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Abstract

Providing service in cloud is a popular trend nowadays. Users request resources

from a shared pool in a framework like Hadoop, and the Hadoop fair scheduler

controls the progress of tasks from users.

In cloud, usually multiple resource types are available. The heterogeneous

user demands and competition between users in cloud make the fairness control

of multiple-resource allocation much more complicated than the single-resource al-

location. A recent work proposed a Dominant Resource Fairness (DRF) method for

multiple-resource allocation, which has been included in Hadoop Next-Generation.

However, DRF may not lead to desired fairness performance as a result of the

indivisibility of the user demands. This thesis proposes a Time Division Allocation

(TDA) method with time slots for two users. The TDA method allocates resources

over the time slots and each time slot is assigned a different allocation. By adjusting

the length of the time slots and the resource allocations, TDA method can achieve

a global optimal max-min fairness. A further study shows that two time slots are

sufficient to achieve optimality.

Besides the analysis about fairness, this thesis also explores the theoretical per-

formance bounds for two users. This analysis illustrates the relationship between
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user demands and the maximum dominant resource share. The evaluation shows

that the TDA method performs better than the DRF method.
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Chapter 1

Introduction

1.1 Cloud Computing

Cloud computing is an Internet platform widely deployed with a big impact in mod-

ern life. The transformation from traditional service paradigm to cloud computing

environments is a popular trend [1]. A well-recognized definition of cloud com-

puting from the National Institute of Standards and Technology -US Department

of Commerce(NIST) [2] is that: “Cloud computing is a model for enabling ubiqui-

tous, convenient, on-demand network access to a shared pool of configurable com-

puting resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service

provider interaction.”

The cloud services can be offered in three famous models: Infrastructure as a

service (IaaS) where some basic services are provided including virtual machines,

storage and network resources (e.g., Amazon S3), Platform as a service (PaaS)

which offers environments like database, programming compiling environment or

even operation system (e.g., MicroSoft Azure), or Software as a service (SaaS)

when some software services are provided (e.g., Google Apps) [2] [3]. IaaS is cur-

rently the most basic but successful cloud service model extensively supported by

many cloud service providers such as Amazon EC2 [4]. IaaS users utilize services

in this environment including storage of web data, and request computing capability
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from a cluster of data centers.

Many cluster computing frameworks, such as Hadoop, Dryad and Mesos, pro-

vide services for users in an IaaS model [5][6][7][8]. Hadoop, a widely used dis-

tributed cloud framework by companies like Amazon and Facebook, allows for the

distributed processing of large data sets across clusters of computers [5]. Hadoop’s

architecture consists of two major components: the storage component called the

Hadoop Distributed File System (HDFS) is used to store files in replicas across

multiple machines [9], and the processing component consisting of “map” function

and “reduce” function, called MapReduce, is to process input files and generate

large output datasets in parallel [10][11].

The MapReduce process is shown in Figure 1.1. The MapReduce engine has a

master (called JobTracker) that is responsible for the MapReduce jobs submitted by

the users. The map function, which is defined by the user, takes input data files and

produces intermediate results (map task). After that, the reduce function, which is

also defined by the user, accepts the intermediate results and finishes the final pro-

cessing (reduce task) [11]. The master controls a number of machines in the cluster

as workers (called TaskTrackers) and assigns the tasks to available workers. The

workers can communicate with the master through a frequent heartbeat (message

of status).

The map function and reduce function are both defined by users, and the re-

source demands vary between tasks. The map task usually requires more CPU

cores while the reduce task usually consumes more memory. Thus, in current de-

sign, two types of resource slots are defined, map slot and reduce slot [12], each

with a pre-defined amount of resources. Each worker will be assigned a number of

map slots and a number of reduce slots by the master. Although this resource alloca-

tion method is not actually based on demands of the tasks, the method is frequently

deployed because it is easy to manage [2] [13].

Since the resources in cloud computing are shared by users, it is important to

achieve fairness among users. Fairness does not only mean simply equalizing the

share of the users. It also means controlling or scheduling for a global optimization
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Fig. 1.1. MapReduce Process

for the system. This is why fairness is always a critical consideration. By control-

ling the resource allocation, the usage of users can be regulated and the progress of

different tasks can be balanced.

Fairness has been well investigated in the literature, for example, the fairness of

channel sharing in communication systems. Compared to the fair resource alloca-

tion in communication systems, the resource allocation in a cloud environment is

much more challenging due to the following reasons [14].

• In a communication system, there is only one resource (e.g., spectrum band-

width). In a cloud environment, in order to satisfy the various demands from

cloud service users, two or more types of resources are needed. For example,

MapReduce jobs consume both CPU cores and memory.

• The demands of tasks submitted from users are highly heterogeneous in terms

of the amount of different types of resources needed. For example, some

tasks may need a lot of CPU cores, while others may need a lot of memory
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spaces. The multidimensional resource allocation in a cloud environment is

much more complicated than the single-dimension resource allocation in a

communication system.

• Users in a cloud environment may lie about their demands to gain extra ben-

efits (usually means more resource share).

The default scheduling model in Hadoop is a First-In-First-Out (FIFO) sched-

uler [13]. This scheduler is easy to implement but some large jobs with long pro-

cessing time will delay the whole operation. Besides FIFO, in some scenarios the

system has a fair sharing scheduler with job priorities [13]. In this scheduler, the

allocation of resource slots is optimized on time average.

The current scheduling strategy of resource allocation is neither fair nor effi-

cient. There is no fairness control in a simple FIFO model, and the fair sharing is

optimized from time prospective not from resources prospective. A research in [15]

has analyzed the usage of a data center cluster at Twitter for over one month. The

result shows that: for CPU, although 80 % total capacity are reserved, the cumula-

tive CPU usage is only about 20%. For memory, the usage rate is under 50% for

the same reservation rate of 80%. There is also a study [16] indicating that the CPU

utilization at Amazon EC2 is below 10%.

The resource allocation and scheduling strategy in current model of cloud com-

puting are quite naive, which limits the overall performance of the cloud service.

First, the resources allocated for tasks are in a granularity of a resource slot. For

example, if a resource slot includes 10 CPU cores and 10GB memory, and a task

needs 1 CPU core and 1GB memory, the task still needs to be allocated one resource

slot, resulting in resource waste. Second, during the allocation process, fairness is

not well controlled or sometimes even not considered.

There are numerous research efforts trying to elevate the performance including

utility optimization, task priority scheduling, prediction, and fairness among users

[2] [17].

Some works are limited in the direction of single resource [18]. The work in
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[19] proposes a scheduler considering fairness for distributed clusters. But this

scheduler has difficulty in supporting multiple resources. Other works such as [12]

discuss multiple resource allocation in resource slots. All these allocation mod-

els fail to adapt to the demand heterogeneity and resource competition situation in

cloud environments.

A recent work [14] makes a big progress in this area. To balance tasks with

different resource demands, this work comes up with an original definition of “fair-

ness” for multiple resources. In this work, the fairness is measured by each user’s

maximum normalized resource share, called dominant resource share. Based on

this fairness measurement, a multiple-resource allocation strategy is proposed. The

resources are no longer allocated in units of resource slots, but can be controlled

based on the real demands of the tasks. Details of the multiple-resource alloca-

tion strategy are given in Chapter 2. This dominant resource allocation method is

implemented in Hadoop Next-Generation (YARN) for resource management and

scheduling [20][21]. The Mesos platform employing dominant resource allocation

method proposed in paper [7] is used at Twitter and other organizations [8].

1.2 Thesis Motivations

Dominant Resource Fairness in [14] gives a novel solution to the multiple-resource

allocation in cloud computing environments. The authors of [14] present features of

heterogeneous resource demands in data centers. According to the analysis of the

demands, the drawback of resource slot based allocation is identified. To adapt to

the computing environment with competition and heterogeneous users, the authors

come up with a practical Dominant Resource Fairness (DRF) Allocation method.

Following works extend DRF in various ways. Works in [22] and [23] propose

a unify framework to describe the fairness and efficiency trade-offs. The work in

[18] analyzes the strength and limitation of DRF. The work in [24] generalizes

this allocation method to a more complicated scenario with heterogeneous cloud

servers. The work in [7] implements a framework using DRF method. Other works
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like [25] [26] extend DRF in network resources and packets processing.

Compared to the resource slot based allocation (in which a task is assigned a

number of resource slots), the DRF allocation based on task demand seems to be

more delicate in resource management. In this thesis, using the same dominant

resource definition, we propose to achieve better fairness and efficiency in a time

sharing mode. In specific, we propose that the time in the system is divided (usu-

ally not equally divided) to a number of intervals, and in each interval, a resource

allocation scheme is implemented. We target at the overall fairness and resource uti-

lization efficiency, by determining the number of intervals needed and the resource

allocations in the intervals.

1.3 Thesis Outline

This thesis consists of six chapters. Chapter 1 is the introduction, in which a

overview of the cloud service configuration and the fairness and efficiency issues

in cloud computing are presented. In Chapter 2, we have a detailed illustration of

the multiple-resource allocation background. In Chapter 3, we propose the Time

Division Allocation (TDA) method which improves the fairness and efficiency in

cloud computing. In Chapter 4, we discuss the theoretical upper bounds that the

time division allocation can achieve. Chapter 5 presents performance evaluation of

our allocation method. Chapter 6 includes the conclusion and future work.
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Chapter 2

Background and Literature Review

In this chapter, we will have a review of the background in cloud resource alloca-

tion. The challenge in allocating multiple resources and the drawback of single-

resource allocation method are identified. Then a review of the procedure of DRF

allocation is given.

2.1 Heterogeneous Tasks of Users

One major challenge in a multiple-resource environment is the heterogeneity in user

tasks [27]. Figure 2.1-2.4 illustrate the tasks’ resource usage statistics from Google.

Demands of 3,535,029 tasks belong to 4 job types submitted to the clusters ranging

widely in both CPU and memory. These figures show a normalized CPU core

and memory demand. The original usage statics are obscured by Google using a

linear transform [28][29][30] [31], but the characterization of resource demands is

reserved. Since CPU is allocated by cores, the CPU demands take discrete values.

The demand of memory is in a continuous manner. Another fact of the task demands

is the distinction among different types of jobs. As shown in Figure 2.1-2.4, there

are 4 different types of jobs in these 3,535,029 workloads. Tasks in job type 0

mainly demand memory, while Type 1 requires more CPU cores. Type 2 may

consist of some large tasks because the demands of CPU and memory are relatively

large, while the tasks of job type 3 can be considered as memory-heavy tasks.
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Fig. 2.1. Heteregerous Task Demand of Job Type 0 from Goolge Cluster Data

Fig. 2.2. Heteregerous Task Demand of Job Type 1 from Goolge Cluster Data
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Fig. 2.3. Heteregerous Task Demand of Job Type 2 from Goolge Cluster Data

Fig. 2.4. Heteregerous Task Demand of Job Type 3 from Goolge Cluster Data
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Based on this investigation, it is not difficult to understand why allocations using

resource slots may lead to poor performance in fairness and result in an under-

utilization of the system. The resource slot based allocation only has two different

types of resource slot, each with a pre-defined amount of CPU cores and memory

space. But the actual demand distribution is far more complicated. Therefore, the

resource slot allocation is unsuitable for resource allocation for various demands in

an environment with multiple resources.

2.2 Single-Resource Allocation Methods

As a key concept in cloud computing, resource allocation is discussed in many

papers. Even though the situation for multiple resources is different from that with

a single-resource, one straightforward idea in cloud computing is to use single-

resource allocation.

For single-resource allocation, max-min fairness is a widely used criterion [32].

The major point of max-min fairness is trying to maximize the share of the user

with minimum resources. For example, the max-min allocation of CPU in [33].

As another example, the work in [34] [35][36] use max-min fairness for link band-

width.

Despite that max-min fairness successfully solved lots of problems in single-

resource allocation, the extension to multiple-resources allocation is difficult. In

single-resource allocation, the resource share of a user can be described as the ratio

of the amount of allocated resources to the amount of total resources. However, in

multiple resource scenarios, for a user with different demands in multiple-resource

environment, the ratio of the amount of allocated resources to the amount of total

resources are different for one resource type to another. Therefore, it is challenging

to select a suitable fairness criterion.

In the popular computing framework Hadoop, this multiple-resource problem

is transformed to a single-resource problem by using resource slots [13]. For each

resource slot, it contains a fixed amount of resources. For example, in the MapRe-
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duce process[11], there are two types of slots, one with more CPU, mainly for map

tasks, and the other with more memory, mainly for reduce tasks. Apparently the

heterogeneity of the user tasks is not considered. As a result, the performance (the

utilization of the resources) is not ideal. It is shown that almost 70% of the resources

reserved in Amazon EC2 are wasted [15] [16].

Some research efforts like [19] try to achieve a better performance through a

fairness scheduling based on the running time of different tasks. But it still does

not work well with multiple resources. Other works [12] also attempt to solve the

resource allocation problem with different schedulers, but continue to use resource

slots as the allocation unit. The Fair scheduler [37] has a two-level architecture.

In the first level Hadoop allocates resources to different resource pools based on a

max-min fairness on resource slots. In the second level, each resource pool allocates

resources to users. The whole process is similar to the process of pouring water in

different buckets.

2.3 Multiple-Resource Allocation

The resource slot based allocation tries to simplify the problem to a single-resource

allocation problem, but it has been proven to be inefficient. Therefore, a com-

pletely different resource allocation method is needed, in which a new definition of

resource share in a multiple-resource environment is necessary.

For multiple-resource allocation in cloud environments, some specific proper-

ties should be satisfied [14] [38].

• Sharing Incentive: The multiple-resource allocation for any user should be

better than an even partition of all the resources. Since the default allocation

is by using resource slots, the multiple resource allocation should be at least

not worse than the resource slot based allocation.

• Strategy-proof: No user can benefit through a faked demand in competing

resources with other users. This is a requirement to avoid unfair competition
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between users.

• Pareto Efficiency: No one can obtain higher resource share without reducing

the share of another user. This property results in an optimization of the

system utilization.

According to these requirements, some allocation ideas turn out to be failures.

Suppose a situation when the system contains two types of resources: CPU and

memory. The capacity is represented as < 14 CPU, 14 GB >. The demand of a

task from user 1 and user 2 are < 1 CPU, 1 GB >, < 2 CPU, 4 GB >.

One straightforward resource allocation is to imaginarily assume the resource

demand values for different resource types have the same unit. Thus, for user

1 the resource demand is 2 per task while for user 2 the demand is 6 per task.

From fairness perspective, the allocation for two users are < 6 CPU, 6 GB >,

< 4 CPU, 8 GB >, respectively. However, for user 1 the allocation is worse than

an even partition < 7 CPU, 7 GB >, which is not good.

2.4 Dominant Resource Fairness

To deal with multiple-resource allocation, a new measurement is needed to embody

the heterogeneity of tasks and reflect the usage share comparison between users.

Recently, the work in [14] proposed the notion of dominant resource to solve this

problem. For a resource type, normalized resource share of a user is defined as the

ratio of the user’s demand of this resource to the total amount of this resource. Dom-

inant resource for a certain user is the resource that has the maximum normalized

resource share among all the resource types.

For example, suppose the system capacity is < 16 CPU, 12 GB >, the demand

of a task from two users are < 6 CPU, 1.5 GB >,< 1 CPU, 3 GB >. According

to the definition, the normalized resource shares for user 1 and user 2 are < 3
8
, 1
8
>

and < 1
16
, 1
4
>. User 1’s dominant resource is CPU, while user 2’s dominant re-

source is memory.
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Round Round 1 Round 2 Round 3 Round 4 Round 5
user 1 <6, 1.5> < 6, 1.5 > < 6, 1.5 > <12, 3> < 12, 3 >
user 2 < 0, 0 > <1, 3> <2, 6> < 2, 6 > <3, 9>

DRS compare 3
8
> 0 3

8
> 1

4
3
8
< 1

2
3
4
> 1

2
3
4

= 3
4

Remaining < 10, 10.5 > < 9, 7.5 > < 8, 4.5 > < 2, 3 > < 1, 0 >

TABLE 2.1
DOMINANT RESOURCE FAIRNESS ALLOCATION PROCESS.

The allocation scheduling process is a max-min fairness allocation based on

dominant resource share, referred to as dominant resource fairness (DRF) alloca-

tion. In each round, the allocation algorithm allocates resources to the user that has

obtained minimum dominant resource share in previous rounds.

The allocation process is shown in Table 2.1, in which bold font means the allo-

cation in the current round, and “DRS compare” means comparison between domi-

nant resource shares of the two users. In Round 1, a user is randomly picked, which

is user 1. A task from user 1 is allocated, which consumes < 6 CPU, 1.5 GB >.

So the dominant resource share of user 1 is 6
16

= 3
8
, while dominant resource share

of user 2 is 0. Since user 2 has a less amount of dominant resource share in round 1,

a task from user 2 is allocated in round 2, which consumes < 1 CPU, 3 GB >. So

after round 2, user 2’s dominant resource share is 3
12

= 1
4
, while user 1’s dominant

resource share is still 3
8
. Since user 2 still has a less amount of dominant resource

share after round 2, a task from user 2 is allocated in round 3, and thus, the to-

tal resources allocated for user 2 are < 2 CPU, 6 GB >. After round 3, user 2’s

dominant resource share is 6
12

= 1
2
, while user 1’s dominant resource share is still

3
8
. Since user 1 has a less amount of dominant resource share after round 3, a task

from user 1 is allocated in round 4. This procedure continues until after round 5,

when the remaining resource amount < 1 CPU, 0 GB > is not sufficient for a task

from any user. Figure 2.5 shows the resource allocation result.

The idea of dominant resource fairness satisfies the properties introduced in

Section 2.3.

• It can be proven that the DRF allocation is sharing incentive. The above ex-
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Fig. 2.5. Dominant Resource Fairness Allocation Result
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ample shows that the allocation is performed according to the demands of

all the users, and each user receives a better allocation than even partition re-

source allocation (i.e., each user is allocated 8 CPU cores and 6 GB memory).

• No users can benefit from lying about the demand. Since the allocation is

based on dominant resource, there is no benefit to lie about the non-dominant

resources. The allocation is based on the “actual” share of dominant resource.

So lying about the dominant resource demand does not bring about benefit

either.

• At last, the allocation stops until there are no enough resources for a task from

any user. Thus, no one can increase the resource share without sacrificing

another user, which proves the Pareto Efficiency property.

DRF allocation has attracted a lot of interests in research because of the novel

idea in multiple-resource allocation in cloud environments. Work in [39] discusses

DRF method and proposed another max-min fairness idea. Based on the require-

ments mentioned in [14], the work in [39] proposes an extension of max-min fair-

ness method which provided support for constraints. The constraints include condi-

tions, e.g., that tasks should work in the same virtual machine, in a specific operat-

ing environment, using special hardware and so on. An algorithm is also provided

in the paper that implements this mechanism. The DRF method is extended to

packet processing area in [40]. This paper focuses on the problem about the fair-

ness of resource allocation in controlling network-flows. When network-flows go

through the “middleboxes”, multiple resources like CPU, bandwidth are required

by the “middleboxes” to process the flows. Queueing for different flows requires

a fairness control for multiple resources. Thus the DRF-Queueing method in this

paper provides a solution for this problem. Work in [41] proposes an Hierarchical-

DRF based on DRF method, which is designed to support organizational hierarchy.

This work is for the scenario that when the resources are used between different

departments in one organization, multiple resources are shared in a tree architec-

ture. In industry, DRF is included in Hadoop Next-Generation (YARN) [20][21].
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Mesos, a resource sharing layer framework using DRF, is widely used by company

like Twitter [7][8].
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Chapter 3

Optimal Time Division Resource

Allocation

In this chapter, we focus on the time division idea for resource allocation. First, we

use a simple example to demonstrate the benefit of the time division idea. After

that, we formulate the time division dominant resource allocation problem and find

its optimal solution.

3.1 A Simple Example

Recall that the major objective of DRF allocation is to maximize the minimum

dominant resource share of the users.

Consider a system with two types of resources, and the capacity of the two

resources is given as < 15, 15 >. There are two users, user 1 and user 2. The

resource demand of a task from user 1 is < 5, 2 >. The resource demand of a

task from user 2 is < 3, 3.5 >. So user 1’s dominant resource is the first resource

type, while user 2’s dominant resource is the second resource type. Based on DRF

allocation, user 1 gets resources < 5, 2 >, and user 2 gets resources < 9, 10.5 >.

Accordingly, in the DRF allocation, the dominant resource share of the two users

are 5
15

and 10.5
15

.

Now consider two time slots with equal length. In the first time slot, user 1 gets
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resources < 15, 6 >, while user 2 gets nothing. In the second time slot, user 1 gets

nothing, while user 2 gets < 12, 14 >. So over the two slots, the dominant resource

share of user 1 is 15
15

and 0
15

, respectively, with an average being 7.5
15

. For user 2, its

dominant resource share over the two time slots is 0
15

and 14
15

, respectively, with an

average being 7
15

.

It is apparent that the minimum dominant resource share of the users in the

two-slot case ( 7
15

) is higher than that in the DRF allocation ( 5
15

).

This example demonstrates that by using more time slots, we may achieve better

fairness in terms of maximizing the minimum dominant resource share of the users.

In the above example, only two time slots with equal length are considered, and

in each time slot, an extreme resource allocation (i.e., one user is allocated as many

resources as possible, while the other user is allocated nothing). In general, for

overall optimization, the following questions should be answered: how many slots

should be used? How long is each slot? and what is the resource allocation in each

slot?

3.2 Problem Formulation

Consider a system with two users and a number, m, of resource types. The total

capacity of the resources are given as c = [c1, c2, ..., cm]T , where superscript T

means transpose operation. For user 1, the resource demand of one task is given

as [d11, d12, ..., d1m]T , in which d1i (i ∈ {1, 2, ...,m}) is the demand of resource

type i by a task of user 1. For user 2, the the resource demand of one task is

given as [d21, d22, ..., d2m]T . For each user, based on the total available capacity

of the m resources and the resource demands of a task of the user, the dominant

resource of the user can be identified, and the normalized resource share of the

dominant resource can be calculated, denoted as s1 = maxi∈{1,2,...,m}
d1i
ci

for user 1

and s2 = maxi∈{1,2,...,m}
d2i
ci

for user 2.

Consider the total time duration is 1. The total time duration is divided into

a number, K, of time slots, with duration t1, t2, ..., tK , respectively. So we have
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t1 + t2 + ...+ tK = 1.

In each time slot, a resource allocation is implemented. For resource utilization

efficiency, here we consider only the resource allocations that satisfy a Saturation

Property as follows.

Saturation Property: In each resource allocation, the remaining (unallocated)

resources are not sufficient for a task from any user.

All the possible allocations can be listed using an enumeration method. As-

sume that we have totally N such resource allocations (satisfying the Saturation

Property), denoted as a1, a2, ..., aN . Here ai (i ∈ {1, 2, ..., N}) can be represented

as ai = [ai1, ai2]
T , with ai1 and ai2 being the number of accommodated tasks from

user 1 and user 2, respectively, in resource allocation ai. Denote the set of all pos-

sible resource allocations as A , {a1, a2, ..., aN}.

In resource allocation ai, the dominant resource share of user 1 and user 2 are

given as bi1 , ai1s1 and bi2 , ai2s2, respectively. For presentation simplicity, we

also call vector bj , [bj1, bj2]
T as a resource allocation. This definition is used in

the sequel of this thesis. And the set of all possible resource allocations is denoted

asR , {b1,b2, ...,bN}.

Over the K time slots, K resource allocations are implemented, denoted as

r1, r2, ..., rK ∈ R. Without loss of generality, the K resource allocations are as-

sumed to be different from each other.1 Then the average dominant resource share

of user 1 and user 2 over the K slots are given as
∑K

j=1 rj1tj and
∑K

j=1 rj2tj , re-

spectively, where rj1 and rj2 are the first and second element in resource allocation

rj , respectively.

The objective is to maximize the minimum average dominant resource share of

the two users. Thus, we formulate the following time-resource allocation problem:

maxK,r1,r2,...,rK∈R,t1,t2,...,tK min(
K∑
j=1

rj1tj,
K∑
j=1

rj2tj)

subject to: t1 + t2 + ...+ tK = 1. (3.1)

1If two resource allocations over two slots are the same, then we can combine the two slots into
one single slot.
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In this formulation, constraints 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1,...,0 ≤ tK ≤ 1 are by

default and are omitted for brevity. Also, constraint that r1, r2, ..., rK are different

from each other is by default for the problem formulation, and is omitted here for

brevity.

All resource allocations in R can be grouped into three sets: set G1 includes

all resource allocations in which the dominant resource share of user 1 is higher

than that of user 2; set G2 includes all resource allocations in which the dominant

resource share of user 2 is higher than that of user 1; and set G3 includes all resource

allocations in which the dominant resource shares of user 1 and user 2 are equal.

Therefore, we haveR = G1 ∪ G2 ∪ G3.

To solve Problem (3.1), we have three cases:

• Case I: G1 = Φ (null set) or G2 = Φ. In other words, in any resource allo-

cation in R, the dominant resource share of a user is always higher than or

equal to that of the other user;

• Case II: G1 6= Φ, G2 6= Φ, and G3 = Φ;

• Case III: G1 6= Φ, G2 6= Φ, and G3 6= Φ.

Before we solve Problem (3.1) in the three cases, we have some preliminary

results as follows.

Proposition 3.1. For any two resource allocations, say ri and rj , if ri1 > rj1, then

we have ri2 < rj2.

Proof. We use proof by contradiction. Suppose ri1 > rj1 and ri2 ≥ rj2. Then

it means that for resource allocation rj , the remaining (unallocated) resources are

sufficient to accommodate at least one task from user 1. This contradicts the fact

that all resource allocations considered satisfy the Saturation Property.

This complete the proof.
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3.3 Case I and Solution

Without loss of generality, assume G2 = Φ. So ∀rj ∈ R, we have rj1 ≥ rj2.

Consider K resource allocations r1, r2, ..., rK from R, and the K resource al-

locations are ordered such that r11 < r21 < ... < rK1. Then from Proposi-

tion 3.1, we have r12 > r22 > ... > rK2. Further, since r11 ≥ r12, we have

rK1 > ... > r21 > r11 ≥ r12 > r22 > ... > rK2, which implies that among all

resource allocations r1, r2, ..., rK , resource allocation r1 has the smallest difference

between its two elements.

We have the following proposition.

Proposition 3.2. Consider K resource allocations r1, r2, ..., rK ∈ R such that

1) ∀rj , we have rj1 ≥ rj2 and 2) r11 < r21 < ... < rK1. Then to maximize

min(
∑K

j=1 rj1tj,
∑K

j=1 rj2tj), we have t1 = 1, t2 = t3 = ... = tK = 0.

Proof. Since ∀rj , we have rj1 ≥ rj2, then we have min(
∑K

j=1 rj1tj,
∑K

j=1 rj2tj) =∑K
j=1 rj2tj . Since r11 < r21 < ... < rK1, from Proposition 3.1 we have r12 > r22 >

... > rK2.

We use proof by contradiction. Assume that when min(
∑K

j=1 rj1tj,
∑K

j=1 rj2tj)

is maximized, the optimal values of t1, t2, ..., tK are given as t∗1, t
∗
2, ..., t

∗
K , and there

exists l ∈ {2, 3, ..., K} such that t∗l > 0. So the maximal value of the objective

function min(
∑K

j=1 rj1tj,
∑K

j=1 rj2tj) is given as
∑K

j=1 rj2t
∗
j .

Consider another set of the values of t1, t2, ..., tK , given as t†1, t
†
2, ..., t

†
K such

that t†1 = t∗1 + t∗l , t
†
l = 0, and t†v = t∗v for v ∈ {1, 2, ..., K}, v 6= 1, v 6= l. Then the

achieved objective function is given as

K∑
j=1

rj2t
†
j =

K∑
j=1

rj2t
∗
j + r12t

∗
l − rl2t∗l >

K∑
j=1

rj2t
∗
j

where the inequality comes from the fact that r12 > r22 > ... > rK2. This contra-

dicts the fact that t∗1, t
∗
2, ..., t

∗
K achieve the maximal objective function.

This completes the proof.

21



Then, it can be concluded that, for Case I, the optimal solution of Problem (3.1)

is: there is only one time slot, which implements the resource allocation that has

the smallest difference between its two elements. Further, for Case I (i.e., in any

resource allocation in R, the dominant resource share of a user is always higher

than or equal to that of the other user), the resource allocation that has the smallest

difference between its two elements is apparently the DRF allocation. Therefore,

for Case I, a single time slot using the DRF allocation is optimal.

3.4 Case II and Solution

In Case II, Problem (3.1) becomes

maxK,r1,r2,...,rK∈G1∪G2,t1,t2,...,tK min(
K∑
j=1

rj1tj,
K∑
j=1

rj2tj)

subject to: t1 + t2 + ...+ tK = 1. (3.2)

We have the following proposition for Case II

Proposition 3.3. For Case II, to achieve optimality in Problem (3.2), at least one

time slot should implement a resource allocation from set G1, and at least one time

slot should implement a resource allocation from set G2.

Proof. We use proof by contradiction. Assume that in an optimal solution of Prob-

lem (3.2), all time slots implement resource allocations from set G1. Then from

proof of proposition 3.2, the optimal solution of Problem (3.2) only has one time

slot. Denote the resource allocation implemented in the time slot as r1 = [r11, r12]
T ∈

G1. Since r1 ∈ G1, we have r11 > r12. Then the optimal objective function value of

Problem (3.2) is given as r12.

We randomly pick up a resource allocation from set G2, denoted as r2 = [r21, r22]
T ,

in which r21 < r22. We should have r22 > r12 (because otherwise, we have

r11 > r12 ≥ r22 > r21, which implies that resource allocation r2 does not sat-

isfy the Saturation Property). Due to the same reasoning, we have r11 > r21.
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Now consider we have two time slots with duration t1 = 1− δ and t2 = δ. Here

δ is any positive value satisfying 0 < δ < r11−r12
(r11−r12)+(r22−r21) . Resource allocations

r1 and r2 are implemented in the two slots, respectively. Then user 1’s average

dominant resource share over the two slots is given as r11 − (r11 − r21)δ, which is

less than r11, while user 2’s average dominant resource share over the two slots is

given as r12 + (r22 − r12)δ, which is more than r12.

The difference of the two users’ average dominant resource shares is given as

r11 − (r11 − r21)δ − [r12 + (r22 − r12)δ]

= r11 − r12 − [(r11 − r12) + (r22 − r21)]δ

> r11 − r12 − [(r11 − r12) + (r22 − r21)] r11−r12
(r11−r12)+(r22−r21) = 0 (3.3)

which means that user 2 has less average dominant resource share over the two slots.

So the objective function of Problem (3.2) over the two slots is r12 + (r22 − r12)δ,

which is more than r12, the optimal objective function value of Problem (3.2). Thus,

there is a contradiction.

This completes the proof.

Based on the results in Proposition 3.3, we have the following proposition in

order.

Proposition 3.4. In Case II, when optimality of Problem (3.2) is achieved, the av-

erage dominant resource share of the two users are equal.

Proof. We use proof by contradiction. Assume in an optimal time-resource allo-

cation of Problem (3.2), the two users have different average dominant resource

share. Without loss of generality, assume user 1 and user 2 have average dominant

resource share A1 and A2, respectively, with A1 > A2. Thus, the optimal objective

function value of Problem (3.2) is A2.

From Proposition 3.3, when the optimality is achieved, two resource allocations

from G1 and G2, respectively, should be implemented in two slots. Assume r1 =

[r11, r12]
T ∈ G1 and r2 = [r21, r22]

T ∈ G2 are implemented in slot 1 with duration
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t1 and slot 2 with duration t2, respectively. So we have r11 > r12 and r21 < r22.

Similar to proof of Proposition 3.3, we should have r11 > r21 and r22 > r12.

We do the following change to the optimal time-resource allocation: duration of

slot 1 changes to t1−δ, and duration of slot 2 changes to 1+δ. Here δ is any positive

value satisfying 0 < δ < A1−A2

(r11−r12)+(r22−r21) . In the new time-resource allocation,

user 1 has average dominant resource share A1 − (r11 − r21)δ, which is less than

A1, while user 2 has average dominant resource share A2 + (r22 − r12)δ, which is

more than A2.

In the new time-resource allocation, the difference of the two users’ average

dominant resource shares is given as

A1 − (r11 − r21)δ − [A2 + (r22 − r12)δ]

= A1 − A2 − [(r11 − r12) + (r22 − r21)]δ

> A1 − A2 − [(r11 − r12) + (r22 − r21)] A1−A2

(r11−r12)+(r22−r21) = 0 (3.4)

which means that user 2 has less average dominant resource share. So for Problem

(3.2), the new time-resource allocation has objective function value being A2 +

(r22−r12)δ, which is more thanA2, the optimal objective function value of Problem

(3.2). Thus, there is a contradiction.

This completes the proof.

Proposition 3.4 means that Problem (3.2) is equivalent to the following problem:

maxK,r1,r2,...,rK∈G1∪G2,t1,t2,...,tK

K∑
j=1

rj1tj (3.5)

subject to:
K∑
j=1

rj1tj =
K∑
j=1

rj2tj;

t1 + t2 + ...+ tK = 1.

To solve Problem (3.5), we add additional constraint K = 2, K = 3, and

K ≥ 4, and solve the problem accordingly in the subsequent subsections. Note

that optimal performance (in terms of the objective function) of Problem (3.5) with
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additional constraint K = l is not better than that of Problem (3.5) with additional

constraint K = l + v for any v > 0.

3.4.1 When K is fixed to 2

When K is fixed to 2, we have two time slots, slot 1 with duration t1 and slot 2 with

duration t2. From Proposition 3.3, The two slots implement resource allocation

r1 = [r11, r12]
T ∈ G1 and r2 = [r21, r22]

T ∈ G2, respectively. So we have r11 > r12

and r21 < r22. Further, similar to proof of Proposition 3.3, we should have r11 > r21

and r22 > r12.

Then Problem (3.5) simplifies to

maxr1∈G1,r2∈G2,0<t1<1 r11t1 + r21(1− t1) (3.6)

subject to: r11t1 + r21(1− t1) = r12t1 + r22(1− t1).

For Problem (3.6), we may have |G1| · |G2| pairs of r1 and r2. For each pair

r1 = [r11, r12]
T and r2 = [r21, r22]

T , the constraint of Problem (3.6) determines that

the value of t1 is given as t1 = r22−r21
(r11−r12)+(r22−r21) , and thus, the objective function

value is given in closed-form as r11 r22−r21
(r11−r12)+(r22−r21) + r21

r11−r12
(r11−r12)+(r22−r21) . Since

we have |G1| · |G2| pairs of r1 and r2, we have |G1| · |G2| objective function values.

Then we can select the maximal objective function value, and the corresponding r1,

r2, and t1 are an optimal time-resource allocation of Problem (3.6).

3.4.2 When K is fixed to 3

When K is fixed to 3, we have three time slots, slot 1, slot 2, and slot 3 with

duration t1, t2 and t3, respectively. The resource allocations in the three slots are

r1 = [r11, r12]
T , r2 = [r21, r22]

T , and r3 = [r31, r32]
T , respectively. From Proposi-

tion 3.3, assume r1 ∈ G1, r2 ∈ G2, and r3 ∈ G1 ∪ G2. So we have r11 > r12 and

r21 < r22.
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t2
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t2 = 1

t1 = 1

t3 = 1

plane(3.8)

triangle(3.9)

Fig. 3.1. triangle (3.9), plane (3.8), and their common line segment
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Then Problem (3.5) simplifies to

maxr1∈G1,r2∈G2,r3∈G1∪G2,t1,t2,t3 r11t1 + r21t2 + r31t3 (3.7)

subject to: r11t1 + r21t2 + r31t3 = r12t1 + r22t2 + r32t3 (3.8)

t1 + t2 + t3 = 1 (3.9)

In a three-dimension space of (t1, t2, t3), the constraint (3.9) is a triangle formed

by three points (0, 0, 1), (0, 1, 0), (1, 0, 0), as shown in Fig.3.1. Constraint (3.8)

means a plane. For constraints (3.8) and (3.9), t1 = r22−r21
(r11−r12)+(r22−r21) , t2 =

r11−r12
(r11−r12)+(r22−r21) , t3 = 0 can satisfy both of them, which means point

(
r22 − r21

(r11 − r12) + (r22 − r21)
,

r11 − r12
(r11 − r12) + (r22 − r21)

, 0

)

is a common point of the triangle (3.9) and the plane (3.8), which implies that

the triangle and the plane cross each other, resulting in a common line segment

of them. An example of the line segment is shown in Fig.3.1. Any point on the

line segment satisfies (3.8) and (3.9). Thus, we need to find the point on the line

segment that maximizes the objective function r11t1+r21t2+r31t3. From constraints

(3.8) and (3.9), both t2 and t3 can be expressed as a linear function of t1. Thus,

the objective function can be expressed as a linear function of t1, denoted f(t1).

Apparently, along the line segment, f(t1) achieves its maximal value at one end

point. At either end point, we have t1t2t3 = 0. This means that in the optimal time-

resource allocation of Problem (3.7), one from t1, t2, t3 should be zero. In other

words, Problem (3.5) with additional constraint K = 3 simplifies to Problem (3.5)

with additional constraint K = 2, which has been solved in Section 3.4.1.

3.4.3 When K is fixed to a value more than 4

We have the following proposition.

Proposition 3.5. Problem (3.5) with additional constraint K = v (v ∈ {4, 5, ...})

simplifies to Problem (3.5) with additional constraint K = 2.
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Proof. We use mathematical induction to prove.

First consider K = 4. In an optimal time-resource allocation, suppose the four

slots have duration t1, t2, t3, t4, and resource allocations r1, r2, r3, r4, respectively.

From Proposition 3.3, at least one resource allocation should be from G1, and at least

one resource allocation should be from G2. So we assume r1 ∈ G1 and r2 ∈ G2.

The two users’ dominant resource share in the first two slots are r11t1 + r21t2

and r12t1 + r22t2, respectively.

• Scenario 1: If the two users have the same dominant resource share in the

first two slots, i.e., r11t1 + r21t2 = r12t1 + r22t2, then they also have the same

dominant resource share in the last two slots, i.e., r31t3+r41t4 = r32t3+r42t4.

Then we should have (r11t1 + r21t2)
1

t1+t2
= (r31t3 + r41t4)

1
t3+t4

. This is

because we have a contradiction if the equality does not hold, as follows. If

(r11t1 + r21t2)
1

t1+t2
> (r31t3 + r41t4)

1
t3+t4

. Then the system has a better

objective function if the time allocation is changed to t1
t1+t2

, t2
t1+t2

, 0, 0 for the

four time slots. If (r11t1 + r21t2)
1

t1+t2
< (r31t3 + r41t4)

1
t3+t4

. Then the

system has a better objective function if the time allocation is changed to

0, 0, t3
t3+t4

, t4
t3+t4

for the four time slots.

Since (r11t1 + r21t2)
1

t1+t2
= (r31t3 + r41t4)

1
t3+t4

, then the optimal objective

function value of Problem (3.5) with K = 4 can also be achieved by using

two slots with duration t1
t1+t2

and t2
t1+t2

, and resource allocation r1 and r2,

respectively.

• Scenario 2: If the two users have the different dominant resource share in the

first two slots, i.e., r11t1 + r21t2 6= r12t1 + r22t2. Without loss of generality,

assume r11t1 + r21t2 > r12t1 + r22t2, which leads to (r11 − r12)t1 > (r22 −

r21)t2. Define t†1 such that (r11 − r12)t†1 = (r22 − r21)t2. Then the optimal

time-resource allocation for the four time slots can be virtually viewed as

two portions: the first portion includes two slots with durations t†1 and t2 and

resource allocations r1 and r2, and the second portion includes three slots

with durations t3, t4, t1 − t†1 and resource allocations r3, r4, r1. In the first
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portion, the two users have the same dominant resource share, and thus, they

also have the same dominant resource share in the second portion. Then

similar to the reasoning in Scenario 1, we should have (r11t
†
1 + r21t2)

1

t†1+t2
=

(r31t3+r41t4+r11(t1−t†1)) 1

t3+t4+t1−t†1
, and thus, the optimal objective function

value of Problem (3.5) with K = 4 can also be achieved by using two slots

with duration t†1
t†1+t2

and t2
t†1+t2

, and resource allocation r1 and r2, respectively.

Thus, Proposition 3.5 holds for K = 4.

Now we assume that Proposition 3.5 holds for K = l (l ≥ 4). We need to prove

that Proposition 3.5 also holds for K = l + 1.

For K = l + 1, we have l + 1 slots with durations t1, t2, ..., tl+1 and resource

allocations r1, r2, ..., rl+1. From Proposition 3.3, we assume r1 ∈ G1, r2 ∈ G2.

The two users’ dominant resource share in the first two slots are r11t1 + r21t2

and r12t1 + r22t2, respectively.

• If the two users have the same dominant resource share in the first two slots,

i.e., r11t1 + r21t2 = r12t1 + r22t2, then they also have the same dominant

resource share in the last l − 1 slots. According to the induction hypothesis,

the optimal time-resource allocation in the second portion (which has l − 1

slots) is not better than the optimal time-resource allocation with two slots.

Thus, overall, the optimal time-resource allocation with l+1 slots is not better

than the optimal time-resource allocation with four slots, which is not better

than the optimal time-resource allocation with two slots.

• If the two users have different dominant resource share in the first two slots,

i.e., r11t1 + r21t2 6= r12t1 + r22t2. Without loss of generality, assume r11t1 +

r21t2 > r12t1 + r22t2, which leads to (r11 − r12)t1 > (r22 − r21)t2. Define t†1

such that (r11−r12)t†1 = (r22−r21)t2. Then the optimal time-resource alloca-

tion for the l+1 slots can be virtually viewed as two portions: the first portion

includes two slots with durations t†1 and t2 and resource allocations r1 and r2,

and the second portion includes l slots with durations t3, t4, ..., tl+1, t1−t†1 and

resource allocations r3, r4, ..., rl+1, r1. In the first portion, the two users have
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the same dominant resource share, and thus, they also have the same dom-

inant resource share in the second portion. According to the induction hy-

pothesis, the optimal time-resource allocation of the second portion (which

has l slots) is not better than the optimal time-resource allocation with two

slots. Thus, overall, the optimal time-resource allocation with l + 1 slots is

not better than the optimal time-resource allocation with four slots, which is

not better than the optimal time-resource allocation with two slots.

Thus, the optimal time-resource allocation with l + 1 slots is not better than

the optimal time-resource allocation with two slots. On the other hand, the opti-

mal time-resource allocation with l + 1 slots is always not worse than the optimal

time-resource allocation with two slots. Therefore, Problem (3.5) with additional

constraint K = l + 1 simplifies to Problem (3.5) with additional constraint K = 2.

This completes the proof.

3.5 Case III and Solution

In Case III, set G3 is non-empty. Then based on the Saturation Property, G3 only

includes one resource allocation, which is the DRF allocation. Then theoretically,

an optimal solution to Problem (3.1) includes two portions: the first portion has

one slot with duration τ and with DRF as the resource allocation, and the second

portion with total duration 1−τ has a number of slots with resource allocations from

G1 ∪ G2. The two users have the same dominant resource share in the first portion

since G3 includes resource allocation in which the two users have the same dominant

resource share. This also means that the two users have the same dominant resource

share in the second portion. Thus, to solve Problem (3.1), for any specific τ , we

should find the optimal solution to maximize the equal dominant resource share of

the two users in the second portion, which is equivalent to Problem (3.2) and is

solved in Section 3.4.

Since theoretically, an optimal solution to Problem (3.1) includes two portions,

and the two users have equal dominant resource share in each portion, the portion
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whose normalized (with respect to the duration of the portion) objective function

is smaller should have duration zero. In specific, we should first find the optimal

solution to Problem (3.2). If its optimal objective function (which is the equal dom-

inant resource share of the two users) is higher than the two users’ equal dominant

resource share in the DRF allocation, then optimal solution to Problem (3.2) is an

optimal solution to Problem (3.1); otherwise, one time slot with DRF allocation is

the optimal solution to Problem (3.1).

3.6 Overall Optimal Time-Resource Allocation Algo-

rithm for Problem (3.1)

Since we have provided solutions for all the three cases of Problem (3.1) in Section

3.3 - 3.5, an overall optimal time-resource allocation algorithm for Problem (3.1)

can be given in Algorithm 3.1.

Algorithm 3.1 Algorithm solving Problem (3.1).
1: Find all resource allocations, and categorize them into three sets G1,G2,G3.

2: If G1 = Φ (null set) or G2 = Φ, then one slot with DRF allocation is the optimal

solution, and proceed to Step 7.

3: Find (r∗1, r
∗
2) = arg maxr1∈G1,r2∈G2 r11

r22−r21
(r11−r12)+(r22−r21) + r21

r11−r12
(r11−r12)+(r22−r21) .

4: If G3 = Φ, then an optimal solution is to have two slots with r∗1, r
∗
2 as resource

allocations and t1 = r22−r21
(r11−r12)+(r22−r21) , t2 = r11−r12

(r11−r12)+(r22−r21) , and proceed to

Step 7.

5: If r∗11
r∗22−r∗21

(r∗11−r∗12)+(r∗22−r∗21)
+r∗21

r∗11−r∗12
(r∗11−r∗12)+(r∗22−r∗21)

is higher than the minimum dom-

inant resource share in the DRF allocation, then an optimal solution is to have

two slots with r∗1, r
∗
2 as resource allocations and t1 = r22−r21

(r11−r12)+(r22−r21) , t2 =

r11−r12
(r11−r12)+(r22−r21) , and proceed to Step 7.

6: One slot with the DRF allocation is optimal.

7: Exit.

Now we analyze the complexity of the proposed Algorithm 3.1. Denote the
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number of resource allocations inR as N . It can be seen that the complexity of the

proposed Algorithm 3.1 is determined by the complexity in Step 3 of Algorithm 3.1.

Step 3 of Algorithm 3.1 has a complexity of O(|G1| · |G2|). Since |G1|+ |G2| ≤ N ,

an upper bound of |G1| · |G2| is given as N2/4. Thus, the worst-case complexity of

Algorithm 3.1 is expressed as O(N2).

As a comparison, we consider complexity of solving Problem (3.1) by using an

exhaustive search. Totally there are 2N possible combinations of the resource allo-

cations used in the time-resource allocation. Thus, the complexity of an exhaustive

search is expressed as O(2N), which is much higher than that of our proposed Al-

gorithm 3.1.

3.7 Conclusion

In this chapter, based on the idea of time division resource allocation, we formulate

an average dominant resource share based time-resource allocation problem. In

general, having more time slots should have performance not worse than that with

fewer time slots. However, interestingly, it is proved in this chapter that the optimal

time-resource allocation performance can be achieved with up to two time slots.
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Chapter 4

Theoretical Performance Bounds for

the Two Users

In Chapter 3, we have developed an algorithm to find the optimal performance of

two users. Now we answer the following question: are there theoretical perfor-

mance bounds for the two users?

In Chapter 3, the system can accommodate an integer number of tasks from each

user. Therefore, for a resource allocation, it is possible that none of the resource

types are completely consumed. Since our target now is at the theoretical bounds,

we relax the integer requirements on the number of tasks from a user. Rather, we

consider an ideal case that the number of tasks from a user can be any continuous

value. We derive theoretical bounds in the ideal case.

For presentation simplicity, the capacity of each resource type is normalized

to 1. We first define a resource factor for user u ∈ {1, 2} in resource type r ∈

{1, 2, ...,m}: qr,u = Demand of resource r from a task of user u
Demand of dominant resource from a task of user u . Therefore, for a user, the

resource factor for dominant resource is qr,u = 1; and for non-dominant resource,

we have qr,u ≤ 1. We also define the resource type arg maxr(qr,1 + qr,2) as the most

popular resource. Also define Q , maxr(qr,1 + qr,2).

Assume the total time duration is 1. The total duration is divided into a number

of time slots, and in each time slot, a resource allocation is implemented. Since the

number of tasks from a user can be a continuous value, for a resource allocation,
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at least one resource type should be consumed completely. Denote x1(t) and x2(t)

(0 ≤ t ≤ 1) as the amount of dominant resource share of user 1 and user 2 over the

slots.

In the time-resource allocation, we make the two users have equal average dom-

inant resource share, and try to maximize their equal average dominant resource

share, referred to as optimal average dominant resource share (ADRS).

If the two users have the same dominant resource type, the following lemma is

in order.

Lemma 4.1. If the two users have the same dominant resource type, the optimal

ADRS of the two users is equal to 1/2.

Proof. Without loss of generality, assume resource type 1 is the dominant resource

for both users. So we have q1,1 = q1,2 = 1. Then apparently, for each resource

allocation, resource type 1 is completely consumed. Thus, for any t ∈ [0, 1], we

have

x1(t) + x2(t) = 1. (4.1)

The ADRS of user 1 and user 2 is given as
∫ 1

0
x1(t)dt and

∫ 1

0
x2(t)dt, respec-

tively. Since we make the two users have equal ADRS, we have

∫ 1

0

x1(t)dt =

∫ 1

0

x2(t)dt. (4.2)

From (4.1) and (4.2), we have
∫ 1

0
x1(t)dt =

∫ 1

0
x2(t)dt = 1/2.

This completes the proof.

If the two users have different dominant resource type, the following lemma is

in order.

Lemma 4.2. If the two users have different dominant resource type, the optimal

ADRS of the two users is equal to 1
Q

. When the optimal ADRS is achieved, the

most popular resource is completely consumed in all resource allocations over all

time slots.

34



Proof. For presentation simplicity, here we consider two resource types: resource

1 and resource 2. But the proof can be straightforwardly extended to the case with

more than two resource types.

Assume the dominant resource type for user 1 and user 2 are resource 1 and

resource 2, respectively. So we have q1,1 = q2,2 = 1, and q2,1 ≤ 1, q1,2 ≤ 1.

Assume the most popular resource is resource 1. So we have Q = q1,1 + q1,2.

Recall that in each resource allocation, one resource type should be completely

consumed. Without loss of generality, assume that for duration t ∈ [0, τ ], all re-

source allocations completely consume resource 2, and for duration t ∈ (τ, 1], all

resource allocations completely consume resource 1.

For duration t ∈ [0, τ ], resource 1 is not completely consumed. Denote w(t)

(t ∈ [0, τ ]) as the amount of resource 1 that is not consumed. Therefore, we have

q1,1x1(t) + q1,2x2(t) = 1− w(t)

which leads to

q1,1

∫ τ

0

x1(t)dt+ q1,2

∫ τ

0

x2(t)dt = τ −
∫ τ

0

w(t)dt. (4.3)

For duration t ∈ (τ, 1], resource 1 is completely consumed. So we have

q1,1x1(t) + q1,2x2(t) = 1

which leads to

q1,1

∫ 1

τ

x1(t)dt+ q1,2

∫ 1

τ

x2(t)dt = 1− τ. (4.4)

Additionally, since the two users have the same ADRS, we have:

ADRS =

∫ τ

0

x1(t)dt+

∫ 1

τ

x1(t)dt

=

∫ τ

0

x2(t)dt+

∫ 1

τ

x2(t)dt.

(4.5)
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From (4.3), (4.4), and (4.5), we have

ADRS =

∫ τ

0

x1(t)dt+

∫ 1

τ

x1(t)dt

=
1

q1,1 + q1,2
(1−

∫ τ

0

w(t)dt)

=
1

Q
(1−

∫ τ

0

w(t)dt).

(4.6)

Thus, to maximize ADRS, we should set τ = 0, which leads to ADRS =

1
Q

. Here τ = 0 means that all resource allocations for duration t ∈ [0, 1] should

completely consume resource 1.

This completes the proof.

When the two users have the same dominant resource type, we have Q = 2. So

based on the above two lemmas, it can be concluded that the optimal ADRS of each

user is given as 1/Q, which can serve as a theoretical upper bound performance of

the ADRS in time division allocation.
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Chapter 5

Performance Evaluation

In this chapter, we will verify the performance of our proposed time division allo-

cation (TDA) strategy.

We simulate two types of tasks from two users. User 1 is CPU dominant, and

the demand of a task varies from < 1 CPU, 1 GB > to < 5 CPU, 2 GB >. User

2 is memory dominant, and the demand of one task varies from < 1 CPU, 1 GB >

to < 3 CPU, 6 GB >. Totally we have 180 scenarios of the demand configuration

of the two users.

The comparison of fairness in dominant resource is shown in Figure ??. The

x-axis represents the sequence number of the 180 scenarios. The y-axis represents

the dominant resource difference ratio, which is the ratio of the absolute difference

of the two users’ average dominant resource shares to the minimum average domi-

nant resource share of the two users. For our TDA strategy, the dominant resource

difference ratio is always 0 for all the 180 scenarios, which means the two users

achieve equal average dominant resource share. On the other hand, the dominant

resource difference ratio for DRF allocation is high in many scenarios. Among

the 180 scenarios, the dominant resource difference ratio is higher than 0.5 in 56

scenarios.

Figure 5.2 shows the minimum average dominant resource share of the two

users in the 180 scenarios. It can be seen that in each scenario, the minimum average

dominant resource share in our TDA strategy is always higher than or equal to

37



that in the DRF strategy. Among the 180 scenarios, the two strategies achieve the

same performance in 16 scenarios, while our TDA strategy performs better in 164

scenarios.

Figure 5.2 also shows the theoretical bounds of average dominant resource share

in the 180 scenarios. Among the 180 scenarios, the DRF strategy achieves the

theoretical bounds in 11 scenarios, while our TDA strategy achieves the theoretical

bounds in 55 scenarios.
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Chapter 6

Conclusion and Future Work

In this chapter, we will have a conclusion of this thesis and propose some work that

can be done in the future.

6.1 Conclusion

This thesis discusses the resource allocation strategy in cloud environments. To

have a fair allocation for heterogeneous users is the major challenge in this area.

The default resource slot based allocation is neither fair nor efficient. The dominant

resource fairness allocation aims to improve the fairness but the indivisibility of the

task demand makes it hard to guarantee the two users have equal dominant resource

share. In order to improve fairness as well as the utilization, we propose the time

division dominant resource fairness allocation.

We first formulate a general time-resource allocation problem which tries to

optimize the number of slots, the resource allocations over the slots, and the time

allocation for the slots. Interestingly, we theoretically prove that the optimality can

be achieved by using at most two slots. The theoretical bound performance for the

time-resource allocation is also derived in this thesis.

The theoretical and simulation results show that time division allocation (TDA)

is a very effective allocation scheduler for multiple-resource allocation in cloud

environments.
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6.2 Future Work

In this thesis, we have developed an algorithm for optimal time-resource allocation

for two users. An interesting future work is to investigate the optimal time-resource

allocation for more users. The following problems should be investigated: for N

users, how many time slots are sufficient to achieve optimality? Is there a simple

algorithm that can find the optimal solution quickly? Are there theoretical perfor-

mance bounds? etc.
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