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Abstract

The use of ordinary differential equations modelled on networks has become

an increasingly important technique in many areas of research. The local

behaviour of the system is modelled with differential equations and interac-

tions between members or nodes are described using weighted digraphs. For

instance, in public health nodes can represent different groups of people af-

fected by an infectious disease, while edges in the network represent the cross-

infection between the groups. The local behaviours of the disease in each group

are described with ODE dynamics. In ecology, the spatial dispersal of one or

more species considers the habitation patches as nodes and the edges between

nodes describe the movement of the species between patches.

This thesis develops a method of ranking the nodes of an ODE network

at a positive equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T . Such a ranking is called an

equilibrium ranking. More specifically, assuming an ODE system modelled on

a network (G, B) has a positive equilibrium x∗, we associate x∗
i to node i of

the network. These positive equilibrium values x∗
i are used to rate, and hence

rank, the individual nodes of the network. Such an equilibrium ranking reflects

both the graph structure and the local ODE parameters of the model.

In my dissertation I investigate equilibrium ranking for several ODE net-

works including SIR epidemiology models with n different groups or spatial

regions, single or multiple species ecological models, and coupled oscillator

models from engineering. For an SIR model the equilibrium ranking can

be obtained using the equilibrium values of the disease prevalence vector

I∗ = (I∗1 , . . . , I
∗
n)

T . This will indicate which of the n groups or patches has

the highest number of infected individuals per capita. In the single species
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ecology model an equilibrium ranking vector comes from the species density

vector x∗ = (x∗
1, . . . , x

∗
n)

T , and reflects overpopulation or extinction on differ-

ent patches or in different groups.

The dependence of equilibrium ranking on both graph structure and local

parameters is also investigated. In particular, the dependence of the equi-

librium ranking is considered for several digraph structures including rooted

trees, loop digraphs, unicyclic and multi-cyclic digraphs. This will allow re-

searchers to fix the network structure (G, B) of the system and focus on how

the dynamics play a role in the importance of nodes in a network.
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Chapter 1

Introduction

The use of ordinary differential equations modelled on networks has become

an increasingly important technique in many areas of research. The local be-

haviour of a system is modelled with differential equations and interactions be-

tween members or nodes are described using weighted digraphs. For instance,

in public health the nodes can represent different groups of people affected by

an infectious disease, while edges in the network represent the cross-infection

between the groups. The local behaviours of the disease in each group are de-

scribed with ODE dynamics. In ecology, the spatial dispersal of one or more

species considers the habitation patches as nodes and the edges between nodes

describe the movement of the species between patches.

Considering an ODE system modelled on a network (G, B) at a positive

steady state x∗ = (x∗
1, . . . , x

∗
n)

T , one can ask the question of which node has the

most relative importance. In other words, we want to rank a network’s nodes at

equilibrium. In an epidemiology model the node with the highest rank can be

interpreted as the group with the highest disease prevalence given an endemic

outbreak. In an ecology system modelling the density of a species over a range
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of habitation patches the most important node represents the species with the

highest population density. A ranking in this case would allow researchers to

predict which areas a species is thriving and which patches the species is in

danger of going extinct (patches having a relatively low population density).

Given a ranking of the members of an ODE network, we would like to

know how effective this ranking is and how it relates to other network rank-

ing methods established in literature. Another important aspect of a given

network ranking is how it depends on both the dispersal connections of the

network and the local ODE parameter values. Answering this question of

dependence can give insight into how network structure and local dynamics

influences which node will be the most important.

Mathematically, a network is defined using a digraph G = (V,E) consisting

of a set V of nodes and a set E of directed edges representing the connections

between vertices. For example, in epidemiology, depending on the situation

the nodes of a digraph can represent the different groups of a host population,

different spatial regions such as countries, cities or even individual cells. The

directed edges then represent the cross-infection between the individual com-

ponents of the disease network. A digraph G is weighted if each arc from node

i to node j, denoted by (i, j), is assigned a positive real number ω(i, j) ∈ R+.

For a disease model these weights can represent the disease transmission rates

from group to group.

An n × n matrix B is associated to a digraph G by defining the the ijth

entry bij of B to be equal to the weight of directed arc (j, i) if it exists, and zero

otherwise. Thus, if an edge (j, i) exists in the digraph G, then bij = ω(j, i).

The matrix B is called the weight matrix or dispersal matrix of the network G.
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Therefore, it is often useful to represent a network as the ordered pair (G, B),

where G is the digraph and B is the weight matrix associated to G.

The local dynamics at each node i of the system are described using ordi-

nary differential equations of the form

ẋi = fi(xi), i = 1, . . . , n, (1.1)

where fi is a nonlinear function of xi. The xi of the system can represent

individuals in a population infected with a disease, to the density of a species

in an ecology system. Hence, combining the local ODE equations with the

dispersal connections described by (G, B) gives a coupled ODE system of the

form

ẋi = fi(xi) +
n
∑

j=1

bijgij(xi, xj), i = 1, . . . , n, (1.2)

where B = (bij)n×n is the weight matrix of the network, and gij describes the

influence among the nodes depending on the situation. Given an ODE model

of the kind described by (1.2), we make the following assumption

(A1) System (1.2) has a unique positive equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T > 0.

In such a case, we would like to know which node of the network has

the most relative importance. Therefore, the equilibrium x∗ is defined as

the equilibrium ranking vector for the ODE network, and the entry x∗
i > 0

is associated to node i of the network and the nodes are ranked from most

to least important based on the x∗
i values. A ranking of an ODE network

obtained in this way will be called an equilibrium ranking of the ODE network.

Therefore, this thesis is structured to investigate three important aspects of
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the equilibrium ranking.

The second chapter is used to state preliminary definitions and results

needed for the thesis and to give a review of literary works on network ranking.

Chapter 3 addresses the issue of how equilibrium ranking relates to other

network ranking methods. I investigate a multigroup SIR epidemiology model

with positive equilibrium x∗ = (S∗
1 , I

∗
1 , R

∗
1 . . . , S

∗
n, I

∗
n, R

∗
n)

T . I derive a matrix

equation containing a disease prevalence equilibrium vector I∗ = (I∗1 , . . . , I
∗
n)

T .

Therefore, I∗ is the unique positive eigenvector of a matrix. This establishes

a link between equilibrium ranking and the well known method of eigenvector

centrality ranking. The benefit of this new equilibrium ranking is that it

takes into account not only the network structure but also the local parameter

values of the system. The last section of this chapter gives implications that

an equilibrium ranking can have for the control of an infectious disease.

Chapter 4 considers defining a ranking for a more general class of nonlinear

ODE networks. In particular, we consider several engineering and ecology

examples and then state results for two particular forms of (1.2). In each case

we use the equilibrium equations to derive a matrix equation of the form

M(x∗)x∗ = x∗. (1.3)

Then we can show that x∗ is the Perron eigenvector of M(x∗) associated to

the spectral radius ρ(M(x∗)) = 1.

As in Chapter 3, this establishes a link between eigenvector ranking of

a network and our equilibrium ranking vector. Moreover, the equilibrium

ranking vector depends not only on the networks weight matrix B, but also
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the local parameter values of the ODE system.

Chapter 5 deals with how an equilibrium ranking vector x∗ depends on

both the structure of the network (G, B) and the local ODE parameter values.

In many cases, an equilibrium ranking vector x∗ is obtained from a matrix

equation Mx∗ = x∗, where M is the product of a diagonal matrix D and the

irreducible weight matrix B of the system. Therefore, to answer the question

of how an equilibrium ranking vector depends on network structure and local

dynamics, we investigate the structure of the unique positive Perron eigenvec-

tor p of a matrix M = D · B.

Suppressing the local parameter values encoded in the diagonal matrix D

allows for the investigation of how the entries of a nonnegative eigenvector p

depend on the weight matrix B of a network (G, B). More specifically, several

typical network structures including cycle, rooted tree, and unicyclic digraphs

are considered. Analysis of the unique nonnegative eigenvector gives insight

into how the structure of a digraph affects the importance of the individual

nodes of the network. Then, fixing a network (G, B), we consider how the

entries of the Perron eigenvector change when B is multiplied by a diagonal

matrix D containing the local ODE parameter values. This will allow for the

investigation of how the local dynamics play a role in equilibrium ranking given

a fixed network structure.
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Chapter 2

Preliminaries and Literature

Review

This chapter will be used to state the basic definitions and notions required

throughout the thesis. The first section covers results on positive and nonneg-

ative matrices and the Perron-Fröbenius Theorem (See [6], [17], [52], and [74]).

Section two states the necessary definitions and results about graph theory.

For a more detailed discussion of graph theory see [40], [47], [48], [77], [110],

and [111]. The third section is used for a review of related literature. The

results of this section originate from the works of [8], [9], [10], [15], [27], [63],

[75], [80], and [101].

2.1 The Perron-Fröbenius theorem

This section will consist of three subsections that develop the so-called Perron-

Fröbenius Theorem. The first states basic results about eigenvalues and eigen-

vectors of a real n× n matrix A. The second and third subsections list results

about positive and nonnegative matrices respectively.



2.1 The Perron-Fröbenius theorem 7

In what follows, we assume that the reader is familiar with linear algebra.

By a matrix in Mm×n(R) we mean a matrix with m rows, n columns, and

real entries. In particular Mn(R) is the set of all square matrices of size n

with real coefficients. A matrix A ∈ Mm×n(R) will be identified with a linear

transformation A : Rn → R
m, so that A can be thought of both as a matrix

and a linear transformation. We will also denote by I := In, the n×n identity

matrix.

2.1.1 Eigenvectors and Their Properties

Let A ∈ Mn(R) be a matrix. Then λ ∈ C is called an eigenvalue of A, if there

is some nonzero vector x ∈ R
n, such that Ax = λx. We call x an eigenvector

associated with λ. In such a case, (λ,x) is called an eigenpair of A. The

characteristic equation of A is given by

det(A− λ · I) = 0,

and the left-hand-side is called the characteristic polynomial of A, and is de-

noted by pA(λ).

Definition 2.1.1. Let A ∈ Mn(R). Then the spectrum σ(A), of A is the set

of all eigenvalues of A, i.e., we have

σ(A) := {λ ∈ C : det(A− λI) = 0} = {λ1, . . . , λk},

where for every i = 1, . . . , k, Avi = λivi for some 0 6= vi ∈ R
n.

Recall that given an n×nmatrix A, an r×r principal submatrix is obtained

from A by deleting the same set of n − r rows and columns from A, and an
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r× r principal minor is the determinant of an r× r principal submatrix. Also

note that there are
(

n

r

)

such principal minors. Moreover, the 1 × 1 principal

minors are the n diagonal entries aii, i = 1, . . . , n of A and the n×n principal

minor is the determinant of A (delete n− n = 0 row and columns).

Theorem 2.1.1. Let A be an n×n matrix, and let M r
k , k = 1, . . . ,

(

n

r

)

denote

the r × r principal minors of A. Then the characteristic polynomial of A is

given by

pA(λ) = λn − Tr(A)λn−1 + c2λ
n−2 + · · ·+ cn−1λ+ (−1)n det(A) (2.1)

where cr = (−1)r
(nr)
∑

k=1

M r
k for all r = 2, . . . , n− 1.

Definition 2.1.2. Let A ∈ Mn(R). If λi ∈ C is an eigenvalue of A, then

the algebraic multiplicity ai := alg(λi) of λi is the largest integer such that

(λ− λi)
ai divides the characteristic polynomial pA(λ).

Definition 2.1.3. Let A ∈ Mn(R), and let λ be an eigenvalue of A with

associated linearly independent eigenvectors x1, . . . ,xr (r ≤ n). Then the

eigenspace Eλ associated with λ, is given by the subspace

Eλ := span{x1, . . . ,xr}.

Definition 2.1.4. Let A ∈ Mn(R). If λi ∈ C is an eigenvalue of A, define

the geometric multiplicity gi := geo(λi) of λi to be the number of linearly

independent eigenvectors associated with λi, i.e., gi = dim(Eλi
).

Remark 2.1.1. Therefore, given an n×n matrix A with an eigenvalue λ, the
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eigenspace of λ is nothing more than the span of the null space of λI −A, i.e.,

Eλ := span(null(λI − A)),

and hence geo(λ) = dim(span(null(λI − A))).

Definition 2.1.5. Let A be an n× n matrix and let λ be an eigenvalue of A.

If algA(λ) = 1, then λ is called a simple eigenvalue of A. If algA(λ) = geoA(λ)

then λ is called semisimple.

Theorem 2.1.2. Let A ∈ Mn(R). If λi is an eigenvalue of algebraic multi-

plicity ai, then the geometric multiplicity gi of λi satisfies

1 ≤ gi = n− rank(λiI − A) ≤ ai.

Corollary 2.1.1. Let A ∈ Mn(R). If λi is simple, then λi has a unique

eigenvector up to a scalar.

Proof: If λi is simple, then the theorem tells us that there are at most

1 ≤ gi ≤ 1 linearly independent eigenvectors, i.e., gi = 1 and there is only one

linearly independent eigenvector associated to λi. �

Definition 2.1.6. Let A ∈ Mn(R). The spectral radius ρ(A), of A is defined

as

ρ(A) := max{ |λ| : λ ∈ σ(A) }

Definition 2.1.7. Let A ∈ Mn(R). The spectral circle Sρ(A)(0), of A is defined

as

Sρ(A)(0) := { λ ∈ σ(A) : |λ| = ρ(A)}.
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2.1.2 Positive Matrices

We first focus on a matrix 0 < A ∈ Mn(R), and the so-called Perron Theorem

about the spectral radius of a positive matrix A. The proof can be found in

Appendix A.

The lemma below lists several useful properties when working with positive

and nonnegative matrices.

Lemma 2.1.1. Let A ∈ Mn(R), x ∈ R
n, and let ρ(A) be the spectral radius

of A. Then

(a) A > 0 ⇔ A
ρ(A)

> 0,

(b) 0 < α ∈ R ⇒ ρ(αA) = αρ(A),

(c) A > 0, x ≥ 0, x 6= 0 ⇒ Ax > 0,

(d) A ≥ 0, u ≥ v ≥ 0 ⇒ Au ≥ Av,

(e) A ≥ 0, x > 0, Ax = 0 ⇒ A = 0,

(f) A ≥ 0, A 6= 0, x > y > 0 ⇒ Ax > Ay.

Proof: See R. Horn and C. Johnson; [52]. �

We can now state the so-called Perron Theorem about positive matrices.

Theorem 2.1.3 (Perron). Let 0 < A ∈ Mn(R), and let ρ(A) be the spectral

radius of A. Then

(a) 0 < ρ(A) ∈ σ(A),

(b) alg(ρ(A)) = 1,

(c) ∃ ! p > 0 Ap = ρ(A)p, and ‖p‖1 = 1,
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(d) if ρ(A) 6= µ ∈ σ(A), then |µ| < ρ(A),

(e) x ≥ 0 an eigenvector of A implies x = αp, α > 0.

Proof: We outline the proof here. For complete details see Appendix A.

(a) This is Lemma A.0.2, and Theorem A.0.3.

(b) This is Theorem A.0.5.

(c) From part (b) and Theorem A.0.3, we know that 0 < |x| is an eigenvec-

tor of A associated to ρ(A). Therefore, note that null(ρ(A)I−A) = Eρ(A)

implies that dim(Eρ(A)) = 1 from part (b). Hence, there exists an eigen-

vector x of ρ(A) such that |x| > 0 and Eρ(A) = span{|x|}. Therefore, by

normalizing v := |x| with norm ‖ · ‖1, we obtain p = v

‖v‖1 such that

p ∈ Eρ(A), p > 0, and
n
∑

j=1

pj = 1.

We call p the Perron vector of A > 0, and the associated eigenvalue ρ(A)

the Perron root of A. Moreover, (ρ(A),p) is called the Perron eigenpair

of A.

(d) This follows from Theorem A.0.4.

(e) This is Theorem Theorem A.0.6.

�

2.1.3 Nonnegative and Irreducible Matrices

Now consider the case where A ∈ Mn(R) has nonnegative entries, and see

what happens to the conclusions of Perron’s theorem. In order to do this lets

look at some examples of 2× 2 matrices with at least one zero entry.
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Example 2.1.1. Consider the matrices A =







0 a

0 0






, B =







0 1

1 0






, and

C =







1 0

0 2






. Then, for the matrix A

det(λI − A) =

∣

∣

∣

∣

∣

∣

∣

λ −a

0 λ

∣

∣

∣

∣

∣

∣

∣

= λ2.

Thus, we see that λ1 = λ2 = 0 so algA(0) = 2 > 1 and ρ(A) = max{|λ| : λ ∈

σ(A)} = |0| = 0. Also note that for λ = 0 we have the eigenvector v = (1, 0)T ,

which is not positive. Moreover, this gives

null(A− ρ(A)I) = null(A) = span{(1, 0)T}.

Hence, there is no positive eigenvector in the eigenspace E0 of ρ(A) = 0.

Furthermore, note that

(A− λI)2 =







λ2 −2aλ

0 λ2






and (A− λI)3 =







−λ3 aλ2(1 + 2aλ)

0 −λ3






.

Therefore, when λ = 0 we get null((A− λI)2) = null((A− λI)3) = R
2. Thus,

the index of λ = 0 is equal to 2 > 1, i.e., index(ρ(A)) 6= 1 if and only if

ρ(A) = 0 is not semisimple. Hence, matrix A, properties (a), (b), (c), and (d)

all fail to hold.
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Next, the characteristic polynomial of B is given by,

det(λI − A) =

∣

∣

∣

∣

∣

∣

∣

λ −1

−1 λ

∣

∣

∣

∣

∣

∣

∣

= λ2 − 1 = (λ+ 1)(λ− 1).

Hence, ρ(B) = 1. However, −1 ∈ σ(B), but | − 1| = 1 = ρ(B), so that

ρ(B) = 1 is not the only eigenvalue of B on the spectral circle. Therefore,

property (d) fails for matrix B.

Finally, for C we obtain

det(λI − C) =

∣

∣

∣

∣

∣

∣

∣

λ− 1 1

1 λ− 2

∣

∣

∣

∣

∣

∣

∣

= λ2 − 1 = (λ− 1)(λ− 2).

However, the eigenvector corresponding to ρ(C) = 2 is vρ = (0, 1)T = e2 and

to µ = 1 is v1 = (1, 0)T = e1. Therefore, there is an eigenvector v1 ≥ 0 of C

that is not a positive multiple of vρ. Hence, property (e) fails for C.

This example shows that relaxing the condition of A > 0 to A ≥ 0 implies

that most of the results from Perron’s theorem fail to hold in general. The

next result highlights the properties that remain true for nonnegative matrices.

Essentially it states that the spectral radius is an eigenvalue but can now be

zero, and has an associated nonnegative eigenvector.

Theorem 2.1.4. Let 0 ≤ A ∈ Mn(R), and r := ρ(A) be the spectral radius

of A. Then

(a) 0 ≤ ρ(A) ∈ σ(A), (b) ∃ x ≥ 0 : Ax = ρ(A)x.

Proof: Consider the sequence {Ak}∞k=1 defined by Ak := A + 1
k
E, where

E = [eij] is the n × n matrix with all entries equal to 1, i.e., eij = 1 for
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all i, j. Then Ak > 0 for all k ≥ 1, and we can let rk > 0 and pk > 0

be the associated Perron root and eigenvector of Ak respectively. Note that

{pk}∞k=1 is bounded, since ‖pk‖1 = 1 < ∞ for all k ≥ 1. Therefore, from the

Bolzano-Weierstrass Theorem in R
n, the sequence {pk}∞k=1 has a convergent

subsequence, say {pki
}∞i=1 converging to z ≥ 0 and z 6= 0.

Now, since A1 > A2 > · · · > A we have that r1 ≥ r2 ≥ · · · ≥ r. Hence,

{rk}∞k=1 is monotonically decreasing and bounded below by r. Therefore, the

Monotone Convergence Theorem implies that there is an 0 ≤ r0 ∈ R such that

lim
k→∞

rk = r0. In particular, we note that lim
i→∞

rki = r0 ≥ r.

On the other hand, lim
i→∞

Aki = A, and so we obtain

Az = lim
i→∞

Akipki
= lim

i→∞
rkipki

= lim
i→∞

rki · lim
i→∞

pki
= r0z.

Thus, r0 ∈ σ(A) and so r0 ≤ r. Hence, 0 ≤ r0 = r, z ≥ 0 and Az = rz. �

This will be as far as the properties of positive matrices can be extend to

nonnegative matrices without the introduction of some additional assumptions

on a matrix A. To find an appropriate condition that will guarantee the same

results of Perron’s theorem, Fröbenius noticed that it was not simply the fact

the A had zero entries that made the conditions fail, but rather the position of

the zeros in A. Therefore, the set of all n× n nonnegative matrices is divided

into two subsets via the following definition.

Definition 2.1.8. Let A ∈ Mn(R) be nonnegative. Then A is called reducible,
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if there is a symmetric permutation matrix P (i.e., P−1 = P T ) such that

P TAP =







X Y

0 Z






,

whereX and Z are both square submatrices. Otherwise, A is called irreducible.

Remark 2.1.2. The property of a nonnegative matrix A ∈ Mn(R) being

irreducible will be of interest to us here and there are two equivalent definitions

for an irreducible nonnegative matrix. They are stated in the theorem below.

Theorem 2.1.5. Let A ∈ Mn(R). Then the following are equivalent.

(1) A is irreducible;

(2) Ax ≥ 0, for any nonnegative vector x ∈ R
n;

(3) for any two indices i and j, there is an integer s ≥ 0 and a sequence of

integers k1, . . . , ks such that the product aik1ak1k2 · · · aksj is nonzero.

Proof: See Carl D. Meyer [74]. �

The next result is know as the Perron-Fröbenius Theorem, and it is the

extension of Perron’s Theorem to the set of irreducible nonnegative square

matrices.

Theorem 2.1.6 (Perron-Fröbenius). Let A ∈ Mn(R) be a nonnegative, ir-

reducible matrix, and let ρ(A) be the spectral radius of A. Then we have the

following:

(a) 0 < ρ(A) ∈ σ(A),

(b) alg(ρ(A)) = 1,
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(c) ∃ ! p > 0 Ap = ρ(A)p, and ‖p‖1 = 1,

(d) if µ ∈ σ(A), then |µ| ≤ ρ(A),

(e) x ≥ 0 an eigenvector of A implies x = αp, α > 0.

Proof: For part (a), we see that ρ(A) > 0 or else Ax = 0, which is

impossible if A ≥ 0 and x > 0. Part (b) follows from Perron’s Theorem. For

(c), let B = (I + A)n−1 > 0. Then λ ∈ σ(A) ⇔ (1 + λ)n−1 ∈ σ(B), and

alg(λ) = alg((1 + λ)n−1). Therefore, letting s = ρ(B),

s = max
λ∈σ(A)

{|(1 + λ)|n−1} = max
λ∈σ(A)

{|1 + λ|}n−1 = (1 + r)n−1.

Now, if the disk |z| ≤ s is translated to the right by 1, then |z + 1| ≤ s has a

maximum modulus of 1+s, i.e., |z+1| ≤ 1+s. Thus, if algA(r) = k > 1, then

algB(s) > 1, which is a contradiction as B > 0. Therefore, alg(r) = 1. Parts

(d) and (e) are proved the same way as in Perron’s Theorem (see Appendix A

for details).

�

Remark 2.1.3. The Perron-Fröbenius Theorem says that for an irreducible

nonnegative matrix A, up to a positive scalar, there exists a unique eigenvector

associated to the spectral radius of A. The unique eigenvector p > 0 associated

to ρ(A) with ‖p‖1 = 1 is often called the Perron eigenvector of A. Throughout

this thesis, I will refer to any positive eigenvector associated to ρ(A) a Perron

eigenvector of A. This is because multiplying an eigenvector by a positive

scalar will not change the which entry is the largest.

Remark 2.1.4. Note that there is one remaining property that nonnegative

irreducible matrices do not share with positive matrices. Namely, property
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(d), stating that ρ(A) is the unique eigenvalue with modulus on the spectral

circle of A. Indeed, the matrix given by

B =







0 1

1 0






,

is nonnegative and irreducible. However, Example 2.1.1 shows that σ(B) =

{−1, 1}, and so λ = −1 is such that | − 1| = 1 = ρ(B).

Therefore, the notion of an irreducible nonnegative matrix A having exactly

one eigenvalue on the spectral circle of A, splits these matrices into two new

classes of matrices.

Definition 2.1.9. Let A ≥ 0 be irreducible. Then A is called primitive if A

has exactly one eigenvalue, ρ(A) on the spectral circle of A. Otherwise, A is

called imprimitive, and the number i > 1 of eigenvalues on the spectral circle

is called the index of imprimitivity.

Remark 2.1.5. The notion of primitive matrices is important when using the

power method (see the subsection below) for computing the Perron eigenvector

p of a matrix A. This is due to the fact that starting with an arbitrary vector

in R
n, if there is at least one eigenvalue λ 6= ρ(A) on the spectral circle, then

the power method described below may converge to eigenvectors in Eλ instead

of to the Perron eigenvector p.

If a matrix A is imprimitive, then a primitive matrix B can be constructed

from A by adding a matrix E to A, where E is a scalar multiple of the identity

matrix, i.e., the matrix

B := A+ εI,

where ε > 0 can be made arbitrarily small.
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2.1.4 The Power Method Algorithm

This subsection outlines a method for finding the Perron eigenvector p and

associated Perron eigenvalue ρ(A), of a nonnegative and irreducible real matrix

A. This will give a practical method of finding the Perron eigenvector of a

large matrix A using computers. In what follows, “ • ” stands for the usual

dot product of two vectors in R
n, and ‖ · ‖2 represents the standard Euclidean

norm on R
n.

The first theorem below will allow for an iterative method for the compu-

tation of the dominant Perron eigenvector of a matrix A.

Theorem 2.1.7. Let A ∈ Mn(R) and λ1, . . . , λm be the m ≤ n distinct

eigenvalues of A with corresponding eigenvectors x1, . . . ,xm such that ‖x1‖2 =

1. Let λ1 be the dominant eigenvalue of A, and assume that |λ1| > |λ2| ≥ · · · ≥

|λm|. Let x0 ∈ span{x1, . . . ,xm} be such that x0 = c1x1 + · · · + cmxm, with

c1 6= 0. Then the sequence {xk}∞k=1 given by xk =
Ak

x0

‖Akx0‖2 converges to x1.

Proof: Let x0 ∈ span{x1, . . . ,xm} be such that x0 = c1x1 + · · · + cmxm,

with c1 6= 0. Then

Akx0 = Ak

m
∑

j=1

cjxj =
m
∑

j=1

cjA
kxj =

m
∑

j=1

cjλ
kxj = c1λ

k
1

(

x1 +
m
∑

j=2

cj
c1

(

λj

λ1

)k

xj

)

.

Now, for all j = 2, . . . ,m we have that
∣

∣

∣

λj

λ1

∣

∣

∣
< 1 (λ1 is dominant). Thus, for

all j = 2, . . . ,m

lim
k→∞

cj
c1

(

λj

λ1

)k

xj =
cj
c1
xj lim

k→∞

(

λj

λ1

)k

=
cj
c1
xj · 0 = 0.



2.1 The Perron-Fröbenius theorem 19

Therefore, we obtain

lim
k→∞

Akx0 = lim
k→∞

c1λ
k
1

(

x1 +
m
∑

j=2

cj
c1

(

λj

λ1

)k

xj

)

= lim
k→∞

c1λ
k
1x1.

Hence, as ‖Akx0‖2 ≥ c1λ
k
1, we have that Ak

x0

‖Akx0‖2 ≤ Ak
x0

c1λ
k
1
→ x1 as k → ∞. �

Remark 2.1.6. The sequence
{

Ak
x0

‖Akx0‖2

}∞

k=1
converges to x1 geometrically,

with geometric ratio given by |λ2

λ1
|. Thus, if the modulus of the next largest

eigenvalue is close to that of the dominant eigenvalue, this convergence is slow.

Theorem 2.1.8 (Rayleigh). Let A ∈ Mn(R), x be an eigenvector of A, and

let x∗ is the conjugate transpose of x. Then the eigenvalue λ associated to x

is given by

λ =
x∗ • Ax
x∗ • x .

Proof: Let x be an eigenvector of A. Then there exists a λ ∈ C such that

Ax = λx. Thus,

x∗ • Ax
x∗ • x =

x∗ • λx
x∗ • x = λ • x∗ • x

x∗ • x = λ • 1 = λ.

�

Remark 2.1.7. Rayleigh’s theorem tells us that since the Perron eigenvalue

ρ(A) of a nonnegative irreducible matrix A is a positive real number, we have

that p∗ = pT , and hence

ρ(A) =
pT • Ap
pT • p .

Therefore, if we can find the Perron eigenvector p, then we can also obtain

ρ(A) from p and A.
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These two results above give a method for finding the dominant eigenvector

and eigenvalue of a nonnegative irreducible matrix A.

The Power Method Algorithm. Let 0 ≤ A ∈ Mn(R) be irreducible and let

x0 be a random vector. Choose an accuracy tolerance, say ε, and a maximum

number of iterations N . Then to compute the Perron eigenvector of A to

within an accuracy of ε use the following set of commands.

set k = 1;

while k ≤ N ;

set yk = Axk−1;

set nk = ‖yk‖2;

set xk = yk/nk

if |nk − nk−1| ≤ ε, then k = N + 1; else, set k = k + 1;

end.

Display the Perron eigenvector p ≈ xk and the associated Perron eigenvalue

λ = ρ(A) ≈ x
T
k
•Axk

xT
k
•xk

.

Remark 2.1.8. This method will fail to produce the dominant eigenvector p

of A if the initial guess x0 does not contain any components of the dominant

eigenvector p. Instead, the power method will converge to the largest eigen-

vector contained in the decomposition of x0. Now if there are two eigenvalues

with the same modulus and their eigenvectors are in the decomposition of x0,

then the method need not converge.

To help avoid this rare possibility, the entries of the starting vector x0 can
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be randomly chosen. Then run the method for several different random initial

vectors to guarantee convergence to the largest eigenvalue and eigenvector of

the given matrix A using a comparison of the results.

2.2 Graph theory and networks

This section states the basic graph theoretical results needed throughout the

thesis. For a more detailed discussion on these topics please see, for instance

[40], [110], and [111].

2.2.1 Basic Definitions

The mathematical description of a network is defined via weighted digraphs G.

A nonnegative matrix B is then associated to a given digraph, thus allowing

for the connection between the mathematical analysis of the matrix B and the

structure of the digraph G.

A network is described by defining individual members or items of a given

real world model and then, how they interact, gives rise to the connections

between members. The connections of a network are weighted if each directed

edge from node i to node j is assigned a positive weight, which can represent

the strength of interaction or influence between individuals of the network. For

instance, in epidemiology the nodes of a network can be viewed as different

groups of people in a given population (age, gender, social, religious, etc), and

the edges represent which groups have cross-infection, while the weights of

the edges become the transmission rates from group to group. Similarly, in a

single species migration model, the nodes represent patches of habitation, the

directed edges are the migration routes or movement between patches and the



2.2 Graph theory and networks 22

weights of the edges become the dispersal rates between the patches. Below is

the mathematical definition of a digraph.

Definition 2.2.1. A directed graph G = (V,E) is an ordered pair consisting of

a set of nodes V = {1, . . . , n} and a set of directed edges E ⊆ {(i, j) | i, j ∈ V }.

We call a digraph G weighted, if each directed edge from node i to node j,

denoted by (i, j), is assigned a positive real number ω(i, j) ∈ R+.

Definition 2.2.2. Let G = (V,E) be a digraph. Then a directed path P

in G is a subgraph consisting of distinct vertices and edges {(ik, ik+1) | k =

1, . . . ,m− 1}. We may also call this the directed path from node i1 to node im.

Moreover, if we allow for im = i1, then P is called a directed cycle. The length

of a directed path P is the number of directed edges in P .

Definition 2.2.3. Let G = (V,E) be a digraph. Then a geodesic d(i, j) from

node i to node j is a directed path of minimal length. If there is no directed

path from i to j then we set d(i, j) := ∞.

The next definition associates an n× n matrix to a given digraph G.

Definition 2.2.4. The weight matrix B of a digraph G = (V,E) is the n ×

n matrix with ijth entry equal to bij = ω(j, i) if edge (j, i) ∈ E, and zero

otherwise.

The weight matrix B is also called the dispersal matrix of the network G.

It is often useful to represent a network as the ordered pair (G, B), where G is

the digraph and B is the weighted dispersal matrix associated to G.

2.2.2 Strongly Connected Digraphs and Irreducibility

The connection between the connectedness of a digraph G and the irreducibility

of its associated nonnegative weight matrix B is given below.
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Definition 2.2.5. A digraph (G, B) is called strongly connected if for every

pair of vertices i 6= j, there is a directed path from node i to node j and vice

versa.

The next result is well-known in literature and the proof can be found

in [77]. It relates the connectedness of a graph G to the irreducibility of its

associated nonnegative weight matrix B.

Theorem 2.2.1. Let G be a digraph, and let B ∈ Mn(R) be its associated

weight matrix. Then B is irreducible if and only if G is strongly connected.

Therefore, to ensure the irreducibility of the weight matrix B of a digraph

G, it suffices to ensure that G is strongly connected. The following two basic

examples help to illustrate the result of Theorem 2.2.1.

Example 2.2.1. A strongly connected digraph G and its irreducible weight

matrix B.

B =













0 0 b13

b21 0 0

0 b32 0













1

2

3

Example 2.2.2. A digraph G that is not strongly connected and its associated

reducible weight matrix B.

B =













0 0 0

b21 0 0

b31 b32 0













1

2

3

Remark 2.2.1. The Perron Theorem and Perron-Fröbenius Theorem tell us

that if G is a network with weight matrix B ≥ 0, then
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• The spectral radius ρ(B) is an eigenvalue of B with a nonnegative eigen-

vector p = (p1, . . . , pn)
T .

• If G is strongly connected and hence B is irreducible, then ρ(B) is simple

and p > 0.

• p is the only positive eigenvector up to a scalar multiple.

Therefore, considering a strongly connected network (G, B), the positive

entries of p = (p1, . . . , pn)
T can be used to rate the nodes of the network by

associating pi to node i for all i = 1, . . . , n. This is the basic idea behind

eigenvector centrality ranking of a network (see the section below).

One other matrix that may arise in the study of a network (G, B) is the

Laplacian matrix LB of a weight matrix B. The definition is given below for

completeness.

Definition 2.2.6. Let (G, B) be a directed network. The Laplacian matrix of

the network is given by

LB = diag(
∑

j 6=1

b1j, . . . ,
∑

j 6=1

bnj)− B.

2.2.3 Graph structure and metrics for ranking

Next, consider the structure of a given network. Many real world network

models have quantitative features in common and the study of the structure

of these networks is ever present in more recent mathematical research pa-

pers. This is primarily due to the fact that the structure of a given network

always affects how it functions. For example, such network structures include

transitivity or clustering, degree distribution and maximum degree, network
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resilience, average path length, centrality and centralization. These are often

referred to as graph metrics.

Recently, many research papers have been devoted to using centrality met-

rics to answer the so-called ranking problem, i.e., who is the most important

or highest ranked individual of a network, relative to the other members (See

[1], [11], [12], [13], [14], [58], [63], [82], [95], [101], and [109]). Moreover, cen-

tralization of a network can be used to describe how much variation there is

between the centrality scores of the nodes in a network. There are many ways

to rate and/or rank the items of a network in terms of importance or centrality.

Consequently, there are several different types of centrality including degree

centrality, closeness, stress and betweenness centrality based on the notion of

shortest paths, and eigenvector centrality.

This is due to the fact that the definition of most central or important

individual can vary depending on the context of what the model is describing.

For example, local centrality can be described using degree (in or out degree)

centrality, whereas centrality based on the entire network structure uses no-

tions like closeness, betweenness and eigenvector centrality. Given in Figure

2.1 below is an example of three different types of centrality metrics. In each

of the networks, node a has a higher centrality score than b according to the

indicated centrality metric.

b

a b a a

b

Indegree Closeness Betweenness
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Figure 2.1: Different Centrality Metrics.

Described below are some of the frequently used centrality metrics in more

detail below. Note that these metrics can be defined for both undirected and

directed graphs, but we focus on the case of directed networks. For more

details on centrality metrics see [9], [10], [80], and [95]. In each case the idea

of centrality ranking is to give each node i of a network (G, B) a centrality

score of some kind, and then to use these values to rank the nodes from most

to least important relative the the structure of the network.

A: Degree Centrality.

Given a network (G, B) consisting of n nodes, the indegree centrality of

node i is a measure of how many directed edges leading from other nodes

j 6= i to node i. Similarly, the outdegree centrality of node i is the number

of directed edges from i leading into j 6= i. Moreover, we can normalize these

degree centralities by dividing by n − 1, i.e., the total number of possible

directed edges to or from node i.

The number of connections that a node i has is a good measure of centrality

when considering networks that describe friendship or business relationships,

article or paper citations or those describing nominations or elections where

people vote for n individuals.

However, degree centrality may be an insufficient measure of centrality

when considering the ability for information, a given species or an infectious

disease to reach node i, regardless of where it originates from. Degree centrality

can also be inadequate if local connections are not as important as knowing

which nodes are connected by a directed path, and given a fixed node i, which
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paths from node j 6= k contain i.

B: Closeness Centrality.

Now consider a measure of centrality based not only on direct connections,

but also indirect connections among the network vertices. Closeness centrality

of a node i is based on an average of the shortest paths between i and all other

nodes j 6= i of the network.

Also note that if the graph G is not strongly connected, only reachable

nodes are taken into consideration, and then the result is weighted with the

number of reachable nodes. Thus, this indegree closeness centrality tells us

how close the selected node i is to all other nodes of the network.

The outdegree closeness centrality is defined in a similar manner and mea-

sures how close all other nodes of the network are to node i.

C: Betweenness Centrality.

In other network models, we may be interested not just in how close a node

is to others, but rather how many pairs of nodes j, k have a geodesic path that

contain a given node i. In other words, the betweenness centrality of node i

is equal to the number of pairs of individuals j 6= k that would have to go

through i in order to reach or contact one other.

D: Eigenvector Centrality.

Eigenvector centrality is one of the more beneficial quantitative measures

of centrality because it is based on the graph structure as well as the weights

of the connections between individuals.



2.2 Graph theory and networks 28

Indeed, consider a network (G, B) where B is the associated nonnegative

weight matrix. Then from Theorem 2.1.4, B has a unique (up to a positive

scalar multiple) nonnegative Perron eigenvector p = (p1, . . . , pn)
T associated

to the largest real eigenvalue of B, which is equal to the spectral radius ρ(B)

of B. Moreover, if the digraph G is strongly connected, and hence B is irre-

ducible, then p is strictly positive and the entries of this Perron vector p can

be used to associate the value pi > 0 to each node i of the network. This then

gives a numerical rating to the n nodes of the network based on the weighted

connections. Then, using this Perron vector rating, the nodes of the network

can be ranked from first to least important. This is known in literature as

the so-called eigenvector centrality ranking of a given network. In Chapter 3

we make a connection between equilibrium ranking and eigenvector centrality

ranking. Therefore, the concept of eigenvector centrality is made precise with

the following definition.

Definition 2.2.7. Let (G, B) be a network consisting of n nodes and having

associated weight matrix B ≥ 0. The eigenvector centrality of node k ∈

V = {1, · · · , n} is defined as pk ≥ 0, where p = (p1, . . . , pn)
T is the Perron

eigenvector of B.

The idea of eigenvector centrality ranking has been used to rank football

(and other sports) teams within a given league. For a detailed discussion of the

ranking of sports teams see [56]. Social groups of all kinds can also be ranked

using eigenvector centrality giving a quantitative method of who is the most

central member of a social network that is based not only on how individuals

interact within the network but also on strength of these interactions.

Recently, many research articles have been written on the subject of in-

formation retrieval on the internet and the search algorithms used for these
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purposes. Some of the more notable search engines are HITS, SALSA, and

Google’s PageRank (see [15], [16], [28], [61]-[64] for more details). These search

algorithms use a version of eigenvector centrality to rank the relative impor-

tance of the pages of the internet to return the most relevent pages given a

users query into a given topic.

2.3 Literature review

There are many areas of research that benefit from the use of network mod-

elling. For example, M. Golubitsky, et. al., (see [29] - [36]), study coupled cell

networks, and the stability of equilibria in such models. This section gives

a demographic of the fields of research using network models and the main

idea behind using network structure to rank individual members. Some of the

more common fields can be divided into four main categories, namely biologi-

cal networks, knowledge or information networks, technological or engineering

networks, and social networks. For a more detailed survey of networks in the

sciences and a more in-depth discussion of the different graph types used to

describe networks and different graph metrics see, for instance [26], [27], [47],

[48], [82], [85], [86], [87], [90], and [101].

2.3.1 Examples of networks

Consider the four main types of networks in more detail.

A. Biological Networks.

Many different biological processes can be modelled using networks. One

of the first large scale biological network studies considered gene expression.
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In particular, a genome itself forms a network with vertices representing the

proteins and directed edges representing dependence of protein production on

the proteins at other vertices. Another biological process modelled with a net-

work is the spread of an infections disease through a host population ([39], [49],

[50], [55], [66], [67], [68], [106]). Here, the population groups or spatial regions

become the vertices and transmission of the disease between groups or regions

become the directed edges. Ecological food webs and migration patterns of

a species over several spatial habitats are also modelled using networks ([41],

[66], [103], [104], [105]). In this context, problems such as overpopulation and

extinction can be addressed. In the study of the interaction of neurons and

the structure of neural pathways in the brain ([51]) individual neurons become

the nodes and edge (i, j) exists in the network if neuron i is connected to neu-

ron j. Extensive research has also been done on blood vessel interactions and

vascular networks of the human body, and a cells metabolic processes.

B. Information Networks.

The two main types of information networks are citation networks between

academic research papers and information retrieval on the world wide web or

internet. The more classical of the two is citation networks which date back to

the 1920’s. Citation networks are formed by individual research papers citing

related articles, so that the vertices are articles and a directed edge from article

i to article j indicates that i cites j. The added benefit to studying citation

networks is the large quantitative data bases accumulated over the past several

decades (see, for instance [93], [94], and [97] ). The other important type of

information network is the World Wide Web or internet. Here the pages on

the internet represent nodes, and the hyperlinks between web pages become



2.3 Literature review 31

the directed edges. Unlike citation networks, the World Wide Web is cyclic

in nature since there is no specific ordering of sites and no constraints that

would prevent closed loops in the graph. Hence, the structure of the internet

is much more complex than that of a citation network.

C. Technological Networks.

Technological networks are usually man-made and are designed to dis-

tribute resources or commodities of some kind. Electricity networks have been

studied extensively ([102], and [109]). For example the structure of power

grids used for the distribution of high-voltage electricity throughout a city or

country. Another popular example of a distribution network are postal ser-

vices such as Canada Post, Fedex, and UPS. Airline, railway, bus and public

transportation routes are also well studied examples of technological networks.

Infrastructure networks such as sewer or cable systems are studied by munic-

ipalities and government bodies. Taking into consideration geography, the

study of village and town accessibility has been studied based on the network

of roads between them, [100]. Finally, an example of naturally occurring distri-

bution networks are those of river and lake systems. These types of networks

have been used extensively throughout history to transport commodities of all

kinds, and many important civilizations have thrived based on their location

along such routes.

D. Social Networks.

A social network, roughly speaking, is a group or population of people

that have some kind of interaction or contact pattern between them. Social

networks including business relationships, friendship networks, family trees,
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intermarriage relationships and patterns of sexual contact have been studied

extensively. Other interesting social networks considered by researchers are

those studying the so-called small world problem and the famous notion of six

degrees of separation, coauthorship networks amount academics, the interac-

tion and ranking of sports teams ([56]), and in archaeology, networks are used

to determine the relationship between artifacts found in different layers in the

ground. Furthermore, social science is one of the longest studied academic

disciplines (see [7], [8], [53], [75], [76], [79], [80]-[84]).
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Chapter 3

Equilibrium Ranking

This chapter introduces the notion of equilibrium ranking for a nonlinear ODE

modelled on a network. The first section is used to give the setting for our

problem and motivation for its use. The idea of equilibrium ranking is then

applied to different epidemiological models on networks in section 2 and 3.

Section 2 considers an SIR model with n groups, and Section 3 looks at an SIR

model on a patchy network. Section 4 considers the implications of equilibrium

ranking on disease control methods. For further details about epidemiological

models see for instance [2], [39], [49], [50], [55], [67], [68], [106], [107], and [108].

3.1 Introduction to equilibrium ranking

Consider a system of coupled ODE model on a network (G, B) consisting of n

nodes given by equations of the form

ẋi = fi(xi) +
n
∑

j=1

bijgij(xi, xj), i = 1, . . . , n, (3.1)



3.1 Introduction to equilibrium ranking 34

where fi(xi) describes the local dynamics at each node i, B = (bij)n×n is the

weight matrix of the network, and gij describes the influence among the nodes.

These quantities xi represent useful information about a system. For instance

xi can represent the number of infected individuals at node i in epidemiology

models to population density of a species in ecological models with spatial

dispersal.

Therefore, at a steady state x∗ = (x∗
1, . . . , x

∗
n)

T of system (3.1) knowing the

individual equilibrium values x∗
i gives insight into which node has the largest

(or smallest) quantity of the network. For an epidemiology model, the largest

x∗
i can represent the node with the highest disease prevalence, while for an

ecological models, x∗
i can be interpreted as species density at patch i. Hence,

we make the following assumption:

A1: System (3.1) has a unique positive equilibrium that is globally asymptot-

ically stable in its associated feasible region.

Many papers have already been published stating that such unique equi-

libria exist. For example, see [39], [66], and [67]. The following definition gives

a quantitative method of answering the question of how to rank which node

of an ODE network has the most relative importance. Moreover, this ranking

method is based on both the structure of the network, and the local ODE

dynamics.

Definition 3.1.1. A positive equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T of system (3.1)

will be called an equilibrium ranking vector of the system. The entries x∗
i rate

the relative importance of nodes. The nodes are then ranked according to the

rating. A ranking of an ODE system obtained in this way will be called an
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equilibrium ranking for the network.

Thus, the equilibrium ranking vector x∗ can be used to determine the rel-

ative importance of the nodes of a given ODE network by associating the

positive value x∗
i to node i. Unlike a graph metric such as eigenvector cen-

trality, which uses graph structure alone to determine relative importance, the

equilibrium ranking considers the importance of a node with respect to both

the network structure and the dynamic process that is defined on the network.

The next two sections consider specific ODE models on networks to inves-

tigate how equilibrium ranking compares to other rankings of networks.

3.2 Equilibrium ranking for an epidemiology

model on a network

Consider the Kermack-McKendrick epidemiological model of a disease spread-

ing through a multi-group network with nonlinear ODE dynamics given by







































































S ′
k = bkNk −

n
∑

j=1

βkj

SkIj
Nj

− dkSk

I ′k =
n
∑

j=1

βkj

SkIj
Nj

− (γk + dk)Ik

R′
k = γkIk − dkRk

k = 1, . . . , n, (3.2)

with Sk, Ik, and Rk representing the number of susceptible, infectious, and
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recovered individuals of the k-th group of the population respectively, and

Nk = Sk + Ik + Rk is the total population of the k-th group. The parameter

bk > 0 is the proportion of new individuals in the k-th group, γk > 0 is the

recovery rate of infectious individuals in group k, and dk is the death rate of

group k. B = (βkj)n×n is the networks nonnegative and irreducible weight or

transmission matrix (for details see [66]).

For an epidemiological model of this form researchers are interested in

which node or group has the highest disease prevalence, i.e., the highest num-

ber of infected individuals per capita. Hence, the relative importance of indi-

vidual nodes for these ODE networks is phrased in terms of disease prevalence.

First, divide each of the populations Sk, Ik, and Rk, by the total population

Nk to give a system modelling the fractions of the population that are infected.

Note that the rate of change of the total population Nk is equal to (bk−dk)Nk.

Indeed,

N ′
k(t) =

d

dt
(Sk(t) + Ik(t) +Rk(t)) = S ′

k(t) + I ′k(t) +R′
k(t)

=

(

bkNk −
n
∑

j=1

βkj

SkIj
Nj

− dkSk

)

+

(

n
∑

j=1

βkj

SkIj
Nj

− (γk + dk)Ik

)

+ (γkIk − dkRk)

= bkNk − dk(Sk + Ik +Rk) = (bk − dk)Nk.

Thus, setting S̄k =
Sk

Nk
, Īk =

Ik
Nk

, and R̄k =
Rk

Nk
, gives
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d

dt
(S̄k) =

d

dt

(

Sk

Nk

)

=
S ′
k

Nk

− SkN
′
k

N2
k

=
1

Nk

(

bkNk −
n
∑

j=1

βkj

SkIj
Nj

− dkSk

)

− Sk

N2
k

((bk − dk)Nk)

=
bkNk

Nk

−
n
∑

j=1

βkj

Sk

Nk

Ij
Nj

− dk
Sk

Nk

− Sk

Nk

bkNk

Nk

+ dk
Sk

Nk

= bk −
n
∑

j=1

βkj

Sk

Nk

Ij
Nj

− bk
Sk

Nk

= bk −
n
∑

j=1

βkjS̄kĪj − bkS̄k

Similar equations can be derived for Īk and R̄k. Therefore, we obtain the

following system for the fractional variables S̄k =
Sk

Nk
, Īk =

Ik
Nk

, and R̄k =
Rk

Nk























































































S̄ ′
k = bk −

n
∑

j=1

βkjS̄kĪj − bkS̄k

Ī ′k =
n
∑

j=1

βkjS̄kĪj − (γk + bk)Īk

R̄′
k = γkĪk − bkR̄k

k = 1, . . . , n. (3.3)

Note that S̄k + Īk + R̄k = 1. In particular, Īk indicates the disease prevalence

in the k-th group. Assuming the existence of a unique positive equilibrium

P ∗ = (S̄∗
1 , Ī

∗
1 , R̄

∗
1, . . . , S̄

∗
n, Ī

∗
n, R̄

∗
n)

T for system (3.3), we would like to know which
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of the subpopulations has the highest disease prevalence Ī∗k or largest number

of infected individuals per capita.

Since there is no R̄k appearing in the first two equations of system (3.3),

consider a reduced system where we have removed the bar for simplicity of

notation.







































S ′
k = bk −

n
∑

j=1

βkjSkIj − bkSk

I ′k =
n
∑

j=1

βkjSkIj − (γk + bk)Ik

k = 1, . . . , n. (3.4)

Results in this thesis stated for system (3.4) can be translated to the orig-

inal system (3.3) in a straightforward manner.

From van den Driessche and Watmough (see [106]), the reproduction num-

ber of this system is given by R0 = ρ(M(S0)), where M(S) =
(

Sk·βkj

γk+bk

)

is

called the reproduction matrix and S0 is the vector of equilibrium value of the

susceptible populations when there is no disease. The following result, due to

M. Li et. al., states when system (3.4) has a positive endemic equilibrium and

can be found in [39].

Theorem 3.2.1 (Guo-Li-Shuai). Consider system (3.4), and assume the weight

matrix B = (βij) is irreducible. If the basic reproduction number R0 > 1, then

there is a unique positive endemic equilibrium P∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n)

T ,

and P∗ is globally asymptotically stable in the feasible region Γ.

Under the assumptions of Theorem 3.2.1 system (3.4) has a unique equi-

librium in its associated feasible region. Note that because the n groups where
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further subdivided into three groups, we only use a subset of the equilibrium

values to define the equilibrium ranking in this case. Therefore, the disease

prevalence vector I∗ = (I∗1 , . . . , I
∗
n)

T will be used as the equilibrium ranking

vector. Setting the right hand side of (3.4) equal to zero gives























0 = bk −
n
∑

j=1

βkjS
∗
kI

∗
j − bkS

∗
k

0 =
n
∑

j=1

βkjS
∗
kI

∗
j − (γk + bk)I

∗
k

k = 1, . . . , n. (3.5)

Hence, solving the second equation above explicitly for I∗k gives

(γk + bk)I
∗
k =

n
∑

j=1

βkjS
∗
kI

∗
j k = 1, . . . , n.

Solving these equations simultaneously gives the matrix equation

diag(γk + bk)I
∗ = diag(S∗

k · B · I∗) ⇔ I∗ = diag

(

S∗
k

γk + bk

)

· B · I∗

We give the following definition.

Definition 3.2.1. Let S = (S1, . . . , Sn)
T ∈ R

n
+, 0 < γk, bk for all k = 1, . . . , n,

and let B = (βkj) be an irreducible transmission matrix. Define the generalized

reproduction matrix by

M(S) := diag

(

Sk

γk + bk

)

· B =

(

Sk · βkj

γk + bk

)

n×n

(3.6)

Thus, the equilibrium equations give rise to the following matrix equation.

M(S∗) · I∗ = I∗ (3.7)

Therefore, I∗ can be found by solving this eigenvalue problem. If R0 > 1,
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then Theorem 3.2.1 says that I∗ is an eigenvector of M(S∗) associated to

eigenvalue 1. The result below states that the spectral radius of M(S∗) is

equal to 1, and therefore the disease prevalence equilibrium vector I∗ is the

Perron eigenvector of M(S∗).

Theorem 3.2.2. Assume that R0 > 1. Let M(S) be the generalized reproduc-

tion matrix given by (3.6), and S0 be the equilibrium value of the susceptible

populations when there is no disease. Then

(1) ρ(M(S0)) = R0 (van den Driessche and Watmough),

(2) ρ(M(S∗)) = 1,

(3) I∗ = (I∗1 , . . . , I
∗
n)

T is the Perron vector of M(S∗).

Proof: For the details about part (1) see [106]. Therefore, we prove state-

ments (2) and (3).

First, note that the dispersal matrix B is irreducible and so the matrix

M(S∗) =
(

S∗

k
·βkj

r

)

is also irreducible.

Now, since R0 = ρ(M(S0)) > 1, an endemic equilibrium I∗ = (I1, . . . , In) >

~0 exists in the positive feasible region Γ. Therefore, there is a nontrivial

solution to the equation

M(S∗) · I∗ = I∗.

Hence, 1 ∈ σ(M(S∗)), i.e., 1 is an eigenvalue of M(S∗), and so 1 ≤ ρ(M(S∗)).

Therefore, it remains to show that ρ(M(S∗)) = 1. Indeed, assume that

ρ(M(S∗)) > 1. Then from the Perron-Fröbenius theorem, that there is an

eigenvector p > 0, associated to ρ(M(S∗)) > 1. Moreover, any other eigenvec-

tor, from any other eigenvalue, must have at least one negative entry. But this
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is a contradiction, since we know there is some I∗ > 0 such thatM(S∗)·I∗ = I∗.

Therefore, ρ(M(S∗)) = 1. �

This result establishes a relationship between equilibrium ranking I∗ and

the Perron vector of M(S∗). Therefore, the unique Perron eigenvector can

be used to assign a rating (and therefore a ranking) to the n nodes of the

original system. This will show which node (and therefore which group) k

has the highest disease prevalence given an endemic outbreak for the system.

Moreover, unlike eigenvector centrality ranking, this disease prevalence equi-

librium ranking vector I∗ depends on both the network structure contained in

the weight matrix B, and the local ODE parameter values γk and bk, contained

in the diagonal matrix D = diag(
S∗

k

γk+bk
).

3.3 Equilibrium ranking for an SIR model on

a patchy network

Consider the SIR epidemiological model with bilinear incidence in a patchy

environment given by











































S ′
k = Λk − βkSkIk − dSkSk +

n
∑

j=1

akjSj −
n
∑

j=1

ajkSk

I ′k = βkSkIk − (γk + dIk)Ik +
n
∑

j=1

bkjIj −
n
∑

j=1

bjkIk

R′
k = γkIk − dRk Rk +

n
∑

j=1

ckjRj −
n
∑

j=1

cjkRk

k = 1, . . . , n, (3.8)

with Sk, Ik, and Rk representing the number of susceptible, infectious, and re-

moved individuals in the k-th patch, respectively, Λk is the influx of individuals
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into the k-th patch, and βk is the transmission coefficient between susceptible

and infectious individuals in the k-th patch, dSk , d
I
k and dRk represent death

rates of S, I and R populations in the k-th patch, respectively, and γk is the

recovery rate of infectious individuals in the k-th patch. The travel rates of

susceptible, infectious, and removed individuals from the j-th patch to the

k-th patch are given by akj, bkj and ckj, respectively. For a more detailed

discussion of epidemic models on patches, we refer to [2, 67, 107].

As in Section 3.2, since the variable Rk does not appear in the first two

equations of (3.8), we can study the following reduced system.























S ′
k = Λk − βkSkIk − dSkSk +

n
∑

j=1

akjSj −
n
∑

j=1

ajkSk

I ′k = βkSkIk − (γk + dIk)Ik +
n
∑

j=1

bkjIj −
n
∑

j=1

bjkIk

k = 1, . . . , n, (3.9)

with the initial conditions Sk(0) ≥ 0 and Ik(0) ≥ 0. The behaviour of Rk can

then be determined from equation three of (3.8). Hence, the results stated

here are for system (3.9), and can be extended to the original SIR model (3.8)

in a straightforward manner.

To define the basic reproduction number R0 of system (3.9), we first define

the following matrices

F =



















β1S
0
1 0 · · · 0

0 β2S
0
2 · · · 0

...
...

. . .
...

0 0 · · · βnS
0
n



















(3.10)
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where S0 = (S
)
1, . . . , S

0
n)

T is the equilibrium value of the susceptible popula-

tions when there is no disease, and

V =



























dI1 + γ1 +
∑

j 6=1

b1j −b12 · · · −b1n

−b21 dI2 + γ2 +
∑

j 6=2

b2j · · · −b2n

...
...

. . .
...

−bn1 −b2n · · · dIn + γn +
∑

j 6=n

bnj



























(3.11)

The next definition and the theorem that follows are about M -matrices.

They are mentioned here only to guarantee that V above, is invertible. In

particular, I do not give the proof of the properties of an M -matrix. For

details, see [38].

Definition 3.3.1. A matrix Bn×n is called an M -matrix if

(1) the off-diagonal entries of B are non-positive, and

(2) B is positively stable, i.e., all eigenvalues of B have positive real parts.

In particular, a matrix B with non-positive off-diagonal entries that is also

diagonally dominant, i.e., for all rows of B we have |bii| ≥
∑

j 6=i |bij|, is an

M -matrix (See [6]).

Theorem 3.3.1. Properties of M-matrices.

(1) B is nonsingular and B−1 ≥ 0.

(2) There exists β > 0 such that B−1x ≥ βx, for all x ≥ 0.

Therefore, V has non-positive off-diagonal entries and is diagonally domi-

nant, and is hence an M -matrix. Thus, it has an inverse V −1, and R0 of this
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system can be calculated as R0 = ρ(FV −1), where ρ is the spectral radius of

a matrix and FV −1 is called the next generation matrix (see [106] for details).

The next result is from [67].

Theorem 3.3.2 (Li-Shuai). Assume that R0 > 1 and suppose that one of the

following assumptions is true.

(1) A = 0 and B is irreducible;

(2) A and B are irreducible, and there exists λ > 0 such that akjS
∗
k = λbkjI

∗
k

for all 1 ≤ k, j ≤ n.

Then a unique endemic equilibrium P ∗ = (S∗
1 , I

∗
1 , . . . , S

∗
n, I

∗
n)

T > 0 exists and

is globally asymptotically stable in the feasible region
◦
Γ.

Therefore, the equilibrium ranking vector of network (3.9) is given by I∗ =

(I∗1 , . . . , I
∗
n)

T . At equilibrium, the second equation of (3.9) gives the following

matrix equation

V · I∗ = diag(βkS
∗
k) · I∗, (3.12)

where V is given in (3.11). For S ∈ R
n
+ let M(S) = V −1 · diag(βkSk). Then

equation (3.12) can be written as

M(S∗) · I∗ = I∗. (3.13)

The following result is an analogue to Theorem 3.2.2, and can be proved

in a similar manner, noting that ρ(FV −1) = ρ(V (V −1F )V −1) = ρ(V −1F ).

Theorem 3.3.3. Let M(S∗) be defined as in (3.13). Then

(1) ρ(M(S0)) = R0,

(2) ρ(M(S∗)) = 1,
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(3) I∗ is the Perron vector of M(S∗).

Thus, similar to Section 3.2, the theorem above establishes a link between

the infected individual vector I∗ and the Perron eigenvector of the matrix

M(S∗) defined in (3.13).

3.4 Implications for disease control

Given an SIR model of the form (3.4), Theorem 3.2.2 says that the relative

disease prevalence of the system is given by the Perron eigenvector I∗ of the

nonnegative and irreducible matrix

M(S∗) = D · B,

where D = diag(
S∗

k

γk+bk
) is a diagonal matrix containing local ODE parameter

values and B is the networks weight matrix. Similarly, Theorem 3.3.3 tells us

that system (3.9) has equilibrium ranking vector given by the Perron vector

of M(S∗) defined by (3.13).

In the context of an n-group epidemiology model, using the equilibrium

ranking vector I∗ = (I∗1 , . . . , I
∗
n)

T to rank some node k as the most important

means that the k-th group has the highest disease prevalence or infected in-

dividuals. In an n-patch SIR model ranking node k as the most important

means that the environmental patch k has the highest disease prevalence. In

either case, attention can be focused on this specific node k and what it is

about the local dynamics and the network structure that makes I∗k the largest

entry of the disease prevalence equilibrium ranking vector.

In both of the SIR network model of Section 3.2 and 3.3, because M(S∗)
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contains information about the local ODE parameters in a diagonal matrix

D and the networks structure in B, we can base prevention methods such as

quarantine and immunization on both of these aforementioned aspects of the

system.

If the interest of researchers is to investigate how the systems network

structure affects importance they can consider the network (G, B) alone and

use the Perron eigenvector p of B. This is essentially the idea of eigenvector

centrality ranking. This includes investigating which specific weighted connec-

tions of the network, described by B, conspire to make a certain entry pk of

the p the largest. Then, the weights bij of the edges (j, i) can be altered, in

order to reduce the ranking value of I∗k . This can be done by reducing the

value of some of the weights bkj or making some equal to zero (and hence

severing the connection from node j to node k). In terms of epidemiology,

reducing the weights bij amounts to reducing the cross transmission rate from

group (or patch) j to group i, on the travel rate from patch j to patch i. This

is crucial information if public health authorities are considering a strategy of

quarantine to control the outbreak of a given disease.

On the other hand, given a fixed network structure described by (G, B),

unlike eigenvector centrality ranking of a network, focus can be turned to

the local ODE dynamics (described by the diagonal matrix D) and how they

affect the disease prevalence at each node k of the network. This allows for

the study of how specific parameter values of the system are contributing to

the disease prevalence vector I∗. Thus, changing certain parameter values of

the system, will allow us to reduce the largest value I∗k , hence reducing the

disease prevalence of node k. In particular, if immunization techniques are
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employed in a given model using a parameter β say, we can consider changing

the importance of nodes in the network by changing the values of β.

Example 3.4.1. Consider a 3-group SIR model as described by (3.2) and

having directed network given below. The Perron eigenvector of the weight

matrix B, we obtain p1 ≈ 0.39, p2 ≈ 0.63, and p3 = 1. Hence, using only the

network structure, eigenvector centrality says node 3 is the most important.

3 2

11
2

2

2












0 0 1
2

2 0 0

0 2 0













p =













0.39

0.63

1.00













Now consider the diagonal matrix D = diag(3
2
, 2
3
, 2), which represents the

part of M = D · B containing the local ODE parameter values. Then M is

given by

M = D · B =













0 0 3

4
3

0 0

0 4 0













.

Therefore, ρ(M) = 3
√
16 ≈ 2.5198, and noting that m13 = 3 > ρ(M), we have

v =













v1

v2

v3













=













2.38

2.52

1.00













.

Hence, by adding the local dynamical information the ranking changes, and

the most important node of the network according to the equilibrium ranking

is node 2.
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Moreover, a combination of the two techniques above can be employed to

take advantage of both aspects of the equilibrium ranking in order to better

control an endemic outbreak.



49

Chapter 4

Equilibrium Ranking for ODE

Networks

In this chapter we extend the idea of equilibrium ranking to more general

nonlinear ODE networks that have equilibrium equations giving rise to non-

linear vector equations. Section 4.1 introduces equilibrium ranking in a more

general setting. The remaining sections consider equilibrium ranking for spe-

cific nonlinear ODE models on networks. In particular, Section 4.2 investigates

coupled oscillator models, Section 4.3 ecological models with dispersal of a sin-

gle species, Section 4.4 considers biodiversity models on spatially structured

habitats, and Section 4.5 considers equilibrium ranking for some general forms

of nonlinear ODEs. Finally, Section 4.6 is used to consider the implications of

such an equilibrium ranking for these models.
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4.1 Equilibrium ranking for ODE systems on

networks

Consider the nonlinear ODE system on a network where the local dynamics

of the network are given by the equations

ẋ = F (x), x ∈ R
n. (4.1)

We will make the following assumption when considering a system of the

form (4.1).

A1: System (4.1) has a unique positive equilibrium x∗.

More specifically, consider the ODE system on a network given by

ẋi = fi(xi) +
n
∑

j=1

bijgij(xi, xj), i = 1, . . . , n, (4.2)

where fi(xi) describes the local dynamics at each node i, B = (bij)n×n is the

weight matrix of the network, and gij describes the influence among the nodes.

Similar to Chapter 3, under assumption A1, the unique solution x∗ > 0 can be

defined as the equilibrium ranking vector for the network. Thus, we associate

the value x∗
i > 0 to node i for all i = 1, 2, . . . , n, and then rank the importance

of the nodes from these values.

Solving equations (4.2) for the equilibrium x∗, we obtain a nonlinear equa-

tion of the form
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G(x∗) = Bx∗ (4.3)

where G is a nonlinear function and B is the weight matrix of the network

(see the examples in the next few sections below). Solving equation (4.3) gives

no insight into how the entries of x∗ depend on the network structure or the

local ODE dynamics. Therefore, we instead follow the ideas in Chapter 3 and

rewrite (4.3) in the following matrix form

M(x∗)x∗ = x∗,

where M(x∗) = D(x∗) · B is the product of a diagonal matrix D(x∗) and the

system’s weight matrix B. This again establishes the link between the idea of

using a positive eigenvector of a Matrix, as with centrality ranking, to define

an equilibrium ranking vector for an ODE network.

This matrix M(x∗) contains both the entries of the weight matrix B and

information about the local parameter values of the system. Hence, the equi-

librium ranking is again based on both the network structure and local ODE

dynamics as in Chapter 3.

4.2 A coupled oscillator model of n moving

components

A coupled system of nonlinear oscillators can be built on a weighted digraph

(G, B) with n ≥ 2 vertices and B = (bij), as follows: assign to each vertex i a

nonlinear oscillator described by the equations
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x′′
i + αix

′
i + fi(xi) +

n
∑

j=1

bij(xi − xj) = 0, i = 1, . . . , n (4.4)

where αi ≥ 0 is the damping coefficient, fi : R → R is the non-linear restoring

force, and the influence from vertex j to vertex i is given by bij(xi − xj). In

first order form, for every i



















ẋi = yi

ẏi = −αiyi − fi(xi)−
n
∑

j=1

bij(xi − xj)
(4.5)

An equilibrium (x∗,y∗) of equation (4.5) satisfies



















0 = y∗i

0 = −αiy
∗
i − fi(x

∗
i )−

n
∑

j=1

bij(x
∗
i − x∗

j),
(4.6)

and therefore y∗i = 0 and the second equation of (4.6) gives

fi(x
∗
i ) + x∗

i

n
∑

j=1

bij =
n
∑

j=1

bijx
∗
j , (4.7)

which can be written in the form

G(x∗) = Bx∗, (4.8)

with B = (bij) an irreducible weight matrix and Gi(x
∗) := fi(x

∗
i )+βix

∗
i , where

βi =
∑n

j=1 bij.

Instead of considering the unique solution to this nonlinear vector equation,

we reformulate equation (4.8) into a matrix equation of the form M(x∗)x∗ =

x∗, where M(x∗) = D ·B, is the product of a diagonal matrix and the systems



4.2 A coupled oscillator model of n moving components 53

weight matrix B. Note that fi(xi) is usually assumed to be an odd function,

and hence fi(xi) has the form fi(xi) = xig(xi), with gi(xi) even. Therefore,

the equilibrium equations give

fi(x
∗
i ) + βix

∗
i =

n
∑

j=1

bijx
∗
j ⇔ x∗

i (gi(x
∗
i ) + βi) =

n
∑

j=1

bijx
∗
j .

Solving simultaneously, gives the matrix equation:

M(x∗) · x∗ = x∗, (4.9)

where M(x∗) = diag
(

1
βi+gi(x∗

i )

)

B. This essentially proves part (2) of the

following result. Part (1) is due to M. Li and Z. Shuai (see [66]).

Theorem 4.2.1. Given the system (4.4),

(1) There is a positive equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T . (M. Li & Z. Shuai)

(2) x∗ satisfies the matrix equation

M(x∗)x∗ = x∗.

where M(x∗) = diag
(

1
βi+gi(x∗

i )

)

B, βi =
∑n

j=1 bij, and B = (bij) is the

weight matrix of system (4.4).

(3) The spectral radius ρ(M(x∗)) of M(x∗) equals 1.

(4) x∗ is a Perron vector of matrix M(x∗).

Proof:

(1) The existence and global stability of x∗ > 0 is due to M. Li and Z. Shuai.

(2) M(x∗) is derived above in equation (4.9).
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(3) / (4) Since x∗ exists, we know that x∗ is a positive eigenvector of M(x∗)

associated to eigenvalue 1. Therefore, the Perron-Fröbenius Theorem

says that the only eigenvector with all positive entries is a positive mul-

tiple of the dominant Perron eigenvector p associated to the spectral

radius ρ(M(x∗)). Therefore, 1 must be the spectral radius ρ(M(x∗)) of

M(x∗), and x∗ is a Perron vector of M(x∗).

�

4.3 An ecological model on a network

Consider the single species dispersal model on n patches described by the

differential equations

ẋi = xigi(xi) +
n
∑

j=1

bij(xj − αijxi), i = 1, . . . , n. (4.10)

Here, xi ∈ R+ represents the population density of the given species in

patch i, and gi ∈ C1(R+,R) is the density dependent growth rate in patch i.

Also assume there is a constant dispersal rate from patch j to patch i which

is given by bij ≥ 0 so that B = (bij) is a nonnegative weight matrix for the

network. The αij ≥ 0 represent different boundary conditions in the case of

continuous diffusion.

Assuming that (4.10) has a unique, globally asymptotically stable equilib-

rium implies that for all i = 1, . . . , n

0 = x∗
i gi(x

∗
i ) +

n
∑

j=1

bij(x
∗
j − αijx

∗
i ) ⇒

n
∑

j=1

bijx
∗
j = x∗

i

(

n
∑

j=1

bijαij − gi(x
∗
i )

)

.

Now, let βi =
∑n

j=1 bij and for simplicity let αij = 1 for all i and j. Therefore,
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the equation becomes

n
∑

j=1

bijx
∗
j = x∗

i (βi − gi(x
∗
i )) ⇒ 1

βi − gi(x∗
i )

n
∑

j=1

bijx
∗
j = x∗

i .

Thus, solving the equations simultaneously, gives

M(x∗)x∗ = x∗, (4.11)

where M(x) = diag
(

1
βi−gi(xi)

)

B.

Theorem 4.3.1. Given the system (4.10)

(1) There is a positive equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T (M. Li et. al.)

(2) x∗ satisfies the matrix equation

M(x∗)x∗ = x∗,

where M(x∗) = diag
(

1
βi−gi(x∗

i )

)

B, βi =
∑n

j=1 bij, and B = (bij) is the

weight matrix of system (4.10).

(3) The spectral radius ρ(M(x∗)) of M(x∗) equals 1.

(4) x∗ is a Perron vector of matrix M(x∗).

Proof:

(1) The existence of x∗ > 0 is due to M. Li et. al.

(2) M(x∗) is derived above in equation (4.11).

(3) / (4) Since x∗ exists, we know that x∗ is a positive eigenvector of M(x∗)

associated to eigenvalue 1. Therefore, the Perron-Fröbenius Theorem
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says that 1 must be the spectral radius ρ(M(x∗)) of M(x∗) and x∗ is a

Perron vector of M(x∗).

�

4.4 Biodiversity models on n spatially struc-

tured habitats

Consider the ODE model of the biodiversity of n sessile species competing

in a spatially structured habitat where the interactions are structured to give

a competitive hierarchy. The species are indexed such that species x1 is the

most superior to xn the least superior. Then make the following assumptions.

A1: When two species xi and xj with i < j both occur at the same site then

the dominant species xi displaces the inferior species xj.

A2: If i < j then species xj can never displace xi and can never invade sites

occupied by xi.

Let pi be the fraction of habitat sites occupied by species i, called the

abundance of species i. Let mi > 0 be the mortality rate and ci > 0 the

colonization rate of species xi. The colonization rate or rate of propagule

production by sites occupied by species xi is cipi, and the proportion of sites

not yet occupied by species i is (1−
∑i

j=1 pi). Therefore, the rate of production

of newly colonized sites by species i is given by cipi(1−
∑i

j=1 pi)). Also, mipi

is the rate at which sites that species i occupies become vacant (the individual

dies). More dominant species can also invade inferior species sites, so that the

equation for species i has the term −pi
∑i−1

j=1 cjpj. Therefore, the equation for

the ith species is given by
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dpi
dt

= cipi

(

1−
i
∑

j=1

pj

)

−mipi − pi

i−1
∑

j=1

cjpj (4.12)

Assuming system (4.12) has a unique positive equilibrium, setting the left

hand side equal to zero implies

cip
∗
i = p∗i

(

i−1
∑

j=1

(ci + cj)p
∗
j +mi + cip

∗
i

)

⇒

p∗i = p∗i

(

i−1
∑

j=1

(

1 +
cj
ci

)

p∗j +
mi

ci
+ p∗i

)

.

Solving simultaneously gives the following matrix equation:

M(p∗)p∗ = p∗, (4.13)

where M(p∗) = D(p∗) + C, with D(p∗) = diag
(

mi

ci
+ p∗i

)

and

C =

























0 0 0 · · · 0

1 + c1
c2

0 · · · 0 0

1 + c1
c3

1 + c2
c3

· · · 0 0

...
...

. . .
...

...

1 + c1
cn

1 + c2
cn

· · · 1 + cn−1

cn
0

























.

Theorem 4.4.1. Given the system (4.12)

(1) There is a positive equilibrium p∗ = (p∗1, . . . , p
∗
n)

T (Tilman et. al.),
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(2) p∗ satisfies the matrix equation

M(p∗)p∗ = p∗,

where M(p∗) = D(p∗) + C is given in (4.13).

(3) The spectral radius ρ(M(p∗)) of M(p∗) equals 1.

(4) p∗ is a Perron vector of matrix M(p∗).

Proof: The proof of (1), i.e., the existence of a positive equilibrium p∗ =

(p∗1, . . . , p
∗
n)

T is due to Tilman et. al. (see [104] and [105]), and the matrix in

statement (2) is derived above in equation (4.13). Finally, for (3) and (4) we

again note that p∗ > 0 being a positive equilibrium of system (4.12) implies

that p∗ is a positive eigenvector associated to the eigenvalue 1. Therefore, the

Perron-Fröbenius Theorem says that 1 must be the spectral radius ρ(M(x∗))

of M(x∗) and x∗ is a Perron vector. �

Now consider a slightly altered model from the one above. We consider

the scenario where the species are all allowed to displace one another. To

incorporate this into model (4.12) we let the first sum on the right hand side

to run from 1 to n instead of i. The new system is given by

dpi
dt

= cipi

(

1−
n
∑

j=1

pj

)

−mipi − pi

i−1
∑

j=1

cjpj (4.14)

Assuming system (4.14) has a unique positive equilibrium, setting the left

hand side equal to zero implies

cip
∗
i = p∗i

(

i−1
∑

j=1

(ci + cj)p
∗
j +mi + cip

∗
i

)

⇒
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p∗i = p∗i

(

i−1
∑

j=1

(

1 +
cj
ci

)

p∗j +
mi

ci
+

n
∑

k=i

p∗k

)

.

Solving simultaneously gives the following matrix equation:

M(p∗)p∗ = p∗, (4.15)

where M(p∗) = D(p∗) + C, with D(p∗) = diag

(

mi

ci
+

n
∑

k=i

p∗k

)

and

C =

























0 0 0 · · · 0

1 + c1
c2

0 · · · 0 0

1 + c1
c3

1 + c2
c3

· · · 0 0

...
...

. . .
...

...

1 + c1
cn

1 + c2
cn

· · · 1 + cn−1

cn
0

























.

Theorem 4.4.2. Given the system (4.14)

(1) There is a positive equilibrium p∗ = (p∗1, . . . , p
∗
n)

T (Tilman et. al.),

(2) p∗ satisfies the matrix equation

M(p∗)p∗ = p∗,

where M(p∗) = D(p∗) + C is given in (4.15).

(3) The spectral radius ρ(M(p∗)) of M(p∗) equals 1.

(4) p∗ is a Perron vector of matrix M(p∗).

Proof: The proof is similar in detail to the proof of Theorem 4.4.1, and is

therefore omitted. �
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4.5 Equilibrium ranking for general ODE forms

Consider the general nonlinear system of ODE’s of the form

ẋi = xihi(xi) +
n
∑

j=1

bijgij(xi, xj), i = 1, . . . , n, (4.16)

where B is the weight matrix of the network, hi(xi) is a C1(R) function, and

we will assume that gij(xi, xj) consists only of linear and/or bilinear terms in

xi and xj (see the cases below).

Case 1: gij(xi, xj) = ajxj − aixi, for some ai, aj ∈ R+. Therefore, equation

(4.16) becomes

ẋi = xihi(xi)− aixi

n
∑

j=1

bij +
n
∑

j=1

bijajxj, i = 1, . . . , n. (4.17)

Thus, letting βi =
∑n

j=1 bij, the equilibrium equations imply

x∗
i (aiβi)− hi(x

∗
i ) =

n
∑

j=1

bijajx
∗
j , i = 1, . . . , n. (4.18)

Solving simultaneously, gives

M(x∗)x∗ = x∗, (4.19)

where M(x∗) = diag
(

ai
aiβi−hi(x∗

i )

)

· B.

Theorem 4.5.1. Given the system (4.17) and assuming there exists a positive

equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T ,

(1) x∗ satisfies the matrix equation

M(x∗)x∗ = x∗,
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where M(x∗) is given in (4.19).

(2) The spectral radius ρ(M(x∗)) of M(x∗) equals 1.

(3) x∗ is a Perron vector of matrix M(x∗).

Proof:

(1) M(x∗) is derived above in equation (4.19) directly from the equilibrium

equations (4.17) by solving them simultaneously.

(2) / (3) Since x∗ exists, we know that x∗ is a positive eigenvector of M(x∗)

associated to eigenvalue 1. Therefore, the Perron-Fröbenius Theorem

says that the only eigenvector with all positive entries is a positive mul-

tiple of the dominant Perron eigenvector p associated to the spectral

radius ρ(M(x∗)). Therefore, 1 must be the spectral radius ρ(M(x∗)) of

M(x∗) and x∗ is a Perron vector of M(x∗)..

�

Case 2: gij(xi, xj) = −cijxixj, for cij ∈ R+. Then, equation (4.16) becomes

ẋi = xihi(xi)− xi

n
∑

j=1

bijcijxj, i = 1, . . . , n. (4.20)

Hence, the equilibrium equations imply

x∗
ihi(x

∗
i ) = x∗

i

n
∑

j=1

bijcijx
∗
j , i = 1, . . . , n. (4.21)

Solving simultaneously, gives

M(x∗)x∗ = x∗, (4.22)
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where M(x∗) = diag
(

x∗

i

hi(x∗

i )

)

·R, with R = (rij) = (bijcij).

Theorem 4.5.2. Given the system (4.20) and assuming there exists a positive

equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T ,

(1) x∗ satisfies the matrix equation

M(x∗)x∗ = x∗,

where M(x∗) is given in (4.22).

(2) The spectral radius ρ(M(x∗)) of M(x∗) equals 1.

(3) x∗ is a Perron vector of matrix M(x∗).

Proof: The proof is similar in detail to the proof of Theorem 4.5.1, and is

therefore omitted. �

4.6 Implications for ecological models

For an ecological model of the form (4.10), describing the movement of a

single species on multiple spatial environments, an equilibrium ranking vector

x∗ = (x∗
1, . . . , x

∗
n)

T can give insight into which regions the species is thriving

(the largest entries of x∗), and where this species runs the risk of going extinct

(xi values near zero). Thus, we can consider using the equilibrium rating

vector x∗ in a different manner. Instead of using the largest entry x∗
i of x∗ to

conclude the most important species is that which has the highest x∗
i value,

we use the smallest entry x∗
k of x∗ to conclude that the most important node

is the one in which the species has the lowest population density x∗
k. This
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will indicate in which patch the species is most likely to go extinct (i.e., has a

population density x∗
k near zero).

Similarly, for models like system (4.12) and (4.14), describing several sessile

species competing for one or more natural resource, an equilibrium ranking x∗

can allow for the prediction of which species will become dominant over the

others. We can again turn this rating vector on it’s head and use the smallest

entry x∗
k of x∗ to rank node (i.e. species) i as the most important. This, in

turn, means that instead of being the most dominant species, this ranking

indicates which species is most likely to go extinct.

Furthermore, regardless of the model taken into consideration, this equilib-

rium ranking vector x∗ is the eigenvector of a nonnegative irreducible matrix

M(x∗) = D(x∗) · B. Hence, x∗ depends on both the network structure of the

system encapsulated in the weight matrix B and the local ODE parameter

values contained in a diagonal matrix D(x∗). Therefore, we can for the first

time, fix the network structure (G, B) and isolate what it is about the local dy-

namics that are leading to a species being dominant in certain spatial regions

or dominating the other species involved.
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Chapter 5

Rank Dependence on Network

Structure and ODE Dynamics

This chapter considers ODE models on a network (G, B) where the existence of

a positive equilibrium is assumed. Then from Chapter 3 and 4, the equilibrium

equations of either the system or the associated linearized system can be use to

construct a matrix M = D ·B, where B is the weight matrix and D = diag(di)

is a diagonal matrix containing local ODE parameter values. We then ask the

question of how the entries of the Perron eigenvector p = (p1, . . . , pn)
T of M

depend on the digraph structure described by B and the local dynamics of the

network given in D.

Therefore, Section 1 first investigates how the Perron vector p of a network

(G, B) depends on the entries of B for several simple but typical network

structures. For a detailed analysis of the spectra of graphs see [18], [23],

[54], and [69]. In particular, rooted trees, cycles, unicyclic and multi-cyclic

digraphs are considered. Results guaranteeing which entry of p will be the

largest based on the entries of B can then be derived. Section 2 considers the

network structures of Section 1, but investigates how the entries of a Perron
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vector v depend on the entries of the matrix M = D · B. This will isolate

the effects of both the local ODE dynamics and the network structure on the

entries of the equilibrium ranking vector v.

5.1 Perron Eigenvectors and Graph Structure

We begin the section by emphasizing the benefit of using eigenvector ranking

over some other commonly used measures of importance for a network.

Example 5.1.1. The directed network below has weighted indegrees given by

indeg(1) = 2, indeg(2) = 1, and indeg(3) = 2.1. Therefore, using indegree as a

relative importance rating, node 3 is the most important. However, using the

Perron eigenvector of the weight matrix B, we obtain p1 ≈ 1.8, p2 = 1.0, and

p3 ≈ 1.64. Hence, using eigenvector centrality, node 1 is the most important.
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Example 5.1.2. In this directed network if we consider the most important

node that which has the largest “inweight”, then node 1 is the most important

node of the network. Again, using the Perron eigenvector of B, we see that

node 2 is chosen as the most important.
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These two examples show that considering the node with the largest inde-

gree or weight does not always give the same relative importance ranking for

the nodes as eigenvector centrality. Moreover, eigenvector centrality ranking

seems most relevent for our purposes because it depends on both the number

of connections a node has and the weights of those connections.

In general, given a digraph (G, B) with associated weight matrix B, the

relationship between the Perron eigenvector p and the entries of B is complex.

Therefore, this section considers an increasingly complex demographic of net-

works (G, B) and how the Perron vector p of B = (bij) depends on the entries

bij and the spectral radius ρ(B) of B. This survey includes rooted trees, cycle

digraphs, unicyclic and multi-cyclic digraphs.

5.1.1 Rooted trees

Consider the digraph (G, B) that is a directed tree rooted at a single node,

namely node 1. By a directed tree rooted at node 1 we mean that 1 is a

sink node, and all other nodes have directed edges leading towards node 1.

An example of such a tree is given in the Figure 5.1.1. For a directed tree

(G, B) rooted at node 1 we have the following result about the characteristic

polynomial and Perron eigenvector of the non-negative weight matrix B.

Theorem 5.1.1. Let (G, B) be a directed tree consisting of n nodes rooted at

node 1. Then we have

(1) the characteristic polynomial of B is pB(λ) = λn,

(2) the unique nonnegative Perron eigenvector associated to the spectral ra-

dius ρ(B) = 0 is given by p = (1, 0, . . . , 0)T .
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3 4 9 10

2

1

8

115 6 7

Figure 5.1: A Directed Tree rooted at node 1.

Proof:

We first show that pB(λ) = λn. If G = (V,E) is a tree rooted at node

1 ∈ V = {1, 2, . . . , n}, then there are three types of nodes in G. Namely, the

sink node 1, source nodes at the top of the tree, and the nodes in between. We

show that regardless of the node type, there are nonzero entries only above

the main diagonal in B. Therefore, we have an upper triangular matrix with

all diagonal entries equal to zero, and the first statement follows immediately.

Note that if an edge (i, j) exists in G, then bji 6= 0 in the weight matrix B.

Therefore we cannot have bij 6= 0, otherwise edge (j, i) exists in G and hence

there is a 2-cycle, which is impossible as G is a tree. Moreover, there are no

loops (i, i) in G, so that bii = 0 for all i = 1, 2, . . . , n.

We make the convention of labelling the nodes of the tree G by starting

with an arbitrary branch and label the node connected to the sink 1 as node

2. Labelling the rest of the branch we work away from the sink to the top of

the branch to the source nodes, labelling left to right at each level in the tree.

We then move clockwise until all branches are labelled. See Figure 5.1, for

example.

Case 1. The sink node 1 is such that outdeg(1) = 0 and indeg(1) ≥ 1.
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Then, there exist nodes l1 = 2, l2, . . . , lm ∈ V with directed edges (2, 1),

(l2, 1), . . . , (lm, 1) in the edge set E. Then by our convention, b12, b1l2 , . . . , b1lm

are nonzero in B, and these all lie above the main diagonal.

Case 2. j ∈ V is a source, i.e., node j is such that outdeg(1) = 1 and

indeg(1) = 0.

In this case the j-th row of B consists of all zeros, i.e., bjk = 0, k = 1, . . . , n.

Moreover, there exists a single node l < j such that (j, l) ∈ E. Hence blj 6= 0

is above the main diagonal in matrix B.

Case 3. j ∈ V is such that outdeg(1) = 1 and indeg(1) ≥ 1.

Then outdeg(j) = 1 implies the is a node l ∈ V such that l < j and blj 6= 0.

Similar to case 1, there are also nodes k1, . . . , ks ∈ V with ki > j for all

i = 1, . . . , s and (k1, j), . . . , (ks, j) ∈ E. Therefore, bjki 6= 0 for all = 1, . . . , s,

which are all entries above the main diagonal in B.

Therefore, the weight matrix B is upper-triangular with all diagonal entries

equal to zero. Hence, pB(λ) = λn. This means that ρ(B) = 0, with algebraic

multiplicity n.

For statement (2) we must solve the equation

(λI − B)v = 0,

where λ = ρ(B) = 0. Therefore, −Bv = 0 or just Bv = 0. The j-th row

of B is either all zeros, or has nonzero entries bjli for i = 1, . . . , s. Moreover,

column 1 is all zeros, and every other column has exactly one nonzero entry

bkj with k < j. Hence, moving the zero rows to the bottom if necessary, B is in
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reduced echelon form. The number r of free variables is equal to the number

of source nodes in G, and r ≥ 1, since G is a rooted tree.

Therefore, when solving for the entries of v there are three cases:

Case (i). In row 1, the only nonzero entries are b12, b1l2 . . . , b1lm , where m =

indeg(1) ≥ 1. Then let v1 = t1, v2 = t2, . . . , vlm−1 = tm−1 be free variables,

and solve for vm to obtain

vm = − 1

b1m

(

b12t2 + · · ·+ b1(m−1)tm−1

)

. (5.1)

Case (ii). In row j, where node j is not a source, the only nonzero entries

are bjl1 , . . . , bjls , where s = indeg(j). Again, let vl1 , . . . , vls−1 be free variables,

and hence

vls = − 1

bjls

(

bjl1vl1 + · · ·+ bjls−1vs−1

)

. (5.2)

Case (iii). If node j is a source and is the only node connected to some node

k < j, then the only nonzero entry in row k is bkj, and hence vj = 0.

This produces an eigenvector v in the span of r linearly independent vec-

tors. Other than the eigenvector p = (1, 0, . . . , 0)T , all of these eigenvectors

have at least one negative entry by equations (5.1) and (5.2). Therefore, state-

ment (2) of the theorem is proved. �

Thus, regardless of the weights of the directed edges, p1 is the only nonzero

value of the Perron eigenvector p of B. Therefore, the node of a rooted tree

with the most relative importance is the root node, i.e., node 1.

Example 5.1.3. Consider the rooted tree given below with its associated

weight matrix B.
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3 4 6

2

1

5

7 8

9





















































0 b12 0 0 b15 0 0 0 0

0 0 b23 b24 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 b56 b57 b58 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 b89

0 0 0 0 0 0 0 0 0





















































Then with eigenvalue λ = ρ(B) = 0, solving the equation (ρ(B)I − B)v = 0

or just Bv = 0, we see that the number of free variables is equal to r = 5; the

number of source nodes in the tree G. Moreover, v1 = t1, v2 = t2, v5 = − b12
b15

t2,

v3 = t3, v4 = − b23
b24

t3, v6 = t4, v7 = t5, v8 = − 1
b58

(b56t4 + b57t5), and v9 = 0.

This gives a basis for the five dimensional eigenspace E0 of the spectral radius

ρ(B) = 0.

v =





















































1

0

0

0

0

0

0

0

0





















































t1 +





















































0

1

0

0

− b12
b15

0

0

0

0





















































t2 +





















































0

0

1

− b23
b24

0

0

0

0

0





















































t3 +





















































0

0

0

0

0

1

0

− b56
b58

0





















































t4 +





















































0

0

0

0

0

0

1

− b57
b58

0





















































t5 (5.3)

Note that four of the five basis eigenvectors contain a negative entry. Hence,

the nonnegative Perron eigenvector is given by p = (1, 0, 0, 0, 0, 0, 0, 0, 0)T .
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5.1.2 Directed cycles

Next, consider a directed cycle, i.e., the digraph (G, B) consisting of n nodes,

and the n edges (1, 2), (2, 3), . . . , (n−1, n). Thus, G is just a directed cycle with

n nodes (see Figure 5.2). Also note that in this case, G is strongly connected,

so by Theorem 2.2.1, the weight matrix B is irreducible and is given by

B =

























0 0 · · · 0 b1n

b21 0 · · · 0 0

0 b32 · · · 0 0

...
...

. . .
...

...

0 0 · · · bn(n−1) 0

























. (5.4)

Note that there is exactly one nonzero entry in every row and column of

B. The following result gives the spectral radius and Perron eigenvector of B.

Theorem 5.1.2. Let (G, B) be a directed cycle consisting of n nodes the n

edges (1, 2), (2, 3), . . . , (n− 1, n). Then

(1) the characteristic polynomial of B is pB(λ) = λn − b21b32 · · · b1n,

(2) the unique positive Perron eigenvector associated to the spectral radius

ρ := ρ(B) = n
√
b21b32 · · · b1n is given by

p =

























b1n
ρ

b1n
ρ

b21
ρ

...

b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

























. (5.5)
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Proof: By Theorem 2.1.1 the characteristic polynomial of B is

pB(λ) = λn − tr(B)λn−1 + c2λ
n−2 + · · ·+ cn−1λ+ (−1)n det(B),

where cr = (−1)r
t
∑

k=1

M r
k for all r = 2, . . . , n − 1, t =

(

n

r

)

, and M r
k , for all

k = 1, . . . ,
(

n

r

)

denote the r× r principal minors of B. Then, since b11, . . . , bnn

are all zero, the trace of B is zero. Similarly, for all r = 2, . . . , n − 1 any

r× r principal minor is obtained by deleting at least one of the same row and

column from B. Thus, all of these minors are zero and

pB(λ) = λn + (−1)n det(B).

Now, for the determinant of B, cofactor expansion along the first column

gives

det

























0 0 · · · 0 b1n

b21 0 · · · 0 0

0 b32 · · · 0 0

...
...

. . .
...

...

0 0 · · · bn(n−1) 0

























= −b21

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 · · · 0 b1n

b32 · · · 0 0

...
. . .

...
...

0 · · · bn(n−1) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Continuing in this manner, and expanding along the first column of each

new minor of B gives

det(B) = (−1)n−2b21 · · · b(n−1)(n−2)

∣

∣

∣

∣

∣

∣

∣

0 b1n

bn(n−1) 0

∣

∣

∣

∣

∣

∣

∣

= (−1)n−1b21 · · · bn1.

There, pB(λ) = λn − b21 · · · bn1, and statement (1) holds. For statement
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(2), pB(λ) = 0 ⇔ λ = n
√
b21b32 · · · b1n. Therefore, regardless of whether n is

even or odd, the unique positive real eigenvalue of B is ρ(B) = n
√
b21b32 · · · b1n.

Finally, for the unique (up to a positive scalar) Perron eigenvector p asso-

ciated to the spectrum ρ := ρ(B) = n
√
b21b32 · · · b1n solve the system

(ρI − B)p = 0.

Without loss of generality, make the last row zero and so

























ρ 0 · · · 0 −b1n

−b21 ρ · · · 0 0

0 −b32 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 0

























∼

























1 0 0 · · · − b1n
ρ

− b21
ρ

1 0 · · · 0

0 − b32
ρ

1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0

























.

Hence, let pn = t. This gives one free variable and solving in terms of

pn = t gives p1 = b1n
ρ
t, p2 = b1n

ρ
b21
ρ
t, . . . , pn−1 = b1n

ρ
b21
ρ
· · · b(n−1)(n−2)

ρ
t. There-

fore, the Perron eigenvector is p = ( b1n
ρ
, b1n

ρ
b21
ρ
, . . . , b1n

ρ
b21
ρ
· · · b(n−1)(n−2)

ρ
, 1)T and

statement (2) is proved. �

Therefore, given a network (G, B) consisting of a single directed cycle, the

Perron eigenvector p = (p1, . . . , pn)
T has entries depending on the entries of B

and the spectral radius ρ(B) of B. Thus, in the case of a single directed loop

graph, we have the following two statements which are both direct corollaries

of Theorem 5.1.2. The first is a sufficient condition for pn to be the largest

entry of the Perron eigenvector p.
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1

2n

34

···

Figure 5.2: The Single Directed Loop Digraph.

Theorem 5.1.3. Given a matrix B of the form (5.4), if we have that

b1n, b21, b32, . . . , b(n−1)(n−2) < ρ(B), (5.6)

then pn is the largest entry of the Perron eigenvector p = (p1, . . . , pn)
T of B.

Proof: From Theorem 5.1.2, we know that

p =

























p1

p2
...

pn−1

pn

























=

























b1n
ρ

b1n
ρ

b21
ρ

...

b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

























. (5.7)

Therefore, pn = 1 and if we assume b1n, b21, b32, . . . , b(n−1)(n−2) < ρ(B), then

p1, p2, . . . , pn−1 < 1. Thus, pn is the largest entry of p. �

Note that by permuting the entries in the result above, sufficient conditions

for any entry pk, k = 1, . . . , n to be the largest value in p can be derived.

Therefore, this sufficiently guarantees which node of the network will be ranked

as having the most relative importance. The next result gives a necessary
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condition for pn to be the largest entry of the weight matrix B of the network

in Figure 5.1.2.

Theorem 5.1.4. Let B be the matrix given by (5.4), ρ := ρ(B) = n
√
b21b32 · · · b1n,

and let p be given by (5.5). Then pn is the largest entry of p, if and only if

b1n < ρ

b1nb21 < ρ2

...

b1nb21 · · · bn(n−1) < ρn−1.

Proof: Assume that 1 = pn > pk for all k = 1 . . . , n − 1. Theorem 5.1.2

states that the Perron eigenvector is given by

p =

























b1n
ρ

b1n
ρ

b21
ρ

...

b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

























.

Hence, b1n
ρ

< 1, . . . , b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ
< 1.

Conversely, if we have

b1n < ρ

b1nb21 < ρ2

...

b1nb21 · · · b(n−1)(n−2) < ρn−1,
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then we have that p1 = b1n
ρ

< 1, . . . , pn−1 = b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ
< 1, and

p3 = 1, so that pn is the largest entry of p and the result is shown. �

Results similar to Theorem 5.1.4 can also be stated for the entries p1, . . . , pn−1

of p. We now consider several examples that illustrate the results of Theorem

5.1.3 and Theorem 5.1.4 above.

Remark 5.1.1. The necessary direction of Theorem 5.1.4 is best stated in its

contrapositive form. If the conditions

b1n < ρ

b1nb21 < ρ2

...

b1nb21 · · · b(n−1)(n−2) < ρn−1.

are not satisfied , then pn is not the largest entry of p.

Example 5.1.4. The following directed cycle (G, B) consisting of the three

nodes V = {1, 2, 3}, directed edge set E = {(1, 2), (2, 3), (3, 1)}, and weights

b21 = ω(1, 2) = 1, b32 = ω(2, 3) = 2, b13 = ω(3, 1) = 1 is given by

B =













0 0 1

1 0 0

0 2 0













1 2

3

1

1 2

Note that in this case b13 = b21 = 1 < ρ(B) = 3
√
2 ≈ 1.2599. Therefore,

the sufficient conditions of Theorem 5.1.3 are satisfied and
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p =













1
3√2

1
3√2

1
3√2

1













≈













0.79

0.63

1.00













.

Hence, p3 is the largest entry of the Perron vector p.

Example 5.1.5. Next, consider the directed cycle consisting of three nodes,

but change the weights slightly. Then ρ(B) = 3
√
2 ≈ 1.2599.

B =













0 0 2
3

3
2

0 0

0 2 0













1 2

3

3
2

2
3 2

The Perron eigenvector is

p =













2

3 3√2

2

3 3√2

3

2 3√2

1













≈













0.53

0.63

1.00













.

Note that b21 = 3
2
> 1, and so it is not necessary to have b13 < ρ(B), and

b21 < ρ(B) for p3 to be the largest entry of the Perron vector p. However, the

necessary conditions of Theorem 5.1.4 are satisfied. Indeed, p3 is the largest

entry of p and

b13 =
2

3
<

3
√
2 = ρ(B),

b13b21 =
2

3
· 3
2
= 1 <

3
√
4 = ρ(B)2.

Example 5.1.6. Again, consider the directed cycle consisting of three nodes,

but switch the weights of the previous example slightly. Then ρ(B) = 3
√
2 ≈

1.2599.
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B =













0 0 3
2

2
3

0 0

0 2 0













1 2

3

2
3

3
2 2

The Perron eigenvector is

p =













3

2 3√2

2

3 3√2

3

2 3√2

1













≈













1.19

1.58

1.00













.

Therefore, using the contrapositive of Theorem 5.1.4, we see that b13 =

3
2
> ρ ≈ 1.2599, implies p3 is not the largest entry of p.

5.1.3 Unicyclic digraphs

Consider the unicyclic digraph (G, B) consisting of a central cycle of n nodes,

and each of these nodes 1, 2, . . . , n having directed trees leading into them.

Then G = (V,E) has nodes 1, 2, . . . , n, n + 1, . . . , N , where V can be split

into the “cycle node” set V1 = {1, 2, . . . , n} and the “tree node” set V2 =

{n+ 1, . . . , N}. (For an example of such a unicyclic digraph see Figure 5.3.)

Theorem 5.1.5. Let (G, B) be a unicyclic digraph, pB(λ) the characteristic

polynomial of the weight matrix B, and ρ := ρ(B) the spectral radius of B.

Then we have the following

(1) pB(λ) = λN−n(λn − b21b32 · · · b1n),
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(2) ρ = n
√
b21b32 · · · b1n, and the Perron eigenvector is given by

p =













































b1n
ρ

b1n
ρ

b21
ρ

...

b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

0

...

0













































. (5.8)

Proof: As with the case of a directed tree rooted at node 1, we label the

cycle nodes as 1, 2, . . . , n, and then label the tree nodes n+1, . . . , N . To prove

statement (1), consider the determinant of λI − B which has the form



























































λ 0 0 · · · 0 −b1n −b1(n+1) ∗ · · · ∗

−b21 λ 0 · · · 0 0 0 ∗ · · · ∗

0 −b32 λ · · · 0 0 0 ∗ · · · ∗
...

...
...

. . .
...

...
...

... · · · ...

0 0 0 · · · λ 0 0 ∗ · · · ∗

0 0 0 · · · −bn(n−1) λ 0 ∗ · · · ∗

0 0 0 · · · 0 0 λ ∗ · · · ∗

0 0 0 · · · 0 0 0 λ · · · ∗
...

...
...

...
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 0 λ



























































. (5.9)



5.1 Perron Eigenvectors and Graph Structure 80

Here, an asterix “∗” represents either zero or −bjk depending on whether

or not the directed edge (k, j) exists in G.

Then note that λI − B contains of two square diagonal blocks B1 and B2

given by

B1 =

































λ 0 0 · · · 0 −b1n

−b21 λ 0 · · · 0 0

0 −b32 λ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · λ 0

0 0 0 · · · −bn(n−1) λ

































n×n

,

and

B2 =



















λ ∗ · · · ∗

0 λ · · · ∗
...

...
. . .

...

0 0 · · · λ



















(N−n)×(N−n)

.

Therefore, since λI−B has all zero entries below these B1, the determinant

is the product of det(B1) and det(B2). By Theorem 5.1.2, we know that

det(B1) = λn−b21 · · · b1n, and B2 is upper-triangular, so that det(B2) = λN−n.

Thus,

pB(λ) = det(λI − B) = det(B1) · det(B2) = λN−n(λn − b21 · · · b1n).

This shows that statement (1) is true. For the spectral radius ρ(B) of

B, note that (regardless of whether n is even or odd) the only real and posi-

tive solution to pB(λ) = 0 is the eigenvalue + n
√
b21b32 · · · b1n, and this implies

ρ(B) = n
√
b21b32 · · · b1n. For the second part of statement (2), we must find the
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Perron eigenvector p associated to ρ := ρ(B).

From (5.9), any nonzero entry −bjk where j < k can be eliminated using

λ in position (k, k) and (ρI − B) is equivalent to a matrix

M =







M1 0

0 M2






,

where

M1 =

























ρ 0 · · · 0 −b1n

−b21 ρ · · · 0 0

0 −b32 · · · 0 0

...
...

. . .
...

...

0 0 · · · −bn(n−1) ρ

























,

and

M2 =



















ρ 0 · · · 0

0 ρ · · · 0

...
...

. . .
...

0 0 · · · ρ



















.

Note that M1 is an n×n matrix and M2 is (N−n)×(N−n), and therefore

pk = 0 for all k = n+1, . . . , N and by Theorem 5.1.2, p1, . . . , pn are as desired.

�

Hence, all entries pi of the Perron eigenvector p are zero except for p1,

p2, . . . , pn, and therefore the most important node will be one of these cycle

nodes 1, 2, . . . , n.

Thus, as a corollary, the following result reduces the importance of the

nodes of the entire unicyclic digraph to those of the directed cycle.
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1

2n

34

···

Figure 5.3: A Unicyclic Digraph.

Theorem 5.1.6. Let (G, B) be a unicyclic digraph with N nodes, ρ := ρ(B)

be the spectral radius of B, and let p = (p1, . . . , pN)
T be the Perron eigenvector

of B associated to ρ. If we let 1, . . . , n be the nodes of the cycle, then pk = 0,

for all k = n+ 1, . . . , N , and

(1) b1n, b21, . . . , b(n−1)(n−2) < ρ(B), then pn is the largest entry of the Perron

eigenvector p = (p1, . . . , pn, pn+1, . . . , pN)
T of B;

(2) pn is the largest entry of p, if and only if

b1nb21b32 · · · bn(n−1) < ρn−1

b1nb21 · · · b(n−1)(n−2) < ρn−2

...

b1n < ρ.

Proof: From Theorem 5.1.5, the Perron eigenvector p of a unicyclic graph
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is given by

p =













































b1n
ρ

b1n
ρ

b21
ρ

...

b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

0

...

0













































.

Therefore, see Theorem 5.1.4 and Theorem 5.1.3 for the necessary and

sufficient conditions, respectively, for the entries of p for a directed cycle graph.

�

Example 5.1.7. In the network (G, B) below the spectral radius is ρ(B) = 3
√
2

and since b21 =
3
2
> 3

√
2, the weights of the digraph conspire to make p2 ≈ 1.88

the largest entry of the Perron eigenvector. Thus, node 2 and not node 3 is

ranked the most important node of the network.

34

5

2

1

2

1 2

2
3

3
2

ρ(B) = 3
√
2

b32 < ρ(B) < b21 < b13
p = (1.56, 1.88, 1, 0, 0)T

p3 < p1 < p2

Also note that regardless of the weights of the edges in the tree rooted at node

3, node 2 is rated the highest, and therefore ranked as most important.

5.1.4 Multi-cyclic digraphs

Consider a digraph (G, B) consisting of m unicyclic digraphs leading into a sin-

gle node 1. More specifically, let the first cycles consist of the nodes 2, . . . , s1,
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cycle two have nodes s1 + 1, . . . , s2, and so on until the m-th cycle contains

nodes sm−1+1, . . . , sm, where s1 = n1+1 and for all k = 2, . . . ,m sk = sk−1+nk

are the actual values of the nodes in G and nk is the number of nodes in the

k-th cycle.

Then G = (V,E), with vertex set V given by

V = {1} ∪ {2, . . . , s1} ∪ {s1 + 1, . . . , s2} ∪ · · · ∪ {sm−1 + 1, . . . , sm} ∪W,

where W is the set of all other nodes, i.e., the “tree nodes” of G.

This means that all entries of the weight matrix B are zero below the main

diagonal except for the entries bk(k−1) in one of the m cycles of G. Therefore,

B can be viewed as a block diagonal matrix, and therefore the determinant of

λI −B = pB(λ) can be computed. This, together with the Perron eigenvector

of B are given in the result below.

Theorem 5.1.7. Let (G, B) consist of m unicyclic digraphs leading into a

single node 1, and ρ := ρ(B) be the spectral radius of B. Then

(1) pB(λ) = λN−(n1+···+nm)p1(λ) · · · pm(λ), where p1(λ) = λn1−b32 · · · b2s1 , . . .

pm(λ) = λnm − b(sm−1+2)(sm−1+1) · · · b(sm−1+1)sm,

(2) if ρ = max{ n1

√

b32 · · · b2s1 , . . . , nm

√

b(sm−1+2)(sm−1+1) · · · b(sm−1+1)sm} is unique,

the Perron eigenvector is given by
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3

42

6

75

9

108

1

Figure 5.4: A Multi-cyclic Digraph leading to node 1.

p =

































































b1(sk+1)

ρ

b(sk−1+1)sk

ρ

0

...

0

b(sk−1+1)sk

ρ

...

b(sk−1+2)(sk−1+1)

ρ
· · · b(sk−1+1)sk

ρ

1

0

...

0

































































, (5.10)

where ρ = nk

√

b(sk−1+2)(sk−1+1) · · · b(sk−1+1)sk , and k is the index where the

maximum occurs for ρ.

Proof: As mentioned in the paragraph above the theorem, λI − B can be

written in block form as follows
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B =

























λ ∗ · · · ∗ ∗

0 B1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Bm ∗

0 0 · · · 0 Bm+1

























,

where

Bk =



















λ 0 · · · 0 −b(sk−1+1)sk

−b(sk−1+2)(sk−1+1) λ · · · 0 0

...
...

. . .
...

...

0 0 · · · −bsk(sk−1) λ



















,

for all k = 1, . . . ,m and

Bm+1 =



















λ ∗ · · · ∗

0 λ · · · ∗
...

...
. . .

...

0 0 · · · λ



















.

By Theorem 5.1.2, det(Bk) = λnk − b(sk−1+2)(sk−1+1) · · · b(sk−1+1)sk , for all

k = 1 . . . ,m, and det(Bm+1) = λN−1−n1−···−nm since it is upper-triangular and

square of size N − 1− (n1 + · · ·+ nm). Thus,

pB(λ) = λN−(n1+···+nm)(λn1−b32 · · · b2s1) · · · (λnm−b(sm−1+2)(sm−1+1) · · · b(sm−1+1)sm).
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Hence, ρ(B) is the largest real root of pB(λ), .i.e,

ρ = max{ n1
√

b32 · · · b2s1 , . . . , nm

√

b(sm−1+2)(sm−1+1) · · · b(sm−1+1)sm}.

Finally, for the Perron eigenvector associated to ρ, note that if we let

ρ = max{ρ1, . . . , ρm}, then there is some k such that ρ = ρk (we need ρk 6= ρj

for all k 6= j). Therefore, solving (ρkI − B)p = 0, we see that any nonzero

entry −bjk where j < k can be eliminated using ρk in the (k, k)-th position in

B. Thus, for any j 6= k, j = 1, . . . ,m, the block Bj is equivalent to a diagonal

matrix. Hence, we see that for all j 6= 1, sk−1 + 1, . . . , sk it follows that pj = 0

in the eigenvector p. Thus, using Theorem 5.1.2, p is given by

p =

(

b1(sk+1)

ρ

b(sk−1+1)sk

ρ
, 0 . . . , 0,

b(sk−1+1)sk

ρ
, . . . , 1, 0, . . . , 0

)T

,

as desired. �

Note that depending on which of the cycles ends up having the maximum

attained for the spectral radius there may be no zeros between p1 and the next

positive entry in the expression for the Perron eigenvector.

Example 5.1.8. Consider the dicyclic digraph rooted at 1 given below with

its associated weight matrix B.

3 4 6

2

1

5

8

7

9





















































0 b12 0 0 b15 0 0 0 0

0 0 0 b24 0 0 0 0 0

0 b32 0 0 0 0 0 0 0

0 0 b43 0 0 0 0 0 0

0 0 0 0 0 0 b57 0 0

0 0 0 0 b65 0 0 0 0

0 0 0 0 0 b76 0 b78 b79

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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Therefore pB(λ) = λ3(λ3−b24b32b43)(λ
3−b57b65b76), so that the spectral radius

is ρ(B) = max{ 3
√
b24b32b43,

3
√
b57b65b76}. Suppose ρ = 3

√
b24b32b43, then the

Perron eigenvector is given by

p =

[

b12
ρ

b24
ρ
,
b24
ρ
,
b43
ρ

b24
ρ
, 1, 0, 0, 0, 0, 0

]T

.

5.2 The Perron Vector of M = diag(di) · B

This section investigates what happens to the Perron vector entries if we multi-

ply the weight matrix B of a network (G, B) by a diagonal matrixD = diag(di),

where di > 0 for all i. Then, for ODE models on networks like the SIR model

of Chapter 3, insight can be gained into how the local dynamics affect equi-

librium ranking. This is due to the fact that the equilibrium ranking vector

p is the Perron vector of a matrix M = D · B, where D = diag(
S∗

k

γk+bk
) is a

diagonal matrix containing local ODE parameter values. Similarly, in Chapter

4, an approximate equilibrium ranking is considered, that also uses the Perron

eigenvector of a matrix of the form M = D · B, with D diagonal.

The same digraph structures (G, B) as in Section 5.1 are considered. Mul-

tiplying the weight matrix B by a diagonal matrix D = diag(di), allows for

the analysis of the effects on the entries of the Perron eigenvector, and hence

the ranking order, in each case.

5.2.1 Directed tree rooted at a single node

For a directed tree (G, B), rooted at node 1, the Perron eigenvector p =

(p1, . . . , pn)
T of the weight matrix B has all entries pi equal to zero except for

p1 = 1. Therefore, multiplying B by a diagonal matrix D still gives pi = 0, for
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i = 2, . . . , n and p1 = 1. Hence, as long as dnn 6= 0, the Perron vector remains

unchanged in this case. This essentially proves the following statement.

Theorem 5.2.1. Let (G, B) be a directed tree with n nodes rooted at node 1,

D = diag(di) be a diagonal matrix such that di > 0 for all i = 1, . . . , n, and

let M = D · B. Then

(1) the characteristic polynomial of M is pM(λ) = λn,

(2) the Perron eigenvector associated to the spectral radius ρ(M) = 0 is given

by v = (1, 0, . . . , 0)T .

Proof: M = D · B is also upper-triangular with all diagonal entries equal

to zero. Hence, pM(λ) = λn and therefore ρ(M) = 0. Solving Mx = 0 for the

basis of the eigenspace E0, as in the proof of Theorem 5.1.1 gives the Perron

vector as v = (1, 0, . . . , 0)T . �

Therefore, in the case of a directed tree rooted at node 1, the largest entry

of the Perron ranking vector v of the matrix M = D ·B remains entry v1, and

hence the root, node 1, is the most important node of the network.

Example 5.2.1. If (G, B) is the directed tree rooted 1 such that G = (V,E),

where |V | = 5, and E = {(2, 1), (3, 1), (4, 3), (5, 3)}. Then, considering the

diagonal matrix D = diag(di), we obtain

M = D · B =

























0 d11b12 d11b13 0 0

0 0 0 0 0

0 0 0 d33b34 d33b35

0 0 0 0 0

0 0 0 0 0

























.
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Thus, pM(λ) = λ5, and if we solve Mx = 0, we get

x =

























t1

− b13
b12

t2

t2

− b35
b34

t3

t3

























=

























1

0

0

0

0

























t1 +

























0

− b13
b12

1

0

0

























t2 +

























0

0

0

− b35
b34

1

























t3.

Therefore, v = (1, 0, 0, 0, 0)T is the Perron eigenvector of M = D · B.

5.2.2 Cycle digraphs with n nodes

Next, consider the directed cycle graph (G, B) with n nodes (see Figure 5.2).

Since G is strongly connected, B is irreducible. Therefore, if D = diag(di),

where di > 0 for all i, then the matrix M = D · B is also irreducible and is

given by

M = D · B =

























0 0 · · · 0 d1b1n

d2b21 0 · · · 0 0

0 d3b32 · · · 0 0

...
...

. . .
...

...

0 0 · · · dnbn(n−1) 0

























(5.11)

Theorem 5.2.2. Let (G, B) be a directed cycle with node set V = {1, 2, . . . , n}

and edge set E = {(1, 2), (2, 3), . . . , (n − 1, n)}, and let D = diag(di), where

di > 0 for i = 1, 2, . . . , n. If M = D · B, then

(1) pM(λ) = λn − (d1 · · · dn)(b21b32 · · · b1n),

(2) the Perron vector associated to ρ := ρ(M) = n
√

(d1 · · · dn)(b21b32 · · · b1n) =
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n
√
d1 · · · dn · ρ(B) is given by

v =

























d1
b1n
ρ

d1d2
b1n
ρ

b21
ρ

...

d1 · · · dn−1
b1n
ρ
· · · b(n−1)(n−2)

ρ

1

























. (5.12)

Proof:

(1) M = D · B in (5.11) has the same nonzero entries as B given by (5.4).

Therefore, using an argument similar to that of Theorem 5.1.2 part (1),

the determinant of M is the product of the nonzero entries, the trace of

M and all other principal r × r minors of M are zero so that

pM(λ) = λn − (d1 · · · dn)(b21b32 · · · b1n).

(2) Again, similar to the arguments used in Theorem 5.1.2 part (2), the only

positive real root of pM(λ) is n
√

(d1 · · · dn)(b21b32 · · · b1n) which is equal

to ρ(M) by the Perron-Fröbenius Theorem (see section 2.1.3). Solving

(ρI −M)v = 0, gives v as described by (5.12).

�

Theorem 5.2.3. Let (G, B) be as in Theorem 5.2.2, D = diag(di), where

di > 0 for i = 1, 2, . . . , n, M = D ·B, and set d := n
√
d1 · · · dn and ρ := ρ(M).

Assume that (G, B) satisfies Theorem 5.1.3, i.e., b1n, b21, . . . , b(n−1)(n−2) < ρ(B)

so that the largest entry of the Perron vector p of B is pn. Let v be the Perron

eigenvector of M associated to ρ = d · ρ(B). If d1, d2, . . . , dn−1 < d, then vn is
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the largest entry of the Perron eigenvector v of M .

Proof: Theorem 5.2.2 gives the Perron eigenvector as

v =

























d1
b1n
ρ

d1d2
b1n
ρ

b21
ρ

...

d1 · · · dn−1
b1n
ρ
· · · b(n−1)(n−2)

ρ

1

























=

























d1
d

b1n
ρ(B)

d1
d

d2
d

b1n
ρ(B)

b21
ρ(B)

...

d1 · · · dn−1
b1n
ρ
· · · b(n−1)(n−2)

ρ

1

























.

Therefore, since b1n, b21, . . . , b(n−1)(n−2) < ρ(B), and if we are also assuming

that d1, d2, . . . , dn−1 < d then every entry vk < 1, for k = 1, . . . , n − 1. Thus,

since vn = 1, it is the largest entry of v. �

Theorem 5.2.4. Let (G, B) be as in Theorem 5.2.2, D = diag(di), where

di > 0 for i = 1, 2, . . . , n, M = D · B, and set d := n
√
d1 · · · dn and ρ := ρ(B).

Assume that (G, B) satisfies Theorem 5.1.4. If

d1d2 · · · dn−1 < dn−1

d1d2 · · · dn−2 < dn−2

...

d1 < d,

then vn is the largest entry of v.
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Proof: If



































b1nb21 · · · b(n−1)(n−2) < ρn−1

...

b1nb21 < ρ2

b1n < ρ



































and



































d1 · · · dn−1 < dn−1

...

d1d2 < d2

d1 < d



































,

then by Theorem 5.2.2, for all k = 1, . . . , n− 1 entry vk of v is given by

vk =

(

d1
d
· · · dk

d

)

·
(

b1n
ρ

· · · bk(k−1)

ρ

)

< 1 · 1 = 1.

On the other hand vn = 1, and hence is the largest entry of v. �

Example 5.2.2. Consider the following directed cycle (G, B) consisting of

the three nodes V = {1, 2, 3}, directed edge set E = {(1, 2), (2, 3), (3, 1)}, and

fixed weights b21 = ω(1, 2) = 2, b32 = ω(2, 3) = 2, b13 = ω(3, 1) = 1
2
, given by

B =













0 0 1
2

2 0 0

0 2 0













1 2

3

2

1
2 2

Then the Perron eigenvector of the weight matrix B alone is given by

p =













p1

p2

p3













≈













0.40

0.63

1.00













.

Thus, p3 is the largest entry of p and hence node 1 is ranked as the most

important node based on the network’s structure alone.
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To illustrate Theorem 5.2.3, consider multiplying B by two different diag-

onal matrices D1 and D2 given by

D1 =













2
3

0 0

0 3
2

0

0 0 2













and D2 =













1 0 0

0 1 0

0 0 2













.

This gives the matrices

M1 = D1 · B =













0 0 1
3

3 0 0

0 4 0













and M2 = D2 · B =













0 0 1
2

2 0 0

0 4 0













.

Therefore, the eigenvectors v of M1 and w of M2 respectively, are

v ≈













0.21

0.39

1.00













and w ≈













0.31

0.40

1.00













Then D1 does not satisfy Theorem 5.2.3, but v3 is still the largest entry of

v. The matrix D2 does satisfy the sufficient conditions of Theorem 5.2.3, and

so we must have w3 the largest entry of w.

To illustrate Theorem 5.2.4, consider multiplying B by the diagonal matrix

D3 =













4 0 0

0 1 0

0 0 1













, which gives M3 =













0 0 2

2 0 0

0 2 0













.

Therefore, since d1 = 4 > d = 3
√
4, u3 is not larger than the other two
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entries of the eigenvector u = (1, 1, 1)T of M3.

5.2.3 Unicyclic digraphs

Consider the unicyclic digraph (G, B) from Section 5.1.3. Then after multiply-

ing B by a diagonal matrix D with di > 0 for all i, we can formulate a result

similar to Theorem 5.1.5. This result gives the spectral radius and associated

Perron eigenvector v of a matrix M = D · B.

Theorem 5.2.5. Let (G, B) be a unicyclic digraph, and let D = diag(di),

where di > 0 for i = 1, 2, . . . , n. If M = D · B, and ρ := ρ(M) the spectral

radius of M , then

(1) pM(λ) = λN−n(λn − (d1 · · · dn)(b21b32 · · · b1n)),

(2) ρ = n
√

(d1 · · · dn)(b21b32 · · · b1n), and the Perron eigenvector is given by

v =













































d1
b1n
ρ

d1d2
b1n
ρ

b21
ρ

...

d1 · · · dn−1
b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

0

...

0













































. (5.13)

Proof: M = D · B has the same structure and nonzero entries as B. In

particular, the nonzero entries of M are m21 = d2 · b21, . . . ,m1n = d1 · b1n.

Therefore, arguments similar to those in the proof of Theorem 5.1.5 show that

pM(λ) = λN−n(λn −m21m32 · · ·m1n), thus proving part (1).
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The only real positive root of pM(λ) is + n
√
m21m32 · · ·m1n, and hence it fol-

lows that ρ(M) = n
√

(d1 · · · dn)(b21b32 · · · b1n). Therefore, solving the equation

(ρI −M)x = 0, the Perron eigenvector v associated to ρ := ρ(M) is

v =













































m1n

ρ

m1n

ρ
m21

ρ

...

m1n

ρ
m21

ρ
· · · m(n−1)(n−2)

ρ

1

0

...

0













































=













































d1
b1n
ρ

d1d2
b1n
ρ

b21
ρ

...

d1 · · · dn−1
b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

0

...

0













































.

�

Theorem 5.2.6. Let (G, B) be a unicyclic digraph with N nodes, and M =

D · B, where D is a diagonal matrix with di > 0 for i = 1, . . . , N . Let

v = (v1, . . . , vN)
T be the Perron eigenvector of M associated to ρ(M). Assume

that (G, B) satisfies Theorem 5.1.6, i.e., pn is the largest entry of the Perron

vector p of B. Then

(1) If d1, d2, . . . , dn−1 < d, then vn is the largest entry of the Perron eigen-

vector v of M .
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(2) If

d1d2 · · · dn−1 < dn−1

d1d2 · · · dn−2 < dn−2

...

d1 < d,

then vn is the largest entry of v.

Proof: Since Theorem 5.2.7 gives

v =













































d1
b1n
ρ

d1d2
b1n
ρ

b21
ρ

...

d1 · · · dn−1
b1n
ρ

b21
ρ
· · · b(n−1)(n−2)

ρ

1

0

...

0













































,

the proof of statements (1) and (2) above are proved with arguments analogous

to Theorems 5.2.3 and 5.2.4, respectively. �

5.2.4 Multi-cyclic digraphs

Consider the multi-cyclic digraph (G, B) from Section 5.1.4. Then after multi-

plying B by a diagonal matrix D with di > 0 for all i, we can again formulate

a result similar to that of Theorem 5.1.5.
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Theorem 5.2.7. Let (G, B) be a multi-cyclic digraph rooted at node 1, and let

D = diag(di), where di > 0 for i = 1, 2, . . . , n. If M = D · B, and ρ := ρ(M)

the spectral radius of M , then

(1) pM(λ) = λN−(n1+···+nm)p1(λ) · · · pm(λ), where p1(λ) = λn1−b32 · · · b2s1 , . . .

pm(λ) = λnm − b(sm−1+2)(sm−1+1) · · · b(sm−1+1)sm,

(2) if ρ = max{ n1

√

b32 · · · b2s1 , . . . , nm

√

b(sm−1+2)(sm−1+1) · · · b(sm−1+1)sm} is unique,

the Perron eigenvector of M is

v =

































































d1dsk−1+1
b1(sk+1)

ρ

b(sk−1+1)sk

ρ

0

...

0

dsk−1+1

b(sk−1+1)sk

ρ

...

dsk−1+2 · · · dsk−1+1

b(sk−1+2)(sk−1+1)

ρ
· · · b(sk−1+1)sk

ρ

1

0

...

0

































































, (5.14)

where ρ = nk

√

dsk−1+2 · · · dsk−1+1 · b(sk−1+2)(sk−1+1) · · · b(sk−1+1)sk , and k is

the index where the maximum is obtained for ρ.

Proof: M = D · B has the same nonzero entries as B. Therefore, the

arguments are the same as in Theorem 5.1.5. �

In the future I would like to continue to investigate different types more
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complicated digraph structures (G, B) and how the entries of the Perron eigen-

vector of B and M = diag(di) · B depend on B, ρ(B), and d1, . . . , dn.
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Chapter 6

Conclusions

This chapter is used to summarize the results of my thesis and state my ideas

for further research.

6.1 Thesis Summary

In summary, my thesis investigates ODE systems defined on a network with

n nodes. A network is defined using a weighted digraph (G, B). The local

dynamics at node i of the system are described using ordinary differential

equations xi = fi(xi), where fi is a nonlinear function of xi. Introducing

coupling between the nodes gives an ODE system of the form

ẋi = fi(xi) +
n
∑

j=1

bijgij(xi, xj), i = 1, . . . , n, (6.1)

where B = (bij)n×n is the weight matrix of the network, and the coupling term

gij describes the influence among the nodes.

The main assumption of my dissertation is that system (6.1) has a unique

positive equilibrium x∗ = (x∗
1, . . . , x

∗
n)

T . We use x∗ to obtain an equilibrium
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ranking for the nodes of the network. In particular, this equilibrium ranking

indicates which node has the most relative importance in the network. My

dissertation investigates three important aspects of the equilibrium ranking.

The first aspect addresses the issue of how equilibrium ranking relates to

other network ranking methods. I investigate a multigroup SIR epidemiology

model with positive steady state x∗ = (S∗
1 , I

∗
1 , R

∗
1 . . . , S

∗
n, I

∗
n, R

∗
n)

T . I derive

a matrix equation M(S∗)I∗ = I∗ containing a disease prevalence equilibrium

vector I∗ = (I∗1 , . . . , I
∗
n)

T , and I∗ is the unique positive eigenvector of a ma-

trix. This establishes a link between equilibrium ranking and the well known

method of eigenvector centrality ranking. The advantage of this new equilib-

rium ranking over eigenvector centrality ranking, is that it takes into account

not only the network structure but also the local parameter values of the sys-

tem.

The second aspect considers relating equilibrium ranking to eigenvector

ranking for a more general class of nonlinear ODE networks. I consider a

more general class of coupling terms described by the functions gij. Again,

a matrix equation M(x∗)x∗ = x∗ is derived, and M(x∗) involves both the

network structure and local dynamic parameter values. The unique solution

of this matrix equation can be used to rank the nodes of the system. I conclude

this investigation by applying this technique to different models including a

coupled oscillators model, a single species ecology model with spatial dispersal,

and an extinction model involving several competing species.

The third aspect deals with how the equilibrium-ranking vector depends

on network structure and the local ODE parameters. An equilibrium ranking

vector x∗ is obtained from a matrix equation Mx∗ = x∗, where M = D · B is
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the product of a diagonal matrix D and the irreducible weight matrix B of the

system. Therefore, we investigate the structure of the unique positive Perron

eigenvector p of a matrix M = D · B in two stages.

First, by suppressing the local parameter values encoded in the diagonal

matrix D I investigate how the entries of a nonnegative eigenvector p depend

on the weight matrix B of a network (G, B). Several typical network structures

including cycle, rooted tree, and unicyclic digraphs are considered. Analysis of

the unique nonnegative eigenvector gives insight into how the digraph struc-

ture affects the importance of the individual nodes of the network. Then,

fixing a network (G, B), we consider how the order of the entries of the Perron

eigenvector change when B is multiplied by a diagonal matrixD containing the

local ODE parameter values. We can then investigate how the local dynamics

play a role in equilibrium ranking given a fixed network structure. This also

allows for the investigation of the impact on ranking combining the changes

in model parameters and network structures.

6.2 Future Research

The research in this thesis leads to several future research directions.

The work of chapter 3 investigates equilibrium ranking for epidemiology

models. One of the ways I would like to continue investigating SIR models is

to combine the n-group model and the patchy model to obtain an equilibrium

ranking for an n-group model in a patchy environment. A thorough investiga-

tion into the practical implications of equilibrium ranking on disease control

is needed. Using equilibrium ranking we can focus on the group and/or patch

with the highest disease prevalence. This can provide new quarantine and/or
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vaccination methods.

For chapter 4, I would like to continue the investigation into defining equi-

librium ranking for a more general class of nonlinear ODE network. In par-

ticular, I will consider more network models from engineering, ecology, and

many other disciplines including neural networks, and cell interactions, to see

if they have a similar structure to those models discussed in my thesis. If

some systems have different dispersal terms we would like to know if a similar

equilibrium ranking can be obtained.

The work of chapter 5 is ongoing and I intend on continuing the process

of investigating different types of digraph networks and how the entries of

the Perron eigenvector depend on the weight matrix B. Then consider the

case where we fix the network structure described by B, and consider ranking

network with a matrix M = diag(di) ·B, in order to investigate how the local

ODE parameters are influencing the ranking eigenvector.

Furthermore, the primary assumption of my thesis is that the systems that

I consider have a unique positive equilibrium. However, many researchers in-

vestigate systems with two or more positive equilibria. I would like to consider

such models in the future and define local equilibrium ranking at each positive

equilibrium. For example if a disease like cholera has two seasonal endemic

outbreaks, importance in the network may be different depending on which

outbreak is being considered.

As another aspect of my research in the future I would like to consider what

happens to the system and who becomes the most important after the removal

of the most important node. This makes sense in the context of quarantine
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interventions in an epidemic model, for example. The most important node in

this case is the group or patch with the highest disease prevalence. Therefore,

one way to try and prevent further spreading of the disease is to quarantine

that group or patch with the highest disease prevalence. Once this is done we

would like to know how the new, reduced system behaves and who becomes

the new number one in the equilibrium ranking.
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Appendix A

Nonnegative Matrix Results

This appendix states classical results from nonnegative matrix theory. For

further details see for instance, [6], [17], [52], and [74].

Lets start by defining an partial-order relation on the set Mm×n(R) of all

m× n matrices with real coefficients.

Definition A.0.1. Let A,B ∈ Mm×n(R) be matrices. Then

(a) A ≥ B to mean aij ≥ bij for all i, j, and

(b) A > B to mean aij > bij for all i, j.

Definition A.0.2. Let A ∈ Mm×n(R) and let 0 ∈ Mm×n(R) be the zero

matrix. Then we say that A is nonnegative if A ≥ 0, and A is positive if

A > 0.

Next, we define the Jordan normal form (JNF) of a matrix and state some

of their basic results.

Definition A.0.3. Let A ∈ Mn×n(C). Then the Jordan normal form (JNF)

of A is given by

J = B−1AB
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with B invertible, and the matrix J is given by

J =

























Jm1(λ1) 0 0 · · · 0

0 Jm2(λ2) 0
. . . 0

0 0 Jm3(λ3)
. . .

...

...
...

...
. . . 0

0 0 0 · · · Jms
(λs)

























(A.1)

where each Jmi
(λi), called a Jordan block of A, is given by

Jmi
(λi) =

























λi 1 0 · · · 0

0 λi 1
. . .

...

0 0 λi
. . . 0

...
...

...
. . . 1

0 0 0 · · · λi

























(A.2)

Theorem A.0.1 (Jordan Normal Form). Let A ∈ Mn×n(C). Then there

exists a matrix B in GLn(C) such that

J = B−1AB

is in Jordan normal form, i.e., A is similar to a matrix J in JNF.

Lemma A.0.1. Let A and B be similar matrices, i.e., A = PBP−1. Then

for every n ≥ 1, we have

An = PBnP−1.

Proof: Proceed by induction on the power n of A.

Base Step. n = 1. Then A1 = PB1P−1 by the definition of similarity.
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I.H. Assume that An = PBnP−1 for some n. Then we have that

An+1 = (PBP−1)n+1 = (PBP−1)n(PBP−1)

= (PBnP−1)(PBP−1)

= (PBnP−1)(PBP−1)

= PBn+1(P−1P )BP−1

= PBn+1P−1

�

Proposition A.0.1. Let A ∈ Mn×n(C), and let J = B−1AB be the Jordan

normal form of A. Then for every k ∈ Z
+, we have that Ak = BJkB−1, where

Jk =

























Jk
m1

(λ1) 0 0 · · · 0

0 Jk
m2

(λ2) 0
. . . 0

0 0 Jk
m3

(λ3)
. . .

...

...
...

...
. . . 0

0 0 0 · · · Jk
ms

(λs)

























(A.3)

and each Jk
mi
(λi) is given by

Jk
mi
(λi) =

























λk
i

(

k

1

)

λk−1
i

(

k

2

)

λk−2
i · · ·

(

k

mi−1

)

λk−mi+1
i

0 λk
i

(

k

1

)

λk−1
i

. . .
(

k

mi−2

)

λk−mi+2
i

0 0 λk
i

. . .
...

...
...

...
. . .

(

k

1

)

λk−1
i

0 0 0 · · · λk
i

























(A.4)

We now state and prove the results used for the Perron-Fröbenius Theorem.

The first result simply states that if A is a positive matrix, then so is its spectral



119

radius ρ(A) and hence, A must have a nonzero eigenvalue λ.

Lemma A.0.2. Let A ∈ Mn(R). If A > 0, then ρ(A) > 0.

Proof: Assume that A > 0, but that ρ(A) = max{|λ| : λ ∈ σ(A)} = 0.

Then λ1 = 0 is an eigenvalue of algebraic multiplicity n (since |λ| ≥ 0 for

every λ ∈ C). Thus, by Theorem A.0.1, there exists a matrix B such that

A = BJB−1, where the matrix J is given by

J =

























λ1 1 0 · · · 0

0 λ1 1
. . .

...

0 0 λ1
. . . 0

...
...

...
. . . 1

0 0 0 · · · λ1

























=

























0 1 0 · · · 0

0 0 1
. . .

...

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0

























so that J and therefore A is nilpotent, i.e., there is a k ∈ Z such that Ak = 0

(Proposition A.0.1). But this is a contradiction since aij > 0 for all i, j. �

Theorem A.0.2. Let A ∈ Mn×n(R), and let ρ(A) be its spectral radius. Then

lim
k→∞

Ak = 0 ⇔ ρ(A) < 1.

Proof: (⇒) Let (λ,x) be an eigenpair of A. Then, since Akx = λkx, it

follows that

0 = ( lim
k→∞

Ak)x = lim
k→∞

(Akx) = lim
k→∞

λkx = x lim
k→∞

λk.

And, x 6= 0 implies that lim
k→∞

λk = 0. This means that |λ| < 1, and as λ ∈ σ(A)

was arbitrary, it follows that ρ(A) < 1.
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(⇐) Conversely, assume that ρ(A) < 1. From the Jordan Normal Form The-

orem, there exist matrices J and B such that A = BJB−1 and J is in Jordan

normal form. Moreover, from Proposition A.0.1 Ak = BJkB−1, where Jk

consists of the diagonal blocks Jk
mi
(λi) given by the formula

Jk
mi
(λi) =

























λk
i

(

k

1

)

λk−1
i

(

k

2

)

λk−2
i · · ·

(

k

mi−1

)

λk−mi+1
i

0 λk
i

(

k

1

)

λk−1
i

. . .
(

k

mi−2

)

λk−mi+2
i

0 0 λk
i

. . .
...

...
...

...
. . .

(

k

1

)

λk−1
i

0 0 0 · · · λk
i

























Hence, if ρ(A) < 1 implies |λi| < 1 for every λi ∈ σ(A), and so for every i

lim
k→∞

Jk
mi
(λi) = 0 ⇒ lim

k→∞
Jk = 0.

Therefore, this gives

lim
k→∞

Ak = lim
k→∞

(BJkB−1) = B( lim
k→∞

Jk)B−1 = B · 0 · B−1 = 0.

On the other hand, if ρ(A) > 1, then at least one element of Jk is unbounded

as k → ∞, and so in this case lim
k→∞

Ak 6= 0. �

Definition A.0.4. Let A = (aij) ∈ Mn×n(R). Then |A| means the matrix

with entries by |aij|, i.e. |A| = (|aij|). Do not confuse this notation with

determinants.

Remark A.0.1. Note that from the triangle inequality, if x∈ R
n, we have

(|Ax|)i =
∣

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

∣

≤
n
∑

j=1

|aij| · |xj| = (|A| · |x|)i (i = 1, . . . , n)
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Therefore, |Ax| ≤ |A| · |x|. This fact is used to prove the next result.

Remark A.0.2. The first two properties of Lemma 2.1.1 say that if a matrix A

is positive, we can assume without loss of generality, that ρ(A) = 1. Otherwise,

we know that A
ρ(A)

> 0, and therefore, property (b) tell us that we have

ρ

(

A

ρ(A)

)

=
ρ(A)

ρ(A)
= 1.

Theorem A.0.3. Let An×n be positive. Then ρ(A) ∈ σ(A), and if (λ,x) is

an eigenpair with |λ| = ρ(A), then so is the pair (λ, |x|).

Proof: Without loss of generality, assume that ρ(A) = 1. Then assume

that λ ∈ σ(A) is such that |λ| = 1 = ρ(A). Then there is an x ∈ R
n such that

Ax = λx, and hence

|x| = |λ| · |x| = |λx| = |Ax| ≤ |A| · |x| = A|x|.

Thus, 1 · |x| ≤ A|x|, or ρ(A) · |x| ≤ A|x|. We must show that equality holds.

Indeed, consider the nonnegative vector y = A|x| − |x| ≥ 0. Assume that

y ≥ 0 but y 6= 0. Then there exists an index i such that yi > 0, and so by

Lemma 2.1.1 we know that Ay > 0 and A|x| > 0. Therefore, there is ε > 0

sufficiently small such that

Ay > εA|x| ⇔ A(A|x| − |x|) > εA|x|.

Now, letting z = A|x|, gives

A(z− |x|) > εz ⇔ Az− A|x| > εz ⇔ Az > (1 + ε)z ⇔ A

1 + ε
z > z.
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Thus, let B = 1
1+ε

A, and we have Bz > z. Then by applying B to both sides

of the inequality and using Lemma 2.1.1 part (f), we have B2z > Bz > z, i.e.,

B2z > z. Similarly, for any k ≥ 2

Bkz > Bk−1z > · · · > B2z > Bz > z > 0.

However, since ρ(B) = ρ( A
1+ε

) = 1
1+ε

ρ(A) = 1
1+ε

< 1, Theorem A.0.2 implies

lim
k→∞

Bk = 0.

This means that 0 = lim
k→∞

Bkz > lim
k→∞

z = z, i.e, 0 > z. This is a contradiction,

and so y = 0.

�

Therefore, we see that if A is a positive matrix, then its spectral radius

ρ(A) is an eigenvalue of A, and has |x| as an associated eigenvector, for some

x ∈ R
n with (ρ(A),x) an eigenpair.

Definition A.0.5. Let A ∈ Mn×n(C) and let λ be an eigenvalue of A. Then

the index of λ is the smallest positive integer k, such that any one of the

equivalent statements is true.

(a) rank((λI − A)k) = rank((λI − A)k+1)

(b) row((λI − A)k) = row((λI − A)k+1)

(c) Null((λI − A)k) = Null((λI − A)k+1)

(d) row((λI − A)k) ∩ Null((λI − A)k) = {0}

(e) C
n = row((λI − A)k)⊕ Null((λI − A)k)
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and is denoted by index(λ) := indexA(λ). We understand that if λ ∈ C, then

index(λ) = 0 ⇔ is not an eigenvalue of A.

Theorem A.0.4. Let A ∈ Mn×n(R) be positive. Then

(a) ρ(A) is the unique eigenvalue of A on the spectral circle,

(b) index(ρ(A)) = 1, i.e., ρ(A) is a semisimple eigenvalue.

Proof:

(a) Without loss of generality, ρ(A) = 1. Then assume (λ,x) is an eigenpair

of A such that |λ| = ρ(A) = 1. Then (λ, |x|) is also an eigenpair of A.

Moreover, 0 < |x| = A|x|, and so for all i = 1, . . . , n

0 < |xi| = (A|x|)i =
n
∑

j=1

aij|xj|.

On the other hand,

|xi| = |λ| · |xi| = |(λx)i| = |(Ax)i| =
∣

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

∣

.

Hence,
∣

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

∣

=
n
∑

j=1

aij|xj| =
n
∑

j=1

|aijxj|.

Therefore, having equality in the triangle inequality implies that for all

j = 2, . . . , n there exists an αj such that aijxj = αj(ai1x1). So, letting

βj =
αjai1
aij

, gives

xj = βjx1, βj > 0 (j = 2, . . . , n).

In other words, for an eigenvalue λ of A such that |λ| = 1, we have that
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x = x1v, where v = (1, β1, . . . , βn)
T > 0. Thus, we obtain

λv = Av = |Av| = |λv| = |λ|v = v ⇒ λ = 1,

i.e., λ = 1 = ρ(A) is the only eigenvalue on the spectral circle of A.

(b) Assume that index(ρ(A)) = index(1) = m > 1. Then there is an m×m

Jordan block Jm such that ‖Jk
m‖∞ → ∞, and so ‖Jk‖∞ → ∞ as k → ∞.

But then

‖Jk‖∞ = ‖P−1AkP‖∞ ≤ ‖P−1‖∞‖Ak‖∞‖P‖∞ ⇔ ‖Ak‖∞ ≥ ‖Jk‖∞
‖P−1‖∞‖P‖∞

→ ∞.

Therefore, let Ak = [a
(k)
ij ], and let ir be the row index such that

‖Ak‖∞ =
n
∑

j=1

a
(k)
irj
.

Then there is a vector v > 0 such that v = Av, which gives us

‖v‖∞ ≥ vir =
n
∑

j=1

a
(k)
irj

· vj ≥
n
∑

j=1

a
(k)
irj

· min
1≤j≤n

{vj} = ‖Ak‖∞ · min
1≤j≤n

{vj}.

However, this says that ‖v‖∞ → ∞ as k → ∞. This contradicts the fact

that v is a vector with scalar entries. Thus, index(ρ(A)) = 1.

�

Theorem A.0.5. Let A ∈ Mn×n(R) be positive. Then algA(ρ(A)) = 1, i.e.,

ρ(A) is a simple eigenvalue of A, and

dim(Null(A− ρ(A)I)) = geoA(ρ(A)) = algA(ρ(A)) = 1.
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Proof: Without loss of generality, ρ(A) = 1. Assume that alg(1) = m > 1.

Then 1 is semisimple, so that alg(1) = geo(1) = m. Thus, there are m linearly

independent eigenvectors associated to λ = 1. Let u and v be any two such

vectors. Then for all α ∈ C we know that u 6= αv. Now, since v is an

eigenvector of A, v 6= 0. Therefore, choose an index j such that vj > 0,

and define the following vector w = u − ui

vi
v. Then w is also an eigenvector

of A associated to ρ(A) = 1, so that we have A|w| = |w| > 0. This is a

contradiction, since wi = ui− ui

vi
vi = 0. Therefore, m = 1 and ρ(A) is a simple

eigenvalue of A. �

An eigenvector associated to the spectral radius of A > 0 is called a Perron

eigenvector and the associated eigenvalue ρ(A) the Perron root of A. Hence,

a Perron vector p of A > 0 is strictly positive.

The next result tells us that eigenvalues of A > 0 may be positive or

negative. However, regardless of the sign of µ ∈ σ(A), if µ 6= ρ(A) then no

eigenvector associated to µ is nonnegative (and hence not positive). This says

that any eigenvector v not a multiple of the Perron vector p has at least one

negative entry vj < 0.

Theorem A.0.6. Let 0 < A ∈ Mn×n(R), and let (ρ(A),p) be the Perron

eigenpair of A. Then there are no nonnegative eigenvectors of A other than

positive multiples of p, i.e., if v ≥ 0 is an eigenvector of A, then v = αp,

where 0 < α.

Proof: Assume (µ,v) is an eigenvector for A and that v ≥ 0, and let q

be the left-hand Perron vector of A. Then q > 0 and v ≥ 0 implies that
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qTv ≥ 0. Hence, we obtain

ρ(A)qT = qA ⇒ ρ(A)qTv = qAv = µqtv ⇒ (ρ(A)− µ)qTv = 0.

Therefore, ρ(A)− µ = 0, i.e., ρ(A) = µ. �

Theorem A.0.7. Let A ∈ Mn×n(R) be a nonnegative irreducible matrix.

Then (I + A)n−1 > 0.

Proof: Let a
(k)
ij be the (i, j)th entry of Ak, and note that

a
(k)
ij =

∑

h1,...hk-1

aih1ah1h2 · · · ahk-1j.

Therefore, a
(k)
ij > 0 if and only if there are indices h1, . . . hk-1 such that aih1 > 0,

ahk-1j > 0, ahshs+1 > 0 for all 1 ≤ s ≤ k− 2. However, this occurs if and only if

there is a sequence of k paths from vertex vi to vj in the graph G(A), namely

vi → vh1 → vh2 → · · · → vj.

In other words, we obtain the following equivalence:

a
(k)
ij > 0 ⇔ vi connects to vj in the digraph G(A).

Now, A is irreducible so that for each position (i, j) there exists 0 ≤ k ≤

n− 1, such that a
(k)
ij > 0. Hence, from the binomial theorem, we get

[(I + A)n−1]ij =

[

n−1
∑

k=0

(

n− 1

k

)

Ak

]

ij

=
n−1
∑

k=0

(

n− 1

k

)

a
(k)
ij > 0.

In other words all entries of (I+A)n−1 are strictly positive, i.e., (I+A)n−1 > 0.
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�

Theorem A.0.8. Let A ≥ 0 be irreducible, and let r = ρ(A). Then A is

primitive if and only if the limit

lim
k→∞

(

A

r

)k

exists; in such a case,

lim
k→∞

(

A

r

)k

=
p · qT

qT · p > 0,

where p and q are the Perron eigenvectors of A and AT , respectively.

Proof: Omitted. (See [74]) �
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