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Abstract

In this paper, we applied texture analysis to evaluate cerebral degeneration in amyotrophic lateral
sclerosis (ALS). Two well-known methods, the gray level co-occurrence matrix (GLCM) and the
gray level aura matrix (GLAM) were employed to extract texture features from routine T1 and
T2 MR images. Texture features were analyzed by statistical inference, support vector machine to
determine classification rate, and receiver operator characteristic curve (ROC) analysis. Twenty
control subjects (average age = 56.8± 12.4) and 19 ALS patients (average age = 56.7± 13.7) were
recruited for the study. Texture features were statistically different in ALS compared to controls
(p< 10−4 for T1, and p< 10−5 for T2) and provided a classification rate with more than 76%, and
82% accuracy on T1 and T2 weighted images, respectively. ROC analysis yielded area under the
curves approaching 0.93, and a maximal sensitivity and specificity of 100% and 95%, respectively.
Texture features moderately correlated with parenchymal brain volume suggesting that atrophy
partially accounted for the texture results; however, texture features had a superior classification
rate indicating that other cerebral pathology due to ALS besides atrophy was being captured by
texture analysis. We conclude that texture analysis shows promise as a quantitative biomarker to
study cerebral degeneration in ALS. To our best knowledge, this is the first study to apply the
GLAM as a texture method to medical image analysis, showing that it provides features superior
(or at least comparable) to the well known GLCM features.

Keywords: Amyotrophic Lateral Sclerosis (ALS), Biomarker, Texture Analysis, Brain
Parenchymal Fraction (BPF), Co-occurrence Matrix, Aura Matrix.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressing degenerative disorder of adulthood leading
to rapid accrual of muscle weakness and disability. The clinical features are secondary to degener-
ation of both upper motor neurons (UMN) of the cerebral cortex and lower motor neurons (LMN)
in the brainstem and spinal cord. Cerebral involvement may exist beyond the motor cortex due
to frontotemporal lobar degeneration (FTLD). While the presence of LMN loss is supported by
electromyography, an objective measure of UMN damage is lacking. A quantitative measure of
cerebral degeneration is needed to aid diagnosis and evaluate novel therapies.

Preliminary MRI studies in ALS reported focal atrophy of the motor cortex [1, 2, 3], hyperin-
tensity of the corticospinal tract on T2-weighted [4, 5], proton density [4, 6], and fluid attenuated
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inversion recovery (FLAIR) [7] sequences, and hypointensity of the posterior bank of the precentral
gyrus on T2-weighted [4] and FLAIR images [7]. However, these features have poor sensitivity and
specificity. Conventional MRI in ALS remains only a tool to rule out diseases that mimic ALS.

Advanced MRI methods have been applied in ALS to address this issue. Voxel based morphom-
etry (VBM) has revealed gray matter atrophy in the motor cortex with involvement extending into
prefrontal areas reflecting the existence of FTLD [1, 2, 8]. Recently, surface based morphome-
try (SBM) methods have revealed cortical thinning in the precentral gyrus [9, 10, 11]. Diffusion
tensor imaging based indices of white matter integrity are abnormal in the corticospinal tract
(CST) [12, 13] and as well in frontal, temporal and parietal white matter [14]. Magnetic reso-
nance spectroscopy has demonstrated reduced n-acetylaspartate indices in the motor [15] and pre-
frontal cortices [16] and CST [17] consistent with impaired neuronal integrity. Other neurochemical
changes consistent with gliosis (elevated myo-inositol) [18, 19] and altered levels of neurotransmit-
ters such as GABA are emerging [20]. With a motor paradigm functional MRI (fMRI) has revealed
increased activation of the contralateral sensorimotor cortex and supplementary motor area [21].
More recently, resting state fMRI has shown significant differences in the default-mode and the
sensorimotor networks [22].

Image textures are visual patterns appearing in images. The analysis of texture has been
a major research topic in image processing for the last four decades and more recently has been
considered for medical imaging applications [23]. One important property of texture analysis that is
advantageous for use in MRI includes robustness against acquisition parameters. It has been shown
that parameters such as number of acquisitions, repetition time, echo time, and sampling bandwidth
(when the resolution is high enough) have little effect on the results of pattern discrimination [24].
Moreover, some texture methods [25, 26] demonstrate noise robustness which is favorable in MR
images.

The identification of textures (feature extraction) in general involves a quantitative analysis
of pixel gray-level intensities, their interrelationships, or the spectral properties of an image. The
Gray Level Co-occurrence Matrix (GLCM) [27] is a statistical method of feature extraction that
was one of the first to be applied in medical applications.

The GLCM is based on co-occurrences of gray-level intensities separated by a specific distance
long a specific direction. It has been used in the classification of brain [28, 29] and breast [30]
tumors, detection of focal cortical dysplasia in epilepsy [31], discrimination of lesions from normal
tissues in multiple sclerosis [32, 33], and finding pathological changes in Alzheimer’s disease [34, 35].

The Gray Level Co-occurrence Matrix (GLAM) is the generalization of the GLCM [36, 37]. The
method has been used in some medical applications such as MRI [38] and ultrasound [39] image
enhancement, and content based mammogram retrieval [40]. Although the texture description
capability of the GLAM has been used for 2D and 3D texture synthesis [41, 42] and texture image
retrieval [43], it has not been used as a texture analysis tool to find pathological changes in disease.

We applied the GLCM and GLAM methods of texture analysis on conventional T1-weighted
(T1W) and T2-weighted (T2W) MRI images in patients with ALS. We hypothesized that these
methods could accurately distinguish patients from healthy controls. To the best of our knowledge,
texture analysis in ALS has not been previously reported and this is the first study of the application
of GLAM as a texture analysis tool to analyze pathological changes of a disease.
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Figure 1: Sagittal T2 (a) and axial T2 (b) images were used to assist in planning the coronal T2 (c) and coronal
T1 MPRAGE (d) imaging which were used for texture analysis. The CST appears hyperintense on the T2 weighted
images.

2. Materials and methods

2.1. Subjects

Nineteen patients (ten males, nine females) with clinically probable or definite sporadic ALS
according to the revised El Escorial criteria [44] were recruited. All patients had clinical evidence
of UMN and LMN involvement. Patients had an average age of 56.7 ± 13.7 years (range 27–72
years) with a symptom duration of 25.5± 16.3 months (range 9–72 months).

Twenty healthy control subjects (nine males, eleven females) without neurological or psychiatric
disease were included. Their average age was 56.8± 12.4 years (range 24–81 years).

2.2. Magnetic Resonance Imaging

MR images were acquired on a 1.5 Tesla system (Magnetom Sonata, Siemens Medical Systems).
Conventional sagittal and axial T2 images were first acquired to plan the two coronal sequences of
interest that would be used for texture analysis. Coronal T2 images (TR=7510 ms, TE=113 ms,
voxel size 1.1× 0.9, 5 mm thick) and 3D T1 MPRAGE (TR=1600 ms, TE=3.8 ms, TI=1100 ms,
voxel size 1.0 × 1.0, 1.5 mm thick). Coronal imaging was performed with an angulation parallel
to the CST observed on the sagittal images. Angulation was further refined by ensuring that
the coronal slice intersected the cerebral peduncles and the hyperintense signal of the CST in the
posterior limb of the internal capsule and corona radiata on the axial images (Figure 1).

2.3. Texture Analysis

The imaging analysis pipeline included pre-processing, texture feature extraction, feature se-
lection, and classification. All methods referred to as texture analysis methods are used in the
second step to extract textural features. In our analysis, we use two well-known texture analysis
methods: the GLCM, and the GLAM. These methods use statistical information to characterize
textures. Next sections explain each step.

3



(a) (b) (c)

Figure 2: Midline sagittal T2 image (a) demonstrating slice selection for corresponding coronal T2 (b) and T1 (c)
images of the occipital lobe. These were used as an internal control for texture analysis to compare with coronal
images containing the CST.

2.3.1. Pre-processing

The pre-processing step includes slice and ROI selection, and intensity normalization. Two
slices were chosen for texture analysis on each of the coronal T1 and T2 weighted images. The slice
that maximally included the CST was selected, as this is where the most significant pathological
changes of ALS are expected [12, 13, 14, 45, 46]. As an internal control, a slice through the occipital
lobe was selected where there are minimal if any pathological changes due to ALS (Figure 2). An
intracranial ROI was manually defined for the CST slice to include the region above the inferior
horn of the lateral ventricles, and for the occipital lobe slice the region excluding the cerebellum
(Figure 3).

Image ROIs were normalized by converting each pixel’s gray value to z = (v − µ)/σ × Σ+M ,
where v is the original gray value at the pixel, µ the average gray value of the ROI, σ the standard
deviation of the ROI, M is the new average, and Σ the new standard deviation of the ROI. We set
M = 0.5 and Σ = 0.1 for our experiments. Using M = 0.5 and Σ = 0.1 resulted in the majority of
pixels to be set in the range of [0 1], however, there might be some outliers having a value out of
this range. Before further analysis pixel values below 0 were set to 0 and those above 1 were set
to 1.

Finally, the gray values were quantized into N gray levels for texture analysis by Z = round(z×
(N−1)+1) which maps the real number z in the range [0 1] to an integer number Z in the range [1
N ]. In this paper, 32 gray levels are used (N = 32). This number of gray levels provides accurate
results without adding too much computational costs.

2.3.2. Texture Features

The statistical method of GLCM was used for texture feature identification. The GLCM is
defined for a given direction and distance (i.e.,vector) and computes similarity between image
pixels along the vector. A vector with distance d and direction angle θ connects I(x1, y1) to
I(x2, y2) such that x2 = x1 + dcos(θ) and y2 = y1 + dsin(θ) (Figure 4(a)).

Assume an image I(x, y) with a set of k gray level values. GLCMd,θ, for distance d and
direction angle θ is a k × k matrix where the entry GLCMd,θ(i, j) shows the number of times
that I(x1, y1) = i and I(x2, y2) = j. Usually eight directions are considered in GLCM (i.e.
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Figure 3: Defined regions of interest on sample T2 images enclosing the (a) CST and (b) occipital lobe.

(a) (b) (c) (d)

Figure 4: Computing the GLCM. (a) Vector with distance d and angle θ. (b) A sample image and GLCM vectors
(d = 1, θ = 90◦). (c) The GLCM. (d) The normalized GLCM.

0◦,±45◦,±90◦,±135◦, 180◦). A common approach is to consider diagonally opposite pairs to-
gether (i.e.,θ and θ + 180◦), making the GLCM symmetric and reducing the number of directions
from eight to four. In our experiments a distance of d = 1 with a symmetric GLCM with four
directions (considering diagonally opposite pairs together) was used. The GLCM is also normalized
to compute texture features:

GLCMnorm
d,θ (i, j) =

GLCMd,θ(i, j)
k−1
∑

i=0

k−1
∑

j=0

GLCMd,θ(i, j)

.

Figure 4 illustrates the procedure of computing the normalized GLCM on a sample image with
gray level values of 0, 1, 2 for d = 1 and θ = 90◦. Different textural features are computed on the
normalized GLCM. Twelve well known properties of GLCM (listed in Appendix A) are extracted
and used as textural features.

The GLAM [36, 37] is the generalization of the GLCM, developed based on set theory. Following
the convention in Aura-based papers we consider image S as a finite rectangular lattice with a
neighborhood system N = {Ns, s ∈ S}. The neighborhood Ns is built by translating the basic
neighborhood (structuring element) E to location s. Given two subsets: A,B ⊆ S, the Aura of A
with respect to B for the neighborhood system N , is defined as [37]:

ϑB(A,N) =
⋃

s∈A

(Ns ∩B). (1)

5



(a) (b) (c)

Figure 5: Computing the GLAM. (a) The basic neighborhood (structuring element). The • symbol shows the
reference pixel and the ◦ symbol shows the neighboring pixel. (b) A sample binary image. (c) Assuming that the
subset A is the set of all 1s and the subset B is the set of all 0s, the Aura set of A with respect to B, ϑB(A,N), for
the given basic neighborhood is shown in light gray.

Similarly, the Aura measure of A with respect to B is defined as follows:

m(A,B,N) =
∑

s∈A

|Ns ∩B|. (2)

Intuitively, the Aura of A with respect to B characterizes how the subset B is present in the
neighborhood of A and the Aura measure represents the the number of B’s sites presented in the
neighborhood of A. Note that m(A,B,N) does not show the number of elements in the Aura set
ϑB(A,N), and in general m(A,B,N) 6= |ϑB(A,N)|. The Aura measures between different gray
level values define the GLAM. Assume that there are G gray levels in the image, S. The pixels

that belong to each gray level are considered as a set Si(0 ≤ i ≤ G− 1), such that
G−1
⋃

i=0

Si = S, and

Si ∩ Sj = ∅ for i 6= j. The GLAM is a matrix with Aura measures as the entries, in particular:

GLAM = m(Si, Sj , N). (3)

Figure 5 shows an example of the Aura set for a sample binary image. The GLAM for this
sample image and the given basic neighborhood is:

GLAM =

[

m(0, 0, N) m(0, 1, N)

m(1, 0, N) m(1, 1, N)

]

=

[

48 12

12 8

]

Similar to the GLCM, the GLAM is normalized and 12 properties of the normalized GLAM
( Appendix A) are used as texture features.

2.3.3. Feature Selection

Among the 12 features extracted for texture analysis, three features providing the highest per-
formance for both T1 and T2 weighted MR images were chosen: contrast, correlation, and inverse
difference moment normalized (f2, f3, and f5 in Appendix A). We observed that combining the
features usually does not improve the classification rate (by our SVM classifier). In addition, a sin-
gle feature can be easily shown by a diagram. Therefore, each texture feature is analyzed separately
and the feature vector consists of only one feature for classification and statistical analysis.
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2.3.4. Classification

Each image is assigned to one of the known texture classes (i.e., patients vs controls) using the
Support Vector Machines (SVMs) [47]. A two stage classification process was used with the use of
training and test sets.

The SVM finds the optimal hyperplane which partitions the feature space of the training
samples (of both control and patient groups) into two halves. Each training sample consists of
a feature vector and a label showing its class (patient or control). Suppose that the kth training
sample is labeled by lk = p, c (p as patient or c as control) and ~xk is its feature vector. A function,
y, is used to map each label to either 1 or -1:

y(l) =

{

+1 if l=p
−1 if l=c

. (4)

The inverse of y, Y, is defined such that it provides the label of a given value (i.e. Y (y(l)) = l).
The SVM assigns the class of the given test sample ~xt as follows:

class(~xt) = Y (Sgn(
∑

∀k,lk∈{p,c}

y(lk)αkK(~xt, ~xk) + b)), (5)

where Sgn is the sign function, b the bias parameter of the optimal hyperplane of the SVM, αk

the Lagrangian multiplier for the training sample k, and K the kernel function. The parameters b
and αk are estimated by maximizing the margin of the decision boundary of the training samples
belonging to the patient and control groups [47]. The kernel function usually maps data into higher
dimensional spaces hoping that the data could be more easily separated. We use a linear kernel in
our experiments which is simply the dot product between two vectors. We found experimentally
that the linear kernel provides the best results in our experiments.

To train the SVM we randomly chose 9 patients and 10 control subjects for training and the
rest, 10 patients and 10 control subjects, for classification. The experiment was repeated 1000
times to reduce the effect of randomness and report the average accuracy (classifications rate).

2.4. ROI Parenchymal Fraction

Brain atrophy has been reported in ALS by different research groups [1, 3, 8, 48]. We measured
brain atrophy by means of the brain parenchymal fraction (BPF) [49] approach as it provides
a quantitative measure that can be compared with the defined texture features. Defined as the
proportion of brain parenchymal volume to the total intracranial volume, it was modified to be
implemented in the ROI on the single slice used for texture analysis rather than the whole brain.

To find ROI parenchymal fraction (ROI-PF), first, the brain was automatically segmented into
gray matter (GM), white matter (WM), and CSF using SPM8. Then, the parenchymal fraction
within each ROI was computed as (GM +WM)/(GM +WM +CSF ). T1 weighted images were
used for ROI-PF computation, because of their higher resolution compared to T2 weighted images.

2.5. Statistical Analysis

Texture features and ROI-PF were compared between patients and controls by means of a
Kruskal-Wallis test. Statistical significance was set at 2-tailed p < 0.05. The SVM was used
for classification of subjects as described in 2.3.4. Receiver operating characteristic (ROC) curve
analysis was performed as a supplementary method to assess the performance of the discriminatory
properties of the texture features. Optimal sensitivity and specificity (minimal false negatives and
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Table 1: Statistical properties (mean±std, and p–value), classification rate, and the AUC of the GLCM features
extracted from T1 weighted images. f2, f3, and f5 represent contrast, correlation, and inverse difference moment
normalized, respectively. Sensitivity and specificity is reported for significantly different features.
Slice Location CST Occipital Lobe

GLCM Texture Feature f2 f3 f5 f2 f3 f5

P0◦,1

Patients 0.65±0.06 (9.66±0.03)×10−1 (999.37±0.06)×10−3 0.83±0.09 (9.57±0.05)×10−1 (999.19±0.08)×10−3

Controls 0.76±0.08 (9.60±0.04)×10−1 (999.26±0.08)×10−3 0.87±0.09 (9.55±0.04)×10−1 (999.15±0.08)×10−3

p–value < 10−3 < 10−3 < 10−3 0.11 0.11 0.11
Classification Rate 74.62 74.82 74.03 58.66 58.58 58.56
AUC 0.86 0.86 0.86 0.65 0.65 0.65
Sensitivity 89.47 100.00 89.47 – – –
Specificity 70.00 55.00 70.00 – – –

P45◦,1

Patients 1.10±0.10 (9.43±0.05)×10−1 (998.93±0.09)×10−3 1.39±0.17 (9.28±0.09)×10−1 (998.66±0.16)×10−3

Controls 1.28±0.13 (9.33±0.07)×10−1 (998.76±0.12)×10−3 1.44±0.15 (9.25±0.08)×10−1 (998.60±0.15)×10−3

p–value < 10−4 < 10−4 < 10−4 0.47 0.47 0.45
Classification Rate 76.18 76.82 76.00 47.64 47.52 48.23
AUC 0.87 0.88 0.87 0.57 0.57 0.57
Sensitivity 78.95 78.95 84.21 – – –
Specificity 85.00 90.00 80.00 – – –

P90◦,1

Patients 0.69±0.06 (9.64±0.03)×10−1 (999.33±0.06)×10−3 0.79±0.10 (9.59±0.05)×10−1 (999.23±0.10)×10−3

Controls 0.78±0.08 (9.59±0.04)×10−1 (999.24±0.08)×10−3 0.81±0.09 (9.58±0.05)×10−1 (999.21±0.09)×10−3

p–value < 10−3 < 10−3 < 10−3 0.59 0.67 0.61
Classification Rate 74.35 74.96 74.25 46.53 46.34 46.19
AUC 0.83 0.83 0.83 0.55 0.54 0.55
Sensitivity 94.74 94.74 94.74 – – –
Specificity 65.00 65.00 65.00 – – –

P135◦,1

Patients 1.13±0.11 (9.41±0.06)×10−1 (998.91±0.10)×10−3 1.40±0.18 (9.27±0.10)×10−1 (998.65±0.17)×10−3

Controls 1.32±0.14 (9.31±0.08)×10−1 (998.73±0.14)×10−3 1.46±0.17 (9.24±0.09)×10−1 (998.59±0.16)×10−3

p–value < 10−3 < 10−3 < 10−3 0.31 0.26 0.30
Classification Rate 72.44 72.63 72.26 51.32 51.93 51.61
AUC 0.84 0.84 0.84 0.60 0.61 0.60
Sensitivity 89.47 89.47 100.00 – – –
Specificity 70.00 75.00 60.00 – – –

false positives) were determined by Matlab software. The area under the ROC curve (AUC) was
used as a standard method to assess and compare the performance of the features.

3. Results

The results are reported for the GLCM, the GLAM, and ROI-PF, respectively.

3.1. GLCM - T1

The GLCM features extracted from the T1 slice enclosing the CST were statistically different
between patients and controls while there was no difference in the occipital lobe slice as shown in
Table 1.

The direction of the GLCM influenced the performance of the features. For instance, the
classification performance of P45o,1 is higher than that of P0◦,1, P90◦,1, and P135◦,1. However, the
performance of the three selected features of the GLCM (f2,f3, and f5) are comparable in the same
directions. The highest classification and AUC were 76.82% and 0.88, respectively, for P45◦,1 : f3.
Depending on the feature and the direction, the optimal sensitivity ranges from 78.95% to 100%
and the optimal specificity from 60% to 90%. The optimal sensitivity and specificity of the best
feature, P45◦,1 : f3, is 78.95% and 90%, respectively. As we expected, features were not significantly
different in the occipital lobe region and the classification rates were poor.
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Table 2: Statistical properties (mean±std, and p–value), classification rate, and AUC of the GLCM features extracted
from T2 weighted images. f2, f3, and f5 represent contrast, correlation, and inverse difference moment normalized,
respectively. Sensitivity and specificity are reported for significantly different features.
Slice Location CST Occipital Lobe

GLCM Texture Feature f2 f3 f5 f2 f3 f5

P0◦,1

Patients 1.58±0.21 (9.18±0.11)×10−1 (998.48±0.19)×10−3 2.20±0.32 (8.86±0.17)×10−1 (997.89±0.30)×10−3

Controls 2.03±0.24 (8.94±0.13)×10−1 (998.06±0.22)×10−3 2.33±0.31 (8.79±0.17)×10−1 (997.77±0.29)×10−3

p–value < 10−5 < 10−5 < 10−5 0.19 0.26 0.19
Classification Rate 81.47 82.05 81.83 54.75 52.32 54.34
AUC 0.92 0.92 0.92 0.62 0.61 0.62
Sensitivity 78.95 84.21 84.21 – – –
Specificity 95.00 95.00 90.00 – – –

P45◦,1

Patients 2.68±0.36 (8.61±0.19)×10−1 (997.46±0.32)×10−3 3.61±0.61 (8.12±0.33)×10−1 (996.58±0.56)×10−3

Controls 3.39±0.41 (8.22±0.23)×10−1 (996.83±0.36)×10−3 3.82±0.59 (8.00±0.32)×10−1 (996.39±0.52)×10−3

p–value < 10−5 < 10−4 < 10−5 0.43 0.38 0.47
Classification Rate 79.17 80.15 78.98 52.07 50.99 51.71
AUC 0.92 0.91 0.92 0.57 0.58 0.57
Sensitivity 84.21 89.47 89.47 – – –
Specificity 90.00 90.00 90.00 – – –

P90◦,1

Patients 1.79±0.32 (9.08±0.17)×10−1 (998.29±0.30)×10−3 2.05±0.41 (8.93±0.23)×10−1 (998.03±0.39)×10−3

Controls 2.31±0.37 (8.79±0.21)×10−1 (997.81±0.34)×10−3 2.21±0.41 (8.85±0.23)×10−1 (997.89±0.38)×10−3

p–value < 10−3 < 10−3 < 10−3 0.42 0.43 0.40
Classification Rate 77.02 77.05 76.85 50.41 50.74 50.56
AUC 0.86 0.86 0.86 0.58 0.57 0.58
Sensitivity 89.47 89.47 89.47 – – –
Specificity 80.00 80.00 80.00 – – –

P135◦,1

Patients 2.86±0.48 (8.52±0.25)×10−1 (997.29±0.43)×10−3 3.64±0.57 (8.11±0.31)×10−1 (996.55±0.53)×10−3

Controls 3.69±0.53 (8.07±0.30)×10−1 (996.56±0.46)×10−3 3.83±0.52 (8.00±0.29)×10−1 (998.38±0.48)×10−3

p–value < 10−4 < 10−4 < 10−4 0.35 0.37 0.35
Classification Rate 74.91 77.76 75.05 51.07 51.26 50.55
AUC 0.88 0.90 0.88 0.59 0.58 0.59
Sensitivity 84.21 84.21 84.21 – – –
Specificity 90.00 90.00 90.00 – – –

3.2. GLCM - T2

Similar to the analysis of the T1 weighted images, the GLCM features extracted from the T2
slice enclosing the CST were statistically different between patients and controls and no statistical
difference was observed in the occipital lobe slice (Table 2).

Similar to the T1 images, the performance of features depends on the direction of GLCM. Here,
the features of the GLCM on P0◦,1 and P45◦,1 have a higher performance. We can see that in T1
images directions P0◦,1 and P45◦,1 also demonstrate higher performance; however, the performance
in T1 is slightly better for direction P45◦,1. Similarly, by comparing the AUC we can see that
both T1 and T2 demonstrate the lowest performance in direction P90◦,1. Therefore, both types of
images show consistent directionality information.

The highest classification rate of the GLCM features on the T2 images is 82.05% corresponding
to P0◦,1 : f3 higher than the highest classification rate of the GLCM on T1 images. The highest
AUC is 0.92 demonstrated by all features of P0◦,1, and f2 and f5 of P45◦,1. Similar to T1 images,
the performance of the three selected features of the GLCM (f2,f3, and f5) are comparable in each
direction. The optimal sensitivity and specificity range from 78.95% to 89.47% and from 80% to
95%, respectively. Sensitivity and specificity are 84.21% and 95% for P0◦,1 : f3.

3.3. GLAM - T1

In order to compute the GLAM features, we need to determine the shape of the basic neigh-
borhood system. To find the best performing neighborhood system, we examined all variants of
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Table 3: Statistical properties (mean±std, and p–value), classification rate, and AUC of the GLAM features extracted
from T1 weighted images. Three neighborhood system with the highest AUC are selected. f2, f3, and f5 represent
contrast, correlation, and inverse difference moment normalized, respectively. Sensitivity and specificity are reported
for significantly different features.
Slice Location CST Occipital Lobe

GLAM Texture Feature f2 f3 f5 f2 f3 f5
N1 Patients 0.95±0.08 (9.51±0.04)×10−1 (999.08±0.08)×10−3 1.20±0.14 (9.38±0.07)×10−1 (998.84±0.13)×10−3

Controls 1.11±0.11 (9.42±0.06)×10−1 (998.93±0.10)×10−3 1.25±0.13 (9.35±0.07)×10−1 (998.79±0.12)×10−3

p–value < 10−4 < 10−4 < 10−4 0.31 0.38 0.30
Classification Rate 76.69 76.62 76.26 50.36 50.01 49.94
AUC 0.88 0.88 0.88 0.60 0.58 0.60
Sensitivity 78.95 78.95 78.95 – – –
Specificity 90.00 90.00 90.00 – – –

N2 Patients 0.88±0.07 (9.54±0.04)×10−1 (999.15±0.07)×10−3 1.11±0.12 (9.42±0.07)×10−1 (998.92±0.12)×10−3

Controls 1.02±0.10 (9.47±0.05)×10−1 (990.01±0.10)×10−3 1.16±0.12 (9.40±0.06)×10−1 (998.88±0.11)×10−3

p–value < 10−4 < 10−4 < 10−4 0.25 0.27 0.27
Classification Rate 76.92 76.40 76.56 52.24 51.19 51.81
AUC 0.88 0.88 0.88 0.61 0.60 0.60
Sensitivity 73.68 84.21 84.21 – – –
Specificity 90.00 85.00 80.00 – – –

N3 Patients 0.80±0.07 (9.58±0.04)×10−1 (999.22±0.07)×10−3 1.01±0.11 (9.47±0.06)×10−1 (999.02±0.11)×10−3

Controls 0.93±0.09 (9.51±0.05)×10−1 (999.10±0.09)×10−3 1.06±0.11 (9.45±0.05)×10−1 (998.97±0.10)×10−3

p–value < 10−4 < 10−4 < 10−4 0.21 0.26 0.21
Classification Rate 76.57 76.41 75.96 54.32 53.27 53.26
AUC 0.88 0.87 0.88 0.62 0.61 0.62
Sensitivity 84.21 84.21 84.21 – – –
Specificity 85.00 85.00 85.00 – – –

the 3 × 3 neighborhood systems and chose the top three neighborhood systems with the highest
AUC. Table 3 shows the best basic neighborhood systems and their statistical and classification
results on T1 images.

As shown in Table 3, there is a statistical difference between the GLAM features of the two
groups (p< 10−4) in the CST region. The difference is comparable to the statistical difference of
the best GLCM on T1 images (P45o,1). The classification performance of the GLAM features are
also comparable with the best GLCM with a slightly better result (76.92%). The highest AUC is
0.88 for all features of neighborhood structure N1 and N2, and f2 and f5 in neighborhood structure
N3. The optimal sensitivity and specificity range from 73.68% to 84.21% and from 80% to 90%,
respectively. Similar to the GLCM, no significant difernce is observed on the features extracted
from occipital lobe. By comparing the performance of the best GLAM and the best GLCM, one
can see that the GLAM features perform equally or slightly better than those of the GLCM in T1
weighted images.

3.4. GLAM - T2

To compute the GLAM features on T2 images, similar to T1 images, we look at all 3 × 3
neighborhood systems and select the top three neighborhood systems with the highest AUC. The
best basic neighborhood systems and their statistical and classification results on T2 images are
shown in Table 4.

Similar to the GLCM features of T2 images, there is a statistical difference between the GLAM
features of the ALS patients and that of the control subjects (p< 10−5). One of the best neigh-
borhood systems for T2 is N3, which includes only one neighborhood pixel. One may note that
the GLAM with one neighborhood pixel is equivalent to the GLCM. For instance, in this experi-
ment N3 is equivalent to P180◦,1 (or P0◦,1) in the GLCM. Comparing the statistical properties and
the AUC, one can see that the features of GLCM P180◦,1 (Table 2) are equivalent to the GLAM
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Table 4: Accuracy, sensitivity, and specificity of the four GLAM features on the T2 weighted images. Four neigh-
borhood system the classification performance of which are the highest are shown. f2, f3, and f5 represent contrast,
correlation, and inverse difference moment normalized, respectively. Sensitivity and specificity are reported for
significantly different features.
Slice Location CST Occipital Lobe

GLAM Texture Feature f2 f3 f5 f2 f3 f5
N1 Patients 2.13±0.28 (8.90±0.15)×10−1 (997.97±0.25)×10−3 2.90±0.46 (8.49±0.25)×10−1 (997.24±0.42)×10−3

Controls 2.71±0.31 (8.58±0.18)×10−1 (997.45±0.28)×10−3 3.07±0.42 (8.40±0.23)×10−1 (997.09±0.38)×10−3

p–value < 10−5 < 10−5 < 10−5 0.29 0.33 0.30
Accuracy 81.18 82.15 81.35 52.18 52.15 51.97
AUC 0.93 0.92 0.92 0.60 0.59 0.60
Sensitivity 89.47 89.47 89.47 – – –
Specificity 90.00 90.00 90.00 – – –

N2 Patients 1.95±0.25 (8.99±0.13)×10−1 (998.14±0.23)×10−3 2.67±0.41 (8.62±0.22)×10−1 (997.46±0.38)×10−3

Controls 2.48±0.29 (8.70±0.16)×10−1 (997.66±0.26)×10−3 2.83±0.37 (8.53±0.21)×10−1 (997.32±0.34)×10−3

p–value < 10−5 < 10−5 < 10−5 0.22 0.26 0.25
Accuracy 80.26 80.84 80.75 52.26 52.25 52.15
AUC 0.92 0.92 0.92 0.62 0.61 0.61
Sensitivity 89.47 89.47 89.47 – – –
Specificity 90.00 90.00 85.00 – – –

N3 Patients 1.58±0.21 (9.01±0.15)×10−1 (998.48±0.19)×10−3 2.20±0.32 (8.86±0.17)×10−1 (997.89±0.30)×10−3

Controls 2.03±0.24 (8.94±0.13)×10−1 (998.06±0.22)×10−3 2.33±0.31 (8.79±0.17)×10−1 (997.77±0.29)×10−3

p–value < 10−5 < 10−5 < 10−5 0.19 0.26 0.19
Accuracy 80.22 80.78 79.82 54.48 53.19 54.38
AUC 0.92 0.92 0.92 0.62 0.61 0.62
Sensitivity 78.95 84.21 84.21 – – –
Specificity 95.00 95.00 90.00 – – –

features computed by N3 neighborhood system (Table 4). In other words, since the GLAM is a
generalization of the GLCM, it automatically computes the GLCM features. The highest classifi-
cation accuracy is 82.15% corresponding to f3 of N1 neighborhood system. The highest AUC is
0.93 which is slightly higher (0.01) than the highest AUC of GLCM. The optimal sensitivity and
specificity range from 78.95% to 89.47% and from 85% to 95%, respectively. As expected, there is
no statistical difference in the occipital lobe area.

To visualize the power of the texture features, the best features on the GLCM and GLAM
extracted from CST region on T1 and T2 weighted images are depicted in Figure 6. These features
are computed by P45◦,1 on the GLCM of T1 images, P0◦,1 on the GLCM of T2 images, and
N1 neighboring systems showed in Tables 3 and 4 of the GLAM T1, and T2 weighted images,
respectively. The mean and standard deviation of the two groups are also shown for comparison.
One can observe that the features extracted from T2 images show a better separation compared
to that of T1 images.

3.5. ROI-PF

The last analysis is the ROI-PF measured on the T1 images of the two groups. As shown
in Table 5, there was mild atrophy in the CST slice in patients as evident by a 6% reduction in
ROI-PF. A reduction in ROI-PF calculated from the occipital lobe was not statistically significant
(Table 5)

A moderately good separation existed in the ROI-PF between groups on the CST slice (Figure7).
Increased variability is evident in the ALS group compared to the control group which had a more
uniform distribution with the exception of a single outlier (case 16). Notably, this case was not an
extreme outlier in the texture analyses.

Group difference in mean ROI-PF, its classification accuracy and the AUC were lower compared
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: The texture feature values for all subjects as well as the mean and the standard deviation of the two
groups. The first, second, and third columns represent contrast (f2), correlation (f3), and inverse difference moment
normalized (f5), respectively. The first row shows the features of the GLCM, P45◦,1, on the T1 images. The second
row represents the features of the GLCM, P0◦,1, on the T2 images. The third row depicts the features of the GLAM
with N1 (Table 3), on the T1 images. The last row shows the features of the GLAM with N2 (Table 4), on the T2
images.
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Table 5: Statistical analysis and classification results on the ROI-PF measured on the T1 images of ALS patients
and control subjects.

Slice Location CST Occipital Lobe

Patients 0.79±0.05 0.74±0.08
Controls 0.84±0.04 0.78±0.07
p–value 0.001 0.152

Accuracy 71.16 56.45
AUC 0.80 0.63
Sensitivity 57.89
Specificity 95.00

Figure 7: The ROI-PF measured on the T1 weighted MR images.

to those of the GLCM texture features. Comparing the ROI-PF (Figure 7) with the features of the
GLCM and the GLAM (Figure 6) shows a better separation in texture features between the two
groups. Nonetheless, there was a moderate correlation (Pearson correlation number, r) between
the texture features and ROI-PF (0.668 ≤ |r| ≤ 0.744).

4. Discussion

Textures in MR images are defined as patterns of image intensity, including the patterns that
cannot be seen by humans. In this paper we demonstrate the power of texture analysis to differen-
tiate the images of ALS patients versus control subjects. Using the GLCM and the GLAM texture
analysis methods we achieved high classification rates with more than 82% accuracy and an AUC
of 0.93. The significance of this work is that it uses conventional T1 and T2 weighted MR images
which are routine and widely available acquisition methods. So far, the usage of conventional
MR images is limited to ruling out diseases mimicking ALS, as they have had poor diagnostic
accuracy. Different studies that use visual assessment report CST hyperintensity with a large vari-
ability [4, 5, 50, 51]. Moreover, CST hyperintensities have been observed in healthy subjects [52]
and in patients with other diseases [53, 54] and thus is neither specific nor sensitive to ALS. VBM
has been widely used to study regional atrophy. However, the nature of the method does not make
it amenable for classification purposes. The discriminatory potential of cortical thickness quantiza-
tion has not yet been reported. The potential diagnostic capacity of non-volumetric imaging been
alluded to by reports in a few studies of varying sensitivities and specificities. Recent meta-analysis
on pooled data from 30 different DTI studies [55] reported sensitivity of 0.65, specificity of 0.67,
and AUC of 0.76, concluding that the capability of DTI to make a diagnosis of ALS is only mod-
est. In single and multivoxel MRS studies, sensitivity and specificity have ranged from 54-100%
and 37-100% [18, 45, 56, 57, 58]. However, these studies used advanced acquisition techniques
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that require varying degrees of operator dependence. The proposed texture features open up new
possibilities to use standard anatomical images to quantify brain pathology in patients with ALS.

To our best knowledge, this paper is the first that uses the texture analysis capability of the
gray level Aura matrix to study abnormalities in a disease. We observed that the GLAM features
are superior to that of the GLCM. The reason is that they are the generalization of the GLCM. In
other words, the GLAM features include the GLCM features as well (e.g., the basic neighborhood
system with one neighbor equivalent to the GLCM). As a result, using the GLAM can provide
similar or better performance compared to the GLCM, though the improvement was very slight in
our experiments. One may also note that GLAM is computationally more costly than the GLCM,
as it needs to consider different neighborhood systems.

We quantified the parenchymal volume fraction within images (ROI-PF) to explore the possi-
bility that atrophy is responsible for texture differences. This was a modified technique of BPF
which has previously shown global cerebral atrophy in ALS [3, 59]. The modification to the BPF
was performed to make the comparison between texture features and parenchymal fraction value
fair and in the same region of interest. Although ROI-PF was reduced in the CST slice, it was an
inferior discriminator compared to texture features as indicated by the lower classification rate and
AUC. Furthermore, correlations were only modest between ROI-PF and texture features. Thus,
although it is possible that cerebral atrophy contributes to the changes in texture features in ALS,
there must be additionally other pathological elements that texture analysis is sensitive to. The
specific nature of the responsible pathology is not apparent by the reported findings. It is believed
however to be due to ALS given the regional specificity, as texture changes were present in the
CST image but not the occipital lobe image.

This study has some limitations. Image acquisition required user input to angulate the coronal
slices into the plane approximately in parallel to the CST. The imaging pipeline analysis is not
completely user-independent as the ROI was manually delineated. Development and application
of 3D texture analysis would mitigate these issues. Additionally helpful would be refinement of
such a technique to allow spatial visualization of texture changes, as this would allow a further
understanding of the nature and extent of motor and extra-motor cerebral degeneration. Although
we found texture analysis of T2 images to be robust, a direct comparison between T2 and T1
weighted images must be made with caution due to the difference in slice thickness. Future studies
must determine the sensitivity of texture analysis methods to disease progression.

5. Conclusions

In this paper for the first time we present texture analysis as a potential biomarker for cerebral
degeneration in ALS. We applied the GLCM and GLAM methods to conventional T1 and T2
MR images. We observed that the GLAM features slightly outperform the GLCM features. The
statistical properties of the texture features show a significant difference between patients with ALS
and control subjects. The classification showed high performances with higher accuracy, sensitivity,
and specificity for T2 compared to that for T1 weighted images.
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Appendix A. Textural Features

Table A.6 shows the texture features used in this paper. P is the normalized GLCM/GLAM,
G the number of gray levels. µx, µy, σx,, and σy indicate means and standard deviations of the row

and column sums of P . Px+y(k) =
∑G

i=1

∑G
j=1

i+j=k

P (i, j) and Px−y(k) =
∑G

i=1

∑G
j=1

|i−j|=k

P (i, j).

Table A.6: Texture features defined for the GLCM and the GLAM.
Texture Feature Formula

Angular second moment f1 =
G
∑

i=1

G
∑

j=1

(P (i, j))2

Contrast f2 =
G
∑

i=1

G
∑

j=1

|i− j|2P (i, j)

Correlation f3 =
1

σxσy

G
∑

i=1

G
∑

j=1

ijP (i, j)− µxµy

Sum of Squares: Variance f4 =
G
∑

i=1

G
∑

j=1

(i− µ)2P (i, j)

Inverse difference moment normalized f5 =
G
∑

i=1

G
∑

j=1

1
1 + (i− j)2/G2P (i, j)

Sum average f6 =
2G
∑

i=2

iPx+y(i)

Sum variance f7 =
2G
∑

i=2

(1− f8)
2Px+y(i)

Sum entropy f8 = −
2G
∑

i=2

Px+y(i)log(Px+y(i))

Entropy f9 = −
G
∑

i=1

G
∑

j=1

P (i, j)log(P (i, j))

Difference variance f10 = variance of Px−y

Difference entropy f11 = −
G−1
∑

i=0

Px−y(i)log(Px−y(i))

Homogeneity f12 =
1

1 + |i− j|

G
∑

i=1

G
∑

j=1

P (i, j)
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