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ABSTRACT

Nonlinear filtering is an important and effective tool for handling estimation of signals when observations
are incomplete, distorted, and corrupted. Quite often in real world applications, the signals to be estimated
contain unknown parameters which need to be determined. Herein, we develop and analyze non-recursive
and recursive methods, which can deal with combined state and parameter estimation for nonlinear partially-
observed stochastic systems. For the non-recursive method, we obtain the unknown parameters through
solving a system of non-singular finite order linear equations. For the recursive method, we generalize the
least squares method and develop a particle prediction error identification algorithm so that it can be applied
to general nonlinear stochastic systems. We use the branching particle filter to do the signal state estimation
and implement simulations for both methods.

Keywords: filtering, nonlinear stochastic system, parameter estimation, asymptotic method of moments,
particle prediction error identification method, particle filter.

1. INTRODUCTION

Nonlinear filtering is an important signal processing tool that can be used to help identify or recognize a target
through its movement. In this and many other applications, the signal contains unknown parameters that
must be identified in parallel with the filtering process. Thus, there is some overlap between signal estimation
and parameter estimation. In this paper, we develop and analyze non-recursive and recursive methods which
can deal with combined state and parameter estimation for nonlinear partially-observed stochastic systems.
It is well known that parameter identification is a challenging problem, especially when the systems are

nonlinear and one wishes to do both parameter and state estimation. There are a number of significant works
on this subject, including the books of Ljung and Soderström [14], Goodwin and Sin [6], Benveniste, Métiver
and Priouret [2], and Kushner and Yin [12], as well as the papers of Dembo and Zeitouni [4], Campillo and
Le Gland [3], and Hansen and Scheinkman [7]. Common methods used in parameter identification include
least squares methods, methods of moments, maximum likelihood methods (often via the EM algorithm), and
filtering methods.
In this paper, we introduce a non-recursive asymptotic method of moments (AMM) and a recursive particle

prediction error identification method (PPEIM) for parameter estimation in filtering problems. For the asymp-
totic method of moments, we find the moments of the stationary distribution for the signal state by virtue of
the Birkhoff ergodic theorem and obtain the unknown parameters through solving a system of non-singular
finite order linear equations. For the particle prediction error identification method, we generalize the recursive
least squares method and develop a novel algorithm so that it can be applied to general nonlinear stochastic
systems.
For both methods, the branching particle method of nonlinear filtering introduced by Kouritzin (see Bal-

lantyne, Chan and Kouritzin [1]) is used to do the signal state estimation. The algorithms developed in this
paper have good robustness for unmodeled dynamics through the parameter estimation, since the output error
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between the true system and the model at hand is minimized in the parameters at the observation times.
Hence, even if we do not know what the exact mathematical form of a true system is, we can still often obtain
satisfactory modeling and prediction results.
This paper is organized as follows. In Section 2, we propose algorithms for combined state and parameter

estimation. Then, in Section 3, we present some simulation results based upon our algorithms designed in
Section 2, which demonstrate that our algorithms provide effective numerical solutions to parameter estimation
problems for nonlinear partially-observed stochastic systems. Finally, in Section 4, we give the derivation of
the algorithms.

2. COMBINED STATE AND PARAMETER ESTIMATION

2.1. Asymptotic Method of Moments

Continuous-time Markov processes can be characterized conveniently by their infinitesimal generators. In
Hansen and Scheinkman [7], generalized method of moments estimators and tests have been constructed for
observable stationary and ergodic Markov processes using their generators. In this note, we consider partially-
observed stochastic systems. The asymptotic method of moments for parameter estimation introduced in this
section may be used for more general (discrete- or continuous-time) ergodic Markov processes taking values
in a compact subset of R

d. To explain explicitly, we constrain our signal process X to be a one-dimensional
continuous time stochastic process living within the interval [0, 1] and evolving according to the following
Skorohod stochastic differential equation (SDE):

dXt = −1
2
(a0 + 2a1Xt + · · ·+ (n+ 1)anX

n
t )dt

+σ1dBt + σ2
1χ{0}(Xt)dξ

(0)
t − σ2

1χ{1}(Xt)dξ
(1)
t , (1)

where a0, a1, . . . , an are unknown parameters, σ1 > 0 is a fixed constant, Bt is a R
1-standard Brownian motion,

χ is the indicator function, and ξ(0)t , ξ(1)t are the local times of Xt at 0, 1, respectively. Throughout this note,
we suppose that ε > 0 is a fixed constant and set tm = mε for m = 1, 2 . . . Let {Vtm} be a sequence of
i.i.d. standard normal random variables independent of {Xt} and h be a continuous function on [0, 1] with a
continuous inverse h−1. We define

Ytm = h(Xtm) + σ2Vtm ,

where σ2 > 0 is a fixed constant. Then, Y is a “noisy distorted observation” of X .
We define a probability measure µ on the Borel σ-algebra of [0, 1] by

dµ = exp
{
− 1
σ2

1

(O0 + a0x+ a1x2 + · · ·+ anx
n+1)
}
dx,

where

O0
�
= σ2

1 log
{∫ 1

0

exp
{
− 1
σ2

1

(a0x+ a1x2 + · · ·+ anx
n+1)
}
dx

}
.

Then, µ is the unique invariant probability measure for Xt, i.e.,
∫ 1

0 ptfdµ =
∫ 1

0 fdµ for any continuous function

f on [0, 1] and any t ≥ 0, where (pt)t≥0 is the transition semigroup of (Xt)t≥0. We define ck
�
=
∫ 1

0
hkdµ, k ≥ 1.

Then, from the argument in Section 4.1, we find the following recursive formula

ck = lim
m→∞

1
m

m∑
i=1

Y k
ti
−

k−1∑
j=0

(
k

j

)
cjEV

k−j
t1 ,

where

EV l
t1 =
{
(2p− 1)!!(σ2

2)p if l = 2p for some p ∈ Z+,
0 otherwise.

(2)
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By approximating h−1 via Bernstein’s polynomials, we can obtain an expression of all the moments {Ok} of
µ via the limits of the observations, where Ok =

∫ 1

0
xkµ(dx).

The algorithm of combined state and parameter estimation consists of the following steps:

Initialization: Let {ξit}Nt

i=1 be a set of particles, where Nt is the number of particles at time t. In this step,
all particles are initialized so that their empirical measure approximates the initial signal distribution.

Parameter estimation: The parameter vector is estimated by the following asymptotic method of moments.
First, based upon the accumulative observations, the moments {Ok}2n+2

k=1 of µ are approximated using the
method mentioned above. Then, the parameters are approximated via the solution of the following system of
linear equations:

σ2
1(2O1 − 1) = a0(O2 −O1) + 2a1(O3 −O2) + · · ·+ (n+ 1)an(On+2 − On+1),
σ2

1(3O2 − 2O1) = a0(O3 −O2) + 2a1(O4 −O3) + · · ·+ (n+ 1)an(On+3 −On+2),
· · · · · ·
σ2

1((n+ 2)On+1 − (n+ 1)On) = a0(On+2 −On+1) + 2a1(On+3 −On+2)
+ · · ·+ (n+ 1)an(O2n+2 −O2n+1). (3)

Evolution: In the evolution stage, each of the particles is evolved independently for the time period between
observations (e.g. tm → tm+1) according to the evolution equation (1) of the signal (e.g. ξitm

→ ξitm+1−). Here,
we use the approximate parameter vector obtained in the previous step.

Selection: Particles are branched according to their likelihood given the current observation. We define

τ i
tm+1

�
= exp

{
〈h(ξitm+1−), Ytm+1〉 − 1

2 |h(ξitm+1−)|2
σ2

2

}
− 1, i = 1, 2, · · · , Ntm

and generate a uniform-[0, 1] random variable ηi
tm+1

for each particle ξitm+1−. When τ
i
tm+1

< 0: the particle
ξitm+1− is removed if −τ i

tm+1
> ηi

tm+1
, otherwise it maintains its current state. When p ≤ τ i

tm+1
< p + 1 for

some p ≥ 0: p independent copies of ξitm+1− are produced, and in addition, another copy of ξ
i
tm+1

is produced

if τ i
tm+1

− p > ηi
tm+1

. We denote the resulting set of particles by {ξitm+1
}Ntm+1

i=1 .

The parameter estimation, evolution, and selection steps are repeated at each observation time.

2.2. Particle Prediction Error Identification Method

For parameter estimation in stochastic systems, there are two classes of identification methods: off-line and
on-line (or recursive) methods. Many problems require the availability of a model with parameters updated
in real time as the dynamical system evolves. Thus, in typical applications such as adaptive control, signal
processing, and target detection and tracking, one generally prefers recursive algorithms due to their relative
computational simplicity. Ljung [13] introduced a recursive prediction error method (so-called Ljung’s scheme)
which includes classical and generalized sequential least squares method, Robbins-Monro scheme (cf. [15]),
Kiefer-Wolfowitz scheme (cf. [9]), and stochastic gradient parameter estimation method (cf. Kushner and
Clark [11]) as special cases. The “prediction error” termed for the discrepancy between the measured data
(observations) and the predicted data (calculated by conditional expectation from previous data according
to a candidate model), is minimized over the model set using a stochastic approximation approach. The
convergence analysis of Ljung’s scheme is closely related to the asymptotic stability of a deterministic ordinary
differential equation associated to the algorithm, giving rise to the so-called ODE method of stability analysis.
Also, to keep the estimator process in a compact domain, Ljung used a projection (or resetting) mechanism
that was not adequately described and analyzed until Gerencser [5] provided a rigorous convergence analysis for
Ljung’s scheme via stopping arguments. Generally speaking, Ljung’s scheme can only be applied to parameter
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estimation of linear stochastic systems. In this note, motivated from Ljung [13], Gerenscer [5] and Kouritzin
[10], we propose a recursive particle prediction error method for parameter estimation in partially-observed
nonlinear stochastic systems. In this section, we discuss the algorithm in detail. The derivation of the algorithm
will be given in Section 4.2. The convergence analysis of the algorithm will be discussed in a separate paper.
Let us consider a discrete-time nonlinear stochastic system defined on a probability space (Ω,F , P ) with

state-space form: {
Xβ

tm+1
= f(β, Xβ

tm
) + g(β, Xβ

tm
)Btm+1

Y β
tm+1

= h(Xβ
tm+1

) + Vtm+1 , m = 0, 1, 2, . . .
(4)

where {Xβ
tm
} and {Y β

tm+1
} are n− and k−dimensional system state and observation sequences respectively,

β is a d−dimensional unknown parameter vector to be estimated, f(., .), g(., .) and h(., .) are known n × 1,
n × s and k × 1 nonlinear matrices respectively. The state noise {Btm+1} and measurement noise {Vtm+1}
are second-order s− and k−dimensional random vector sequences respectively, and {Vtm+1} is independent of
({Btm+1}, X0). We assume that the “true” value of the parameter vector is β∗ and for convenience, we use
{Ytm+1} = {Y β∗

tm+1
} to denote our actual observation data which correspond to our real signal with the “true”

parameter vector. We define a filtration {Ftm}m≥1 by

Ftm = σ{Yt1 , · · · , Ytm},

and denote by E the expectation with respect to P . Furthermore, we assume that

E(Btm+1 |Ftm) = 0, E(Vtm+1 |Ftm) = 0, E(VtmV
T
tl
) = { 0 m �= l

v m = l, (5)

where v is a known k × k semi-positive definite matrix. We also assume that f(β, x), g(β, x) are continuously
differentiable with respect to β and x, and h is continuously differentiable in x.
We assume that the parameter vector β ranges over a compact subset D of R

d. Given the observations,
we will estimate the conditional distribution for the signal state and the unknown parameters. The algorithm
of combined state and parameter estimation consists of the following steps:

Initialization: N particles {ξi}N
i=1 are independently initialized so that their empirical measure approximates

the initial signal distribution, and the initial guess β̂0 of the parameters is set.

Evolution: Each particle is evolved independently according to the signal model:

ξitm+1− = f(β̂tm , ξ
i
tm
) + g(β̂tm , ξ

i
tm
)Bi

tm+1
,

where Bi
tm+1

are independent with the same distribution as Btm+1 for i = 1, 2, · · · , Ntm ; Ntm being the number
of particles at time tm. Also, we have the following evolution for the gradient of each particle with respect to
parameters:

∇βξ
i
tm+1− = [∂βf(β̂tm , ξ

i
tm
) + ∂ξi

tm
f(β̂tm , ξ

i
tm
)∇βξ

i
tm
] +

+[∂βg(β̂tm , ξ
i
tm
)Bi

tm+1
+ ∂ξi

tm
g(β̂tm , ξ

i
tm
)Bi

tm+1
∇βξ

i
tm
].

Parameter estimation: We update parameter estimators via

β̂tm+1 = β̂tm +
1

(m+ 1)α
ϕtm+1 [Ytm+1 − Ŷtm+1 ],

where
Ŷtm+1 = E[h(X

β
tm+1

)|Ftm ]
∣∣
β=β̂tm
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which is approximated by

1
Ntm

Ntm∑
i=1

h(ξitm+1−),

and

ϕtm+1 = E
[
∇h(Xβ

tm+1
)∇βX

β
tm+1

∣∣∣Ftm

]T ∣∣∣∣
β=β̂tm

which is approximated by

1
Ntm

Ntm∑
i=1

(
∇h(ξitm+1−)∇β̂tm

ξitm+1−
)T

In order to keep the estimators within D, we use the following resetting mechanism. If β̂tm+1− ∈ D, we let
β̂tm+1 = β̂tm+1−, otherwise, we let β̂tm+1 = β̂0. We can use averaging technique to speed up the convergence
of the parameter estimators by defining

βtm+1
=

m

m+ 1
βtm

+
1

m+ 1
β̂tm+1 ,

which converges to β∗ as m→ ∞ at a noticeably better rate.

Selection: Particles are branched according to their likelihood given the current observation. This step is
similar to that in Section 2.1.

The evolution, parameter estimation and selection steps are repeated at each observation time.

3. SIMULATION RESULTS

3.1. Signal Models

For both methods, we generate a one dimensional signal within the interval [0,1]. For the asymptotic method
of moments, we use the polynomial model (1) as in Section 2.1. For the particle prediction error identification
method, the signal model is

dXt = −1
2

(
a0 +

√
2

n∑
i=1

(−ai sin 2πiXt + bi cos 2πiXt)

)
dt

+σ1dBt + σ2
1χ{0}(Xt)dξ

(0)
t − σ2

1χ{1}(Xt)dξ
(1)
t ,

where a0, a1, b1, . . . , an, bn are unknown parameters, Bt is a R
1-standard Brownian motion, χ is the indicator

function, and ξ(0)t , ξ
(1)
t are local times of Xt at 0, 1, respectively. Due to reflection at boundary points 0 and

1, the signal Xt stays within the interval [0,1]. Let tm = mε (ε > 0 is a small constant). For our recursive
particle prediction error identification method discussed in Section 2.2, we use Euler scheme to discretize the
(continuous) signal model to be:

Xtm+1− = Xtm − ε

2

(
a0 +

√
2

n∑
i=1

(−ai sin 2πiXtm + bi cos 2πiXtm)

)
+σ1(Btm+1 − Btm). (6)

If Xtm+1− ∈ [0, 1], then we set Xtm+1 = Xtm+1−. Otherwise, we let Xtm+1 be the value of the reflecting point
of Xtm+1− within [0,1]. For instance, if Xtm+1− = 1.01, then Xtm+1 = 0.99. So, in this discretized model, we
have

f(β,Xtm) = Xtm − ε

2

(
a0 +

√
2

n∑
i=1

(−ai sin 2πiXtm + bi cos 2πiXtm)

)
(7)
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and g(β,Xtm) = σ1 with β = (a0, a1, b1, · · · , an, bn)T . In our simulation, the particles will be evolved inde-
pendently according to the law of the discrete model (6). One can easily compute the partial derivatives of
f(β, x) with respect to β and x using the expression (7). We omit the details.

3.2. Observations

For the asymptotic method of moments, we use the nonlinear observation model

Ytm =
√
Xtm + Vtm , (8)

where Vtm are i.i.d. random variables with N(0, σ2)-distribution. For the particle prediction error identification
method, the domain is chopped into pixels and at any time tm the observation Ytm is a vector which consists
of the information from every pixel. More precisely, the observation has the form

Ytm = 〈Y 0
tm
, Y 1

tm
, . . . , Y Nobs

tm
〉.

Here Nobs is the total number of pixels on the domain,

Y i
tm
=

1√
2πλ

exp

(
− (Xtm − i

Nobs
)2

2λ2

)
+ V i

tm
, i = 0, 1, · · · , Nobs, (9)

V i
tm
, i ∈ {0, 1, · · · , Nobs}, are i.i.d. random variables with N(0, σ2)-distribution and λ > 0 is a fixed constant.

Simulation results are presented for three-dimensional parameter vectors. In our simulation for filtering
model (1,8), we use the true value of the parameter vector (a0, a1, a2) = (0.3,−0.5,−0.3). The values of signal
noise and observation noise are σ1 = 0.4, σ2 = 0.1, respectively. In our simulation for filtering model (6,9),
we use the true values of the parameters a0 = −0.5, a1 = 0.3 and b1 = −0.3, and take σ1 = 0.2, σ2 = 0.4,
λ = 0.1 and Nobs = 10. For both methods, the simulation time is 22.2 minutes and the time period between
observations ε = 4.44× 10−5 minute.
In Figures 1 and 2, the solid lines represent the true parameters whereas the dotted are the current

parameter estimates for Model (1,8) and Model (6,9) based upon AMM and PPEIM, respectively. Clearly,
all three parameter estimates are converging to the true parameters. Figures 3 and 4 compare the true signal
states to their approximate-filter conditional mean estimates for Model (1,8) and Model (6,9), respectively.
Here, the filters do not have access to the true parameters, but rather must contend with noisy estimates. As
time increases these estimates improve and the filter performs markedly better.
The simulation results show that our non-recursive asymptotic method of moments and recursive parti-

cle prediction error identification method provide effective numerical solutions to the problem of parameter
estimation for nonlinear partially-observed stochastic systems.

4. DERIVATION OF THE ALGORITHMS

4.1. Non-Recursive Asymptotic Method of Moments

From the argument below, one can see that the method introduced in this section can also be used to handle
weakly correlated noises satisfying some mixing condition. Note that for the reflecting diffusion described by
Skorohod SDE (1), the associated diffusion generator (L, D(L)) is given by{

Lf(x) = 1
2σ

2
1f

′′(x)− 1
2 (a0 + 2a1x+ · · ·+ (n+ 1)anx

n)f ′(x), f ∈ D(L),
D(L) �

=
{
f ∈ L2([0, 1], dx) : f ′′ ∈ L2([0, 1], dx) and f ′(0) = f ′(1) = 0

}
.

We denote by P the law of X· with a fixed initial distribution and E the expectation with respect to P . Then,
the signal process (Xt, P ) is ergodic, that is, for every event G in the path space C[0,1][0,∞) that is invariant
under time shifts, P (X· ∈ G) = 0 or 1.
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Figure 1. Parameter estimation via AMM for Model (1,8) with a0 = 0.3, a1 =
−0.5 and a2 = −0.3

Figure 2. Parameter estimation via PPEIM for Model (6,9) with a0 =
−0.5, a1 = 0.3 and b1 = −0.3
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Figure 3. Branching particle filter for Model (1,8) using AMM parameter
estimates

Figure 4. Branching particle filter for Model (6,9) using PPEIM parameter
estimates

592     Proc. of SPIE Vol. 5096

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/13/2013 Terms of Use: http://spiedl.org/terms



By independence, the boundedness of h and the Birkhoff ergodic theorem, one has that for arbitrary k ∈ N

and 0 ≤ j ≤ k,
lim

m→∞
1
m

m∑
i=1

hj(Xti)V
k−j

ti
=
(∫ 1

0

hjdµ

)
EV k−j

t1 , P − a.s.

Therefore, we find that

lim
m→∞

1
m

m∑
i=1

Y k
ti
= lim

m→∞
1
m

m∑
i=1

(h(Xti) + Vti)
k

= lim
m→∞

1
m

m∑
i=1

k∑
j=0

(
k

j

)
hj(Xti)V

k−j
ti

=
k∑

j=0

(
k

j

)
cjEV

k−j
t1 . (10)

Hence, by induction, (10) and (2), we find that

c1 = lim
m→∞

1
m

m∑
i=1

Yti , c2 = lim
m→∞

1
m

m∑
i=1

Y 2
ti
− σ2

2 , c3 = lim
m→∞

1
m

m∑
i=1

Y 3
ti
− 3c1σ2

2 , . . .

By approximating h−1 via Bernstein’s polynomials, we can obtain an expression for all the moments {Ok} of
µ via the limits of the observations.
By integration by parts, we get for k ∈ Z+,

(k + 1)Ok = (k + 1)
∫ 1

0

xkµ(dx)

= (k + 1)
∫ 1

0

xk exp
{
− 1
σ2

1

(O0 + a0x+ a1x2 + · · ·+ anx
n+1)
}
dx

= exp
{
− 1
σ2

1

(O0 + a0 + a1 + · · ·+ an)
}

+
1
σ2

1

(a0Ok+1 + 2a1Ok+2 + · · ·+ (n+ 1)anOk+n+1). (11)

Subtracting kOk−1 from (k + 1)Ok, we get from (11) the system of linear equations (3).

We define a new measure η(dx)
�
= (x−x2)µ(dx). Then, the non-singularity of the system of linear equations

(3) is equivalent to that of the following matrix

M =


∫ 1

0 η(dx)
∫ 1

0 xη(dx) · · · ∫ 1

0 x
nη(dx)∫ 1

0 xη(dx)
∫ 1

0 x
2η(dx) · · · ∫ 1

0 x
n+1η(dx)

. . . . . .∫ 1

0 x
nη(dx)

∫ 1

0 x
n+1η(dx) · · · ∫ 1

0 x
2nη(dx)

 .
However, non-singularity of this matrix follows from the fact that for any ξ0, ξ1, . . . , ξn ∈ R with ξ0 ·ξ1 · · · ξn �= 0,
we have that

(ξ0, ξ1, . . . , ξn)M(ξ0, ξ1, . . . , ξn)T =
∫ 1

0

(ξ0 + ξ1x+ . . .+ ξnxn)2η(dx) > 0.

Thus, M is in fact a positive definite matrix. Therefore, the unknown parameter vector (a0, . . . , an) is the
unique solution to the system of linear equations (3).
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4.2. Recursive Particle Prediction Error Identification Method

For the discrete-time partially-observed nonlinear stochastic system described by (4), we will use the least
squares method with discounted measurements to estimate the unknown parameters. Let {γ(i)}∞i=1 be a
sequence of positive real numbers tending to zero and satisfying

∑∞
i=1 γ(i) =∞. Also, we let

δ(m, i) = γ(i)
m∏

k=i+1

[1− γ(k)], 1 ≤ i ≤ m− 1, δ(m,m) = γ(m).

It is easy to see that for 1 ≤ i ≤ m− 1
δ(m, i) = [1− γ(m)]δ(m− 1, i). (12)

Take || · || to be Euclidean distance. Then, the “off-line” estimator for β is defined as:

β̃tm+1 = arg
β∈D

min

{
1

m+ 1

m∑
i=0

δ(m+ 1, i+ 1)||Yti+1 − E[Y β
ti+1

|Fti ]||2
}
,

where the predictor E[Y β
ti+1

|Fti ] is the prediction of the (i + 1)-th observation based upon measurements up
to time ti. By (4) and the second formula of (5), we find that

β̃tm+1 = arg
β∈D

min

{
1

m+ 1

m∑
i=0

δ(m+ 1, i+ 1)||Yti+1 − E[h(Xβ
ti+1

)|Fti ]||2
}
. (13)

To get a recursive estimator close to β̃tm+1 , we differentiate (13) and use the chain rule to yield

−
m∑

i=0

δ(m+ 1, i+ 1)E
[
∇h(Xβ

ti+1
)∇βX

β
ti+1

∣∣∣Fti

]T
{Yti+1 − E[h(Xβ

ti+1
)|Fti ]} = 0, (14)

where ∇βX
β
ti+1

is an n× d matrix and satisfies the following equation:

∇βX
β
ti+1

= [∂βf(β,X
β
ti
) + ∂Xβ

ti

f(β,Xβ
ti
)∇βX

β
ti
]

+[∂βg(β,X
β
ti
)Bti+1 + ∂Xβ

ti

g(β,Xβ
ti
)Bti+1∇βX

β
ti
].

Here, we have used the smoothness of f, g, h and the bounded convergence to interchange conditional expec-
tation and differentiation. Using Taylor’s theorem to expand h(Xβ

ti+1
) in the unknown parameter β, we have

that
h(Xβ

ti+1
)− h(Xβ∗

ti+1
) = ∇h(Xβ

ti+1
)∇βX

β
ti+1

(β − β∗) +Rti+1(β, β
∗), (15)

where Rti+1(β, β∗) is the remainder. Substituting (15) into (14), we then find that

m∑
i=0

δ(m+ 1, i+ 1)E
[
∇h(Xβ

ti+1
)∇βX

β
ti+1

∣∣∣Fti

]T
E
[
∇h(Xβ

ti+1
)∇βX

β
ti+1

∣∣∣Fti

]
(β − β∗)

=
m∑

i=0

δ(m+ 1, i+ 1)E
[
∇h(Xβ

ti+1
)∇βX

β
ti+1

∣∣∣Fti

]T
(Yti+1 − E[h(Xβ∗

ti+1
)|Fti ])

−
m∑

i=0

δ(m+ 1, i+ 1)E
[
∇h(Xβ

ti+1
)∇βX

β
ti+1

∣∣∣Fti

]T
Rti+1(β, β

∗),

where
Rti+1(β, β

∗)
�
= E[Rti+1(β, β

∗)|Fti ].
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We let the recursive estimators {β̂tm+1 , m = 0, 1, · · ·} for β be determined by:

β̂tm+1 − β∗ =

(
m∑

i=0

δ(m+ 1, i+ 1)ϕti+1 ϕ
T
ti+1

)−1

×
m∑

i=0

δ(m+ 1, i+ 1)ϕti+1

{
Yti+1 − E[h(Xβ∗

ti+1
)|Fti ]−Rti+1(β̂ti , β

∗)
}
, (16)

where

ϕti+1

�
= E
[
∇h(Xβ

ti+1
)∇βX

β
ti+1

∣∣∣Fti

]T ∣∣∣∣
β:=β̂ti

∈ R
d×k, ∀i ≥ 0, (17)

and ϕ0 is chosen such that ϕ0ϕ
T
0 > 0. We set

Qm+1 =
m∑

i=0

δ(m+ 1, i+ 1)ϕti+1ϕ
T
ti+1
.

Then, one can easily find that

Qm+1 = (1− γ(m+ 1))Qm + γ(m+ 1)ϕtm+1ϕ
T
tm+1

. (18)

It follows from (16), (18) and (12) that

β̂tm+1 − β∗ = Q−1
m+1

{
m−1∑
i=0

δ(m+ 1, i+ 1)ϕti+1(Yti+1 − E[h(Xβ∗
ti+1

)|Fti ]−Rti+1(β̂ti , β
∗))

+γ(m+ 1) ϕtm+1(Ytm+1 − E[h(Xβ∗
tm+1

)|Ftm ]−Rtm+1(β̂tm , β
∗))
}

= Q−1
m+1{(1− γ(m+ 1))Qm(β̂tm − β∗)
+γ(m+ 1)ϕtm+1(Ytm+1 − E[h(Xβ∗

tm+1
)|Ftm ]− Rtm+1(β̂tm , β

∗))}
= Q−1

m+1{Qm+1(β̂tm − β∗) + γ(m+ 1)ϕtm+1 [−ϕT
tm+1

(β̂tm − β∗) + Ytm+1

−E[h(Xβ∗
tm+1

)|Ftm ]−Rtm+1(β̂tm , β
∗)]}

= β̂tm − β∗ + γ(m+ 1)Q−1
m+1ϕtm+1

(
Ytm+1 − E[h(Xβ

tm+1
)|Ftm ]|β=β̂tm

)
.

Thus, we have
β̂tm+1

�
= β̂tm + γ(m+ 1)Q

−1
m+1ϕtm+1(Ytm+1 − Ŷtm+1), (19)

where
Ŷtm+1 = E[h(Xβ

tm+1
)|Ftm ]

∣∣∣
β=β̂tm

. (20)

The prediction error identification algorithm for the system (4) is made up of (19), (20), (17), and (18). In the
above algorithm, we choose the initial value β̂0 arbitrarily in a compact domain D. We remark that we can
prove that Q−1

m+1 converges to some positive definite matrix under certain conditions. Thus, in the practical
implementation of the above algorithm, we take γ(i) = 1/iα (0 < α < 1) and replace Q−1

m+1 by the identity
d × d matrix which does not affect the convergence of the parameter estimators. Since we are dealing with
the nonlinear stochastic systems, we employ the branching particle filter method discussed in Section 2 to
calculate the approximate values for ϕti+1 in (17) and Ŷtm+1 in (20).
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