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Abstract

Battery is a limited resource that affects the smartphone availability. Hence,

it is the responsibility of developers to develop and maintain energy efficient

applications to enhance end user satisfaction. As the impact of software code

change on energy consumption is not known, developers need special instru-

mentation to assess the impact of change on their application’s energy con-

sumption profile. Unfortunately, this instrumentation is costly and generally

not available. In order to address this issue, we use system calls to predict the

impact of code changes on the energy consumption profile. We find that signif-

icant changes to system call profiles often induce significant changes in energy

consumption. Using this simple observation, we introduce GreenAdvisor, a

first of its kind tool that systematically records and analyzes an application’s

system-calls in order to predict whether the energy-consumption profile of an

application has changed. The GreenAdvisor tool was evaluated using a user

study whereby numerous software teams, whose members used GreenAdvi-

sor while developing Android applications to examine the energy-consumption

impact of selected commits from the teams’ projects. The evaluation confirms

the usefulness of our tool in assisting developers analyze and understand the

energy-consumption profile changes of a new version. This work is useful for

the developers who are grappling with paucity of tools or knowledge to find

out impact of changes on their application’s energy consumption.
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Chapter 1

Introduction

Software undergoes continuous changes through evolutionary software devel-

opment processes and maintenance activities such as bug fixing. The impact

of these changes to the application behaviour can be extensively and thor-

oughly tested, using a variety of available tools. However, the consequences

of changes to the application’s energy consumption are extremely difficult to

predict and, to date, there have been little research or tools to help developers

with this challenging task.

This problem manifests itself as a great challenge in the context of mobile

applications. Smartphones and tablets have witnessed an exponential rise in

usage in past few years, surpassing the 1 billion user mark in 2013, making

a huge impact on human life. According to Pew [32], as of May 2013, 63%

of adult smartphone owners (in North America) use their phones to go online

and 34% of smartphone users access Internet mostly using their phones instead

of a more “traditional” device such as a desktop or laptop computer. This

usage data has motivated the development of sophisticated and complex mobile

applications, offering a multitude of information-access, entertainment, and

education functionalities. The more sophisticated these applications become,

the more they demand of the mobile device battery. Battery life, which affects

a mobile device’s availability, is a critical factor in user satisfaction of a mobile

device and impacts the ratings of an application [39]. Despite its importance,

developers are generally unable [26, 30] to estimate the energy consumption

of their applications, and predict the impact of code changes.
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1.1 Software Code Evolution and Energy Con-

sumption

Some research effort has been devoted to the examination of factors affect-

ing the energy consumption of mobile applications and constructing models

to estimate energy consumption of smartphones [13], [37], [29]. However, rel-

atively little attention has been focused on the effect of code changes on an

application’s energy consumption profile —the historical or expected energy

consumption of an application. Most of previous work has been focused on

the energy consumption of applications to help the end user track the energy

consumption of their smartphone [28], [42], [24], rather than helping the devel-

opers understand the impact of their code changes on the energy consumption

profile of their applications. Very little work has been done to help the ap-

plications developers develop energy-efficient applications specially in view of

developer unawareness of the factors affecting energy consumption of their

applications [30].

Most notably, Hindle et al. [17] proposed the Green Mining methodology,

for analyzing the impact of code changes on energy consumption: intuitively,

this methodology proposes that the energy consumption of multiple versions

of the software should be measured. Software energy consumption across ver-

sions was correlated with multiple software metrics in order to recognize which

metrics might be potentially useful proxies for estimating the size and direction

of the energy-consumption impact of code changes.

Zhang et al. [40, 41] demonstrated the impact of user choices on software

energy consumption by using competing applications and user actions. They

also propose a energy ratings benchmarks for applications just as done for

standard electrical appliances to motivate developers for creation of energy

efficient applications.

In order to help developers to construct energy efficient applications, it

is important for them to track their application’s energy consumption during

the development process. This can be achieved however only using expensive

instrumentation, which is most likely not available, neither practical for ap-
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plication developers. In this work, we propose a method and introduce a tool

based on our method that can be used by developers to estimate if their source

code changes cause changes in their software’s energy profile: the profile of en-

ergy consumption during runtime. We rely on dynamic analysis of application

runs to estimate energy consumption changes caused by software change. We

use dynamic analysis by tracking system calls, that are the calls made by an

application to access the system resources like memory and network. System

calls are essentially signatures of resource usage of an application.

In this thesis, we use records of system calls to model software energy

consumption over multiple versions. Our results point towards a relation-

ship between the change in energy consumption and change in the system call

invocation profile. The central contribution of this work is Rule of Thumb,

which states that “a signicant change in system call counts implies a signicant

change in energy consumption”, where significant implies statistically signif-

icant change. Using these findings, we created a tool to help developers in

keeping track of the energy profile of their applications in the absence of the

expensive instrumentation required to do so.

1.2 Thesis Overview

• Energy consumption and system calls: Using green mining methodol-

ogy across multiple versions of two applications, we tried to correlate

system-call counts with the energy consumption. A simple and easy

to use qualitative Rule of Thumb was proposed to predict whether en-

ergy consumption will change or not based on the system-call counts.

This simple rule can potentially be very useful since developers can use

this in absence of any expensive and rarely available energy measuring

instrumentation.

• GreenAdvisor tool: Using the Rule of Thumb we developed a tool called

GreenAdvisor that can be used by developers to keep track of the en-

ergy profile of application to notice any significant changes when a code

change is made. Architecture and working of the tool has been described.

3



• User study: The tool is evaluated using a user study and so is the Rule

of Thumb using the student user projects. The results demonstrated the

usefulness of the tool, and also validate the effectiveness of the Rule of

Thumb. Then, a improved model that uses Rule of Thumb with a logistic

regression model to predict the direction of energy change along with the

significance is proposed and evaluated.

• Conclusions and future work: Finally, conclusions from our findings are

presented in the final chapter and future directions for research in the

field have been suggested.

1.3 Contributions

This thesis makes the following important contributions:

• We demonstrate that system call profiles can be used to model changes

in energy consumption profiles for Android applications. We propose,

test and verify a simple Rule of Thumb, which makes it very easy for

developers to track significant changes to the energy profile of their ap-

plications.

• We introduce GreenAdvisor tool that uses Rule of Thumb to indicate the

potential significant change in energy profile of Android applications and

the code change that might be responsible for that, helping developers

track the evolution of their applications.

• We conducted an user study that evaluated the usefulness of the tool,

and explored the general awareness about the energy efficiency affecting

factors among the developers. The user study also validates the Rule of

Thumb.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 details the research

that is related to this thesis, from different perspectives; Chapter 3 presents

4



first half of the thesis establishing relation between system calls and application

energy consumption; Chapter 4 presents the second half of the thesis with the

description of GreenAdvisor tool; Chapter 5 presents an user study conducted

to gauge the useful of the tool; we conclude this thesis and discuss the future

work in Chapter 6.

5



Chapter 2

Background and Related

research

In this chapter, background required to understand the concepts used in thesis

are described along with the related works that describe the context of this

thesis in the existing literature. Section 2.1 describes the system calls and their

position in the architecture, the software energy consumption, and statistical

models used in the thesis. Section 2.2 is organized into works that have con-

sidered instructions level energy modeling, hardware-component based energy

modeling, hybrid models, effect of code transformations on energy consump-

tion, mining energy related textual data, and mining software repositories.

2.1 Background

In this section, we discuss the system calls, the software energy consumption,

and statistical models used in the thesis.

2.1.1 System Calls

System calls form an API for user-space applications to access the services,

abstractions and devices that are managed by the kernel and the rest of the

OS. System calls are standard functions provided by the OS kernel to user

processes. Usually such system calls are provided for: communicating with

the hardware, for example, accessing the hard disk; creating and executing

new processes; managing memory use; sending and receiving data to and from

6





same length of time. Mean-watts is the average power used for any moment

of a task. Mean-watts multiplied by seconds produces the energy consumed

in units of joules during a test. The energy consumption of software systems

can be viewed as the energy consumed by the software to provide a certain

amount of work or service over time.

2.1.3 Simple Linear Regression

Linear regression attempts to model the relationship between two variables by

fitting a linear equation to observed data. An independent variable is an input

to the model and considered to be the cause that is hypothesized to produce a

change or effect on the variable, referred to as the dependent variable. Linear

regression fits a straight line through the set of data points in such a way that

makes the sum of squared residuals of the model (vertical distances between

the points of the data set and the fitted line) as minimal as possible. Equation

of straight line is:

y = a · x+ b (2.1)

where, x is the independent variable while y is the dependent variable.

The slope of the fitted line, a, is equal to the correlation between y, x data

points adjusted by the ratio of standard deviations of these y to x. The fitted

line passes through the centre of mass of the given data points and hence, the

intercept value is adjusted accordingly.

Simple linear regression assumes a linear relationship between the two vari-

ables. R2 is a goodness of fit measure for the linear regression model with the

given data points used to construct the model, a statistical measure of how

close the data points are to the regression line. It is a ratio of explained vari-

ance, i.e., variance of dependant variable as obtained from linear model with

respect to mean of data, to the variance observed in the dependant variable

in given data points with respect to the mean. High R2 values usually reflect

good fit, and low R2 values a bad fit. This technique when extrapolated to

model relationship of dependant variable with multiple independent variables

is called multiple linear regression.

8



2.1.4 Logistic Regression

This is a classification model that uses probabilistic modeling to classify de-

pendant variable into two classes. It predicts the probability of the dependent

variable to exist in either of classes using the independent variable(s) while the

simple linear regression used OLS to find the best fitting line. Hence, in simple

linear regression, the relationship between the dependent and the independent

variables is assumed to be linear, this is not the case in logistic regression. The

logistic regression uses logit function to model the probability of a variable to

exist in either of the classes. The logit function is natural logarithm of odds

of occurrence of the event:

P =
eα+βx

1 + eα+βx
(2.2)

where P is the probability of one of the events, α and β are the parameters

of the model (as in normal linear regression). The value of α yields P when

x is zero, and β indicates how the probability of the event changes when x

changes by a single unit. As the relation between x and P is non-linear, β

does not have a linear interpretation in this model as it does in ordinary linear

regression.

The logit function maps any value of variable to values between 0 to 1. The

regression coefficients of the logistic function are calculated by using maximum

likelihood estimation by applying an iterative process. Starting with initial

seed values of coefficients, the coefficients are updated to reach maximum

probability density state. The probability function being modeled as a linear

combination of the independent variables along with their coefficients.

Hence, the logistic regression estimates the probability of occurrence of

event over the probability of non-occurrence and takes a threshold to translate

the predicted probabilities as a success or failure.

2.2 Related works

In this section, existing literature related to this thesis has been presented. Te

existing literature has been divided into four topics: modeling energy consump-

9



tion, mining software repositories, mining energy related natural language text,

and effect of code transformations on energy consumption.

2.2.1 Modeling Energy Consumption

In this section, works related to modeling the energy consumption of devices

have been described divided into three types: Hardware component based,

instruction level based, and hybrid models.

2.2.1.1 Hardware Component Based Energy Consumption Models

A large number of models have been proposed for modelling the energy con-

sumption of devices based on their individual hardware components. It in-

volves collecting the energy statistics by profiling the sample runs of the ap-

plications on the device. Using these energy statistics and modeling like linear

regression, energy consumption models are built that can be used to predict

the energy consumption values of the future device usage based on individual

component usage.

Flinn et al. [10] built a profiler tool called, PowerScope, the first of the

hardware component based power profilers. It is based on modelling individ-

ual hardware components mainly — CPU, network, and disk, tested on laptop.

They measure the power by tracing the current across a constant voltage sup-

ply. To demonstrate their tool, they took a case of study of video streaming by

using a video with two different resolutions. They vary the test conditions like

using lossy compression, reducing the display size, and modifying the network

interface to demonstrate their tool’s efficiency in measuring the reduced power

consumption.

Gurumurthi et al. [13] have built a profiler, SoftWatt on the SimOS plat-

form. They not only model the individual components namely — CPU, mem-

ory, and disk, but also take into consideration the interaction between these

components. The authors have modelled the energy consumption into — Ker-

nel energy consumption, which is practically constant, and external I/O sys-

tem calls, which bring an element of variability because on the varied size

of the data transfer blocks. They also found that synchronization operations

10



are quite expensive in terms of energy consumption. SimOS collects the en-

ergy statistics and Softwatt reports those statistics using its analytical energy

models.

Carroll et al. [7], have constructed energy consumption models by devis-

ing test cases on a Freerunner device, modified to run without the battery.

They have constructed the model using the components like CPU, memory,

and screen. by using tests like, emailing, voice calling, web browsing, messag-

ing, audio playback, and video playback. Depending on the workloads, either

screen or CPU have a major contribution to energy consumption. They also

compared HTC Dream and Nexus One, running on battery using the above

tests.

Shye et al. [37], built a logger application for G1 Android HTC phones, that

was used to collect the energy consumption from 20 users who had installed

the application, uploaded to server. Using these statistics, they construct a

linear regression model based on hardware components like wifi, EDGE, touch

screen , CPU, SD Card, and music player. Their model performed well when

used to predict real world energy consumption by achieving high accuracies.

They also proposed optimizations to save on screen energy consumption, by

analysing their application’s data.

Zhang et al. [42], built two online profiler tools, PowerTutor and Power-

Booter. PowerTutor is based on integration of energy models for components

in Android smartphones as the power consumption of each hardware com-

ponent — CPU, wifi, audio, LCD, GPS, and cellular using linear regression.

PowerBooter is a constructed as a more general tool, which builds the model

based on battery discharge profile while linking it with components. Though

they have shortcomings like susceptibility to variance in battery’s internal re-

sistance, they present very easy method to compute the energy consumption

without any special instrumentation.

Dong et al. [8] implemented a self-constructive energy model for Linux-

based mobile systems. The energy model, called Sesame, generates energy

models for mobile systems without external power measurement. Sesame col-

lects system statistics and applies the Advanced Configuration and Power In-
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terface (ACPI) to gather the predictors for the energy model. Energy readings

are collected through the smart battery interface, and linear regression energy

models are generated based on the collected data.

Mittal et al. [24] have built WattsOn an energy consumption model on Win-

dows Phone platform. It builds upon specific components — 3G, wifi network,

screen, and CPU. They also discovered the issue of tail energy consumption,

the high energy state of the components after a task has been completed. They

introduce resource scaling to generalize WattsOn for real phones to account

for the underestimation of energy consumption on emulators.

Some of the hardware components feature a tail energy phenomenon [4, 29].

Tail energy phenomenon is exhibited when a component stays in a high energy

state after the completion of an operation even though it is no longer being

used. Thus, these simple energy consumption models above are unable to

capture this phenomenon in the models.

2.2.1.2 Instruction Level Energy Modeling

For applications running in JVM, works described below utilized the Java

bytecode instructions to build energy models for software systems.

Seo et al. [35, 36] have implemented an energy consumption model for Java-

based software systems running on distributed devices. This energy model

consists of three components — computational energy cost, communication

energy cost, and infrastructure energy overhead. This energy consumption

model makes accurate estimates which fall within 5% of the actual energy cost

for an application. However, the model is highly dependent on the hardware

and JVM.

Hao et al. [15] built an energy consumption model, eCalc, for Android ap-

plications that measures CPU energy consumption at two levels: the whole

program and the method by performing a program analysis based on byte-

codes. The approach in eCalc is similar to Seo et al. [36]. It is able to estimate

energy consumption within 9.5% of the actual value.

An extension of eCalc implemented by Hao et al. [14], called eLens, com-

bined program analysis with instruction-based energy modelling. eLens is able

12



to estimate the energy consumption of hardware components besides the CPU

and has fine-grained energy profiling on multiple levels. Li et. al. [21] ex-

tended this work by profiling bytecode instructions, and estimating the energy

consumption of each line of source code. Their profiler application, vLens, is

able to estimate energy consumption with high accuracy.

Instruction-based power models are often designed for software running in

a JVM. Some of the applications in this paper do not run in a JVM.

2.2.1.3 System Call based Models

Hybrid models use hardware component based modeling with system calls

data to build energy models. A hybrid system-call-based power model that

utilizes hardware states was proposed by Pathak et al. [29]. They applied

system call tracing to model the energy consumption of applications running

on smartphones. First, they studied the power behaviour of components in

a smartphone and showed that several components have tail power states (a

component stays in high power state for a period of time after use), system

calls that do not imply utilization can change power states, and several com-

ponents do not have quantitative utilization. They conclude that energy linear

models based on correlating utilization with energy consumption are not ac-

curate. They built energy models by modelling the power states and generate

finite state machines (FSMs) of each system call for each component in a

smartphone, and then integrating all these FSMs to model a FSM for each

individual component which are used to construct a FSM for the particular

smartphone. Thus, based on the FSM of a certain smartphone, the system’s

current state can be identified to estimate the energy consumption of an appli-

cation. Their results show improved accuracy compared to an approach [37]

based on linear regression modelling. It was extended [28] to implement a

fine-grained energy profiler for smartphone using FSMs. This energy profiler,

eprof, can work on both Android and Windows Mobile phones to estimate the

energy consumption of smartphone applications.

Similar to this system call based model, we also trace system calls and cor-

relate them with software energy consumption. However, this thesis relies on
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the aggregate count of system call invocations and studies system call profiles

across multiple versions of existing products. Moreover, this thesis is focused

on developers and predicting energy consumption change with change in code

base of individual applications, rather than helping end users track the energy

consumed by their smartphone.

2.2.2 Mining Software Repositories

Mining software repositories research uses data mining and machine learn-

ing techniques to explore the data generated during the software development

processes in repositories like version control system, tracking systems, and

mailing lists. By analyzing this data generated during the software develop-

ment process, researchers have helped the software engineering community in

better understanding of the software processes to provide a feedback for bet-

ter practices. These techniques have been leveraged to solve problems such

as detection of bugs, defect prediction. However, use of these techniques in

energy-aware development has been very limited.

Gupta et al. [12] used energy traces and execution logs in Windows phone

to build energy models. They use some some tests to log the power traces, i.e.

measurement of power consumption over time and corresponding execution

logs (containing the execution sequence of executable files). They used linear

regression models and decision trees to find the most power intensive mod-

ules/executables, which was quite similar to the developer perception of those

modules. They also try to model effect of coupling modules on the energy

consumption with a good accuracy. By clustering the power traces, they iden-

tified some anomalous traces, which turned out to be related to the bugs in

the corresponding modules. They demonstrate the effectiveness of their model

by predicting the power consumed by test sequences, and get quite high rank

correlations to the actual power consumption.

Hindle [16, 17] proposed a detailed methodology, called Green Mining, to

collect the energy consumption statistics and try to relate them to software

metrics over versions of the software. Though, they found a weak relationship

between the two, author has proposed a future direction to the field. By
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following the methodological process of Green Mining, researchers can help

the developers to understand what type of changes to the source code can

have an effect on the energy consumption.

Hindle et al. [18] also created the Green Miner test-bed which has a dedi-

cated hardware infrastructure to measure the energy consumption of Android

applications across multiple versions. They demonstrated that multiple test

runs are required to reliably calculate the energy consumption of an appli-

cation on a smartphone. Green Miner can measure up to 50 power readings

every second. A constant voltage is provided to the phone which draws vary-

ing current according to phones requirements. Authors validated the platform

using case study on firefox application to cross validate results with previous

work. Besides this, an energy bug was also observed for the reddit application

that was validated by the developers of the application. This test bed was

used for measuring the energy consumption of all the applications used in this

thesis.

Zhang et al. [40, 41] demonstrated the impact of user choices on software

energy consumption by using competing applications and user actions. They

also propose a energy ratings benchmarks for applications just as done for

standard electrical appliances to motivate developers for creation of energy

efficient applications.

Li et al. [20] observed that on a dataset of 405 applications that on an aver-

age idle state consumes 61% of total energy consumed by an application, with

network being the most energy consuming component. They also observed

that API invocations consumed most amount of energy than the developer

code.

2.2.3 Mining Energy Related Natural Language Text

This section presents the work that have used textual data from software

repositories or online developer discussion forums to report interesting findings

about the software energy consumption.

Pinto et al. [30] analyzed a dataset of more than 300 questions, and 800

users on the StackOverflow for the energy consumption related discussions
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among the developers. They found that developers were generally unaware

of the factors affecting energy consumption of their applications based on the

quality of their answers though they had vague idea about some optimizations

that can potentially affect the energy consumption of their applications. De-

velopers harbour misconceptions like treating performance as a measurement

for energy consumption and using languages like Java to reduce energy con-

sumption. They also discovered that developers were facing lack of tools for

energy aware development.

Malik et al. [22] extended this work by analyzing the whole of StackOver-

flow dataset instead of selected questions. They found that majority of energy-

related questions are implicit in nature, i.e., the primary goal of the question

is not energy related but as a side-goal. Though they make up less than 1%

of all posts on the StackOverflow, for the mobile OS projects of Android and

iOS they make up 21.9% and 15.2% of the posts respectively. The developers

mostly discuss about optimizations regarding data updates, synchronization,

utilizing sensors, radio utilization, and memory use.

Pathak et al. [27] analyzed the discussion data from 4 online mobile user

forums and bug repositories for eBugs, that is the bugs that cause applications

to consume unexpectedly high amounts of energy. The eBugs were classified

into taxonomies ranging from hardware defects like battery issues to software

defects like OS configurations to high state energy consumption like no-sleep

bugs.

Wilke et al. [39] used comments on Google play applications to analyze how

users think about energy consumption of applications. They found that energy

efficiency related issues negatively impact the user rating of the applications.

They also discovered that paid applications had no different energy-efficiency

related complaints by user as the free ones, hence demonstrating obliviousness

to energy-efficiency driven development among application developers.

Moura et al. [25] analyzed selected commits from selected Github projects

for energy related commit messages in order to understand the behaviour of

developers for introducing energy optimizations in their applications. They

found that developers performed 12 very diverse types of energy related opti-
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mizations like voltage/frequency scaling of CPU operations, disabling features,

tackling idling, fixing energy bugs. Most of these optimizations are at the low

level, i.e., at Kernel/OS level and developers don’t use much of application

level optimizations.

Pang et al. [26] performed a survey on 100 developers to ascertain the

level of knowledge of software energy consumption among developers. It was

observed that developers have limited knowledge about energy efficiency of

their software and possess limited awareness about the best practice for energy-

efficiency of software.

2.2.4 Effect of Code Transformations on Energy Con-

sumption

In this section, works investigating the effect of code transformations on energy

consumption have been described with a emphasis on refactorings. Refactor-

ings [11] are code transformations that change the structure of the application

but not its behaviour.

Sahin et al. [34] investigated the effect of common code refactoring on en-

ergy consumption using Java applications. They used refactorings like local

variable to field and extracting local variable to investigate its effect on en-

ergy consumption of selected Java applications. They found that refactorings

can significantly change the energy consumption of an application, though

the exact impact varies depending on the application and the location of the

refactoring.

Banerjee et al. [5] introduced the terms energy hotspots and energy bugs.

Energy hotspots can be defined as as a scenario where the smartphone starts

consuming abnormally high amount of energy though the utilization of its

hardware resources is low. While energy bug leads the phone to a higher

energy state by preventing phone from becoming idle because of a bug in the

application code. They introduce a testing framework that can be used to

detect both type of anomalies in the application.

Kwon et al. [19] investigated using distributing to cloud the code suspected

by developers to be energy hotspots. Using a automated approach to transfer
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the application functions from the energy hotspots they were able to reduce

the energy consumption of applications substantially. However, this method

is only cost effective for the applications requiring lots of computation. For

the applications with average or little computation requirements, the network

costs impose more energy costs than the benefit from distributed computation.

Pinto et al. [31] describe the work done in refactoring code and its stand-

ing with respect to impact on the energy consumption of applications. They

have identified the areas where some works on energy consumption modeling

have been tried and how refactoring can possibly be utilized. A lot of oppor-

tunities exists in creation of refactoring tools with energy efficient techniques

integrated like suggesting energy efficient APIs, energy efficient obfuscation,

and synchronizing code to perform bulk I/O operations.

Brandolese et al. [6] used assembly instructions to model energy, augment-

ing them with instruction and cache misses. The instructions are modeled on

CPU, memory and bus usage. Instruction miss occurs when the particular

I/O bus or CPU is busy and hence prolonging the execution. Cache misses

occurs when the data being accessed has to be fetched into cache. They used

two code transformations — loop fusion and loop unrolling to optimize the

energy consumption successfully.

2.3 Chapter Summary

In this chapter, literature related to this thesis was discussed. The literature

was viewed from different aspects: energy consumption models, mining soft-

ware repositories, effect of code transformations, and mining energy related

natural language text. These prior works have attempted to build models

though mostly catering to end user to track energy consumption of their de-

vice as shown in Section 2.2.1. Other works in Section 2.2.3, 2.2.4 and 2.2.2

show that developers are realizing the importance of energy-efficiency of their

applications but are unable to follow energy-efficiency driven development for

the lack of tools. Also, they lack proper knowledge about the energy-efficient

development and have misconceptions because of the lack of curriculum in the
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same. In this thesis, we have attempted to provide one such tool to assist

developers in energy-efficient development.

19



Chapter 3

System Calls and Energy

Consumption

A lot of research effort has been devoted to model energy consumption on

smartphones based on hardware components (Section 2.2.1.1), system run-

time statistics [8], finite state machines (Section 2.2.1.3), and byte code in-

struction usage (Section 2.2.1.2). However, very few studies [16] have in-

vestigated the impact of software change on application energy consumption

based on actual evolution of software projects. Much is to be learned by

measuring energy consumption of multiple software versions to discover po-

tential correlations between software metrics and energy consumption. It was

demonstrated [18] that multiple test runs are required to reliably calculate the

energy consumption of an application on smartphones. This measuring equip-

ment which adheres to reliable and repeated testing requirement is generally

not available to developers.

We want to help developers estimate if their source code changes induce

changes in their software’s energy consumption profile. Thus, we attempt to

rely on dynamic analysis of test cases to estimate energy consumption changes

caused by software change. In order to do so, we use dynamic analysis us-

ing system calls, that are used by applications to access services offered by

operating systems like hardware control, and communication.

Next, we describe Green Miner [18] a platform used to collect the energy

consumption and system call statistics. Then, we describe a case study that

examines two open source systems — Firefox and Calculator . Using sample
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usage scenario on two applications we collect the data for energy consumption

usage and system call traces. Using this data, we model the energy consump-

tion with the help of system call invocation counts. Lastly, we propose a very

simple and practical Rule of Thumb model that can be used by developers to

determine significance of change in their application’s energy profile when a

code change is made. Rule of Thumb states that “a signicant change in system

call counts implies a signicant change in energy consumption”.

This chapter is organized as follows: Section 3.1 details of the Green Miner

platform used to collect the statistics used in this thesis; Section 3.2 contains

the case study on two open source applications, the usage scenarios, energy

consumption modeling, and results of the study.

3.1 Green Miner

Green Miner is a test bed consisting of four Android clients. Each client

consists of a Galaxy Nexus phone controlled by a Raspberry Pi that starts the

tests, collects and uploads the data onto a centralized server, and an Arduino

for measuring energy consumption. Green Miner takes a sequence in the form

of a script that is used to replay the sequence of taps and swipes on an actual

phone. It runs the sequence on the test bed phone by injecting touch events

into the phone’s input event system, from the shell script. It creates touch

events on the phone, swiping actions on the phone screen and text entry on

the phone’s on-screen keypad.

In order to create the sequence of a user using the phones in a typical

scenario, the screen pixel positions of each of the touch events are recorded.

For example, to emulate a tap action on the phone, the pixel position on the

screen for the tap is recorded. Similarly, for a swipe action, the starting and

ending pixels on the screen are recorded. The emulator provides the option to

record the pixel positions at each tap or swipe on the emulator screen. The

Android emulator is available with the standard Android Studio platform. By

recording these positions and actions, the shell script is created which is used

on the phone to run these test-cases.
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3.2 Case Study

3.2.1 Methodology

In this section, the Green Mining methodology, as proposed by Hindle [17] is

described that was followed in this thesis. This section describes the procedure

for creating test scripts and collecting the energy and system call statistics for

multiple versions. Data was collected using the following procedure:

1. Select the application, and build multiple versions;

2. write the test script to drive the application;

3. configure the Green Miner; and

4. collect and analyze the results.

3.2.1.1 Selecting the Application and Building Multiple Versions

Two open source applications with multiple versions were chosen for these

tests: Calculator 1 and Firefox 2 for Android. Both applications are widely

used, Calculator for calculations and Firefox for browsing the web. 101

Calculator versions were retrieved from its GitHub repository. These versions

were commited between January 1, 2013 and February 5, 2013. Using the

Android NDK tools 101 Calculator APKs (Android Packages) were built.

APKs are similar to Java jar packages or Debian deb OS packages, except

that APKs are used only in Android.

Similarly, Firefox application versions were obtained by building the nightly

commits in the Firefox repository from March 7, 2011 to November 17, 2011.

156 versions of Firefox were built, each separated by one commit.

3.2.1.2 Devising the Test Sequence

The test scripts were created to simulate realistic usage of the application by

an average user. The Calculator application is used for calculations that a

user might execute daily such as unit conversions or tax calculations. The

1https://github.com/Xlythe/android packages apps Calculator
2https://wiki.mozilla.org/Mobile/Fennec/Android
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Calculator application test does some simple conversion calculations such as

converting miles to kilometres, gallons to litres, calculating tax amounts and

solving an equation using the quadratic formula. This test has a duration of

125 seconds.

The primary use of Firefox is to browse web pages full of multimedia such

as images. To simulate an average user reading a web page with the Firefox

application, the script opens the Wikipedia page about American Idol, and

emulates reading action for 4 minutes. The script scrolls the page by swiping

the page down and clicks on the screen at regular intervals of 10 seconds to

prevent the phone from sleeping. The webpage is stored on a local server

accessible to devices under test. This prevents the webpage from changing

and also prevents varying server response times and network congestion from

affecting the data collected.

3.2.1.3 Configuring the Green Miner

The Green Miner test bed [18] was used for testing the applications. For

system call tracing, strace 3 was employed, and cross-compiled for Android.

It is a tool used to record the system call, its arguments and its return value

called by a running process or application. It is used by developers to keep

track of the system calls being made and detect any unusual behaviour of their

applications to facilitate debugging. The strace -c option was used to obtain

system call counts.

3.2.1.4 Running the Tests

As there is a variation in power measurements due to factors unrelated to the

software being tested, multiple tests for the same version need to be run. In

these experiments, 10 tests per version were run, which is the minimum number

required to record reliable mean values of energy consumption. From these

tests the mean energy consumption is calculated for each version. Because

strace adds its own energy overhead during the tests, separate test runs are

required for collecting the system call data. 10 runs per version are run with

3http://sourceforge.net/projects/strace/
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the strace tool in the background to obtain the system call profiles in order

to observe whether the system call profile is stable or not.

3.2.2 Dataset

Dataset obtained from the methodology described previously, contained 10

tests each for energy consumption and system call trace measurements for 101

versions of Calculator and 156 versions of Firefox . Therefore, there were a

total of 2020 and 3120 test runs for the Calculator and Firefox applications,

respectively. A total time of 400 hours was needed to run these tests.

3.2.3 System Call Profile Stability

In our tests, the Calculator application invoked 46 different system calls

and Firefox invoked 91 different system calls. The system calls that had on

an average less than 10 calls per version were filtered out, leaving 25 system

calls for Calculator and 53 for Firefox . Though it is generally expected

that system call counts are stable across different runs, the number of system

call invocations showed some variation. Different system calls have different

variances. Figure 3.1 and Figure 3.2 shows the average of the variances of

the 10 counts for each version over all versions of Calculator and Firefox

respectively, relative to the average of the means. Since, The mean and vari-

ance of the distribution of system call count measurements across 10 runs for

each of the version is measured; these variance values are then represented as

percentage of those mean values for each of the system call. As system call

counts vary drastically across versions and between different system calls, we

normalise variance as a percentage of mean, so that the variances are scaled

relative to the mean. These variances as percentages of mean system call count

across the versions have been shown in the graphs. These graph show that

the system calls do exhibit a little instability, just like the energy consumption

measurements. Hence, they need to be averaged across the runs in order to

get stable representative values for the the system call counts for a version.
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Figure 3.1: Variance as a percentage of mean value across 10 runs per system
call per version for the Calculator application. The X axis refers to the
system calls, while the Y axis refers to variance in percentage.
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Figure 3.2: Variance as a percentage of mean value across 10 runs per system
call per version for the Firefox application. The X axis refers to the system
calls, while the Y axis refers to variance in percentage.

3.2.3.0.1 Calculator: 14 of the 25 system calls had an average variance

≤ 3% between versions. However, three system calls, munmap, pread, and

writeev have average variances of 13%, 79%, and 33%, respectively, across all

versions. 4 system calls had an average variance between 3% and 5%. Finally,

4 system calls had an average variance between 5% and 10%. The total system

call count, the sum total of all system calls, has a mean variance of 2% across

all versions.

3.2.3.0.2 Firefox: 33 of the 52 system calls had a mean variance between

5% and 10% and the remaining 19 had a mean variance ≥ 10% when variances
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Figure 3.3: Box plots of the mean watts used for each version of the
Calculator application. Each of the 101 versions was measured 10 times.
The X axis represents the version numbers and the Y axis represents the en-
ergy consumption.

were averaged over all versions. The Firefox application shows much higher

variability than the Calculator application.

3.2.4 Energy Consumption

The energy consumption distribution as shown in Figure 3.3 and Figure 3.4

were obtained by running the tests on Green Miner. In order to determine

whether the differences between any two versions were statistically significant,

pairwise Student’s t-tests were performed for each pair of Calculator and

Firefox versions, as shown in figure 3.5.

3.2.4.0.3 Calculator: Figure 3.3 depicts a sudden drop in energy con-

sumption at versions 73, 74, 82, and 84. Figure 3.5 shows that for versions

after version 45, many versions are statistically different than the versions be-

fore version 45. The authors looked within the code repository and determined

that this is because the screen display density was reduced in version 45, lead-

ing to a slight difference in the energy consumed. Versions 73, 74, 82 and 84
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Figure 3.4: Distributions of the mean watts consumed per version of Firefox
application over 10 tests for 156 versions. The X axis represents the version
numbers and the Y axis is average power use.
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Figure 3.5: Pairwise Student’s t-test for power distribution of each version pairs
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are versions that failed during testing and form their own cluster. These four

versions are significantly different from all the other versions in terms of energy

consumption. The errors in these four versions could have been the result of

two large, incomplete refactoring efforts, one which started at version 73 and

another which started at version 82.

3.2.4.0.4 Firefox: Versions after version 56 are significantly different from

the versions before version 56 as shown in figure 3.5 and 3.4. Also, version 46

is significantly different from versions 1 to 56 in terms of power use. In version

56, a bug was fixed which added .net at the end of the domain name whenever

the active tab was switched before loading the website by removing the buggy

code. This contributed to the reduced energy consumption in versions 56

onwards.
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Energy consumption increases again after version 70, when functionality

to check for plugin crashes was added. Versions 77 to 86 contained a bug that

was introduced during refactoring and was finally fixed in version 87. Versions

98 to 100 contained bugs that crashed Firefox completely.

System calls are not stable and exhibit variation like energy consumption

measurements. Hence, these system call counts need to be averaged similar to

the energy consumption values. The mean energy consumption values are very

different in both the applications. Using these measurements, we next ana-

lyze the relationship between energy consumption and system call invocation

counts.

3.2.5 Linear Regression Modeling

In order to test the relationship between energy consumption and system call

counts, two models were used. A linear model was created using the ordi-

nary least-squares error (OLS) regression method for individual system calls,

relating the mean energy consumption and mean system call counts for that

system call for both the application data.

3.2.5.1 Calculator

By analyzing system calls for cross-correlations it was found that a large num-

ber of the 25 system calls are highly correlated with each other: most system

calls have a high Spearman’s correlation coefficient (|ρ| ≥ 0.8) with at least

one other system call. Hence, for 25 system calls, single variable models were

constructed relating energy consumption to the number of invocations of that

system call. A linear model of the form y = b1 · x + b0 was created, where

y is the mean power use of a version, x is the mean system call count for a

particular system call for that version, b0 is the intercept, and b1 is the slope

coefficient. 10 such models are depicted in Table 3.1. Table 3.1 also shows the

mean number of invocations of the system call across the versions as x̄, and

mean power contribution of the system call, b1 · x̄, as estimated from the linear

models in the last column.
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System Call Spearman’s ρ R2 Coefficient b1 x̄ b1 · x̄
mmap2 0.670 0.764 8.87×10−5 511.30 0.0453
open 0.651 0.819 5.03×10−4 115.73 0.0582
close 0.048 0.695 1.44×10−3 32.72 0.0470
epollwait 0.031 0.684 1.06×10−5 5113.56 0.0543
mprotect 0.613 0.756 5.83×10−6 8438.49 0.0491
recvfrom 0.060 0.698 7.64×10−6 7213.38 0.0550
writev 0.645 0.391 6.57×10−4 29.03 0.0190
cacheflush 0.498 0.745 1.27×10−5 3954.34 0.0500
ioctl 0.201 0.740 3.79×10−6 14885.60 0.0560
total calls 0.373 0.740 5.64×10−7 98155.94 0.0550

Table 3.1: Linear model summary for selected system calls for Calculator

application

Selected system calls are shown in Table 3.1 and their descriptions in Ta-

ble 3.2. 12 out of 25 of the system calls correlate with (Spearman’s |ρ| ≥

0.3) the energy consumption, while the other 12 have |ρ| values between 0 and

0.3 with 1 being negatively related to energy consumption. However, all 25

system calls have high R2 values. 20 of the 25 models had R2 ≥ 0.6. A model

relating the mean sum total of all system call counts to power was also con-

structed, as shown in Table 3.1. Sum count of all system calls correlates weakly

(|ρ| = 0.37) but its linear relationship has a higher R2 value of 0.74. Though

the linear model coefficient b1 for almost all the system calls is small, they

are statistically significantly different from zero with p-value (≤ 1 × 10−12).

The coefficients are small because the number of call invocations are high and

the units used (mean watts) are large. As the linear models have robust R2

values, they capture a relationship between the system call counts and energy

consumption of the Calculator application.

3.2.5.2 Firefox

By using similar one variable linear models it was found that only 10 out of

53 of the system calls are mildly correlated (Spearman’s |ρ| ≥ 0.3) to energy

consumption, while 36 have |ρ| values between 0 and 0.3 and the remaining

7 are negatively correlated. However, most of the linear models have low R2

values, most of them with R2 less than 0.3. A linear model based on the sum
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System Call Description [23]
mmap2 map files or devices into memory

(called to allocate memory and load libraries)
open open a file descriptor
close close a file descriptor

epollwait Wait for events on the epoll file descriptor
mprotect set protection on a region of memory
recvfrom receive messages from a socket
writev write data into multiple buffers

cacheflush flush contents of instruction and/or data cache
ioctl performs device-specific I/O operations

Table 3.2: Selected system calls with their descriptions from the Calculator

application test case.

System Call Spearman’s ρ R2 Coefficient b1 x̄ b1 · x̄
llseek 0.100 0.040 1.30×10−4 208.45 0.029
brk -0.170 0.001 -8.07×10−5 72.175 -0.005
mmap2 0.360 0.257 3.50×10−4 546.95 0.190
ioctl 0.407 0.534 1.77×10−4 1413.16 0.250
epollwait 0.088 0.274 3.41×10−5 6293.50 0.210
ftruncate 0.001 0.269 2.64×10−7 10.23 0.000
fsync 0.044 0.126 1.00×10−3 78.46 0.120
close -0.030 0.016 3.10×10−6 8117.55 0.020
fstat64 0.060 0.014 1.57×10−5 1517.78 0.023
dup2 0.235 0.008 1.40×10−3 11.43 0.002
write 0.199 0.072 5.63×10−6 7313.99 0.041

Table 3.3: Linear model summary for selected system calls for Firefox appli-
cation

total of all system calls has a correlation of 0.606 and R2 value of 0.31. The

coefficient, b1 is statistically significant with very small p-values(≤ 1×10−12).

10 selected linear models are shown in table 3.3 and the system calls used

are described in table 3.4. Table 3.3 also shows the mean number of invocations

of each system call across all versions as x̄ and the mean power contribution

of each system call estimated by the linear models (b1 · x̄) in the last column.

3.2.6 Logistic Regression Modeling

A logistic regression model was constructed by relating a significant change

in energy consumption (compared to a reference) to a significant change in

system call counts (compared to the same reference).
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System Call Description [23]
llseek reposition read/write file offset
brk change data segment size

mmap2 map files or devices into memory
ftruncate truncate a file to a specified length

ioctl performs device-specific I/O operations
epollwait Wait for events on the epoll file descriptor

fsync synchronize a file’s in-core state with storage device
close close a file descriptor

fstat64 get file status
dup2 duplicate a file descriptor

Table 3.4: Selected system calls with their descriptions from the Firefox

application test case.

Developers are concerned about the effect that their code changes have

on their application’s energy consumption. Logistic regression models were

created to address the question, “can we predict whether our application’s

energy consumption changes or not by using changes in system call counts?”

Logistic regression requires a binary classification. Thus, each application

version’s energy consumption is characterized as high or low. Using the mean

system call counts from all versions as a reference, the difference between

the system call count for each version and the reference is calculated. High

energy consumption is defined as being more than the mean, and low energy

consumption is defined as being less than the mean. This difference is used as

the independent variable in the logistic regression.

Most system calls are highly correlated with other system calls. Thus, a

model with a reduced number of system call counts as features can be con-

structed. An iterative approach was used to choose the appropriate indepen-

dent variables (system call counts) for the model. This approach is to add

system calls as independent variables one by one. If all system calls in the

model were significant the new system call was kept as an independent vari-

able. If not all system calls were significant to the predictions of the model,

the insignificant system calls were removed. The final model is the one with

the largest number of significant system calls.
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3.2.6.1 Calculator

257 models using 5 system calls were found. No model was found where all 6

or more system calls were still significant. In order to select the best model out

of these models, mean accuracy under 10-fold cross validation was used. The

dataset is quite small and the variability in the cross validation error is high. To

counter this variability, 10-fold cross validations were run 100 times and their

accuracies were averaged. The model using recvfrom, munmap, cacheflush,

gettid, and epoll wait had the highest average accuracy of 87.7%. The

model with the lowest accuracy using only significant system calls had an

accuracy of 75.6%. The top 3 most common system calls in all 257 models

were write, gettimeofday, and getpid. Using the most accurate model, it is

possible to predict the direction of the change in energy consumption relative

to the reference energy consumption with high accuracy.

3.2.6.2 Firefox

128 models containing 9 system calls were obtained. No model had 10 or more

system calls that were statistically significant. Each of the 9 features is the

change in the system call count of a version with respect to the mean call

count of that system call across all versions. The highest average accuracy

was 80.4% from the model with recvmsg, lseek, read, gettimeofday, futex,

epoll wait, clock gettime, cacheflush and access as features. The lowest

accuracy was 68.07%. The three most common system calls among the models

were ioctl, close and lseek.

Using the above logistic regression models, it is possible to predict the

direction of the change in energy consumption relative to the reference energy

consumption mean with a high accuracy.

3.2.7 Rule of Thumb

Developers should not be required to use expensive and specialized power

testing equipment in order to make predictions about the changes in energy

usage caused by their changes to the application source code. One of the goals
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of this paper is to provide developers with a “rule of thumb” in order to make

this prediction quickly. To provide this rule, the Student’s t-test was used to

examine the relationship between significant changes in system call usage and

significant changes in energy consumption.

In order to create a rule useful in real-world development processes, only

consecutive versions were considered. 100 Student’s t-tests were performed for

Calculator and 155 Student’s t-tests were performed for Firefox . Each test

was done for a consecutive pair of versions to determine whether the version

succeeding the change was significantly different from its predecessor. For each

version, 10 power measurements were taken and compared with the 10 power

measurements for the next version.

t-tests were also performed for each of the system calls, using the 10 call

invocation counts to determine whether the usage of that system call changed

significantly between any two consecutive versions. The null hypothesis (H0)

is the anti-thesis of the alternative hypothesis, that is the real claim being

made, or the real hypothesis, i.e., Rule of Thumb in this case. p-value can

be described as the probability of rejecting the null hypothesis when the null

hypothesis is true, so that if p-value is low, it is safe to reject the null hypothe-

sis. This threshold for low is decided by level of significance, α. Alternatively,

p-value can be interpreted as the probability of observing the given data, if

null hypothesis is true. A p-value of 0.05 indicates that there is 1 in 20 chance

of observing the given data, if the null hypothesis is true. Since, we perform

10 runs per version to determine whether the measurements are statistically

significant different, it would translate to a probability of 0.1 for observing

extreme data, assuming that nine runs out of the ten produced extreme mea-

surement with respect to the null hypothesis. An α of 0.05 assumes 95%

measurements exhibiting extreme error with respect to null hypothesis, which

is conservative given our number of runs. Hence, an α of 0.05 was chosen as

a p-value threshold for establishing whether consecutive versions are signifi-

cantly different or not. Since consecutive versions are tested, the control group

is different for each t-test. Therefore, multiple test correction is not required.
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The purpose of this procedure is to determine whether a significant change

in system call use and a significant change in energy profile usually occur

together. In order to establish the usefulness of the rule of thumb, precision,

recall and specificity were calculated:

Precision =
SS

SS + SN

Recall =
SS

SS +NS

Specificity =
NN

NN + SN

F1 = 2 ·
Precision ·Recall

Precision+Recall

SS is the number of times the energy consumption difference as well as

the system call count difference are significantly different; NS is the number

of times the energy consumption is significantly different but the system call

profile is not; SN is the number of times the system call profile is significantly

different but the energy consumption is not; and NN is the number of times

that neither are significantly different.

All four statistics — precision, recall, specificity, and F1 range from 0 to

1 with 0 being the worst and 1 being the best possible value. High precision

indicates that positive results from our rule of thumb indicate a significant

change in energy consumption. High recall indicates that there were few sig-

nificant energy consumption changes that the rule of thumb missed. High

specificity indicates that our Rule of Thumb generates few false positives. F1

being weighted mean of precision and recall, is a measure of accuracy. Higher

the F1, more balanced and accurate the model is.

In other words, if a developer used our rule of thumb to decide when to

perform energy consumption tests, with high precision, more of the time they

spent doing energy testing would yield significant results. With high recall,

they would find more of the significant results that could be found. With high

specificity, they would spend less time testing insignificant results. Table 3.5

summarizes these statistics for our Rule of Thumb on selected system calls on

both applications.
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3.2.7.1 Calculator

The highest recall of 0.909 was obtained using the system call cacheflush

while the lowest was obtained by using sendto which had a constant number

of invocations, 182, in all versions. The highest precision of 1 was obtained

using the system calls pread and stat64 while the lowest was obtained by

using sendto. The highest specificity was obtained by using cacheflush while

the lowest specificity was obtained by using sendto. For some system calls,

changes in system call usage predicted changes in energy usage with high

precision and recall while having high specificity as shown in Table 3.5.

3.2.7.2 Firefox

The highest recall, 0.6, is obtained using the system calls lstat64, pipe, and

utimes. The lowest recall of 0.1 was obtained using seven different system

calls. The highest precision, 0.263, was obtained using ioctl while the lowest

was obtained using stat64. The highest specificity of 0.96 was obtained using

ioctl, while using cacheflush had the lowest at 0.93. Values for precision and

recall are lower than those obtained for the Calculator application, however

specificity is higher.

Sum of Calls in Table 3.5 refers to sum total of counts of all system calls,

and can be used in a situation where the developer has no information about

what system call will be best to use.

Given our threshold of α = 0.05, Calculator ’s energy consumption

changed significantly 11 out of 100 times, or 11% and Firefox ’s energy con-

sumption changed significantly 10 out of 155 times, or 6.4%. Thus, by ran-

domly guessing version pairs we would get a precision of 0.11 for Calculator

and 0.06 for Firefox . Because the number of commits that change energy

consumption significantly is low and energy testing is expensive, we expect

a much higher specificity than recall. The unbiased coin flip detects on an

average of 50% of the significant change power versions, giving a recall of 0.5.

Random guess gives equal number of false negatives and true negatives, giv-

ing a specificity of 0.5 also. Regardless of data, in case of randomly guessing,
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Calculator application
Precision Recall Specificity F1 score

sendto 0 0 0.89 0
stat64 1.00 0.55 0.98 0.71

cacheflush 0.34 0.91 0.98 0.56
Sum of calls 0.35 0.72 0.96 0.47
Coin flip 0.11 0.50 0.50 0.18

Firefox application
Precision Recall Specificity F1 score

fcntl64 0.04 0.10 0.94 0.057
ioctl 0.26 0.50 0.96 0.34
lstat64 0.08 0.60 0.95 0.14

Sum of calls 0.18 0.60 0.97 0.27
Coin flip 0.06 0.50 0.50 0.11

Table 3.5: Rule of Thumb — precision, recall, specificity, and F1 score for the
Rule of Thumb, using best and worst system calls for the Calculator and
Firefox applications.

recall, and specificity must sum to 1. An unbiased coin flip usually performs

worse than our rule of thumb with a randomly selected system call. System

calls that are constant between versions perform worse than a random guess.

In practice, the random guess should be biased to predict lesser number of

significant changes, thereby reducing recall and increasing specificity to limit

testing cost. Even sum of system calls outperforms the unbiased coin flip on

all three statistics. Even if a biased coin flip were to be used, the rule of thumb

using the sum total would perform better.

3.2.8 Discussion

The results in the previous sections show that system call counts are some-

what stable but still have variance. This observation implies that repeated

measurements are required in order to address the high variability of some of

the system calls counts. The linear models obtained show that many system

calls correlate with energy consumption. This was demonstrated by high R2

values obtained with the Calculator application models. However, in the

case of Firefox , the linear models do not perform as well, having both lower

correlations and lower R2 values.
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The logistic regression models successfully determined if a change in the

system call profile would lead to a significant change in power consumption

with accuracies between 75.6% and 87.7% for the Calculator application and

accuracies of 68.07% to 80.04% for Firefox . Our logistic model is able to

predict whether power usage will change significantly with high accuracy using

the changes in system call usage.

While it might be the case that an application is using a lot of power doing

CPU-only computations while not making system calls, this is rare because

usually CPU-heavy computations involve memory management system calls

such as sbrk. Even in the case that they do not, this type of application

behaviour will still be evident in the system call profile. Waiting for system

call completion is usually the only way that an application can allow the CPU

to idle. Thus, we expect system calls like epollwait, which is specifically used

to idle the application, to have a positive correlation with power use. This is

because in order for the application to sleep many times, it must wake up and

perform computations many times. And in fact, this is what was observed in

Table 3.3.

I/O system calls can also be an indicator that an application is using power-

hungry peripherals. For example, an application might use write to send data

to a remote computer over the network, activating the phone’s wifi transmitter,

which requires power. Thus, a network application like Firefox should show

a positive correlation between write calls and power consumption, which is

what was observed.

Some system calls have a negative correlation with power use. This corre-

lation is most likely caused by an application using alternate methods which

use less power to achieve the same result. Consider the case of Firefox ,

which, like all browsers, has a cache. If Firefox can retrieve data from its

cache it doesn’t need to use wifi as much, saving power.

The rule of thumb, “energy profile usually changes significantly when the

system call profile changes significantly,” is supported by both datasets, how-

ever it achieves higher precision, recall and specificity on Calculator than

on Firefox . Since rule of thumb outperforms the random guess, it provides
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developers an insight to review their last change with the application’s energy

consumption perspective, resulting in large time savings, when instrumenta-

tion is not available or not feasible.

Thus, developers who keep track of system call profiles for their application

can make an informed decision on when more expensive power testing may

be useful. Profiling system calls is less resource intensive than setting up a

special hardware test bed and using power instrumentation to profile power

consumption. The rule of thumb requires only that developers track system

call profiles, which is very simple.

3.3 Chapter Summary

In this chapter, the relationship between system call invocations and energy

consumption across multiple versions of two Android applications was inves-

tigated. System calls were found to suffer from limited variability, thus by

relying on mean system calls numbers one could linearly model the relation-

ship between system calls and energy consumption. Most system calls are

mildly correlated to the energy consumption.

Change model using logistic regressions to predict if a new version has

significantly different energy consumption compared to an older version based

on the difference in system call invocations, achieved high accuracy.

Our proposed hypothesis that a significant change in an application’s sys-

tem call profile predicts a change in the application’s energy consumption

profile, is supported by the results obtained. We demonstrated a relationship

between energy consumption and system call profiles, and propose a practical

method for developers to track their energy profiles.
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Chapter 4

Green Advisor

In the previous chapter, the green mining methodology [16] was used to corre-

late system-call counts with the energy consumption of android applications.

A simple and easy to use qualitative Rule of Thumb was proposed to pre-

dict whether energy consumption will change or not based on the system-call

counts. Even though this is a very simple model, and a rule of thumb, it can

potentially be very useful since developers have been found to be generally un-

aware of the factors affecting energy consumption of their applications [30] [26].

Most of the research effort and tools have been devoted to model en-

ergy consumption to help end user track their smartphone’s energy consump-

tion [42], [13], [7], [37], [24]. However, there has been very little effort to help

developers track and optimize energy consumption profile of their applications.

For this reason, developers are facing a lack of tools and knowledge for energy

aware development [30]. Given this context, and motivated by the results from

the case study, a tool called GreenAdvisor was developed to operationalize this

Rule of Thumb model. In the context of evolutionary software development,

it compares the system-call logs of subsequent commits and predicts how the

new version’s energy-consumption profile will compare to that of the previous

version. In this chapter, we describe the architecture and working of the tool.

This chapter is organized as follows: Section 4.1 describes the jUnit frame-

work used in this tool; Section 4.2 describes the architecture of the GreenAd-

visor; Section 4.3 describes how code changes are related to system calls; Sec-

tion 4.4 details the work-flow of GreenAdvisor.
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4.1 jUnit

jUnit1 is a unit testing framework available for the Java programming lan-

guage. Unit testing is a software testing process in which the smallest possible

fragments of an application termed as units, are independently inspected to de-

termine whether they are performing desired operations. It is used extensively

in test-driven development. Test-driven Development(TDD)is the process of

developing code according to functionality that is required to be added and

passing it through testing to make sure that it meets the requirements. In

TDD, test cases are written first to make sure that the existing code fails to

meet it. Then, application code is developed to ensure that the test case is

validated. This ensures development that is more focused on requirements

than the conventional development style. jUnit provides such a framework to

test unit code on Java.

Since, Android has its own libraries, Android jUnit testing framework have

been devised to provide unit testing to Android developers. Using this frame-

work, developers can test the aspects of their application units. jUnit requires

developers to write test cases in addition to their application code. These

test cases would cover all aspects of the application if written in a test-driven

development fashion.

GreenAdvisor assumes that jUnit framework is used to develop test cases

for the Android application under consideration. Next, the architecture of the

GreenAdvisor tool has been described.

4.2 Overview

The GreenAdvisor tool has been built to enable programmers to apply the

Rule of Thumb model on their own Android applications without the need for

expensive hardware based energy consumption instrumentation. It profiles the

system-calls of application test cases, and uses the Rule of Thumb [3] to alert

the application developer about a possible change in the energy-consumption

1http://junit.org/

42



profile of their application. By profiling the system-call traces between ap-

plication versions, it alerts the developer about possible changes in energy

consumption profile. If GreenAdvisor predicts change in application’s energy

consumption profile, it also highlights the code that might be responsible for

that change using a simple bag-of-words model to relate system-calls to Java

API calls.

The GreenAdvisor uses the jUnit tests constructed by the application devel-

opers as test cases for application usage. This tool uses application executables

(.apk files in Android) and the application’s Android jUnit test cases to obtain

system-call trace profiles. While the jUnit test cases are executing on the ap-

plication, it uses strace program to profile the system-call counts of the tests.

These test runs are performed multiple times, the default being 5 times per

commit-version to obtain both an average and a distribution of measurements.

These system-call measurements are compared together using a Student’s t-

test in order to apply the Rule of Thumb. Since, we have to use 5 runs per

commit-version so that its less cumbersome for developers to monitor their

application, we use a less conservative level of significance α, of 0.1 instead

of 0.05, as we have reduced our runs by half from 10 to 5. A p-value of 0.1

indicates that there is 1 in 10 chance of observing the given data, if the null

hypothesis is true. Since, we perform 5 runs per version to determine whether

the measurements are statistically significant different, it would translate to a

probability of 0.2 for observing extreme data, assuming that four runs out of

the five produced extreme measurement with respect to the null hypothesis.

An α of 0.1 is conservative, and hence, used for the t-tests.

The GreenAdvisor generates a report as shown in Fig. 4.2, listing the

system-calls that have changed significantly, and the source code in the diff

between versions that potentially causes the functional changes in the appli-

cation. For example, if calls to the open system-call increase significantly,

the tool indicates to the developer that they might be performing more num-

ber of open file operations. In the generated report, it also highlights the code

change that might be responsible for the change in the system call profile using

a bag-of-words model. The work-flow of GreenAdvisor is shown in Figure 4.1.
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4.3 Mapping Code to System Calls

GreenAdvisor uses bags of words, dictionaries, related to a system-call to an-

notate source code relevant to that system-call. The bag-of-words are cre-

ated from observed system-calls and the Java APIs that potentially generate

these system-calls. This is currently a manual and ad-hoc process where by

keywords, identifiers, APIs, and terms from Java code and Android APIs are

grouped into bags-of-words relevant to a particular system-call. Keywords and

identifiers from file I/O APIs, and database APIs such as FileInputStream

and Android Preferences API have been inserted into bags-of-words for open,

write, and read (depending on the exact identifier). Some system-calls such

as close might not be explicitly called (finalizers called during garbage col-

lection). These word bags have been built manually, and could be improved

by a variety of automated techniques.

If there is a significant change in open system-call, that might be mapped

to FileInputStream’s open() method. Some examples of the mappings are

provided in Table 4.1. If a system-call is found to have been changed sig-

nificantly, the tool searches for these Java method(s) corresponding to that

system-call in the diff of application code between code prior to commit and

code after the commit. If any of those identifiers are found in the diff, they

are indicated in the report with that system-call. By indicating the changed

code that might be behind the expected energy consumption change the tool

would help developers review their code change, and possibly optimize it. A

code segment highlighted by the tool in a sample run is shown in Figure 4.3.

4.4 Workflow

The GreenAdvisor workflow involves the following step sequence.

1. It takes as input the application executable APKs and jUnit tests.

2. Next, it records the system-call-profile for selected (possibly all) versions

of the application by executing test runs multiple times.
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Hence, this way developers can keep a track of the change in energy con-

sumption profile of the application they are developing and also possibly the

code that might be responsible for that change. Instructions to run the tool,

and sample report can be found at [1].

4.5 Chapter summary

In this chapter, using results from previous chapter a first of its kind, system-

call profile based tool GreenAdvisor has been introduced that predicts changes

in energy profile of applications with change in code base. GreenAdvisor tool

uses an application’s system-call profile to warn developers about the possible

change in energy consumption profile of your applications. The GreenAdvi-

sor tool implements and employs an augmented Rule of Thumb proposed in

previous chapter. GreenAdvisor also indicates the possible code that might

be responsible for that change by using pre-defined code patterns for a set

of system-calls using a bag-of-words model. In next chapter, we evaluate

GreenAdvisor using a user study.
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Chapter 5

Evaluating Green Advisor

In order to measure perceived usefulness ofGreenAdvisor a user study has been

performed on GreenAdvisor to be evaluated against the projects of several

software teams, while at the same time probing the developers’ understanding

of the factors that affect the energy consumption of their applications. Fur-

thermore, the original Rule of Thumb model has been augmented to predict

not only whether the application energy consumption will change but also

the direction of the change, and this new model was evaluated on important

commits.

Using the GreenAdvisor tool, a short user study was conducted with 77

third year university students, forming 11 student teams developing geo-location-

aware question-and-answer software Android applications as their course projects

while 2 teams developed a travel expense claim application. Using these

projects, experiments were run to evaluate the prediction models. This chap-

ter describes our data-collection method, our survey, and experiments run on

the 13 projects.

This chapter is organized as follows: Section 5.1 describes the user study

in an undergraduate class setting, methodology used, and results of the study;

Section 5.2 describes the proposed improved model and its evaluation.

5.1 User Study on the GreenAdvisor Tool

In order to evaluate the GreenAdvisor tool, a voluntary survey was distributed

among the 3rd year undergraduate class of an introductory software engineer-
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ing course, CMPUT 301 at University of Alberta during Fall’14 and Winter’15

terms. A demonstration of GreenAdvisor was given in the class and its usage

was explained to the students. The student teams were asked to run the tool

on selected commits that they thought might change the energy consumption

of their applications. They were also asked to examine whether the code seg-

ments identified by the tool matched with their expectations of the energy

consumption change inducing code. The survey forms can be found in Ap-

pendix A.4. Students could run the GreenAdvisor tool in the lab or at home

in their own time. Based on this exercise, they were asked to evaluate the

tool with respect to its effectiveness in predicting the energy change and in

identifying the code that induced that energy change. They were also asked to

write a general paragraph about the factors they thought affected the energy

consumption of their applications and their views on the tool. This survey

was approved by Ethics board at University of Alberta (ID: Pro00050197).

77 students (13 teams) consented for the study, and out of those 42 stu-

dents (7 teams) filled in the survey questionnaire. The effort per student on

the course project can be estimated to be around 80 hours per student, ap-

proximately 480 person-hours per team, throughout the term. The combined

effort of all the teams who participated was more than 6160 person-hours.

Time was estimated based on student feedback forms.

5.1.1 Student Projects

All of the 11 team projects in Fall’14 aimed to build an online question-and-

answer forum, accessed through a mobile application from any location. A

set of application requirements were given to the students, including posting

questions, searching for questions, browsing questions, posting replies to ques-

tions, sorting questions/answers, favouriting questions, upvoting/downvoting

answers, attaching geolocation to questions and so on. All 11 teams used the

same requirement specifications. There were three course-project deliverables

(project parts) during three months of project duration.

The projects of 2 teams that participated in the study in Winter’15, aimed

to build a travel expense claim submission application for an organizational
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Table 5.1: Number of commits, Lines of Code (LOC), and Number of files of
each teams’ project.

Team #Commits LOC #Files
1 252 3576 70
2 573 9568 196
3 840 6739 81
4 637 7827 120
5 626 6077 119
6 425 10196 154
7 458 6011 103
8 549 4420 86
9 390 9243 153
10 555 7543 112
11 391 5999 109
12 704 9269 185
13 382 10708 137
Average 521 7475 125

setting. The set of requirements included creating claims, submitting claims,

approving claims, providing offline functionality, adding geolocation to the

travel destination and so. There were three course-deliverables, similar to the

Fall’14 term projects.

Students started writing jUnit tests after the first deliverable. The jU-

nit tests were written explicitly to test the use-cases and user-stories of the

project. Test-driven development was promoted during this period. Between

the deliverables, they developed key application features such as user location

recording, online storage with Elasticsearch, taking photos and offline storage.

Table 5.1 shows number of commits for each of the projects. The number of

commits vary widely across projects from 252 commits to 840 commits.

5.1.2 Expert Use of the Tool

In parallel with our survey of the student developer teams, some distinct com-

mits from each of the 13 projects (from teams that had consented) were se-

lected manually to evaluate the Rule of Thumb and on a much larger dataset

than our previous study.
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5.1.3 Selection of Commits

As each project has 100s of commits, it is infeasible to run experiments on all

the commits as most of the commits represent very trivial changes, and hence,

there is not much difference between successive commits. Therefore, only

large-sized and deliverable commits, important to deadlines were evaluated.

Prior work [33] suggests that estimating energy profiles based on sub-selecting

commits does not heavily harm the accuracy of energy consumption profile

estimation. In fact, energy consumption profiles tend to consist of plateaus of

constant energy consumption with intermittent changes in energy consump-

tion. For each of the deliverables, the commits that made the largest change to

the code base were selected. In addition, the largest commits in between two

deadlines were selected, as they are likely to represent an appreciable change

in the application code — this was an attempt to ensure uniform selection as

prescribed by Romansky et al. [33]. Finally, the commit messages were exam-

ined and, if any appeared important, the corresponding commits were chosen

as well. Using this procedure, around 10 commits per project were gathered.

It was also made sure that the commits selected had no change in the jUnit

tests, so that the energy consumption values in the commit-versions considered

are comparable and reflects changes only due to change in the application code

only. These commits were generally large ones, except the ones submitted as

course deliverables. If a commit version that was submitted as deliverable did

not had any functional change in the application, the last commit that made

a code change in the application code was selected. In many cases, the large

commits introduced some errors like build errors, jUnit test crash errors, so

that the next available functional commit was selected. Most of the commits

selected were after the manual inspection of commit messages.

5.1.4 Evaluating Rule of Thumb

The Green Miner test bed [18] was used for obtaining the energy consumption

measurements of the various versions (commits) of the applications using the

methodology described in previous chapter. It was configured to run jUnit
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tests. The selected versions were run to obtain the energy consumption values.

With the help of GreenAdvisor the system-call profile counts were obtained.

Multiple energy consumption measurements recorded from Green Miner were

used to establish if the two commits had statistically significantly different

energy consumption by performing t-tests. Then, t-tests were performed on

the multiple system-call counts to observe whether the system call profiles

were statistically different from the previous commit or not.

In summary, for each of the 13 projects, 10 versions of the project were

built, each version was tested and its energy consumption measured 10 times,

then its system-calls were measured 10 times, resulting in 1300 energy con-

sumption measurements and 1300 system-call measurements across 13 projects.

Using these measurements, four metrics described in the previous section, pre-

cision, recall, specificity, and F1 score, were calculated for evaluating Rule of

Thumb model on each of these projects.

5.1.5 Results

In this section, results obtained from the student survey of use of tool, and

the evaluation of Rule of Thumb on student projects has been described.

5.1.5.1 User Study

All teams in the class, received the GreenAdvisor tool in the lab-sections for

the course and used the tool in the lab and on their own computers. Out of the

students (13 teams) that consented, 42 students (7 teams) submitted the sur-

vey forms. Each of the teams identified some commits they thought could have

caused a change in the energy-consumption profile of their application. Then,

on these commits, teams used the GreenAdvisor tool to generate report and

prediction about the energy consumption change. Out of 7 teams, 4 agreed,

while 3 disagreed, that tool was able to identify code associated with change

in system-calls. Out of those 3, 1 team was not able to see the associated code

with the system-calls because those system-calls did not had a pre-defined code

patterns in bag-of-words model. The other two teams expected change in en-

ergy consumption of their application while the tool predicted no change. Out
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of 7 teams, 5 teams said that the tool was able to indicate energy consump-

tion change regularly, while other 2 reported that it worked only sometimes.

Results are summarized in Table 5.2. have

Empirical verification: the commits mentioned by the groups were exam-

ined to identify whether they really exhibited an energy-consumption change,

as the student developers thought. Only 5 out 7 identified commits (across 7

projects) exhibited a change in the energy-consumption profile of the applica-

tion. 2 out of 3 teams that had reported that the tool was unable to predict

energy consumption changes, had identified commits that did not produce

energy consumption changes.

The students were asked to provide a paragraph describing their use of the

tool. Most students described the system-calls identified by the tool. Some

of the students described some ideas on they could optimize the energy con-

sumption of their applications like minimal use of GPS, using dark colors,

optimizing local storage update with the remote server – matching some of

the suggestions of Pinto et al. [30]. Interestingly, students did not indicate

that they knew anything about these factors until they had done their own

research online, reading literature and forums, in order to produce these para-

graphs.

Hence, 5 (30 students) out of 7 student groups (42 students) identified

commits in their own project that induced a change in energy consumption; 4

(24 students) out of 7 groups felt that the bag-of-words system-call identifying

code approach worked; 5 (30 students) out of 7 student groups felt that the

GreenAdvisor tool was able to indicate energy consumption changes regularly.

While some of the results are mixed, the tool was usable for most of the

students and was able to identify relevant system-calls for multiple teams. The

user-study indicated that more work could be done on system-call inference

from changed source code. This student feedback serves mostly as a qualitative

form of feedback and validation. The next section, when combined with these

results, confirms that this method indeed is capable of working for actual

developers.
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Figure 5.1: Variance as a percentage of mean value across 30 runs per system-
call per version for all the applications considered. The X axis refers to the
system-calls, while the Y axis refers to variance in percentage.

Table 5.3: Precision, recall, and specificity values of prediction of energy
change using Rule of Thumb model for each team project

Team Rule of Thumb
Precision Recall Specificity F1

1 0.33 0.66 0.75 0.44
2 0.50 1.00 1.00 0.66
3 0.44 1.00 1.00 0.61
4 0.11 1.00 1.00 0.20
5 0.43 1.00 1.00 0.60
6 0.50 1.00 1.00 0.66
7 0.57 1.00 1.00 0.73
8 0.66 1.00 1.00 0.80
9 0.44 1.00 1.00 0.61
10 0.33 0.66 0.75 0.44
11 0.43 1.00 1.00 0.60
12 0.57 1.00 1.00 0.73
13 0.43 1.00 1.00 0.60

Average 0.44 0.95 0.96 0.59
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5.1.5.2 Rule of Thumb on Student Projects

In order to evaluate the Rule of Thumb model on these 13 projects built by 77

students, energy consumption and system call counts for the selected commits

were used. Using the system call counts, the Rule of Thumb predicts when the

energy consumption of the application is changed significantly. This prediction

is verified by obtaining the actual energy consumption measurements from the

actual execution of application versions (commits) on the Green Miner.

First the question of system-call stability across 13 projects was investi-

gated. The variance in system-call values are shown in Figure 5.1 by using 30

runs per commit-version of each application. As can be observed, the variation

values are quite similar to ones obtained before as shown in Figure 3.1 and

Figure 3.2.

4 statistical measures — precision, recall, specificity, and F1 score are used

to measure the effectiveness of the rule of thumb. Average precision was 0.44,

recall 0.95, specificity 0.96, F1 score 0.59 across the 13 projects as shown in

Table 5.3. As can be observed that recall and specificity values are quite high,

though the precision and F1 scores are not that high, similar to the results

obtained previously in Chapter 3.

11 projects from Fall’14 term varied in their implementation, though the

requirement specifications were exactly same for all the projects; similarly for

the two projects from Winter’15 term. Students were expected to create a

questions-answer application according to these user specifications. In all the

projects, they had to use an Elasticsearch 1 server provided by the instructors

to store their application data remotely. In absence of a connection to server,

the application is expected to store the data locally on the phone. They were

also expected to record and display the location of user in the application using

GPS.

Most of the projects had bright screen colors, while only one had dark

colors. Some of the applications frequently updated the server with the local

data while some waited a bit more. The frequency of accessing the GPS

1https://www.elastic.co/products/elasticsearch
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and updating the location of user also varied across the projects. Thus main

variation points for energy consumption were primarily network IO, disk IO,

GPS peripherals. The applications were not heavily CPU-bound or memory-

bound. These choices impacted the energy consumption of these applications.

An observation made across all of the projects was that once students

started using Elasticsearch server, their application’s energy consumption in-

creased significantly as expected. Using Elasticsearch meant that the students

had to rely on more network IO. Another observation was that their applica-

tions’ energy consumption increased once geo-location and GPS tracking was

added to the applications. In one of the applications, a decrease in energy

consumption was observed when the geo-location usage was disabled between

certain versions of the application. Project 6 exhibited dark screen colors, and

was found to have lower energy consumption than the other projects, though

it had some commits where the energy consumption of the application was

quite high. When geo-location was introduced to project 6, the mean power

use went up to 1.6W, inducing more energy consumption. The normal power

use was 0.8W prior to this commit, half of the energy consumption. Other

projects had mean power use around 0.9W, though this might also be pos-

sible because of difference in jUnit tests and consequently the different test

sequences.

5.1.6 Discussion

In this thesis, a first of its kind of tool – GreenAdvisor that can be used by de-

velopers to track energy consumption profile of their applications is introduced.

The tool can predict the whether the energy consumption of application has

been changed, but also tries to identify the source code changes that might

have induced that change in energy consumption profile. While, most of prior

work focused on providing a perspective to users about the components or ap-

plications utilizing energy of their mobile phones, this work provides a simple

method and a handy tool for application developers to estimate changes in

their applications energy consumption profile while developing their applica-

tions, without use of any hardware instrumentation.
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For the survey, students were asked to identify the code commits that

they expected to have induced change in their application’s energy consump-

tion profile. The survey was overall positive with most of them agreeing to

the tool’s ability to predict change in energy consumption profile. The cases

where the tool indicated no change were indeed true though the students

thought otherwise. However, tool failed to identify the lines of source code

that induced changes consumption for a number of the responses because not

all of the system-calls could be easily mapped to Java API calls by the authors.

These results prompt further investigation into better identifying the source

of system-call changes in source code.

From the student write-up about the tool and energy aware development,

it is clear that students have only a rough idea of the impact of application

design, and implementation decisions that could impact their application’s

energy profile though they did not used it in practice. Similar observation

was made by Pinto et. al. [30] on StackOverflow, though their dataset was

potentially from experienced developers rather than the undergraduate stu-

dents considered in this study. This calls for an energy-aware development

curriculum in the software engineering courses.

Using Rule of Thumb model to predict the occurrence of significant change

in energy consumption of the application, high specificity was observed across

all 13 systems, as was observed across 2 larger android applications in prior

work [3]. High specificity indicates that our Rule of Thumb generates few false

positives, and hence developers spend less time testing insignificant change

commits. Profiling system-calls using GreenAdvisor is less resource intensive

than setting up special hardware test-bed like Green Miner, and utilizing that

to instrument energy consumption. The Rule of Thumb requires only that

developers track system-call profiles, which is very simple with the help of

GreenAdvisor tool, that additionally gives them a hint of the code that might

be responsible for energy consumption change.
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Table 5.4: Selected system-calls with their descriptions from the improved
prediction model
system-call Description [23]
open open a file descriptor
cacheflush flush contents of instruction and/or data cache
mmap2 map files or devices into memory
epollwait wait for events on the epoll file descriptor
write write selected bytes into file descriptor
getpid returns the process ID of the calling process
getpriority returns the current priority for a process
sendto used to transmit a message to another socket
munmap creates a new mapping in the virtual address space
nanosleep suspends the calling thread for specified time
clock gettime finds the precision of the specified clock
sigprocmask fetch and/or change signal mask of calling thread

5.2 Improved Model

Rule of Thumb only predicts whether the energy consumption of application

has changed significantly or not. However, developers are more interested in

the direction of change in energy consumption. They are more interested in

knowing if their application’s energy consumption has increased or decreased

significantly. Given that Rule of Thumb has high specificity, i.e., in the case

where the Rule of Thumb predicts no significant change in energy consumption,

developers can be sure about that prediction. However, in the case where Rule

of Thumb predicts significant change in energy consumption, there is no indi-

cation whether the energy consumption has increased or decreased. Thus the

model was augmented by logistic regression models. These models were con-

structed using the system-calls and energy consumption measurements data of

the calculator and firefox applications from the previous Chapter 3, and

the dataset from these 13 student projects. The logistic regression model takes

as input the change in average system-call counts for consecutive versions and

predicts whether the energy consumption has increased or decreased.

The following three models were built by using different data for training,

and testing set as below:
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Table 5.5: True positive and false positive rates of prediction of direction of
energy change using the improved model. FF indicates Firefox, Calc indicates
Calculator, P indicates the 13 student projects, 0.5P indicates half of the
projects. Case 3 employs 10-folds cross validation.

Case Train Test Precision Recall Specificity F1

1 FF Calc P 0.50 0.43 0.62 0.46
2 FF Calc 0.5P 0.5P 1.00 0.33 1.00 0.50
3 P P 0.63 0.53 0.53 0.58

• Trained on calculator and firefox datasets and tested on student

projects.

• Trained on calculator, firefox and, randomly selected 50% of com-

mits from combined 13 student projects dataset and tested on a remain-

ing 50% commits student projects dataset.

• Trained and tested on student projects dataset using cross validation.

These logistic regression models are used in the case where tool predicts sig-

nificant change in energy consumption to predict the direction of change.

5.2.1 Results

Logistic regression models were built to predict the direction of change in

energy consumption i.e., increase or decrease when the Rule of Thumb predicts

significant change in energy consumption. Only those system calls were used

to build the model who were individually statistically significant with energy

consumption (∆energy ∼ syscalls). 12 such calls were identified in cases 1

and 3, while 7 in case 2. These 12 calls common to all the models are shown

in Table 5.4.

The results are shown in Table 5.5. The cases in the Table 5.5 refer to the

three experiments corresponding to the three different testing and training sets.

In case 1, the model was trained on the firefox and calculator dataset to

be tested on the projects dataset. In case 2, the model was trained on the

firefox, calculator and 50% randomly chosen dataset from the student

projects to be tested on the remaining projects dataset. In case 3, the model
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was trained and tested on the combined dataset of all the student projects us-

ing 10-folds cross validation. From all the three cases, as it can be observed, by

using more of projects dataset, the precision, specificity increases, hence bet-

ter accuracy. Hence, this logistic regression model can be augmented with the

Rule of Thumb in the case where Rule of Thumb predicts significant change in

energy consumption of the application. Using the Rule of Thumb, the commits

can be separated into versions where energy consumption changed significantly

or did not change significantly. As Rule of Thumb is highly accurate for pre-

dicting the non-significant model change cases, the logistic regression model

is applied on the cases where Rule of Thumb predicts significant change in

energy consumption. The logistic regression model then predicts the direction

of change on these cases i.e., whether the energy consumption increased or

decreased. Using this two layer model, it can be predicted whether the energy

consumption of the applications changed or not, and if it did, to predict the

direction of change.

5.2.2 Discussion

An improved model using the logistic regression to predict the direction of en-

ergy consumption change(increased or decreased) was proposed and evaluated.

Though not exceptionally accurate, this model enhances the Rule of Thumb

model by predicting direction of change in the cases where energy consump-

tion of applications might had changed significantly. The logistic regression

model was created and tested using foreign projects profiles, indicating that

there is information to learn from the available corpus of software in the wild.

Furthermore, it hints at potentially universal system-call models, rather than

application specific ones.

5.3 Threats to Validity

Internal validity is constrained by our choice of project requirements given

that all the projects had the same requirements. Also, the choice of commits-
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versions selected for investigation of Rule of Thumb model presents a validity

construct.

The external validity is constrained by the test construction. It is possible

that the tests students wrote had limited coverage of the applications’ features.

However, students were expected to use test driven development, and were

marked on the quality of the tests. Hence, the tests covered most parts of the

application. External validity is hampered by our use of student projects [9].

Some students are exceptional programmers, already employed in industry,

many are not. Hence, the level of programming skills exhibit a high variations

between teams as well, in contrast to industry where people working on a

project are more likely to have have much better programming skills than

novices.

5.4 Chapter Summary

In this chapter, the GreenAdvisor introduced in previous chapter was eval-

uated using a short survey conducted on students in an undergraduate class

whose results were positive. Additionally, GreenAdvisor and its Rule of Thumb

model were evaluated through a series of experiments indicating that they can

accurately find commits that change energy consumption profile and they can

determine the direction of the change. These experiments further confirm the

generality and usefulness of Rule of Thumb model on much more number of

applications than our previous work. An improved model of Rule of Thumb

was also proposed and evaluated for predicting direction of change apart from

the significance of change in the previous model.
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Chapter 6

Conclusions and Future Work

This thesis investigated the relationship between system call invocations and

energy consumption. The first half of the thesis, studied the relationship across

multiple versions of two Android applications: Calculator and Firefox. Mo-

tivated by these results, and lack of tool support for developers, we introduced

GreenAdvisor tool in the second half of the thesis which helps developers track

impact of their code changes on energy consumption of their applications.

By relying on mean system calls counts, we modeled the relationship be-

tween system calls and energy consumption. Most system calls are mildly

correlated to the energy consumption. We proposed a very simple Rule of

Thumb model that can be leveraged by developers in absence of special in-

strumentation that is required to track the energy consumption profile of ap-

plications. Most of the tool support is only available for end users to track

the energy consumption statistics of their smartphones, but few for the devel-

opers that hinders the energy-efficiency driven development. With this back-

ground, we introduced first of its kind, developer-centric system-call profile

based tool GreenAdvisor that predicts changes in energy profile of applica-

tions with change in code base by using Rule of Thumb model. GreenAdvi-

sor also indicates the possible code that might be behind that change from

pre-defined code for a set of system-calls using a simple bag-of-words model.

Tool is accessible at [1], with instructions to setup the initial environment.

GreenAdvisor and its Rule of Thumb model were evaluated through user

study and a series of experiments indicating that they can accurately find
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commits that change energy consumption profile and they can determine the

direction of the change. Hence, in the absence of any instrumentation, Rule

of Thumb allows the developers to track energy consumption profiles of their

applications. An improved model using logistic regression can be used with

Rule of Thumb to predict the direction of change of energy consumption as

well. The proposed method and tool are helpful for developers to trace the

energy profile of their applications without using any special instrumentation

that is rarely accessible to developers.

This thesis helps developers determine energy consumption profile chang-

ing commits by aggregating a profile of system-call counts over many versions

by applying a simple Rule of Thumb model and provides a practical first of

its type GreenAdvisor tool that can be used to that end. Hence, this study

demonstrates a relationship between energy consumption and system call pro-

files, providing a promising research direction, and a practical method for

developers to estimate their code change’s impact on energy consumption by

using system calls profile.

6.1 Future Work

This work can be extended by more accurate and general prediction models.

These models can be made using system-calls using data from a variety of

applications like gaming, browser, weather, video players, music players to

have general dataset of system calls and energy consumption. In this work,

counts of the system calls were used to build simplified models. Another

direction of research can be temporal mining of system call sequences to energy

consumption. However, as the sequences are variable even for the exactly same

conditions, as observed in Chapter 3 and Chapter 5, this might require some

extra measures.

In this work, the commonly used Java methods were mapped to system calls

manually. This could be improved by devising techniques that automatically

associate API and common patterns to system calls for detection of energy

change inducing code.
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Appendix A

User Study Materials

This appendix contains the supporting materials used during the empirical

evaluation (user studies) of the GreenAdvisor tool. Appendix A.1 has the

protocol followed during the study. Appendix A.2 has the letter of initial

contact that was distributed among the participants, and lists the goals and

protocol followed during the study. Appendix A.3 has the consent form that

was distributed among the participants, and lists the details and procedure to

be followed during the study. Appendix A.4 contains the user study feedback

questionnaire that was used by participants to evaluate the GreenAdvisor tool.

The consent forms and the supporting material was distributed and col-

lected by Gregory Burlet (M.Sc. student at University of Alberta) as there

was a possibility of conflict of interest with I being appointed as a Teaching

Assistant for the course during Winter’15 term. I had access to the forms and

data only after the final grades were posted for the students.
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The researchers will present the study to the CMPUT 301 students during labs. The labs are, in fact, led 
by the researchers who are experts in the tools used.

They will introduce themselves as graduate students in Computing Science at the University of Alberta 
working with Dr. Abram Hindle and they will invite the students to participate in the study.

They will explain:

 The goal of the study is to analyze the energy consumption changes with the application code 

changes and also to better detect the syntactical errors in the software code using the tool 
UnnaturalCode . You will be using the same set of tools as all students in the class, the only 

difference would be that the data of your usage of the development/communication tools and 

analytics services will be collected for further analysis towards my research.

 Your participation is voluntary.

1. Data collected will not be linked to the students’ name (data will be anonymized).

2. The instructor and teaching assistants of the course will not know who is participating 
and who is not.

3. Participants may withdraw at any time up to the end of the course term by emailing 

gburlet@ualberta.ca.

 We hope that the results of this research can have a positive impact on the way we develop 

applications, by factoring in the applications energy consumption, as well as help in better tools 

for detection of syntactical errors in the code. We also hope this experience to be used for future 

offerings of the course.

A.1 Protocol
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Energy  consumption  and  code  syntax  error  localization  in  Undergraduate  Software 
Engineering Courses

Correspondence to solicit participation.

Dear CMPUT 301 student,

I  am a Masters student  in  Computing Science at  the University  of  Alberta working with Dr.  Abram 
Hindle. I would like to invite you to participate in my study “Energy consumption and code syntax error  

localization in Undergraduate Software Engineering Courses”.

There are two goals of the study:

● Analyze the energy aspect of the code developed during the class project. 

● Use the code developed during the class project for improving our tool UnnaturalCode to 
 find the exact location of the bugs.

This would help the us understand the processes behind the energy profile and test the usefulness of our  

tool for identifying the changes in energy profile. The study would also help us in improving our tool 
UnnaturalCode, which could be used by developers for exactly locating the bugs.

 
The class would function same as it would had without the study, only difference being that data of your 

course projects will be collected for further analysis towards my research. You would be asked to fill a  
voluntary feedback form on ease of use of the tool used during class project as well.

Note that:

● Your participation is voluntary.

● Data collected will not be linked to your name (data will be anonymized).

● The instructor and TAs of the course will not know if you are participating or not.

● You may withdraw your participation at any time up to the end of the course project by 

emailing myself at gburlet@ualberta.ca. Your data will not be used for study, if you chose to do 

so.

● You will not get any specific benefits from the study except probable knowledge of energy profile 

of my application during the course project.

● We don’t think there are any potential risks involved in the study. However, if any such risks 

arise, you will be informed and you may discontinue from the study.

I would appreciate if you can participate in my study. I believe the results of this research can have a 

positive impact on the way we develop software in a team environment.

Sincerely,
Gregory Burlet (Masters Student, Computing Science, Study Coordinator)

Department of Computing Science,

University of Alberta,

Edmonton, AB, T6G 2R3

gburlet@ualberta.ca

A.2 Letter of Initial Contact
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Energy  Consumption  and  Code  Syntax  Error  Location  in  Undergraduate  Software 

Engineering Courses

Informed Consent Form

I, _____________________________________________, agree to participate in the study on 

“Energy Consumption and Code Syntax Error Location in Undergraduate Software Engineering 

Courses” conducted by Gregory Burlet(gburlet@ualberta.ca, Co-Investigator), Dr. Eleni 

Stroulia(stroulia@ualberta.ca, Co-Investigator) and Dr. Abram Hindle 

(abram.hindle@ualberta.ca, Principal Investigator).

In this study, I will be using the regular set of tools for software development in a team project as 

part of the class CMPUT 301. The goal of the study is to analyze the application code changes 

and its impact on the energy consumption of the application as well as location of bugs with tool 

UnnaturalCode. I will be using the same set of tools as all students in the class, the only 

difference would be that the data of my usage of the development/communication tools and 

analytics services will be collected for further analysis towards the investigator’s research.

The data of my project’s development (history of changes to codebase and work items, viewing 

of codebase, usage of analytics services) will be analyzed by the investigator for the purposes 

of the study. I will be asked to fill a voluntary feedback questionairre about the ease of use of 

tool at the end of the class.

I understand that this data will be stored for later analysis and that my name will not be 

associated with the data (the data will be anonymized). The collected consent forms, will be 

under lock-and-key in the researcher’s office and will be only accessible to the researchers 

(Gregory Burlet and Dr. Stroulia) and to Dr. Hindle after the grading is completed for the course. 

Other research assistants may have access to the anonymized data for analysis purposes after 

that grading is completed.

I also understand that the instructor and teaching assistants of the course (CMPUT 301) are not 

aware of my participation (or non-participation) and that only the investigator has that 

information. The collected data will not be analyzed until after the course has finished and final 

grades have been submitted.

I am also aware that there are no specific benefits for me in the study except possible 

awareness about the energy profile of my application. I am also aware that there are no 

potential risks involved in the study. If any of such risks arise, I will be informed and may 

discontinue my participation.

I am aware that I am volunteering my participation in this study and may discontinue my 

participation at any time during the course term by email to Gregory Burlet gburlet@ualberta.ca.

Consent Statement:

A.3 Consent Form
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I have read this form and the research study has been explained to me. I have been given the 

opportunity to ask questions and my questions have been answered. If I have additional 

questions, I have been told whom to contact. I agree to participate in the research study 

described above and will receive a copy of this consent form. I will receive a copy of this 

consent form after I sign it.

______________________________________________ _______________

Participant’s Name (printed) and Signature Date

______________________________________________________________

Name (printed) and Signature of Person Obtaining Consent Date

Feel free to contact the Co-Investigator :

Gregory Burlet,

Department of Computing Science,

University of Alberta,

Edmonton, AB, T6G 2R3

gburlet@ualberta.ca

The plan for this study has been reviewed for its adherence to ethical guidelines by a Research 

Ethics Board at the University of Alberta. For questions regarding participant rights and ethical 

conduct of research, contact the Research Ethics Office at (780) 492-2615.

Please return this form only to me (gburlet@ualberta.ca)
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Feedback Questionnaire:

Name: 

This survey aims to understand the utility of the tool in understanding the energy consumption profile.

Goal: We want to understand how useful the tool is in helping developers recognize the effect of code 

changes on energy consumption. More specifically we are interesting in investigating the effectiveness of 

the tool in identifying the system calls associated with the energy-consumption change and the 

corresponding code changes. 

1. Identify a code change that  you think may cause significantly different system calls and, as a 
result,  may  change  the  energy-consumption  of  the  application.

Please write your code in format provided below:

Previous version SHA(Commit ID):

Changed Version SHA(Commit ID):

PS: To check a repo’s current commit ID, run: git log --format="%H" -n 1
or check it on Github page of your repository in the commits section.

Filename:

Code snippet: 

A.4 User Study Feedback Questionnaire
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2. Please comment on the code segment and system calls identified  by the tool to have changed 

significantly,  energy  consumption  wise  based  on  versions  in  previous  Q1.  

 Please write your code in format provided below:

Previous version SHA(Commit ID):
Changed Version SHA(Commit ID):

PS: To check a repo’s current commit ID, run: git log --format="%H" -n 1

or check it on Github page of your repository in the commits section.

Code displayed by the tool--
System call:

%Change in system call invocation(from the table in report generated by tool):
Filename:

Code snippet:
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3. “The tool is able to identify the code associated with the change in system calls.” How much do 

you agree with the above statement?

__ Strongly Agree

__ Agree

__ Not Sure

__ Disagree

__ Strongly Disagree

4.  In your opinion, how well does the tool predict whether  a source-code change affects energy 

consumption?

Please tick one of the following:

__ Most of the time [~80-100%]

__ Regularly               [~51-80%]

__ Sometimes [~20-49%]

__ Occasionally   [~0-20%]

Please explain your answer; we would like to hear more about your experience with tool in order 

to improve its usefulness.
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