
Beyond Faster Photon Map Global
Illumination

by

Daniel Neilson
and

Yee-Hong Yang

Technical Report TR 04-21
October 2004

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada

Abstract

Precalculating irradiance for photon maps is an enhancement to the photon
mapping method that was proposed by Christensen to reduce redundant irradiance
calculations during rendering. In this enhancement, irradiance values are precalcu-
lated at the location of photons in the photon map prior to rendering and are stored
within the photon’s data structure. These precalculated irradiance values are then
used during rendering. However, this enhancement may calculate irradiance values
that are not used during rendering. This paper presents an improvement to Chris-
tensen’s method, called on-demand caching, that removes these unused irradiance
calculations by performing irradiance calculations during rendering and caching
the results in the photon map.

1 Introduction

Global illumination is very important when synthetically generating photorealistic im-
ages. As such, it is desirable to have global illumination algorithms that are as efficient
as possible to allow for more complex and detailed scenes to be generated with the
same resources.

The photon mapping method is a technique that can be used to calculate global
illumination, including caustics, in a manner that is not tied to the geometry in the
scene. This independence of the photon map from the geometry in the scene has made
the method very popular within the graphics community. In an effort to improve the
efficiency of the photon mapping method, Christensen [2] devised an improvement to
the method that involves precalculating the irradiance in the scene prior to rendering
and using these precalculated results during rendering. However, when using this im-
provement it is possible that irradiance values that are not needed during rendering will
be calculated.

To remedy this inefficiency, we propose an improvement to Christensen’s irradiance
precalculation method that delays irradiance precalculation to the rendering stage of the
photon mapping method. By delaying irradiance calculation to the rendering stage we
are able to only calculate irradiance values that will be used while still allowing those
values to be cached for later use. We show that this improvement can provide a speedup
of 1.2 to 2.2 times in irradiance calculation, and will perform no more calculations than
Christensen’s irradiance precalculation method in the worst case.

2 Background

In this section, we briefly review the photon mapping method for computing global
illumination as well as an original improvement proposed by Christensen [2] to speed
up the method.

2.1 The Photon Map Method

The photon map is an implementation of the backward ray tracing method [1] that
has seen increased popularity in recent years. The photon map method divides im-

age generation into two phases; construction of two illumination maps (one for global
illumination, and one for caustics), and rendering.

The illumination map is constructed by emitting light photons from the light sources
in the scene and tracing them using Monte Carlo techniques [4]. Based on the proper-
ties of the material that a photon hits, the photon will either be reflected, transmitted,
or absorbed (note that absorption only occurs in diffuse materials). When a photon
is absorbed, its position, energy, incident direction, and a few flags are stored into an
illumination map; if the photon is coming from a specular object then it is stored in
the caustics map, otherwise it is stored in the global illumination map). Typically, this
requires 18.25 bytes of storage per photon [4] and thus each photon is stored in a 19
byte structure in which 6 bits are unused. Once all photons have been emitted, the illu-
mination map is sorted into a kd-tree structure to speed up illumination calculations.

In the rendering phase, standard ray tracing techniques are used with a difference
only in the method used to calculate incident illumination on diffuse surfaces. If the
contribution of the ray to the rendered image is low, then the illumination is calculated
from the power and density of the photons nearest to the sample. On the other hand,
when the ray’s contribution to the rendered image is high, the incident illumination
is calculated by combining direct illumination, caustics computed from the caustics
illumination map, and soft indirect illumination computed with final gathering using
the global illumination map, which is simply a single level of distributed ray tracing [3]
in which all illumination is calculated via the illumination map.

2.2 Precomputing Irradiance

Christensen [2] proposed a method for improving the efficiency of the final gathering
portion of the photon map method by a factor of 5 to 7. He observed that rays from
different final gathering calculations compute the irradiance repeatedly at nearly the
same location. Thus, he proposed precalculating the irradiance at each photon location
and storing this precalculated irradiance value within the photon structure. Along with
the precomputed irradiance, Christensen also stores the surface normal at the photon
location; this normal is used when looking up an irradiance value during final gathering.
In all, Christensen’s proposed method increases the size of a photon by 5 bytes to
24 bytes (6 bits of which are unused); 1 byte is added to store an encoding of the
surface normal, and 4 bytes are added for the irradiance using Ward’s shared exponent
representation [6].

During final gathering, when an irradiance value is needed at a point x the nearest
photon with a similar normal to the surface normal at x is found. The precomputed
irradiance stored in this photon is then used as the irradiance at x.

3 On-demand Caching of Irradiance Values

The irradiance precalculation method for photon maps proposed by Christensen [2]
blindly calculates the irradiance at all photon locations, regardless of whether or not a
given calculation will actually be used while rendering the image. If a large number
of these precalculated irradiance values are not used while rendering the image, then

performance of the ray tracer will suffer. In this section, a modification to Christensen’s
method, called on-demand irradiance caching, is presented that eliminates calculating
irradiance values that are not used to render the image.

Rather than precalculating irradiance at every photon location, irradiance is calcu-
lated only as it is needed. To do this, a 1-bit flag is added to each photon that records
whether or not the irradiance has been calculated at the photon location. Fortunately,
since there are 6 bits of unused space in each photon, adding this flag does not increase
the size of a photon.

During final gathering, the irradiance at the point x is calculated by finding the
nearest photon in exactly the same manner as in Christensen’s method. The flag is then
checked, and if it indicates that the irradiance at the photon’s location has not yet been
calculated then the irradiance is calculated at the photon’s location. The calculated
irradiance is then stored in the photon, and the flag is set to indicate that the irradiance
has been calculated. The calculated irradiance stored in the photon is then used as the
irradiance at x.

By modifying Christensen’s method in this manner, we no longer calculate any
irradiance values that will not be used during rendering. Thus, in the worst case we
would calculate the same number of irradiance values as in Christensen’s method. But,
we expect that, on average, the reduction in irradiance calculations performed will
result in a noticeable speed-up. Furthermore, Christensen’s method offers no speed-up
(in fact it slows down rendering) if the number of irradiance calculations used in final
gathering is less than the number of photons in the illumination maps. By making the
modification proposed in this paper this restriction on the applicability of the method
is removed; since irradiance values are only calculated as they are required, there will
be no slow down if the number of irradiance values needed is less than the number of
photons.

4 Results

To test the effectiveness of the on-demand irradiance caching enhancement we con-
structed a test suite of 40 scenes which were rendered using both irradiance precalcula-
tion and on-demand irradiance caching. Each scene in the test suite is of a 40×40×40
enclosed box, with a 5 × 5 rectangular area light at the top, and containing a variable
number of diffuse spheres. The spheres in each scene are generated such that scene one
contains one randomly generated sphere, and scene i + 1 contains the same spheres as
scene i plus one additional randomly generated sphere; each sphere was generated with
a radius in the range [3, 5].

Each of the scenes in the test suite was rendered to a 400 × 400 pixel image on a
Pentium 4 2.26 GHz processor running Redhat Linux 9.0 (kernel version 2.4.20-20.9)
and version 3.3.2 of the gcc compiler suite. The photon map for each scene contained
500,000 photons with the nearest 300 photons within a maximum radius of 3.0 being
used for each irradiance calculation.

Figure 1 shows the total time taken to ray trace each of the 40 scenes in the test suite
using only indirect illumination calculated via the photon map for illumination. By not
calculating any direct lighting for these images we are able to focus on only the portion

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40

T
i
m
e

(
s
e
c
o
n
d
s
)

Scene Number

On-demand caching
Precalculated

Figure 1: Time (in seconds) spent ray tracing the 40 test scenes with Christensen’s
irradiance precalculation method and the new on-demand irradiance caching method.

of ray tracing that is relevant to the photon map; namely photon map construction,
irradiance precalculation (when applicable), and irradiance estimation via the photon
map. By using the on-demand irradiance caching method, this portion of the ray tracing
required anywhere from 46% to 84% of the time that was required when precalculating
irradiance. As seen in figure 2, this corresponds to a speedup from 1.2 to 2.2 times.

The large jump in the time required by the irradiance precalculating method at scene
33 corresponds with the addition of a single large sphere very near to the light source.
The addition of this sphere causes some areas of the scene, that are not reached very
often during final gathering, to contain a very low photon density. Since the irradiance
precalculating method precalculates irradiance at all photon locations, regardless of
whether a given irradiance value will ever be used, the method ends up calculating
irradiance throughout these low photon-density regions resulting in a substantial slow
down in generating the image.

5 Conclusions

In this paper we have addressed a problem with Christensen’s precomputation of irradi-
ance for photon maps that results in irradiance values being calculated even when they
might not be used in ray tracing. We present an enhancement that has been shown to
speed up Christensen’s method by 1.2 to 2.2 times. In the worst case, the enhancement
performs identical to Christensen’s method of irradiance precalculation.

6 Acknowledgments

The authors would like to thank the generous funding of: NSERC, the NSERC PGS-A
Postgraduate Scholarship Program, the Alberta Informatics Circle of Research Excel-

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25 30 35 40

S
p
e
e
d
u
p

Scene Number

Speedup

Figure 2: Speedup in the 40 test scenes for using the new on-demand irradiance caching
method as opposed to Christensen’s irradiance precalculation method.

lence’s (iCORE) Graduate Student Scholarship Program, the Department of Comput-
ing Science, and the University of Alberta.

References

[1] J. Arvo. Backwards ray tracing. In Developments in Ray Tracing, volume 12 of SIGGRAPH
Course Notes, 1986.

[2] P. H. Christensen. Faster photon map global illumination. Journal of Graphics Tools, 4(3):1–
10, 1999.

[3] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In ACM SIGGRAPH, pages
137–145, 1984.

[4] H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A.K. Peters, 2001.
[5] D. Neilson. Efficient algorithms in motion blurring and photon mapping. Master’s thesis,

University of Alberta, August 2003.
[6] G. Ward. Real pixels. In J. Arvo, editor, Graphics Gems II, pages 80–83. Academic Press,

1991.

