm of wildlife monitoring and surveying, camera trapping has

become one of the most cost-effective methods to conduct animal monitoring and

surveying [53, 31]. The motion-triggered camera trap usually provides a visual sen-
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sor to record the presence and activity of wide array of species and provides infor-

mation on location- and/or time-specific information on movement and behaviour.

The Alberta Innovates Technology Futures (AITF)1 has deployed a large num-

ber of remote cameras in the natural environments, such as mountain and forest, in

the province of Alberta. Those cameras can capture many species, such as Deer,

Bear, Wolf, Rabbit, and so on. The camera trapping approach generates a huge vol-

ume of monitoring data, which poses new challenges and promises to animal mon-

itoring and management research. Currently, the image sequences are analyzed by

ecologists, which is extraordinarily tedious and expensive. For example, it usually

takes weeks to months for ecologists to identify the animal species from 100,000

camera trapping images. The naı̈ve way to identify the animal species impedes re-

search progress. Therefore, AIFT has a critical demand of designing a tool that can

help them automatically identify the animal species from an immense amount of

image data in order to save costs.

AITF has collected a database of labeled animal images, where each label iden-

tifies the species of an animal captured in an image. For simplicity, we assume

each image contains only one animal or multiple animals that come from the same

species. This is typically the case in the AITF database. Only a minor portion of

images contain multiple animals of the same species. Notice that the same animal

may appear in more than one image, which is not a problem because our goal is

to identify animal species rather than counting individual animals. In fact, keeping

multiple images of the same animal helps us accommodate viewpoint, pose, scale

and appearance changes.

The purpose of the automated animal species identification system (ASIS), or

the animal image classification system2, is to separate animal image sequences into

different categories. An ideal animal image classification system should perform

like humans and be able to filter out irrelevant images into different categories with

arbitrary high accuracy and no hesitation. However, sometimes the problem is dif-

ficult and ambiguous even for humans. For example, Figure 1.1 shows two infrared

1See more about the Alberta Innovates Technology Futures at http://www.albertatechfutures.ca/
2We will use the terms animal species identification and animal image classification interchange-

ably.
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Figure 1.1: Two Deer images captured by the remote camera. These two Deer are
surrounded by the box and it is hard to see them.

images, each of which contains a deer but were very difficult to identify. High

dynamic backgrounds, illumination changes, viewpoint changes, and partially cap-

tured animal’s body make the classification problem even more challenging.

Animal species identification is a challenging research task and will be revolu-

tionary to the field of wildlife management if an automated animal image classi-

fication tool is successful. Currently, image classification is a critical topic in the

domains of computer vision and machine learning, and remains one of the most

difficult tasks in the community. A standard approach for modern image classifica-

tion system is to extract a set of local patch descriptors from images, encode them

into a high dimensional feature space, pool them into a global-, image-level signa-

ture, and then classify new images. Figure 1.2 shows the pipeline of modern image

classification tasks. Other components such as image pre-processing and classifi-

cation post-processing might be necessary for specific cases to achieve satisfactory

performance.

The paradigm discussed above follows the spirit of Bag of Visual Words (BoVW)

model, which was originally borrowed from the text retrieval field. In the field of

text retrieval, the Bag of Words (BoW) model is used to represent a document by

counting the textual keyword occurrences, and then generates a fixed length vector

representation. From a large set of documents, the similarity between two docu-
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Figure 1.2: The pipeline of general image categorization task.

ments can be easily measured based on the vector representation. This simple idea

actually shows the mechanism of common search engine technologies and achieves

a great success. Sparked by this success, researchers borrowed the idea and formu-

lated the BoVW model for image classification tasks. For the sake of clarity, we

term the representation model as BoVW for image classification while BoW refers

to the model used in the text retrieval field.

The BoVW model is the most widely used image approximation model in mod-

ern image classification systems. Conventionally, the BoVW model approach uses

a clustering algorithm, namely k-means, to create a high dimensional visual code-

book based on the extracted local image features. Here a local feature in an image

can be considered as a textual word in a document. A codeword in the visual code-

book corresponds to the textual keyword. Then, images are quantized into fixed

length vectors by counting visual word occurrences based on the codebook. Next,

a linear or kernel Support Vector Machines (SVMs) classifier is applied to classify

images. In fact, this stream of image classification framework has achieved the best

performance on some publicly available datasets [35, 64, 68]. However, there are

several shortcomings of the typical BoVW paradigm that weakens the performance

of this approach. First, the traditional BoVW model ignores the spatial informa-

tion in the image because it only counts the visual word frequency. Second, the
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conventional pipeline works in a discriminative manner, i.e., it directly estimates a

discriminative function for the class label and does not model the statistical distri-

bution of the image data.

The advanced Fisher Vector coding approach [48, 50, 49] is based on the Fisher

Kernel framework [26] which combines the advantages of both generative and dis-

criminative approaches. The key idea of the Fisher Kernel is to characterize an

image with a gradient vector derived from a generative probability model (e.g., the

visual codebook) and to subsequently feed this representation to a discriminative

classifier.

1.2 Thesis Statement

This thesis concentrates on building an ASIS that can automatically identify the

species of an animal captured in an image by a camera trap. Following the afore-

mentioned image classification pipeline, it is hypothesized that animal species iden-

tification can be achieved by representing each image as a point in high dimensional

feature space and then classifying an image based on similarity scores with training

examples. We aim at addressing the following statements:

1. The dense Scale Invariant Feature Transform (SIFT) features and the cell-

structured Local Binary Pattern (cLBP) descriptors could be used for image

visual feature coding for the purpose of accurate animal species identification.

2. Using the Fisher Vector coding approach to combine the dense SIFT features

and the cLBP descriptors could achieve a higher animal species identification

accuracy.

3. The integration of spatial pyramid strategy in the Fisher Vector coding ap-

proach would achieve a higher species identification accuracy.

4. The linear SVMs classifier could ensure high computational speed and still

have a satisfactory identification performance.

5. It is not necessary to remove the background from an animal image for animal

species identification and still have good accuracy.
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1.3 Thesis Contribution

Our contribution is fivefold. First, to the best of our knowledge, it is the first work

to use the Fisher Vector coding method on top of the dense SIFT and the cLBP de-

scriptors to identify animal species based on camera trapping data. In our work, the

proposed method is shown to be effective and efficient to achieve satisfactory per-

formance over the alternatives. Second, the combination of the SIFT and the cLBP

is demonstrated to be more effective in describing the animal images for classifi-

cation purpose. In fact, the SIFT and the cLBP are complementary in describing

large patch signature and small cell texture as stated in [62, 66]. Third, we adopt the

spatial pyramid strategy to incorporate the rough geometry information in the im-

age, which can improve the classification accuracy. Fourth, applying our approach,

we demonstrate the different performances between raw images and images with

background manually cropped out. The performance gap on these two image sets

clarifies that it is not necessary to remove the background from an animal image

for animal species identification and still keep a good accuracy. Lastly, our ap-

proach can categorize thousands of images efficiently by applying linear learning

and classification algorithms.

1.4 Limitations and Constraints

There are many limitations and constraints to the thesis project. First and foremost,

computational cost is vital to the system. Considering that our image dataset usually

has a size of tens of gigabytes, it is not possible to load all the data into memory

all at once, even for modern computer systems. Even if the image data could fit

into memory and accounts for most of the memory capacity, it would be ineffective

in terms of computational cost and running time. It is essential to design a system

with low memory cost and high running speed.

Other limitations include the way the images are collected and the characteristic

of images. The image dataset is collected by fixed camera traps throughout a year

in the mountain and forest areas in northeast Alberta. Thus, different backgrounds

are present in the image dataset among camera traps. Even for a single fixed cam-
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era trap, the background varies largely with seasons. In addition, leaves and twigs

are often waving with the wind. Moreover, diurnal images have large illumination

changes because of different reflections and cloud movements, and nocturnal im-

ages have poor visibility. Last but not least, an animal often occupies a very small

part of the image which makes it hard to extract effective features.

Briefly, high dynamic background, different poses, illumination changes and

complex non-rigid articulation increase the difficulty to extract features from ani-

mal regions and present a challenge to obtain effective and discriminative features.

Besides, the huge volume of image data leads to the high demand of computational

efficiency.

1.5 Thesis Outline

The rest of the manuscript is organized as follows:

1. Chapter 2 introduces the background knowledge of the thesis and the value

of building an automatic ASIS based on camera trapping data. In addition, it

presents the previous and related work in the domain of natural image classi-

fication and pattern recognition.

2. Chapter 3 describes the dense SIFT feature extraction and the cLBP texture

descriptor extraction which are used for describing camera trapping images

and discusses the essence of these image features.

3. Chapter 4 largely presents the Fisher Vector coding method on top of the

dense SIFT and the cLBP features. Then spatial pyramid strategy is dis-

cussed in order to incorporate the rough geometry information. Last, linear

and kernel SVMs are briefly described.

4. Chapter 5 discusses the k-means visual codebook learning method, the Vec-

tor Quantization coding method [15], the Spatial Pyramid Matching method

[35], the Locally-constrained Linear Coding method [61], and the Vector of

Locally Aggregated Descriptors [27] for performance comparison purpose.
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5. Chapter 6 describes how the camera trapping data is collected and prepared

for experiments. In addition, this chapter presents the varying performance

with different parameter settings. Detailed analyses about the approach are

presented. Furthermore, we briefly illustrate the application we developed for

ecologists.

6. Chapter 7 concludes the thesis and highlights some ideas for further work and

research.

8



Chapter 2

Background and Related Work

This chapter introduces the general background knowledge about the subjects of

wildlife monitoring, computer vision and machine learning, and then reviews pop-

ular image categorization approaches based on the Bag of Visual Words (BoVW)

model.

2.1 Background

2.1.1 Wildlife Monitoring

Over the years, the number of wildlife species keeps declining and some animals

isolated mostly due to the development of industry and human infrastructure. In

order to preserve biodiversity, surveying and monitoring methods that are reliable

and efficient for rapid estimation of animal richness and trends are crucial [54].

Counts of dung, nests, trails, calls and direct observation along line transects

are widely employed for richness assessment [17, 19, 5, 42, 10, 52]. Figure 2.1

shows an example of line transect sampling. Along the sampling line, there are

four animals (four stars with arrows perpendicular to the sampling line) detected.

In many cases, surveying signs of those animals has been used due to poor visi-

bility of the actual animals in forests. Whenever animals or signs occur in groups

or individually, wildlife professionals can estimate the richness and density by var-

ious models. Although the variations of line transect sampling offer efficient and

effective ways to monitor wildlife species, they are labour-expensive and do not

work well in some situations, for example, on small survey plots, when the wildlife
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Figure 2.1: Line transect sampling approach with a single, randomly placed line.
Here four animals (denoted by stars) are detected and their distances from the tran-
sect are recorded.

species have a strongly aggregated distribution or when species that are on the line

are not easily detected [12].

Animal tracking has gained popularity with the assistance of global position-

ing system (GPS) and radio frequency identification (RFID) technologies [1, 33].

The GPS-collars and RFID ear-tags can be used for different purposes: animal

movement tracking, territory range measurement, population estimation, etc. This

recently introduced method is of great help in disease propagation and survival re-

search since it is very difficult to capture the same animal by traditional ways in

mark-release-recapture analysis.

In recent years, a new surveying and monitoring technique using remote photo-

graphic devices has become more and more popular. The method is efficient and

cost-effective for inventories and in some cases estimation of population sizes, and

has tremendous advantage over traditional methods when surveying rare and cryp-

tical animals. Camera trapping has been widely used in population studies of tigers

[30], bears [41], birds’ nests [3, 4], and fishers [29]. Camera traps offer an impor-

tant non-invasive approach for studying activity patterns and estimating richness

of animals throughout space and time. Roberts confirmed that camera trapping is

an efficient, rigorous and cost-effective method for long-term monitoring programs

[53].

Given the benefits of the camera trapping approach, the Alberta Innovates Tech-

nology Futures (AITF) has deployed a significant number of cameras in the province

of Alberta (see Figure 2.2) in order to estimate populations of different mammal
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Figure 2.2: An example shows the deployment of 60 infra-red remote cameras (Re-
conyx PC900 Hyperfire) in Alberta’s northeast boreal forest and west of Winefred
Lake. The picture is provided by AITF. The lower right corner shows the location
of Winefred Lake indicated by the red icon in the province of Alberta.
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species. The remote camera is motion-triggered, i.e., it takes a picture once the ani-

mal movement is detected. Therefore, the camera trap keeps recording the presence

of animals day and night. The scientists analyze the image data to make informed

decisions on wildlife management and preserving biodiversity.

2.1.2 Computer Vision

Computer vision is a scientific field that includes approaches for acquiring, pro-

cessing, analyzing, and understanding images through computers or machines. The

primary task of computer vision is to obtain 2D or 3D information by processing the

acquired images or videos so that computers can “see” and understand the world as

humans do, even take a particular action following their understanding of the world.

The ultimate goal of computer vision research is to make computers have the ability

to understand the world through visual observation. Before the achievement of this

long-term goal, researchers must concentrate on building components of a vision

system that can complete some automatic tasks with the help of its visual sensitiv-

ity and machine learning algorithms. 3D reconstruction [63] and recognition [23],

object categorization [35, 64, 61, 48], tracking [7], etc., are some popular examples

of computer vision tasks.

Modern computer vision research originated in the early 1960s, and the earli-

est visual applications were pattern recognition systems for character recognition

in office automation tasks. Among all the visual tasks we desire a computer to

perform, analyzing a scene and recognizing all of the constituent objects remains

the most challenging [58]. The visual recognition problem is very difficult because

the real world around us consists of a mixture of objects, which all occlude one

another, appear in different poses, and have intra-class variability due to variations

in shape, appearance, and complex articulation. Over the years, significant research

efforts have focused on the visual recognition problem and notable progress has

been shown.

The visual recognition problem can be discussed along two axes: object detec-

tion and object categorization. Object detection is known as a fundamental element

in computer vision research for further understanding of image content, recognition
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of the containing objects, etc. The problem of object detection can be generally

classified into two groups: moving object detection and static object detection1.

The former, which is widely involved in video surveillance, automatic driving,

assistance of the disabled and so on, is usually done by background subtraction

techniques. The latter, which refers to detecting instances of objects for a given

class and is widely applied to Content-based Image Retrieval (CBIR), is performed

by sliding windows based methods, segmentation based methods, etc. Within the

object categorization problem, there are two main classes of applications: object

instance recognition and object class classification. The former refers to the prob-

lem of re-recognizing a known object (e.g., Tom’s mug or Henry’s mug), which

can be viewed from novel viewpoints, partially occluded, or against a highly clut-

tered background. The most well-known application of object instance recognition

is location or landmark matching. The latter, which is also known as generic object

categorization, deals with the recognition of categories of objects such as Car, Cat,

Airplane, etc., and are widely applied to problems such as human action recogni-

tion, scene classification, and object categorization. Our case is considered to fall

into the area of generic object categorization.

2.1.3 Machine Learning

Machine learning is the field of building systems that can analyze and learn from

data. Such knowledge can be further applied to problems of classification, regres-

sion, clustering and density estimation. For example, a machine learning system

that is trained on email messages can apply the learned knowledge to determine

whether an incoming email is spam or not.

The machine learning algorithms are generally classified as either supervised

or unsupervised learning methods [8]. Supervised learning methods use a set of

labeled training examples, each with a feature vector and a class label which is pre-

defined while unsupervised learning methods induce knowledge from data without

any corresponding target values. Cases such as the character recognition example

1The static object detection means detecting an object from one single image, and thus the object
is considered to be static.
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in which the goal is to assign each input vector to one of a finite number of discrete

categories are known as classification problems. In contrast, the problems whose

output is made of one or more continuous values are called regression. Both classi-

fication and regression use label information from data and thus are considered as

supervised learning problems. The goal of unsupervised learning problems might

be either to discover groups of similar samples within the data, which is called clus-

tering, or to determine the estimation of data distribution within the input space,

which is known as density estimation.

Modern computer vision tasks such as tracking and visual recognition largely

reply on the employment of machine learning algorithms to achieve satisfactory per-

formance. Generative models like Bayesian approaches and discriminative models

like SVMs methods are widely employed in visual recognition tasks [37, 56, 35,

64, 61, 68].

2.2 Related Work

The needs of storing large amounts of information and finding useful information

from such collections are satisfied with the advent of modern computers. The cur-

rent text retrieval systems generally have some standard steps [2]. First and fore-

most, the documents are parsed into a set of words, which are represented by their

canonical form (e.g., speak, speaks, speaking, and spoke are represented by their

canonical form speak). A unique identifier is then assigned to each of the words,

and each document is represented by a vector with components given by the fre-

quency of occurrence of the words the document contains. Therefore, a text is

found by computing its vector of word frequencies and returning the documents

with the closest vectors. The Bag of Words (BoW) model, which works in the

above manner, is one of the most popular and successful approaches among all of

models built for text retrieval.

The above idea achieves a great success in the information retrieval domain

and is borrowed to solve visual object categorization problems. Computer vision

researchers started to draw an analogy between image categorization and text re-
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trieval in the early 2000s. In this manner, a collection of images (corresponding

to the corpus) is parsed into a set of visual words (corresponding to textual words)

based on image regions or patches. Then each image (corresponding to the doc-

ument) is represented by the extracted local descriptors which all have their own

identifiers. Once we encode each image, i.e., each image now is represented by a

vector with elements indicating its constituent visual words, learning and classify-

ing algorithms can be applied to do visual categorization. The representation model

described above is named Bag of Visual Words (BoVW) model in the computer

vision field.

Sivic and Zisserman [56] and Csurka et al. [15] first introduced the BoVW

model for visual object categorization. In their work, images were scanned for

salient regions and a high-dimensional descriptor is computed for each region.

These descriptors are then quantized or clustered into a codebook of visual words,

and each salient region is mapped to the visual word closest to it under this cluster-

ing. An image is then represented as a bag of visual words, and these are entered

into an index for later querying and retrieval. Since its success by mimicking simple

text-retrieval systems using the analogy of “visual words”, a significant number of

approaches based on the BoVW model have been developed.

Li and Perona [37] proposed to adapt the Latent Dirichlet Allocation [9] model

to learn and recognize natural scene categories. Images of scenes are represented

by a collection of local patches, or codewords obtained by unsupervised learning

algorithms. Different from previous approaches where codewords were learned

from hand annotations which were tedious and expensive, their approach learns the

codewords distribution without supervision. The goal of learning is to find a model

that best represents the distribution of these visual words in each category of scenes.

In the recognition step, they first identify all the visual words in a given image, and

then find the category model that best fits the distribution of the visual words of the

particular image.

Grauman and Darrell [22] employed a variant of BoVW based approach to vi-

sual object recognition. In their work, each image is represented by a set of un-

ordered local features, and all sets are embedded into a space where they are clus-
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tered according to their feature correspondences. The authors first extract Scale

Invariant Feature Transform (SIFT) features from the image set and then measure

the affinity between any two images using a pyramid-based metric. Then images

are clustered based on this affinity by a spectral clustering method which could de-

termine classes from the image set. The potential outliers are removed to further

refine each cluster.

Another variant of the BoVW based approach was proposed by Nistér and

Stewénius [45], where the authors presented a recognition scheme that scaled effi-

ciently to a large number of objects. The provided live demonstration proves the

efficiency and quality of their system which could recognize CD-covers using a

databased of 40,000 images. The proposed scheme constructs on the popular tech-

niques of indexing descriptors which are hierarchically quantized in a vocabulary

tree and is robust to background clutter and occlusion. The most significant prop-

erty is that the quantization is defined by the tree and thus leads to efficient and

effective image retrieval performance.

The various approaches discussed above are all built upon the idea that each

image can be represented by a set of orderless visual words. The inherent property

of the BoVW model from text retrieval is that the model does not consider the order

of words. When it comes to the visual object categorization problem, the BoVW

model completely loses spatial information between salient image regions from

which the descriptors are extracted. Considering the fact that all parts of the salient

regions are placed in a specific manner, significant research efforts are concentrated

on incorporating spatial information instead of using orderless descriptors.

Lazebnik et al. [35] introduced another BoVW model approach that was in-

spired by [21]. The authors described a holistic approach for recognizing scene cat-

egories based on approximating global geometric correspondence. The proposed

scheme partitions the image into increasingly fine sub-regions and compute his-

tograms of local features found inside each sub-region. The applied spatial pyramid

extends the orderless BoVW image representation and incorporates spatial relation-

ships. By using global cues as indirect evidence about the presence of an object,

the approach consistently achieves an improvement over an orderless image repre-
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sentation.

Yang et al. [64] extended the nonlinear Support Vector Machines (SVMs) which

employs a spatial pyramid matching kernel strategy [35]. The authors argued that

the nonlinear SVMs have a complexity O(n2 ∼ n3) in training and O(n) in testing,

where n is the size of training set, implying that it is nontrivial to scale up the

algorithms to deal with very large datasets. The extended scheme generalizes the

vector quantization to sparse coding followed by spatial max pooling and employs

a linear spatial pyramid matching kernel based on encoded SIFT descriptors. The

new approach scales linearly in training and maintains a constant cost in testing.

Moreover, the presented linear spatial pyramid matching based on sparse coding of

SIFT descriptors always outperforms the nonlinear kernels.

Traditional spatial pyramid matching is further extended to employ novel de-

scriptors mapping algorithms. Wang et al. [61] replaced the vector quantization

coding [35] with Locality-constrained Linear Coding (LLC) which was argued to

be simple but effective. LLC utilizes the locality constraints to map each descrip-

tor into its local-coordinate system, and then the mapped code are integrated by

max pooling to generate the final representation. Zhou et al. [68] proposed to use

the nonlinear supervector coding in place of the vector quantization coding. Both

approaches employ a linear SVMs classifier to learn and classify image data.

The BoVW model based approaches discussed above have been dominant in

image classification systems. Note that all of those approaches but [37, 68] work in

a discriminative manner, which means they do not model the statistical distribution

of image patches. An alternative was proposed by Perronnin and Dance [48] which

replaces the vector quantization with the Fisher Vector coding using the Fisher Ker-

nel framework [26]. Fisher Kernel is a powerful framework that combines the ad-

vantages of both generative and discriminative approaches. The fundamental idea

is to represent a signal with a gradient vector derived from a generative probability

model and to subsequently forward this representation to a discriminative classifier.

In their paper, the authors applied a Gaussian Mixture Model to approximate the

distribution of low-level features and thus generate the visual codebook. The Fisher

Vector coding utilizes the zero-order, first-order and second-order image statistics
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and thus form a dense image approximation. In contrast, the BoVW model based

approaches only use the zero-order image statistics and form a sparse global repre-

sentation of an image. By utilizing more information from images, the Fisher Vector

coding approach achieves better performance over the BoVW based approaches.

Perronnin et al. [50] further improved the Fisher Vector coding method [48]

by introducing the l2 normalization which cancels the image-specific information

and power normalization which reduces the effect of the sparser Fisher Vector. Per-

ronnin et al. [49] compressed the high dimensional dense Fisher Vector approxi-

mation for large scale image classification problems. The Fisher Kernel framework

has been applied to face verification [55], person re-identification [40], and video

retrieval [44].

Jégou et al. [27] proposed the Vector of Locally Aggregated Descriptors (VLAD)

to represent images for classification and searching tasks. In their paper, image re-

gions are extracted using an affine invariant detector and then described using the

SIFT descriptor. Each descriptor is then assigned to the closest cluster of a code-

book of size K. The vector differences between descriptors and cluster centers are

accumulated and normalized and then concatenated into a single vector representa-

tion. This way of building VLAD captures the distribution of local descriptors and

thus is similar to Fisher Vectors [48].

Most of camera trapping based studies use unique coat patterns (e.g., spots or

stripes) to identify individual animals of selected species. Bolger et al. [11] used

computer software to identify individual animals based on coat patterns for the

analysis of mark recapture technique. They matched individual animals by using

SIFT keypoints. The work most similar to ours is [66] which used the improved

sparse coding spatial pyramid matching on top of the encoded dense SIFT and the

cell-structured Local Binary Pattern (cLBP) descriptors. However, they started with

images that were manually cropped out of the background, which actually turns

the animal species identification task into other problems like individual animal

identification.

In the literature of visual object classification, one of the most popular and suc-

cessful schemes is the pipeline of low-level feature extraction - local descriptors
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encoding - spatial pooling - classification. [35, 64, 68, 61, 48, 50, 49] are all the

notable examples that apply spatial pooling on the top of the encoded local image

descriptors, plus a nonlinear SVMs classifier using histogram intersection or Chi-

square kernels or a linear SVMs classifier. Following this pipeline, we first propose

to use the Fisher Vector patch coding method on top of the dense SIFT and the

cLBP descriptors and a linear SVMs classifier to identify animal species based on

camera trapping data.

19



Chapter 3

Feature Extraction

Various image descriptors can be applied to localize the object of interest, match a

known object, and recognize an unknown object. Among all of the existing descrip-

tors, such as the Harris Corner feature [25], shape descriptor [6], affine-invariant

detector and descriptor [43] and so forth, the Scale Invariant Feature Transform

(SIFT) [39] descriptor is empirically demonstrated to be the most effective and ap-

propriate for modern image classification tasks [35, 64, 61, 68, 48]. In our work,

animal images are described by the SIFT descriptors. In addition, sparked by [62]

and suggested by [66], the cell-structured Local Binary Pattern (cLBP) [46] de-

scriptor is combined with the SIFT feature to generate much more robust image

description, which is shown in the experimental results.

3.1 Scale Invariant Feature Transform

The SIFT [39] is an algorithm to detect and describe image local features and has

been widely used for object matching [32], motion tracking [67], and image classi-

fication [35, 64, 61, 68, 48] tasks. There is a large amount of choices when extract-

ing image features, especially the choice might vary with different vision tasks. A

great number of empirical studies show that the SIFT descriptor generally works

well when scale, rotation, translation, or illumination change happens. As stated

in [39], the SIFT feature allows for an object to be recognized in multiple images

taken from different 3D viewpoints within the background. In particular, since the

SIFT feature is highly distinctive, a single SIFT descriptor can contribute to correct
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matching with high probability. Based on theoretical analysis and experimental

study [39, 35, 64, 61, 68, 48], the SIFT descriptor is recognized as the best choice

for object recognition and scene classification. We argue that the SIFT descriptor

would be the best choice for the animal species identification task.

The SIFT method takes an image as input and transform it into a large collec-

tion of local descriptor vectors. As mentioned above, each of these feature vectors

is invariant to scaling, rotation, translation and partially invariant to illumination

change and cluttered background. To obtain these local feature vectors, the SIFT

method performs in a manner of four cascade filtering approaches.

Scale-Space Extrema Detection

The first step attempts to search over all scales and locations to identify potential in-

terest points that are identifiable from multiple viewpoints and scales. The property

of scale-invariant is achieved by first transforming the original image into the scale

space using a Gaussian kernel. For the consideration of computation efficiency, the

Difference of Gaussian (DoG) function is applied to locate those interest points.

Keypoint Localization

The potential interest points retrieved in the first stage are sensitive to noise and

a significant portion of them lie along edges. Thereby, the second step attempts

to eliminate points that have low contrast or poorly localized along the edge. A

detailed Laplacian model is fit to determine the location and scale at each candi-

date location to eliminate these false points. Then real keypoints are retained by

measuring their stability.

Orientation Assignment

To achieve the rotation-invariant property, the third stage attempts to assign one

or more orientations to each keypoint location according to local image gradient

directions. To improve the robustness, the directions above 80% of the principal

direction are kept as the final orientations. All the future computation is operated on

the image which has been transformed relative to the scaling, location and assigned

21



Figure 3.1: An example shows ten detected and localized keypoints (denoted by
yellow circles) and ten descriptors (denoted by green grids with local gradients at
the selected scale inside each grid) around each keypoint.

orientations for each feature vector. Therefore, the SIFT feature is guaranteed to be

invariant to these transformations.

Keypoint Descriptor

The last stage generates the keypoint descriptors by measuring local image gradi-

ents at the selected scale in the region around each keypoint. Keypoint descriptors

generated in this manner allow for significant degree of local shape distortion and

illumination changes. Typically, keypoint descriptors are represented by a set of

16 histograms, aligned in a 4×4 grid, each with 8 orientation bins. Therefore, the

resulting feature vector contains 128 entries.

Based on the four steps above, Figure 3.1 shows ten detected and localized

keypoints and ten descriptors with local gradients at the selected scale inside each

green grid.

The approach transforms the image data into scale-invariant coordinates rela-

tive to local descriptors. The resulting feature vectors are widely applied to image

matching and visual tasks based on image matching. Generally, there are two types

of SIFT features applied to visual classification tasks. The sparse SIFT descriptors,
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generated by first locating interest points and then extracting features around these

interest points, are empirically shown more suitable for object matching tasks since

the features are highly distinctive and thus allow a single feature to be correctly

matched with high probability against a large amount of features. In contrast, the

dense SIFT descriptors, which are extracted from every overlapped image patch in

the image, are proven more appropriate for image categorization tasks. Therefore,

the dense SIFT descriptors are employed in our work. Figure 3.2 shows how to

extract the dense SIFT descriptors on a Wolf image. We extract the SIFT features

from each 16 × 16 grid with the spacing size of 6 pixels. All the descriptors are

then concatenated together to approximate the image statistics.

Figure 3.2: The procedure of extracting the dense SIFT features. The image is
first divided into 16 × 16 grids with the spacing size of 6 pixels. The first row
shows two overlapped patches at the part of Wolf head. The second row is the SIFT
descriptor of the upper-left patch with 128 dimensions, and each bar represents the
local gradients.
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3.2 Cell-structured Local Binary Pattern

The Local Binary Pattern (LBP) [46] is a local texture descriptor that retrieves the

appearance of an image in a small neighbourhood around a pixel. It is based on the

assumption that texture has two locally complementary aspects, a pattern and its

strength. The LBP descriptor is a vector of integer labels, and each of these integer

labels represents the pixel in the neighbourhood. Each integer label is either 0 or

1, depending on whether the intensity of the corresponding neighbouring pixel is

smaller than the intensity of the central pixel or not. The binary vectors are usually

quantized and pooled in local histograms and thus used for texture classification.

Among many variants of LBP descriptors since it was first introduced by [46],

the uniform LBP pattern [47] is mostly used because it is tolerant to image rota-

tion which is the desired property for many tasks. The uniform LBPup,r descriptors

are achieved by circularly sampling around the center pixel, where p refers to the

number of neighbouring pixels involved, r represents the sampling radius, and u

measures the uniformity of a particular pattern. Figure 3.3 shows three examples

of circular LBP patterns. The uniformity measurement is the number of bitwise

transitions from 1 to 0 or vice versa when the descriptor is sampled from a circular

neighbourhood. If u is set to 2, then a local binary pattern is considered uniform

if its uniformity measurement is at most 2. For example, for operator LBP2
8,1, the

patterns 00000000 (0 transitions), 00011100 (2 transitions), and 11110011 (2 tran-

sitions) are uniform while the pattern 11110100 (3 transitions), and 10101010 (7

transitions) are not.

By mapping the uniform LBP descriptors, there is an individual integer label

for each uniform pattern and a single integer label is assigned to all non-uniform

patterns. In this way, the number of total different labels for mapping LBP patterns

around p neighbouring pixels is p∗(p-1) + 3. For example, for operator LBP2
8,1,

the resulting mapping generates 59 output labels for neighbourhood of 8 sampling

points.

Further, the cell-structured LBP based on uniformity measurement in [62] was

proven to be more effective than the original LBP [46] and the uniform LBP [47] to
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Figure 3.3: The circular LBP examples: LBP8,1, LBP16,2, and LBP8,2. The pixel
values are bilinearly interpolated whenever the sampling point is not in the center
of a pixel.

describe the local texture of an image. In [62], the input image is first divided into

non-overlapping cells with the size 16 × 16. The uniform LBP patterns extracted

from these cells are then concatenated into a cLBP vector, whereas the dense SIFT

is extracted from 16 × 16 overlapping patches with sampling grid size of 6 pixels.

However, in our work, we extract the cLBP features from overlapped patches, fol-

lowing the same strategy as extracting the dense SIFT features, since we found that

the cLBP descriptors extracted from overlapped patches lead to better performance

than those from non-overlapping patches. By convention, we still call this feature

as cLBP. Figure 3.4 shows the procedure of extracting the cLBP descriptor from an

image and one uniform LBP pattern from the bear ear patch.

We will examine the performance of the SIFT descriptors and the cLBP de-

scriptors on our animal image dataset separately. Also, the performance of the

combination of the SIFT features and the cLBP descriptors is examined.
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Figure 3.4: In the procedure of extracting the cLBP descriptors, the image is first
divided into 16× 16 patches from which the uniform LBP descriptors are extracted
using LBP2

8,1 and then concatenated into a cLBP vector. The bar table at the lower-
right position shows the uniform LBP feature for the Bear ear patch shown at the
upper right position. The value under the bar varies from 1 to 59 from left to right,
and each bar represents a particular pattern.
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Chapter 4

Fisher Vector Coding Approach

The pipeline of low-level feature extraction - local descriptors coding - spatial

pooling - classification has been dominant in image classification methods since

the early 2000s. The image classification approaches [35, 64, 62, 68] based on this

pipeline have achieved state-of-the-art performance on both small-scale and large-

scale image datasets [36, 18, 16]. Therefore, the method we use in this chapter

follows this pipeline.

We extract the dense Scale Invariant Feature Transform (SIFT) features and the

cell-structured Local Binary Pattern (cLBP) descriptors at the first stage. Next, the

visual codebook is constructed using a generative model - Gaussian Mixture Model

on top of the dense SIFT features and the cLBP descriptors, respectively. Then, all

image descriptors are encoded into a fixed length vector representation using the

Fisher Vector coding method [48, 50, 49]. The spatial pyramid strategy [35] is used

to incorporate rough geometry information among image regions and the encoded

features are pooled over the neighbour regions to obtain the representation of the

image. Last, a classifier is built on top of the image vector representations. This

chapter describes the construction of the visual codebook using a Gaussian Mixture

Model, the Fisher Vector coding method, a spatial pyramid strategy, an average

pooling, and the classification method.
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4.1 Gaussian Mixture Model Clustering

A Gaussian Mixture Model p(X | λ) is a parametric probability density function on

RD represented as a weighted sum of K Gaussian component densities:

p(X | λ) =
K∑
k=1

p(X | µk,Σk)ωk, (4.1)

where X is a D-dimensional continuous-valued data (e.g., feature vector), ωk is the

prior probability value or the mixture weight and subjected to
∑K

k=1 ωk = 1, and

p(X | µk,Σk) is the Gaussian component density. Each component density is a

D-variate Gaussian function of the following form:

p(X | µk,Σk) =
1

(2π)D/2| Σk |1/2
e−

1
2

(X−µk)′Σ−1
k (X−µk) (4.2)

where the means vector µk ∈ RD and the positive definite covariance matrices

Σk ∈ RD×D of each Gaussian component.

The complete Gaussian Mixture Model is then parameterized by the mixture

weights, the means vector and the covariance matrices from all component densi-

ties. The parameters are represented by the notation λ = {ω1, µ1,Σ1, ω2, µ2,Σ2, · · · ,

ωK , µK ,ΣK}. Note that here the covariance matrices are assumed to be diagonal

for computational efficiency and thus the Gaussian Mixture Model is fully specified

by (2 ×D + 1)K scalar parameters [48]. All the parameters of Gaussian Mixture

Model are learned by the Expectation Maximization (EM) algorithm from the train-

ing set of descriptors x1, x2, · · · , xN . Then the Gaussian Mixture Model character-

izes the soft data-to-cluster assignments in the following form after all parameters

are learned:

qki =
p(X | µk,Σk)ωk∑K
j=1 p(X | µj,Σj)ωj

, k = 1, 2, · · · , K (4.3)

In this way, the visual codebook is considered as the generative model - Gaus-

sian Mixture Model. That is, the visual codebook is specified by mixture weights,

the means vector, and the covariance matrices. After the visual codebook is con-

structed from the training set of descriptors, we can encode the image descriptors

by these parameters.
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4.2 Fisher Kernel Basics and Fisher Vector

Unlike traditional approaches based on the Bag of Visual Words (BoVW) model

that do not model the distribution of image patches and only work in a discrimina-

tive manner, Fisher Vector utilizes the powerful Fisher Kernel framework which has

advantages of both generative and discriminative approaches. Instead of using k-

means clustering algorithm to generate the visual codebook [35, 64, 61], the Fisher

Kernel framework uses a Gaussian Mixture Model to approximate the underlying

distribution of low-level image descriptors and thus generate the visual codebook.

Then the image can be characterized by a gradient vector obtained from the genera-

tive probability model, i.e., the visual codebook. The image approximation learned

from the Fisher Kernel framework retains the zero-order, first-order and second-

order image statistics, i.e., word frequency, means vector and standard deviation

matrices. More details about Fisher Kernel and Fisher Vector are presented in the

following paragraphs.

Let X = {xi, i = 1, 2, · · · , N} represents an example of N observations, and

let p(X | λ) denotes a probability density function (p.d.f.) whose parameters are

indicated by λ, where λ = {ω1, µ1,Σ1, ω2, µ2,Σ2, · · · , ωK , µK ,ΣK} represents the

vector of parameters of p(X | λ). The p.d.f. models the generative process of

elements in X.

Now the score function is defined as the gradient of the log-likelihood of the

image data on the learned generative model:

GX
λ = ∇λ log p(X | λ) (4.4)

The gradient Equation 4.4 characterizes the contribution of each single parameter

to the generative procedure. More clearly, it describes how the parameters of the

generative model p(X | λ) should be adjusted to more appropriately fit the data X.

Given the fact that GX
λ ∈ RK , we know the dimensionality of GX

λ only varies with

the number of parameters K in λ and not with the example size N. Therefore, it

transforms a sample X with a variable length into a fixed length vector whose size

is only determined by the number of parameters K in the model.

The Fisher Information Matrix is suggested to normalize the inner product term
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of two gradient vectors [26]. The Fisher Information Matrix is formulated as fol-

lows:

Fλ = EX [∇λlog p(X | λ) ∇λ log p(X | λ)′] (4.5)

or Fλ = EX [GX
λ G

X′

λ ], where Fλ ∈ RK×K .

Then the similarity between two samples X and Y can be measured using Fisher

Kernel as follows [26]:

KFK(X, Y ) = GX′

λ F
−1
λ GY

λ (4.6)

Because both of Fλ and its inverse are positive semi-definite, F−1
λ can be decom-

posed as L′λLλ = F
− 1

2
λ F

− 1
2

λ , the Equation (4.6) can be reformulated as a dot-

product:

KFK = GX′λ GYλ (4.7)

where

GXλ = Lλ G
X
λ = Lλ∇λ log p(X | λ) (4.8)

Thus the normalized version of gradient vector approximation of X is given by

Equation (4.8). More clearly, Equation (4.8) is defined as the Fisher Vector of an

image X. Obviously, the dimensionality of the normalized GXλ is thus the same as

that of gradient vector GX
λ . Therefore, a non-linear kernel machine using kernel

function KFK is equivalent to a linear kernel machine using GXλ as feature vector.

Thus, a linear classifier can be applied following the new gradient vector represen-

tation GXλ .

Based on the assumption that the low-level image descriptors in X are indepen-

dent, Equation 4.8 can be reformulated as follows:

GXλ =
N∑
i=1

Lλ∇λ log p(xi | λ) (4.9)

Now the Fisher Vector of an image can be considered as the sum of the normalized

gradient statistics Lλ∇λ log p(xi | λ) calculated for each low-level image descrip-

tor. The following transformation

xi → φFK(xi) = Lλ∇λ log p(xi | λ) (4.10)
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can be thought as embedding the local descriptors into a higher dimensional space

which is more beneficial to linear classifiers.

Recall that a K-component Gaussian Mixture Model is denoted by λ = {ω1, µ1,Σ1,

ω2, µ2,Σ2, · · · , ωK , µK ,ΣK}, where ωk is the mixture weight, µk is the means vec-

tor and Σk is the covariance matrix of kth Gaussian component. Then:

p(x | λ) =
K∑
k=1

ωkpk(x | λ) (4.11)

where pk(x | λ) = 1

(2π)D/2|Σk|1/2
e−

1
2

(x−µk)′Σ−1
k (x−µk) and the requirements are ωk ≥

0, ∀k and
∑K

k=1 ωk = 1. The Gaussian Mixture Model parameters are estimated

on a large training set of local image descriptors using EM algorithm to optimize a

maximum likelihood criterion.

Let qki be the soft assignment of a single descriptor xi to the kth Gaussian com-

ponent:

qki =
ωkpk(xi | λ)∑K
j=1 ωjpj(xi | λ)

(4.12)

and given the Fλ is diagonal, the gradients w.r.t. weights, mean vector and covari-

ance matrices can be defined as follows:

GXω,k =
1

N
√
ωk

N∑
i=1

(qki − ωk) (4.13)

GXµ,k =
1

N
√
ωk

N∑
i=1

qki(
xi − µk
σk

) (4.14)

GXσ,k =
1

N
√

2ωk

N∑
i=1

qki{
(xi − µk)2

σ2
k

− 1} (4.15)

Note that the above equations are further normalized by the number sample size

N to eliminate the dependency on the sample size. Then, the final gradient vec-

tor or Fisher Vector is the concatenation of GXω,k,GXµ,k and GXσ,k vectors for k =

1, 2, · · · , K, which are further normalized by the sampling size N, and the Fisher

Vector is therefore (2×D + 1)K dimensional.

The description above is the procedure to compute the Fisher Vector represen-

tation of an image from a large set of training descriptors and is the main strategy

used in [48] for object and scene classification. Perronnin et al. [50] proposed to
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Figure 4.1: Bear example of building a two-level spatial pyramid. In the figure, the
image has three descriptor types, denoted by blue circles, green stars, and red tri-
angles, respectively. At the top, we subdivide the image into two different levels of
resolution. Then, for each resolution level and each channel, we count the features
that fall in each spatial bin. Finally, the feature of the Bear image is formed by the
concatenation of features pooled over different resolution levels.

use two following normalization steps l2 and power normalization, which have been

shown necessary to achieve competitive performance. The introduction of l2 nor-

malization aims at alleviating the image-specific information as much as possible,

which is completed by the following operation K(X,Y )√
K(X,Y )K(X,Y )

. The power normal-

ization attempts to avoid the fact that the Fisher Vector becomes sparser when the

number of Gaussian components increases. It was found in [49] that the distribu-

tion of features are more peaky around zero as the number of Gaussian components

increases. This is achieved by applying the operation f(z) = sign(z) | z |α to each

dimension of the Fisher Vector, where 0 ≤ α ≤ 1 is the normalization parameter.

Usually, α is set to 0.5.

4.3 Spatial Pyramid Strategy

Image representation for modern image classification tasks is based on the assump-

tion that the high-level semantic description of the image can be somehow inferred
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from low-level image features. The BoVW model works exactly in this way. How-

ever, the BoVW model does not consider the spatial information among image

regions and thus the structure knowledge of the image is discarded. In order to

overcome the underlying weakness, Lazebnik et al. [35] introduced the spatial

pyramid strategy to incorporate the rough geometry information of the image. The

spatial pyramid strategy partitions the input image into increasing fine sub-regions

and then calculates histograms of local features retrieved from each sub-region by

pooling image descriptors over neighbour sub-regions. Therefore, the incorporation

of rough geometry information extends the orderless representation of the BoVW

model. The spatial pyramid strategy is proven to be effective for scene classification

[35] and generic object categorization [64, 61].

Figure 4.1 shows an example of how to build a two-level spatial pyramid. We

first subdivide the original image into 2× 2 sub-regions and then compute a feature

histogram from each sub-region. The final image approximation is represented

by the concatenation of the pooled features over the sub-regions using the spatial

pooling method described in the next section.

4.4 Average Pooling

The technique of pooling the encoded features over neighbour regions has been

considered as a key step to continuously improve the understanding of the underly-

ing image content and thus the performance of image classification. Spatial pooling

aggregates the variable number of encoded features over the neighbour regions into

a fixed length single vector. The global image approximation is then represented by

the concatenation of those fixed length vectors over multiple overlapping regions in

the image.

Average pooling is one of the most popular spatial pooling methods integrated

in the modern image classification framework. Average pooling calculates the av-

erage response of each component. Given the encoded feature vector U where each

column corresponds to the responses of all the local descriptors to one specific
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codeword in the visual codebook B, average pooling is defined as follows:

hj =
1

N

N∑
i=1

uij, j = 1, 2, . . . , K. (4.16)

where N denotes the number of local descriptors in the region, and hj is the average

response of all local descriptors to a specific codeword.

As a summary, the Fisher Vector computation is shown in Algorithm 1. In the

algorithm, spatial pyramid strategy is used.

4.5 Support Vector Machines

Support vector machines, originally developed by Vladimir Vapnik in 1963 and

used again extensively in the middle of 1990s, are a set of supervised learning al-

gorithms which are used for data analysis based on statistical learning theory [59].

Unlike traditional approaches (e.g. Neural Networks), which minimize the empir-

ical error on training data, Support Vector Machines (SVMs) are designed to min-

imize the upper bound of generalization error via maximizing the margin between

the separating hyperplane and the data. Under the principle of structural risk mini-

mization, SVMs can generalize well even in high dimensional space while having

a small number of training samples. They have been recognized to be superior to

traditional empirical risk minimization principle enjoyed by most of artificial neural

networks, and have shown good performance in an extensive range of applications,

such as text classification [28], speech recognition [20], face recognition [24] and

image categorization [35, 64, 61, 48, 49].

The essential fact of SVMs is to find a hyperplane, which can separate the

negative and the positive samples with the largest margin achieved by minimizing

the Vapnik-Chervonenkis dimension of SVMs. In a binary classification problem,

given a set of training examples {(xi, yi), i = 1, 2, · · · , N}, where N is the number

of data points and each example has D inputs (xi ∈ RD), and a class label with one

of two values (yi ∈ {-1, +1}). All hyperplanes in RD are parameterized by a vector

(w) and a constant (b), as in the equation

w · x + b = 0 (4.17)
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Algorithm 1 Compute Fisher Vector from Image Descriptors Using Spatial Pyra-
mid Strategy
Input:

- Low-level image descriptors (e.g., SIFT and/or cLBP) X = {xi ∈ RD, i =
1, 2, · · · , N}
- Spatial pyramid level L

Output:
- Normalized FV representation GXλ ∈ R(2D+1)K

For each image region {Ri, i = 1, · · · ,
∑L

l=0 2Dl}
• Training set statistics computation

- For k = 1, 2, · · · , K initialize the Gaussian Mixture Model parameters
- ωk ← 0, µk,← mean(X), Σk ← var(X)

- For i = 1, 2, · · · , N
- Compute qki using Equation 4.3
- For k = 1, 2, · · · , K
◦ ωk ← 1

N

∑N
i=1 qki

◦ µk ←
∑N
i=1 qkixi∑N
i=1 qki

◦ Σk ←
∑N
i=1 qki(xi−µk)(xi−µk)′∑N

i=1 qki

• Compute the Fisher Vector signature for each image
- For k = 1, 2, · · · , K :
◦ GXω,k = 1

N
√
ωk

∑N
i=1(qki − ωk)

◦ GXµ,k = 1
N
√
ωk

∑N
i=1 qki(

xi−µk
σk

)

◦ GXσ,k = 1
N
√

2ωk

∑N
i=1 qki{

(xi−µk)2

σ2
k
− 1}

- Concatenate all FV components into one vector
GXλ = (GXω,k,GXµ,k,GXσ,k, k = 1, 2, · · · , K)

• Perform normalization
- For i = 1, 2, · · · , (2×D + 1)K perform power normalization

- [GXλ ]i ← sign([GXλ ]i) | [GXλ ]i |α
- Perform l2-normalization
GXλ =

GXλ√
GX′λ G

X
λ

Pool Fisher Vector over neighbour regions at each resolution level using Equa-
tion 4.16 and concatenate all pooled Fisher Vector components into one vector
representation
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where w is the vector orthogonal to the hyperplane.

The classification problem then becomes to find the hyperplane (w, b) such that

w · xi + b ≤ -1 for all negative examples and w · xi + b ≥ +1 for all positive

examples. To find the separation hyperplane which has the largest margin, we need

solve the following optimization problem:

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi (4.18)

subject to

yi(wT · xi + b) ≥ 1− ξi, i = 1, 2, . . . , n (4.19)

ξi ≥ 0, i = 1, 2, . . . , n

where C is a penalty parameter chosen by the user that controls the trade-off be-

tween the margin and the misclassification errors. The larger the C, the higher the

penalty to misclassification errors. ξi is the non-negative slack variable which mea-

sures the misclassification errors. If the data is linearly separable, we can reduce

ξi to be 0. Otherwise, a non-zero value is assigned to ξi. SVMs then give the gen-

eralized separating hyperplane by minimizing Equation 4.18 under the constraint

4.19.

The optimal hypothesis is then given by Equation 4.20

f(x) = sign(wT · x + b) (4.20)

which can be evolved to Equation 4.21 when the data is not linearly separable and

kernel tricks are necessary,

f(x) =
n∑
i=1

yiαiK(xi, x) + b (4.21)

where K(xi, x) = (φ(xi), φ(x)) is called kernel function. Notice that the hypothesis

may vary on the basis of the linear or kernel trick. In case that the input data to the

kernel SVMs lies in a very high dimensional space, the kernel SVMs trick usually

scale quadratically or cubically which leads to very expensive computational cost

for both training and testing stages.
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In this chapter, we present the Gaussian Mixture Model clustering, the Fisher

Vector coding approach based on the Fisher Kernel framework, the spatial pyramid

strategy, the average pooling, and SVMs. We use Algorithm 2 to summarize how

we combine these to build our Animal Species Identification System (ASIS).

Algorithm 2 Build the Animal Species Identification System (ASIS)
Input:

- Training image dataset
- Testing image dataset

Output:
- The trained model
- The species identification result

• Preprocessing
Resize each image down to 180×240 and map each image from colour space

to gray scale space.
• Feature Extraction

Extract the dense SIFT features and the cLBP descriptors.
• Fisher Vector Coding

Encode an image using the Fisher Vector coding approach based on Algo-
rithm 1.
• Classify images

Learn a discriminative model and classify new images using a linear SVMs
classifier.

37



Chapter 5

Other Local Descriptor Coding
Methods

In light of the modern image classification pipeline, we also examine other patch

based descriptor coding approaches, including (1) the Vector Quantization Coding

which is used in both of the Bag of Visual Words (BoVW) [15] and the Spatial

Pyramid Matching (SPM) [35], (2) the Locality-constrained Linear Coding (LLC)

[61], and (3) the Vector of Locally Aggregated Descriptors (VLAD) [27] whose

performances are compared to the Fisher Vector representation.

In this chapter, we use the same strategy to extract the dense Scale Invariant Fea-

ture Transform (SIFT) features and the cell-structured Local Binary Pattern (cLBP)

descriptors as we did for the Fisher Vector coding approach. All approaches but

BoVW take the spatial pyramid strategy to incorporate rough geometry informa-

tion and then use either max pooling (LLC [61]) or averaging pooling (SPM [35]

and VLAD [27]) method to aggregate local features over neighbour regions. The

feature vector is then forwarded to the Support Vector Machines (SVMs) classifier.

Note that for all of these methods the visual codebook is learned using k-means clus-

tering. Therefore, in this chapter, we only present the k-means clustering method,

different patch based coding methods, and the max pooling technique.

5.1 K-means Clustering

K-means clustering is the most widely used algorithm to generate a visual code-

book in image classification system [35, 64, 61]. Given a set of features X =
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{x1, x2, · · · , xN} ∈ RD×N of N training features in D dimensional space, k-means

is designed to find K vectors {b1,b2, · · · ,bK} ∈ RD and a data-to-cluster assign-

ments {q1, q2, · · · , qN} ∈ {1, 2, · · · , K} such that the cumulative approximation

error
∑N

i=1 ‖xi − qi‖ is minimized. The standard Lloyd’s algorithm [38] that al-

ternates between optimizing the cluster centers (bk = avg{xi : qi = k}) and the

data-to-center assignments (qi = arg min
k
‖xi − bk‖2) is applied to construct the

visual codebook. In this manner, the visual codebook B is constructed.

5.2 Local Descriptor Coding Methods

Let X be a set of D-dimensional local image descriptors extracted from an image,

i.e. X = {x1, x2, · · · , xN} ∈ RD×N . Given a dictionary with K elements, B =

{b1,b2, · · · ,bK} ∈ RD×K , different coding frameworks transform each local im-

age descriptor into a K-dimensional code to generate the final image representation.

5.2.1 Vector Quantization Coding

The conventional vector quantization coding technique, also known as One-of-N

coding method, encodes a local image descriptor into a binary representation, where

1 indicates the corresponding visual word for the local descriptor. It is easy to

understand that this representation has a large amount of 0’s and only a single 1 and

thus it is considered to be very sparse.

The vector quantization method aims to solve the following constrained least

square fitting problem:

arg min
C

N∑
i=1

‖xi − Bci‖2

s.t. ‖ci‖`0 = 1, ‖ci‖`1 = 1, ci � 0,

(5.1)

where C = [c1, c2, · · ·, cN ] is the set of codes for X. The cardinality constraint

‖ci‖`0 = 1 means that there is only one non-zero element in each code ci, cor-

responding to the quantization id of xi. The non-negative, `1 constraint ‖ci‖`1 =

1, ci ≥ 0 means that the coding weight for x is 1. In practice, the single non-zero

element is found by searching the nearest neighbour.
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The vector quantization coding method is used in BoVW [15] and SPM [35].

The main difference between BoVW and SPM is that BoVW uses the orderless

codewords while SPM incorporates the rough geometry information. The SPM al-

gorithm partitions the input image into increasingly finer spatial rub-regions, and

computes histograms of local features for each sub-region. Typically, in their set-

ting, 2l × 2l sub-regions, l = 0, 1, 2 are used. An example of two-level pyramid

building is shown in Figure 4.1. By placing a sequence of increasingly finer grids

in the feature space, pyramid matching then takes a weighted sum of the number

of matches that occur at each level of the pyramid resolution. Two feature vec-

tors are considered to match if they are in the same grid cell. Matches retrieved at

coarser resolutions are weighed less than matches retrieved at finer resolutions. The

matches are given by the histogram intersection kernel.

5.2.2 Locality-constrained Linear Coding

As suggested by [65] that locality is more fundamental than sparsity since locality

will contribute to sparsity while not necessary vice verse, Wang et al. [61] proposed

an encoding scheme that incorporated locality constraint instead of the sparsity con-

straint in [64] in the following form:

arg min
C

N∑
i=1

‖xi − Bci‖2 + λ ‖di � ci‖2

s.t. 1Tci = 1,∀i
(5.2)

where � means the element-wise multiplication, and di ∈ RK is the locality

adapter giving different freedom for each basis vector proportional to its similar-

ity to the input descriptor xi. In particular,

di = exp(
dist(xi,B)

σ
) (5.3)

where dist(xi,B) = [dist(x1,b1), · · · , dist(xi,bK)]′, and dist(xi,bj) is the Eu-

clidean distance between xi and bj . σ adjusts the speed of weight decay for the

locality adapter. Usually, the distance di is further normalized to (0, 1] by subtract-

ing the max(dist(xi,B)) from dist(xi,B).
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5.2.3 Vector of Locally Aggregated Descriptors

Jégou et al. [27] proposed a vector representation of an image that aggregates

descriptors according to a locality criterion in feature space, which is termed as

VLAD. Given the codebook B learned by k-means clustering algorithm, each im-

age descriptor xi is then associated to its nearest visual codeword bk = NN(xi).

The key idea of VLAD descriptor is to accumulate the vector differences xi−bk of

the descriptor xi assigned to each bk. In this way, VLAD defines the distribution of

the descriptors w.r.t. the clustering center.

The dimension of VLAD representation is KD, where K is the number of code-

words and D is the feature dimension. The aggregated feature vector of an image

is represented by vk,i =
∑

x such that NN(x)=bk xi − bk,i, where xi and bk,i represent

the ith image descriptor and its corresponding visual codeword bk. Further, the

VLAD vector is l2 normalized.

5.3 Max Pooling

Max pooling, one of the most widely used and successful spatial pooling meth-

ods, calculates the maximum of each component. Max pooling becomes more and

more popular because of its great performance when applied with linear classifiers

[64, 61]. Given the encoded feature vector U where each column corresponds to

the responses of all the local descriptors to one specific codeword in the visual

codebook B, max pooling is formulated as follows:

hj = max{| u1j |, | u2j |, · · · , | uNj |}, j = 1, 2, · · · , K. (5.4)

where N denotes the number of local descriptors in the region, and hj is the maxi-

mum response of all local descriptors to a specific codeword. In this chapter, max

pooling method is used in LLC [61]. Note that average pooling is used for the

Fisher Vector coding approach.

In summary, this chapter discusses another visual codebook construction method

by k-means clustering, which is the most widely used approach in modern image

classification tasks. Then, we present several patch based image descriptors encod-

ing methods, such as the Vector Quantization coding, LLC, and VLAD. Another
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spatial pooling method - max pooling is also presented. Recall that all methods but

BoVW take the spatial pyramid strategy to incorporate the rough geometry infor-

mation. Moreover, LLC takes the max pooling method to aggregate the encoded

features while SPM and VLAD use the average pooling technique. The methods

presented in this chapter serve as the comparison group.
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Chapter 6

Experiments

Based on the methods and strategies discussed above, we present an extensive ex-

perimental study on our in-house animal image data. We first discuss how the image

dataset was collected and prepared for our experiments. In the second part, we show

our experimental results and experiment analysis.

6.1 Experimental Setup

6.1.1 Image Data Collection

In the middle of the year 2011, the Alberta Innovates Technology Futures (AITF)

deployed infrared remote camera devices (Reconyx PC900 Hyperfire) at more than

60 sites (see Figure 2.2) in Alberta’s northeast boreal forest, north and west of

Winefred Lake, and started to monitor animals’ movement and behaviour around

the remote devices. Figure 6.1 shows an example of the remote camera. The project

aims to collect image data about Deer and then estimating the population and den-

sity of Deer in the area.

The infrared remote camera is motion sensitive and is triggered once the motion

is detected in front of it. The camera records the presences of animals during day

time and night time. Our dataset was collected from November 2011 to November

2012. Images were captured at a low and irregular frequency, and have a high reso-

lution of 1536× 2048. We find there are only a few image sequences having more

than 10 continuous images. Figure 6.2 shows four image sequences containing

Bear, Deer, Wolf, and Lynx. Since the camera traps require regular battery replace-
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Figure 6.1: An example shows a remote camera (Reconyx PC900 Hyperfire) is
setup with a tree.

ment and transfer of the stored images, humans appear in images and account for

an non-negligible portion of the image dataset. Thus humans are considered as a

species to be identified.

Table 6.1 shows the statistical information about our in-house dataset. As shown

in the first column, we have 19 species including Human. The second column shows

the total number of images we have for each species. Some species like Deer and

Rabbit have several times more images than other species like Lynx, meaning that

the dataset is imbalanced.

6.1.2 Image Data Preparation

As shown in Table 6.1, in our in-house dataset, we have 19 species, including Hu-

man passing in front of cameras and Unknown Species identified by ecologists.

Note that there are cases where the animal species are wrongly identified by ecol-

ogist, as shown in Figure 6.3. Therefore, we first remove such wrong cases by

inspecting the database. The number of frames for each species are highly imbal-

anced and some of them only have a very small number of images. Thus we remove
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Figure 6.2: Some examples of image sequences. The first two rows is Bear se-
quence, the second two rows is Deer sequence, the third two rows is Wolf sequence,
and the last two rows is Lynx sequence.
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Table 6.1: The number of frames of each species. The first column shows the animal
species, the second column shows the total frames of each species in the database,
and the last column shows the total frames of each species used in our experiments.

Species Number of Frames Number of Remained Frames

Black Bear 421 382
Coyote 723 675
Human 1,325 1,076
Lynx 752 663

Rabbit 3,017 2,718
Deer 7,729 6,791
Wolf 475 344

Fisher 91 0
Moose 87 0

Caribou 57 0
Red Fox 52 0

Red Squirrel 43 0
Unknown Species 42 0

Grouse 31 0
Cougar 6 0

Wolverine 4 0
Marten 4 0

Grizzly Bear 3 0
Common Raven 2 0

Total 14,864 12,649

the species who have less than 100 frames. In addition, for a significant number of

images, animals often show at the border of images and occupy a very small por-

tion of the images. In this case, the animals are very difficult to recognize even

by humans. Therefore, we remove such images for the assessment of our method.

Figure 6.4 shows examples of the removed samples. As shown in the figure, it is

very hard, even impossible, for humans to identify the species without seeing other

informative images in this specific sequence. In this way, we have a total of 12,649

frames remaining with 7 species: Bear, Coyote, Human, Lynx, Rabbit, Deer and

Wolf, as shown in Table 6.1 Column 3.

In addition, as a preprocessing step, we first resize the image into the resolu-

tion of 180 × 240 using bicubic interpolation which largely reduces the total size

of the dataset. Then all colour images are mapped to gray-scale images by discard-
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Figure 6.3: The wrong identification cases by ecologists. The textual description
XX → Y Y above each image means species XX is wrongly identified as species
Y Y .

ing colour information since we found that the species identification performances

were almost the same by our Animal Species Identification System (ASIS) with

or without colour information. This is all we did in the preprocessing stage and

we term this dataset as raw images. On the other hand, we prepare another image

dataset with backgrounds manually removed. We delimit a bounding box around

the animal region and then save the image region inside the bounding box. Figure

6.5 shows an example of how to prepare a clean animal image. In this way, the

collected dataset is termed as clean images. The animal body occupies at least half

of the cleaned image and then further resized to 180 × 240 if the size is larger than

180× 240. We test the performance of our method on these two datasets and verify

how crucial it is to identify animal species on clean images.

6.1.3 Implementation Details
Parameters Setting

In our experiments, typically, we extract the dense Scale Invariant Feature Trans-

form (SIFT) features and the cell-structured Local Binary Pattern (cLBP) descrip-

tors from 16 × 16 image patches with the sampling grid space of 6 pixels. As

discussed in Section 3.1, the SIFT feature extracted from each patch is a 128 di-

mensional vector. In our experiments, each 128 dimensional feature vector is fur-

ther projected to 80 dimensional feature space by applying Principle Component

Analysis (PCA). For cLBP extraction, we use LBP2
8,1 to circularly extract uniform
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Local Binary Pattern (LBP) from each patch. Finally, we concatenate each single

vector from each image patch to form a global image vector. Further, we use the

late fusion strategy [57] to combine the dense SIFT feature and the cLBP descrip-

tors as the empirical study proves late fusion tends to give better performance in

image classification tasks.

As extensive experimental study shows, the classification accuracy varies with

the size of visual codebook. Therefore, we run experiments with different code-

book sizes for both Gaussian Mixture Model clustering and k-means clustering.

Typically, in many studies, the k-means codebook size K is set to 1024, and Gaus-

sian Mixture Model codebook size K is set to 64 or 256. Besides, we use the means

estimated by k-means algorithm to initialize the means vector for Gaussian Mixture

Model, and thus the variance based on the learned means to initialize the covariance

matrices. We randomly select 250 images from each species to constitute our train-

ing set and randomly sample 100 image features as in [35, 64, 61] from each image

to create the visual codebook. VLfeat library [60] is used in our experiments.

Multi-class Linear Support Vector Machines

For computational efficiency, we use a linear Support Vector Machines (SVMs)

classifier introduced in [64]. The linear SVMs classifier uses one-against-all strat-

egy to train S binary linear SVMs, each solving the following unconstrained convex

optimization problem

min
wc
{J(wc) = ‖wc‖2 + C

N∑
i=1

l(wc; y
c
i , xi)} (6.1)

where S is the number of categories, yci = 1 if yi = c, otherwise yci = −1, and

l(wc; y
c
i , xi) is the loss function. In this manner, the training cost scales linearly

with the number of training samples, while the testing cost is constant.
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Figure 6.4: Some discarded examples. From top to bottom: Bear, Deer,Wolf, and
Lynx. These animal samples occupy a very small part of the entire image, and thus
are very hard to recognize, even for humans, so we discard these samples.

Figure 6.5: An example shows how to prepare a clean image. From left to right:
raw image, build a bounding box, clean image.
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Table 6.2: The confusion matrix of species identification based on ASIS using the
SIFT features on raw image dataset (accuracy = 86.64% ± 0.13).

Prediction
Bear Coyote Human Lynx Rabbit Deer Wolf

G
ro

un
d

Tr
ut

h Bear 93.33% 0.30% 0.3% 1.36% 0.00% 3.94% 0.76%
Coyote 0.38% 76.47% 0.71% 7.01% 6.64% 3.91% 4.89%
Human 0.51% 0.58% 92.81% 2.23% 0.17% 2.91% 0.80%
Lynx 2.57% 12.11% 1.74% 71.82% 5.33% 3.05% 3.39%

Rabbit 0.08% 1.66% 0.74% 3.34% 92.37% 0.91% 0.90%
Deer 2.63% 2.90% 1.13% 2.87% 0.83% 85.19% 4.45%
Wolf 2.13% 6.38% 0.43% 1.49% 1.91% 3.62% 84.04%

6.2 Experimental Result and Analysis

6.2.1 Dataset 1

We conduct our first set of experiments on raw animal images as prepared in Section

6.1.2. In this section, we collect experimental results based on our Animal Species

Identification System (ASIS), the original Bag of Visual Words method (BoVW)

[15], the Spatial Pyramid Matching approach (SPM) [35], the Locality-constrained

Linear Coding approach (LLC) [61], and Vector of Locally Aggregated Descriptors

(VLAD) [27]. For each method, we repeat our experiments ten times and thus give

the mean classification accuracy and standard deviation for comparison. Especially,

we present the confusion matrix of animal species identification based on ASIS with

256 Gaussian components.

The confusion matrix of species identification based on ASIS using the dense

SIFT features is shown in Table 6.2. We achieve a classification accuracy of 86.64%

± 0.13 based on 10 runs. As shown in the table, the identification accuracy for

Human is 92.81%. This is probably because humans in images always show in up-

right posture and wear colorful clothes. Also, the identification accuracy for Bear

is higher than 93% which can be attributed to the black appearance of Bear. The

classification accuracies for Coyote, Lynx, and Wolf are much lower because these

three species look quite similar.

Table 6.3 presents the confusion matrix of species identification based on ASIS

using the cLBP descriptors. The overall classification accuracy is 76.67% ± 0.24
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Table 6.3: The confusion matrix of species identification based on ASIS using the
cLBP features on raw image dataset (accuracy = 76.67% ± 0.24).

Prediction
Bear Coyote Human Lynx Rabbit Deer Wolf

G
ro

un
d

Tr
ut

h Bear 86.82% 1.36% 1.21% 1.36% 0.61% 6.52% 2.12%
Coyote 3.39% 67.29% 2.45% 4.66% 14.16% 3.67% 4.38%
Human 4.41% 0.53% 88.40% 1.26% 0.00% 4.79% 0.61%
Lynx 6.00% 9.10% 4.46% 60.15% 13.22% 4.75% 2.32%

Rabbit 0.75% 2.67% 2.07% 2.76% 89.95% 1.19% 0.62%
Deer 8.73% 3.12% 5.21% 3.28% 3.82% 71.57% 4.27%
Wolf 2.77% 6.81% 1.91% 0.21% 3.83% 3.83% 80.64%

Table 6.4: The confusion matrix of species identification based on ASIS using the
SIFT and the cLBP features on raw image dataset (accuracy = 86.75% ± 0.12).

Prediction
Bear Coyote Human Lynx Rabbit Deer Wolf

G
ro

un
d

Tr
ut

h Bear 94.70% 0.00% 0.30% 0.61% 0.00% 3.64% 0.76%
Coyote 0.42% 75.76% 0.89% 6.26% 7.91% 3.91% 4.85%
Human 0.65% 0.39% 92.86% 2.23% 0.05% 3.20% 0.63%
Lynx 2.86% 11.43% 1.65% 70.41% 6.63% 3.44% 3.58%

Rabbit 0.11% 1.56% 1.01% 3.06% 92.79% 0.64% 0.83%
Deer 2.94% 2.63% 1.12% 2.71% 1.03% 85.31% 4.27%
Wolf 2.13% 6.17% 0.00% 1.06% 1.70% 4.04% 84.89%
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which is much lower than that using the dense SIFT features. As a consistent ob-

servation, the classification for each species drops compared to the same approach

using the dense SIFT features. This observation clarifies the fact that the dense

SIFT features has much more discriminative power in describing camera trapping

images. Besides, the cLBP descriptor seems to be more appropriate to describe

Rabbit images.

Table 6.4 shows the confusion matrix of species identification based on ASIS

using the fusion of the dense SIFT features and the cLBP descriptors with the over-

all accuracy of 86.75% ± 0.12. In our experiments, we adopt late fusion strategy

and we empirically find 0.7 and 0.3 weights for the SIFT and the cLBP output the

best result. As we can see, the overall accuracy is boosted. Specially, the classifica-

tion accuracies for all species but Coyote and Lynx are boosted albeit slightly. This

implies that the combination of the dense SIFT and the cLBP is not a good descrip-

tor for Coyote and Lynx but it is a good strategy for identifying other species.

The classification performances based on all approaches are shown in Table 6.5.

We examine the different performances with different codebook sizes varying from

64 to 2048. However, we did not examine the performance of ASIS and VLAD with

codebook size larger than 256 since these two methods capture the distribution of

low-level image descriptors and thus retain much more information than other ap-

proaches. The resulting feature vector lies in a significantly high dimensional fea-

ture space which leads to very high memory usage when the codebook size grows

higher than 256. However, as we can see, even with the codebook size of 64, ASIS

achieves the best performance among all methods. In addition, our method con-

sistently achieves the highest classification accuracies under different settings. For

approaches of BoVW, SPM, and LLC which only consider the codeword frequency

or the linear combination of nearest words in the local coordinate system, their per-

formances are inferior to those of ASIS and VLAD. The table demonstrates the

effectiveness of ASIS based on the fusion of the dense SIFT features and the cLBP

descriptors.

Figure 6.6 shows the top ten hits for each species. The decimal number above

each image indicates the probability of mapping the image to the specified species.
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These probabilities, also known as confidence scores, are learned according to the

method discussed in [51]. The confidence score indicates how confident the system

is about a specific prediction. The high confidence score means the system is highly

confident about this identification and there is no need to manually double-check

it while the low confidence score suggests that the identification result probably

cannot be trusted and needs manual double-checking. Figure 6.7 shows some wrong

identification cases with low confidence scores. Based on our experiments, we

found that the confidence scores of wrong identification cases are usually lower

than 0.6 while confidence scores of correct identification cases are almost always

higher than 0.75. Those confidence scores are valuable to ecologists for further

analysis.

6.2.2 Dataset 2

We conduct our second set of experiments on clean images. Figure 6.8 shows a

few samples of clean images. Still, the clean image has dynamic background, il-

lumination changes, and viewpoint changes. However, in this case, we can extract

more effective image features from clean images since we have larger opportunity

in extracting features from animal region when training the visual codebook and

has less negative interference introduced by cluttered background.

In this set of experiments, we compare the performances between the raw image

dataset and the clean image dataset based on ASIS. We also vary the codebook size

from 64 to 256. From Table 6.6, we see that identification accuracies on clean

image dataset consistently higher than those on raw image dataset for the dense

SIFT feature and the fusion of the dense SIFT and the clBP features. However, the

accuracy decreases when using the cLBP descriptors only.

6.2.3 Impact of Spatial Pyramid Level

We further examine the impact of the number of spatial pyramid levels. Specially,

we run our experiments on raw image dataset using the Fisher Vector coding ap-

proach with the codebook size of 64. In the Figure 6.9, we report the mean clas-

sification accuracy under three spatial pyramid level settings. From the figure, we
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Figure 6.7: Some wrong identification cases. The label above each image “Species1
→ Species2” means Species1 is wrongly identified as Species2 by our system. The
decimal value in the parentheses is the confidence score for this prediction.

Figure 6.8: Animal images with background manually removed. Each cleaned
image has an animal occupying more than half of the entire image.
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Table 6.6: Classification performance comparison between raw images and clean
images based on ASIS.

features codebook size Raw Image Dataset Clean Image Dataset
SIFT cLBP
X × 64 0.8545 ± 0.0041 0.9000 ± 0.0016
X × 128 0.8612 ± 0.0014 0.9038 ± 0.0019
X × 256 0.8664 ± 0.0013 0.9068 ± 0.0031
× X 64 0.7501 ± 0.0042 0.7373 ± 0.0024
× X 128 0.7639 ± 0.0057 0.7377 ± 0.0052
× X 256 0.7667 ± 0.0024 0.7199 ± 0.0042
X X 64 0.8558 ± 0.0022 0.9062 ± 0.0012
X X 128 0.8638 ± 0.0012 0.9084 ± 0.0012
X X 256 0.8675 ± 0.0012 0.9100 ± 0.0027

Figure 6.9: Impact of spatial pyramid level. 1-level means image regions include
only the entire image; 2-level means image regions include four additional subre-
gions; and 3-level means image regions include additional 16 subregions at each
corresponding resolution level.
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Table 6.7: Impact of the cLBP feature extraction strategy. The species identification
accuracies are based on ASIS on raw image dataset.

codebook size non-overlapped image patch overlapped image patch
64 0.7030 0.7501

128 0.7250 0.7639
256 0.7363 0.7667

observe that increasing the spatial pyramid level from 1 to 2 results in the higher

classification accuracy while further increasing the spatial pyramid level decreases

the classification accuracy. The 2-level spatial pyramid is the best choice.

6.2.4 Impact of overlapped cLBP and non-overlapped cLBP

As stated in [62], the authors extract the cLBP features from non-overlapped im-

age patches. However, in our experiments, we follow the same strategy as we did

for the dense SIFT feature extraction to extract the cLBP features, i.e., from over-

lapped image patches. As shown in Table 6.7, the species identification accuracies

based on the cLBP features extracted from overlapped image patches are consis-

tently higher than those based on the cLBP features extracted from non-overlapped

image patches.

6.2.5 ASIS User Interface Illustration

We developed a user interface using C++ based on OpenCV and LIBSVM [13].

This application is called Animal Species Identification System (ASIS). Note that

ASIS runs on the raw image dataset and does not support clean images cut-out

since the process of manually cropping the animals is very time-consuming and is

not practical for the animal species identification problem. In fact, the process of

manually animal image cropping turns the animal species identification task into

other problems like individual animal identification.

Figure 6.10 shows the user interface of ASIS. ASIS allows a user to train a

new model when it is necessary, classify new images, and browse the classification

results. Specially, a user can check whether a specific identification with a low

confidence score is correct or not. If it is a wrong identification, manual correction
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Figure 6.10: The user interface of ASIS based on Microsoft Foundation Class Li-
brary. Mainly, the user interface has three sections: “training a model”, “identify
new images”, and “browse identification results”.

is allowed.

A user can select a training image database to train a new model and select a

directory to save the trained model. It is very important and useful to offer the

option to train a new model, especially when images containing new species ar-

rive. A reasonable assumption is that a user would like to know the basic statistical

information of the training dataset after he/she selects the training dataset. It can

be achieved by clicking “Run training info” button and the statistical information is

shown in the neighbouring drop-down list. Furthermore, a user would like to decide

how many images from each species should be used to train the new model based

on the statistical information of the training dataset. Clicking “Train” button allows

ASIS to start training a new model. An example of the training process is shown in

Figure 6.11.

Once we have trained a model based on the training image dataset, we can start

identifying new images by selecting the directory of new images and the directory

of the trained model. Clicking the “Identify” button starts the identification process.
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Figure 6.11: The process of training a new model based on the selected training im-
age dataset. The left image shows the statistical information of the training dataset
in the drop-down list.

Figure 6.12 shows the process of identifying new images based on the selected

model.

Figure 6.12: The process of identifying the selected image dataset based on the
selected model.

After the process of animal species identification, a user can browse the iden-

tification results by clicking the “Browse identification result” button. Figure 6.13

shows an example of correct identification with a high confidence score. In the fig-

ure, ASIS shows the statistical information of the identification result of the selected

image directory in the drop-down list right to the “Browse identification result” but-

ton. In addition, ASIS shows the current image name, the identified result for the

current image, and the confidence score for this identification. For a correct iden-

tification, a user can click the “next” button to browse the identification result of

the next image. Figure 6.14 shows an example of wrong identification with a low
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Figure 6.13: An example of the correct identification with a high confidence score
of 0.9452. For this case, a user can click the “next” button to browse the identifica-
tion result for the next image.

confidence score. In the figure, a White-tailed Deer is identified as unmarked with

a low confidence of 0.4534. In this case, a user can correct the identification result

by first selecting the correct species from the drop-down list and then clicking the

“next” button. The “next” button also brings a user to the identification result of the

next image.
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Figure 6.14: An example of manually checking the identification result with a low
confidence score. ASIS allows a user to manually correct the identification result if
it is wrong. It is done by selecting the correct species from the drop-down list left
to the “next” button and clicking the “next” button.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Given a database of animal images with illumination, scale, and viewpoint changes

and cluttered background, we propose to use the Fisher Vector coding approach to

combine the dense Scale Invariant Feature Transform (SIFT) features and the cell-

structured Local Binary Pattern (cLBP) descriptors to automatically identify the

animal species in an image captured by a camera trap. The Fisher Vector representa-

tion utilizes the powerful Fisher Kernel framework which combines the advantages

of both generative and discriminative approaches. In our extensive experiments, we

have shown that our approach performs much better than alternative ones in terms

of classification accuracy. Besides, since our method works with a linear Support

Vector Machines (SVMs) classifier, the computational speed is very fast.

Compared to the Bag of Visual Words (BoVW) model and its variants includ-

ing BoVW [15], Spatial Pyramid Matching (SPM) [35], and Locality-constrained

Linear Coding (LLC) [61], the Fisher Vector coding approach estimates the dis-

tribution of the underlying image descriptors and retains much more information

of the image and thus results in significantly less approximation error. Taking the

zero-order image statistics into account as well as the first-order and the second-

order information, the final vector representation is more dense and lies in a high

dimensional feature space, which is considered more appropriate to work with a

linear SVMs classifier. The benefit of this additional image information is shown in

our experiments.
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Though the Vector of Locally Aggregated Descriptors (VLAD) [27] approach

considers the distribution of the underlying image descriptors, it, on the other hand,

uses the non-probabilistic k-means to learn the visual codebook and thus only uti-

lizes the gradients with regard to the means learned by k-means clustering method.

From this point, VLAD is viewed as a simplified version of Fisher Vector coding.

This explains the improved performance of the Fisher Vectoring coding approach

over that of VLAD.

From the experiments, we have demonstrated that the dense SIFT feature is

much more powerful than the cLBP descriptor in describing the animal images on

two datasets. Moreover, the fusion of these two features can boost somewhat the

classification accuracy on both raw image dataset and clean image dataset.

In addition, we show that our method works well even for a small codebook

size which thus requires less storage and more efficient memory usage. However,

the alternative approaches can only achieve the satisfactory performance with an

arbitrary large size of codebook. The small codebook size is a great advantage over

alternative methods.

We also show the incorporation of the rough structure information is beneficial

for the animal species identification performance. Furthermore, as shown in our

experimental results, the identification accuracy on images whose backgrounds are

manually removed is improved four percentage point over that of raw images.

Last but not least, we have some suggestions for ecologists about how to set up

camera traps in the field and how to obtain better image data for further analysis.

First, colour pillars could be put in front of a camera trap at a predefined distance

in order to estimate the size of the captured animal based on the distance. Second,

in order to obtain more information of the animal, the motion sensor of a camera

trap could be replaced with the heat sensor or the depth sensor. This would provide

more opportunities for computer vision researchers to manipulate the image data

and obtain either the contour or the shape of the animal which can be further utilized

for the task of animal species identification. Third, instead of only storing images

containing animals when a camera trap is triggered by motion detection, the camera

provider could reprogram the camera and store both of the pure background image

64



and the animal image. This would largely simplify the problem for animal species

identification, animal counting, tracking, etc.

7.2 Future Work

There are some directions to go in the future. First, more image features like shape

feature should be examined on the image dataset to determine which one has more

deterministic power in abstracting the animal image or which of them work bet-

ter. Second, as we have seen, our classifier indeed works better on images with

background removed than on the raw dataset. Therefore, it is worth exploring the

background subtraction methods which can extract animal regions for feature ex-

traction. However, based on our preliminary experiments, we found that traditional

background modelling methods did not give us satisfactory foregrounds since our

images were captured at quite a low and irregular frequency. Third, in our ex-

periments, we randomly sample 100 features from each image to learn a visual

codebook. Other feature sampling strategies should be investigated to obtain more

meaningful features from the animal region. Fourth, as the research progress in

the community reveals, deep learning currently is the most promising direction to

solve the unsupervised feature learning and image classification problems [34, 14].

It is a promising direction to apply deep learning methods to our animal species

identification task. Fifth, we would like to integrate some biology rules into our

system. For example, we could reject some wrong identifications based on the fact

that there is no bear in winter. The different colour information of rabbit in winter

and in summer could help to build a more accurate representation model. Last, by

considering the colour information of an image as the prior knowledge, we could

make our routine focus on the non-green image region and thus further reduce the

impact of the background.
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