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Abstract

The first section of this paper describes a method for cor-
recting inter-slice intensity variations in MR images. The
method does not rely on a tissue model or segmentation,
and is not affected by the presence of abnormalities. The
second section of this work extends this technique to the cor-
rection of inter-volume intensity variations in MR images of
the brain, using a characterization of bi-lateral symmetry
to confer robustness to the presence of large abnormalities
such as tumors or edema.

1 Inter-Slice Intensity Variation Reduction

Due to gradient eddy currents and ‘crosstalk’ be-
tween slices in ‘multislice’ acquisition sequences, the two-
dimensional slices acquired under some MRI acquisition
protocols may have a constant slice-by-slice intensity off-
set [1]. It is noteworthy that these variations have different
properties than the intensity inhomogeneity observed within
slices, or typically observed across slices. As opposed to
being slowly varying, these variations are characterized by
sudden intensity changes in adjacent slices. A common
result of inter-slice intensity variations is an interleaving
between ‘bright’ slices and ‘dark’ slices [2], (the ‘even-
odd’ effect). While most intensity inhomogeneity correc-
tion methods can correct for slowly varying intensity varia-
tions, most methods for intensity inhomogeneity reduction
do not consider these sudden changes. This work, there-
fore, presents a simple method to reduce sudden intensity
variations between adjacent slices.

In comparison to the estimation of slowly varying inten-
sity inhomogeneities, correcting inter-slice intensity varia-
tions has received little attention in the medical imaging lit-
erature. One early attempt to correct this problem in order
to improve segmentation was presented in [3]. This work
presented a system for the segmentation of normal brains
using Markov Random Fields, and presented two simple

methods to re-estimate tissue parameters between slices (af-
ter patient-specific training on a single slice). One method
thresholded pixels with high probabilities of containing a
single tissue type, while the other used a least squares esti-
mate of the change in tissue parameters. A similar approach
was used in one of the only systems thus far to incorporate
this step for tumor segmentation [4]. This system first used
patient-specific training of a neural network classifier on a
single slice. When segmenting an adjacent slice, this neural
network was first used to classify all pixels in the adjacent
slice. The locations of pixels that received the same label
in both slices were then determined, and these pixels in the
adjacent slice were used as a new training set for the neural
network classifier used to classify the adjacent slice. Each
of these approaches require not only a tissue model, but
patient-specific training, making them unsuitable for use in
automatic systems for detecting and segmenting large ab-
normalities.

One of the most impressive inter-slice intensity correc-
tion methods to date was presented in [1]. This work pre-
sented two methods to incorporate inter-slice variation cor-
rection within an EM segmentation framework. The first
simply incorporated slice-by-slice constant intensity off-
sets into the inhomogeneity estimation, while the second
method computed a two-dimensional inhomogeneity field
in each slice and used these to produce a three-dimensional
inhomogeneity field that allowed inter-slice intensity vari-
ations. The method used by the INSECT system for this
step was presented in [5] to improve the segmentation of
Multiple Sclerosis lesions. This method estimated a linear
intensity mapping based on pixels at the same location in
adjacent slices that were of the same tissue type. Unfor-
tunately, despite the lack of patient-specific training, these
methods each still require a tissue model (in each slice) that
may be violated in data containing significant pathology.

A method free of a tissue model was presented in
[6]. This method used a median filter to reduce noise,
and pruned pixels from the intensity estimation by band
thresholding of histogram, and removing pixels represent-



ing edges. The histogram was divided into bins and a
parabola was fit to the heights of the 3 central bins, used
to determine the intensity mapping. Although model-free,
this method makes major assumptions about the distribution
of the histogram, that may not be true in all modalities or
in images with pathological data. In addition, this method
ignores spatial information.

Inter-slice intensity variation correction can be addressed
using the same techniques employed in Intensity Standard-
ization, which will be discussed in the next section. How-
ever, most methods for Intensity Standardization employ a
tissue model or a histogram matching method that will be
sensitive to outliers. It was ultimately chosen not to use one
of the existing histogram matching methods, since real data
may have anisotropic pixels, where the tissue distributions
can change significantly between slices. The methods in
[5, 4] are more appealing since these methods use spatial
information to determine appropriate pixels for use in es-
timation. However, these methods rely on a tissue model
that could be inappropriate for data with significant pathol-
ogy. Although the method of [6] is a histogram matching
method, removing points from the estimation in a model-
free way is appealing. We present in this section a simple
method to identify good candidates for estimating the inten-
sity between slices as in [5, 4], but without an explicit tissue
model.

We will assume that the intensity mapping between
slices can be described by a multiplicative scalar valuew, a
model commonly used [5, 1]. If we assume that the slices
are exactly aligned such that each pixel in sliceX corre-
sponds to a pixel in sliceY of the same tissue type, then the
scalarw could be estimated by solving the equation below
(whereX andY are vectors of intensities andX(i) has the
same spatial location asY (i) within the image):

Xw = Y (1)

However, since there will not be an exact mapping be-
tween tissue types at locations in adjacent slices, an ex-
act value forw that solves this equation will not exist, and
therefore the task becomes to estimate an appropriate value
for w. One computationally efficient way to estimate a good
value ofw would be to calculate the value forw that min-
imizes the sum of squared errors between the elements of
Xw andY :

min
w

∑
i

(X(i)w − Y (i))2 (2)

The optimal value forw in this case can be de-
termined by solving forw in the ‘normal equations’
[7] (we employ the matrix pseudoinverse):

w = (X ′X)−1X ′Y (3)

Unfortunately, this computation is sensitive to areas
where different tissue types are not aligned, since these re-
gions are given weight equal to that of pixels where tissue
types are appropriately aligned in the adjacent slices. The
valuew thus simply minimizes the error between the inten-
sities at corresponding locations in adjacent slices, irrespec-
tive of whether the intensities should be the same (possibly
introducing additional inter-slice intensity variations). The
objective must thus be modified to restrict the estimation of
w to locations that actuallyshouldhave the same intensity
after the intensity transformationw is applied. This is dif-
ficult without the use of a tissue model or a segmentation
of the image. However, an alternate approach to identify-
ing tissues or performing a segmentation is to weight the
errors based on the importance of having a small error be-
tween each corresponding location(X(i), Y (i)). Given a
weighting of the importance for each pixel to have the same
intensity between adjacent slicesR(i), the calculation of
w would focus on computing a value that minimizes the
squared error for areas that are likely to be aligned, while
reducing the effect of areas where tissues are likely mis-
aligned. GivenR(i) for eachi, the least squares solution
can be modified to use this weight by performing element-
wise multiplication of both the vectorsX and Y with R
[8]. This scaling of both vectors modifies the error func-
tion to be proportional to the values inR (using.∗ to denote
element-wise multiplication):

min
w

∑
i

((X(i). ∗ R(i))w − Y (i). ∗ R(i))2 (4)

The value w that minimizes the above relevance-
weighted loss function can be computed as before:

w = ((X. ∗ R)′(X. ∗ R))−1(X. ∗ R)′(Y. ∗ R) (5)

If the image was segmented into anatomically meaning-
ful regions, computingR(i) would be trivial, it would be
1 at locations where the same tissue type is present in both
slices and 0 when the tissue types differ. Without a seg-
mentation, this can be approximated. An intuitive approx-
imation would be to weight pixels based on a measure of
similarity between their regional intensity distributions. A
method robust to intensity-scaling to perform this approxi-
mation is to compute the (regional) joint entropy of the in-
tensity values. The (Shannon) joint entropy is defined as
follows [9]:

H(A1, A2) = −
∑

iεA1,jεA2

p(i, j) log p(i, j) (6)

The valuep(i, j) represents the likelihood that intensity
i in one slice will be at the same location as intensityj in



Figure 1. Toy example of weighting for inter-
slice intensity variation reduction. The goal
is to transform slice 1 so that its intensities
match those of slice 2. Top row, left to right:
Original slice 1, original slice 2, slice 1 scaled
from unweighted linear regression. Since
the objects in the two slices differ, the un-
weighted linear regression did not estimate a
good transformation. Middle row: elements
of the weighting. Left to right: Regional joint
entropy, absolute difference, joint foreground
pixels. Bottom left: Combined weighting
(darker regions receive less weight). Note
that the weighting focuses the estimation on
regions that should have the same intensity.
Bottom right: Linear regression using the
combined weighting estimates a near-optimal
linear scaling.

the adjacent slice, based on an image region. We use a 25
pixel square window to compute the valuesp(i, j) for a re-
gion, and divide the intensities into 10 equally spaced bins
to make this computation. The frequencies of the 25 inten-
sity combinations in the resulting 100 bins are used for the
p(i, j) values (smoothing these estimates could give a less
biased estimate). The joint entropy computed over these
values ofp(i, j) has several appealing properties. In ad-
dition to being insensitive to scaling of the intensities, it
is lowest when the pixel region is homogeneous in both
slices, will be higher if the intensities are not homogeneous
in both slices but are spatially correlated, and will be high-
est when the intensities are not spatially correlated. After

Figure 2. Inter-slice intensity variation reduc-
tion with simulated MR images [10, 11, 12,
13, 14] and an applied linear intensity offset.
Top left: Simulated slice 1. Top right: Simu-
lated slice 2 ( 10mm away from slice 1). Bot-
tom left: Slice 1 with an applied linear off-
set. Bottom right: Slice 2 transformed using
the weighted linear regression between slice
2 and the darkened slice 1. The method suc-
cessfully recovered a scale factor very close
to the one applied.

a sign reversal and normalization to the range[0, 1], the re-
gional joint entropy of the image regions could be used as
values forR(i), that would encourage regions that are more
homogeneous and correlated between the slices to receive
more weight in the estimation ofw than heterogeneous and
uncorrelated regions.

Joint entropy provides a convenient measure for the de-
gree of spatial correlation of intensities, which is not depen-
dent on the values of the intensities as in many correlation
measures. However, the values of the intensities in the same
regions in adjacent slices should also be considered, since
pixels of very different intensity values should receive de-
creased weight in the estimation, even if they are both lo-
cated in relatively homogeneous regions. Thus, in addition
to assessing the spatial correlation of regional intensities,
higher weight should be assigned to areas that have simi-
lar intensity values before transformation, and the weight
should be dampened in areas where intensity values are dif-
ferent. The most obvious measure of the intensity similarity
between two pixels is the absolute value of their intensity
difference. This measure is computed for each set of cor-
responding pixels between the slices, and normalized to be



Figure 3. Inter-slice intensity variation reduc-
tion for real data. Top, left to right: Slice with
an unknown intensity offset, adjacent slice,
difference between the adjacent slices (mul-
tiplied by 10). Middle row, left to right: En-
tropy weighting, difference weighting, joint
foreground pixels. Bottom, left to right: Com-
bined weighting, slice 1 after transformation,
difference between slice 1 after transforma-
tion and slice 2. The effect has not been com-
pletely removed, but has been noticeably re-
duced.

in the range[0, 1] (after a sign reversal). Values forR(i)
that reflect both spatial correlation and intensity difference
can be computed by multiplying these two measures. As a
further refinement to this measure, the threshold selection
algorithm from [15] (and morphological filling of holes) is
used to distinguish foreground (air) pixels from background
(head) pixels, andR(i) is set to zero for pixels representing
background areas in either slice (since they are not relevant
to this calculation). Thus, each value inR(i) is computed
as follows (whereN1 and N2 are normalizing constants,
H(X(i), Y (i)) is the regional joint entropy centered ati,
andPfore is an indicator function that returns 1 if the pixel
is part of the foreground and 0 otherwise):

r(i) =
(N1 − H(X(i), Y (i)))

N1

(N2 − |X(i) − Y (i)|)
N2

Pfore(X(i))Pfore(Y (i))

(7)
Figure 1 demonstrates the advantage of weighting the

estimation on a toy example. Figure 2 shows an example

Figure 4. Inter-slice intensity variation reduc-
tion for an image series. Top, original image
series (the even slices are noticeably brighter
than the odd slices). Bottom, the same series
after reduction of inter-slice intensity varia-
tions. The variations have not been com-
pletely corrected, but their effects have been
reduced.

Figure 5. Inter-slice intensity variation reduc-
tion from a different angle. Left: Sagittal view
of the original slices from the series in the
figure above. Right: The same view after
inter-slice intensity variation reduction. The
brain area in the input image clearly shows
the ‘even-odd’ offset effect, which has been
noticeably reduced in the output image.

of the estimation being applied to simulated MR images to
correct for an applied linear offset, while Figure 3 presents
results on real data.

In our implementation, the weighted least squares esti-
mation computes the linear mapping to the median slice in
the sequence from each of the two adjacent slices. The
implemented algorithm then proceeds to transform these
slices, and then estimates the intensity mappings of their
adjacent slices, continuing until all slices have been trans-
formed. Figure 4 shows the results of this process, while
Figure 5 shows the same results viewed from an orthogonal
angle.

Future implementations could expand on this method
by computing a non-linear intensity mapping between the
slices. Our experiments with non-linear mappings showed
that they were difficult to work with, since non-linear trans-
formations tended to reduce image contrast. This process
would thus need to be subject to more advanced regulariza-
tion measures.



2 Intensity Standardization

Intensity standardization is a vital step that allows the
intensity values between volumes of the same or different
individuals to approximate an anatomical meaning. This
subject has not received as significant of a focus in the lit-
erature as intensity inhomogeneity correction, but research
effort in this direction has grown in the past several years.
This is primarily due to the fact that it can remove the need
for patient specific training or the reliance on tissue models
in segmentation, which may not be available for some tasks
or for some areas of the body. This section will survey the
literature relating to intensity standardization, before pre-
senting our approach. Although EM-based methods that use
spatial priors are an effective method of intensity standard-
ization, they will not be discussed here, since these methods
can be sensitive to areas of abnormality [16], a case that we
are interested in addressing.

The intensity standardization method used by the IN-
SECT system [17] was (briefly) outlined in [5], in the con-
text of improving Multiple Sclerosis lesions segmentation,
and was discussed earlier in this document in the context of
inter-slice intensity variation reduction. This method esti-
mates a linear coefficient between the image and template
based on the distribution of ‘local correction’ factors. An-
other study focusing on intensity standardization for Mul-
tiple Sclerosis lesion segmentation was presented in [18],
that compared four methods of intensity standardization.
The first method simply normalized based on the ratio of
the mean intensities between images. The second method
scaled intensities linearly based on the average white matter
intensity (with patient-specific training). The third method
computed a global scale factor using a “machine parameter
describing coil loading according to reciprocity theorem”,
computing a transformation based on the voltage needed to
produce a particular ‘nutation angle’ (that was calibrated for
the particular scanner that was used). The final method ex-
amined was a simple histogram matching technique based
on a non-linear minimization of squared error applied to
‘binned’ histogram data, after the removal of air pixels out-
side the head (this outperformed the other three). In [19],
another histogram matching method was presented (later
made more robust in [20]), that computed a piecewise inten-
sity scaling based on ‘landmarks’ in the histogram. Similar
to previous works on intensity standardization, this study
also demonstrated that intensity standardization could aid in
the segmentation of Multiple Sclerosis lesions. This method
was later used in a study that evaluated the effects of in-
homogeneity correction and intensity standardization [21],
finding that these steps complemented each other, but that
inhomogeneity correction should be done prior to intensity
standardization. Another method of intensity standardiza-
tion was presented in [22], that normalized white matter

intensities using histogram derivatives. An intensity stan-
dardization method that was used as a preprocessing step in
a tumor segmentation system was presented in [23]. This
method thresholded background pixels, and used the mean
and variance of foreground pixels to standardize intensities.
A similar method was used in [24], comparing it to no stan-
dardization, scaling based on the intensity maximum, and
scaling based on the intensity mean.

The methods discussed above are relatively simple and
straightforward. Each method (with the exception of [5])
uses a histogram matching method that assumes either a
simple distribution or at least a close correspondence be-
tween histograms. These assumptions can be valid for con-
trolled situations, where the protocols and equipment used
are relatively similar, and only minor differences exist be-
tween the image to be standardized and the template his-
togram. However, in practice this may not be the case, as
histograms can take forms that are not well characterized
by simple distributions, in addition to potential differences
in the shapes of the input and template image histograms.
This relates to the idea that a term like ‘T1-weighted’ does
not have a correspondence with absolute intensity values,
since there are a multitude of different ways of generating a
T1-weighted image, and the resulting images can have dif-
ferent types of histograms. Furthermore, one ‘T1-weighted’
imaging method may be measuring a slightly different sig-
nal than another, meaning that tissues could appear with
different intensity properties on the image, altering the his-
togram.

A more sophisticated recent method was presented in
[25]. This method used the Kullback-Leibler (KL) diver-
gence as a measure of relative entropy between an image
intensity distribution and the template intensity distribu-
tion. This method computed an inhomogeneity field that
minimized this entropy measure, and thus simultaneously
corrected for intensity inhomogeneity and performed inten-
sity standardization. Relative entropy confers a degree of
robustness to the histogram matching, but even this pow-
erful method fundamentally relies on a histogram match-
ing scheme and ignores potentially relevant spatial infor-
mation. Without the use of spatial information to ‘ground’
the matching by using the image-specific characteristics of
tissues, standardizing the histograms does not necessarily
guarantee a standardization of the intensities of the differ-
ent tissue types. The EM-based approaches (that use spa-
tial priors) can perform a much more sophisticated inten-
sity standardization, since the added spatial information in
the form of priors allows individual tissue types to be well
characterized. By using spatial information to locate and
characterize the different tissue types, the standardization
method is inherently standardizing the intensities based on
actual tissue characteristics in the image modalities, rather
than simply aligning elements of the histograms. Further-



more, we are not aware of any existing methods that incor-
porate a means to reduce the effects of tumors and edema
pixels (that are not present in the template image) on the es-
timation of the standardization parameters without the use
of a tissue model. Thus, for this implementation, a sim-
ple method of intensity standardization was developed that
is related to the proposed approach for inter-slice intensity
variation reduction discussed earlier. The advantages of us-
ing this method are that it uses spatial information to ensure
that similar tissue types are being matched, and that it uses
symmetry to reduce the effects of tumors and edema on the
estimation.

Our method for inter-slice intensity variation reduction
uses spatial information between adjacent slices to estimate
a linear mapping between the intensities of adjacent slices,
but used simple measures to weight the contribution of each
corresponding pixel location to this estimation. For inten-
sity standardization, the problems that complicate the di-
rect application of this approach are determining the corre-
sponding locations between the input image and the tem-
plate image, and accounting for outliers (tumor, edema, and
areas of mis-registration) that will interfere in the estima-
tion. Determining the corresponding locations between the
input image and the template was trivial for inter-slice cor-
rection, since we assumed that adjacent slices would in gen-
eral have similar tissues at identical image locations. This
is not trivial for intensity standardization. For this stage, we
used the non-linear regularized registration algorithm im-
plemented in [26], and described in [27, 28, 29]. After this
alignment, we assume that locations in the input image and
the template will have approximately similar tissues.

In inter-slice intensity correction, the contribution of
each pixel pair was weighted in the parameter estimation
based on a measure of regional spatial correlation and the
absolute intensity difference, which made the technique ro-
bust to areas where the same tissue type was not aligned.
Since the input image will not be exactly aligned with
the template image in the case of intensity standardization,
these weights can also be used to make the intensity stan-
dardization more robust. However, intensity standardiza-
tion is complicated by the presence of tumors and edema,
areas that may be homogeneous and similar in intensity to
the corresponding region in the template, but that should not
significantly influence the estimation. To account for this,
we use a measure of regional symmetry as an additional
factor in computing the weights used in the regression. The
motivation behind this is that regions containing tumor and
edema will typically be asymmetric [30, 31]. Thus, giving
less weight to asymmetric regions reduces the influence that
abnormalities will have on the estimation.

A simple measure of symmetry is used, since the im-
ages have been non-linearly warped to the template where
the line of symmetry is known. The first step in comput-

ing symmetry is computing the absolute intensity difference
between each pixel and the corresponding pixel on the op-
posite side of the known line of symmetry. Since this esti-
mation is noisy and only reflects pixel-level symmetry, the
second step is to smooth this difference image with a 5 by 5
Gaussian kernel filter (the standard deviation is set to 1.25),
resulting in a smoothly varying regional characterization of
symmetry. Although symmetry is clearly insufficient to dis-
tinguish normal from abnormal tissues since normal areas
may also be asymmetric, this weighting is included to de-
crease the weight of potentially bad areas from which to
estimate the mapping, and thus it is not important if a small
number of tumor pixels are symmetric or if a normal area is
asymmetric.

The final factor that is considered in the weighting of pix-
els for the intensity standardization parameter estimation is
the spatial prior ‘brain mask’ probability in the template’s
coordinate system (provided by the SPM2 software [26]).
This additional weight allows pixels that have a high proba-
bility of being part of the brain area to receive more weight
than those that are unlikely to be part of the brain area. This
additional weight ensures that the estimation focuses on ar-
eas within the brain, rather than standardizing the intensities
of structures outside the brain area, that are not as relevant
to the eventual segmentation task.

The weighted linear regression is performed between the
image and the template in each modality. The different
weights used are the regional joint entropy, the absolute
difference in pixel intensities, the regional symmetry mea-
sured in each modality, and the brain mask prior probability.
These are each normalized to be in the range [0,1], and the
final weight is computed by multiplying each of the weights
together (assuming independence). The values forR(i) are
thus computed as follows (withS(X(i)) denoting the mea-
sure of symmetry at pixeli in imageX, Pbrain(i) being the
spatial prior probability that the pixel is part of the brain,
andH(X(i), Y (i)) defined as before):

r(i) =
(N1 − H(X(i), Y (i)))

N1

(N2 − |X(i) − Y (i)|)
N2

(N3 − S(X(i)))
N3

Pbrain(i)

(8)
This method was implemented in Matlab [32], and is ap-

plied to each slice rather than computing a global factor to
ease computational costs. The results of applying this tech-
nique to toy data and data with a synthetic tumor to recover
a known intensity offset are shown in Figures 6 and 7, re-
spectively. The application of this technique to real data
(from different sites) to standardize the intensities between
images is demonstrated in Figure 8.

There are several methods that could be explored to im-
prove this step in future implementations. Different loss
functions could be examined, since loss functions such as
the absolute error and the Huber loss are more robust to out-



Figure 6. Intensity Standardization of a toy
volume. Top left: Toy template image (con-
sisting of gray matter, white matter, CSF, and
fiducial markers. Top middle: Toy image
to be standardized, that is slightly different
anatomically, has fat visible outside of the
skull, a large tumor, and no fiducial markers.
Top right: The (poor) results obtained by un-
weighted linear regression. Middle row: Dif-
ferent elements of the pixel weighting. Left to
right: Regional joint entropy, absolute differ-
ence, and brain area prior probability. The en-
tropy and absolute difference have the same
effect as before, but the brain probability al-
lows restriction of the estimation to the brain
area, rather than all foreground pixels. Bot-
tom left: Symmetry weighting (note the low
weight assigned to the tumor). Bottom mid-
dle: Combined weighting, indicating the esti-
mation will place the largest weight on com-
mon gray matter, white matter, and csf re-
gions. Bottom right: The results of weighted
linear regression with the combined weight-
ing for intensity standardization.

liers than the squared error measure used here [33], though
at a higher computational expense. In general, we found
that non-linear transformations could further reduce the av-
erage error between the images, but this came at the cost of
reduced contrast in the images. This occurred even when
using a simple additive factor in addition to the linear scale
factor. Future work could further explore non-linear meth-

Figure 7. Intensity Standardization with a syn-
thetic tumor to recover a known intensity off-
set. Top, left to right: Template image, im-
age to be standardized with a synthetic tu-
mor and an applied intensity offset, results
of unweighted linear regression. Middle, left
to right: Regional joint entropy weighting,
absolute difference weighting, spatial brain
prior weighting. Bottom, left to right: Sym-
metry weighting, combined weighting, re-
sult of weighted linear regression for inten-
sity standardization. Note that the weight-
ing makes the estimation primarily based on
shared white matter regions, and reduces the
tumor area’s effect on the estimation.

ods that incorporate regularization to allow non-linear in-
tensity standardization that is constrained to preserve im-
age contrast. Although we have purposely avoided a tissue
model in our inter-slice correction method, this may be a
step that could benefit from a tissue model, especially if the
technique will be applied for large data sets where intensity
standardization will be a larger problem. One direction to
explore with respect to this idea could be to use a method
similar to the tissue estimation performed in [34], that used
spatial prior probabilities for gray matter, white matter, and
CSF to build a tissue model, but used an outlier detection
scheme to make the estimation more robust. The weighting
methods discussed in this section, and symmetry in partic-
ular, could be incorporated into an approach similar to this
strategy to potentially achieve more effective intensity stan-
dardization.



Figure 8. Intensity Standardization of real
data. Top row: T1-weighted images from 5
patients. Second row: Intensity Standardiza-
tion based on unweighted linear regression.
Third row: Symmetry weighting based on T1-
weighted and (coregistered) T2-weighted im-
age. The three abnormal regions have clearly
had their weight reduced. Fourth row: Com-
bined weighting. The estimation for most of
the images is primarily based on white mat-
ter regions, although some images also have
high weights assigned to csf and gray matter
regions. Bottom row: The results of Intensity
Standardization. It is obvious that the differ-
ences in intensity between images have been
significantly reduced.
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